blob: 6a78c140f3c365bd5c3ddef6f20f6a0cd537db83 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000555collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
556curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000563name, a possibly empty list of arguments, an optional alignment, an optional
564:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000601 [gc] [prefix Constant] { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
Rafael Espindola2def1792013-10-06 15:10:43 +0000617The linkgage must be one of ``private``, ``linker_private``,
618``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
619``linkonce_odr``, ``weak_odr``, ``linkonce_odr_auto_hide``, ``external``. Note
620that some system linkers might not correctly handle dropping a weak symbol that
621is aliased by a non weak alias.
622
Sean Silvaf722b002012-12-07 10:36:55 +0000623.. _namedmetadatastructure:
624
625Named Metadata
626--------------
627
628Named metadata is a collection of metadata. :ref:`Metadata
629nodes <metadata>` (but not metadata strings) are the only valid
630operands for a named metadata.
631
632Syntax::
633
634 ; Some unnamed metadata nodes, which are referenced by the named metadata.
635 !0 = metadata !{metadata !"zero"}
636 !1 = metadata !{metadata !"one"}
637 !2 = metadata !{metadata !"two"}
638 ; A named metadata.
639 !name = !{!0, !1, !2}
640
641.. _paramattrs:
642
643Parameter Attributes
644--------------------
645
646The return type and each parameter of a function type may have a set of
647*parameter attributes* associated with them. Parameter attributes are
648used to communicate additional information about the result or
649parameters of a function. Parameter attributes are considered to be part
650of the function, not of the function type, so functions with different
651parameter attributes can have the same function type.
652
653Parameter attributes are simple keywords that follow the type specified.
654If multiple parameter attributes are needed, they are space separated.
655For example:
656
657.. code-block:: llvm
658
659 declare i32 @printf(i8* noalias nocapture, ...)
660 declare i32 @atoi(i8 zeroext)
661 declare signext i8 @returns_signed_char()
662
663Note that any attributes for the function result (``nounwind``,
664``readonly``) come immediately after the argument list.
665
666Currently, only the following parameter attributes are defined:
667
668``zeroext``
669 This indicates to the code generator that the parameter or return
670 value should be zero-extended to the extent required by the target's
671 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
672 the caller (for a parameter) or the callee (for a return value).
673``signext``
674 This indicates to the code generator that the parameter or return
675 value should be sign-extended to the extent required by the target's
676 ABI (which is usually 32-bits) by the caller (for a parameter) or
677 the callee (for a return value).
678``inreg``
679 This indicates that this parameter or return value should be treated
680 in a special target-dependent fashion during while emitting code for
681 a function call or return (usually, by putting it in a register as
682 opposed to memory, though some targets use it to distinguish between
683 two different kinds of registers). Use of this attribute is
684 target-specific.
685``byval``
686 This indicates that the pointer parameter should really be passed by
687 value to the function. The attribute implies that a hidden copy of
688 the pointee is made between the caller and the callee, so the callee
689 is unable to modify the value in the caller. This attribute is only
690 valid on LLVM pointer arguments. It is generally used to pass
691 structs and arrays by value, but is also valid on pointers to
692 scalars. The copy is considered to belong to the caller not the
693 callee (for example, ``readonly`` functions should not write to
694 ``byval`` parameters). This is not a valid attribute for return
695 values.
696
697 The byval attribute also supports specifying an alignment with the
698 align attribute. It indicates the alignment of the stack slot to
699 form and the known alignment of the pointer specified to the call
700 site. If the alignment is not specified, then the code generator
701 makes a target-specific assumption.
702
703``sret``
704 This indicates that the pointer parameter specifies the address of a
705 structure that is the return value of the function in the source
706 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000707 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000708 not to trap and to be properly aligned. This may only be applied to
709 the first parameter. This is not a valid attribute for return
710 values.
711``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000712 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000713 the argument or return value do not alias pointer values which are
714 not *based* on it, ignoring certain "irrelevant" dependencies. For a
715 call to the parent function, dependencies between memory references
716 from before or after the call and from those during the call are
717 "irrelevant" to the ``noalias`` keyword for the arguments and return
718 value used in that call. The caller shares the responsibility with
719 the callee for ensuring that these requirements are met. For further
720 details, please see the discussion of the NoAlias response in `alias
721 analysis <AliasAnalysis.html#MustMayNo>`_.
722
723 Note that this definition of ``noalias`` is intentionally similar
724 to the definition of ``restrict`` in C99 for function arguments,
725 though it is slightly weaker.
726
727 For function return values, C99's ``restrict`` is not meaningful,
728 while LLVM's ``noalias`` is.
729``nocapture``
730 This indicates that the callee does not make any copies of the
731 pointer that outlive the callee itself. This is not a valid
732 attribute for return values.
733
734.. _nest:
735
736``nest``
737 This indicates that the pointer parameter can be excised using the
738 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000739 attribute for return values and can only be applied to one parameter.
740
741``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000742 This indicates that the function always returns the argument as its return
743 value. This is an optimization hint to the code generator when generating
744 the caller, allowing tail call optimization and omission of register saves
745 and restores in some cases; it is not checked or enforced when generating
746 the callee. The parameter and the function return type must be valid
747 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
748 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000749
750.. _gc:
751
752Garbage Collector Names
753-----------------------
754
755Each function may specify a garbage collector name, which is simply a
756string:
757
758.. code-block:: llvm
759
760 define void @f() gc "name" { ... }
761
762The compiler declares the supported values of *name*. Specifying a
763collector which will cause the compiler to alter its output in order to
764support the named garbage collection algorithm.
765
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000766.. _prefixdata:
767
768Prefix Data
769-----------
770
771Prefix data is data associated with a function which the code generator
772will emit immediately before the function body. The purpose of this feature
773is to allow frontends to associate language-specific runtime metadata with
774specific functions and make it available through the function pointer while
775still allowing the function pointer to be called. To access the data for a
776given function, a program may bitcast the function pointer to a pointer to
777the constant's type. This implies that the IR symbol points to the start
778of the prefix data.
779
780To maintain the semantics of ordinary function calls, the prefix data must
781have a particular format. Specifically, it must begin with a sequence of
782bytes which decode to a sequence of machine instructions, valid for the
783module's target, which transfer control to the point immediately succeeding
784the prefix data, without performing any other visible action. This allows
785the inliner and other passes to reason about the semantics of the function
786definition without needing to reason about the prefix data. Obviously this
787makes the format of the prefix data highly target dependent.
788
Peter Collingbournea4ae4052013-09-23 20:14:21 +0000789Prefix data is laid out as if it were an initializer for a global variable
790of the prefix data's type. No padding is automatically placed between the
791prefix data and the function body. If padding is required, it must be part
792of the prefix data.
793
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000794A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
795which encodes the ``nop`` instruction:
796
797.. code-block:: llvm
798
799 define void @f() prefix i8 144 { ... }
800
801Generally prefix data can be formed by encoding a relative branch instruction
802which skips the metadata, as in this example of valid prefix data for the
803x86_64 architecture, where the first two bytes encode ``jmp .+10``:
804
805.. code-block:: llvm
806
807 %0 = type <{ i8, i8, i8* }>
808
809 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
810
811A function may have prefix data but no body. This has similar semantics
812to the ``available_externally`` linkage in that the data may be used by the
813optimizers but will not be emitted in the object file.
814
Bill Wendling95ce4c22013-02-06 06:52:58 +0000815.. _attrgrp:
816
817Attribute Groups
818----------------
819
820Attribute groups are groups of attributes that are referenced by objects within
821the IR. They are important for keeping ``.ll`` files readable, because a lot of
822functions will use the same set of attributes. In the degenerative case of a
823``.ll`` file that corresponds to a single ``.c`` file, the single attribute
824group will capture the important command line flags used to build that file.
825
826An attribute group is a module-level object. To use an attribute group, an
827object references the attribute group's ID (e.g. ``#37``). An object may refer
828to more than one attribute group. In that situation, the attributes from the
829different groups are merged.
830
831Here is an example of attribute groups for a function that should always be
832inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
833
834.. code-block:: llvm
835
836 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000837 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000838
839 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000840 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000841
842 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
843 define void @f() #0 #1 { ... }
844
Sean Silvaf722b002012-12-07 10:36:55 +0000845.. _fnattrs:
846
847Function Attributes
848-------------------
849
850Function attributes are set to communicate additional information about
851a function. Function attributes are considered to be part of the
852function, not of the function type, so functions with different function
853attributes can have the same function type.
854
855Function attributes are simple keywords that follow the type specified.
856If multiple attributes are needed, they are space separated. For
857example:
858
859.. code-block:: llvm
860
861 define void @f() noinline { ... }
862 define void @f() alwaysinline { ... }
863 define void @f() alwaysinline optsize { ... }
864 define void @f() optsize { ... }
865
Sean Silvaf722b002012-12-07 10:36:55 +0000866``alignstack(<n>)``
867 This attribute indicates that, when emitting the prologue and
868 epilogue, the backend should forcibly align the stack pointer.
869 Specify the desired alignment, which must be a power of two, in
870 parentheses.
871``alwaysinline``
872 This attribute indicates that the inliner should attempt to inline
873 this function into callers whenever possible, ignoring any active
874 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000875``builtin``
876 This indicates that the callee function at a call site should be
877 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000878 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000879 direct calls to functions which are declared with the ``nobuiltin``
880 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000881``cold``
882 This attribute indicates that this function is rarely called. When
883 computing edge weights, basic blocks post-dominated by a cold
884 function call are also considered to be cold; and, thus, given low
885 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000886``inlinehint``
887 This attribute indicates that the source code contained a hint that
888 inlining this function is desirable (such as the "inline" keyword in
889 C/C++). It is just a hint; it imposes no requirements on the
890 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000891``minsize``
892 This attribute suggests that optimization passes and code generator
893 passes make choices that keep the code size of this function as small
894 as possible and perform optimizations that may sacrifice runtime
895 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000896``naked``
897 This attribute disables prologue / epilogue emission for the
898 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000899``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000900 This indicates that the callee function at a call site is not recognized as
901 a built-in function. LLVM will retain the original call and not replace it
902 with equivalent code based on the semantics of the built-in function, unless
903 the call site uses the ``builtin`` attribute. This is valid at call sites
904 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000905``noduplicate``
906 This attribute indicates that calls to the function cannot be
907 duplicated. A call to a ``noduplicate`` function may be moved
908 within its parent function, but may not be duplicated within
909 its parent function.
910
911 A function containing a ``noduplicate`` call may still
912 be an inlining candidate, provided that the call is not
913 duplicated by inlining. That implies that the function has
914 internal linkage and only has one call site, so the original
915 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000916``noimplicitfloat``
917 This attributes disables implicit floating point instructions.
918``noinline``
919 This attribute indicates that the inliner should never inline this
920 function in any situation. This attribute may not be used together
921 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000922``nonlazybind``
923 This attribute suppresses lazy symbol binding for the function. This
924 may make calls to the function faster, at the cost of extra program
925 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000926``noredzone``
927 This attribute indicates that the code generator should not use a
928 red zone, even if the target-specific ABI normally permits it.
929``noreturn``
930 This function attribute indicates that the function never returns
931 normally. This produces undefined behavior at runtime if the
932 function ever does dynamically return.
933``nounwind``
934 This function attribute indicates that the function never returns
935 with an unwind or exceptional control flow. If the function does
936 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000937``optnone``
938 This function attribute indicates that the function is not optimized
939 by any optimization or code generator passes with the
940 exception of interprocedural optimization passes.
941 This attribute cannot be used together with the ``alwaysinline``
942 attribute; this attribute is also incompatible
943 with the ``minsize`` attribute and the ``optsize`` attribute.
944
945 The inliner should never inline this function in any situation.
946 Only functions with the ``alwaysinline`` attribute are valid
947 candidates for inlining inside the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000948``optsize``
949 This attribute suggests that optimization passes and code generator
950 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000951 and otherwise do optimizations specifically to reduce code size as
952 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000953``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000954 On a function, this attribute indicates that the function computes its
955 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000956 without dereferencing any pointer arguments or otherwise accessing
957 any mutable state (e.g. memory, control registers, etc) visible to
958 caller functions. It does not write through any pointer arguments
959 (including ``byval`` arguments) and never changes any state visible
960 to callers. This means that it cannot unwind exceptions by calling
961 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000962
963 On an argument, this attribute indicates that the function does not
964 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000965 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000966``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000967 On a function, this attribute indicates that the function does not write
968 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000969 modify any state (e.g. memory, control registers, etc) visible to
970 caller functions. It may dereference pointer arguments and read
971 state that may be set in the caller. A readonly function always
972 returns the same value (or unwinds an exception identically) when
973 called with the same set of arguments and global state. It cannot
974 unwind an exception by calling the ``C++`` exception throwing
975 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000976
977 On an argument, this attribute indicates that the function does not write
978 through this pointer argument, even though it may write to the memory that
979 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000980``returns_twice``
981 This attribute indicates that this function can return twice. The C
982 ``setjmp`` is an example of such a function. The compiler disables
983 some optimizations (like tail calls) in the caller of these
984 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000985``sanitize_address``
986 This attribute indicates that AddressSanitizer checks
987 (dynamic address safety analysis) are enabled for this function.
988``sanitize_memory``
989 This attribute indicates that MemorySanitizer checks (dynamic detection
990 of accesses to uninitialized memory) are enabled for this function.
991``sanitize_thread``
992 This attribute indicates that ThreadSanitizer checks
993 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000994``ssp``
995 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000996 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000997 placed on the stack before the local variables that's checked upon
998 return from the function to see if it has been overwritten. A
999 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001000 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001001
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001002 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1003 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1004 - Calls to alloca() with variable sizes or constant sizes greater than
1005 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +00001006
1007 If a function that has an ``ssp`` attribute is inlined into a
1008 function that doesn't have an ``ssp`` attribute, then the resulting
1009 function will have an ``ssp`` attribute.
1010``sspreq``
1011 This attribute indicates that the function should *always* emit a
1012 stack smashing protector. This overrides the ``ssp`` function
1013 attribute.
1014
1015 If a function that has an ``sspreq`` attribute is inlined into a
1016 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001017 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1018 an ``sspreq`` attribute.
1019``sspstrong``
1020 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001021 protector. This attribute causes a strong heuristic to be used when
1022 determining if a function needs stack protectors. The strong heuristic
1023 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001024
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001025 - Arrays of any size and type
1026 - Aggregates containing an array of any size and type.
1027 - Calls to alloca().
1028 - Local variables that have had their address taken.
1029
1030 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001031
1032 If a function that has an ``sspstrong`` attribute is inlined into a
1033 function that doesn't have an ``sspstrong`` attribute, then the
1034 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00001035``uwtable``
1036 This attribute indicates that the ABI being targeted requires that
1037 an unwind table entry be produce for this function even if we can
1038 show that no exceptions passes by it. This is normally the case for
1039 the ELF x86-64 abi, but it can be disabled for some compilation
1040 units.
Sean Silvaf722b002012-12-07 10:36:55 +00001041
1042.. _moduleasm:
1043
1044Module-Level Inline Assembly
1045----------------------------
1046
1047Modules may contain "module-level inline asm" blocks, which corresponds
1048to the GCC "file scope inline asm" blocks. These blocks are internally
1049concatenated by LLVM and treated as a single unit, but may be separated
1050in the ``.ll`` file if desired. The syntax is very simple:
1051
1052.. code-block:: llvm
1053
1054 module asm "inline asm code goes here"
1055 module asm "more can go here"
1056
1057The strings can contain any character by escaping non-printable
1058characters. The escape sequence used is simply "\\xx" where "xx" is the
1059two digit hex code for the number.
1060
1061The inline asm code is simply printed to the machine code .s file when
1062assembly code is generated.
1063
Eli Bendersky1de14102013-06-07 19:40:08 +00001064.. _langref_datalayout:
1065
Sean Silvaf722b002012-12-07 10:36:55 +00001066Data Layout
1067-----------
1068
1069A module may specify a target specific data layout string that specifies
1070how data is to be laid out in memory. The syntax for the data layout is
1071simply:
1072
1073.. code-block:: llvm
1074
1075 target datalayout = "layout specification"
1076
1077The *layout specification* consists of a list of specifications
1078separated by the minus sign character ('-'). Each specification starts
1079with a letter and may include other information after the letter to
1080define some aspect of the data layout. The specifications accepted are
1081as follows:
1082
1083``E``
1084 Specifies that the target lays out data in big-endian form. That is,
1085 the bits with the most significance have the lowest address
1086 location.
1087``e``
1088 Specifies that the target lays out data in little-endian form. That
1089 is, the bits with the least significance have the lowest address
1090 location.
1091``S<size>``
1092 Specifies the natural alignment of the stack in bits. Alignment
1093 promotion of stack variables is limited to the natural stack
1094 alignment to avoid dynamic stack realignment. The stack alignment
1095 must be a multiple of 8-bits. If omitted, the natural stack
1096 alignment defaults to "unspecified", which does not prevent any
1097 alignment promotions.
1098``p[n]:<size>:<abi>:<pref>``
1099 This specifies the *size* of a pointer and its ``<abi>`` and
1100 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1101 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1102 preceding ``:`` should be omitted too. The address space, ``n`` is
1103 optional, and if not specified, denotes the default address space 0.
1104 The value of ``n`` must be in the range [1,2^23).
1105``i<size>:<abi>:<pref>``
1106 This specifies the alignment for an integer type of a given bit
1107 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1108``v<size>:<abi>:<pref>``
1109 This specifies the alignment for a vector type of a given bit
1110 ``<size>``.
1111``f<size>:<abi>:<pref>``
1112 This specifies the alignment for a floating point type of a given bit
1113 ``<size>``. Only values of ``<size>`` that are supported by the target
1114 will work. 32 (float) and 64 (double) are supported on all targets; 80
1115 or 128 (different flavors of long double) are also supported on some
1116 targets.
1117``a<size>:<abi>:<pref>``
1118 This specifies the alignment for an aggregate type of a given bit
1119 ``<size>``.
1120``s<size>:<abi>:<pref>``
1121 This specifies the alignment for a stack object of a given bit
1122 ``<size>``.
1123``n<size1>:<size2>:<size3>...``
1124 This specifies a set of native integer widths for the target CPU in
1125 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1126 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1127 this set are considered to support most general arithmetic operations
1128 efficiently.
1129
1130When constructing the data layout for a given target, LLVM starts with a
1131default set of specifications which are then (possibly) overridden by
1132the specifications in the ``datalayout`` keyword. The default
1133specifications are given in this list:
1134
1135- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001136- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1137- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1138 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001139- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001140- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1141- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1142- ``i16:16:16`` - i16 is 16-bit aligned
1143- ``i32:32:32`` - i32 is 32-bit aligned
1144- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1145 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001146- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001147- ``f32:32:32`` - float is 32-bit aligned
1148- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001149- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001150- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1151- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001152- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001153
1154When LLVM is determining the alignment for a given type, it uses the
1155following rules:
1156
1157#. If the type sought is an exact match for one of the specifications,
1158 that specification is used.
1159#. If no match is found, and the type sought is an integer type, then
1160 the smallest integer type that is larger than the bitwidth of the
1161 sought type is used. If none of the specifications are larger than
1162 the bitwidth then the largest integer type is used. For example,
1163 given the default specifications above, the i7 type will use the
1164 alignment of i8 (next largest) while both i65 and i256 will use the
1165 alignment of i64 (largest specified).
1166#. If no match is found, and the type sought is a vector type, then the
1167 largest vector type that is smaller than the sought vector type will
1168 be used as a fall back. This happens because <128 x double> can be
1169 implemented in terms of 64 <2 x double>, for example.
1170
1171The function of the data layout string may not be what you expect.
1172Notably, this is not a specification from the frontend of what alignment
1173the code generator should use.
1174
1175Instead, if specified, the target data layout is required to match what
1176the ultimate *code generator* expects. This string is used by the
1177mid-level optimizers to improve code, and this only works if it matches
1178what the ultimate code generator uses. If you would like to generate IR
1179that does not embed this target-specific detail into the IR, then you
1180don't have to specify the string. This will disable some optimizations
1181that require precise layout information, but this also prevents those
1182optimizations from introducing target specificity into the IR.
1183
1184.. _pointeraliasing:
1185
1186Pointer Aliasing Rules
1187----------------------
1188
1189Any memory access must be done through a pointer value associated with
1190an address range of the memory access, otherwise the behavior is
1191undefined. Pointer values are associated with address ranges according
1192to the following rules:
1193
1194- A pointer value is associated with the addresses associated with any
1195 value it is *based* on.
1196- An address of a global variable is associated with the address range
1197 of the variable's storage.
1198- The result value of an allocation instruction is associated with the
1199 address range of the allocated storage.
1200- A null pointer in the default address-space is associated with no
1201 address.
1202- An integer constant other than zero or a pointer value returned from
1203 a function not defined within LLVM may be associated with address
1204 ranges allocated through mechanisms other than those provided by
1205 LLVM. Such ranges shall not overlap with any ranges of addresses
1206 allocated by mechanisms provided by LLVM.
1207
1208A pointer value is *based* on another pointer value according to the
1209following rules:
1210
1211- A pointer value formed from a ``getelementptr`` operation is *based*
1212 on the first operand of the ``getelementptr``.
1213- The result value of a ``bitcast`` is *based* on the operand of the
1214 ``bitcast``.
1215- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1216 values that contribute (directly or indirectly) to the computation of
1217 the pointer's value.
1218- The "*based* on" relationship is transitive.
1219
1220Note that this definition of *"based"* is intentionally similar to the
1221definition of *"based"* in C99, though it is slightly weaker.
1222
1223LLVM IR does not associate types with memory. The result type of a
1224``load`` merely indicates the size and alignment of the memory from
1225which to load, as well as the interpretation of the value. The first
1226operand type of a ``store`` similarly only indicates the size and
1227alignment of the store.
1228
1229Consequently, type-based alias analysis, aka TBAA, aka
1230``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1231:ref:`Metadata <metadata>` may be used to encode additional information
1232which specialized optimization passes may use to implement type-based
1233alias analysis.
1234
1235.. _volatile:
1236
1237Volatile Memory Accesses
1238------------------------
1239
1240Certain memory accesses, such as :ref:`load <i_load>`'s,
1241:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1242marked ``volatile``. The optimizers must not change the number of
1243volatile operations or change their order of execution relative to other
1244volatile operations. The optimizers *may* change the order of volatile
1245operations relative to non-volatile operations. This is not Java's
1246"volatile" and has no cross-thread synchronization behavior.
1247
Andrew Trick9a6dd022013-01-30 21:19:35 +00001248IR-level volatile loads and stores cannot safely be optimized into
1249llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1250flagged volatile. Likewise, the backend should never split or merge
1251target-legal volatile load/store instructions.
1252
Andrew Trick946317d2013-01-31 00:49:39 +00001253.. admonition:: Rationale
1254
1255 Platforms may rely on volatile loads and stores of natively supported
1256 data width to be executed as single instruction. For example, in C
1257 this holds for an l-value of volatile primitive type with native
1258 hardware support, but not necessarily for aggregate types. The
1259 frontend upholds these expectations, which are intentionally
1260 unspecified in the IR. The rules above ensure that IR transformation
1261 do not violate the frontend's contract with the language.
1262
Sean Silvaf722b002012-12-07 10:36:55 +00001263.. _memmodel:
1264
1265Memory Model for Concurrent Operations
1266--------------------------------------
1267
1268The LLVM IR does not define any way to start parallel threads of
1269execution or to register signal handlers. Nonetheless, there are
1270platform-specific ways to create them, and we define LLVM IR's behavior
1271in their presence. This model is inspired by the C++0x memory model.
1272
1273For a more informal introduction to this model, see the :doc:`Atomics`.
1274
1275We define a *happens-before* partial order as the least partial order
1276that
1277
1278- Is a superset of single-thread program order, and
1279- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1280 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1281 techniques, like pthread locks, thread creation, thread joining,
1282 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1283 Constraints <ordering>`).
1284
1285Note that program order does not introduce *happens-before* edges
1286between a thread and signals executing inside that thread.
1287
1288Every (defined) read operation (load instructions, memcpy, atomic
1289loads/read-modify-writes, etc.) R reads a series of bytes written by
1290(defined) write operations (store instructions, atomic
1291stores/read-modify-writes, memcpy, etc.). For the purposes of this
1292section, initialized globals are considered to have a write of the
1293initializer which is atomic and happens before any other read or write
1294of the memory in question. For each byte of a read R, R\ :sub:`byte`
1295may see any write to the same byte, except:
1296
1297- If write\ :sub:`1` happens before write\ :sub:`2`, and
1298 write\ :sub:`2` happens before R\ :sub:`byte`, then
1299 R\ :sub:`byte` does not see write\ :sub:`1`.
1300- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1301 R\ :sub:`byte` does not see write\ :sub:`3`.
1302
1303Given that definition, R\ :sub:`byte` is defined as follows:
1304
1305- If R is volatile, the result is target-dependent. (Volatile is
1306 supposed to give guarantees which can support ``sig_atomic_t`` in
1307 C/C++, and may be used for accesses to addresses which do not behave
1308 like normal memory. It does not generally provide cross-thread
1309 synchronization.)
1310- Otherwise, if there is no write to the same byte that happens before
1311 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1312- Otherwise, if R\ :sub:`byte` may see exactly one write,
1313 R\ :sub:`byte` returns the value written by that write.
1314- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1315 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1316 Memory Ordering Constraints <ordering>` section for additional
1317 constraints on how the choice is made.
1318- Otherwise R\ :sub:`byte` returns ``undef``.
1319
1320R returns the value composed of the series of bytes it read. This
1321implies that some bytes within the value may be ``undef`` **without**
1322the entire value being ``undef``. Note that this only defines the
1323semantics of the operation; it doesn't mean that targets will emit more
1324than one instruction to read the series of bytes.
1325
1326Note that in cases where none of the atomic intrinsics are used, this
1327model places only one restriction on IR transformations on top of what
1328is required for single-threaded execution: introducing a store to a byte
1329which might not otherwise be stored is not allowed in general.
1330(Specifically, in the case where another thread might write to and read
1331from an address, introducing a store can change a load that may see
1332exactly one write into a load that may see multiple writes.)
1333
1334.. _ordering:
1335
1336Atomic Memory Ordering Constraints
1337----------------------------------
1338
1339Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1340:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1341:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1342an ordering parameter that determines which other atomic instructions on
1343the same address they *synchronize with*. These semantics are borrowed
1344from Java and C++0x, but are somewhat more colloquial. If these
1345descriptions aren't precise enough, check those specs (see spec
1346references in the :doc:`atomics guide <Atomics>`).
1347:ref:`fence <i_fence>` instructions treat these orderings somewhat
1348differently since they don't take an address. See that instruction's
1349documentation for details.
1350
1351For a simpler introduction to the ordering constraints, see the
1352:doc:`Atomics`.
1353
1354``unordered``
1355 The set of values that can be read is governed by the happens-before
1356 partial order. A value cannot be read unless some operation wrote
1357 it. This is intended to provide a guarantee strong enough to model
1358 Java's non-volatile shared variables. This ordering cannot be
1359 specified for read-modify-write operations; it is not strong enough
1360 to make them atomic in any interesting way.
1361``monotonic``
1362 In addition to the guarantees of ``unordered``, there is a single
1363 total order for modifications by ``monotonic`` operations on each
1364 address. All modification orders must be compatible with the
1365 happens-before order. There is no guarantee that the modification
1366 orders can be combined to a global total order for the whole program
1367 (and this often will not be possible). The read in an atomic
1368 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1369 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1370 order immediately before the value it writes. If one atomic read
1371 happens before another atomic read of the same address, the later
1372 read must see the same value or a later value in the address's
1373 modification order. This disallows reordering of ``monotonic`` (or
1374 stronger) operations on the same address. If an address is written
1375 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1376 read that address repeatedly, the other threads must eventually see
1377 the write. This corresponds to the C++0x/C1x
1378 ``memory_order_relaxed``.
1379``acquire``
1380 In addition to the guarantees of ``monotonic``, a
1381 *synchronizes-with* edge may be formed with a ``release`` operation.
1382 This is intended to model C++'s ``memory_order_acquire``.
1383``release``
1384 In addition to the guarantees of ``monotonic``, if this operation
1385 writes a value which is subsequently read by an ``acquire``
1386 operation, it *synchronizes-with* that operation. (This isn't a
1387 complete description; see the C++0x definition of a release
1388 sequence.) This corresponds to the C++0x/C1x
1389 ``memory_order_release``.
1390``acq_rel`` (acquire+release)
1391 Acts as both an ``acquire`` and ``release`` operation on its
1392 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1393``seq_cst`` (sequentially consistent)
1394 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1395 operation which only reads, ``release`` for an operation which only
1396 writes), there is a global total order on all
1397 sequentially-consistent operations on all addresses, which is
1398 consistent with the *happens-before* partial order and with the
1399 modification orders of all the affected addresses. Each
1400 sequentially-consistent read sees the last preceding write to the
1401 same address in this global order. This corresponds to the C++0x/C1x
1402 ``memory_order_seq_cst`` and Java volatile.
1403
1404.. _singlethread:
1405
1406If an atomic operation is marked ``singlethread``, it only *synchronizes
1407with* or participates in modification and seq\_cst total orderings with
1408other operations running in the same thread (for example, in signal
1409handlers).
1410
1411.. _fastmath:
1412
1413Fast-Math Flags
1414---------------
1415
1416LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1417:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1418:ref:`frem <i_frem>`) have the following flags that can set to enable
1419otherwise unsafe floating point operations
1420
1421``nnan``
1422 No NaNs - Allow optimizations to assume the arguments and result are not
1423 NaN. Such optimizations are required to retain defined behavior over
1424 NaNs, but the value of the result is undefined.
1425
1426``ninf``
1427 No Infs - Allow optimizations to assume the arguments and result are not
1428 +/-Inf. Such optimizations are required to retain defined behavior over
1429 +/-Inf, but the value of the result is undefined.
1430
1431``nsz``
1432 No Signed Zeros - Allow optimizations to treat the sign of a zero
1433 argument or result as insignificant.
1434
1435``arcp``
1436 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1437 argument rather than perform division.
1438
1439``fast``
1440 Fast - Allow algebraically equivalent transformations that may
1441 dramatically change results in floating point (e.g. reassociate). This
1442 flag implies all the others.
1443
1444.. _typesystem:
1445
1446Type System
1447===========
1448
1449The LLVM type system is one of the most important features of the
1450intermediate representation. Being typed enables a number of
1451optimizations to be performed on the intermediate representation
1452directly, without having to do extra analyses on the side before the
1453transformation. A strong type system makes it easier to read the
1454generated code and enables novel analyses and transformations that are
1455not feasible to perform on normal three address code representations.
1456
Eli Bendersky88fe6822013-06-07 20:24:43 +00001457.. _typeclassifications:
1458
Sean Silvaf722b002012-12-07 10:36:55 +00001459Type Classifications
1460--------------------
1461
1462The types fall into a few useful classifications:
1463
1464
1465.. list-table::
1466 :header-rows: 1
1467
1468 * - Classification
1469 - Types
1470
1471 * - :ref:`integer <t_integer>`
1472 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1473 ``i64``, ...
1474
1475 * - :ref:`floating point <t_floating>`
1476 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1477 ``ppc_fp128``
1478
1479
1480 * - first class
1481
1482 .. _t_firstclass:
1483
1484 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1485 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1486 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1487 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1488
1489 * - :ref:`primitive <t_primitive>`
1490 - :ref:`label <t_label>`,
1491 :ref:`void <t_void>`,
1492 :ref:`integer <t_integer>`,
1493 :ref:`floating point <t_floating>`,
1494 :ref:`x86mmx <t_x86mmx>`,
1495 :ref:`metadata <t_metadata>`.
1496
1497 * - :ref:`derived <t_derived>`
1498 - :ref:`array <t_array>`,
1499 :ref:`function <t_function>`,
1500 :ref:`pointer <t_pointer>`,
1501 :ref:`structure <t_struct>`,
1502 :ref:`vector <t_vector>`,
1503 :ref:`opaque <t_opaque>`.
1504
1505The :ref:`first class <t_firstclass>` types are perhaps the most important.
1506Values of these types are the only ones which can be produced by
1507instructions.
1508
1509.. _t_primitive:
1510
1511Primitive Types
1512---------------
1513
1514The primitive types are the fundamental building blocks of the LLVM
1515system.
1516
1517.. _t_integer:
1518
1519Integer Type
1520^^^^^^^^^^^^
1521
1522Overview:
1523"""""""""
1524
1525The integer type is a very simple type that simply specifies an
1526arbitrary bit width for the integer type desired. Any bit width from 1
1527bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1528
1529Syntax:
1530"""""""
1531
1532::
1533
1534 iN
1535
1536The number of bits the integer will occupy is specified by the ``N``
1537value.
1538
1539Examples:
1540"""""""""
1541
1542+----------------+------------------------------------------------+
1543| ``i1`` | a single-bit integer. |
1544+----------------+------------------------------------------------+
1545| ``i32`` | a 32-bit integer. |
1546+----------------+------------------------------------------------+
1547| ``i1942652`` | a really big integer of over 1 million bits. |
1548+----------------+------------------------------------------------+
1549
1550.. _t_floating:
1551
1552Floating Point Types
1553^^^^^^^^^^^^^^^^^^^^
1554
1555.. list-table::
1556 :header-rows: 1
1557
1558 * - Type
1559 - Description
1560
1561 * - ``half``
1562 - 16-bit floating point value
1563
1564 * - ``float``
1565 - 32-bit floating point value
1566
1567 * - ``double``
1568 - 64-bit floating point value
1569
1570 * - ``fp128``
1571 - 128-bit floating point value (112-bit mantissa)
1572
1573 * - ``x86_fp80``
1574 - 80-bit floating point value (X87)
1575
1576 * - ``ppc_fp128``
1577 - 128-bit floating point value (two 64-bits)
1578
1579.. _t_x86mmx:
1580
1581X86mmx Type
1582^^^^^^^^^^^
1583
1584Overview:
1585"""""""""
1586
1587The x86mmx type represents a value held in an MMX register on an x86
1588machine. The operations allowed on it are quite limited: parameters and
1589return values, load and store, and bitcast. User-specified MMX
1590instructions are represented as intrinsic or asm calls with arguments
1591and/or results of this type. There are no arrays, vectors or constants
1592of this type.
1593
1594Syntax:
1595"""""""
1596
1597::
1598
1599 x86mmx
1600
1601.. _t_void:
1602
1603Void Type
1604^^^^^^^^^
1605
1606Overview:
1607"""""""""
1608
1609The void type does not represent any value and has no size.
1610
1611Syntax:
1612"""""""
1613
1614::
1615
1616 void
1617
1618.. _t_label:
1619
1620Label Type
1621^^^^^^^^^^
1622
1623Overview:
1624"""""""""
1625
1626The label type represents code labels.
1627
1628Syntax:
1629"""""""
1630
1631::
1632
1633 label
1634
1635.. _t_metadata:
1636
1637Metadata Type
1638^^^^^^^^^^^^^
1639
1640Overview:
1641"""""""""
1642
1643The metadata type represents embedded metadata. No derived types may be
1644created from metadata except for :ref:`function <t_function>` arguments.
1645
1646Syntax:
1647"""""""
1648
1649::
1650
1651 metadata
1652
1653.. _t_derived:
1654
1655Derived Types
1656-------------
1657
1658The real power in LLVM comes from the derived types in the system. This
1659is what allows a programmer to represent arrays, functions, pointers,
1660and other useful types. Each of these types contain one or more element
1661types which may be a primitive type, or another derived type. For
1662example, it is possible to have a two dimensional array, using an array
1663as the element type of another array.
1664
1665.. _t_aggregate:
1666
1667Aggregate Types
1668^^^^^^^^^^^^^^^
1669
1670Aggregate Types are a subset of derived types that can contain multiple
1671member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1672aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1673aggregate types.
1674
1675.. _t_array:
1676
1677Array Type
1678^^^^^^^^^^
1679
1680Overview:
1681"""""""""
1682
1683The array type is a very simple derived type that arranges elements
1684sequentially in memory. The array type requires a size (number of
1685elements) and an underlying data type.
1686
1687Syntax:
1688"""""""
1689
1690::
1691
1692 [<# elements> x <elementtype>]
1693
1694The number of elements is a constant integer value; ``elementtype`` may
1695be any type with a size.
1696
1697Examples:
1698"""""""""
1699
1700+------------------+--------------------------------------+
1701| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1702+------------------+--------------------------------------+
1703| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1704+------------------+--------------------------------------+
1705| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1706+------------------+--------------------------------------+
1707
1708Here are some examples of multidimensional arrays:
1709
1710+-----------------------------+----------------------------------------------------------+
1711| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1712+-----------------------------+----------------------------------------------------------+
1713| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1714+-----------------------------+----------------------------------------------------------+
1715| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1716+-----------------------------+----------------------------------------------------------+
1717
1718There is no restriction on indexing beyond the end of the array implied
1719by a static type (though there are restrictions on indexing beyond the
1720bounds of an allocated object in some cases). This means that
1721single-dimension 'variable sized array' addressing can be implemented in
1722LLVM with a zero length array type. An implementation of 'pascal style
1723arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1724example.
1725
1726.. _t_function:
1727
1728Function Type
1729^^^^^^^^^^^^^
1730
1731Overview:
1732"""""""""
1733
1734The function type can be thought of as a function signature. It consists
1735of a return type and a list of formal parameter types. The return type
1736of a function type is a first class type or a void type.
1737
1738Syntax:
1739"""""""
1740
1741::
1742
1743 <returntype> (<parameter list>)
1744
1745...where '``<parameter list>``' is a comma-separated list of type
1746specifiers. Optionally, the parameter list may include a type ``...``,
1747which indicates that the function takes a variable number of arguments.
1748Variable argument functions can access their arguments with the
1749:ref:`variable argument handling intrinsic <int_varargs>` functions.
1750'``<returntype>``' is any type except :ref:`label <t_label>`.
1751
1752Examples:
1753"""""""""
1754
1755+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1756| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1757+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001758| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001759+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1760| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1761+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1762| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1763+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1764
1765.. _t_struct:
1766
1767Structure Type
1768^^^^^^^^^^^^^^
1769
1770Overview:
1771"""""""""
1772
1773The structure type is used to represent a collection of data members
1774together in memory. The elements of a structure may be any type that has
1775a size.
1776
1777Structures in memory are accessed using '``load``' and '``store``' by
1778getting a pointer to a field with the '``getelementptr``' instruction.
1779Structures in registers are accessed using the '``extractvalue``' and
1780'``insertvalue``' instructions.
1781
1782Structures may optionally be "packed" structures, which indicate that
1783the alignment of the struct is one byte, and that there is no padding
1784between the elements. In non-packed structs, padding between field types
1785is inserted as defined by the DataLayout string in the module, which is
1786required to match what the underlying code generator expects.
1787
1788Structures can either be "literal" or "identified". A literal structure
1789is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1790identified types are always defined at the top level with a name.
1791Literal types are uniqued by their contents and can never be recursive
1792or opaque since there is no way to write one. Identified types can be
1793recursive, can be opaqued, and are never uniqued.
1794
1795Syntax:
1796"""""""
1797
1798::
1799
1800 %T1 = type { <type list> } ; Identified normal struct type
1801 %T2 = type <{ <type list> }> ; Identified packed struct type
1802
1803Examples:
1804"""""""""
1805
1806+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1807| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1808+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001809| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001810+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1811| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1812+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1813
1814.. _t_opaque:
1815
1816Opaque Structure Types
1817^^^^^^^^^^^^^^^^^^^^^^
1818
1819Overview:
1820"""""""""
1821
1822Opaque structure types are used to represent named structure types that
1823do not have a body specified. This corresponds (for example) to the C
1824notion of a forward declared structure.
1825
1826Syntax:
1827"""""""
1828
1829::
1830
1831 %X = type opaque
1832 %52 = type opaque
1833
1834Examples:
1835"""""""""
1836
1837+--------------+-------------------+
1838| ``opaque`` | An opaque type. |
1839+--------------+-------------------+
1840
1841.. _t_pointer:
1842
1843Pointer Type
1844^^^^^^^^^^^^
1845
1846Overview:
1847"""""""""
1848
1849The pointer type is used to specify memory locations. Pointers are
1850commonly used to reference objects in memory.
1851
1852Pointer types may have an optional address space attribute defining the
1853numbered address space where the pointed-to object resides. The default
1854address space is number zero. The semantics of non-zero address spaces
1855are target-specific.
1856
1857Note that LLVM does not permit pointers to void (``void*``) nor does it
1858permit pointers to labels (``label*``). Use ``i8*`` instead.
1859
1860Syntax:
1861"""""""
1862
1863::
1864
1865 <type> *
1866
1867Examples:
1868"""""""""
1869
1870+-------------------------+--------------------------------------------------------------------------------------------------------------+
1871| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1872+-------------------------+--------------------------------------------------------------------------------------------------------------+
1873| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1874+-------------------------+--------------------------------------------------------------------------------------------------------------+
1875| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1876+-------------------------+--------------------------------------------------------------------------------------------------------------+
1877
1878.. _t_vector:
1879
1880Vector Type
1881^^^^^^^^^^^
1882
1883Overview:
1884"""""""""
1885
1886A vector type is a simple derived type that represents a vector of
1887elements. Vector types are used when multiple primitive data are
1888operated in parallel using a single instruction (SIMD). A vector type
1889requires a size (number of elements) and an underlying primitive data
1890type. Vector types are considered :ref:`first class <t_firstclass>`.
1891
1892Syntax:
1893"""""""
1894
1895::
1896
1897 < <# elements> x <elementtype> >
1898
1899The number of elements is a constant integer value larger than 0;
1900elementtype may be any integer or floating point type, or a pointer to
1901these types. Vectors of size zero are not allowed.
1902
1903Examples:
1904"""""""""
1905
1906+-------------------+--------------------------------------------------+
1907| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1908+-------------------+--------------------------------------------------+
1909| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1910+-------------------+--------------------------------------------------+
1911| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1912+-------------------+--------------------------------------------------+
1913| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1914+-------------------+--------------------------------------------------+
1915
1916Constants
1917=========
1918
1919LLVM has several different basic types of constants. This section
1920describes them all and their syntax.
1921
1922Simple Constants
1923----------------
1924
1925**Boolean constants**
1926 The two strings '``true``' and '``false``' are both valid constants
1927 of the ``i1`` type.
1928**Integer constants**
1929 Standard integers (such as '4') are constants of the
1930 :ref:`integer <t_integer>` type. Negative numbers may be used with
1931 integer types.
1932**Floating point constants**
1933 Floating point constants use standard decimal notation (e.g.
1934 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1935 hexadecimal notation (see below). The assembler requires the exact
1936 decimal value of a floating-point constant. For example, the
1937 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1938 decimal in binary. Floating point constants must have a :ref:`floating
1939 point <t_floating>` type.
1940**Null pointer constants**
1941 The identifier '``null``' is recognized as a null pointer constant
1942 and must be of :ref:`pointer type <t_pointer>`.
1943
1944The one non-intuitive notation for constants is the hexadecimal form of
1945floating point constants. For example, the form
1946'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1947than) '``double 4.5e+15``'. The only time hexadecimal floating point
1948constants are required (and the only time that they are generated by the
1949disassembler) is when a floating point constant must be emitted but it
1950cannot be represented as a decimal floating point number in a reasonable
1951number of digits. For example, NaN's, infinities, and other special
1952values are represented in their IEEE hexadecimal format so that assembly
1953and disassembly do not cause any bits to change in the constants.
1954
1955When using the hexadecimal form, constants of types half, float, and
1956double are represented using the 16-digit form shown above (which
1957matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001958must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001959precision, respectively. Hexadecimal format is always used for long
1960double, and there are three forms of long double. The 80-bit format used
1961by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1962128-bit format used by PowerPC (two adjacent doubles) is represented by
1963``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001964represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1965will only work if they match the long double format on your target.
1966The IEEE 16-bit format (half precision) is represented by ``0xH``
1967followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1968(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001969
1970There are no constants of type x86mmx.
1971
Eli Bendersky88fe6822013-06-07 20:24:43 +00001972.. _complexconstants:
1973
Sean Silvaf722b002012-12-07 10:36:55 +00001974Complex Constants
1975-----------------
1976
1977Complex constants are a (potentially recursive) combination of simple
1978constants and smaller complex constants.
1979
1980**Structure constants**
1981 Structure constants are represented with notation similar to
1982 structure type definitions (a comma separated list of elements,
1983 surrounded by braces (``{}``)). For example:
1984 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1985 "``@G = external global i32``". Structure constants must have
1986 :ref:`structure type <t_struct>`, and the number and types of elements
1987 must match those specified by the type.
1988**Array constants**
1989 Array constants are represented with notation similar to array type
1990 definitions (a comma separated list of elements, surrounded by
1991 square brackets (``[]``)). For example:
1992 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1993 :ref:`array type <t_array>`, and the number and types of elements must
1994 match those specified by the type.
1995**Vector constants**
1996 Vector constants are represented with notation similar to vector
1997 type definitions (a comma separated list of elements, surrounded by
1998 less-than/greater-than's (``<>``)). For example:
1999 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2000 must have :ref:`vector type <t_vector>`, and the number and types of
2001 elements must match those specified by the type.
2002**Zero initialization**
2003 The string '``zeroinitializer``' can be used to zero initialize a
2004 value to zero of *any* type, including scalar and
2005 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2006 having to print large zero initializers (e.g. for large arrays) and
2007 is always exactly equivalent to using explicit zero initializers.
2008**Metadata node**
2009 A metadata node is a structure-like constant with :ref:`metadata
2010 type <t_metadata>`. For example:
2011 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2012 constants that are meant to be interpreted as part of the
2013 instruction stream, metadata is a place to attach additional
2014 information such as debug info.
2015
2016Global Variable and Function Addresses
2017--------------------------------------
2018
2019The addresses of :ref:`global variables <globalvars>` and
2020:ref:`functions <functionstructure>` are always implicitly valid
2021(link-time) constants. These constants are explicitly referenced when
2022the :ref:`identifier for the global <identifiers>` is used and always have
2023:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2024file:
2025
2026.. code-block:: llvm
2027
2028 @X = global i32 17
2029 @Y = global i32 42
2030 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2031
2032.. _undefvalues:
2033
2034Undefined Values
2035----------------
2036
2037The string '``undef``' can be used anywhere a constant is expected, and
2038indicates that the user of the value may receive an unspecified
2039bit-pattern. Undefined values may be of any type (other than '``label``'
2040or '``void``') and be used anywhere a constant is permitted.
2041
2042Undefined values are useful because they indicate to the compiler that
2043the program is well defined no matter what value is used. This gives the
2044compiler more freedom to optimize. Here are some examples of
2045(potentially surprising) transformations that are valid (in pseudo IR):
2046
2047.. code-block:: llvm
2048
2049 %A = add %X, undef
2050 %B = sub %X, undef
2051 %C = xor %X, undef
2052 Safe:
2053 %A = undef
2054 %B = undef
2055 %C = undef
2056
2057This is safe because all of the output bits are affected by the undef
2058bits. Any output bit can have a zero or one depending on the input bits.
2059
2060.. code-block:: llvm
2061
2062 %A = or %X, undef
2063 %B = and %X, undef
2064 Safe:
2065 %A = -1
2066 %B = 0
2067 Unsafe:
2068 %A = undef
2069 %B = undef
2070
2071These logical operations have bits that are not always affected by the
2072input. For example, if ``%X`` has a zero bit, then the output of the
2073'``and``' operation will always be a zero for that bit, no matter what
2074the corresponding bit from the '``undef``' is. As such, it is unsafe to
2075optimize or assume that the result of the '``and``' is '``undef``'.
2076However, it is safe to assume that all bits of the '``undef``' could be
20770, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2078all the bits of the '``undef``' operand to the '``or``' could be set,
2079allowing the '``or``' to be folded to -1.
2080
2081.. code-block:: llvm
2082
2083 %A = select undef, %X, %Y
2084 %B = select undef, 42, %Y
2085 %C = select %X, %Y, undef
2086 Safe:
2087 %A = %X (or %Y)
2088 %B = 42 (or %Y)
2089 %C = %Y
2090 Unsafe:
2091 %A = undef
2092 %B = undef
2093 %C = undef
2094
2095This set of examples shows that undefined '``select``' (and conditional
2096branch) conditions can go *either way*, but they have to come from one
2097of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2098both known to have a clear low bit, then ``%A`` would have to have a
2099cleared low bit. However, in the ``%C`` example, the optimizer is
2100allowed to assume that the '``undef``' operand could be the same as
2101``%Y``, allowing the whole '``select``' to be eliminated.
2102
2103.. code-block:: llvm
2104
2105 %A = xor undef, undef
2106
2107 %B = undef
2108 %C = xor %B, %B
2109
2110 %D = undef
2111 %E = icmp lt %D, 4
2112 %F = icmp gte %D, 4
2113
2114 Safe:
2115 %A = undef
2116 %B = undef
2117 %C = undef
2118 %D = undef
2119 %E = undef
2120 %F = undef
2121
2122This example points out that two '``undef``' operands are not
2123necessarily the same. This can be surprising to people (and also matches
2124C semantics) where they assume that "``X^X``" is always zero, even if
2125``X`` is undefined. This isn't true for a number of reasons, but the
2126short answer is that an '``undef``' "variable" can arbitrarily change
2127its value over its "live range". This is true because the variable
2128doesn't actually *have a live range*. Instead, the value is logically
2129read from arbitrary registers that happen to be around when needed, so
2130the value is not necessarily consistent over time. In fact, ``%A`` and
2131``%C`` need to have the same semantics or the core LLVM "replace all
2132uses with" concept would not hold.
2133
2134.. code-block:: llvm
2135
2136 %A = fdiv undef, %X
2137 %B = fdiv %X, undef
2138 Safe:
2139 %A = undef
2140 b: unreachable
2141
2142These examples show the crucial difference between an *undefined value*
2143and *undefined behavior*. An undefined value (like '``undef``') is
2144allowed to have an arbitrary bit-pattern. This means that the ``%A``
2145operation can be constant folded to '``undef``', because the '``undef``'
2146could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2147However, in the second example, we can make a more aggressive
2148assumption: because the ``undef`` is allowed to be an arbitrary value,
2149we are allowed to assume that it could be zero. Since a divide by zero
2150has *undefined behavior*, we are allowed to assume that the operation
2151does not execute at all. This allows us to delete the divide and all
2152code after it. Because the undefined operation "can't happen", the
2153optimizer can assume that it occurs in dead code.
2154
2155.. code-block:: llvm
2156
2157 a: store undef -> %X
2158 b: store %X -> undef
2159 Safe:
2160 a: <deleted>
2161 b: unreachable
2162
2163These examples reiterate the ``fdiv`` example: a store *of* an undefined
2164value can be assumed to not have any effect; we can assume that the
2165value is overwritten with bits that happen to match what was already
2166there. However, a store *to* an undefined location could clobber
2167arbitrary memory, therefore, it has undefined behavior.
2168
2169.. _poisonvalues:
2170
2171Poison Values
2172-------------
2173
2174Poison values are similar to :ref:`undef values <undefvalues>`, however
2175they also represent the fact that an instruction or constant expression
2176which cannot evoke side effects has nevertheless detected a condition
2177which results in undefined behavior.
2178
2179There is currently no way of representing a poison value in the IR; they
2180only exist when produced by operations such as :ref:`add <i_add>` with
2181the ``nsw`` flag.
2182
2183Poison value behavior is defined in terms of value *dependence*:
2184
2185- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2186- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2187 their dynamic predecessor basic block.
2188- Function arguments depend on the corresponding actual argument values
2189 in the dynamic callers of their functions.
2190- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2191 instructions that dynamically transfer control back to them.
2192- :ref:`Invoke <i_invoke>` instructions depend on the
2193 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2194 call instructions that dynamically transfer control back to them.
2195- Non-volatile loads and stores depend on the most recent stores to all
2196 of the referenced memory addresses, following the order in the IR
2197 (including loads and stores implied by intrinsics such as
2198 :ref:`@llvm.memcpy <int_memcpy>`.)
2199- An instruction with externally visible side effects depends on the
2200 most recent preceding instruction with externally visible side
2201 effects, following the order in the IR. (This includes :ref:`volatile
2202 operations <volatile>`.)
2203- An instruction *control-depends* on a :ref:`terminator
2204 instruction <terminators>` if the terminator instruction has
2205 multiple successors and the instruction is always executed when
2206 control transfers to one of the successors, and may not be executed
2207 when control is transferred to another.
2208- Additionally, an instruction also *control-depends* on a terminator
2209 instruction if the set of instructions it otherwise depends on would
2210 be different if the terminator had transferred control to a different
2211 successor.
2212- Dependence is transitive.
2213
2214Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2215with the additional affect that any instruction which has a *dependence*
2216on a poison value has undefined behavior.
2217
2218Here are some examples:
2219
2220.. code-block:: llvm
2221
2222 entry:
2223 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2224 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2225 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2226 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2227
2228 store i32 %poison, i32* @g ; Poison value stored to memory.
2229 %poison2 = load i32* @g ; Poison value loaded back from memory.
2230
2231 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2232
2233 %narrowaddr = bitcast i32* @g to i16*
2234 %wideaddr = bitcast i32* @g to i64*
2235 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2236 %poison4 = load i64* %wideaddr ; Returns a poison value.
2237
2238 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2239 br i1 %cmp, label %true, label %end ; Branch to either destination.
2240
2241 true:
2242 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2243 ; it has undefined behavior.
2244 br label %end
2245
2246 end:
2247 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2248 ; Both edges into this PHI are
2249 ; control-dependent on %cmp, so this
2250 ; always results in a poison value.
2251
2252 store volatile i32 0, i32* @g ; This would depend on the store in %true
2253 ; if %cmp is true, or the store in %entry
2254 ; otherwise, so this is undefined behavior.
2255
2256 br i1 %cmp, label %second_true, label %second_end
2257 ; The same branch again, but this time the
2258 ; true block doesn't have side effects.
2259
2260 second_true:
2261 ; No side effects!
2262 ret void
2263
2264 second_end:
2265 store volatile i32 0, i32* @g ; This time, the instruction always depends
2266 ; on the store in %end. Also, it is
2267 ; control-equivalent to %end, so this is
2268 ; well-defined (ignoring earlier undefined
2269 ; behavior in this example).
2270
2271.. _blockaddress:
2272
2273Addresses of Basic Blocks
2274-------------------------
2275
2276``blockaddress(@function, %block)``
2277
2278The '``blockaddress``' constant computes the address of the specified
2279basic block in the specified function, and always has an ``i8*`` type.
2280Taking the address of the entry block is illegal.
2281
2282This value only has defined behavior when used as an operand to the
2283':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2284against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002285undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002286no label is equal to the null pointer. This may be passed around as an
2287opaque pointer sized value as long as the bits are not inspected. This
2288allows ``ptrtoint`` and arithmetic to be performed on these values so
2289long as the original value is reconstituted before the ``indirectbr``
2290instruction.
2291
2292Finally, some targets may provide defined semantics when using the value
2293as the operand to an inline assembly, but that is target specific.
2294
Eli Bendersky88fe6822013-06-07 20:24:43 +00002295.. _constantexprs:
2296
Sean Silvaf722b002012-12-07 10:36:55 +00002297Constant Expressions
2298--------------------
2299
2300Constant expressions are used to allow expressions involving other
2301constants to be used as constants. Constant expressions may be of any
2302:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2303that does not have side effects (e.g. load and call are not supported).
2304The following is the syntax for constant expressions:
2305
2306``trunc (CST to TYPE)``
2307 Truncate a constant to another type. The bit size of CST must be
2308 larger than the bit size of TYPE. Both types must be integers.
2309``zext (CST to TYPE)``
2310 Zero extend a constant to another type. The bit size of CST must be
2311 smaller than the bit size of TYPE. Both types must be integers.
2312``sext (CST to TYPE)``
2313 Sign extend a constant to another type. The bit size of CST must be
2314 smaller than the bit size of TYPE. Both types must be integers.
2315``fptrunc (CST to TYPE)``
2316 Truncate a floating point constant to another floating point type.
2317 The size of CST must be larger than the size of TYPE. Both types
2318 must be floating point.
2319``fpext (CST to TYPE)``
2320 Floating point extend a constant to another type. The size of CST
2321 must be smaller or equal to the size of TYPE. Both types must be
2322 floating point.
2323``fptoui (CST to TYPE)``
2324 Convert a floating point constant to the corresponding unsigned
2325 integer constant. TYPE must be a scalar or vector integer type. CST
2326 must be of scalar or vector floating point type. Both CST and TYPE
2327 must be scalars, or vectors of the same number of elements. If the
2328 value won't fit in the integer type, the results are undefined.
2329``fptosi (CST to TYPE)``
2330 Convert a floating point constant to the corresponding signed
2331 integer constant. TYPE must be a scalar or vector integer type. CST
2332 must be of scalar or vector floating point type. Both CST and TYPE
2333 must be scalars, or vectors of the same number of elements. If the
2334 value won't fit in the integer type, the results are undefined.
2335``uitofp (CST to TYPE)``
2336 Convert an unsigned integer constant to the corresponding floating
2337 point constant. TYPE must be a scalar or vector floating point type.
2338 CST must be of scalar or vector integer type. Both CST and TYPE must
2339 be scalars, or vectors of the same number of elements. If the value
2340 won't fit in the floating point type, the results are undefined.
2341``sitofp (CST to TYPE)``
2342 Convert a signed integer constant to the corresponding floating
2343 point constant. TYPE must be a scalar or vector floating point type.
2344 CST must be of scalar or vector integer type. Both CST and TYPE must
2345 be scalars, or vectors of the same number of elements. If the value
2346 won't fit in the floating point type, the results are undefined.
2347``ptrtoint (CST to TYPE)``
2348 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002349 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002350 pointer type. The ``CST`` value is zero extended, truncated, or
2351 unchanged to make it fit in ``TYPE``.
2352``inttoptr (CST to TYPE)``
2353 Convert an integer constant to a pointer constant. TYPE must be a
2354 pointer type. CST must be of integer type. The CST value is zero
2355 extended, truncated, or unchanged to make it fit in a pointer size.
2356 This one is *really* dangerous!
2357``bitcast (CST to TYPE)``
2358 Convert a constant, CST, to another TYPE. The constraints of the
2359 operands are the same as those for the :ref:`bitcast
2360 instruction <i_bitcast>`.
2361``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2362 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2363 constants. As with the :ref:`getelementptr <i_getelementptr>`
2364 instruction, the index list may have zero or more indexes, which are
2365 required to make sense for the type of "CSTPTR".
2366``select (COND, VAL1, VAL2)``
2367 Perform the :ref:`select operation <i_select>` on constants.
2368``icmp COND (VAL1, VAL2)``
2369 Performs the :ref:`icmp operation <i_icmp>` on constants.
2370``fcmp COND (VAL1, VAL2)``
2371 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2372``extractelement (VAL, IDX)``
2373 Perform the :ref:`extractelement operation <i_extractelement>` on
2374 constants.
2375``insertelement (VAL, ELT, IDX)``
2376 Perform the :ref:`insertelement operation <i_insertelement>` on
2377 constants.
2378``shufflevector (VEC1, VEC2, IDXMASK)``
2379 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2380 constants.
2381``extractvalue (VAL, IDX0, IDX1, ...)``
2382 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2383 constants. The index list is interpreted in a similar manner as
2384 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2385 least one index value must be specified.
2386``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2387 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2388 The index list is interpreted in a similar manner as indices in a
2389 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2390 value must be specified.
2391``OPCODE (LHS, RHS)``
2392 Perform the specified operation of the LHS and RHS constants. OPCODE
2393 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2394 binary <bitwiseops>` operations. The constraints on operands are
2395 the same as those for the corresponding instruction (e.g. no bitwise
2396 operations on floating point values are allowed).
2397
2398Other Values
2399============
2400
Eli Bendersky88fe6822013-06-07 20:24:43 +00002401.. _inlineasmexprs:
2402
Sean Silvaf722b002012-12-07 10:36:55 +00002403Inline Assembler Expressions
2404----------------------------
2405
2406LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2407Inline Assembly <moduleasm>`) through the use of a special value. This
2408value represents the inline assembler as a string (containing the
2409instructions to emit), a list of operand constraints (stored as a
2410string), a flag that indicates whether or not the inline asm expression
2411has side effects, and a flag indicating whether the function containing
2412the asm needs to align its stack conservatively. An example inline
2413assembler expression is:
2414
2415.. code-block:: llvm
2416
2417 i32 (i32) asm "bswap $0", "=r,r"
2418
2419Inline assembler expressions may **only** be used as the callee operand
2420of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2421Thus, typically we have:
2422
2423.. code-block:: llvm
2424
2425 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2426
2427Inline asms with side effects not visible in the constraint list must be
2428marked as having side effects. This is done through the use of the
2429'``sideeffect``' keyword, like so:
2430
2431.. code-block:: llvm
2432
2433 call void asm sideeffect "eieio", ""()
2434
2435In some cases inline asms will contain code that will not work unless
2436the stack is aligned in some way, such as calls or SSE instructions on
2437x86, yet will not contain code that does that alignment within the asm.
2438The compiler should make conservative assumptions about what the asm
2439might contain and should generate its usual stack alignment code in the
2440prologue if the '``alignstack``' keyword is present:
2441
2442.. code-block:: llvm
2443
2444 call void asm alignstack "eieio", ""()
2445
2446Inline asms also support using non-standard assembly dialects. The
2447assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2448the inline asm is using the Intel dialect. Currently, ATT and Intel are
2449the only supported dialects. An example is:
2450
2451.. code-block:: llvm
2452
2453 call void asm inteldialect "eieio", ""()
2454
2455If multiple keywords appear the '``sideeffect``' keyword must come
2456first, the '``alignstack``' keyword second and the '``inteldialect``'
2457keyword last.
2458
2459Inline Asm Metadata
2460^^^^^^^^^^^^^^^^^^^
2461
2462The call instructions that wrap inline asm nodes may have a
2463"``!srcloc``" MDNode attached to it that contains a list of constant
2464integers. If present, the code generator will use the integer as the
2465location cookie value when report errors through the ``LLVMContext``
2466error reporting mechanisms. This allows a front-end to correlate backend
2467errors that occur with inline asm back to the source code that produced
2468it. For example:
2469
2470.. code-block:: llvm
2471
2472 call void asm sideeffect "something bad", ""(), !srcloc !42
2473 ...
2474 !42 = !{ i32 1234567 }
2475
2476It is up to the front-end to make sense of the magic numbers it places
2477in the IR. If the MDNode contains multiple constants, the code generator
2478will use the one that corresponds to the line of the asm that the error
2479occurs on.
2480
2481.. _metadata:
2482
2483Metadata Nodes and Metadata Strings
2484-----------------------------------
2485
2486LLVM IR allows metadata to be attached to instructions in the program
2487that can convey extra information about the code to the optimizers and
2488code generator. One example application of metadata is source-level
2489debug information. There are two metadata primitives: strings and nodes.
2490All metadata has the ``metadata`` type and is identified in syntax by a
2491preceding exclamation point ('``!``').
2492
2493A metadata string is a string surrounded by double quotes. It can
2494contain any character by escaping non-printable characters with
2495"``\xx``" where "``xx``" is the two digit hex code. For example:
2496"``!"test\00"``".
2497
2498Metadata nodes are represented with notation similar to structure
2499constants (a comma separated list of elements, surrounded by braces and
2500preceded by an exclamation point). Metadata nodes can have any values as
2501their operand. For example:
2502
2503.. code-block:: llvm
2504
2505 !{ metadata !"test\00", i32 10}
2506
2507A :ref:`named metadata <namedmetadatastructure>` is a collection of
2508metadata nodes, which can be looked up in the module symbol table. For
2509example:
2510
2511.. code-block:: llvm
2512
2513 !foo = metadata !{!4, !3}
2514
2515Metadata can be used as function arguments. Here ``llvm.dbg.value``
2516function is using two metadata arguments:
2517
2518.. code-block:: llvm
2519
2520 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2521
2522Metadata can be attached with an instruction. Here metadata ``!21`` is
2523attached to the ``add`` instruction using the ``!dbg`` identifier:
2524
2525.. code-block:: llvm
2526
2527 %indvar.next = add i64 %indvar, 1, !dbg !21
2528
2529More information about specific metadata nodes recognized by the
2530optimizers and code generator is found below.
2531
2532'``tbaa``' Metadata
2533^^^^^^^^^^^^^^^^^^^
2534
2535In LLVM IR, memory does not have types, so LLVM's own type system is not
2536suitable for doing TBAA. Instead, metadata is added to the IR to
2537describe a type system of a higher level language. This can be used to
2538implement typical C/C++ TBAA, but it can also be used to implement
2539custom alias analysis behavior for other languages.
2540
2541The current metadata format is very simple. TBAA metadata nodes have up
2542to three fields, e.g.:
2543
2544.. code-block:: llvm
2545
2546 !0 = metadata !{ metadata !"an example type tree" }
2547 !1 = metadata !{ metadata !"int", metadata !0 }
2548 !2 = metadata !{ metadata !"float", metadata !0 }
2549 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2550
2551The first field is an identity field. It can be any value, usually a
2552metadata string, which uniquely identifies the type. The most important
2553name in the tree is the name of the root node. Two trees with different
2554root node names are entirely disjoint, even if they have leaves with
2555common names.
2556
2557The second field identifies the type's parent node in the tree, or is
2558null or omitted for a root node. A type is considered to alias all of
2559its descendants and all of its ancestors in the tree. Also, a type is
2560considered to alias all types in other trees, so that bitcode produced
2561from multiple front-ends is handled conservatively.
2562
2563If the third field is present, it's an integer which if equal to 1
2564indicates that the type is "constant" (meaning
2565``pointsToConstantMemory`` should return true; see `other useful
2566AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2567
2568'``tbaa.struct``' Metadata
2569^^^^^^^^^^^^^^^^^^^^^^^^^^
2570
2571The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2572aggregate assignment operations in C and similar languages, however it
2573is defined to copy a contiguous region of memory, which is more than
2574strictly necessary for aggregate types which contain holes due to
2575padding. Also, it doesn't contain any TBAA information about the fields
2576of the aggregate.
2577
2578``!tbaa.struct`` metadata can describe which memory subregions in a
2579memcpy are padding and what the TBAA tags of the struct are.
2580
2581The current metadata format is very simple. ``!tbaa.struct`` metadata
2582nodes are a list of operands which are in conceptual groups of three.
2583For each group of three, the first operand gives the byte offset of a
2584field in bytes, the second gives its size in bytes, and the third gives
2585its tbaa tag. e.g.:
2586
2587.. code-block:: llvm
2588
2589 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2590
2591This describes a struct with two fields. The first is at offset 0 bytes
2592with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2593and has size 4 bytes and has tbaa tag !2.
2594
2595Note that the fields need not be contiguous. In this example, there is a
25964 byte gap between the two fields. This gap represents padding which
2597does not carry useful data and need not be preserved.
2598
2599'``fpmath``' Metadata
2600^^^^^^^^^^^^^^^^^^^^^
2601
2602``fpmath`` metadata may be attached to any instruction of floating point
2603type. It can be used to express the maximum acceptable error in the
2604result of that instruction, in ULPs, thus potentially allowing the
2605compiler to use a more efficient but less accurate method of computing
2606it. ULP is defined as follows:
2607
2608 If ``x`` is a real number that lies between two finite consecutive
2609 floating-point numbers ``a`` and ``b``, without being equal to one
2610 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2611 distance between the two non-equal finite floating-point numbers
2612 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2613
2614The metadata node shall consist of a single positive floating point
2615number representing the maximum relative error, for example:
2616
2617.. code-block:: llvm
2618
2619 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2620
2621'``range``' Metadata
2622^^^^^^^^^^^^^^^^^^^^
2623
2624``range`` metadata may be attached only to loads of integer types. It
2625expresses the possible ranges the loaded value is in. The ranges are
2626represented with a flattened list of integers. The loaded value is known
2627to be in the union of the ranges defined by each consecutive pair. Each
2628pair has the following properties:
2629
2630- The type must match the type loaded by the instruction.
2631- The pair ``a,b`` represents the range ``[a,b)``.
2632- Both ``a`` and ``b`` are constants.
2633- The range is allowed to wrap.
2634- The range should not represent the full or empty set. That is,
2635 ``a!=b``.
2636
2637In addition, the pairs must be in signed order of the lower bound and
2638they must be non-contiguous.
2639
2640Examples:
2641
2642.. code-block:: llvm
2643
2644 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2645 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2646 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2647 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2648 ...
2649 !0 = metadata !{ i8 0, i8 2 }
2650 !1 = metadata !{ i8 255, i8 2 }
2651 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2652 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2653
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002654'``llvm.loop``'
2655^^^^^^^^^^^^^^^
2656
2657It is sometimes useful to attach information to loop constructs. Currently,
2658loop metadata is implemented as metadata attached to the branch instruction
2659in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002660guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002661specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002662
2663The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002664itself to avoid merging it with any other identifier metadata, e.g.,
2665during module linkage or function inlining. That is, each loop should refer
2666to their own identification metadata even if they reside in separate functions.
2667The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002668constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002669
2670.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002671
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002672 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002673 !1 = metadata !{ metadata !1 }
2674
Paul Redmondee21b6f2013-05-28 20:00:34 +00002675The loop identifier metadata can be used to specify additional per-loop
2676metadata. Any operands after the first operand can be treated as user-defined
2677metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2678by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002679
Paul Redmondee21b6f2013-05-28 20:00:34 +00002680.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002681
Paul Redmondee21b6f2013-05-28 20:00:34 +00002682 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2683 ...
2684 !0 = metadata !{ metadata !0, metadata !1 }
2685 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002686
2687'``llvm.mem``'
2688^^^^^^^^^^^^^^^
2689
2690Metadata types used to annotate memory accesses with information helpful
2691for optimizations are prefixed with ``llvm.mem``.
2692
2693'``llvm.mem.parallel_loop_access``' Metadata
2694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2695
2696For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002697the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002698also all of the memory accessing instructions in the loop body need to be
2699marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2700is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002701the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002702converted to sequential loops due to optimization passes that are unaware of
2703the parallel semantics and that insert new memory instructions to the loop
2704body.
2705
2706Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002707both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002708metadata types that refer to the same loop identifier metadata.
2709
2710.. code-block:: llvm
2711
2712 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002713 ...
2714 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2715 ...
2716 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2717 ...
2718 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002719
2720 for.end:
2721 ...
2722 !0 = metadata !{ metadata !0 }
2723
2724It is also possible to have nested parallel loops. In that case the
2725memory accesses refer to a list of loop identifier metadata nodes instead of
2726the loop identifier metadata node directly:
2727
2728.. code-block:: llvm
2729
2730 outer.for.body:
2731 ...
2732
2733 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002734 ...
2735 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2736 ...
2737 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2738 ...
2739 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002740
2741 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002742 ...
2743 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2744 ...
2745 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2746 ...
2747 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002748
2749 outer.for.end: ; preds = %for.body
2750 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002751 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2752 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2753 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002754
Paul Redmondee21b6f2013-05-28 20:00:34 +00002755'``llvm.vectorizer``'
2756^^^^^^^^^^^^^^^^^^^^^
2757
2758Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2759vectorization parameters such as vectorization factor and unroll factor.
2760
2761``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2762loop identification metadata.
2763
2764'``llvm.vectorizer.unroll``' Metadata
2765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2766
2767This metadata instructs the loop vectorizer to unroll the specified
2768loop exactly ``N`` times.
2769
2770The first operand is the string ``llvm.vectorizer.unroll`` and the second
2771operand is an integer specifying the unroll factor. For example:
2772
2773.. code-block:: llvm
2774
2775 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2776
2777Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2778loop.
2779
2780If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2781determined automatically.
2782
2783'``llvm.vectorizer.width``' Metadata
2784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2785
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002786This metadata sets the target width of the vectorizer to ``N``. Without
2787this metadata, the vectorizer will choose a width automatically.
2788Regardless of this metadata, the vectorizer will only vectorize loops if
2789it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002790
2791The first operand is the string ``llvm.vectorizer.width`` and the second
2792operand is an integer specifying the width. For example:
2793
2794.. code-block:: llvm
2795
2796 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2797
2798Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2799loop.
2800
2801If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2802automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002803
Sean Silvaf722b002012-12-07 10:36:55 +00002804Module Flags Metadata
2805=====================
2806
2807Information about the module as a whole is difficult to convey to LLVM's
2808subsystems. The LLVM IR isn't sufficient to transmit this information.
2809The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002810this. These flags are in the form of key / value pairs --- much like a
2811dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002812look it up.
2813
2814The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2815Each triplet has the following form:
2816
2817- The first element is a *behavior* flag, which specifies the behavior
2818 when two (or more) modules are merged together, and it encounters two
2819 (or more) metadata with the same ID. The supported behaviors are
2820 described below.
2821- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002822 metadata. Each module may only have one flag entry for each unique ID (not
2823 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002824- The third element is the value of the flag.
2825
2826When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002827``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2828each unique metadata ID string, there will be exactly one entry in the merged
2829modules ``llvm.module.flags`` metadata table, and the value for that entry will
2830be determined by the merge behavior flag, as described below. The only exception
2831is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002832
2833The following behaviors are supported:
2834
2835.. list-table::
2836 :header-rows: 1
2837 :widths: 10 90
2838
2839 * - Value
2840 - Behavior
2841
2842 * - 1
2843 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002844 Emits an error if two values disagree, otherwise the resulting value
2845 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002846
2847 * - 2
2848 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002849 Emits a warning if two values disagree. The result value will be the
2850 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002851
2852 * - 3
2853 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002854 Adds a requirement that another module flag be present and have a
2855 specified value after linking is performed. The value must be a
2856 metadata pair, where the first element of the pair is the ID of the
2857 module flag to be restricted, and the second element of the pair is
2858 the value the module flag should be restricted to. This behavior can
2859 be used to restrict the allowable results (via triggering of an
2860 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002861
2862 * - 4
2863 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002864 Uses the specified value, regardless of the behavior or value of the
2865 other module. If both modules specify **Override**, but the values
2866 differ, an error will be emitted.
2867
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002868 * - 5
2869 - **Append**
2870 Appends the two values, which are required to be metadata nodes.
2871
2872 * - 6
2873 - **AppendUnique**
2874 Appends the two values, which are required to be metadata
2875 nodes. However, duplicate entries in the second list are dropped
2876 during the append operation.
2877
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002878It is an error for a particular unique flag ID to have multiple behaviors,
2879except in the case of **Require** (which adds restrictions on another metadata
2880value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002881
2882An example of module flags:
2883
2884.. code-block:: llvm
2885
2886 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2887 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2888 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2889 !3 = metadata !{ i32 3, metadata !"qux",
2890 metadata !{
2891 metadata !"foo", i32 1
2892 }
2893 }
2894 !llvm.module.flags = !{ !0, !1, !2, !3 }
2895
2896- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2897 if two or more ``!"foo"`` flags are seen is to emit an error if their
2898 values are not equal.
2899
2900- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2901 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002902 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002903
2904- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2905 behavior if two or more ``!"qux"`` flags are seen is to emit a
2906 warning if their values are not equal.
2907
2908- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2909
2910 ::
2911
2912 metadata !{ metadata !"foo", i32 1 }
2913
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002914 The behavior is to emit an error if the ``llvm.module.flags`` does not
2915 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2916 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002917
2918Objective-C Garbage Collection Module Flags Metadata
2919----------------------------------------------------
2920
2921On the Mach-O platform, Objective-C stores metadata about garbage
2922collection in a special section called "image info". The metadata
2923consists of a version number and a bitmask specifying what types of
2924garbage collection are supported (if any) by the file. If two or more
2925modules are linked together their garbage collection metadata needs to
2926be merged rather than appended together.
2927
2928The Objective-C garbage collection module flags metadata consists of the
2929following key-value pairs:
2930
2931.. list-table::
2932 :header-rows: 1
2933 :widths: 30 70
2934
2935 * - Key
2936 - Value
2937
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002938 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002939 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002940
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002941 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002942 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002943 always 0.
2944
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002945 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002946 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002947 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2948 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2949 Objective-C ABI version 2.
2950
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002951 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002952 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002953 not. Valid values are 0, for no garbage collection, and 2, for garbage
2954 collection supported.
2955
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002956 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002957 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002958 If present, its value must be 6. This flag requires that the
2959 ``Objective-C Garbage Collection`` flag have the value 2.
2960
2961Some important flag interactions:
2962
2963- If a module with ``Objective-C Garbage Collection`` set to 0 is
2964 merged with a module with ``Objective-C Garbage Collection`` set to
2965 2, then the resulting module has the
2966 ``Objective-C Garbage Collection`` flag set to 0.
2967- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2968 merged with a module with ``Objective-C GC Only`` set to 6.
2969
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002970Automatic Linker Flags Module Flags Metadata
2971--------------------------------------------
2972
2973Some targets support embedding flags to the linker inside individual object
2974files. Typically this is used in conjunction with language extensions which
2975allow source files to explicitly declare the libraries they depend on, and have
2976these automatically be transmitted to the linker via object files.
2977
2978These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002979using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002980to be ``AppendUnique``, and the value for the key is expected to be a metadata
2981node which should be a list of other metadata nodes, each of which should be a
2982list of metadata strings defining linker options.
2983
2984For example, the following metadata section specifies two separate sets of
2985linker options, presumably to link against ``libz`` and the ``Cocoa``
2986framework::
2987
Michael Liao2faa0f32013-03-06 18:24:34 +00002988 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002989 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002990 metadata !{ metadata !"-lz" },
2991 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002992 !llvm.module.flags = !{ !0 }
2993
2994The metadata encoding as lists of lists of options, as opposed to a collapsed
2995list of options, is chosen so that the IR encoding can use multiple option
2996strings to specify e.g., a single library, while still having that specifier be
2997preserved as an atomic element that can be recognized by a target specific
2998assembly writer or object file emitter.
2999
3000Each individual option is required to be either a valid option for the target's
3001linker, or an option that is reserved by the target specific assembly writer or
3002object file emitter. No other aspect of these options is defined by the IR.
3003
Eli Bendersky88fe6822013-06-07 20:24:43 +00003004.. _intrinsicglobalvariables:
3005
Sean Silvaf722b002012-12-07 10:36:55 +00003006Intrinsic Global Variables
3007==========================
3008
3009LLVM has a number of "magic" global variables that contain data that
3010affect code generation or other IR semantics. These are documented here.
3011All globals of this sort should have a section specified as
3012"``llvm.metadata``". This section and all globals that start with
3013"``llvm.``" are reserved for use by LLVM.
3014
Eli Bendersky88fe6822013-06-07 20:24:43 +00003015.. _gv_llvmused:
3016
Sean Silvaf722b002012-12-07 10:36:55 +00003017The '``llvm.used``' Global Variable
3018-----------------------------------
3019
Rafael Espindolacde25b42013-04-22 14:58:02 +00003020The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00003021:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003022pointers to named global variables, functions and aliases which may optionally
3023have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00003024use of it is:
3025
3026.. code-block:: llvm
3027
3028 @X = global i8 4
3029 @Y = global i32 123
3030
3031 @llvm.used = appending global [2 x i8*] [
3032 i8* @X,
3033 i8* bitcast (i32* @Y to i8*)
3034 ], section "llvm.metadata"
3035
Rafael Espindolacde25b42013-04-22 14:58:02 +00003036If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3037and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003038symbol that it cannot see (which is why they have to be named). For example, if
3039a variable has internal linkage and no references other than that from the
3040``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3041references from inline asms and other things the compiler cannot "see", and
3042corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00003043
3044On some targets, the code generator must emit a directive to the
3045assembler or object file to prevent the assembler and linker from
3046molesting the symbol.
3047
Eli Bendersky88fe6822013-06-07 20:24:43 +00003048.. _gv_llvmcompilerused:
3049
Sean Silvaf722b002012-12-07 10:36:55 +00003050The '``llvm.compiler.used``' Global Variable
3051--------------------------------------------
3052
3053The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3054directive, except that it only prevents the compiler from touching the
3055symbol. On targets that support it, this allows an intelligent linker to
3056optimize references to the symbol without being impeded as it would be
3057by ``@llvm.used``.
3058
3059This is a rare construct that should only be used in rare circumstances,
3060and should not be exposed to source languages.
3061
Eli Bendersky88fe6822013-06-07 20:24:43 +00003062.. _gv_llvmglobalctors:
3063
Sean Silvaf722b002012-12-07 10:36:55 +00003064The '``llvm.global_ctors``' Global Variable
3065-------------------------------------------
3066
3067.. code-block:: llvm
3068
3069 %0 = type { i32, void ()* }
3070 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3071
3072The ``@llvm.global_ctors`` array contains a list of constructor
3073functions and associated priorities. The functions referenced by this
3074array will be called in ascending order of priority (i.e. lowest first)
3075when the module is loaded. The order of functions with the same priority
3076is not defined.
3077
Eli Bendersky88fe6822013-06-07 20:24:43 +00003078.. _llvmglobaldtors:
3079
Sean Silvaf722b002012-12-07 10:36:55 +00003080The '``llvm.global_dtors``' Global Variable
3081-------------------------------------------
3082
3083.. code-block:: llvm
3084
3085 %0 = type { i32, void ()* }
3086 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3087
3088The ``@llvm.global_dtors`` array contains a list of destructor functions
3089and associated priorities. The functions referenced by this array will
3090be called in descending order of priority (i.e. highest first) when the
3091module is loaded. The order of functions with the same priority is not
3092defined.
3093
3094Instruction Reference
3095=====================
3096
3097The LLVM instruction set consists of several different classifications
3098of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3099instructions <binaryops>`, :ref:`bitwise binary
3100instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3101:ref:`other instructions <otherops>`.
3102
3103.. _terminators:
3104
3105Terminator Instructions
3106-----------------------
3107
3108As mentioned :ref:`previously <functionstructure>`, every basic block in a
3109program ends with a "Terminator" instruction, which indicates which
3110block should be executed after the current block is finished. These
3111terminator instructions typically yield a '``void``' value: they produce
3112control flow, not values (the one exception being the
3113':ref:`invoke <i_invoke>`' instruction).
3114
3115The terminator instructions are: ':ref:`ret <i_ret>`',
3116':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3117':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3118':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3119
3120.. _i_ret:
3121
3122'``ret``' Instruction
3123^^^^^^^^^^^^^^^^^^^^^
3124
3125Syntax:
3126"""""""
3127
3128::
3129
3130 ret <type> <value> ; Return a value from a non-void function
3131 ret void ; Return from void function
3132
3133Overview:
3134"""""""""
3135
3136The '``ret``' instruction is used to return control flow (and optionally
3137a value) from a function back to the caller.
3138
3139There are two forms of the '``ret``' instruction: one that returns a
3140value and then causes control flow, and one that just causes control
3141flow to occur.
3142
3143Arguments:
3144""""""""""
3145
3146The '``ret``' instruction optionally accepts a single argument, the
3147return value. The type of the return value must be a ':ref:`first
3148class <t_firstclass>`' type.
3149
3150A function is not :ref:`well formed <wellformed>` if it it has a non-void
3151return type and contains a '``ret``' instruction with no return value or
3152a return value with a type that does not match its type, or if it has a
3153void return type and contains a '``ret``' instruction with a return
3154value.
3155
3156Semantics:
3157""""""""""
3158
3159When the '``ret``' instruction is executed, control flow returns back to
3160the calling function's context. If the caller is a
3161":ref:`call <i_call>`" instruction, execution continues at the
3162instruction after the call. If the caller was an
3163":ref:`invoke <i_invoke>`" instruction, execution continues at the
3164beginning of the "normal" destination block. If the instruction returns
3165a value, that value shall set the call or invoke instruction's return
3166value.
3167
3168Example:
3169""""""""
3170
3171.. code-block:: llvm
3172
3173 ret i32 5 ; Return an integer value of 5
3174 ret void ; Return from a void function
3175 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3176
3177.. _i_br:
3178
3179'``br``' Instruction
3180^^^^^^^^^^^^^^^^^^^^
3181
3182Syntax:
3183"""""""
3184
3185::
3186
3187 br i1 <cond>, label <iftrue>, label <iffalse>
3188 br label <dest> ; Unconditional branch
3189
3190Overview:
3191"""""""""
3192
3193The '``br``' instruction is used to cause control flow to transfer to a
3194different basic block in the current function. There are two forms of
3195this instruction, corresponding to a conditional branch and an
3196unconditional branch.
3197
3198Arguments:
3199""""""""""
3200
3201The conditional branch form of the '``br``' instruction takes a single
3202'``i1``' value and two '``label``' values. The unconditional form of the
3203'``br``' instruction takes a single '``label``' value as a target.
3204
3205Semantics:
3206""""""""""
3207
3208Upon execution of a conditional '``br``' instruction, the '``i1``'
3209argument is evaluated. If the value is ``true``, control flows to the
3210'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3211to the '``iffalse``' ``label`` argument.
3212
3213Example:
3214""""""""
3215
3216.. code-block:: llvm
3217
3218 Test:
3219 %cond = icmp eq i32 %a, %b
3220 br i1 %cond, label %IfEqual, label %IfUnequal
3221 IfEqual:
3222 ret i32 1
3223 IfUnequal:
3224 ret i32 0
3225
3226.. _i_switch:
3227
3228'``switch``' Instruction
3229^^^^^^^^^^^^^^^^^^^^^^^^
3230
3231Syntax:
3232"""""""
3233
3234::
3235
3236 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3237
3238Overview:
3239"""""""""
3240
3241The '``switch``' instruction is used to transfer control flow to one of
3242several different places. It is a generalization of the '``br``'
3243instruction, allowing a branch to occur to one of many possible
3244destinations.
3245
3246Arguments:
3247""""""""""
3248
3249The '``switch``' instruction uses three parameters: an integer
3250comparison value '``value``', a default '``label``' destination, and an
3251array of pairs of comparison value constants and '``label``'s. The table
3252is not allowed to contain duplicate constant entries.
3253
3254Semantics:
3255""""""""""
3256
3257The ``switch`` instruction specifies a table of values and destinations.
3258When the '``switch``' instruction is executed, this table is searched
3259for the given value. If the value is found, control flow is transferred
3260to the corresponding destination; otherwise, control flow is transferred
3261to the default destination.
3262
3263Implementation:
3264"""""""""""""""
3265
3266Depending on properties of the target machine and the particular
3267``switch`` instruction, this instruction may be code generated in
3268different ways. For example, it could be generated as a series of
3269chained conditional branches or with a lookup table.
3270
3271Example:
3272""""""""
3273
3274.. code-block:: llvm
3275
3276 ; Emulate a conditional br instruction
3277 %Val = zext i1 %value to i32
3278 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3279
3280 ; Emulate an unconditional br instruction
3281 switch i32 0, label %dest [ ]
3282
3283 ; Implement a jump table:
3284 switch i32 %val, label %otherwise [ i32 0, label %onzero
3285 i32 1, label %onone
3286 i32 2, label %ontwo ]
3287
3288.. _i_indirectbr:
3289
3290'``indirectbr``' Instruction
3291^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3292
3293Syntax:
3294"""""""
3295
3296::
3297
3298 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3299
3300Overview:
3301"""""""""
3302
3303The '``indirectbr``' instruction implements an indirect branch to a
3304label within the current function, whose address is specified by
3305"``address``". Address must be derived from a
3306:ref:`blockaddress <blockaddress>` constant.
3307
3308Arguments:
3309""""""""""
3310
3311The '``address``' argument is the address of the label to jump to. The
3312rest of the arguments indicate the full set of possible destinations
3313that the address may point to. Blocks are allowed to occur multiple
3314times in the destination list, though this isn't particularly useful.
3315
3316This destination list is required so that dataflow analysis has an
3317accurate understanding of the CFG.
3318
3319Semantics:
3320""""""""""
3321
3322Control transfers to the block specified in the address argument. All
3323possible destination blocks must be listed in the label list, otherwise
3324this instruction has undefined behavior. This implies that jumps to
3325labels defined in other functions have undefined behavior as well.
3326
3327Implementation:
3328"""""""""""""""
3329
3330This is typically implemented with a jump through a register.
3331
3332Example:
3333""""""""
3334
3335.. code-block:: llvm
3336
3337 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3338
3339.. _i_invoke:
3340
3341'``invoke``' Instruction
3342^^^^^^^^^^^^^^^^^^^^^^^^
3343
3344Syntax:
3345"""""""
3346
3347::
3348
3349 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3350 to label <normal label> unwind label <exception label>
3351
3352Overview:
3353"""""""""
3354
3355The '``invoke``' instruction causes control to transfer to a specified
3356function, with the possibility of control flow transfer to either the
3357'``normal``' label or the '``exception``' label. If the callee function
3358returns with the "``ret``" instruction, control flow will return to the
3359"normal" label. If the callee (or any indirect callees) returns via the
3360":ref:`resume <i_resume>`" instruction or other exception handling
3361mechanism, control is interrupted and continued at the dynamically
3362nearest "exception" label.
3363
3364The '``exception``' label is a `landing
3365pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3366'``exception``' label is required to have the
3367":ref:`landingpad <i_landingpad>`" instruction, which contains the
3368information about the behavior of the program after unwinding happens,
3369as its first non-PHI instruction. The restrictions on the
3370"``landingpad``" instruction's tightly couples it to the "``invoke``"
3371instruction, so that the important information contained within the
3372"``landingpad``" instruction can't be lost through normal code motion.
3373
3374Arguments:
3375""""""""""
3376
3377This instruction requires several arguments:
3378
3379#. The optional "cconv" marker indicates which :ref:`calling
3380 convention <callingconv>` the call should use. If none is
3381 specified, the call defaults to using C calling conventions.
3382#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3383 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3384 are valid here.
3385#. '``ptr to function ty``': shall be the signature of the pointer to
3386 function value being invoked. In most cases, this is a direct
3387 function invocation, but indirect ``invoke``'s are just as possible,
3388 branching off an arbitrary pointer to function value.
3389#. '``function ptr val``': An LLVM value containing a pointer to a
3390 function to be invoked.
3391#. '``function args``': argument list whose types match the function
3392 signature argument types and parameter attributes. All arguments must
3393 be of :ref:`first class <t_firstclass>` type. If the function signature
3394 indicates the function accepts a variable number of arguments, the
3395 extra arguments can be specified.
3396#. '``normal label``': the label reached when the called function
3397 executes a '``ret``' instruction.
3398#. '``exception label``': the label reached when a callee returns via
3399 the :ref:`resume <i_resume>` instruction or other exception handling
3400 mechanism.
3401#. The optional :ref:`function attributes <fnattrs>` list. Only
3402 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3403 attributes are valid here.
3404
3405Semantics:
3406""""""""""
3407
3408This instruction is designed to operate as a standard '``call``'
3409instruction in most regards. The primary difference is that it
3410establishes an association with a label, which is used by the runtime
3411library to unwind the stack.
3412
3413This instruction is used in languages with destructors to ensure that
3414proper cleanup is performed in the case of either a ``longjmp`` or a
3415thrown exception. Additionally, this is important for implementation of
3416'``catch``' clauses in high-level languages that support them.
3417
3418For the purposes of the SSA form, the definition of the value returned
3419by the '``invoke``' instruction is deemed to occur on the edge from the
3420current block to the "normal" label. If the callee unwinds then no
3421return value is available.
3422
3423Example:
3424""""""""
3425
3426.. code-block:: llvm
3427
3428 %retval = invoke i32 @Test(i32 15) to label %Continue
3429 unwind label %TestCleanup ; {i32}:retval set
3430 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3431 unwind label %TestCleanup ; {i32}:retval set
3432
3433.. _i_resume:
3434
3435'``resume``' Instruction
3436^^^^^^^^^^^^^^^^^^^^^^^^
3437
3438Syntax:
3439"""""""
3440
3441::
3442
3443 resume <type> <value>
3444
3445Overview:
3446"""""""""
3447
3448The '``resume``' instruction is a terminator instruction that has no
3449successors.
3450
3451Arguments:
3452""""""""""
3453
3454The '``resume``' instruction requires one argument, which must have the
3455same type as the result of any '``landingpad``' instruction in the same
3456function.
3457
3458Semantics:
3459""""""""""
3460
3461The '``resume``' instruction resumes propagation of an existing
3462(in-flight) exception whose unwinding was interrupted with a
3463:ref:`landingpad <i_landingpad>` instruction.
3464
3465Example:
3466""""""""
3467
3468.. code-block:: llvm
3469
3470 resume { i8*, i32 } %exn
3471
3472.. _i_unreachable:
3473
3474'``unreachable``' Instruction
3475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3476
3477Syntax:
3478"""""""
3479
3480::
3481
3482 unreachable
3483
3484Overview:
3485"""""""""
3486
3487The '``unreachable``' instruction has no defined semantics. This
3488instruction is used to inform the optimizer that a particular portion of
3489the code is not reachable. This can be used to indicate that the code
3490after a no-return function cannot be reached, and other facts.
3491
3492Semantics:
3493""""""""""
3494
3495The '``unreachable``' instruction has no defined semantics.
3496
3497.. _binaryops:
3498
3499Binary Operations
3500-----------------
3501
3502Binary operators are used to do most of the computation in a program.
3503They require two operands of the same type, execute an operation on
3504them, and produce a single value. The operands might represent multiple
3505data, as is the case with the :ref:`vector <t_vector>` data type. The
3506result value has the same type as its operands.
3507
3508There are several different binary operators:
3509
3510.. _i_add:
3511
3512'``add``' Instruction
3513^^^^^^^^^^^^^^^^^^^^^
3514
3515Syntax:
3516"""""""
3517
3518::
3519
3520 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3521 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3522 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3523 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3524
3525Overview:
3526"""""""""
3527
3528The '``add``' instruction returns the sum of its two operands.
3529
3530Arguments:
3531""""""""""
3532
3533The two arguments to the '``add``' instruction must be
3534:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3535arguments must have identical types.
3536
3537Semantics:
3538""""""""""
3539
3540The value produced is the integer sum of the two operands.
3541
3542If the sum has unsigned overflow, the result returned is the
3543mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3544the result.
3545
3546Because LLVM integers use a two's complement representation, this
3547instruction is appropriate for both signed and unsigned integers.
3548
3549``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3550respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3551result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3552unsigned and/or signed overflow, respectively, occurs.
3553
3554Example:
3555""""""""
3556
3557.. code-block:: llvm
3558
3559 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3560
3561.. _i_fadd:
3562
3563'``fadd``' Instruction
3564^^^^^^^^^^^^^^^^^^^^^^
3565
3566Syntax:
3567"""""""
3568
3569::
3570
3571 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3572
3573Overview:
3574"""""""""
3575
3576The '``fadd``' instruction returns the sum of its two operands.
3577
3578Arguments:
3579""""""""""
3580
3581The two arguments to the '``fadd``' instruction must be :ref:`floating
3582point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3583Both arguments must have identical types.
3584
3585Semantics:
3586""""""""""
3587
3588The value produced is the floating point sum of the two operands. This
3589instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3590which are optimization hints to enable otherwise unsafe floating point
3591optimizations:
3592
3593Example:
3594""""""""
3595
3596.. code-block:: llvm
3597
3598 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3599
3600'``sub``' Instruction
3601^^^^^^^^^^^^^^^^^^^^^
3602
3603Syntax:
3604"""""""
3605
3606::
3607
3608 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3609 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3610 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3611 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3612
3613Overview:
3614"""""""""
3615
3616The '``sub``' instruction returns the difference of its two operands.
3617
3618Note that the '``sub``' instruction is used to represent the '``neg``'
3619instruction present in most other intermediate representations.
3620
3621Arguments:
3622""""""""""
3623
3624The two arguments to the '``sub``' instruction must be
3625:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3626arguments must have identical types.
3627
3628Semantics:
3629""""""""""
3630
3631The value produced is the integer difference of the two operands.
3632
3633If the difference has unsigned overflow, the result returned is the
3634mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3635the result.
3636
3637Because LLVM integers use a two's complement representation, this
3638instruction is appropriate for both signed and unsigned integers.
3639
3640``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3641respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3642result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3643unsigned and/or signed overflow, respectively, occurs.
3644
3645Example:
3646""""""""
3647
3648.. code-block:: llvm
3649
3650 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3651 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3652
3653.. _i_fsub:
3654
3655'``fsub``' Instruction
3656^^^^^^^^^^^^^^^^^^^^^^
3657
3658Syntax:
3659"""""""
3660
3661::
3662
3663 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3664
3665Overview:
3666"""""""""
3667
3668The '``fsub``' instruction returns the difference of its two operands.
3669
3670Note that the '``fsub``' instruction is used to represent the '``fneg``'
3671instruction present in most other intermediate representations.
3672
3673Arguments:
3674""""""""""
3675
3676The two arguments to the '``fsub``' instruction must be :ref:`floating
3677point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3678Both arguments must have identical types.
3679
3680Semantics:
3681""""""""""
3682
3683The value produced is the floating point difference of the two operands.
3684This instruction can also take any number of :ref:`fast-math
3685flags <fastmath>`, which are optimization hints to enable otherwise
3686unsafe floating point optimizations:
3687
3688Example:
3689""""""""
3690
3691.. code-block:: llvm
3692
3693 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3694 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3695
3696'``mul``' Instruction
3697^^^^^^^^^^^^^^^^^^^^^
3698
3699Syntax:
3700"""""""
3701
3702::
3703
3704 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3705 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3706 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3707 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3708
3709Overview:
3710"""""""""
3711
3712The '``mul``' instruction returns the product of its two operands.
3713
3714Arguments:
3715""""""""""
3716
3717The two arguments to the '``mul``' instruction must be
3718:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3719arguments must have identical types.
3720
3721Semantics:
3722""""""""""
3723
3724The value produced is the integer product of the two operands.
3725
3726If the result of the multiplication has unsigned overflow, the result
3727returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3728bit width of the result.
3729
3730Because LLVM integers use a two's complement representation, and the
3731result is the same width as the operands, this instruction returns the
3732correct result for both signed and unsigned integers. If a full product
3733(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3734sign-extended or zero-extended as appropriate to the width of the full
3735product.
3736
3737``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3738respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3739result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3740unsigned and/or signed overflow, respectively, occurs.
3741
3742Example:
3743""""""""
3744
3745.. code-block:: llvm
3746
3747 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3748
3749.. _i_fmul:
3750
3751'``fmul``' Instruction
3752^^^^^^^^^^^^^^^^^^^^^^
3753
3754Syntax:
3755"""""""
3756
3757::
3758
3759 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3760
3761Overview:
3762"""""""""
3763
3764The '``fmul``' instruction returns the product of its two operands.
3765
3766Arguments:
3767""""""""""
3768
3769The two arguments to the '``fmul``' instruction must be :ref:`floating
3770point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3771Both arguments must have identical types.
3772
3773Semantics:
3774""""""""""
3775
3776The value produced is the floating point product of the two operands.
3777This instruction can also take any number of :ref:`fast-math
3778flags <fastmath>`, which are optimization hints to enable otherwise
3779unsafe floating point optimizations:
3780
3781Example:
3782""""""""
3783
3784.. code-block:: llvm
3785
3786 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3787
3788'``udiv``' Instruction
3789^^^^^^^^^^^^^^^^^^^^^^
3790
3791Syntax:
3792"""""""
3793
3794::
3795
3796 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3797 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3798
3799Overview:
3800"""""""""
3801
3802The '``udiv``' instruction returns the quotient of its two operands.
3803
3804Arguments:
3805""""""""""
3806
3807The two arguments to the '``udiv``' instruction must be
3808:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3809arguments must have identical types.
3810
3811Semantics:
3812""""""""""
3813
3814The value produced is the unsigned integer quotient of the two operands.
3815
3816Note that unsigned integer division and signed integer division are
3817distinct operations; for signed integer division, use '``sdiv``'.
3818
3819Division by zero leads to undefined behavior.
3820
3821If the ``exact`` keyword is present, the result value of the ``udiv`` is
3822a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3823such, "((a udiv exact b) mul b) == a").
3824
3825Example:
3826""""""""
3827
3828.. code-block:: llvm
3829
3830 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3831
3832'``sdiv``' Instruction
3833^^^^^^^^^^^^^^^^^^^^^^
3834
3835Syntax:
3836"""""""
3837
3838::
3839
3840 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3841 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3842
3843Overview:
3844"""""""""
3845
3846The '``sdiv``' instruction returns the quotient of its two operands.
3847
3848Arguments:
3849""""""""""
3850
3851The two arguments to the '``sdiv``' instruction must be
3852:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3853arguments must have identical types.
3854
3855Semantics:
3856""""""""""
3857
3858The value produced is the signed integer quotient of the two operands
3859rounded towards zero.
3860
3861Note that signed integer division and unsigned integer division are
3862distinct operations; for unsigned integer division, use '``udiv``'.
3863
3864Division by zero leads to undefined behavior. Overflow also leads to
3865undefined behavior; this is a rare case, but can occur, for example, by
3866doing a 32-bit division of -2147483648 by -1.
3867
3868If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3869a :ref:`poison value <poisonvalues>` if the result would be rounded.
3870
3871Example:
3872""""""""
3873
3874.. code-block:: llvm
3875
3876 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3877
3878.. _i_fdiv:
3879
3880'``fdiv``' Instruction
3881^^^^^^^^^^^^^^^^^^^^^^
3882
3883Syntax:
3884"""""""
3885
3886::
3887
3888 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3889
3890Overview:
3891"""""""""
3892
3893The '``fdiv``' instruction returns the quotient of its two operands.
3894
3895Arguments:
3896""""""""""
3897
3898The two arguments to the '``fdiv``' instruction must be :ref:`floating
3899point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3900Both arguments must have identical types.
3901
3902Semantics:
3903""""""""""
3904
3905The value produced is the floating point quotient of the two operands.
3906This instruction can also take any number of :ref:`fast-math
3907flags <fastmath>`, which are optimization hints to enable otherwise
3908unsafe floating point optimizations:
3909
3910Example:
3911""""""""
3912
3913.. code-block:: llvm
3914
3915 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3916
3917'``urem``' Instruction
3918^^^^^^^^^^^^^^^^^^^^^^
3919
3920Syntax:
3921"""""""
3922
3923::
3924
3925 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3926
3927Overview:
3928"""""""""
3929
3930The '``urem``' instruction returns the remainder from the unsigned
3931division of its two arguments.
3932
3933Arguments:
3934""""""""""
3935
3936The two arguments to the '``urem``' instruction must be
3937:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3938arguments must have identical types.
3939
3940Semantics:
3941""""""""""
3942
3943This instruction returns the unsigned integer *remainder* of a division.
3944This instruction always performs an unsigned division to get the
3945remainder.
3946
3947Note that unsigned integer remainder and signed integer remainder are
3948distinct operations; for signed integer remainder, use '``srem``'.
3949
3950Taking the remainder of a division by zero leads to undefined behavior.
3951
3952Example:
3953""""""""
3954
3955.. code-block:: llvm
3956
3957 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3958
3959'``srem``' Instruction
3960^^^^^^^^^^^^^^^^^^^^^^
3961
3962Syntax:
3963"""""""
3964
3965::
3966
3967 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3968
3969Overview:
3970"""""""""
3971
3972The '``srem``' instruction returns the remainder from the signed
3973division of its two operands. This instruction can also take
3974:ref:`vector <t_vector>` versions of the values in which case the elements
3975must be integers.
3976
3977Arguments:
3978""""""""""
3979
3980The two arguments to the '``srem``' instruction must be
3981:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3982arguments must have identical types.
3983
3984Semantics:
3985""""""""""
3986
3987This instruction returns the *remainder* of a division (where the result
3988is either zero or has the same sign as the dividend, ``op1``), not the
3989*modulo* operator (where the result is either zero or has the same sign
3990as the divisor, ``op2``) of a value. For more information about the
3991difference, see `The Math
3992Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3993table of how this is implemented in various languages, please see
3994`Wikipedia: modulo
3995operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3996
3997Note that signed integer remainder and unsigned integer remainder are
3998distinct operations; for unsigned integer remainder, use '``urem``'.
3999
4000Taking the remainder of a division by zero leads to undefined behavior.
4001Overflow also leads to undefined behavior; this is a rare case, but can
4002occur, for example, by taking the remainder of a 32-bit division of
4003-2147483648 by -1. (The remainder doesn't actually overflow, but this
4004rule lets srem be implemented using instructions that return both the
4005result of the division and the remainder.)
4006
4007Example:
4008""""""""
4009
4010.. code-block:: llvm
4011
4012 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4013
4014.. _i_frem:
4015
4016'``frem``' Instruction
4017^^^^^^^^^^^^^^^^^^^^^^
4018
4019Syntax:
4020"""""""
4021
4022::
4023
4024 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4025
4026Overview:
4027"""""""""
4028
4029The '``frem``' instruction returns the remainder from the division of
4030its two operands.
4031
4032Arguments:
4033""""""""""
4034
4035The two arguments to the '``frem``' instruction must be :ref:`floating
4036point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4037Both arguments must have identical types.
4038
4039Semantics:
4040""""""""""
4041
4042This instruction returns the *remainder* of a division. The remainder
4043has the same sign as the dividend. This instruction can also take any
4044number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4045to enable otherwise unsafe floating point optimizations:
4046
4047Example:
4048""""""""
4049
4050.. code-block:: llvm
4051
4052 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4053
4054.. _bitwiseops:
4055
4056Bitwise Binary Operations
4057-------------------------
4058
4059Bitwise binary operators are used to do various forms of bit-twiddling
4060in a program. They are generally very efficient instructions and can
4061commonly be strength reduced from other instructions. They require two
4062operands of the same type, execute an operation on them, and produce a
4063single value. The resulting value is the same type as its operands.
4064
4065'``shl``' Instruction
4066^^^^^^^^^^^^^^^^^^^^^
4067
4068Syntax:
4069"""""""
4070
4071::
4072
4073 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4074 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4075 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4076 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4077
4078Overview:
4079"""""""""
4080
4081The '``shl``' instruction returns the first operand shifted to the left
4082a specified number of bits.
4083
4084Arguments:
4085""""""""""
4086
4087Both arguments to the '``shl``' instruction must be the same
4088:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4089'``op2``' is treated as an unsigned value.
4090
4091Semantics:
4092""""""""""
4093
4094The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4095where ``n`` is the width of the result. If ``op2`` is (statically or
4096dynamically) negative or equal to or larger than the number of bits in
4097``op1``, the result is undefined. If the arguments are vectors, each
4098vector element of ``op1`` is shifted by the corresponding shift amount
4099in ``op2``.
4100
4101If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4102value <poisonvalues>` if it shifts out any non-zero bits. If the
4103``nsw`` keyword is present, then the shift produces a :ref:`poison
4104value <poisonvalues>` if it shifts out any bits that disagree with the
4105resultant sign bit. As such, NUW/NSW have the same semantics as they
4106would if the shift were expressed as a mul instruction with the same
4107nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4108
4109Example:
4110""""""""
4111
4112.. code-block:: llvm
4113
4114 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4115 <result> = shl i32 4, 2 ; yields {i32}: 16
4116 <result> = shl i32 1, 10 ; yields {i32}: 1024
4117 <result> = shl i32 1, 32 ; undefined
4118 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4119
4120'``lshr``' Instruction
4121^^^^^^^^^^^^^^^^^^^^^^
4122
4123Syntax:
4124"""""""
4125
4126::
4127
4128 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4129 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4130
4131Overview:
4132"""""""""
4133
4134The '``lshr``' instruction (logical shift right) returns the first
4135operand shifted to the right a specified number of bits with zero fill.
4136
4137Arguments:
4138""""""""""
4139
4140Both arguments to the '``lshr``' instruction must be the same
4141:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4142'``op2``' is treated as an unsigned value.
4143
4144Semantics:
4145""""""""""
4146
4147This instruction always performs a logical shift right operation. The
4148most significant bits of the result will be filled with zero bits after
4149the shift. If ``op2`` is (statically or dynamically) equal to or larger
4150than the number of bits in ``op1``, the result is undefined. If the
4151arguments are vectors, each vector element of ``op1`` is shifted by the
4152corresponding shift amount in ``op2``.
4153
4154If the ``exact`` keyword is present, the result value of the ``lshr`` is
4155a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4156non-zero.
4157
4158Example:
4159""""""""
4160
4161.. code-block:: llvm
4162
4163 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4164 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4165 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004166 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004167 <result> = lshr i32 1, 32 ; undefined
4168 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4169
4170'``ashr``' Instruction
4171^^^^^^^^^^^^^^^^^^^^^^
4172
4173Syntax:
4174"""""""
4175
4176::
4177
4178 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4179 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4180
4181Overview:
4182"""""""""
4183
4184The '``ashr``' instruction (arithmetic shift right) returns the first
4185operand shifted to the right a specified number of bits with sign
4186extension.
4187
4188Arguments:
4189""""""""""
4190
4191Both arguments to the '``ashr``' instruction must be the same
4192:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4193'``op2``' is treated as an unsigned value.
4194
4195Semantics:
4196""""""""""
4197
4198This instruction always performs an arithmetic shift right operation,
4199The most significant bits of the result will be filled with the sign bit
4200of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4201than the number of bits in ``op1``, the result is undefined. If the
4202arguments are vectors, each vector element of ``op1`` is shifted by the
4203corresponding shift amount in ``op2``.
4204
4205If the ``exact`` keyword is present, the result value of the ``ashr`` is
4206a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4207non-zero.
4208
4209Example:
4210""""""""
4211
4212.. code-block:: llvm
4213
4214 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4215 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4216 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4217 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4218 <result> = ashr i32 1, 32 ; undefined
4219 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4220
4221'``and``' Instruction
4222^^^^^^^^^^^^^^^^^^^^^
4223
4224Syntax:
4225"""""""
4226
4227::
4228
4229 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4230
4231Overview:
4232"""""""""
4233
4234The '``and``' instruction returns the bitwise logical and of its two
4235operands.
4236
4237Arguments:
4238""""""""""
4239
4240The two arguments to the '``and``' instruction must be
4241:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4242arguments must have identical types.
4243
4244Semantics:
4245""""""""""
4246
4247The truth table used for the '``and``' instruction is:
4248
4249+-----+-----+-----+
4250| In0 | In1 | Out |
4251+-----+-----+-----+
4252| 0 | 0 | 0 |
4253+-----+-----+-----+
4254| 0 | 1 | 0 |
4255+-----+-----+-----+
4256| 1 | 0 | 0 |
4257+-----+-----+-----+
4258| 1 | 1 | 1 |
4259+-----+-----+-----+
4260
4261Example:
4262""""""""
4263
4264.. code-block:: llvm
4265
4266 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4267 <result> = and i32 15, 40 ; yields {i32}:result = 8
4268 <result> = and i32 4, 8 ; yields {i32}:result = 0
4269
4270'``or``' Instruction
4271^^^^^^^^^^^^^^^^^^^^
4272
4273Syntax:
4274"""""""
4275
4276::
4277
4278 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4279
4280Overview:
4281"""""""""
4282
4283The '``or``' instruction returns the bitwise logical inclusive or of its
4284two operands.
4285
4286Arguments:
4287""""""""""
4288
4289The two arguments to the '``or``' instruction must be
4290:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4291arguments must have identical types.
4292
4293Semantics:
4294""""""""""
4295
4296The truth table used for the '``or``' instruction is:
4297
4298+-----+-----+-----+
4299| In0 | In1 | Out |
4300+-----+-----+-----+
4301| 0 | 0 | 0 |
4302+-----+-----+-----+
4303| 0 | 1 | 1 |
4304+-----+-----+-----+
4305| 1 | 0 | 1 |
4306+-----+-----+-----+
4307| 1 | 1 | 1 |
4308+-----+-----+-----+
4309
4310Example:
4311""""""""
4312
4313::
4314
4315 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4316 <result> = or i32 15, 40 ; yields {i32}:result = 47
4317 <result> = or i32 4, 8 ; yields {i32}:result = 12
4318
4319'``xor``' Instruction
4320^^^^^^^^^^^^^^^^^^^^^
4321
4322Syntax:
4323"""""""
4324
4325::
4326
4327 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4328
4329Overview:
4330"""""""""
4331
4332The '``xor``' instruction returns the bitwise logical exclusive or of
4333its two operands. The ``xor`` is used to implement the "one's
4334complement" operation, which is the "~" operator in C.
4335
4336Arguments:
4337""""""""""
4338
4339The two arguments to the '``xor``' instruction must be
4340:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4341arguments must have identical types.
4342
4343Semantics:
4344""""""""""
4345
4346The truth table used for the '``xor``' instruction is:
4347
4348+-----+-----+-----+
4349| In0 | In1 | Out |
4350+-----+-----+-----+
4351| 0 | 0 | 0 |
4352+-----+-----+-----+
4353| 0 | 1 | 1 |
4354+-----+-----+-----+
4355| 1 | 0 | 1 |
4356+-----+-----+-----+
4357| 1 | 1 | 0 |
4358+-----+-----+-----+
4359
4360Example:
4361""""""""
4362
4363.. code-block:: llvm
4364
4365 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4366 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4367 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4368 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4369
4370Vector Operations
4371-----------------
4372
4373LLVM supports several instructions to represent vector operations in a
4374target-independent manner. These instructions cover the element-access
4375and vector-specific operations needed to process vectors effectively.
4376While LLVM does directly support these vector operations, many
4377sophisticated algorithms will want to use target-specific intrinsics to
4378take full advantage of a specific target.
4379
4380.. _i_extractelement:
4381
4382'``extractelement``' Instruction
4383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4384
4385Syntax:
4386"""""""
4387
4388::
4389
4390 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4391
4392Overview:
4393"""""""""
4394
4395The '``extractelement``' instruction extracts a single scalar element
4396from a vector at a specified index.
4397
4398Arguments:
4399""""""""""
4400
4401The first operand of an '``extractelement``' instruction is a value of
4402:ref:`vector <t_vector>` type. The second operand is an index indicating
4403the position from which to extract the element. The index may be a
4404variable.
4405
4406Semantics:
4407""""""""""
4408
4409The result is a scalar of the same type as the element type of ``val``.
4410Its value is the value at position ``idx`` of ``val``. If ``idx``
4411exceeds the length of ``val``, the results are undefined.
4412
4413Example:
4414""""""""
4415
4416.. code-block:: llvm
4417
4418 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4419
4420.. _i_insertelement:
4421
4422'``insertelement``' Instruction
4423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4424
4425Syntax:
4426"""""""
4427
4428::
4429
4430 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4431
4432Overview:
4433"""""""""
4434
4435The '``insertelement``' instruction inserts a scalar element into a
4436vector at a specified index.
4437
4438Arguments:
4439""""""""""
4440
4441The first operand of an '``insertelement``' instruction is a value of
4442:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4443type must equal the element type of the first operand. The third operand
4444is an index indicating the position at which to insert the value. The
4445index may be a variable.
4446
4447Semantics:
4448""""""""""
4449
4450The result is a vector of the same type as ``val``. Its element values
4451are those of ``val`` except at position ``idx``, where it gets the value
4452``elt``. If ``idx`` exceeds the length of ``val``, the results are
4453undefined.
4454
4455Example:
4456""""""""
4457
4458.. code-block:: llvm
4459
4460 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4461
4462.. _i_shufflevector:
4463
4464'``shufflevector``' Instruction
4465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4466
4467Syntax:
4468"""""""
4469
4470::
4471
4472 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4473
4474Overview:
4475"""""""""
4476
4477The '``shufflevector``' instruction constructs a permutation of elements
4478from two input vectors, returning a vector with the same element type as
4479the input and length that is the same as the shuffle mask.
4480
4481Arguments:
4482""""""""""
4483
4484The first two operands of a '``shufflevector``' instruction are vectors
4485with the same type. The third argument is a shuffle mask whose element
4486type is always 'i32'. The result of the instruction is a vector whose
4487length is the same as the shuffle mask and whose element type is the
4488same as the element type of the first two operands.
4489
4490The shuffle mask operand is required to be a constant vector with either
4491constant integer or undef values.
4492
4493Semantics:
4494""""""""""
4495
4496The elements of the two input vectors are numbered from left to right
4497across both of the vectors. The shuffle mask operand specifies, for each
4498element of the result vector, which element of the two input vectors the
4499result element gets. The element selector may be undef (meaning "don't
4500care") and the second operand may be undef if performing a shuffle from
4501only one vector.
4502
4503Example:
4504""""""""
4505
4506.. code-block:: llvm
4507
4508 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4509 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4510 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4511 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4512 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4513 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4514 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4515 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4516
4517Aggregate Operations
4518--------------------
4519
4520LLVM supports several instructions for working with
4521:ref:`aggregate <t_aggregate>` values.
4522
4523.. _i_extractvalue:
4524
4525'``extractvalue``' Instruction
4526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4527
4528Syntax:
4529"""""""
4530
4531::
4532
4533 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4534
4535Overview:
4536"""""""""
4537
4538The '``extractvalue``' instruction extracts the value of a member field
4539from an :ref:`aggregate <t_aggregate>` value.
4540
4541Arguments:
4542""""""""""
4543
4544The first operand of an '``extractvalue``' instruction is a value of
4545:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4546constant indices to specify which value to extract in a similar manner
4547as indices in a '``getelementptr``' instruction.
4548
4549The major differences to ``getelementptr`` indexing are:
4550
4551- Since the value being indexed is not a pointer, the first index is
4552 omitted and assumed to be zero.
4553- At least one index must be specified.
4554- Not only struct indices but also array indices must be in bounds.
4555
4556Semantics:
4557""""""""""
4558
4559The result is the value at the position in the aggregate specified by
4560the index operands.
4561
4562Example:
4563""""""""
4564
4565.. code-block:: llvm
4566
4567 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4568
4569.. _i_insertvalue:
4570
4571'``insertvalue``' Instruction
4572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4573
4574Syntax:
4575"""""""
4576
4577::
4578
4579 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4580
4581Overview:
4582"""""""""
4583
4584The '``insertvalue``' instruction inserts a value into a member field in
4585an :ref:`aggregate <t_aggregate>` value.
4586
4587Arguments:
4588""""""""""
4589
4590The first operand of an '``insertvalue``' instruction is a value of
4591:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4592a first-class value to insert. The following operands are constant
4593indices indicating the position at which to insert the value in a
4594similar manner as indices in a '``extractvalue``' instruction. The value
4595to insert must have the same type as the value identified by the
4596indices.
4597
4598Semantics:
4599""""""""""
4600
4601The result is an aggregate of the same type as ``val``. Its value is
4602that of ``val`` except that the value at the position specified by the
4603indices is that of ``elt``.
4604
4605Example:
4606""""""""
4607
4608.. code-block:: llvm
4609
4610 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4611 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4612 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4613
4614.. _memoryops:
4615
4616Memory Access and Addressing Operations
4617---------------------------------------
4618
4619A key design point of an SSA-based representation is how it represents
4620memory. In LLVM, no memory locations are in SSA form, which makes things
4621very simple. This section describes how to read, write, and allocate
4622memory in LLVM.
4623
4624.. _i_alloca:
4625
4626'``alloca``' Instruction
4627^^^^^^^^^^^^^^^^^^^^^^^^
4628
4629Syntax:
4630"""""""
4631
4632::
4633
4634 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4635
4636Overview:
4637"""""""""
4638
4639The '``alloca``' instruction allocates memory on the stack frame of the
4640currently executing function, to be automatically released when this
4641function returns to its caller. The object is always allocated in the
4642generic address space (address space zero).
4643
4644Arguments:
4645""""""""""
4646
4647The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4648bytes of memory on the runtime stack, returning a pointer of the
4649appropriate type to the program. If "NumElements" is specified, it is
4650the number of elements allocated, otherwise "NumElements" is defaulted
4651to be one. If a constant alignment is specified, the value result of the
4652allocation is guaranteed to be aligned to at least that boundary. If not
4653specified, or if zero, the target can choose to align the allocation on
4654any convenient boundary compatible with the type.
4655
4656'``type``' may be any sized type.
4657
4658Semantics:
4659""""""""""
4660
4661Memory is allocated; a pointer is returned. The operation is undefined
4662if there is insufficient stack space for the allocation. '``alloca``'d
4663memory is automatically released when the function returns. The
4664'``alloca``' instruction is commonly used to represent automatic
4665variables that must have an address available. When the function returns
4666(either with the ``ret`` or ``resume`` instructions), the memory is
4667reclaimed. Allocating zero bytes is legal, but the result is undefined.
4668The order in which memory is allocated (ie., which way the stack grows)
4669is not specified.
4670
4671Example:
4672""""""""
4673
4674.. code-block:: llvm
4675
4676 %ptr = alloca i32 ; yields {i32*}:ptr
4677 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4678 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4679 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4680
4681.. _i_load:
4682
4683'``load``' Instruction
4684^^^^^^^^^^^^^^^^^^^^^^
4685
4686Syntax:
4687"""""""
4688
4689::
4690
4691 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4692 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4693 !<index> = !{ i32 1 }
4694
4695Overview:
4696"""""""""
4697
4698The '``load``' instruction is used to read from memory.
4699
4700Arguments:
4701""""""""""
4702
Eli Bendersky8c493382013-04-17 20:17:08 +00004703The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004704from which to load. The pointer must point to a :ref:`first
4705class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4706then the optimizer is not allowed to modify the number or order of
4707execution of this ``load`` with other :ref:`volatile
4708operations <volatile>`.
4709
4710If the ``load`` is marked as ``atomic``, it takes an extra
4711:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4712``release`` and ``acq_rel`` orderings are not valid on ``load``
4713instructions. Atomic loads produce :ref:`defined <memmodel>` results
4714when they may see multiple atomic stores. The type of the pointee must
4715be an integer type whose bit width is a power of two greater than or
4716equal to eight and less than or equal to a target-specific size limit.
4717``align`` must be explicitly specified on atomic loads, and the load has
4718undefined behavior if the alignment is not set to a value which is at
4719least the size in bytes of the pointee. ``!nontemporal`` does not have
4720any defined semantics for atomic loads.
4721
4722The optional constant ``align`` argument specifies the alignment of the
4723operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004724or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004725alignment for the target. It is the responsibility of the code emitter
4726to ensure that the alignment information is correct. Overestimating the
4727alignment results in undefined behavior. Underestimating the alignment
4728may produce less efficient code. An alignment of 1 is always safe.
4729
4730The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004731metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004732``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004733metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004734that this load is not expected to be reused in the cache. The code
4735generator may select special instructions to save cache bandwidth, such
4736as the ``MOVNT`` instruction on x86.
4737
4738The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004739metadata name ``<index>`` corresponding to a metadata node with no
4740entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004741instruction tells the optimizer and code generator that this load
4742address points to memory which does not change value during program
4743execution. The optimizer may then move this load around, for example, by
4744hoisting it out of loops using loop invariant code motion.
4745
4746Semantics:
4747""""""""""
4748
4749The location of memory pointed to is loaded. If the value being loaded
4750is of scalar type then the number of bytes read does not exceed the
4751minimum number of bytes needed to hold all bits of the type. For
4752example, loading an ``i24`` reads at most three bytes. When loading a
4753value of a type like ``i20`` with a size that is not an integral number
4754of bytes, the result is undefined if the value was not originally
4755written using a store of the same type.
4756
4757Examples:
4758"""""""""
4759
4760.. code-block:: llvm
4761
4762 %ptr = alloca i32 ; yields {i32*}:ptr
4763 store i32 3, i32* %ptr ; yields {void}
4764 %val = load i32* %ptr ; yields {i32}:val = i32 3
4765
4766.. _i_store:
4767
4768'``store``' Instruction
4769^^^^^^^^^^^^^^^^^^^^^^^
4770
4771Syntax:
4772"""""""
4773
4774::
4775
4776 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4777 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4778
4779Overview:
4780"""""""""
4781
4782The '``store``' instruction is used to write to memory.
4783
4784Arguments:
4785""""""""""
4786
Eli Bendersky8952d902013-04-17 17:17:20 +00004787There are two arguments to the ``store`` instruction: a value to store
4788and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004789operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004790the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004791then the optimizer is not allowed to modify the number or order of
4792execution of this ``store`` with other :ref:`volatile
4793operations <volatile>`.
4794
4795If the ``store`` is marked as ``atomic``, it takes an extra
4796:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4797``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4798instructions. Atomic loads produce :ref:`defined <memmodel>` results
4799when they may see multiple atomic stores. The type of the pointee must
4800be an integer type whose bit width is a power of two greater than or
4801equal to eight and less than or equal to a target-specific size limit.
4802``align`` must be explicitly specified on atomic stores, and the store
4803has undefined behavior if the alignment is not set to a value which is
4804at least the size in bytes of the pointee. ``!nontemporal`` does not
4805have any defined semantics for atomic stores.
4806
Eli Bendersky8952d902013-04-17 17:17:20 +00004807The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004808operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004809or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004810alignment for the target. It is the responsibility of the code emitter
4811to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004812alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004813alignment may produce less efficient code. An alignment of 1 is always
4814safe.
4815
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004816The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004817name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004818value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004819tells the optimizer and code generator that this load is not expected to
4820be reused in the cache. The code generator may select special
4821instructions to save cache bandwidth, such as the MOVNT instruction on
4822x86.
4823
4824Semantics:
4825""""""""""
4826
Eli Bendersky8952d902013-04-17 17:17:20 +00004827The contents of memory are updated to contain ``<value>`` at the
4828location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004829of scalar type then the number of bytes written does not exceed the
4830minimum number of bytes needed to hold all bits of the type. For
4831example, storing an ``i24`` writes at most three bytes. When writing a
4832value of a type like ``i20`` with a size that is not an integral number
4833of bytes, it is unspecified what happens to the extra bits that do not
4834belong to the type, but they will typically be overwritten.
4835
4836Example:
4837""""""""
4838
4839.. code-block:: llvm
4840
4841 %ptr = alloca i32 ; yields {i32*}:ptr
4842 store i32 3, i32* %ptr ; yields {void}
4843 %val = load i32* %ptr ; yields {i32}:val = i32 3
4844
4845.. _i_fence:
4846
4847'``fence``' Instruction
4848^^^^^^^^^^^^^^^^^^^^^^^
4849
4850Syntax:
4851"""""""
4852
4853::
4854
4855 fence [singlethread] <ordering> ; yields {void}
4856
4857Overview:
4858"""""""""
4859
4860The '``fence``' instruction is used to introduce happens-before edges
4861between operations.
4862
4863Arguments:
4864""""""""""
4865
4866'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4867defines what *synchronizes-with* edges they add. They can only be given
4868``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4869
4870Semantics:
4871""""""""""
4872
4873A fence A which has (at least) ``release`` ordering semantics
4874*synchronizes with* a fence B with (at least) ``acquire`` ordering
4875semantics if and only if there exist atomic operations X and Y, both
4876operating on some atomic object M, such that A is sequenced before X, X
4877modifies M (either directly or through some side effect of a sequence
4878headed by X), Y is sequenced before B, and Y observes M. This provides a
4879*happens-before* dependency between A and B. Rather than an explicit
4880``fence``, one (but not both) of the atomic operations X or Y might
4881provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4882still *synchronize-with* the explicit ``fence`` and establish the
4883*happens-before* edge.
4884
4885A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4886``acquire`` and ``release`` semantics specified above, participates in
4887the global program order of other ``seq_cst`` operations and/or fences.
4888
4889The optional ":ref:`singlethread <singlethread>`" argument specifies
4890that the fence only synchronizes with other fences in the same thread.
4891(This is useful for interacting with signal handlers.)
4892
4893Example:
4894""""""""
4895
4896.. code-block:: llvm
4897
4898 fence acquire ; yields {void}
4899 fence singlethread seq_cst ; yields {void}
4900
4901.. _i_cmpxchg:
4902
4903'``cmpxchg``' Instruction
4904^^^^^^^^^^^^^^^^^^^^^^^^^
4905
4906Syntax:
4907"""""""
4908
4909::
4910
4911 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4912
4913Overview:
4914"""""""""
4915
4916The '``cmpxchg``' instruction is used to atomically modify memory. It
4917loads a value in memory and compares it to a given value. If they are
4918equal, it stores a new value into the memory.
4919
4920Arguments:
4921""""""""""
4922
4923There are three arguments to the '``cmpxchg``' instruction: an address
4924to operate on, a value to compare to the value currently be at that
4925address, and a new value to place at that address if the compared values
4926are equal. The type of '<cmp>' must be an integer type whose bit width
4927is a power of two greater than or equal to eight and less than or equal
4928to a target-specific size limit. '<cmp>' and '<new>' must have the same
4929type, and the type of '<pointer>' must be a pointer to that type. If the
4930``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4931to modify the number or order of execution of this ``cmpxchg`` with
4932other :ref:`volatile operations <volatile>`.
4933
4934The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4935synchronizes with other atomic operations.
4936
4937The optional "``singlethread``" argument declares that the ``cmpxchg``
4938is only atomic with respect to code (usually signal handlers) running in
4939the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4940respect to all other code in the system.
4941
4942The pointer passed into cmpxchg must have alignment greater than or
4943equal to the size in memory of the operand.
4944
4945Semantics:
4946""""""""""
4947
4948The contents of memory at the location specified by the '``<pointer>``'
4949operand is read and compared to '``<cmp>``'; if the read value is the
4950equal, '``<new>``' is written. The original value at the location is
4951returned.
4952
4953A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4954of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4955atomic load with an ordering parameter determined by dropping any
4956``release`` part of the ``cmpxchg``'s ordering.
4957
4958Example:
4959""""""""
4960
4961.. code-block:: llvm
4962
4963 entry:
4964 %orig = atomic load i32* %ptr unordered ; yields {i32}
4965 br label %loop
4966
4967 loop:
4968 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4969 %squared = mul i32 %cmp, %cmp
4970 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4971 %success = icmp eq i32 %cmp, %old
4972 br i1 %success, label %done, label %loop
4973
4974 done:
4975 ...
4976
4977.. _i_atomicrmw:
4978
4979'``atomicrmw``' Instruction
4980^^^^^^^^^^^^^^^^^^^^^^^^^^^
4981
4982Syntax:
4983"""""""
4984
4985::
4986
4987 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4988
4989Overview:
4990"""""""""
4991
4992The '``atomicrmw``' instruction is used to atomically modify memory.
4993
4994Arguments:
4995""""""""""
4996
4997There are three arguments to the '``atomicrmw``' instruction: an
4998operation to apply, an address whose value to modify, an argument to the
4999operation. The operation must be one of the following keywords:
5000
5001- xchg
5002- add
5003- sub
5004- and
5005- nand
5006- or
5007- xor
5008- max
5009- min
5010- umax
5011- umin
5012
5013The type of '<value>' must be an integer type whose bit width is a power
5014of two greater than or equal to eight and less than or equal to a
5015target-specific size limit. The type of the '``<pointer>``' operand must
5016be a pointer to that type. If the ``atomicrmw`` is marked as
5017``volatile``, then the optimizer is not allowed to modify the number or
5018order of execution of this ``atomicrmw`` with other :ref:`volatile
5019operations <volatile>`.
5020
5021Semantics:
5022""""""""""
5023
5024The contents of memory at the location specified by the '``<pointer>``'
5025operand are atomically read, modified, and written back. The original
5026value at the location is returned. The modification is specified by the
5027operation argument:
5028
5029- xchg: ``*ptr = val``
5030- add: ``*ptr = *ptr + val``
5031- sub: ``*ptr = *ptr - val``
5032- and: ``*ptr = *ptr & val``
5033- nand: ``*ptr = ~(*ptr & val)``
5034- or: ``*ptr = *ptr | val``
5035- xor: ``*ptr = *ptr ^ val``
5036- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5037- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5038- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5039 comparison)
5040- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5041 comparison)
5042
5043Example:
5044""""""""
5045
5046.. code-block:: llvm
5047
5048 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5049
5050.. _i_getelementptr:
5051
5052'``getelementptr``' Instruction
5053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5054
5055Syntax:
5056"""""""
5057
5058::
5059
5060 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5061 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5062 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5063
5064Overview:
5065"""""""""
5066
5067The '``getelementptr``' instruction is used to get the address of a
5068subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5069address calculation only and does not access memory.
5070
5071Arguments:
5072""""""""""
5073
5074The first argument is always a pointer or a vector of pointers, and
5075forms the basis of the calculation. The remaining arguments are indices
5076that indicate which of the elements of the aggregate object are indexed.
5077The interpretation of each index is dependent on the type being indexed
5078into. The first index always indexes the pointer value given as the
5079first argument, the second index indexes a value of the type pointed to
5080(not necessarily the value directly pointed to, since the first index
5081can be non-zero), etc. The first type indexed into must be a pointer
5082value, subsequent types can be arrays, vectors, and structs. Note that
5083subsequent types being indexed into can never be pointers, since that
5084would require loading the pointer before continuing calculation.
5085
5086The type of each index argument depends on the type it is indexing into.
5087When indexing into a (optionally packed) structure, only ``i32`` integer
5088**constants** are allowed (when using a vector of indices they must all
5089be the **same** ``i32`` integer constant). When indexing into an array,
5090pointer or vector, integers of any width are allowed, and they are not
5091required to be constant. These integers are treated as signed values
5092where relevant.
5093
5094For example, let's consider a C code fragment and how it gets compiled
5095to LLVM:
5096
5097.. code-block:: c
5098
5099 struct RT {
5100 char A;
5101 int B[10][20];
5102 char C;
5103 };
5104 struct ST {
5105 int X;
5106 double Y;
5107 struct RT Z;
5108 };
5109
5110 int *foo(struct ST *s) {
5111 return &s[1].Z.B[5][13];
5112 }
5113
5114The LLVM code generated by Clang is:
5115
5116.. code-block:: llvm
5117
5118 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5119 %struct.ST = type { i32, double, %struct.RT }
5120
5121 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5122 entry:
5123 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5124 ret i32* %arrayidx
5125 }
5126
5127Semantics:
5128""""""""""
5129
5130In the example above, the first index is indexing into the
5131'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5132= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5133indexes into the third element of the structure, yielding a
5134'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5135structure. The third index indexes into the second element of the
5136structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5137dimensions of the array are subscripted into, yielding an '``i32``'
5138type. The '``getelementptr``' instruction returns a pointer to this
5139element, thus computing a value of '``i32*``' type.
5140
5141Note that it is perfectly legal to index partially through a structure,
5142returning a pointer to an inner element. Because of this, the LLVM code
5143for the given testcase is equivalent to:
5144
5145.. code-block:: llvm
5146
5147 define i32* @foo(%struct.ST* %s) {
5148 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5149 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5150 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5151 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5152 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5153 ret i32* %t5
5154 }
5155
5156If the ``inbounds`` keyword is present, the result value of the
5157``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5158pointer is not an *in bounds* address of an allocated object, or if any
5159of the addresses that would be formed by successive addition of the
5160offsets implied by the indices to the base address with infinitely
5161precise signed arithmetic are not an *in bounds* address of that
5162allocated object. The *in bounds* addresses for an allocated object are
5163all the addresses that point into the object, plus the address one byte
5164past the end. In cases where the base is a vector of pointers the
5165``inbounds`` keyword applies to each of the computations element-wise.
5166
5167If the ``inbounds`` keyword is not present, the offsets are added to the
5168base address with silently-wrapping two's complement arithmetic. If the
5169offsets have a different width from the pointer, they are sign-extended
5170or truncated to the width of the pointer. The result value of the
5171``getelementptr`` may be outside the object pointed to by the base
5172pointer. The result value may not necessarily be used to access memory
5173though, even if it happens to point into allocated storage. See the
5174:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5175information.
5176
5177The getelementptr instruction is often confusing. For some more insight
5178into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5179
5180Example:
5181""""""""
5182
5183.. code-block:: llvm
5184
5185 ; yields [12 x i8]*:aptr
5186 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5187 ; yields i8*:vptr
5188 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5189 ; yields i8*:eptr
5190 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5191 ; yields i32*:iptr
5192 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5193
5194In cases where the pointer argument is a vector of pointers, each index
5195must be a vector with the same number of elements. For example:
5196
5197.. code-block:: llvm
5198
5199 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5200
5201Conversion Operations
5202---------------------
5203
5204The instructions in this category are the conversion instructions
5205(casting) which all take a single operand and a type. They perform
5206various bit conversions on the operand.
5207
5208'``trunc .. to``' Instruction
5209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5210
5211Syntax:
5212"""""""
5213
5214::
5215
5216 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5217
5218Overview:
5219"""""""""
5220
5221The '``trunc``' instruction truncates its operand to the type ``ty2``.
5222
5223Arguments:
5224""""""""""
5225
5226The '``trunc``' instruction takes a value to trunc, and a type to trunc
5227it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5228of the same number of integers. The bit size of the ``value`` must be
5229larger than the bit size of the destination type, ``ty2``. Equal sized
5230types are not allowed.
5231
5232Semantics:
5233""""""""""
5234
5235The '``trunc``' instruction truncates the high order bits in ``value``
5236and converts the remaining bits to ``ty2``. Since the source size must
5237be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5238It will always truncate bits.
5239
5240Example:
5241""""""""
5242
5243.. code-block:: llvm
5244
5245 %X = trunc i32 257 to i8 ; yields i8:1
5246 %Y = trunc i32 123 to i1 ; yields i1:true
5247 %Z = trunc i32 122 to i1 ; yields i1:false
5248 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5249
5250'``zext .. to``' Instruction
5251^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5252
5253Syntax:
5254"""""""
5255
5256::
5257
5258 <result> = zext <ty> <value> to <ty2> ; yields ty2
5259
5260Overview:
5261"""""""""
5262
5263The '``zext``' instruction zero extends its operand to type ``ty2``.
5264
5265Arguments:
5266""""""""""
5267
5268The '``zext``' instruction takes a value to cast, and a type to cast it
5269to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5270the same number of integers. The bit size of the ``value`` must be
5271smaller than the bit size of the destination type, ``ty2``.
5272
5273Semantics:
5274""""""""""
5275
5276The ``zext`` fills the high order bits of the ``value`` with zero bits
5277until it reaches the size of the destination type, ``ty2``.
5278
5279When zero extending from i1, the result will always be either 0 or 1.
5280
5281Example:
5282""""""""
5283
5284.. code-block:: llvm
5285
5286 %X = zext i32 257 to i64 ; yields i64:257
5287 %Y = zext i1 true to i32 ; yields i32:1
5288 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5289
5290'``sext .. to``' Instruction
5291^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5292
5293Syntax:
5294"""""""
5295
5296::
5297
5298 <result> = sext <ty> <value> to <ty2> ; yields ty2
5299
5300Overview:
5301"""""""""
5302
5303The '``sext``' sign extends ``value`` to the type ``ty2``.
5304
5305Arguments:
5306""""""""""
5307
5308The '``sext``' instruction takes a value to cast, and a type to cast it
5309to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5310the same number of integers. The bit size of the ``value`` must be
5311smaller than the bit size of the destination type, ``ty2``.
5312
5313Semantics:
5314""""""""""
5315
5316The '``sext``' instruction performs a sign extension by copying the sign
5317bit (highest order bit) of the ``value`` until it reaches the bit size
5318of the type ``ty2``.
5319
5320When sign extending from i1, the extension always results in -1 or 0.
5321
5322Example:
5323""""""""
5324
5325.. code-block:: llvm
5326
5327 %X = sext i8 -1 to i16 ; yields i16 :65535
5328 %Y = sext i1 true to i32 ; yields i32:-1
5329 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5330
5331'``fptrunc .. to``' Instruction
5332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5333
5334Syntax:
5335"""""""
5336
5337::
5338
5339 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5340
5341Overview:
5342"""""""""
5343
5344The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5345
5346Arguments:
5347""""""""""
5348
5349The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5350value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5351The size of ``value`` must be larger than the size of ``ty2``. This
5352implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5353
5354Semantics:
5355""""""""""
5356
5357The '``fptrunc``' instruction truncates a ``value`` from a larger
5358:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5359point <t_floating>` type. If the value cannot fit within the
5360destination type, ``ty2``, then the results are undefined.
5361
5362Example:
5363""""""""
5364
5365.. code-block:: llvm
5366
5367 %X = fptrunc double 123.0 to float ; yields float:123.0
5368 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5369
5370'``fpext .. to``' Instruction
5371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5372
5373Syntax:
5374"""""""
5375
5376::
5377
5378 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5379
5380Overview:
5381"""""""""
5382
5383The '``fpext``' extends a floating point ``value`` to a larger floating
5384point value.
5385
5386Arguments:
5387""""""""""
5388
5389The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5390``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5391to. The source type must be smaller than the destination type.
5392
5393Semantics:
5394""""""""""
5395
5396The '``fpext``' instruction extends the ``value`` from a smaller
5397:ref:`floating point <t_floating>` type to a larger :ref:`floating
5398point <t_floating>` type. The ``fpext`` cannot be used to make a
5399*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5400*no-op cast* for a floating point cast.
5401
5402Example:
5403""""""""
5404
5405.. code-block:: llvm
5406
5407 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5408 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5409
5410'``fptoui .. to``' Instruction
5411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5412
5413Syntax:
5414"""""""
5415
5416::
5417
5418 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5419
5420Overview:
5421"""""""""
5422
5423The '``fptoui``' converts a floating point ``value`` to its unsigned
5424integer equivalent of type ``ty2``.
5425
5426Arguments:
5427""""""""""
5428
5429The '``fptoui``' instruction takes a value to cast, which must be a
5430scalar or vector :ref:`floating point <t_floating>` value, and a type to
5431cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5432``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5433type with the same number of elements as ``ty``
5434
5435Semantics:
5436""""""""""
5437
5438The '``fptoui``' instruction converts its :ref:`floating
5439point <t_floating>` operand into the nearest (rounding towards zero)
5440unsigned integer value. If the value cannot fit in ``ty2``, the results
5441are undefined.
5442
5443Example:
5444""""""""
5445
5446.. code-block:: llvm
5447
5448 %X = fptoui double 123.0 to i32 ; yields i32:123
5449 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5450 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5451
5452'``fptosi .. to``' Instruction
5453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5454
5455Syntax:
5456"""""""
5457
5458::
5459
5460 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5461
5462Overview:
5463"""""""""
5464
5465The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5466``value`` to type ``ty2``.
5467
5468Arguments:
5469""""""""""
5470
5471The '``fptosi``' instruction takes a value to cast, which must be a
5472scalar or vector :ref:`floating point <t_floating>` value, and a type to
5473cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5474``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5475type with the same number of elements as ``ty``
5476
5477Semantics:
5478""""""""""
5479
5480The '``fptosi``' instruction converts its :ref:`floating
5481point <t_floating>` operand into the nearest (rounding towards zero)
5482signed integer value. If the value cannot fit in ``ty2``, the results
5483are undefined.
5484
5485Example:
5486""""""""
5487
5488.. code-block:: llvm
5489
5490 %X = fptosi double -123.0 to i32 ; yields i32:-123
5491 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5492 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5493
5494'``uitofp .. to``' Instruction
5495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5496
5497Syntax:
5498"""""""
5499
5500::
5501
5502 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5503
5504Overview:
5505"""""""""
5506
5507The '``uitofp``' instruction regards ``value`` as an unsigned integer
5508and converts that value to the ``ty2`` type.
5509
5510Arguments:
5511""""""""""
5512
5513The '``uitofp``' instruction takes a value to cast, which must be a
5514scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5515``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5516``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5517type with the same number of elements as ``ty``
5518
5519Semantics:
5520""""""""""
5521
5522The '``uitofp``' instruction interprets its operand as an unsigned
5523integer quantity and converts it to the corresponding floating point
5524value. If the value cannot fit in the floating point value, the results
5525are undefined.
5526
5527Example:
5528""""""""
5529
5530.. code-block:: llvm
5531
5532 %X = uitofp i32 257 to float ; yields float:257.0
5533 %Y = uitofp i8 -1 to double ; yields double:255.0
5534
5535'``sitofp .. to``' Instruction
5536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5537
5538Syntax:
5539"""""""
5540
5541::
5542
5543 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5544
5545Overview:
5546"""""""""
5547
5548The '``sitofp``' instruction regards ``value`` as a signed integer and
5549converts that value to the ``ty2`` type.
5550
5551Arguments:
5552""""""""""
5553
5554The '``sitofp``' instruction takes a value to cast, which must be a
5555scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5556``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5557``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5558type with the same number of elements as ``ty``
5559
5560Semantics:
5561""""""""""
5562
5563The '``sitofp``' instruction interprets its operand as a signed integer
5564quantity and converts it to the corresponding floating point value. If
5565the value cannot fit in the floating point value, the results are
5566undefined.
5567
5568Example:
5569""""""""
5570
5571.. code-block:: llvm
5572
5573 %X = sitofp i32 257 to float ; yields float:257.0
5574 %Y = sitofp i8 -1 to double ; yields double:-1.0
5575
5576.. _i_ptrtoint:
5577
5578'``ptrtoint .. to``' Instruction
5579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5580
5581Syntax:
5582"""""""
5583
5584::
5585
5586 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5587
5588Overview:
5589"""""""""
5590
5591The '``ptrtoint``' instruction converts the pointer or a vector of
5592pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5593
5594Arguments:
5595""""""""""
5596
5597The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5598a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5599type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5600a vector of integers type.
5601
5602Semantics:
5603""""""""""
5604
5605The '``ptrtoint``' instruction converts ``value`` to integer type
5606``ty2`` by interpreting the pointer value as an integer and either
5607truncating or zero extending that value to the size of the integer type.
5608If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5609``value`` is larger than ``ty2`` then a truncation is done. If they are
5610the same size, then nothing is done (*no-op cast*) other than a type
5611change.
5612
5613Example:
5614""""""""
5615
5616.. code-block:: llvm
5617
5618 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5619 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5620 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5621
5622.. _i_inttoptr:
5623
5624'``inttoptr .. to``' Instruction
5625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5626
5627Syntax:
5628"""""""
5629
5630::
5631
5632 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5633
5634Overview:
5635"""""""""
5636
5637The '``inttoptr``' instruction converts an integer ``value`` to a
5638pointer type, ``ty2``.
5639
5640Arguments:
5641""""""""""
5642
5643The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5644cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5645type.
5646
5647Semantics:
5648""""""""""
5649
5650The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5651applying either a zero extension or a truncation depending on the size
5652of the integer ``value``. If ``value`` is larger than the size of a
5653pointer then a truncation is done. If ``value`` is smaller than the size
5654of a pointer then a zero extension is done. If they are the same size,
5655nothing is done (*no-op cast*).
5656
5657Example:
5658""""""""
5659
5660.. code-block:: llvm
5661
5662 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5663 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5664 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5665 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5666
5667.. _i_bitcast:
5668
5669'``bitcast .. to``' Instruction
5670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5671
5672Syntax:
5673"""""""
5674
5675::
5676
5677 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5678
5679Overview:
5680"""""""""
5681
5682The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5683changing any bits.
5684
5685Arguments:
5686""""""""""
5687
5688The '``bitcast``' instruction takes a value to cast, which must be a
5689non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005690also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5691bit sizes of ``value`` and the destination type, ``ty2``, must be
5692identical. If the source type is a pointer, the destination type must
5693also be a pointer of the same size. This instruction supports bitwise
5694conversion of vectors to integers and to vectors of other types (as
5695long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005696
5697Semantics:
5698""""""""""
5699
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005700The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5701is always a *no-op cast* because no bits change with this
5702conversion. The conversion is done as if the ``value`` had been stored
5703to memory and read back as type ``ty2``. Pointer (or vector of
5704pointers) types may only be converted to other pointer (or vector of
5705pointers) types with this instruction if the pointer sizes are
5706equal. To convert pointers to other types, use the :ref:`inttoptr
5707<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005708
5709Example:
5710""""""""
5711
5712.. code-block:: llvm
5713
5714 %X = bitcast i8 255 to i8 ; yields i8 :-1
5715 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5716 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5717 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5718
5719.. _otherops:
5720
5721Other Operations
5722----------------
5723
5724The instructions in this category are the "miscellaneous" instructions,
5725which defy better classification.
5726
5727.. _i_icmp:
5728
5729'``icmp``' Instruction
5730^^^^^^^^^^^^^^^^^^^^^^
5731
5732Syntax:
5733"""""""
5734
5735::
5736
5737 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5738
5739Overview:
5740"""""""""
5741
5742The '``icmp``' instruction returns a boolean value or a vector of
5743boolean values based on comparison of its two integer, integer vector,
5744pointer, or pointer vector operands.
5745
5746Arguments:
5747""""""""""
5748
5749The '``icmp``' instruction takes three operands. The first operand is
5750the condition code indicating the kind of comparison to perform. It is
5751not a value, just a keyword. The possible condition code are:
5752
5753#. ``eq``: equal
5754#. ``ne``: not equal
5755#. ``ugt``: unsigned greater than
5756#. ``uge``: unsigned greater or equal
5757#. ``ult``: unsigned less than
5758#. ``ule``: unsigned less or equal
5759#. ``sgt``: signed greater than
5760#. ``sge``: signed greater or equal
5761#. ``slt``: signed less than
5762#. ``sle``: signed less or equal
5763
5764The remaining two arguments must be :ref:`integer <t_integer>` or
5765:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5766must also be identical types.
5767
5768Semantics:
5769""""""""""
5770
5771The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5772code given as ``cond``. The comparison performed always yields either an
5773:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5774
5775#. ``eq``: yields ``true`` if the operands are equal, ``false``
5776 otherwise. No sign interpretation is necessary or performed.
5777#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5778 otherwise. No sign interpretation is necessary or performed.
5779#. ``ugt``: interprets the operands as unsigned values and yields
5780 ``true`` if ``op1`` is greater than ``op2``.
5781#. ``uge``: interprets the operands as unsigned values and yields
5782 ``true`` if ``op1`` is greater than or equal to ``op2``.
5783#. ``ult``: interprets the operands as unsigned values and yields
5784 ``true`` if ``op1`` is less than ``op2``.
5785#. ``ule``: interprets the operands as unsigned values and yields
5786 ``true`` if ``op1`` is less than or equal to ``op2``.
5787#. ``sgt``: interprets the operands as signed values and yields ``true``
5788 if ``op1`` is greater than ``op2``.
5789#. ``sge``: interprets the operands as signed values and yields ``true``
5790 if ``op1`` is greater than or equal to ``op2``.
5791#. ``slt``: interprets the operands as signed values and yields ``true``
5792 if ``op1`` is less than ``op2``.
5793#. ``sle``: interprets the operands as signed values and yields ``true``
5794 if ``op1`` is less than or equal to ``op2``.
5795
5796If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5797are compared as if they were integers.
5798
5799If the operands are integer vectors, then they are compared element by
5800element. The result is an ``i1`` vector with the same number of elements
5801as the values being compared. Otherwise, the result is an ``i1``.
5802
5803Example:
5804""""""""
5805
5806.. code-block:: llvm
5807
5808 <result> = icmp eq i32 4, 5 ; yields: result=false
5809 <result> = icmp ne float* %X, %X ; yields: result=false
5810 <result> = icmp ult i16 4, 5 ; yields: result=true
5811 <result> = icmp sgt i16 4, 5 ; yields: result=false
5812 <result> = icmp ule i16 -4, 5 ; yields: result=false
5813 <result> = icmp sge i16 4, 5 ; yields: result=false
5814
5815Note that the code generator does not yet support vector types with the
5816``icmp`` instruction.
5817
5818.. _i_fcmp:
5819
5820'``fcmp``' Instruction
5821^^^^^^^^^^^^^^^^^^^^^^
5822
5823Syntax:
5824"""""""
5825
5826::
5827
5828 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5829
5830Overview:
5831"""""""""
5832
5833The '``fcmp``' instruction returns a boolean value or vector of boolean
5834values based on comparison of its operands.
5835
5836If the operands are floating point scalars, then the result type is a
5837boolean (:ref:`i1 <t_integer>`).
5838
5839If the operands are floating point vectors, then the result type is a
5840vector of boolean with the same number of elements as the operands being
5841compared.
5842
5843Arguments:
5844""""""""""
5845
5846The '``fcmp``' instruction takes three operands. The first operand is
5847the condition code indicating the kind of comparison to perform. It is
5848not a value, just a keyword. The possible condition code are:
5849
5850#. ``false``: no comparison, always returns false
5851#. ``oeq``: ordered and equal
5852#. ``ogt``: ordered and greater than
5853#. ``oge``: ordered and greater than or equal
5854#. ``olt``: ordered and less than
5855#. ``ole``: ordered and less than or equal
5856#. ``one``: ordered and not equal
5857#. ``ord``: ordered (no nans)
5858#. ``ueq``: unordered or equal
5859#. ``ugt``: unordered or greater than
5860#. ``uge``: unordered or greater than or equal
5861#. ``ult``: unordered or less than
5862#. ``ule``: unordered or less than or equal
5863#. ``une``: unordered or not equal
5864#. ``uno``: unordered (either nans)
5865#. ``true``: no comparison, always returns true
5866
5867*Ordered* means that neither operand is a QNAN while *unordered* means
5868that either operand may be a QNAN.
5869
5870Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5871point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5872type. They must have identical types.
5873
5874Semantics:
5875""""""""""
5876
5877The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5878condition code given as ``cond``. If the operands are vectors, then the
5879vectors are compared element by element. Each comparison performed
5880always yields an :ref:`i1 <t_integer>` result, as follows:
5881
5882#. ``false``: always yields ``false``, regardless of operands.
5883#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5884 is equal to ``op2``.
5885#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5886 is greater than ``op2``.
5887#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5888 is greater than or equal to ``op2``.
5889#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5890 is less than ``op2``.
5891#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5892 is less than or equal to ``op2``.
5893#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5894 is not equal to ``op2``.
5895#. ``ord``: yields ``true`` if both operands are not a QNAN.
5896#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5897 equal to ``op2``.
5898#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5899 greater than ``op2``.
5900#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5901 greater than or equal to ``op2``.
5902#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5903 less than ``op2``.
5904#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5905 less than or equal to ``op2``.
5906#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5907 not equal to ``op2``.
5908#. ``uno``: yields ``true`` if either operand is a QNAN.
5909#. ``true``: always yields ``true``, regardless of operands.
5910
5911Example:
5912""""""""
5913
5914.. code-block:: llvm
5915
5916 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5917 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5918 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5919 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5920
5921Note that the code generator does not yet support vector types with the
5922``fcmp`` instruction.
5923
5924.. _i_phi:
5925
5926'``phi``' Instruction
5927^^^^^^^^^^^^^^^^^^^^^
5928
5929Syntax:
5930"""""""
5931
5932::
5933
5934 <result> = phi <ty> [ <val0>, <label0>], ...
5935
5936Overview:
5937"""""""""
5938
5939The '``phi``' instruction is used to implement the φ node in the SSA
5940graph representing the function.
5941
5942Arguments:
5943""""""""""
5944
5945The type of the incoming values is specified with the first type field.
5946After this, the '``phi``' instruction takes a list of pairs as
5947arguments, with one pair for each predecessor basic block of the current
5948block. Only values of :ref:`first class <t_firstclass>` type may be used as
5949the value arguments to the PHI node. Only labels may be used as the
5950label arguments.
5951
5952There must be no non-phi instructions between the start of a basic block
5953and the PHI instructions: i.e. PHI instructions must be first in a basic
5954block.
5955
5956For the purposes of the SSA form, the use of each incoming value is
5957deemed to occur on the edge from the corresponding predecessor block to
5958the current block (but after any definition of an '``invoke``'
5959instruction's return value on the same edge).
5960
5961Semantics:
5962""""""""""
5963
5964At runtime, the '``phi``' instruction logically takes on the value
5965specified by the pair corresponding to the predecessor basic block that
5966executed just prior to the current block.
5967
5968Example:
5969""""""""
5970
5971.. code-block:: llvm
5972
5973 Loop: ; Infinite loop that counts from 0 on up...
5974 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5975 %nextindvar = add i32 %indvar, 1
5976 br label %Loop
5977
5978.. _i_select:
5979
5980'``select``' Instruction
5981^^^^^^^^^^^^^^^^^^^^^^^^
5982
5983Syntax:
5984"""""""
5985
5986::
5987
5988 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5989
5990 selty is either i1 or {<N x i1>}
5991
5992Overview:
5993"""""""""
5994
5995The '``select``' instruction is used to choose one value based on a
5996condition, without branching.
5997
5998Arguments:
5999""""""""""
6000
6001The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6002values indicating the condition, and two values of the same :ref:`first
6003class <t_firstclass>` type. If the val1/val2 are vectors and the
6004condition is a scalar, then entire vectors are selected, not individual
6005elements.
6006
6007Semantics:
6008""""""""""
6009
6010If the condition is an i1 and it evaluates to 1, the instruction returns
6011the first value argument; otherwise, it returns the second value
6012argument.
6013
6014If the condition is a vector of i1, then the value arguments must be
6015vectors of the same size, and the selection is done element by element.
6016
6017Example:
6018""""""""
6019
6020.. code-block:: llvm
6021
6022 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6023
6024.. _i_call:
6025
6026'``call``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
6034 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6035
6036Overview:
6037"""""""""
6038
6039The '``call``' instruction represents a simple function call.
6040
6041Arguments:
6042""""""""""
6043
6044This instruction requires several arguments:
6045
6046#. The optional "tail" marker indicates that the callee function does
6047 not access any allocas or varargs in the caller. Note that calls may
6048 be marked "tail" even if they do not occur before a
6049 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6050 function call is eligible for tail call optimization, but `might not
6051 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6052 The code generator may optimize calls marked "tail" with either 1)
6053 automatic `sibling call
6054 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6055 callee have matching signatures, or 2) forced tail call optimization
6056 when the following extra requirements are met:
6057
6058 - Caller and callee both have the calling convention ``fastcc``.
6059 - The call is in tail position (ret immediately follows call and ret
6060 uses value of call or is void).
6061 - Option ``-tailcallopt`` is enabled, or
6062 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6063 - `Platform specific constraints are
6064 met. <CodeGenerator.html#tailcallopt>`_
6065
6066#. The optional "cconv" marker indicates which :ref:`calling
6067 convention <callingconv>` the call should use. If none is
6068 specified, the call defaults to using C calling conventions. The
6069 calling convention of the call must match the calling convention of
6070 the target function, or else the behavior is undefined.
6071#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6072 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6073 are valid here.
6074#. '``ty``': the type of the call instruction itself which is also the
6075 type of the return value. Functions that return no value are marked
6076 ``void``.
6077#. '``fnty``': shall be the signature of the pointer to function value
6078 being invoked. The argument types must match the types implied by
6079 this signature. This type can be omitted if the function is not
6080 varargs and if the function type does not return a pointer to a
6081 function.
6082#. '``fnptrval``': An LLVM value containing a pointer to a function to
6083 be invoked. In most cases, this is a direct function invocation, but
6084 indirect ``call``'s are just as possible, calling an arbitrary pointer
6085 to function value.
6086#. '``function args``': argument list whose types match the function
6087 signature argument types and parameter attributes. All arguments must
6088 be of :ref:`first class <t_firstclass>` type. If the function signature
6089 indicates the function accepts a variable number of arguments, the
6090 extra arguments can be specified.
6091#. The optional :ref:`function attributes <fnattrs>` list. Only
6092 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6093 attributes are valid here.
6094
6095Semantics:
6096""""""""""
6097
6098The '``call``' instruction is used to cause control flow to transfer to
6099a specified function, with its incoming arguments bound to the specified
6100values. Upon a '``ret``' instruction in the called function, control
6101flow continues with the instruction after the function call, and the
6102return value of the function is bound to the result argument.
6103
6104Example:
6105""""""""
6106
6107.. code-block:: llvm
6108
6109 %retval = call i32 @test(i32 %argc)
6110 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6111 %X = tail call i32 @foo() ; yields i32
6112 %Y = tail call fastcc i32 @foo() ; yields i32
6113 call void %foo(i8 97 signext)
6114
6115 %struct.A = type { i32, i8 }
6116 %r = call %struct.A @foo() ; yields { 32, i8 }
6117 %gr = extractvalue %struct.A %r, 0 ; yields i32
6118 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6119 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6120 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6121
6122llvm treats calls to some functions with names and arguments that match
6123the standard C99 library as being the C99 library functions, and may
6124perform optimizations or generate code for them under that assumption.
6125This is something we'd like to change in the future to provide better
6126support for freestanding environments and non-C-based languages.
6127
6128.. _i_va_arg:
6129
6130'``va_arg``' Instruction
6131^^^^^^^^^^^^^^^^^^^^^^^^
6132
6133Syntax:
6134"""""""
6135
6136::
6137
6138 <resultval> = va_arg <va_list*> <arglist>, <argty>
6139
6140Overview:
6141"""""""""
6142
6143The '``va_arg``' instruction is used to access arguments passed through
6144the "variable argument" area of a function call. It is used to implement
6145the ``va_arg`` macro in C.
6146
6147Arguments:
6148""""""""""
6149
6150This instruction takes a ``va_list*`` value and the type of the
6151argument. It returns a value of the specified argument type and
6152increments the ``va_list`` to point to the next argument. The actual
6153type of ``va_list`` is target specific.
6154
6155Semantics:
6156""""""""""
6157
6158The '``va_arg``' instruction loads an argument of the specified type
6159from the specified ``va_list`` and causes the ``va_list`` to point to
6160the next argument. For more information, see the variable argument
6161handling :ref:`Intrinsic Functions <int_varargs>`.
6162
6163It is legal for this instruction to be called in a function which does
6164not take a variable number of arguments, for example, the ``vfprintf``
6165function.
6166
6167``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6168function <intrinsics>` because it takes a type as an argument.
6169
6170Example:
6171""""""""
6172
6173See the :ref:`variable argument processing <int_varargs>` section.
6174
6175Note that the code generator does not yet fully support va\_arg on many
6176targets. Also, it does not currently support va\_arg with aggregate
6177types on any target.
6178
6179.. _i_landingpad:
6180
6181'``landingpad``' Instruction
6182^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6183
6184Syntax:
6185"""""""
6186
6187::
6188
6189 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6190 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6191
6192 <clause> := catch <type> <value>
6193 <clause> := filter <array constant type> <array constant>
6194
6195Overview:
6196"""""""""
6197
6198The '``landingpad``' instruction is used by `LLVM's exception handling
6199system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006200is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006201code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6202defines values supplied by the personality function (``pers_fn``) upon
6203re-entry to the function. The ``resultval`` has the type ``resultty``.
6204
6205Arguments:
6206""""""""""
6207
6208This instruction takes a ``pers_fn`` value. This is the personality
6209function associated with the unwinding mechanism. The optional
6210``cleanup`` flag indicates that the landing pad block is a cleanup.
6211
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006212A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006213contains the global variable representing the "type" that may be caught
6214or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6215clause takes an array constant as its argument. Use
6216"``[0 x i8**] undef``" for a filter which cannot throw. The
6217'``landingpad``' instruction must contain *at least* one ``clause`` or
6218the ``cleanup`` flag.
6219
6220Semantics:
6221""""""""""
6222
6223The '``landingpad``' instruction defines the values which are set by the
6224personality function (``pers_fn``) upon re-entry to the function, and
6225therefore the "result type" of the ``landingpad`` instruction. As with
6226calling conventions, how the personality function results are
6227represented in LLVM IR is target specific.
6228
6229The clauses are applied in order from top to bottom. If two
6230``landingpad`` instructions are merged together through inlining, the
6231clauses from the calling function are appended to the list of clauses.
6232When the call stack is being unwound due to an exception being thrown,
6233the exception is compared against each ``clause`` in turn. If it doesn't
6234match any of the clauses, and the ``cleanup`` flag is not set, then
6235unwinding continues further up the call stack.
6236
6237The ``landingpad`` instruction has several restrictions:
6238
6239- A landing pad block is a basic block which is the unwind destination
6240 of an '``invoke``' instruction.
6241- A landing pad block must have a '``landingpad``' instruction as its
6242 first non-PHI instruction.
6243- There can be only one '``landingpad``' instruction within the landing
6244 pad block.
6245- A basic block that is not a landing pad block may not include a
6246 '``landingpad``' instruction.
6247- All '``landingpad``' instructions in a function must have the same
6248 personality function.
6249
6250Example:
6251""""""""
6252
6253.. code-block:: llvm
6254
6255 ;; A landing pad which can catch an integer.
6256 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6257 catch i8** @_ZTIi
6258 ;; A landing pad that is a cleanup.
6259 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6260 cleanup
6261 ;; A landing pad which can catch an integer and can only throw a double.
6262 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6263 catch i8** @_ZTIi
6264 filter [1 x i8**] [@_ZTId]
6265
6266.. _intrinsics:
6267
6268Intrinsic Functions
6269===================
6270
6271LLVM supports the notion of an "intrinsic function". These functions
6272have well known names and semantics and are required to follow certain
6273restrictions. Overall, these intrinsics represent an extension mechanism
6274for the LLVM language that does not require changing all of the
6275transformations in LLVM when adding to the language (or the bitcode
6276reader/writer, the parser, etc...).
6277
6278Intrinsic function names must all start with an "``llvm.``" prefix. This
6279prefix is reserved in LLVM for intrinsic names; thus, function names may
6280not begin with this prefix. Intrinsic functions must always be external
6281functions: you cannot define the body of intrinsic functions. Intrinsic
6282functions may only be used in call or invoke instructions: it is illegal
6283to take the address of an intrinsic function. Additionally, because
6284intrinsic functions are part of the LLVM language, it is required if any
6285are added that they be documented here.
6286
6287Some intrinsic functions can be overloaded, i.e., the intrinsic
6288represents a family of functions that perform the same operation but on
6289different data types. Because LLVM can represent over 8 million
6290different integer types, overloading is used commonly to allow an
6291intrinsic function to operate on any integer type. One or more of the
6292argument types or the result type can be overloaded to accept any
6293integer type. Argument types may also be defined as exactly matching a
6294previous argument's type or the result type. This allows an intrinsic
6295function which accepts multiple arguments, but needs all of them to be
6296of the same type, to only be overloaded with respect to a single
6297argument or the result.
6298
6299Overloaded intrinsics will have the names of its overloaded argument
6300types encoded into its function name, each preceded by a period. Only
6301those types which are overloaded result in a name suffix. Arguments
6302whose type is matched against another type do not. For example, the
6303``llvm.ctpop`` function can take an integer of any width and returns an
6304integer of exactly the same integer width. This leads to a family of
6305functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6306``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6307overloaded, and only one type suffix is required. Because the argument's
6308type is matched against the return type, it does not require its own
6309name suffix.
6310
6311To learn how to add an intrinsic function, please see the `Extending
6312LLVM Guide <ExtendingLLVM.html>`_.
6313
6314.. _int_varargs:
6315
6316Variable Argument Handling Intrinsics
6317-------------------------------------
6318
6319Variable argument support is defined in LLVM with the
6320:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6321functions. These functions are related to the similarly named macros
6322defined in the ``<stdarg.h>`` header file.
6323
6324All of these functions operate on arguments that use a target-specific
6325value type "``va_list``". The LLVM assembly language reference manual
6326does not define what this type is, so all transformations should be
6327prepared to handle these functions regardless of the type used.
6328
6329This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6330variable argument handling intrinsic functions are used.
6331
6332.. code-block:: llvm
6333
6334 define i32 @test(i32 %X, ...) {
6335 ; Initialize variable argument processing
6336 %ap = alloca i8*
6337 %ap2 = bitcast i8** %ap to i8*
6338 call void @llvm.va_start(i8* %ap2)
6339
6340 ; Read a single integer argument
6341 %tmp = va_arg i8** %ap, i32
6342
6343 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6344 %aq = alloca i8*
6345 %aq2 = bitcast i8** %aq to i8*
6346 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6347 call void @llvm.va_end(i8* %aq2)
6348
6349 ; Stop processing of arguments.
6350 call void @llvm.va_end(i8* %ap2)
6351 ret i32 %tmp
6352 }
6353
6354 declare void @llvm.va_start(i8*)
6355 declare void @llvm.va_copy(i8*, i8*)
6356 declare void @llvm.va_end(i8*)
6357
6358.. _int_va_start:
6359
6360'``llvm.va_start``' Intrinsic
6361^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6362
6363Syntax:
6364"""""""
6365
6366::
6367
Nick Lewyckyf7e61562013-09-11 22:04:52 +00006368 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +00006369
6370Overview:
6371"""""""""
6372
6373The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6374subsequent use by ``va_arg``.
6375
6376Arguments:
6377""""""""""
6378
6379The argument is a pointer to a ``va_list`` element to initialize.
6380
6381Semantics:
6382""""""""""
6383
6384The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6385available in C. In a target-dependent way, it initializes the
6386``va_list`` element to which the argument points, so that the next call
6387to ``va_arg`` will produce the first variable argument passed to the
6388function. Unlike the C ``va_start`` macro, this intrinsic does not need
6389to know the last argument of the function as the compiler can figure
6390that out.
6391
6392'``llvm.va_end``' Intrinsic
6393^^^^^^^^^^^^^^^^^^^^^^^^^^^
6394
6395Syntax:
6396"""""""
6397
6398::
6399
6400 declare void @llvm.va_end(i8* <arglist>)
6401
6402Overview:
6403"""""""""
6404
6405The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6406initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6407
6408Arguments:
6409""""""""""
6410
6411The argument is a pointer to a ``va_list`` to destroy.
6412
6413Semantics:
6414""""""""""
6415
6416The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6417available in C. In a target-dependent way, it destroys the ``va_list``
6418element to which the argument points. Calls to
6419:ref:`llvm.va_start <int_va_start>` and
6420:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6421``llvm.va_end``.
6422
6423.. _int_va_copy:
6424
6425'``llvm.va_copy``' Intrinsic
6426^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6427
6428Syntax:
6429"""""""
6430
6431::
6432
6433 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6434
6435Overview:
6436"""""""""
6437
6438The '``llvm.va_copy``' intrinsic copies the current argument position
6439from the source argument list to the destination argument list.
6440
6441Arguments:
6442""""""""""
6443
6444The first argument is a pointer to a ``va_list`` element to initialize.
6445The second argument is a pointer to a ``va_list`` element to copy from.
6446
6447Semantics:
6448""""""""""
6449
6450The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6451available in C. In a target-dependent way, it copies the source
6452``va_list`` element into the destination ``va_list`` element. This
6453intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6454arbitrarily complex and require, for example, memory allocation.
6455
6456Accurate Garbage Collection Intrinsics
6457--------------------------------------
6458
6459LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6460(GC) requires the implementation and generation of these intrinsics.
6461These intrinsics allow identification of :ref:`GC roots on the
6462stack <int_gcroot>`, as well as garbage collector implementations that
6463require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6464Front-ends for type-safe garbage collected languages should generate
6465these intrinsics to make use of the LLVM garbage collectors. For more
6466details, see `Accurate Garbage Collection with
6467LLVM <GarbageCollection.html>`_.
6468
6469The garbage collection intrinsics only operate on objects in the generic
6470address space (address space zero).
6471
6472.. _int_gcroot:
6473
6474'``llvm.gcroot``' Intrinsic
6475^^^^^^^^^^^^^^^^^^^^^^^^^^^
6476
6477Syntax:
6478"""""""
6479
6480::
6481
6482 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6483
6484Overview:
6485"""""""""
6486
6487The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6488the code generator, and allows some metadata to be associated with it.
6489
6490Arguments:
6491""""""""""
6492
6493The first argument specifies the address of a stack object that contains
6494the root pointer. The second pointer (which must be either a constant or
6495a global value address) contains the meta-data to be associated with the
6496root.
6497
6498Semantics:
6499""""""""""
6500
6501At runtime, a call to this intrinsic stores a null pointer into the
6502"ptrloc" location. At compile-time, the code generator generates
6503information to allow the runtime to find the pointer at GC safe points.
6504The '``llvm.gcroot``' intrinsic may only be used in a function which
6505:ref:`specifies a GC algorithm <gc>`.
6506
6507.. _int_gcread:
6508
6509'``llvm.gcread``' Intrinsic
6510^^^^^^^^^^^^^^^^^^^^^^^^^^^
6511
6512Syntax:
6513"""""""
6514
6515::
6516
6517 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6518
6519Overview:
6520"""""""""
6521
6522The '``llvm.gcread``' intrinsic identifies reads of references from heap
6523locations, allowing garbage collector implementations that require read
6524barriers.
6525
6526Arguments:
6527""""""""""
6528
6529The second argument is the address to read from, which should be an
6530address allocated from the garbage collector. The first object is a
6531pointer to the start of the referenced object, if needed by the language
6532runtime (otherwise null).
6533
6534Semantics:
6535""""""""""
6536
6537The '``llvm.gcread``' intrinsic has the same semantics as a load
6538instruction, but may be replaced with substantially more complex code by
6539the garbage collector runtime, as needed. The '``llvm.gcread``'
6540intrinsic may only be used in a function which :ref:`specifies a GC
6541algorithm <gc>`.
6542
6543.. _int_gcwrite:
6544
6545'``llvm.gcwrite``' Intrinsic
6546^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6547
6548Syntax:
6549"""""""
6550
6551::
6552
6553 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6554
6555Overview:
6556"""""""""
6557
6558The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6559locations, allowing garbage collector implementations that require write
6560barriers (such as generational or reference counting collectors).
6561
6562Arguments:
6563""""""""""
6564
6565The first argument is the reference to store, the second is the start of
6566the object to store it to, and the third is the address of the field of
6567Obj to store to. If the runtime does not require a pointer to the
6568object, Obj may be null.
6569
6570Semantics:
6571""""""""""
6572
6573The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6574instruction, but may be replaced with substantially more complex code by
6575the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6576intrinsic may only be used in a function which :ref:`specifies a GC
6577algorithm <gc>`.
6578
6579Code Generator Intrinsics
6580-------------------------
6581
6582These intrinsics are provided by LLVM to expose special features that
6583may only be implemented with code generator support.
6584
6585'``llvm.returnaddress``' Intrinsic
6586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6587
6588Syntax:
6589"""""""
6590
6591::
6592
6593 declare i8 *@llvm.returnaddress(i32 <level>)
6594
6595Overview:
6596"""""""""
6597
6598The '``llvm.returnaddress``' intrinsic attempts to compute a
6599target-specific value indicating the return address of the current
6600function or one of its callers.
6601
6602Arguments:
6603""""""""""
6604
6605The argument to this intrinsic indicates which function to return the
6606address for. Zero indicates the calling function, one indicates its
6607caller, etc. The argument is **required** to be a constant integer
6608value.
6609
6610Semantics:
6611""""""""""
6612
6613The '``llvm.returnaddress``' intrinsic either returns a pointer
6614indicating the return address of the specified call frame, or zero if it
6615cannot be identified. The value returned by this intrinsic is likely to
6616be incorrect or 0 for arguments other than zero, so it should only be
6617used for debugging purposes.
6618
6619Note that calling this intrinsic does not prevent function inlining or
6620other aggressive transformations, so the value returned may not be that
6621of the obvious source-language caller.
6622
6623'``llvm.frameaddress``' Intrinsic
6624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6625
6626Syntax:
6627"""""""
6628
6629::
6630
6631 declare i8* @llvm.frameaddress(i32 <level>)
6632
6633Overview:
6634"""""""""
6635
6636The '``llvm.frameaddress``' intrinsic attempts to return the
6637target-specific frame pointer value for the specified stack frame.
6638
6639Arguments:
6640""""""""""
6641
6642The argument to this intrinsic indicates which function to return the
6643frame pointer for. Zero indicates the calling function, one indicates
6644its caller, etc. The argument is **required** to be a constant integer
6645value.
6646
6647Semantics:
6648""""""""""
6649
6650The '``llvm.frameaddress``' intrinsic either returns a pointer
6651indicating the frame address of the specified call frame, or zero if it
6652cannot be identified. The value returned by this intrinsic is likely to
6653be incorrect or 0 for arguments other than zero, so it should only be
6654used for debugging purposes.
6655
6656Note that calling this intrinsic does not prevent function inlining or
6657other aggressive transformations, so the value returned may not be that
6658of the obvious source-language caller.
6659
6660.. _int_stacksave:
6661
6662'``llvm.stacksave``' Intrinsic
6663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6664
6665Syntax:
6666"""""""
6667
6668::
6669
6670 declare i8* @llvm.stacksave()
6671
6672Overview:
6673"""""""""
6674
6675The '``llvm.stacksave``' intrinsic is used to remember the current state
6676of the function stack, for use with
6677:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6678implementing language features like scoped automatic variable sized
6679arrays in C99.
6680
6681Semantics:
6682""""""""""
6683
6684This intrinsic returns a opaque pointer value that can be passed to
6685:ref:`llvm.stackrestore <int_stackrestore>`. When an
6686``llvm.stackrestore`` intrinsic is executed with a value saved from
6687``llvm.stacksave``, it effectively restores the state of the stack to
6688the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6689practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6690were allocated after the ``llvm.stacksave`` was executed.
6691
6692.. _int_stackrestore:
6693
6694'``llvm.stackrestore``' Intrinsic
6695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6696
6697Syntax:
6698"""""""
6699
6700::
6701
6702 declare void @llvm.stackrestore(i8* %ptr)
6703
6704Overview:
6705"""""""""
6706
6707The '``llvm.stackrestore``' intrinsic is used to restore the state of
6708the function stack to the state it was in when the corresponding
6709:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6710useful for implementing language features like scoped automatic variable
6711sized arrays in C99.
6712
6713Semantics:
6714""""""""""
6715
6716See the description for :ref:`llvm.stacksave <int_stacksave>`.
6717
6718'``llvm.prefetch``' Intrinsic
6719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6720
6721Syntax:
6722"""""""
6723
6724::
6725
6726 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6727
6728Overview:
6729"""""""""
6730
6731The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6732insert a prefetch instruction if supported; otherwise, it is a noop.
6733Prefetches have no effect on the behavior of the program but can change
6734its performance characteristics.
6735
6736Arguments:
6737""""""""""
6738
6739``address`` is the address to be prefetched, ``rw`` is the specifier
6740determining if the fetch should be for a read (0) or write (1), and
6741``locality`` is a temporal locality specifier ranging from (0) - no
6742locality, to (3) - extremely local keep in cache. The ``cache type``
6743specifies whether the prefetch is performed on the data (1) or
6744instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6745arguments must be constant integers.
6746
6747Semantics:
6748""""""""""
6749
6750This intrinsic does not modify the behavior of the program. In
6751particular, prefetches cannot trap and do not produce a value. On
6752targets that support this intrinsic, the prefetch can provide hints to
6753the processor cache for better performance.
6754
6755'``llvm.pcmarker``' Intrinsic
6756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6757
6758Syntax:
6759"""""""
6760
6761::
6762
6763 declare void @llvm.pcmarker(i32 <id>)
6764
6765Overview:
6766"""""""""
6767
6768The '``llvm.pcmarker``' intrinsic is a method to export a Program
6769Counter (PC) in a region of code to simulators and other tools. The
6770method is target specific, but it is expected that the marker will use
6771exported symbols to transmit the PC of the marker. The marker makes no
6772guarantees that it will remain with any specific instruction after
6773optimizations. It is possible that the presence of a marker will inhibit
6774optimizations. The intended use is to be inserted after optimizations to
6775allow correlations of simulation runs.
6776
6777Arguments:
6778""""""""""
6779
6780``id`` is a numerical id identifying the marker.
6781
6782Semantics:
6783""""""""""
6784
6785This intrinsic does not modify the behavior of the program. Backends
6786that do not support this intrinsic may ignore it.
6787
6788'``llvm.readcyclecounter``' Intrinsic
6789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6790
6791Syntax:
6792"""""""
6793
6794::
6795
6796 declare i64 @llvm.readcyclecounter()
6797
6798Overview:
6799"""""""""
6800
6801The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6802counter register (or similar low latency, high accuracy clocks) on those
6803targets that support it. On X86, it should map to RDTSC. On Alpha, it
6804should map to RPCC. As the backing counters overflow quickly (on the
6805order of 9 seconds on alpha), this should only be used for small
6806timings.
6807
6808Semantics:
6809""""""""""
6810
6811When directly supported, reading the cycle counter should not modify any
6812memory. Implementations are allowed to either return a application
6813specific value or a system wide value. On backends without support, this
6814is lowered to a constant 0.
6815
Tim Northover5a02fc42013-05-23 19:11:20 +00006816Note that runtime support may be conditional on the privilege-level code is
6817running at and the host platform.
6818
Sean Silvaf722b002012-12-07 10:36:55 +00006819Standard C Library Intrinsics
6820-----------------------------
6821
6822LLVM provides intrinsics for a few important standard C library
6823functions. These intrinsics allow source-language front-ends to pass
6824information about the alignment of the pointer arguments to the code
6825generator, providing opportunity for more efficient code generation.
6826
6827.. _int_memcpy:
6828
6829'``llvm.memcpy``' Intrinsic
6830^^^^^^^^^^^^^^^^^^^^^^^^^^^
6831
6832Syntax:
6833"""""""
6834
6835This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6836integer bit width and for different address spaces. Not all targets
6837support all bit widths however.
6838
6839::
6840
6841 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6842 i32 <len>, i32 <align>, i1 <isvolatile>)
6843 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6844 i64 <len>, i32 <align>, i1 <isvolatile>)
6845
6846Overview:
6847"""""""""
6848
6849The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6850source location to the destination location.
6851
6852Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6853intrinsics do not return a value, takes extra alignment/isvolatile
6854arguments and the pointers can be in specified address spaces.
6855
6856Arguments:
6857""""""""""
6858
6859The first argument is a pointer to the destination, the second is a
6860pointer to the source. The third argument is an integer argument
6861specifying the number of bytes to copy, the fourth argument is the
6862alignment of the source and destination locations, and the fifth is a
6863boolean indicating a volatile access.
6864
6865If the call to this intrinsic has an alignment value that is not 0 or 1,
6866then the caller guarantees that both the source and destination pointers
6867are aligned to that boundary.
6868
6869If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6870a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6871very cleanly specified and it is unwise to depend on it.
6872
6873Semantics:
6874""""""""""
6875
6876The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6877source location to the destination location, which are not allowed to
6878overlap. It copies "len" bytes of memory over. If the argument is known
6879to be aligned to some boundary, this can be specified as the fourth
6880argument, otherwise it should be set to 0 or 1.
6881
6882'``llvm.memmove``' Intrinsic
6883^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6884
6885Syntax:
6886"""""""
6887
6888This is an overloaded intrinsic. You can use llvm.memmove on any integer
6889bit width and for different address space. Not all targets support all
6890bit widths however.
6891
6892::
6893
6894 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6895 i32 <len>, i32 <align>, i1 <isvolatile>)
6896 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6897 i64 <len>, i32 <align>, i1 <isvolatile>)
6898
6899Overview:
6900"""""""""
6901
6902The '``llvm.memmove.*``' intrinsics move a block of memory from the
6903source location to the destination location. It is similar to the
6904'``llvm.memcpy``' intrinsic but allows the two memory locations to
6905overlap.
6906
6907Note that, unlike the standard libc function, the ``llvm.memmove.*``
6908intrinsics do not return a value, takes extra alignment/isvolatile
6909arguments and the pointers can be in specified address spaces.
6910
6911Arguments:
6912""""""""""
6913
6914The first argument is a pointer to the destination, the second is a
6915pointer to the source. The third argument is an integer argument
6916specifying the number of bytes to copy, the fourth argument is the
6917alignment of the source and destination locations, and the fifth is a
6918boolean indicating a volatile access.
6919
6920If the call to this intrinsic has an alignment value that is not 0 or 1,
6921then the caller guarantees that the source and destination pointers are
6922aligned to that boundary.
6923
6924If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6925is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6926not very cleanly specified and it is unwise to depend on it.
6927
6928Semantics:
6929""""""""""
6930
6931The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6932source location to the destination location, which may overlap. It
6933copies "len" bytes of memory over. If the argument is known to be
6934aligned to some boundary, this can be specified as the fourth argument,
6935otherwise it should be set to 0 or 1.
6936
6937'``llvm.memset.*``' Intrinsics
6938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6939
6940Syntax:
6941"""""""
6942
6943This is an overloaded intrinsic. You can use llvm.memset on any integer
6944bit width and for different address spaces. However, not all targets
6945support all bit widths.
6946
6947::
6948
6949 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6950 i32 <len>, i32 <align>, i1 <isvolatile>)
6951 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6952 i64 <len>, i32 <align>, i1 <isvolatile>)
6953
6954Overview:
6955"""""""""
6956
6957The '``llvm.memset.*``' intrinsics fill a block of memory with a
6958particular byte value.
6959
6960Note that, unlike the standard libc function, the ``llvm.memset``
6961intrinsic does not return a value and takes extra alignment/volatile
6962arguments. Also, the destination can be in an arbitrary address space.
6963
6964Arguments:
6965""""""""""
6966
6967The first argument is a pointer to the destination to fill, the second
6968is the byte value with which to fill it, the third argument is an
6969integer argument specifying the number of bytes to fill, and the fourth
6970argument is the known alignment of the destination location.
6971
6972If the call to this intrinsic has an alignment value that is not 0 or 1,
6973then the caller guarantees that the destination pointer is aligned to
6974that boundary.
6975
6976If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6977a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6978very cleanly specified and it is unwise to depend on it.
6979
6980Semantics:
6981""""""""""
6982
6983The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6984at the destination location. If the argument is known to be aligned to
6985some boundary, this can be specified as the fourth argument, otherwise
6986it should be set to 0 or 1.
6987
6988'``llvm.sqrt.*``' Intrinsic
6989^^^^^^^^^^^^^^^^^^^^^^^^^^^
6990
6991Syntax:
6992"""""""
6993
6994This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6995floating point or vector of floating point type. Not all targets support
6996all types however.
6997
6998::
6999
7000 declare float @llvm.sqrt.f32(float %Val)
7001 declare double @llvm.sqrt.f64(double %Val)
7002 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7003 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7004 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7005
7006Overview:
7007"""""""""
7008
7009The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7010returning the same value as the libm '``sqrt``' functions would. Unlike
7011``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7012negative numbers other than -0.0 (which allows for better optimization,
7013because there is no need to worry about errno being set).
7014``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7015
7016Arguments:
7017""""""""""
7018
7019The argument and return value are floating point numbers of the same
7020type.
7021
7022Semantics:
7023""""""""""
7024
7025This function returns the sqrt of the specified operand if it is a
7026nonnegative floating point number.
7027
7028'``llvm.powi.*``' Intrinsic
7029^^^^^^^^^^^^^^^^^^^^^^^^^^^
7030
7031Syntax:
7032"""""""
7033
7034This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7035floating point or vector of floating point type. Not all targets support
7036all types however.
7037
7038::
7039
7040 declare float @llvm.powi.f32(float %Val, i32 %power)
7041 declare double @llvm.powi.f64(double %Val, i32 %power)
7042 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7043 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7044 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7045
7046Overview:
7047"""""""""
7048
7049The '``llvm.powi.*``' intrinsics return the first operand raised to the
7050specified (positive or negative) power. The order of evaluation of
7051multiplications is not defined. When a vector of floating point type is
7052used, the second argument remains a scalar integer value.
7053
7054Arguments:
7055""""""""""
7056
7057The second argument is an integer power, and the first is a value to
7058raise to that power.
7059
7060Semantics:
7061""""""""""
7062
7063This function returns the first value raised to the second power with an
7064unspecified sequence of rounding operations.
7065
7066'``llvm.sin.*``' Intrinsic
7067^^^^^^^^^^^^^^^^^^^^^^^^^^
7068
7069Syntax:
7070"""""""
7071
7072This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7073floating point or vector of floating point type. Not all targets support
7074all types however.
7075
7076::
7077
7078 declare float @llvm.sin.f32(float %Val)
7079 declare double @llvm.sin.f64(double %Val)
7080 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7081 declare fp128 @llvm.sin.f128(fp128 %Val)
7082 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7083
7084Overview:
7085"""""""""
7086
7087The '``llvm.sin.*``' intrinsics return the sine of the operand.
7088
7089Arguments:
7090""""""""""
7091
7092The argument and return value are floating point numbers of the same
7093type.
7094
7095Semantics:
7096""""""""""
7097
7098This function returns the sine of the specified operand, returning the
7099same values as the libm ``sin`` functions would, and handles error
7100conditions in the same way.
7101
7102'``llvm.cos.*``' Intrinsic
7103^^^^^^^^^^^^^^^^^^^^^^^^^^
7104
7105Syntax:
7106"""""""
7107
7108This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7109floating point or vector of floating point type. Not all targets support
7110all types however.
7111
7112::
7113
7114 declare float @llvm.cos.f32(float %Val)
7115 declare double @llvm.cos.f64(double %Val)
7116 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7117 declare fp128 @llvm.cos.f128(fp128 %Val)
7118 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7119
7120Overview:
7121"""""""""
7122
7123The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7124
7125Arguments:
7126""""""""""
7127
7128The argument and return value are floating point numbers of the same
7129type.
7130
7131Semantics:
7132""""""""""
7133
7134This function returns the cosine of the specified operand, returning the
7135same values as the libm ``cos`` functions would, and handles error
7136conditions in the same way.
7137
7138'``llvm.pow.*``' Intrinsic
7139^^^^^^^^^^^^^^^^^^^^^^^^^^
7140
7141Syntax:
7142"""""""
7143
7144This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7145floating point or vector of floating point type. Not all targets support
7146all types however.
7147
7148::
7149
7150 declare float @llvm.pow.f32(float %Val, float %Power)
7151 declare double @llvm.pow.f64(double %Val, double %Power)
7152 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7153 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7154 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7155
7156Overview:
7157"""""""""
7158
7159The '``llvm.pow.*``' intrinsics return the first operand raised to the
7160specified (positive or negative) power.
7161
7162Arguments:
7163""""""""""
7164
7165The second argument is a floating point power, and the first is a value
7166to raise to that power.
7167
7168Semantics:
7169""""""""""
7170
7171This function returns the first value raised to the second power,
7172returning the same values as the libm ``pow`` functions would, and
7173handles error conditions in the same way.
7174
7175'``llvm.exp.*``' Intrinsic
7176^^^^^^^^^^^^^^^^^^^^^^^^^^
7177
7178Syntax:
7179"""""""
7180
7181This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7182floating point or vector of floating point type. Not all targets support
7183all types however.
7184
7185::
7186
7187 declare float @llvm.exp.f32(float %Val)
7188 declare double @llvm.exp.f64(double %Val)
7189 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7190 declare fp128 @llvm.exp.f128(fp128 %Val)
7191 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7192
7193Overview:
7194"""""""""
7195
7196The '``llvm.exp.*``' intrinsics perform the exp function.
7197
7198Arguments:
7199""""""""""
7200
7201The argument and return value are floating point numbers of the same
7202type.
7203
7204Semantics:
7205""""""""""
7206
7207This function returns the same values as the libm ``exp`` functions
7208would, and handles error conditions in the same way.
7209
7210'``llvm.exp2.*``' Intrinsic
7211^^^^^^^^^^^^^^^^^^^^^^^^^^^
7212
7213Syntax:
7214"""""""
7215
7216This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7217floating point or vector of floating point type. Not all targets support
7218all types however.
7219
7220::
7221
7222 declare float @llvm.exp2.f32(float %Val)
7223 declare double @llvm.exp2.f64(double %Val)
7224 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7225 declare fp128 @llvm.exp2.f128(fp128 %Val)
7226 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7227
7228Overview:
7229"""""""""
7230
7231The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7232
7233Arguments:
7234""""""""""
7235
7236The argument and return value are floating point numbers of the same
7237type.
7238
7239Semantics:
7240""""""""""
7241
7242This function returns the same values as the libm ``exp2`` functions
7243would, and handles error conditions in the same way.
7244
7245'``llvm.log.*``' Intrinsic
7246^^^^^^^^^^^^^^^^^^^^^^^^^^
7247
7248Syntax:
7249"""""""
7250
7251This is an overloaded intrinsic. You can use ``llvm.log`` on any
7252floating point or vector of floating point type. Not all targets support
7253all types however.
7254
7255::
7256
7257 declare float @llvm.log.f32(float %Val)
7258 declare double @llvm.log.f64(double %Val)
7259 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7260 declare fp128 @llvm.log.f128(fp128 %Val)
7261 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7262
7263Overview:
7264"""""""""
7265
7266The '``llvm.log.*``' intrinsics perform the log function.
7267
7268Arguments:
7269""""""""""
7270
7271The argument and return value are floating point numbers of the same
7272type.
7273
7274Semantics:
7275""""""""""
7276
7277This function returns the same values as the libm ``log`` functions
7278would, and handles error conditions in the same way.
7279
7280'``llvm.log10.*``' Intrinsic
7281^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7282
7283Syntax:
7284"""""""
7285
7286This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7287floating point or vector of floating point type. Not all targets support
7288all types however.
7289
7290::
7291
7292 declare float @llvm.log10.f32(float %Val)
7293 declare double @llvm.log10.f64(double %Val)
7294 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7295 declare fp128 @llvm.log10.f128(fp128 %Val)
7296 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7297
7298Overview:
7299"""""""""
7300
7301The '``llvm.log10.*``' intrinsics perform the log10 function.
7302
7303Arguments:
7304""""""""""
7305
7306The argument and return value are floating point numbers of the same
7307type.
7308
7309Semantics:
7310""""""""""
7311
7312This function returns the same values as the libm ``log10`` functions
7313would, and handles error conditions in the same way.
7314
7315'``llvm.log2.*``' Intrinsic
7316^^^^^^^^^^^^^^^^^^^^^^^^^^^
7317
7318Syntax:
7319"""""""
7320
7321This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7322floating point or vector of floating point type. Not all targets support
7323all types however.
7324
7325::
7326
7327 declare float @llvm.log2.f32(float %Val)
7328 declare double @llvm.log2.f64(double %Val)
7329 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7330 declare fp128 @llvm.log2.f128(fp128 %Val)
7331 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7332
7333Overview:
7334"""""""""
7335
7336The '``llvm.log2.*``' intrinsics perform the log2 function.
7337
7338Arguments:
7339""""""""""
7340
7341The argument and return value are floating point numbers of the same
7342type.
7343
7344Semantics:
7345""""""""""
7346
7347This function returns the same values as the libm ``log2`` functions
7348would, and handles error conditions in the same way.
7349
7350'``llvm.fma.*``' Intrinsic
7351^^^^^^^^^^^^^^^^^^^^^^^^^^
7352
7353Syntax:
7354"""""""
7355
7356This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7357floating point or vector of floating point type. Not all targets support
7358all types however.
7359
7360::
7361
7362 declare float @llvm.fma.f32(float %a, float %b, float %c)
7363 declare double @llvm.fma.f64(double %a, double %b, double %c)
7364 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7365 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7366 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7367
7368Overview:
7369"""""""""
7370
7371The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7372operation.
7373
7374Arguments:
7375""""""""""
7376
7377The argument and return value are floating point numbers of the same
7378type.
7379
7380Semantics:
7381""""""""""
7382
7383This function returns the same values as the libm ``fma`` functions
7384would.
7385
7386'``llvm.fabs.*``' Intrinsic
7387^^^^^^^^^^^^^^^^^^^^^^^^^^^
7388
7389Syntax:
7390"""""""
7391
7392This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7393floating point or vector of floating point type. Not all targets support
7394all types however.
7395
7396::
7397
7398 declare float @llvm.fabs.f32(float %Val)
7399 declare double @llvm.fabs.f64(double %Val)
7400 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7401 declare fp128 @llvm.fabs.f128(fp128 %Val)
7402 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7403
7404Overview:
7405"""""""""
7406
7407The '``llvm.fabs.*``' intrinsics return the absolute value of the
7408operand.
7409
7410Arguments:
7411""""""""""
7412
7413The argument and return value are floating point numbers of the same
7414type.
7415
7416Semantics:
7417""""""""""
7418
7419This function returns the same values as the libm ``fabs`` functions
7420would, and handles error conditions in the same way.
7421
Hal Finkel66d1fa62013-08-19 23:35:46 +00007422'``llvm.copysign.*``' Intrinsic
7423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7424
7425Syntax:
7426"""""""
7427
7428This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7429floating point or vector of floating point type. Not all targets support
7430all types however.
7431
7432::
7433
7434 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7435 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7436 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7437 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7438 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7439
7440Overview:
7441"""""""""
7442
7443The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7444first operand and the sign of the second operand.
7445
7446Arguments:
7447""""""""""
7448
7449The arguments and return value are floating point numbers of the same
7450type.
7451
7452Semantics:
7453""""""""""
7454
7455This function returns the same values as the libm ``copysign``
7456functions would, and handles error conditions in the same way.
7457
Sean Silvaf722b002012-12-07 10:36:55 +00007458'``llvm.floor.*``' Intrinsic
7459^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7460
7461Syntax:
7462"""""""
7463
7464This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7465floating point or vector of floating point type. Not all targets support
7466all types however.
7467
7468::
7469
7470 declare float @llvm.floor.f32(float %Val)
7471 declare double @llvm.floor.f64(double %Val)
7472 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7473 declare fp128 @llvm.floor.f128(fp128 %Val)
7474 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7475
7476Overview:
7477"""""""""
7478
7479The '``llvm.floor.*``' intrinsics return the floor of the operand.
7480
7481Arguments:
7482""""""""""
7483
7484The argument and return value are floating point numbers of the same
7485type.
7486
7487Semantics:
7488""""""""""
7489
7490This function returns the same values as the libm ``floor`` functions
7491would, and handles error conditions in the same way.
7492
7493'``llvm.ceil.*``' Intrinsic
7494^^^^^^^^^^^^^^^^^^^^^^^^^^^
7495
7496Syntax:
7497"""""""
7498
7499This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7500floating point or vector of floating point type. Not all targets support
7501all types however.
7502
7503::
7504
7505 declare float @llvm.ceil.f32(float %Val)
7506 declare double @llvm.ceil.f64(double %Val)
7507 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7508 declare fp128 @llvm.ceil.f128(fp128 %Val)
7509 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7510
7511Overview:
7512"""""""""
7513
7514The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7515
7516Arguments:
7517""""""""""
7518
7519The argument and return value are floating point numbers of the same
7520type.
7521
7522Semantics:
7523""""""""""
7524
7525This function returns the same values as the libm ``ceil`` functions
7526would, and handles error conditions in the same way.
7527
7528'``llvm.trunc.*``' Intrinsic
7529^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7530
7531Syntax:
7532"""""""
7533
7534This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7535floating point or vector of floating point type. Not all targets support
7536all types however.
7537
7538::
7539
7540 declare float @llvm.trunc.f32(float %Val)
7541 declare double @llvm.trunc.f64(double %Val)
7542 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7543 declare fp128 @llvm.trunc.f128(fp128 %Val)
7544 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7545
7546Overview:
7547"""""""""
7548
7549The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7550nearest integer not larger in magnitude than the operand.
7551
7552Arguments:
7553""""""""""
7554
7555The argument and return value are floating point numbers of the same
7556type.
7557
7558Semantics:
7559""""""""""
7560
7561This function returns the same values as the libm ``trunc`` functions
7562would, and handles error conditions in the same way.
7563
7564'``llvm.rint.*``' Intrinsic
7565^^^^^^^^^^^^^^^^^^^^^^^^^^^
7566
7567Syntax:
7568"""""""
7569
7570This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7571floating point or vector of floating point type. Not all targets support
7572all types however.
7573
7574::
7575
7576 declare float @llvm.rint.f32(float %Val)
7577 declare double @llvm.rint.f64(double %Val)
7578 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7579 declare fp128 @llvm.rint.f128(fp128 %Val)
7580 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7581
7582Overview:
7583"""""""""
7584
7585The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7586nearest integer. It may raise an inexact floating-point exception if the
7587operand isn't an integer.
7588
7589Arguments:
7590""""""""""
7591
7592The argument and return value are floating point numbers of the same
7593type.
7594
7595Semantics:
7596""""""""""
7597
7598This function returns the same values as the libm ``rint`` functions
7599would, and handles error conditions in the same way.
7600
7601'``llvm.nearbyint.*``' Intrinsic
7602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7603
7604Syntax:
7605"""""""
7606
7607This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7608floating point or vector of floating point type. Not all targets support
7609all types however.
7610
7611::
7612
7613 declare float @llvm.nearbyint.f32(float %Val)
7614 declare double @llvm.nearbyint.f64(double %Val)
7615 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7616 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7617 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7618
7619Overview:
7620"""""""""
7621
7622The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7623nearest integer.
7624
7625Arguments:
7626""""""""""
7627
7628The argument and return value are floating point numbers of the same
7629type.
7630
7631Semantics:
7632""""""""""
7633
7634This function returns the same values as the libm ``nearbyint``
7635functions would, and handles error conditions in the same way.
7636
Hal Finkel41418d12013-08-07 22:49:12 +00007637'``llvm.round.*``' Intrinsic
7638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7639
7640Syntax:
7641"""""""
7642
7643This is an overloaded intrinsic. You can use ``llvm.round`` on any
7644floating point or vector of floating point type. Not all targets support
7645all types however.
7646
7647::
7648
7649 declare float @llvm.round.f32(float %Val)
7650 declare double @llvm.round.f64(double %Val)
7651 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7652 declare fp128 @llvm.round.f128(fp128 %Val)
7653 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7654
7655Overview:
7656"""""""""
7657
7658The '``llvm.round.*``' intrinsics returns the operand rounded to the
7659nearest integer.
7660
7661Arguments:
7662""""""""""
7663
7664The argument and return value are floating point numbers of the same
7665type.
7666
7667Semantics:
7668""""""""""
7669
7670This function returns the same values as the libm ``round``
7671functions would, and handles error conditions in the same way.
7672
Sean Silvaf722b002012-12-07 10:36:55 +00007673Bit Manipulation Intrinsics
7674---------------------------
7675
7676LLVM provides intrinsics for a few important bit manipulation
7677operations. These allow efficient code generation for some algorithms.
7678
7679'``llvm.bswap.*``' Intrinsics
7680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7681
7682Syntax:
7683"""""""
7684
7685This is an overloaded intrinsic function. You can use bswap on any
7686integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7687
7688::
7689
7690 declare i16 @llvm.bswap.i16(i16 <id>)
7691 declare i32 @llvm.bswap.i32(i32 <id>)
7692 declare i64 @llvm.bswap.i64(i64 <id>)
7693
7694Overview:
7695"""""""""
7696
7697The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7698values with an even number of bytes (positive multiple of 16 bits).
7699These are useful for performing operations on data that is not in the
7700target's native byte order.
7701
7702Semantics:
7703""""""""""
7704
7705The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7706and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7707intrinsic returns an i32 value that has the four bytes of the input i32
7708swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7709returned i32 will have its bytes in 3, 2, 1, 0 order. The
7710``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7711concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7712respectively).
7713
7714'``llvm.ctpop.*``' Intrinsic
7715^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7716
7717Syntax:
7718"""""""
7719
7720This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7721bit width, or on any vector with integer elements. Not all targets
7722support all bit widths or vector types, however.
7723
7724::
7725
7726 declare i8 @llvm.ctpop.i8(i8 <src>)
7727 declare i16 @llvm.ctpop.i16(i16 <src>)
7728 declare i32 @llvm.ctpop.i32(i32 <src>)
7729 declare i64 @llvm.ctpop.i64(i64 <src>)
7730 declare i256 @llvm.ctpop.i256(i256 <src>)
7731 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7732
7733Overview:
7734"""""""""
7735
7736The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7737in a value.
7738
7739Arguments:
7740""""""""""
7741
7742The only argument is the value to be counted. The argument may be of any
7743integer type, or a vector with integer elements. The return type must
7744match the argument type.
7745
7746Semantics:
7747""""""""""
7748
7749The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7750each element of a vector.
7751
7752'``llvm.ctlz.*``' Intrinsic
7753^^^^^^^^^^^^^^^^^^^^^^^^^^^
7754
7755Syntax:
7756"""""""
7757
7758This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7759integer bit width, or any vector whose elements are integers. Not all
7760targets support all bit widths or vector types, however.
7761
7762::
7763
7764 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7765 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7766 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7767 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7768 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7769 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7770
7771Overview:
7772"""""""""
7773
7774The '``llvm.ctlz``' family of intrinsic functions counts the number of
7775leading zeros in a variable.
7776
7777Arguments:
7778""""""""""
7779
7780The first argument is the value to be counted. This argument may be of
7781any integer type, or a vectory with integer element type. The return
7782type must match the first argument type.
7783
7784The second argument must be a constant and is a flag to indicate whether
7785the intrinsic should ensure that a zero as the first argument produces a
7786defined result. Historically some architectures did not provide a
7787defined result for zero values as efficiently, and many algorithms are
7788now predicated on avoiding zero-value inputs.
7789
7790Semantics:
7791""""""""""
7792
7793The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7794zeros in a variable, or within each element of the vector. If
7795``src == 0`` then the result is the size in bits of the type of ``src``
7796if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7797``llvm.ctlz(i32 2) = 30``.
7798
7799'``llvm.cttz.*``' Intrinsic
7800^^^^^^^^^^^^^^^^^^^^^^^^^^^
7801
7802Syntax:
7803"""""""
7804
7805This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7806integer bit width, or any vector of integer elements. Not all targets
7807support all bit widths or vector types, however.
7808
7809::
7810
7811 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7812 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7813 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7814 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7815 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7816 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7817
7818Overview:
7819"""""""""
7820
7821The '``llvm.cttz``' family of intrinsic functions counts the number of
7822trailing zeros.
7823
7824Arguments:
7825""""""""""
7826
7827The first argument is the value to be counted. This argument may be of
7828any integer type, or a vectory with integer element type. The return
7829type must match the first argument type.
7830
7831The second argument must be a constant and is a flag to indicate whether
7832the intrinsic should ensure that a zero as the first argument produces a
7833defined result. Historically some architectures did not provide a
7834defined result for zero values as efficiently, and many algorithms are
7835now predicated on avoiding zero-value inputs.
7836
7837Semantics:
7838""""""""""
7839
7840The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7841zeros in a variable, or within each element of a vector. If ``src == 0``
7842then the result is the size in bits of the type of ``src`` if
7843``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7844``llvm.cttz(2) = 1``.
7845
7846Arithmetic with Overflow Intrinsics
7847-----------------------------------
7848
7849LLVM provides intrinsics for some arithmetic with overflow operations.
7850
7851'``llvm.sadd.with.overflow.*``' Intrinsics
7852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7853
7854Syntax:
7855"""""""
7856
7857This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7858on any integer bit width.
7859
7860::
7861
7862 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7863 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7864 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7865
7866Overview:
7867"""""""""
7868
7869The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7870a signed addition of the two arguments, and indicate whether an overflow
7871occurred during the signed summation.
7872
7873Arguments:
7874""""""""""
7875
7876The arguments (%a and %b) and the first element of the result structure
7877may be of integer types of any bit width, but they must have the same
7878bit width. The second element of the result structure must be of type
7879``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7880addition.
7881
7882Semantics:
7883""""""""""
7884
7885The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007886a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007887first element of which is the signed summation, and the second element
7888of which is a bit specifying if the signed summation resulted in an
7889overflow.
7890
7891Examples:
7892"""""""""
7893
7894.. code-block:: llvm
7895
7896 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7897 %sum = extractvalue {i32, i1} %res, 0
7898 %obit = extractvalue {i32, i1} %res, 1
7899 br i1 %obit, label %overflow, label %normal
7900
7901'``llvm.uadd.with.overflow.*``' Intrinsics
7902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7903
7904Syntax:
7905"""""""
7906
7907This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7908on any integer bit width.
7909
7910::
7911
7912 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7913 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7914 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7915
7916Overview:
7917"""""""""
7918
7919The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7920an unsigned addition of the two arguments, and indicate whether a carry
7921occurred during the unsigned summation.
7922
7923Arguments:
7924""""""""""
7925
7926The arguments (%a and %b) and the first element of the result structure
7927may be of integer types of any bit width, but they must have the same
7928bit width. The second element of the result structure must be of type
7929``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7930addition.
7931
7932Semantics:
7933""""""""""
7934
7935The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007936an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007937first element of which is the sum, and the second element of which is a
7938bit specifying if the unsigned summation resulted in a carry.
7939
7940Examples:
7941"""""""""
7942
7943.. code-block:: llvm
7944
7945 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7946 %sum = extractvalue {i32, i1} %res, 0
7947 %obit = extractvalue {i32, i1} %res, 1
7948 br i1 %obit, label %carry, label %normal
7949
7950'``llvm.ssub.with.overflow.*``' Intrinsics
7951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7952
7953Syntax:
7954"""""""
7955
7956This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7957on any integer bit width.
7958
7959::
7960
7961 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7962 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7963 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7964
7965Overview:
7966"""""""""
7967
7968The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7969a signed subtraction of the two arguments, and indicate whether an
7970overflow occurred during the signed subtraction.
7971
7972Arguments:
7973""""""""""
7974
7975The arguments (%a and %b) and the first element of the result structure
7976may be of integer types of any bit width, but they must have the same
7977bit width. The second element of the result structure must be of type
7978``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7979subtraction.
7980
7981Semantics:
7982""""""""""
7983
7984The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007985a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007986first element of which is the subtraction, and the second element of
7987which is a bit specifying if the signed subtraction resulted in an
7988overflow.
7989
7990Examples:
7991"""""""""
7992
7993.. code-block:: llvm
7994
7995 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7996 %sum = extractvalue {i32, i1} %res, 0
7997 %obit = extractvalue {i32, i1} %res, 1
7998 br i1 %obit, label %overflow, label %normal
7999
8000'``llvm.usub.with.overflow.*``' Intrinsics
8001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8002
8003Syntax:
8004"""""""
8005
8006This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8007on any integer bit width.
8008
8009::
8010
8011 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8012 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8013 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8014
8015Overview:
8016"""""""""
8017
8018The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8019an unsigned subtraction of the two arguments, and indicate whether an
8020overflow occurred during the unsigned subtraction.
8021
8022Arguments:
8023""""""""""
8024
8025The arguments (%a and %b) and the first element of the result structure
8026may be of integer types of any bit width, but they must have the same
8027bit width. The second element of the result structure must be of type
8028``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8029subtraction.
8030
8031Semantics:
8032""""""""""
8033
8034The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008035an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008036the first element of which is the subtraction, and the second element of
8037which is a bit specifying if the unsigned subtraction resulted in an
8038overflow.
8039
8040Examples:
8041"""""""""
8042
8043.. code-block:: llvm
8044
8045 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8046 %sum = extractvalue {i32, i1} %res, 0
8047 %obit = extractvalue {i32, i1} %res, 1
8048 br i1 %obit, label %overflow, label %normal
8049
8050'``llvm.smul.with.overflow.*``' Intrinsics
8051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8052
8053Syntax:
8054"""""""
8055
8056This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8057on any integer bit width.
8058
8059::
8060
8061 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8062 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8063 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8064
8065Overview:
8066"""""""""
8067
8068The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8069a signed multiplication of the two arguments, and indicate whether an
8070overflow occurred during the signed multiplication.
8071
8072Arguments:
8073""""""""""
8074
8075The arguments (%a and %b) and the first element of the result structure
8076may be of integer types of any bit width, but they must have the same
8077bit width. The second element of the result structure must be of type
8078``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8079multiplication.
8080
8081Semantics:
8082""""""""""
8083
8084The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008085a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008086the first element of which is the multiplication, and the second element
8087of which is a bit specifying if the signed multiplication resulted in an
8088overflow.
8089
8090Examples:
8091"""""""""
8092
8093.. code-block:: llvm
8094
8095 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8096 %sum = extractvalue {i32, i1} %res, 0
8097 %obit = extractvalue {i32, i1} %res, 1
8098 br i1 %obit, label %overflow, label %normal
8099
8100'``llvm.umul.with.overflow.*``' Intrinsics
8101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8102
8103Syntax:
8104"""""""
8105
8106This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8107on any integer bit width.
8108
8109::
8110
8111 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8112 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8113 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8114
8115Overview:
8116"""""""""
8117
8118The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8119a unsigned multiplication of the two arguments, and indicate whether an
8120overflow occurred during the unsigned multiplication.
8121
8122Arguments:
8123""""""""""
8124
8125The arguments (%a and %b) and the first element of the result structure
8126may be of integer types of any bit width, but they must have the same
8127bit width. The second element of the result structure must be of type
8128``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8129multiplication.
8130
8131Semantics:
8132""""""""""
8133
8134The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008135an unsigned multiplication of the two arguments. They return a structure ---
8136the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008137element of which is a bit specifying if the unsigned multiplication
8138resulted in an overflow.
8139
8140Examples:
8141"""""""""
8142
8143.. code-block:: llvm
8144
8145 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8146 %sum = extractvalue {i32, i1} %res, 0
8147 %obit = extractvalue {i32, i1} %res, 1
8148 br i1 %obit, label %overflow, label %normal
8149
8150Specialised Arithmetic Intrinsics
8151---------------------------------
8152
8153'``llvm.fmuladd.*``' Intrinsic
8154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8155
8156Syntax:
8157"""""""
8158
8159::
8160
8161 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8162 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8163
8164Overview:
8165"""""""""
8166
8167The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008168expressions that can be fused if the code generator determines that (a) the
8169target instruction set has support for a fused operation, and (b) that the
8170fused operation is more efficient than the equivalent, separate pair of mul
8171and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008172
8173Arguments:
8174""""""""""
8175
8176The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8177multiplicands, a and b, and an addend c.
8178
8179Semantics:
8180""""""""""
8181
8182The expression:
8183
8184::
8185
8186 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8187
8188is equivalent to the expression a \* b + c, except that rounding will
8189not be performed between the multiplication and addition steps if the
8190code generator fuses the operations. Fusion is not guaranteed, even if
8191the target platform supports it. If a fused multiply-add is required the
8192corresponding llvm.fma.\* intrinsic function should be used instead.
8193
8194Examples:
8195"""""""""
8196
8197.. code-block:: llvm
8198
8199 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8200
8201Half Precision Floating Point Intrinsics
8202----------------------------------------
8203
8204For most target platforms, half precision floating point is a
8205storage-only format. This means that it is a dense encoding (in memory)
8206but does not support computation in the format.
8207
8208This means that code must first load the half-precision floating point
8209value as an i16, then convert it to float with
8210:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8211then be performed on the float value (including extending to double
8212etc). To store the value back to memory, it is first converted to float
8213if needed, then converted to i16 with
8214:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8215i16 value.
8216
8217.. _int_convert_to_fp16:
8218
8219'``llvm.convert.to.fp16``' Intrinsic
8220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8221
8222Syntax:
8223"""""""
8224
8225::
8226
8227 declare i16 @llvm.convert.to.fp16(f32 %a)
8228
8229Overview:
8230"""""""""
8231
8232The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8233from single precision floating point format to half precision floating
8234point format.
8235
8236Arguments:
8237""""""""""
8238
8239The intrinsic function contains single argument - the value to be
8240converted.
8241
8242Semantics:
8243""""""""""
8244
8245The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8246from single precision floating point format to half precision floating
8247point format. The return value is an ``i16`` which contains the
8248converted number.
8249
8250Examples:
8251"""""""""
8252
8253.. code-block:: llvm
8254
8255 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8256 store i16 %res, i16* @x, align 2
8257
8258.. _int_convert_from_fp16:
8259
8260'``llvm.convert.from.fp16``' Intrinsic
8261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8262
8263Syntax:
8264"""""""
8265
8266::
8267
8268 declare f32 @llvm.convert.from.fp16(i16 %a)
8269
8270Overview:
8271"""""""""
8272
8273The '``llvm.convert.from.fp16``' intrinsic function performs a
8274conversion from half precision floating point format to single precision
8275floating point format.
8276
8277Arguments:
8278""""""""""
8279
8280The intrinsic function contains single argument - the value to be
8281converted.
8282
8283Semantics:
8284""""""""""
8285
8286The '``llvm.convert.from.fp16``' intrinsic function performs a
8287conversion from half single precision floating point format to single
8288precision floating point format. The input half-float value is
8289represented by an ``i16`` value.
8290
8291Examples:
8292"""""""""
8293
8294.. code-block:: llvm
8295
8296 %a = load i16* @x, align 2
8297 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8298
8299Debugger Intrinsics
8300-------------------
8301
8302The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8303prefix), are described in the `LLVM Source Level
8304Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8305document.
8306
8307Exception Handling Intrinsics
8308-----------------------------
8309
8310The LLVM exception handling intrinsics (which all start with
8311``llvm.eh.`` prefix), are described in the `LLVM Exception
8312Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8313
8314.. _int_trampoline:
8315
8316Trampoline Intrinsics
8317---------------------
8318
8319These intrinsics make it possible to excise one parameter, marked with
8320the :ref:`nest <nest>` attribute, from a function. The result is a
8321callable function pointer lacking the nest parameter - the caller does
8322not need to provide a value for it. Instead, the value to use is stored
8323in advance in a "trampoline", a block of memory usually allocated on the
8324stack, which also contains code to splice the nest value into the
8325argument list. This is used to implement the GCC nested function address
8326extension.
8327
8328For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8329then the resulting function pointer has signature ``i32 (i32, i32)*``.
8330It can be created as follows:
8331
8332.. code-block:: llvm
8333
8334 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8335 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8336 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8337 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8338 %fp = bitcast i8* %p to i32 (i32, i32)*
8339
8340The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8341``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8342
8343.. _int_it:
8344
8345'``llvm.init.trampoline``' Intrinsic
8346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8347
8348Syntax:
8349"""""""
8350
8351::
8352
8353 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8354
8355Overview:
8356"""""""""
8357
8358This fills the memory pointed to by ``tramp`` with executable code,
8359turning it into a trampoline.
8360
8361Arguments:
8362""""""""""
8363
8364The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8365pointers. The ``tramp`` argument must point to a sufficiently large and
8366sufficiently aligned block of memory; this memory is written to by the
8367intrinsic. Note that the size and the alignment are target-specific -
8368LLVM currently provides no portable way of determining them, so a
8369front-end that generates this intrinsic needs to have some
8370target-specific knowledge. The ``func`` argument must hold a function
8371bitcast to an ``i8*``.
8372
8373Semantics:
8374""""""""""
8375
8376The block of memory pointed to by ``tramp`` is filled with target
8377dependent code, turning it into a function. Then ``tramp`` needs to be
8378passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8379be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8380function's signature is the same as that of ``func`` with any arguments
8381marked with the ``nest`` attribute removed. At most one such ``nest``
8382argument is allowed, and it must be of pointer type. Calling the new
8383function is equivalent to calling ``func`` with the same argument list,
8384but with ``nval`` used for the missing ``nest`` argument. If, after
8385calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8386modified, then the effect of any later call to the returned function
8387pointer is undefined.
8388
8389.. _int_at:
8390
8391'``llvm.adjust.trampoline``' Intrinsic
8392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8393
8394Syntax:
8395"""""""
8396
8397::
8398
8399 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8400
8401Overview:
8402"""""""""
8403
8404This performs any required machine-specific adjustment to the address of
8405a trampoline (passed as ``tramp``).
8406
8407Arguments:
8408""""""""""
8409
8410``tramp`` must point to a block of memory which already has trampoline
8411code filled in by a previous call to
8412:ref:`llvm.init.trampoline <int_it>`.
8413
8414Semantics:
8415""""""""""
8416
8417On some architectures the address of the code to be executed needs to be
8418different to the address where the trampoline is actually stored. This
8419intrinsic returns the executable address corresponding to ``tramp``
8420after performing the required machine specific adjustments. The pointer
8421returned can then be :ref:`bitcast and executed <int_trampoline>`.
8422
8423Memory Use Markers
8424------------------
8425
8426This class of intrinsics exists to information about the lifetime of
8427memory objects and ranges where variables are immutable.
8428
8429'``llvm.lifetime.start``' Intrinsic
8430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8431
8432Syntax:
8433"""""""
8434
8435::
8436
8437 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8438
8439Overview:
8440"""""""""
8441
8442The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8443object's lifetime.
8444
8445Arguments:
8446""""""""""
8447
8448The first argument is a constant integer representing the size of the
8449object, or -1 if it is variable sized. The second argument is a pointer
8450to the object.
8451
8452Semantics:
8453""""""""""
8454
8455This intrinsic indicates that before this point in the code, the value
8456of the memory pointed to by ``ptr`` is dead. This means that it is known
8457to never be used and has an undefined value. A load from the pointer
8458that precedes this intrinsic can be replaced with ``'undef'``.
8459
8460'``llvm.lifetime.end``' Intrinsic
8461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8462
8463Syntax:
8464"""""""
8465
8466::
8467
8468 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8469
8470Overview:
8471"""""""""
8472
8473The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8474object's lifetime.
8475
8476Arguments:
8477""""""""""
8478
8479The first argument is a constant integer representing the size of the
8480object, or -1 if it is variable sized. The second argument is a pointer
8481to the object.
8482
8483Semantics:
8484""""""""""
8485
8486This intrinsic indicates that after this point in the code, the value of
8487the memory pointed to by ``ptr`` is dead. This means that it is known to
8488never be used and has an undefined value. Any stores into the memory
8489object following this intrinsic may be removed as dead.
8490
8491'``llvm.invariant.start``' Intrinsic
8492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8493
8494Syntax:
8495"""""""
8496
8497::
8498
8499 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8500
8501Overview:
8502"""""""""
8503
8504The '``llvm.invariant.start``' intrinsic specifies that the contents of
8505a memory object will not change.
8506
8507Arguments:
8508""""""""""
8509
8510The first argument is a constant integer representing the size of the
8511object, or -1 if it is variable sized. The second argument is a pointer
8512to the object.
8513
8514Semantics:
8515""""""""""
8516
8517This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8518the return value, the referenced memory location is constant and
8519unchanging.
8520
8521'``llvm.invariant.end``' Intrinsic
8522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8523
8524Syntax:
8525"""""""
8526
8527::
8528
8529 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8530
8531Overview:
8532"""""""""
8533
8534The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8535memory object are mutable.
8536
8537Arguments:
8538""""""""""
8539
8540The first argument is the matching ``llvm.invariant.start`` intrinsic.
8541The second argument is a constant integer representing the size of the
8542object, or -1 if it is variable sized and the third argument is a
8543pointer to the object.
8544
8545Semantics:
8546""""""""""
8547
8548This intrinsic indicates that the memory is mutable again.
8549
8550General Intrinsics
8551------------------
8552
8553This class of intrinsics is designed to be generic and has no specific
8554purpose.
8555
8556'``llvm.var.annotation``' Intrinsic
8557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8558
8559Syntax:
8560"""""""
8561
8562::
8563
8564 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8565
8566Overview:
8567"""""""""
8568
8569The '``llvm.var.annotation``' intrinsic.
8570
8571Arguments:
8572""""""""""
8573
8574The first argument is a pointer to a value, the second is a pointer to a
8575global string, the third is a pointer to a global string which is the
8576source file name, and the last argument is the line number.
8577
8578Semantics:
8579""""""""""
8580
8581This intrinsic allows annotation of local variables with arbitrary
8582strings. This can be useful for special purpose optimizations that want
8583to look for these annotations. These have no other defined use; they are
8584ignored by code generation and optimization.
8585
Michael Gottesman872b4e52013-03-26 00:34:27 +00008586'``llvm.ptr.annotation.*``' Intrinsic
8587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8588
8589Syntax:
8590"""""""
8591
8592This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8593pointer to an integer of any width. *NOTE* you must specify an address space for
8594the pointer. The identifier for the default address space is the integer
8595'``0``'.
8596
8597::
8598
8599 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8600 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8601 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8602 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8603 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8604
8605Overview:
8606"""""""""
8607
8608The '``llvm.ptr.annotation``' intrinsic.
8609
8610Arguments:
8611""""""""""
8612
8613The first argument is a pointer to an integer value of arbitrary bitwidth
8614(result of some expression), the second is a pointer to a global string, the
8615third is a pointer to a global string which is the source file name, and the
8616last argument is the line number. It returns the value of the first argument.
8617
8618Semantics:
8619""""""""""
8620
8621This intrinsic allows annotation of a pointer to an integer with arbitrary
8622strings. This can be useful for special purpose optimizations that want to look
8623for these annotations. These have no other defined use; they are ignored by code
8624generation and optimization.
8625
Sean Silvaf722b002012-12-07 10:36:55 +00008626'``llvm.annotation.*``' Intrinsic
8627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8628
8629Syntax:
8630"""""""
8631
8632This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8633any integer bit width.
8634
8635::
8636
8637 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8638 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8639 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8640 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8641 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8642
8643Overview:
8644"""""""""
8645
8646The '``llvm.annotation``' intrinsic.
8647
8648Arguments:
8649""""""""""
8650
8651The first argument is an integer value (result of some expression), the
8652second is a pointer to a global string, the third is a pointer to a
8653global string which is the source file name, and the last argument is
8654the line number. It returns the value of the first argument.
8655
8656Semantics:
8657""""""""""
8658
8659This intrinsic allows annotations to be put on arbitrary expressions
8660with arbitrary strings. This can be useful for special purpose
8661optimizations that want to look for these annotations. These have no
8662other defined use; they are ignored by code generation and optimization.
8663
8664'``llvm.trap``' Intrinsic
8665^^^^^^^^^^^^^^^^^^^^^^^^^
8666
8667Syntax:
8668"""""""
8669
8670::
8671
8672 declare void @llvm.trap() noreturn nounwind
8673
8674Overview:
8675"""""""""
8676
8677The '``llvm.trap``' intrinsic.
8678
8679Arguments:
8680""""""""""
8681
8682None.
8683
8684Semantics:
8685""""""""""
8686
8687This intrinsic is lowered to the target dependent trap instruction. If
8688the target does not have a trap instruction, this intrinsic will be
8689lowered to a call of the ``abort()`` function.
8690
8691'``llvm.debugtrap``' Intrinsic
8692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8693
8694Syntax:
8695"""""""
8696
8697::
8698
8699 declare void @llvm.debugtrap() nounwind
8700
8701Overview:
8702"""""""""
8703
8704The '``llvm.debugtrap``' intrinsic.
8705
8706Arguments:
8707""""""""""
8708
8709None.
8710
8711Semantics:
8712""""""""""
8713
8714This intrinsic is lowered to code which is intended to cause an
8715execution trap with the intention of requesting the attention of a
8716debugger.
8717
8718'``llvm.stackprotector``' Intrinsic
8719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8720
8721Syntax:
8722"""""""
8723
8724::
8725
8726 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8727
8728Overview:
8729"""""""""
8730
8731The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8732onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8733is placed on the stack before local variables.
8734
8735Arguments:
8736""""""""""
8737
8738The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8739The first argument is the value loaded from the stack guard
8740``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8741enough space to hold the value of the guard.
8742
8743Semantics:
8744""""""""""
8745
Michael Gottesman2a64a632013-08-12 18:35:32 +00008746This intrinsic causes the prologue/epilogue inserter to force the position of
8747the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8748to ensure that if a local variable on the stack is overwritten, it will destroy
8749the value of the guard. When the function exits, the guard on the stack is
8750checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8751different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8752calling the ``__stack_chk_fail()`` function.
8753
8754'``llvm.stackprotectorcheck``' Intrinsic
Sean Silvacce63992013-09-09 19:13:28 +00008755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesman2a64a632013-08-12 18:35:32 +00008756
8757Syntax:
8758"""""""
8759
8760::
8761
8762 declare void @llvm.stackprotectorcheck(i8** <guard>)
8763
8764Overview:
8765"""""""""
8766
8767The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008768created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008769``__stack_chk_fail()`` function.
8770
Michael Gottesman2a64a632013-08-12 18:35:32 +00008771Arguments:
8772""""""""""
8773
8774The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8775the variable ``@__stack_chk_guard``.
8776
8777Semantics:
8778""""""""""
8779
8780This intrinsic is provided to perform the stack protector check by comparing
8781``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8782values do not match call the ``__stack_chk_fail()`` function.
8783
8784The reason to provide this as an IR level intrinsic instead of implementing it
8785via other IR operations is that in order to perform this operation at the IR
8786level without an intrinsic, one would need to create additional basic blocks to
8787handle the success/failure cases. This makes it difficult to stop the stack
8788protector check from disrupting sibling tail calls in Codegen. With this
8789intrinsic, we are able to generate the stack protector basic blocks late in
8790codegen after the tail call decision has occured.
8791
Sean Silvaf722b002012-12-07 10:36:55 +00008792'``llvm.objectsize``' Intrinsic
8793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8794
8795Syntax:
8796"""""""
8797
8798::
8799
8800 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8801 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8802
8803Overview:
8804"""""""""
8805
8806The ``llvm.objectsize`` intrinsic is designed to provide information to
8807the optimizers to determine at compile time whether a) an operation
8808(like memcpy) will overflow a buffer that corresponds to an object, or
8809b) that a runtime check for overflow isn't necessary. An object in this
8810context means an allocation of a specific class, structure, array, or
8811other object.
8812
8813Arguments:
8814""""""""""
8815
8816The ``llvm.objectsize`` intrinsic takes two arguments. The first
8817argument is a pointer to or into the ``object``. The second argument is
8818a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8819or -1 (if false) when the object size is unknown. The second argument
8820only accepts constants.
8821
8822Semantics:
8823""""""""""
8824
8825The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8826the size of the object concerned. If the size cannot be determined at
8827compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8828on the ``min`` argument).
8829
8830'``llvm.expect``' Intrinsic
8831^^^^^^^^^^^^^^^^^^^^^^^^^^^
8832
8833Syntax:
8834"""""""
8835
8836::
8837
8838 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8839 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8840
8841Overview:
8842"""""""""
8843
8844The ``llvm.expect`` intrinsic provides information about expected (the
8845most probable) value of ``val``, which can be used by optimizers.
8846
8847Arguments:
8848""""""""""
8849
8850The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8851a value. The second argument is an expected value, this needs to be a
8852constant value, variables are not allowed.
8853
8854Semantics:
8855""""""""""
8856
8857This intrinsic is lowered to the ``val``.
8858
8859'``llvm.donothing``' Intrinsic
8860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8861
8862Syntax:
8863"""""""
8864
8865::
8866
8867 declare void @llvm.donothing() nounwind readnone
8868
8869Overview:
8870"""""""""
8871
8872The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8873only intrinsic that can be called with an invoke instruction.
8874
8875Arguments:
8876""""""""""
8877
8878None.
8879
8880Semantics:
8881""""""""""
8882
8883This intrinsic does nothing, and it's removed by optimizers and ignored
8884by codegen.