blob: 6f619a9e567cc68a4e627b0e8fbec70da90d3261 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000035#include "llvm/CodeGen/EdgeBundles.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000036#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +000040#include "llvm/InlineAsm.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000041#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000046#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000047using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000048
Chris Lattner95b2c7d2006-12-19 22:59:26 +000049STATISTIC(NumFXCH, "Number of fxch instructions inserted");
50STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000051
Chris Lattner95b2c7d2006-12-19 22:59:26 +000052namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000053 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000054 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +000055 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000056 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
Jakob Stoklund Olesenb47bb132010-07-16 22:00:33 +000057 // This is really only to keep valgrind quiet.
58 // The logic in isLive() is too much for it.
59 memset(Stack, 0, sizeof(Stack));
60 memset(RegMap, 0, sizeof(RegMap));
61 }
Devang Patel794fd752007-05-01 21:15:47 +000062
Evan Chengbbeeb2a2008-09-22 20:58:04 +000063 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000064 AU.setPreservesCFG();
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000065 AU.addRequired<EdgeBundles>();
Evan Cheng8b56a902008-09-22 22:21:38 +000066 AU.addPreservedID(MachineLoopInfoID);
67 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000068 MachineFunctionPass::getAnalysisUsage(AU);
69 }
70
Chris Lattnera960d952003-01-13 01:01:59 +000071 virtual bool runOnMachineFunction(MachineFunction &MF);
72
73 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
74
Chris Lattnera960d952003-01-13 01:01:59 +000075 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000076 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000077
78 // Two CFG edges are related if they leave the same block, or enter the same
79 // block. The transitive closure of an edge under this relation is a
80 // LiveBundle. It represents a set of CFG edges where the live FP stack
81 // registers must be allocated identically in the x87 stack.
82 //
83 // A LiveBundle is usually all the edges leaving a block, or all the edges
84 // entering a block, but it can contain more edges if critical edges are
85 // present.
86 //
87 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
88 // but the exact mapping of FP registers to stack slots is fixed later.
89 struct LiveBundle {
90 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
91 unsigned Mask;
92
93 // Number of pre-assigned live registers in FixStack. This is 0 when the
94 // stack order has not yet been fixed.
95 unsigned FixCount;
96
97 // Assigned stack order for live-in registers.
98 // FixStack[i] == getStackEntry(i) for all i < FixCount.
99 unsigned char FixStack[8];
100
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000101 LiveBundle() : Mask(0), FixCount(0) {}
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000102
103 // Have the live registers been assigned a stack order yet?
104 bool isFixed() const { return !Mask || FixCount; }
105 };
106
107 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
108 // with no live FP registers.
109 SmallVector<LiveBundle, 8> LiveBundles;
110
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000111 // The edge bundle analysis provides indices into the LiveBundles vector.
112 EdgeBundles *Bundles;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000113
114 // Return a bitmask of FP registers in block's live-in list.
115 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
116 unsigned Mask = 0;
117 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
118 E = MBB->livein_end(); I != E; ++I) {
119 unsigned Reg = *I - X86::FP0;
120 if (Reg < 8)
121 Mask |= 1 << Reg;
122 }
123 return Mask;
124 }
125
126 // Partition all the CFG edges into LiveBundles.
127 void bundleCFG(MachineFunction &MF);
128
Evan Cheng32644ac2006-12-01 10:11:51 +0000129 MachineBasicBlock *MBB; // Current basic block
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000130
131 // The hardware keeps track of how many FP registers are live, so we have
132 // to model that exactly. Usually, each live register corresponds to an
133 // FP<n> register, but when dealing with calls, returns, and inline
134 // assembly, it is sometimes neccesary to have live scratch registers.
Evan Cheng32644ac2006-12-01 10:11:51 +0000135 unsigned Stack[8]; // FP<n> Registers in each stack slot...
Evan Cheng32644ac2006-12-01 10:11:51 +0000136 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000137
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000138 enum {
139 NumFPRegs = 16 // Including scratch pseudo-registers.
140 };
141
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000142 // For each live FP<n> register, point to its Stack[] entry.
143 // The first entries correspond to FP0-FP6, the rest are scratch registers
144 // used when we need slightly different live registers than what the
145 // register allocator thinks.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000146 unsigned RegMap[NumFPRegs];
147
148 // Pending fixed registers - Inline assembly needs FP registers to appear
149 // in fixed stack slot positions. This is handled by copying FP registers
150 // to ST registers before the instruction, and copying back after the
151 // instruction.
152 //
153 // This is modeled with pending ST registers. NumPendingSTs is the number
154 // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
155 // register that holds the ST value. The ST registers are not moved into
156 // place until immediately before the instruction that needs them.
157 //
158 // It can happen that we need an ST register to be live when no FP register
159 // holds the value:
160 //
161 // %ST0 = COPY %FP4<kill>
162 //
163 // When that happens, we allocate a scratch FP register to hold the ST
164 // value. That means every register in PendingST must be live.
165
166 unsigned NumPendingSTs;
167 unsigned char PendingST[8];
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000168
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000169 // Set up our stack model to match the incoming registers to MBB.
170 void setupBlockStack();
171
172 // Shuffle live registers to match the expectations of successor blocks.
173 void finishBlockStack();
174
Chris Lattnera960d952003-01-13 01:01:59 +0000175 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000176 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000177 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000178 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000179 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000180 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000181 for (unsigned i = 0; i != NumPendingSTs; ++i)
182 dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
David Greenef5c95a62010-01-05 01:29:34 +0000183 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000184 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000185
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000186 /// getSlot - Return the stack slot number a particular register number is
187 /// in.
Chris Lattnera960d952003-01-13 01:01:59 +0000188 unsigned getSlot(unsigned RegNo) const {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000189 assert(RegNo < NumFPRegs && "Regno out of range!");
Chris Lattnera960d952003-01-13 01:01:59 +0000190 return RegMap[RegNo];
191 }
192
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000193 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000194 bool isLive(unsigned RegNo) const {
195 unsigned Slot = getSlot(RegNo);
196 return Slot < StackTop && Stack[Slot] == RegNo;
197 }
198
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000199 /// getScratchReg - Return an FP register that is not currently in use.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000200 unsigned getScratchReg() {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000201 for (int i = NumFPRegs - 1; i >= 8; --i)
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000202 if (!isLive(i))
203 return i;
204 llvm_unreachable("Ran out of scratch FP registers");
205 }
206
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000207 /// isScratchReg - Returns trus if RegNo is a scratch FP register.
208 bool isScratchReg(unsigned RegNo) {
209 return RegNo > 8 && RegNo < NumFPRegs;
210 }
211
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000212 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000213 unsigned getStackEntry(unsigned STi) const {
Evan Cheng3f490f32010-10-12 23:19:28 +0000214 if (STi >= StackTop)
215 report_fatal_error("Access past stack top!");
Chris Lattnera960d952003-01-13 01:01:59 +0000216 return Stack[StackTop-1-STi];
217 }
218
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000219 /// getSTReg - Return the X86::ST(i) register which contains the specified
220 /// FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000221 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000222 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000223 }
224
Chris Lattner447ff682008-03-11 03:23:40 +0000225 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000226 void pushReg(unsigned Reg) {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000227 assert(Reg < NumFPRegs && "Register number out of range!");
Evan Cheng3f490f32010-10-12 23:19:28 +0000228 if (StackTop >= 8)
229 report_fatal_error("Stack overflow!");
Chris Lattnera960d952003-01-13 01:01:59 +0000230 Stack[StackTop] = Reg;
231 RegMap[Reg] = StackTop++;
232 }
233
234 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000235 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000236 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000237 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000238
Chris Lattner447ff682008-03-11 03:23:40 +0000239 unsigned STReg = getSTReg(RegNo);
240 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000241
Chris Lattner447ff682008-03-11 03:23:40 +0000242 // Swap the slots the regs are in.
243 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000244
Chris Lattner447ff682008-03-11 03:23:40 +0000245 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +0000246 if (RegMap[RegOnTop] >= StackTop)
247 report_fatal_error("Access past stack top!");
Chris Lattner447ff682008-03-11 03:23:40 +0000248 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000249
Chris Lattner447ff682008-03-11 03:23:40 +0000250 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000251 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000252 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000253 }
254
Chris Lattner0526f012004-04-01 04:06:09 +0000255 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000256 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000257 unsigned STReg = getSTReg(RegNo);
258 pushReg(AsReg); // New register on top of stack
259
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000260 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000261 }
262
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000263 /// popStackAfter - Pop the current value off of the top of the FP stack
264 /// after the specified instruction.
Chris Lattnera960d952003-01-13 01:01:59 +0000265 void popStackAfter(MachineBasicBlock::iterator &I);
266
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000267 /// freeStackSlotAfter - Free the specified register from the register
268 /// stack, so that it is no longer in a register. If the register is
269 /// currently at the top of the stack, we just pop the current instruction,
270 /// otherwise we store the current top-of-stack into the specified slot,
271 /// then pop the top of stack.
Chris Lattner0526f012004-04-01 04:06:09 +0000272 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
273
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000274 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
275 /// instruction.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000276 MachineBasicBlock::iterator
277 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
278
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000279 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000280 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
281
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000282 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000283 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000284 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
285 MachineBasicBlock::iterator I);
286
Chris Lattnera960d952003-01-13 01:01:59 +0000287 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
288
289 void handleZeroArgFP(MachineBasicBlock::iterator &I);
290 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000291 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000292 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000293 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000294 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000295 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000296
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000297 // Check if a COPY instruction is using FP registers.
298 bool isFPCopy(MachineInstr *MI) {
299 unsigned DstReg = MI->getOperand(0).getReg();
300 unsigned SrcReg = MI->getOperand(1).getReg();
301
302 return X86::RFP80RegClass.contains(DstReg) ||
303 X86::RFP80RegClass.contains(SrcReg);
304 }
Chris Lattnera960d952003-01-13 01:01:59 +0000305 };
Devang Patel19974732007-05-03 01:11:54 +0000306 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000307}
308
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000309FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000310
Chris Lattner3cc83842008-01-14 06:41:29 +0000311/// getFPReg - Return the X86::FPx register number for the specified operand.
312/// For example, this returns 3 for X86::FP3.
313static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000314 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000315 unsigned Reg = MO.getReg();
316 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
317 return Reg - X86::FP0;
318}
319
Chris Lattnera960d952003-01-13 01:01:59 +0000320/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
321/// register references into FP stack references.
322///
323bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000324 // We only need to run this pass if there are any FP registers used in this
325 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000326 bool FPIsUsed = false;
327
328 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
329 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000330 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000331 FPIsUsed = true;
332 break;
333 }
334
335 // Early exit.
336 if (!FPIsUsed) return false;
337
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000338 Bundles = &getAnalysis<EdgeBundles>();
Evan Cheng32644ac2006-12-01 10:11:51 +0000339 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000340
341 // Prepare cross-MBB liveness.
342 bundleCFG(MF);
343
Chris Lattnera960d952003-01-13 01:01:59 +0000344 StackTop = 0;
345
Chris Lattner847df252004-01-30 22:25:18 +0000346 // Process the function in depth first order so that we process at least one
347 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000348 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000349 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000350
351 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000352 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000353 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
354 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000355 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000356
Chris Lattnerba3598c2009-09-08 04:55:44 +0000357 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000358 if (MF.size() != Processed.size())
359 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
360 if (Processed.insert(BB))
361 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000362
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000363 LiveBundles.clear();
364
Chris Lattnera960d952003-01-13 01:01:59 +0000365 return Changed;
366}
367
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000368/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
369/// live-out sets for the FP registers. Consistent means that the set of
370/// registers live-out from a block is identical to the live-in set of all
371/// successors. This is not enforced by the normal live-in lists since
372/// registers may be implicitly defined, or not used by all successors.
373void FPS::bundleCFG(MachineFunction &MF) {
374 assert(LiveBundles.empty() && "Stale data in LiveBundles");
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000375 LiveBundles.resize(Bundles->getNumBundles());
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000376
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000377 // Gather the actual live-in masks for all MBBs.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000378 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
379 MachineBasicBlock *MBB = I;
380 const unsigned Mask = calcLiveInMask(MBB);
381 if (!Mask)
382 continue;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000383 // Update MBB ingoing bundle mask.
384 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000385 }
386}
387
Chris Lattnera960d952003-01-13 01:01:59 +0000388/// processBasicBlock - Loop over all of the instructions in the basic block,
389/// transforming FP instructions into their stack form.
390///
391bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000392 bool Changed = false;
393 MBB = &BB;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000394 NumPendingSTs = 0;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000395
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000396 setupBlockStack();
397
Chris Lattnera960d952003-01-13 01:01:59 +0000398 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000399 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000400 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000401
Chris Lattnere12ecf22008-03-11 19:50:13 +0000402 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000403 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000404 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000405
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000406 if (MI->isCopy() && isFPCopy(MI))
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000407 FPInstClass = X86II::SpecialFP;
408
Jakob Stoklund Olesen56e32322011-08-03 16:33:19 +0000409 if (MI->isImplicitDef() &&
410 X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
411 FPInstClass = X86II::SpecialFP;
412
Chris Lattnere12ecf22008-03-11 19:50:13 +0000413 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000414 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000415
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000416 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000417 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000418 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000419
420 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000421 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000422
423 // Get dead variables list now because the MI pointer may be deleted as part
424 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000425 SmallVector<unsigned, 8> DeadRegs;
426 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
427 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000428 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000429 DeadRegs.push_back(MO.getReg());
430 }
Chris Lattnera960d952003-01-13 01:01:59 +0000431
Chris Lattnere12ecf22008-03-11 19:50:13 +0000432 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000433 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000434 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000435 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000436 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000437 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000438 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000439 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000440 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000441 }
442
443 // Check to see if any of the values defined by this instruction are dead
444 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000445 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
446 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000447 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000448 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000449 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000450 }
451 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000452
Chris Lattnera960d952003-01-13 01:01:59 +0000453 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000454 DEBUG(
455 MachineBasicBlock::iterator PrevI(PrevMI);
456 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000457 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000458 } else {
459 MachineBasicBlock::iterator Start = I;
460 // Rewind to first instruction newly inserted.
461 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000462 dbgs() << "Inserted instructions:\n\t";
463 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000464 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000465 }
466 dumpStack();
467 );
Chris Lattnera960d952003-01-13 01:01:59 +0000468
469 Changed = true;
470 }
471
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000472 finishBlockStack();
473
Chris Lattnera960d952003-01-13 01:01:59 +0000474 return Changed;
475}
476
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000477/// setupBlockStack - Use the live bundles to set up our model of the stack
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000478/// to match predecessors' live out stack.
479void FPS::setupBlockStack() {
480 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
481 << " derived from " << MBB->getName() << ".\n");
482 StackTop = 0;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000483 // Get the live-in bundle for MBB.
484 const LiveBundle &Bundle =
485 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000486
487 if (!Bundle.Mask) {
488 DEBUG(dbgs() << "Block has no FP live-ins.\n");
489 return;
490 }
491
492 // Depth-first iteration should ensure that we always have an assigned stack.
493 assert(Bundle.isFixed() && "Reached block before any predecessors");
494
495 // Push the fixed live-in registers.
496 for (unsigned i = Bundle.FixCount; i > 0; --i) {
497 MBB->addLiveIn(X86::ST0+i-1);
498 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
499 << unsigned(Bundle.FixStack[i-1]) << '\n');
500 pushReg(Bundle.FixStack[i-1]);
501 }
502
503 // Kill off unwanted live-ins. This can happen with a critical edge.
504 // FIXME: We could keep these live registers around as zombies. They may need
505 // to be revived at the end of a short block. It might save a few instrs.
506 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
507 DEBUG(MBB->dump());
508}
509
510/// finishBlockStack - Revive live-outs that are implicitly defined out of
511/// MBB. Shuffle live registers to match the expected fixed stack of any
512/// predecessors, and ensure that all predecessors are expecting the same
513/// stack.
514void FPS::finishBlockStack() {
515 // The RET handling below takes care of return blocks for us.
516 if (MBB->succ_empty())
517 return;
518
519 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
520 << " derived from " << MBB->getName() << ".\n");
521
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000522 // Get MBB's live-out bundle.
523 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000524 LiveBundle &Bundle = LiveBundles[BundleIdx];
525
526 // We may need to kill and define some registers to match successors.
527 // FIXME: This can probably be combined with the shuffle below.
528 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
529 adjustLiveRegs(Bundle.Mask, Term);
530
531 if (!Bundle.Mask) {
532 DEBUG(dbgs() << "No live-outs.\n");
533 return;
534 }
535
536 // Has the stack order been fixed yet?
537 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
538 if (Bundle.isFixed()) {
539 DEBUG(dbgs() << "Shuffling stack to match.\n");
540 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
541 } else {
542 // Not fixed yet, we get to choose.
543 DEBUG(dbgs() << "Fixing stack order now.\n");
544 Bundle.FixCount = StackTop;
545 for (unsigned i = 0; i < StackTop; ++i)
546 Bundle.FixStack[i] = getStackEntry(i);
547 }
548}
549
550
Chris Lattnera960d952003-01-13 01:01:59 +0000551//===----------------------------------------------------------------------===//
552// Efficient Lookup Table Support
553//===----------------------------------------------------------------------===//
554
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000555namespace {
556 struct TableEntry {
557 unsigned from;
558 unsigned to;
559 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000560 friend bool operator<(const TableEntry &TE, unsigned V) {
561 return TE.from < V;
562 }
Chandler Carruth100c2672010-10-23 08:10:43 +0000563 friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
564 const TableEntry &TE) {
Jakob Stoklund Olesende78f052010-08-16 18:24:54 +0000565 return V < TE.from;
566 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000567 };
568}
Chris Lattnera960d952003-01-13 01:01:59 +0000569
Evan Chenga022bdf2008-07-21 20:02:45 +0000570#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000571static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
572 for (unsigned i = 0; i != NumEntries-1; ++i)
573 if (!(Table[i] < Table[i+1])) return false;
574 return true;
575}
Evan Chenga022bdf2008-07-21 20:02:45 +0000576#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000577
578static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
579 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
580 if (I != Table+N && I->from == Opcode)
581 return I->to;
582 return -1;
583}
584
Chris Lattnera960d952003-01-13 01:01:59 +0000585#ifdef NDEBUG
586#define ASSERT_SORTED(TABLE)
587#else
588#define ASSERT_SORTED(TABLE) \
589 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000590 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000591 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000592 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000593 TABLE##Checked = true; \
594 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000595 }
596#endif
597
Chris Lattner58fe4592005-12-21 07:47:04 +0000598//===----------------------------------------------------------------------===//
599// Register File -> Register Stack Mapping Methods
600//===----------------------------------------------------------------------===//
601
602// OpcodeTable - Sorted map of register instructions to their stack version.
603// The first element is an register file pseudo instruction, the second is the
604// concrete X86 instruction which uses the register stack.
605//
606static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000607 { X86::ABS_Fp32 , X86::ABS_F },
608 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000609 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000610 { X86::ADD_Fp32m , X86::ADD_F32m },
611 { X86::ADD_Fp64m , X86::ADD_F64m },
612 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000613 { X86::ADD_Fp80m32 , X86::ADD_F32m },
614 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000615 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
616 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000617 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000618 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
619 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000620 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000621 { X86::CHS_Fp32 , X86::CHS_F },
622 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000623 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000624 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
625 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000626 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000627 { X86::CMOVB_Fp32 , X86::CMOVB_F },
628 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000629 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000630 { X86::CMOVE_Fp32 , X86::CMOVE_F },
631 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000632 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000633 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
634 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000635 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000636 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
637 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000638 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000639 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
640 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000641 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000642 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
643 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000644 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000645 { X86::CMOVP_Fp32 , X86::CMOVP_F },
646 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000647 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000648 { X86::COS_Fp32 , X86::COS_F },
649 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000650 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000651 { X86::DIVR_Fp32m , X86::DIVR_F32m },
652 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000653 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000654 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
655 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000656 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
657 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000658 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000659 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
660 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000661 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000662 { X86::DIV_Fp32m , X86::DIV_F32m },
663 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000664 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000665 { X86::DIV_Fp80m32 , X86::DIV_F32m },
666 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000667 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
668 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000669 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000670 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
671 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000672 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000673 { X86::ILD_Fp16m32 , X86::ILD_F16m },
674 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000675 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000676 { X86::ILD_Fp32m32 , X86::ILD_F32m },
677 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000678 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000679 { X86::ILD_Fp64m32 , X86::ILD_F64m },
680 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000681 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000682 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
683 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000684 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000685 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
686 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000687 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000688 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
689 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000690 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000691 { X86::IST_Fp16m32 , X86::IST_F16m },
692 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000693 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000694 { X86::IST_Fp32m32 , X86::IST_F32m },
695 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000696 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000697 { X86::IST_Fp64m32 , X86::IST_FP64m },
698 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000699 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000700 { X86::LD_Fp032 , X86::LD_F0 },
701 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000702 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000703 { X86::LD_Fp132 , X86::LD_F1 },
704 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000705 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000706 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000707 { X86::LD_Fp32m64 , X86::LD_F32m },
708 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000709 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000710 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000711 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000712 { X86::MUL_Fp32m , X86::MUL_F32m },
713 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000714 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000715 { X86::MUL_Fp80m32 , X86::MUL_F32m },
716 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000717 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
718 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000719 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000720 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
721 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000722 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000723 { X86::SIN_Fp32 , X86::SIN_F },
724 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000725 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000726 { X86::SQRT_Fp32 , X86::SQRT_F },
727 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000728 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000729 { X86::ST_Fp32m , X86::ST_F32m },
730 { X86::ST_Fp64m , X86::ST_F64m },
731 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000732 { X86::ST_Fp80m32 , X86::ST_F32m },
733 { X86::ST_Fp80m64 , X86::ST_F64m },
734 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000735 { X86::SUBR_Fp32m , X86::SUBR_F32m },
736 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000737 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000738 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
739 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000740 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
741 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000742 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000743 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
744 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000745 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000746 { X86::SUB_Fp32m , X86::SUB_F32m },
747 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000748 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000749 { X86::SUB_Fp80m32 , X86::SUB_F32m },
750 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000751 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
752 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000753 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000754 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
755 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000756 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000757 { X86::TST_Fp32 , X86::TST_F },
758 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000759 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000760 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
761 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000762 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000763 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
764 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000765 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000766};
767
768static unsigned getConcreteOpcode(unsigned Opcode) {
769 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000770 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000771 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
772 return Opc;
773}
Chris Lattnera960d952003-01-13 01:01:59 +0000774
775//===----------------------------------------------------------------------===//
776// Helper Methods
777//===----------------------------------------------------------------------===//
778
779// PopTable - Sorted map of instructions to their popping version. The first
780// element is an instruction, the second is the version which pops.
781//
782static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000783 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000784
Dale Johannesene377d4d2007-07-04 21:07:47 +0000785 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
786 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000787
Dale Johannesene377d4d2007-07-04 21:07:47 +0000788 { X86::IST_F16m , X86::IST_FP16m },
789 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000790
Dale Johannesene377d4d2007-07-04 21:07:47 +0000791 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000792
Dale Johannesene377d4d2007-07-04 21:07:47 +0000793 { X86::ST_F32m , X86::ST_FP32m },
794 { X86::ST_F64m , X86::ST_FP64m },
795 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000796
Dale Johannesene377d4d2007-07-04 21:07:47 +0000797 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
798 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000799
Dale Johannesene377d4d2007-07-04 21:07:47 +0000800 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000801
Dale Johannesene377d4d2007-07-04 21:07:47 +0000802 { X86::UCOM_FPr , X86::UCOM_FPPr },
803 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000804};
805
806/// popStackAfter - Pop the current value off of the top of the FP stack after
807/// the specified instruction. This attempts to be sneaky and combine the pop
808/// into the instruction itself if possible. The iterator is left pointing to
809/// the last instruction, be it a new pop instruction inserted, or the old
810/// instruction if it was modified in place.
811///
812void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000813 MachineInstr* MI = I;
814 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000815 ASSERT_SORTED(PopTable);
Evan Cheng3f490f32010-10-12 23:19:28 +0000816 if (StackTop == 0)
817 report_fatal_error("Cannot pop empty stack!");
Chris Lattnera960d952003-01-13 01:01:59 +0000818 RegMap[Stack[--StackTop]] = ~0; // Update state
819
820 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000821 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000822 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000823 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000824 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000825 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000826 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000827 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000828 }
829}
830
Chris Lattner0526f012004-04-01 04:06:09 +0000831/// freeStackSlotAfter - Free the specified register from the register stack, so
832/// that it is no longer in a register. If the register is currently at the top
833/// of the stack, we just pop the current instruction, otherwise we store the
834/// current top-of-stack into the specified slot, then pop the top of stack.
835void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
836 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
837 popStackAfter(I);
838 return;
839 }
840
841 // Otherwise, store the top of stack into the dead slot, killing the operand
842 // without having to add in an explicit xchg then pop.
843 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000844 I = freeStackSlotBefore(++I, FPRegNo);
845}
846
847/// freeStackSlotBefore - Free the specified register without trying any
848/// folding.
849MachineBasicBlock::iterator
850FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000851 unsigned STReg = getSTReg(FPRegNo);
852 unsigned OldSlot = getSlot(FPRegNo);
853 unsigned TopReg = Stack[StackTop-1];
854 Stack[OldSlot] = TopReg;
855 RegMap[TopReg] = OldSlot;
856 RegMap[FPRegNo] = ~0;
857 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000858 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
859}
860
861/// adjustLiveRegs - Kill and revive registers such that exactly the FP
862/// registers with a bit in Mask are live.
863void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
864 unsigned Defs = Mask;
865 unsigned Kills = 0;
866 for (unsigned i = 0; i < StackTop; ++i) {
867 unsigned RegNo = Stack[i];
868 if (!(Defs & (1 << RegNo)))
869 // This register is live, but we don't want it.
870 Kills |= (1 << RegNo);
871 else
872 // We don't need to imp-def this live register.
873 Defs &= ~(1 << RegNo);
874 }
875 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
876
877 // Produce implicit-defs for free by using killed registers.
878 while (Kills && Defs) {
879 unsigned KReg = CountTrailingZeros_32(Kills);
880 unsigned DReg = CountTrailingZeros_32(Defs);
881 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
882 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
883 std::swap(RegMap[KReg], RegMap[DReg]);
884 Kills &= ~(1 << KReg);
885 Defs &= ~(1 << DReg);
886 }
887
888 // Kill registers by popping.
889 if (Kills && I != MBB->begin()) {
890 MachineBasicBlock::iterator I2 = llvm::prior(I);
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +0000891 while (StackTop) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000892 unsigned KReg = getStackEntry(0);
893 if (!(Kills & (1 << KReg)))
894 break;
895 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
896 popStackAfter(I2);
897 Kills &= ~(1 << KReg);
898 }
899 }
900
901 // Manually kill the rest.
902 while (Kills) {
903 unsigned KReg = CountTrailingZeros_32(Kills);
904 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
905 freeStackSlotBefore(I, KReg);
906 Kills &= ~(1 << KReg);
907 }
908
909 // Load zeros for all the imp-defs.
910 while(Defs) {
911 unsigned DReg = CountTrailingZeros_32(Defs);
912 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
913 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
914 pushReg(DReg);
915 Defs &= ~(1 << DReg);
916 }
917
918 // Now we should have the correct registers live.
919 DEBUG(dumpStack());
920 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
921}
922
923/// shuffleStackTop - emit fxch instructions before I to shuffle the top
924/// FixCount entries into the order given by FixStack.
925/// FIXME: Is there a better algorithm than insertion sort?
926void FPS::shuffleStackTop(const unsigned char *FixStack,
927 unsigned FixCount,
928 MachineBasicBlock::iterator I) {
929 // Move items into place, starting from the desired stack bottom.
930 while (FixCount--) {
931 // Old register at position FixCount.
932 unsigned OldReg = getStackEntry(FixCount);
933 // Desired register at position FixCount.
934 unsigned Reg = FixStack[FixCount];
935 if (Reg == OldReg)
936 continue;
937 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
938 moveToTop(Reg, I);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000939 if (FixCount > 0)
940 moveToTop(OldReg, I);
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000941 }
942 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000943}
944
945
Chris Lattnera960d952003-01-13 01:01:59 +0000946//===----------------------------------------------------------------------===//
947// Instruction transformation implementation
948//===----------------------------------------------------------------------===//
949
950/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000951///
Chris Lattnera960d952003-01-13 01:01:59 +0000952void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000953 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000954 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000955
Chris Lattner58fe4592005-12-21 07:47:04 +0000956 // Change from the pseudo instruction to the concrete instruction.
957 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000958 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000959
960 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000961 pushReg(DestReg);
962}
963
Chris Lattner4a06f352004-02-02 19:23:15 +0000964/// handleOneArgFP - fst <mem>, ST(0)
965///
Chris Lattnera960d952003-01-13 01:01:59 +0000966void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000967 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000968 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000969 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000970 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000971
Chris Lattner4a06f352004-02-02 19:23:15 +0000972 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000973 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000974 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000975
Evan Cheng2b152712006-02-18 02:36:28 +0000976 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000977 // If we have one _and_ we don't want to pop the operand, duplicate the value
978 // on the stack instead of moving it. This ensure that popping the value is
979 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000980 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000981 //
Evan Cheng2b152712006-02-18 02:36:28 +0000982 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000983 (MI->getOpcode() == X86::IST_Fp64m32 ||
984 MI->getOpcode() == X86::ISTT_Fp16m32 ||
985 MI->getOpcode() == X86::ISTT_Fp32m32 ||
986 MI->getOpcode() == X86::ISTT_Fp64m32 ||
987 MI->getOpcode() == X86::IST_Fp64m64 ||
988 MI->getOpcode() == X86::ISTT_Fp16m64 ||
989 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000990 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000991 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000992 MI->getOpcode() == X86::ISTT_Fp16m80 ||
993 MI->getOpcode() == X86::ISTT_Fp32m80 ||
994 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000995 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000996 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +0000997 } else {
998 moveToTop(Reg, I); // Move to the top of the stack...
999 }
Chris Lattner58fe4592005-12-21 07:47:04 +00001000
1001 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +00001002 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +00001003 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001004
Dale Johannesene377d4d2007-07-04 21:07:47 +00001005 if (MI->getOpcode() == X86::IST_FP64m ||
1006 MI->getOpcode() == X86::ISTT_FP16m ||
1007 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +00001008 MI->getOpcode() == X86::ISTT_FP64m ||
1009 MI->getOpcode() == X86::ST_FP80m) {
Evan Cheng3f490f32010-10-12 23:19:28 +00001010 if (StackTop == 0)
1011 report_fatal_error("Stack empty??");
Chris Lattnera960d952003-01-13 01:01:59 +00001012 --StackTop;
1013 } else if (KillsSrc) { // Last use of operand?
1014 popStackAfter(I);
1015 }
1016}
1017
Chris Lattner4a06f352004-02-02 19:23:15 +00001018
Chris Lattner4cf15e72004-04-11 20:21:06 +00001019/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1020/// replace the value with a newly computed value. These instructions may have
1021/// non-fp operands after their FP operands.
1022///
1023/// Examples:
1024/// R1 = fchs R2
1025/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +00001026///
1027void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001028 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +00001029#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +00001030 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +00001031 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +00001032#endif
Chris Lattner4a06f352004-02-02 19:23:15 +00001033
1034 // Is this the last use of the source register?
1035 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +00001036 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +00001037
1038 if (KillsSrc) {
1039 // If this is the last use of the source register, just make sure it's on
1040 // the top of the stack.
1041 moveToTop(Reg, I);
Evan Cheng3f490f32010-10-12 23:19:28 +00001042 if (StackTop == 0)
1043 report_fatal_error("Stack cannot be empty!");
Chris Lattner4a06f352004-02-02 19:23:15 +00001044 --StackTop;
1045 pushReg(getFPReg(MI->getOperand(0)));
1046 } else {
1047 // If this is not the last use of the source register, _copy_ it to the top
1048 // of the stack.
1049 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1050 }
1051
Chris Lattner58fe4592005-12-21 07:47:04 +00001052 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001053 MI->RemoveOperand(1); // Drop the source operand.
1054 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001055 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001056}
1057
1058
Chris Lattnera960d952003-01-13 01:01:59 +00001059//===----------------------------------------------------------------------===//
1060// Define tables of various ways to map pseudo instructions
1061//
1062
1063// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1064static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001065 { X86::ADD_Fp32 , X86::ADD_FST0r },
1066 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001067 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001068 { X86::DIV_Fp32 , X86::DIV_FST0r },
1069 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001070 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001071 { X86::MUL_Fp32 , X86::MUL_FST0r },
1072 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001073 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001074 { X86::SUB_Fp32 , X86::SUB_FST0r },
1075 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001076 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001077};
1078
1079// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1080static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001081 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1082 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001083 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001084 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1085 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001086 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001087 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1088 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001089 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001090 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1091 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001092 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001093};
1094
1095// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1096static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001097 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1098 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001099 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001100 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1101 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001102 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001103 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1104 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001105 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001106 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1107 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001108 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001109};
1110
1111// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1112static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001113 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1114 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001115 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001116 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1117 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001118 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001119 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1120 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001121 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001122 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1123 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001124 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001125};
1126
1127
1128/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1129/// instructions which need to be simplified and possibly transformed.
1130///
1131/// Result: ST(0) = fsub ST(0), ST(i)
1132/// ST(i) = fsub ST(0), ST(i)
1133/// ST(0) = fsubr ST(0), ST(i)
1134/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001135///
Chris Lattnera960d952003-01-13 01:01:59 +00001136void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1137 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1138 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001139 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001140
Chris Lattner749c6f62008-01-07 07:27:27 +00001141 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001142 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001143 unsigned Dest = getFPReg(MI->getOperand(0));
1144 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1145 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001146 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1147 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001148 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001149
Chris Lattnera960d952003-01-13 01:01:59 +00001150 unsigned TOS = getStackEntry(0);
1151
1152 // One of our operands must be on the top of the stack. If neither is yet, we
1153 // need to move one.
1154 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1155 // We can choose to move either operand to the top of the stack. If one of
1156 // the operands is killed by this instruction, we want that one so that we
1157 // can update right on top of the old version.
1158 if (KillsOp0) {
1159 moveToTop(Op0, I); // Move dead operand to TOS.
1160 TOS = Op0;
1161 } else if (KillsOp1) {
1162 moveToTop(Op1, I);
1163 TOS = Op1;
1164 } else {
1165 // All of the operands are live after this instruction executes, so we
1166 // cannot update on top of any operand. Because of this, we must
1167 // duplicate one of the stack elements to the top. It doesn't matter
1168 // which one we pick.
1169 //
1170 duplicateToTop(Op0, Dest, I);
1171 Op0 = TOS = Dest;
1172 KillsOp0 = true;
1173 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001174 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001175 // If we DO have one of our operands at the top of the stack, but we don't
1176 // have a dead operand, we must duplicate one of the operands to a new slot
1177 // on the stack.
1178 duplicateToTop(Op0, Dest, I);
1179 Op0 = TOS = Dest;
1180 KillsOp0 = true;
1181 }
1182
1183 // Now we know that one of our operands is on the top of the stack, and at
1184 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001185 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1186 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001187
1188 // We decide which form to use based on what is on the top of the stack, and
1189 // which operand is killed by this instruction.
1190 const TableEntry *InstTable;
1191 bool isForward = TOS == Op0;
1192 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1193 if (updateST0) {
1194 if (isForward)
1195 InstTable = ForwardST0Table;
1196 else
1197 InstTable = ReverseST0Table;
1198 } else {
1199 if (isForward)
1200 InstTable = ForwardSTiTable;
1201 else
1202 InstTable = ReverseSTiTable;
1203 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001204
Owen Anderson718cb662007-09-07 04:06:50 +00001205 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1206 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001207 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1208
1209 // NotTOS - The register which is not on the top of stack...
1210 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1211
1212 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001213 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001214 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001215
1216 // If both operands are killed, pop one off of the stack in addition to
1217 // overwriting the other one.
1218 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1219 assert(!updateST0 && "Should have updated other operand!");
1220 popStackAfter(I); // Pop the top of stack
1221 }
1222
Chris Lattnera960d952003-01-13 01:01:59 +00001223 // Update stack information so that we know the destination register is now on
1224 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001225 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1226 assert(UpdatedSlot < StackTop && Dest < 7);
1227 Stack[UpdatedSlot] = Dest;
1228 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001229 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001230}
1231
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001232/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001233/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001234///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001235void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1236 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1237 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1238 MachineInstr *MI = I;
1239
Chris Lattner749c6f62008-01-07 07:27:27 +00001240 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001241 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001242 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1243 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001244 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1245 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001246
1247 // Make sure the first operand is on the top of stack, the other one can be
1248 // anywhere.
1249 moveToTop(Op0, I);
1250
Chris Lattner58fe4592005-12-21 07:47:04 +00001251 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001252 MI->getOperand(0).setReg(getSTReg(Op1));
1253 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001254 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001255
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001256 // If any of the operands are killed by this instruction, free them.
1257 if (KillsOp0) freeStackSlotAfter(I, Op0);
1258 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001259}
1260
Chris Lattnerc1bab322004-03-31 22:02:36 +00001261/// handleCondMovFP - Handle two address conditional move instructions. These
1262/// instructions move a st(i) register to st(0) iff a condition is true. These
1263/// instructions require that the first operand is at the top of the stack, but
1264/// otherwise don't modify the stack at all.
1265void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1266 MachineInstr *MI = I;
1267
1268 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001269 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001270 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001271
1272 // The first operand *must* be on the top of the stack.
1273 moveToTop(Op0, I);
1274
1275 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001276 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001277 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001278 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001279 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001280 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001281
Chris Lattnerc1bab322004-03-31 22:02:36 +00001282 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001283 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001284 // Get this value off of the register stack.
1285 freeStackSlotAfter(I, Op1);
1286 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001287}
1288
Chris Lattnera960d952003-01-13 01:01:59 +00001289
1290/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001291/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001292/// instructions.
1293///
1294void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001295 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001296 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001297 default: llvm_unreachable("Unknown SpecialFP instruction!");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001298 case TargetOpcode::COPY: {
1299 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
Evan Chengfb112882009-03-23 08:01:15 +00001300 const MachineOperand &MO1 = MI->getOperand(1);
Evan Chengfb112882009-03-23 08:01:15 +00001301 const MachineOperand &MO0 = MI->getOperand(0);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001302 unsigned DstST = MO0.getReg() - X86::ST0;
1303 unsigned SrcST = MO1.getReg() - X86::ST0;
1304 bool KillsSrc = MI->killsRegister(MO1.getReg());
1305
1306 // ST = COPY FP. Set up a pending ST register.
1307 if (DstST < 8) {
1308 unsigned SrcFP = getFPReg(MO1);
1309 assert(isLive(SrcFP) && "Cannot copy dead register");
1310 assert(!MO0.isDead() && "Cannot copy to dead ST register");
1311
1312 // Unallocated STs are marked as the nonexistent FP255.
1313 while (NumPendingSTs <= DstST)
1314 PendingST[NumPendingSTs++] = NumFPRegs;
1315
1316 // STi could still be live from a previous inline asm.
1317 if (isScratchReg(PendingST[DstST])) {
1318 DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1319 << '\n');
1320 freeStackSlotBefore(MI, PendingST[DstST]);
1321 }
1322
1323 // When the source is killed, allocate a scratch FP register.
1324 if (KillsSrc) {
1325 unsigned Slot = getSlot(SrcFP);
1326 unsigned SR = getScratchReg();
1327 PendingST[DstST] = SR;
1328 Stack[Slot] = SR;
1329 RegMap[SR] = Slot;
1330 } else
1331 PendingST[DstST] = SrcFP;
1332 break;
1333 }
1334
1335 // FP = COPY ST. Extract fixed stack value.
1336 // Any instruction defining ST registers must have assigned them to a
1337 // scratch register.
1338 if (SrcST < 8) {
1339 unsigned DstFP = getFPReg(MO0);
1340 assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1341 assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1342 unsigned SrcFP = PendingST[SrcST];
1343 assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1344 assert(isLive(SrcFP) && "Scratch holding ST is dead");
1345
1346 // DstFP steals the stack slot from SrcFP.
1347 unsigned Slot = getSlot(SrcFP);
1348 Stack[Slot] = DstFP;
1349 RegMap[DstFP] = Slot;
1350
1351 // Always treat the ST as killed.
1352 PendingST[SrcST] = NumFPRegs;
1353 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1354 --NumPendingSTs;
1355 break;
1356 }
1357
1358 // FP <- FP copy.
1359 unsigned DstFP = getFPReg(MO0);
1360 unsigned SrcFP = getFPReg(MO1);
1361 assert(isLive(SrcFP) && "Cannot copy dead register");
1362 if (KillsSrc) {
Chris Lattnera960d952003-01-13 01:01:59 +00001363 // If the input operand is killed, we can just change the owner of the
1364 // incoming stack slot into the result.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001365 unsigned Slot = getSlot(SrcFP);
1366 Stack[Slot] = DstFP;
1367 RegMap[DstFP] = Slot;
Chris Lattnera960d952003-01-13 01:01:59 +00001368 } else {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001369 // For COPY we just duplicate the specified value to a new stack slot.
Chris Lattnera960d952003-01-13 01:01:59 +00001370 // This could be made better, but would require substantial changes.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001371 duplicateToTop(SrcFP, DstFP, I);
Nick Lewycky3c786972008-03-11 05:56:09 +00001372 }
Chris Lattnera960d952003-01-13 01:01:59 +00001373 break;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001374 }
1375
Jakob Stoklund Olesen56e32322011-08-03 16:33:19 +00001376 case TargetOpcode::IMPLICIT_DEF: {
1377 // All FP registers must be explicitly defined, so load a 0 instead.
1378 unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1379 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1380 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1381 pushReg(Reg);
1382 break;
1383 }
1384
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001385 case X86::FpPOP_RETVAL: {
1386 // The FpPOP_RETVAL instruction is used after calls that return a value on
1387 // the floating point stack. We cannot model this with ST defs since CALL
1388 // instructions have fixed clobber lists. This instruction is interpreted
1389 // to mean that there is one more live register on the stack than we
1390 // thought.
1391 //
1392 // This means that StackTop does not match the hardware stack between a
1393 // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
1394 // between CALL and FpPOP_RETVAL as long as they don't overflow the
1395 // hardware stack.
1396 unsigned DstFP = getFPReg(MI->getOperand(0));
1397
1398 // Move existing stack elements up to reflect reality.
1399 assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1400 if (StackTop) {
1401 std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1402 for (unsigned i = 0; i != NumFPRegs; ++i)
1403 ++RegMap[i];
1404 }
1405 ++StackTop;
1406
1407 // DstFP is the new bottom of the stack.
1408 Stack[0] = DstFP;
1409 RegMap[DstFP] = 0;
1410
1411 // DstFP will be killed by processBasicBlock if this was a dead def.
1412 break;
1413 }
1414
Chris Lattner518bb532010-02-09 19:54:29 +00001415 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001416 // The inline asm MachineInstr currently only *uses* FP registers for the
1417 // 'f' constraint. These should be turned into the current ST(x) register
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001418 // in the machine instr.
1419 //
1420 // There are special rules for x87 inline assembly. The compiler must know
1421 // exactly how many registers are popped and pushed implicitly by the asm.
1422 // Otherwise it is not possible to restore the stack state after the inline
1423 // asm.
1424 //
1425 // There are 3 kinds of input operands:
1426 //
1427 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1428 // popped input operand must be in a fixed stack slot, and it is either
1429 // tied to an output operand, or in the clobber list. The MI has ST use
1430 // and def operands for these inputs.
1431 //
1432 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1433 // preserved by the inline asm. The fixed stack slots must be STn-STm
1434 // following the popped inputs. A fixed input operand cannot be tied to
1435 // an output or appear in the clobber list. The MI has ST use operands
1436 // and no defs for these inputs.
1437 //
1438 // 3. Preserved inputs. These inputs use the "f" constraint which is
1439 // represented as an FP register. The inline asm won't change these
1440 // stack slots.
1441 //
1442 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1443 // registers do not count as output operands. The inline asm changes the
1444 // stack as if it popped all the popped inputs and then pushed all the
1445 // output operands.
1446
1447 // Scan the assembly for ST registers used, defined and clobbered. We can
1448 // only tell clobbers from defs by looking at the asm descriptor.
1449 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1450 unsigned NumOps = 0;
1451 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1452 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1453 unsigned Flags = MI->getOperand(i).getImm();
1454 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1455 if (NumOps != 1)
1456 continue;
1457 const MachineOperand &MO = MI->getOperand(i + 1);
1458 if (!MO.isReg())
1459 continue;
1460 unsigned STReg = MO.getReg() - X86::ST0;
1461 if (STReg >= 8)
1462 continue;
1463
1464 switch (InlineAsm::getKind(Flags)) {
1465 case InlineAsm::Kind_RegUse:
1466 STUses |= (1u << STReg);
1467 break;
1468 case InlineAsm::Kind_RegDef:
1469 case InlineAsm::Kind_RegDefEarlyClobber:
1470 STDefs |= (1u << STReg);
1471 if (MO.isDead())
1472 STDeadDefs |= (1u << STReg);
1473 break;
1474 case InlineAsm::Kind_Clobber:
1475 STClobbers |= (1u << STReg);
1476 break;
1477 default:
1478 break;
1479 }
1480 }
1481
1482 if (STUses && !isMask_32(STUses))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001483 MI->emitError("fixed input regs must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001484 unsigned NumSTUses = CountTrailingOnes_32(STUses);
1485
1486 // Defs must be contiguous from the stack top. ST0-STn.
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +00001487 if (STDefs && !isMask_32(STDefs)) {
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001488 MI->emitError("output regs must be last on the x87 stack");
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +00001489 STDefs = NextPowerOf2(STDefs) - 1;
1490 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001491 unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1492
1493 // So must the clobbered stack slots. ST0-STm, m >= n.
1494 if (STClobbers && !isMask_32(STDefs | STClobbers))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001495 MI->emitError("clobbers must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001496
1497 // Popped inputs are the ones that are also clobbered or defined.
1498 unsigned STPopped = STUses & (STDefs | STClobbers);
1499 if (STPopped && !isMask_32(STPopped))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001500 MI->emitError("implicitly popped regs must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001501 unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1502
1503 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1504 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1505
1506 // Scan the instruction for FP uses corresponding to "f" constraints.
1507 // Collect FP registers to kill afer the instruction.
1508 // Always kill all the scratch regs.
1509 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1510 unsigned FPUsed = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001511 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1512 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001513 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001514 continue;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001515 if (!Op.isUse())
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001516 MI->emitError("illegal \"f\" output constraint");
Chris Lattnere12ecf22008-03-11 19:50:13 +00001517 unsigned FPReg = getFPReg(Op);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001518 FPUsed |= 1U << FPReg;
1519
Chris Lattnere12ecf22008-03-11 19:50:13 +00001520 // If we kill this operand, make sure to pop it from the stack after the
1521 // asm. We just remember it for now, and pop them all off at the end in
1522 // a batch.
1523 if (Op.isKill())
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001524 FPKills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001525 }
1526
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001527 // The popped inputs will be killed by the instruction, so duplicate them
1528 // if the FP register needs to be live after the instruction, or if it is
1529 // used in the instruction itself. We effectively treat the popped inputs
1530 // as early clobbers.
1531 for (unsigned i = 0; i < NumSTPopped; ++i) {
1532 if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1533 continue;
1534 unsigned SR = getScratchReg();
1535 duplicateToTop(PendingST[i], SR, I);
1536 DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1537 << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1538 PendingST[i] = SR;
1539 }
1540
1541 // Make sure we have a unique live register for every fixed use. Some of
1542 // them could be undef uses, and we need to emit LD_F0 instructions.
1543 for (unsigned i = 0; i < NumSTUses; ++i) {
1544 if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1545 // Check for shared assignments.
1546 for (unsigned j = 0; j < i; ++j) {
1547 if (PendingST[j] != PendingST[i])
1548 continue;
1549 // STi and STj are inn the same register, create a copy.
1550 unsigned SR = getScratchReg();
1551 duplicateToTop(PendingST[i], SR, I);
1552 DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1553 << unsigned(PendingST[i])
1554 << " to avoid collision with ST" << j << '\n');
1555 PendingST[i] = SR;
1556 }
1557 continue;
1558 }
1559 unsigned SR = getScratchReg();
1560 DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1561 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1562 pushReg(SR);
1563 PendingST[i] = SR;
1564 if (NumPendingSTs == i)
1565 ++NumPendingSTs;
1566 }
1567 assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1568
1569 // Now we can rearrange the live registers to match what was requested.
1570 shuffleStackTop(PendingST, NumPendingSTs, I);
1571 DEBUG({dbgs() << "Before asm: "; dumpStack();});
1572
1573 // With the stack layout fixed, rewrite the FP registers.
1574 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1575 MachineOperand &Op = MI->getOperand(i);
1576 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1577 continue;
1578 unsigned FPReg = getFPReg(Op);
1579 Op.setReg(getSTReg(FPReg));
1580 }
1581
1582 // Simulate the inline asm popping its inputs and pushing its outputs.
1583 StackTop -= NumSTPopped;
1584
1585 // Hold the fixed output registers in scratch FP registers. They will be
1586 // transferred to real FP registers by copies.
1587 NumPendingSTs = 0;
1588 for (unsigned i = 0; i < NumSTDefs; ++i) {
1589 unsigned SR = getScratchReg();
1590 pushReg(SR);
1591 FPKills &= ~(1u << SR);
1592 }
1593 for (unsigned i = 0; i < NumSTDefs; ++i)
1594 PendingST[NumPendingSTs++] = getStackEntry(i);
1595 DEBUG({dbgs() << "After asm: "; dumpStack();});
1596
1597 // If any of the ST defs were dead, pop them immediately. Our caller only
1598 // handles dead FP defs.
1599 MachineBasicBlock::iterator InsertPt = MI;
1600 for (unsigned i = 0; STDefs & (1u << i); ++i) {
1601 if (!(STDeadDefs & (1u << i)))
1602 continue;
1603 freeStackSlotAfter(InsertPt, PendingST[i]);
1604 PendingST[i] = NumFPRegs;
1605 }
1606 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1607 --NumPendingSTs;
1608
Chris Lattnere12ecf22008-03-11 19:50:13 +00001609 // If this asm kills any FP registers (is the last use of them) we must
1610 // explicitly emit pop instructions for them. Do this now after the asm has
1611 // executed so that the ST(x) numbers are not off (which would happen if we
1612 // did this inline with operand rewriting).
1613 //
1614 // Note: this might be a non-optimal pop sequence. We might be able to do
1615 // better by trying to pop in stack order or something.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001616 while (FPKills) {
1617 unsigned FPReg = CountTrailingZeros_32(FPKills);
1618 if (isLive(FPReg))
1619 freeStackSlotAfter(InsertPt, FPReg);
1620 FPKills &= ~(1U << FPReg);
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001621 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001622 // Don't delete the inline asm!
1623 return;
1624 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001625
Chris Lattner447ff682008-03-11 03:23:40 +00001626 case X86::RET:
1627 case X86::RETI:
1628 // If RET has an FP register use operand, pass the first one in ST(0) and
1629 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001630
Chris Lattner447ff682008-03-11 03:23:40 +00001631 // Find the register operands.
1632 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001633 unsigned LiveMask = 0;
1634
Chris Lattner447ff682008-03-11 03:23:40 +00001635 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1636 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001637 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001638 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001639 // FP Register uses must be kills unless there are two uses of the same
1640 // register, in which case only one will be a kill.
1641 assert(Op.isUse() &&
1642 (Op.isKill() || // Marked kill.
1643 getFPReg(Op) == FirstFPRegOp || // Second instance.
1644 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1645 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001646
1647 if (FirstFPRegOp == ~0U)
1648 FirstFPRegOp = getFPReg(Op);
1649 else {
1650 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1651 SecondFPRegOp = getFPReg(Op);
1652 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001653 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001654
1655 // Remove the operand so that later passes don't see it.
1656 MI->RemoveOperand(i);
1657 --i, --e;
1658 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001659
1660 // We may have been carrying spurious live-ins, so make sure only the returned
1661 // registers are left live.
1662 adjustLiveRegs(LiveMask, MI);
1663 if (!LiveMask) return; // Quick check to see if any are possible.
1664
Chris Lattner447ff682008-03-11 03:23:40 +00001665 // There are only four possibilities here:
1666 // 1) we are returning a single FP value. In this case, it has to be in
1667 // ST(0) already, so just declare success by removing the value from the
1668 // FP Stack.
1669 if (SecondFPRegOp == ~0U) {
1670 // Assert that the top of stack contains the right FP register.
1671 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1672 "Top of stack not the right register for RET!");
1673
1674 // Ok, everything is good, mark the value as not being on the stack
1675 // anymore so that our assertion about the stack being empty at end of
1676 // block doesn't fire.
1677 StackTop = 0;
1678 return;
1679 }
1680
Chris Lattner447ff682008-03-11 03:23:40 +00001681 // Otherwise, we are returning two values:
1682 // 2) If returning the same value for both, we only have one thing in the FP
1683 // stack. Consider: RET FP1, FP1
1684 if (StackTop == 1) {
1685 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1686 "Stack misconfiguration for RET!");
1687
1688 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1689 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001690 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001691 duplicateToTop(FirstFPRegOp, NewReg, MI);
1692 FirstFPRegOp = NewReg;
1693 }
1694
1695 /// Okay we know we have two different FPx operands now:
1696 assert(StackTop == 2 && "Must have two values live!");
1697
1698 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1699 /// in ST(1). In this case, emit an fxch.
1700 if (getStackEntry(0) == SecondFPRegOp) {
1701 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1702 moveToTop(FirstFPRegOp, MI);
1703 }
1704
1705 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1706 /// ST(1). Just remove both from our understanding of the stack and return.
1707 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001708 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001709 StackTop = 0;
1710 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001711 }
Chris Lattnera960d952003-01-13 01:01:59 +00001712
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001713 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001714
1715 // We want to leave I pointing to the previous instruction, but what if we
1716 // just erased the first instruction?
1717 if (I == MBB->begin()) {
1718 DEBUG(dbgs() << "Inserting dummy KILL\n");
1719 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1720 } else
1721 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001722}