blob: d105b5d2a5fdcf0182f443f4cf5aed48ddba8343 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner0f53cf22010-03-18 18:10:56 +000041 return 4;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
48 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
49 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000050 };
Chris Lattner8d31de62010-02-11 21:27:18 +000051
52 if (Kind < FirstTargetFixupKind)
53 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000054
Chris Lattner8d31de62010-02-11 21:27:18 +000055 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000056 "Invalid kind!");
57 return Infos[Kind - FirstTargetFixupKind];
58 }
Chris Lattner45762472010-02-03 21:24:49 +000059
Chris Lattner28249d92010-02-05 01:53:19 +000060 static unsigned GetX86RegNum(const MCOperand &MO) {
61 return X86RegisterInfo::getX86RegNum(MO.getReg());
62 }
63
Chris Lattner37ce80e2010-02-10 06:41:02 +000064 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000065 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000066 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000067 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000068
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
70 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000071 // Output the constant in little endian byte order.
72 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000074 Val >>= 8;
75 }
76 }
Chris Lattner0e73c392010-02-05 06:16:07 +000077
Chris Lattnercf653392010-02-12 22:36:47 +000078 void EmitImmediate(const MCOperand &Disp,
79 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000080 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000081 SmallVectorImpl<MCFixup> &Fixups,
82 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +000083
84 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
85 unsigned RM) {
86 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
87 return RM | (RegOpcode << 3) | (Mod << 6);
88 }
89
90 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 unsigned &CurByte, raw_ostream &OS) const {
92 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000093 }
94
Chris Lattner0e73c392010-02-05 06:16:07 +000095 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000096 unsigned &CurByte, raw_ostream &OS) const {
97 // SIB byte is in the same format as the ModRMByte.
98 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +000099 }
100
101
Chris Lattner1ac23b12010-02-05 02:18:40 +0000102 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000103 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000104 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000105 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000106
Daniel Dunbar73c55742010-02-09 22:59:55 +0000107 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
108 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000109
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000110 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
111 const MCInst &MI, const TargetInstrDesc &Desc,
112 raw_ostream &OS) const;
113
114 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
115 const MCInst &MI, const TargetInstrDesc &Desc,
116 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000117};
118
119} // end anonymous namespace
120
121
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000122MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000123 TargetMachine &TM,
124 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000125 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000126}
127
128MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000129 TargetMachine &TM,
130 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000131 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000132}
133
134
Chris Lattner1ac23b12010-02-05 02:18:40 +0000135/// isDisp8 - Return true if this signed displacement fits in a 8-bit
136/// sign-extended field.
137static bool isDisp8(int Value) {
138 return Value == (signed char)Value;
139}
140
Chris Lattnercf653392010-02-12 22:36:47 +0000141/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
142/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000143static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000144 unsigned Size = X86II::getSizeOfImm(TSFlags);
145 bool isPCRel = X86II::isImmPCRel(TSFlags);
146
Chris Lattnercf653392010-02-12 22:36:47 +0000147 switch (Size) {
148 default: assert(0 && "Unknown immediate size");
149 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
150 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
151 case 2: assert(!isPCRel); return FK_Data_2;
152 case 8: assert(!isPCRel); return FK_Data_8;
153 }
154}
155
156
Chris Lattner0e73c392010-02-05 06:16:07 +0000157void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000158EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000159 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000160 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000161 // If this is a simple integer displacement that doesn't require a relocation,
162 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000163 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000164 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
165 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000166 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000167 return;
168 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000169
Chris Lattner835acab2010-02-12 23:00:36 +0000170 // If we have an immoffset, add it to the expression.
171 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000172
173 // If the fixup is pc-relative, we need to bias the value to be relative to
174 // the start of the field, not the end of the field.
175 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000176 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
177 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000178 ImmOffset -= 4;
179 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
180 ImmOffset -= 1;
181
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000182 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000183 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000184 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000185
Chris Lattner5dccfad2010-02-10 06:52:12 +0000186 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000187 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000188 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000189}
190
191
Chris Lattner1ac23b12010-02-05 02:18:40 +0000192void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
193 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000194 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000195 raw_ostream &OS,
196 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000197 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000198 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000199 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000200 const MCOperand &IndexReg = MI.getOperand(Op+2);
201 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000202
203 // Handle %rip relative addressing.
204 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000205 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
206 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000207 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000208
Chris Lattner0f53cf22010-03-18 18:10:56 +0000209 unsigned FixupKind = X86::reloc_riprel_4byte;
210
211 // movq loads are handled with a special relocation form which allows the
212 // linker to eliminate some loads for GOT references which end up in the
213 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000214 if (MI.getOpcode() == X86::MOV64rm ||
215 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000216 FixupKind = X86::reloc_riprel_4byte_movq_load;
217
Chris Lattner835acab2010-02-12 23:00:36 +0000218 // rip-relative addressing is actually relative to the *next* instruction.
219 // Since an immediate can follow the mod/rm byte for an instruction, this
220 // means that we need to bias the immediate field of the instruction with
221 // the size of the immediate field. If we have this case, add it into the
222 // expression to emit.
223 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000224
Chris Lattner0f53cf22010-03-18 18:10:56 +0000225 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000226 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000227 return;
228 }
229
230 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000231
Chris Lattnera8168ec2010-02-09 21:57:34 +0000232 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000233 // If no BaseReg, issue a RIP relative instruction only if the MCE can
234 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
235 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000236
Chris Lattnera8168ec2010-02-09 21:57:34 +0000237 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000238 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000239 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
240 // encode to an R/M value of 4, which indicates that a SIB byte is
241 // present.
242 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000243 // If there is no base register and we're in 64-bit mode, we need a SIB
244 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
245 (!Is64BitMode || BaseReg != 0)) {
246
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000247 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000248 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000249 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000250 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000251 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000252
Chris Lattnera8168ec2010-02-09 21:57:34 +0000253 // If the base is not EBP/ESP and there is no displacement, use simple
254 // indirect register encoding, this handles addresses like [EAX]. The
255 // encoding for [EBP] with no displacement means [disp32] so we handle it
256 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000257 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000258 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000259 return;
260 }
261
262 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000263 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000264 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000265 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000266 return;
267 }
268
269 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000270 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000271 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000272 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000273 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000274
275 // We need a SIB byte, so start by outputting the ModR/M byte first
276 assert(IndexReg.getReg() != X86::ESP &&
277 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
278
279 bool ForceDisp32 = false;
280 bool ForceDisp8 = false;
281 if (BaseReg == 0) {
282 // If there is no base register, we emit the special case SIB byte with
283 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000284 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000285 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000286 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000287 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000288 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000289 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000290 } else if (Disp.getImm() == 0 &&
291 // Base reg can't be anything that ends up with '5' as the base
292 // reg, it is the magic [*] nomenclature that indicates no base.
293 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000294 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000295 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000296 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000297 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000298 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000299 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
300 } else {
301 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000302 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000303 }
304
305 // Calculate what the SS field value should be...
306 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
307 unsigned SS = SSTable[Scale.getImm()];
308
309 if (BaseReg == 0) {
310 // Handle the SIB byte for the case where there is no base, see Intel
311 // Manual 2A, table 2-7. The displacement has already been output.
312 unsigned IndexRegNo;
313 if (IndexReg.getReg())
314 IndexRegNo = GetX86RegNum(IndexReg);
315 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
316 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000317 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000318 } else {
319 unsigned IndexRegNo;
320 if (IndexReg.getReg())
321 IndexRegNo = GetX86RegNum(IndexReg);
322 else
323 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000324 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000325 }
326
327 // Do we need to output a displacement?
328 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000329 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000330 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000331 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000332}
333
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000334/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
335/// called VEX.
336void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
337 const MCInst &MI, const TargetInstrDesc &Desc,
338 raw_ostream &OS) const {
339
340 // Pseudo instructions never have a VEX prefix.
341 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
342 return;
343
344 // VEX_R: opcode externsion equivalent to REX.R in
345 // 1's complement (inverted) form
346 //
347 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
348 // 0: Same as REX_R=1 (64 bit mode only)
349 //
350 unsigned char VEX_R = 0x1;
351
352 // VEX_B:
353 //
354 // 1: Same as REX_B=0 (ignored in 32-bit mode)
355 // 0: Same as REX_B=1 (64 bit mode only)
356 //
357 unsigned char VEX_B = 0x1;
358
359 // VEX_W: opcode specific (use like REX.W, or used for
360 // opcode extension, or ignored, depending on the opcode byte)
361 unsigned char VEX_W = 0;
362
363 // VEX_5M (VEX m-mmmmm field):
364 //
365 // 0b00000: Reserved for future use
366 // 0b00001: implied 0F leading opcode
367 // 0b00010: implied 0F 38 leading opcode bytes
368 // 0b00011: implied 0F 3A leading opcode bytes
369 // 0b00100-0b11111: Reserved for future use
370 //
371 unsigned char VEX_5M = 0x1;
372
373 // VEX_4V (VEX vvvv field): a register specifier
374 // (in 1's complement form) or 1111 if unused.
375 unsigned char VEX_4V = 0xf;
376
377 // VEX_L (Vector Length):
378 //
379 // 0: scalar or 128-bit vector
380 // 1: 256-bit vector
381 //
382 unsigned char VEX_L = 0;
383
384 // VEX_PP: opcode extension providing equivalent
385 // functionality of a SIMD prefix
386 //
387 // 0b00: None
388 // 0b01: 66 (not handled yet)
389 // 0b10: F3
390 // 0b11: F2
391 //
392 unsigned char VEX_PP = 0;
393
394 switch (TSFlags & X86II::Op0Mask) {
395 default: assert(0 && "Invalid prefix!");
396 case 0: break; // No prefix!
397 case X86II::T8: // 0F 38
398 VEX_5M = 0x2;
399 break;
400 case X86II::TA: // 0F 3A
401 VEX_5M = 0x3;
402 break;
403 case X86II::TF: // F2 0F 38
404 VEX_PP = 0x3;
405 VEX_5M = 0x2;
406 break;
407 case X86II::XS: // F3 0F
408 VEX_PP = 0x2;
409 break;
410 case X86II::XD: // F2 0F
411 VEX_PP = 0x3;
412 break;
413 }
414
415 unsigned NumOps = MI.getNumOperands();
416 unsigned i = 0;
417 unsigned SrcReg = 0, SrcRegNum = 0;
418
419 switch (TSFlags & X86II::FormMask) {
420 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
421 case X86II::MRMSrcReg:
422 if (MI.getOperand(0).isReg() &&
423 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
424 VEX_R = 0x0;
425
426 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the
427 // range 0-7 and the difference between the 2 groups is given by the
428 // REX prefix. In the VEX prefix, registers are seen sequencially
429 // from 0-15 and encoded in 1's complement form, example:
430 //
431 // ModRM field => XMM9 => 1
432 // VEX.VVVV => XMM9 => ~9
433 //
434 // See table 4-35 of Intel AVX Programming Reference for details.
435 SrcReg = MI.getOperand(1).getReg();
436 SrcRegNum = GetX86RegNum(MI.getOperand(1));
437 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
438 SrcRegNum += 8;
439
440 // The registers represented through VEX_VVVV should
441 // be encoded in 1's complement form.
442 if ((TSFlags >> 32) & X86II::VEX_4V)
443 VEX_4V = (~SrcRegNum) & 0xf;
444
445 i = 2; // Skip the VEX.VVVV operand.
446 for (; i != NumOps; ++i) {
447 const MCOperand &MO = MI.getOperand(i);
448 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
449 VEX_B = 0x0;
450 }
451 break;
452 default:
453 assert(0 && "Not implemented!");
454 }
455
456 // VEX opcode prefix can have 2 or 3 bytes
457 //
458 // 3 bytes:
459 // +-----+ +--------------+ +-------------------+
460 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
461 // +-----+ +--------------+ +-------------------+
462 // 2 bytes:
463 // +-----+ +-------------------+
464 // | C5h | | R | vvvv | L | pp |
465 // +-----+ +-------------------+
466 //
467 // Note: VEX.X isn't used so far
468 //
469 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
470
471 if (VEX_B /* & VEX_X */) { // 2 byte VEX prefix
472 EmitByte(0xC5, CurByte, OS);
473 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
474 return;
475 }
476
477 // 3 byte VEX prefix
478 EmitByte(0xC4, CurByte, OS);
479 EmitByte(VEX_R << 7 | 1 << 6 /* VEX_X = 1 */ | VEX_5M, CurByte, OS);
480 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
481}
482
Chris Lattner39a612e2010-02-05 22:10:22 +0000483/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
484/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
485/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000486static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000487 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000488 // Pseudo instructions never have a rex byte.
489 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
490 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000491
Chris Lattner7e851802010-02-11 22:39:10 +0000492 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000493 if (TSFlags & X86II::REX_W)
494 REX |= 1 << 3;
495
496 if (MI.getNumOperands() == 0) return REX;
497
498 unsigned NumOps = MI.getNumOperands();
499 // FIXME: MCInst should explicitize the two-addrness.
500 bool isTwoAddr = NumOps > 1 &&
501 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
502
503 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
504 unsigned i = isTwoAddr ? 1 : 0;
505 for (; i != NumOps; ++i) {
506 const MCOperand &MO = MI.getOperand(i);
507 if (!MO.isReg()) continue;
508 unsigned Reg = MO.getReg();
509 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000510 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
511 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000512 REX |= 0x40;
513 break;
514 }
515
516 switch (TSFlags & X86II::FormMask) {
517 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
518 case X86II::MRMSrcReg:
519 if (MI.getOperand(0).isReg() &&
520 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
521 REX |= 1 << 2;
522 i = isTwoAddr ? 2 : 1;
523 for (; i != NumOps; ++i) {
524 const MCOperand &MO = MI.getOperand(i);
525 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
526 REX |= 1 << 0;
527 }
528 break;
529 case X86II::MRMSrcMem: {
530 if (MI.getOperand(0).isReg() &&
531 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
532 REX |= 1 << 2;
533 unsigned Bit = 0;
534 i = isTwoAddr ? 2 : 1;
535 for (; i != NumOps; ++i) {
536 const MCOperand &MO = MI.getOperand(i);
537 if (MO.isReg()) {
538 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
539 REX |= 1 << Bit;
540 Bit++;
541 }
542 }
543 break;
544 }
545 case X86II::MRM0m: case X86II::MRM1m:
546 case X86II::MRM2m: case X86II::MRM3m:
547 case X86II::MRM4m: case X86II::MRM5m:
548 case X86II::MRM6m: case X86II::MRM7m:
549 case X86II::MRMDestMem: {
550 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
551 i = isTwoAddr ? 1 : 0;
552 if (NumOps > e && MI.getOperand(e).isReg() &&
553 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
554 REX |= 1 << 2;
555 unsigned Bit = 0;
556 for (; i != e; ++i) {
557 const MCOperand &MO = MI.getOperand(i);
558 if (MO.isReg()) {
559 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
560 REX |= 1 << Bit;
561 Bit++;
562 }
563 }
564 break;
565 }
566 default:
567 if (MI.getOperand(0).isReg() &&
568 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
569 REX |= 1 << 0;
570 i = isTwoAddr ? 2 : 1;
571 for (unsigned e = NumOps; i != e; ++i) {
572 const MCOperand &MO = MI.getOperand(i);
573 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
574 REX |= 1 << 2;
575 }
576 break;
577 }
578 return REX;
579}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000580
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000581/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
582void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
583 const MCInst &MI, const TargetInstrDesc &Desc,
584 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000585
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000586 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000587 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000588 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000589
590 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000591 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000592 default: assert(0 && "Invalid segment!");
593 case 0: break; // No segment override!
594 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000595 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000596 break;
597 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000598 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000599 break;
600 }
601
Chris Lattner1e80f402010-02-03 21:57:59 +0000602 // Emit the repeat opcode prefix as needed.
603 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000604 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000605
Chris Lattner1e80f402010-02-03 21:57:59 +0000606 // Emit the operand size opcode prefix as needed.
607 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000608 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000609
610 // Emit the address size opcode prefix as needed.
611 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000612 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000613
614 bool Need0FPrefix = false;
615 switch (TSFlags & X86II::Op0Mask) {
616 default: assert(0 && "Invalid prefix!");
617 case 0: break; // No prefix!
618 case X86II::REP: break; // already handled.
619 case X86II::TB: // Two-byte opcode prefix
620 case X86II::T8: // 0F 38
621 case X86II::TA: // 0F 3A
622 Need0FPrefix = true;
623 break;
624 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000625 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000626 Need0FPrefix = true;
627 break;
628 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000629 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000630 Need0FPrefix = true;
631 break;
632 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000633 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000634 Need0FPrefix = true;
635 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000636 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
637 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
638 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
639 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
640 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
641 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
642 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
643 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000644 }
645
646 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000647 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000648 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000649 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000650 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000651 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000652
653 // 0x0F escape code must be emitted just before the opcode.
654 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000655 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000656
657 // FIXME: Pull this up into previous switch if REX can be moved earlier.
658 switch (TSFlags & X86II::Op0Mask) {
659 case X86II::TF: // F2 0F 38
660 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000661 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000662 break;
663 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000664 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000665 break;
666 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000667}
668
669void X86MCCodeEmitter::
670EncodeInstruction(const MCInst &MI, raw_ostream &OS,
671 SmallVectorImpl<MCFixup> &Fixups) const {
672 unsigned Opcode = MI.getOpcode();
673 const TargetInstrDesc &Desc = TII.get(Opcode);
674 uint64_t TSFlags = Desc.TSFlags;
675
676 // Keep track of the current byte being emitted.
677 unsigned CurByte = 0;
678
679 // Is this instruction encoded in AVX form?
680 bool IsAVXForm = false;
681 if ((TSFlags >> 32) & X86II::VEX_4V)
682 IsAVXForm = true;
683
684 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
685 // in order to provide diffability.
686
687 if (!IsAVXForm)
688 EmitOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
689 else
690 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000691
692 // If this is a two-address instruction, skip one of the register operands.
693 unsigned NumOps = Desc.getNumOperands();
694 unsigned CurOp = 0;
695 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
696 ++CurOp;
697 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
698 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
699 --NumOps;
700
Chris Lattner74a21512010-02-05 19:24:13 +0000701 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000702 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000703 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000704 case X86II::MRMInitReg:
705 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000706 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000707 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000708 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000709 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000710 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000711 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000712
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000713 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000714 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000715 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000716
717 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000718 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000719 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000720 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000721 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000722 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000723
724 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000725 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000726 EmitMemModRMByte(MI, CurOp,
727 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000728 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000729 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000730 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000731
732 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000733 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000734 SrcRegNum = CurOp + 1;
735
736 if (IsAVXForm) // Skip 1st src (which is encoded in VEX_VVVV)
737 SrcRegNum++;
738
739 EmitRegModRMByte(MI.getOperand(SrcRegNum),
740 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
741 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000742 break;
743
744 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000745 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000746
747 // FIXME: Maybe lea should have its own form? This is a horrible hack.
748 int AddrOperands;
749 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
750 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
751 AddrOperands = X86AddrNumOperands - 1; // No segment register
752 else
753 AddrOperands = X86AddrNumOperands;
754
Chris Lattnerdaa45552010-02-05 19:04:37 +0000755 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000756 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000757 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000758 break;
759 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000760
761 case X86II::MRM0r: case X86II::MRM1r:
762 case X86II::MRM2r: case X86II::MRM3r:
763 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000764 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000765 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000766 EmitRegModRMByte(MI.getOperand(CurOp++),
767 (TSFlags & X86II::FormMask)-X86II::MRM0r,
768 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000769 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000770 case X86II::MRM0m: case X86II::MRM1m:
771 case X86II::MRM2m: case X86II::MRM3m:
772 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000773 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000774 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000775 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000776 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000777 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000778 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000779 case X86II::MRM_C1:
780 EmitByte(BaseOpcode, CurByte, OS);
781 EmitByte(0xC1, CurByte, OS);
782 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000783 case X86II::MRM_C2:
784 EmitByte(BaseOpcode, CurByte, OS);
785 EmitByte(0xC2, CurByte, OS);
786 break;
787 case X86II::MRM_C3:
788 EmitByte(BaseOpcode, CurByte, OS);
789 EmitByte(0xC3, CurByte, OS);
790 break;
791 case X86II::MRM_C4:
792 EmitByte(BaseOpcode, CurByte, OS);
793 EmitByte(0xC4, CurByte, OS);
794 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000795 case X86II::MRM_C8:
796 EmitByte(BaseOpcode, CurByte, OS);
797 EmitByte(0xC8, CurByte, OS);
798 break;
799 case X86II::MRM_C9:
800 EmitByte(BaseOpcode, CurByte, OS);
801 EmitByte(0xC9, CurByte, OS);
802 break;
803 case X86II::MRM_E8:
804 EmitByte(BaseOpcode, CurByte, OS);
805 EmitByte(0xE8, CurByte, OS);
806 break;
807 case X86II::MRM_F0:
808 EmitByte(BaseOpcode, CurByte, OS);
809 EmitByte(0xF0, CurByte, OS);
810 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000811 case X86II::MRM_F8:
812 EmitByte(BaseOpcode, CurByte, OS);
813 EmitByte(0xF8, CurByte, OS);
814 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000815 case X86II::MRM_F9:
816 EmitByte(BaseOpcode, CurByte, OS);
817 EmitByte(0xF9, CurByte, OS);
818 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000819 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000820
821 // If there is a remaining operand, it must be a trailing immediate. Emit it
822 // according to the right size for the instruction.
823 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000824 EmitImmediate(MI.getOperand(CurOp++),
825 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000826 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000827
828#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000829 // FIXME: Verify.
830 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000831 errs() << "Cannot encode all operands of: ";
832 MI.dump();
833 errs() << '\n';
834 abort();
835 }
836#endif
Chris Lattner45762472010-02-03 21:24:49 +0000837}