blob: dee7a1f8d93e9b382b6102c37494d6a77802e629 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Andersond13db2c2010-07-21 22:09:45 +0000106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000254 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
Dan Gohman71c41442010-08-13 20:11:39 +0000306 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
307 if (L->contains(QueryLoop))
308 return true;
309
Dan Gohmane890eea2009-06-26 22:17:21 +0000310 // This recurrence is variant w.r.t. QueryLoop if any of its operands
311 // are variant.
312 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
313 if (!getOperand(i)->isLoopInvariant(QueryLoop))
314 return false;
315
316 // Otherwise it's loop-invariant.
317 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000318}
319
Dan Gohman39125d82010-02-13 00:19:39 +0000320bool
321SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
322 return DT->dominates(L->getHeader(), BB) &&
323 SCEVNAryExpr::dominates(BB, DT);
324}
325
326bool
327SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
328 // This uses a "dominates" query instead of "properly dominates" query because
329 // the instruction which produces the addrec's value is a PHI, and a PHI
330 // effectively properly dominates its entire containing block.
331 return DT->dominates(L->getHeader(), BB) &&
332 SCEVNAryExpr::properlyDominates(BB, DT);
333}
334
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000335void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000337 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000339 OS << "}<";
340 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
341 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000342}
Chris Lattner53e677a2004-04-02 20:23:17 +0000343
Dan Gohmanab37f502010-08-02 23:49:30 +0000344void SCEVUnknown::deleted() {
345 // Clear this SCEVUnknown from ValuesAtScopes.
346 SE->ValuesAtScopes.erase(this);
347
348 // Remove this SCEVUnknown from the uniquing map.
349 SE->UniqueSCEVs.RemoveNode(this);
350
351 // Release the value.
352 setValPtr(0);
353}
354
355void SCEVUnknown::allUsesReplacedWith(Value *New) {
356 // Clear this SCEVUnknown from ValuesAtScopes.
357 SE->ValuesAtScopes.erase(this);
358
359 // Remove this SCEVUnknown from the uniquing map.
360 SE->UniqueSCEVs.RemoveNode(this);
361
362 // Update this SCEVUnknown to point to the new value. This is needed
363 // because there may still be outstanding SCEVs which still point to
364 // this SCEVUnknown.
365 setValPtr(New);
366}
367
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000368bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
369 // All non-instruction values are loop invariant. All instructions are loop
370 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000371 // Instructions are never considered invariant in the function body
372 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000373 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000374 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000375 return true;
376}
Chris Lattner53e677a2004-04-02 20:23:17 +0000377
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000378bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
379 if (Instruction *I = dyn_cast<Instruction>(getValue()))
380 return DT->dominates(I->getParent(), BB);
381 return true;
382}
383
Dan Gohman6e70e312009-09-27 15:26:03 +0000384bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
385 if (Instruction *I = dyn_cast<Instruction>(getValue()))
386 return DT->properlyDominates(I->getParent(), BB);
387 return true;
388}
389
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000390const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000391 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000392}
Chris Lattner53e677a2004-04-02 20:23:17 +0000393
Dan Gohman0f5efe52010-01-28 02:15:55 +0000394bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000395 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000396 if (VCE->getOpcode() == Instruction::PtrToInt)
397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000398 if (CE->getOpcode() == Instruction::GetElementPtr &&
399 CE->getOperand(0)->isNullValue() &&
400 CE->getNumOperands() == 2)
401 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
402 if (CI->isOne()) {
403 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
404 ->getElementType();
405 return true;
406 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000407
408 return false;
409}
410
411bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000412 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000413 if (VCE->getOpcode() == Instruction::PtrToInt)
414 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000415 if (CE->getOpcode() == Instruction::GetElementPtr &&
416 CE->getOperand(0)->isNullValue()) {
417 const Type *Ty =
418 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
419 if (const StructType *STy = dyn_cast<StructType>(Ty))
420 if (!STy->isPacked() &&
421 CE->getNumOperands() == 3 &&
422 CE->getOperand(1)->isNullValue()) {
423 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
424 if (CI->isOne() &&
425 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000426 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000427 AllocTy = STy->getElementType(1);
428 return true;
429 }
430 }
431 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000432
433 return false;
434}
435
Dan Gohman4f8eea82010-02-01 18:27:38 +0000436bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000437 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000438 if (VCE->getOpcode() == Instruction::PtrToInt)
439 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
440 if (CE->getOpcode() == Instruction::GetElementPtr &&
441 CE->getNumOperands() == 3 &&
442 CE->getOperand(0)->isNullValue() &&
443 CE->getOperand(1)->isNullValue()) {
444 const Type *Ty =
445 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
446 // Ignore vector types here so that ScalarEvolutionExpander doesn't
447 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000448 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000449 CTy = Ty;
450 FieldNo = CE->getOperand(2);
451 return true;
452 }
453 }
454
455 return false;
456}
457
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000458void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000459 const Type *AllocTy;
460 if (isSizeOf(AllocTy)) {
461 OS << "sizeof(" << *AllocTy << ")";
462 return;
463 }
464 if (isAlignOf(AllocTy)) {
465 OS << "alignof(" << *AllocTy << ")";
466 return;
467 }
468
Dan Gohman4f8eea82010-02-01 18:27:38 +0000469 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000470 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000471 if (isOffsetOf(CTy, FieldNo)) {
472 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000473 WriteAsOperand(OS, FieldNo, false);
474 OS << ")";
475 return;
476 }
477
478 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000479 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000480}
481
Chris Lattner8d741b82004-06-20 06:23:15 +0000482//===----------------------------------------------------------------------===//
483// SCEV Utilities
484//===----------------------------------------------------------------------===//
485
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000486static bool CompareTypes(const Type *A, const Type *B) {
487 if (A->getTypeID() != B->getTypeID())
488 return A->getTypeID() < B->getTypeID();
489 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
490 const IntegerType *BI = cast<IntegerType>(B);
491 return AI->getBitWidth() < BI->getBitWidth();
492 }
493 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
494 const PointerType *BI = cast<PointerType>(B);
495 return CompareTypes(AI->getElementType(), BI->getElementType());
496 }
497 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
498 const ArrayType *BI = cast<ArrayType>(B);
499 if (AI->getNumElements() != BI->getNumElements())
500 return AI->getNumElements() < BI->getNumElements();
501 return CompareTypes(AI->getElementType(), BI->getElementType());
502 }
503 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
504 const VectorType *BI = cast<VectorType>(B);
505 if (AI->getNumElements() != BI->getNumElements())
506 return AI->getNumElements() < BI->getNumElements();
507 return CompareTypes(AI->getElementType(), BI->getElementType());
508 }
509 if (const StructType *AI = dyn_cast<StructType>(A)) {
510 const StructType *BI = cast<StructType>(B);
511 if (AI->getNumElements() != BI->getNumElements())
512 return AI->getNumElements() < BI->getNumElements();
513 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
514 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
515 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
516 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
517 }
518 return false;
519}
520
Chris Lattner8d741b82004-06-20 06:23:15 +0000521namespace {
522 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
523 /// than the complexity of the RHS. This comparator is used to canonicalize
524 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000525 class SCEVComplexityCompare {
Dan Gohmane72079a2010-07-23 21:18:55 +0000526 const LoopInfo *LI;
Dan Gohman72861302009-05-07 14:39:04 +0000527 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000528 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000529
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000530 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000531 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
532 if (LHS == RHS)
533 return false;
534
Dan Gohman72861302009-05-07 14:39:04 +0000535 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000536 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
537 if (LType != RType)
538 return LType < RType;
Dan Gohman72861302009-05-07 14:39:04 +0000539
Dan Gohman3bf63762010-06-18 19:54:20 +0000540 // Aside from the getSCEVType() ordering, the particular ordering
541 // isn't very important except that it's beneficial to be consistent,
542 // so that (a + b) and (b + a) don't end up as different expressions.
543
544 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
545 // not as complete as it could be.
546 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
547 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
548
549 // Order pointer values after integer values. This helps SCEVExpander
550 // form GEPs.
Dan Gohman304a7a62010-07-23 21:20:52 +0000551 bool LIsPointer = LU->getType()->isPointerTy(),
552 RIsPointer = RU->getType()->isPointerTy();
553 if (LIsPointer != RIsPointer)
554 return RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000555
556 // Compare getValueID values.
Dan Gohman304a7a62010-07-23 21:20:52 +0000557 unsigned LID = LU->getValue()->getValueID(),
558 RID = RU->getValue()->getValueID();
559 if (LID != RID)
560 return LID < RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561
562 // Sort arguments by their position.
563 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
564 const Argument *RA = cast<Argument>(RU->getValue());
565 return LA->getArgNo() < RA->getArgNo();
566 }
567
568 // For instructions, compare their loop depth, and their opcode.
569 // This is pretty loose.
Dan Gohman304a7a62010-07-23 21:20:52 +0000570 if (const Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
571 const Instruction *RV = cast<Instruction>(RU->getValue());
Dan Gohman3bf63762010-06-18 19:54:20 +0000572
573 // Compare loop depths.
Dan Gohman304a7a62010-07-23 21:20:52 +0000574 unsigned LDepth = LI->getLoopDepth(LV->getParent()),
575 RDepth = LI->getLoopDepth(RV->getParent());
576 if (LDepth != RDepth)
577 return LDepth < RDepth;
Dan Gohman3bf63762010-06-18 19:54:20 +0000578
579 // Compare the number of operands.
Dan Gohman304a7a62010-07-23 21:20:52 +0000580 unsigned LNumOps = LV->getNumOperands(),
581 RNumOps = RV->getNumOperands();
582 if (LNumOps != RNumOps)
583 return LNumOps < RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000584 }
585
586 return false;
587 }
588
589 // Compare constant values.
590 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
591 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000592 const ConstantInt *LCC = LC->getValue();
593 const ConstantInt *RCC = RC->getValue();
594 unsigned LBitWidth = LCC->getBitWidth(), RBitWidth = RCC->getBitWidth();
595 if (LBitWidth != RBitWidth)
596 return LBitWidth < RBitWidth;
597 return LCC->getValue().ult(RCC->getValue());
Dan Gohman3bf63762010-06-18 19:54:20 +0000598 }
599
600 // Compare addrec loop depths.
601 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
602 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000603 unsigned LDepth = LA->getLoop()->getLoopDepth(),
604 RDepth = RA->getLoop()->getLoopDepth();
605 if (LDepth != RDepth)
606 return LDepth < RDepth;
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 }
608
609 // Lexicographically compare n-ary expressions.
610 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
611 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000612 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
613 for (unsigned i = 0; i != LNumOps; ++i) {
614 if (i >= RNumOps)
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 return false;
Dan Gohman304a7a62010-07-23 21:20:52 +0000616 const SCEV *LOp = LC->getOperand(i), *ROp = RC->getOperand(i);
617 if (operator()(LOp, ROp))
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000619 if (operator()(ROp, LOp))
Dan Gohman3bf63762010-06-18 19:54:20 +0000620 return false;
621 }
Dan Gohman304a7a62010-07-23 21:20:52 +0000622 return LNumOps < RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000623 }
624
625 // Lexicographically compare udiv expressions.
626 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
627 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000628 const SCEV *LL = LC->getLHS(), *LR = LC->getRHS(),
629 *RL = RC->getLHS(), *RR = RC->getRHS();
630 if (operator()(LL, RL))
Dan Gohman3bf63762010-06-18 19:54:20 +0000631 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000632 if (operator()(RL, LL))
Dan Gohman3bf63762010-06-18 19:54:20 +0000633 return false;
Dan Gohman304a7a62010-07-23 21:20:52 +0000634 if (operator()(LR, RR))
Dan Gohman3bf63762010-06-18 19:54:20 +0000635 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000636 if (operator()(RR, LR))
Dan Gohman3bf63762010-06-18 19:54:20 +0000637 return false;
638 return false;
639 }
640
641 // Compare cast expressions by operand.
642 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
643 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
644 return operator()(LC->getOperand(), RC->getOperand());
645 }
646
647 llvm_unreachable("Unknown SCEV kind!");
648 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000649 }
650 };
651}
652
653/// GroupByComplexity - Given a list of SCEV objects, order them by their
654/// complexity, and group objects of the same complexity together by value.
655/// When this routine is finished, we know that any duplicates in the vector are
656/// consecutive and that complexity is monotonically increasing.
657///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000658/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000659/// results from this routine. In other words, we don't want the results of
660/// this to depend on where the addresses of various SCEV objects happened to
661/// land in memory.
662///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000663static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000664 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000665 if (Ops.size() < 2) return; // Noop
666 if (Ops.size() == 2) {
667 // This is the common case, which also happens to be trivially simple.
668 // Special case it.
Dan Gohman3bf63762010-06-18 19:54:20 +0000669 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000670 std::swap(Ops[0], Ops[1]);
671 return;
672 }
673
Dan Gohman3bf63762010-06-18 19:54:20 +0000674 // Do the rough sort by complexity.
675 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
676
677 // Now that we are sorted by complexity, group elements of the same
678 // complexity. Note that this is, at worst, N^2, but the vector is likely to
679 // be extremely short in practice. Note that we take this approach because we
680 // do not want to depend on the addresses of the objects we are grouping.
681 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
682 const SCEV *S = Ops[i];
683 unsigned Complexity = S->getSCEVType();
684
685 // If there are any objects of the same complexity and same value as this
686 // one, group them.
687 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
688 if (Ops[j] == S) { // Found a duplicate.
689 // Move it to immediately after i'th element.
690 std::swap(Ops[i+1], Ops[j]);
691 ++i; // no need to rescan it.
692 if (i == e-2) return; // Done!
693 }
694 }
695 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000696}
697
Chris Lattner53e677a2004-04-02 20:23:17 +0000698
Chris Lattner53e677a2004-04-02 20:23:17 +0000699
700//===----------------------------------------------------------------------===//
701// Simple SCEV method implementations
702//===----------------------------------------------------------------------===//
703
Eli Friedmanb42a6262008-08-04 23:49:06 +0000704/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000705/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000706static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000707 ScalarEvolution &SE,
708 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000709 // Handle the simplest case efficiently.
710 if (K == 1)
711 return SE.getTruncateOrZeroExtend(It, ResultTy);
712
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000713 // We are using the following formula for BC(It, K):
714 //
715 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
716 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000717 // Suppose, W is the bitwidth of the return value. We must be prepared for
718 // overflow. Hence, we must assure that the result of our computation is
719 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
720 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000721 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000722 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000723 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
725 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000726 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729 // This formula is trivially equivalent to the previous formula. However,
730 // this formula can be implemented much more efficiently. The trick is that
731 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
732 // arithmetic. To do exact division in modular arithmetic, all we have
733 // to do is multiply by the inverse. Therefore, this step can be done at
734 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000735 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000736 // The next issue is how to safely do the division by 2^T. The way this
737 // is done is by doing the multiplication step at a width of at least W + T
738 // bits. This way, the bottom W+T bits of the product are accurate. Then,
739 // when we perform the division by 2^T (which is equivalent to a right shift
740 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
741 // truncated out after the division by 2^T.
742 //
743 // In comparison to just directly using the first formula, this technique
744 // is much more efficient; using the first formula requires W * K bits,
745 // but this formula less than W + K bits. Also, the first formula requires
746 // a division step, whereas this formula only requires multiplies and shifts.
747 //
748 // It doesn't matter whether the subtraction step is done in the calculation
749 // width or the input iteration count's width; if the subtraction overflows,
750 // the result must be zero anyway. We prefer here to do it in the width of
751 // the induction variable because it helps a lot for certain cases; CodeGen
752 // isn't smart enough to ignore the overflow, which leads to much less
753 // efficient code if the width of the subtraction is wider than the native
754 // register width.
755 //
756 // (It's possible to not widen at all by pulling out factors of 2 before
757 // the multiplication; for example, K=2 can be calculated as
758 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
759 // extra arithmetic, so it's not an obvious win, and it gets
760 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000761
Eli Friedmanb42a6262008-08-04 23:49:06 +0000762 // Protection from insane SCEVs; this bound is conservative,
763 // but it probably doesn't matter.
764 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000765 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000766
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000767 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000768
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 // Calculate K! / 2^T and T; we divide out the factors of two before
770 // multiplying for calculating K! / 2^T to avoid overflow.
771 // Other overflow doesn't matter because we only care about the bottom
772 // W bits of the result.
773 APInt OddFactorial(W, 1);
774 unsigned T = 1;
775 for (unsigned i = 3; i <= K; ++i) {
776 APInt Mult(W, i);
777 unsigned TwoFactors = Mult.countTrailingZeros();
778 T += TwoFactors;
779 Mult = Mult.lshr(TwoFactors);
780 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000782
Eli Friedmanb42a6262008-08-04 23:49:06 +0000783 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000784 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000785
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000786 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000787 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
788
789 // Calculate the multiplicative inverse of K! / 2^T;
790 // this multiplication factor will perform the exact division by
791 // K! / 2^T.
792 APInt Mod = APInt::getSignedMinValue(W+1);
793 APInt MultiplyFactor = OddFactorial.zext(W+1);
794 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
795 MultiplyFactor = MultiplyFactor.trunc(W);
796
797 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000798 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
799 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000800 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000801 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000802 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000803 Dividend = SE.getMulExpr(Dividend,
804 SE.getTruncateOrZeroExtend(S, CalculationTy));
805 }
806
807 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000808 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000809
810 // Truncate the result, and divide by K! / 2^T.
811
812 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
813 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000814}
815
Chris Lattner53e677a2004-04-02 20:23:17 +0000816/// evaluateAtIteration - Return the value of this chain of recurrences at
817/// the specified iteration number. We can evaluate this recurrence by
818/// multiplying each element in the chain by the binomial coefficient
819/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
820///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000821/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000822///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000823/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000824///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000825const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000826 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000827 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000828 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000829 // The computation is correct in the face of overflow provided that the
830 // multiplication is performed _after_ the evaluation of the binomial
831 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000832 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000833 if (isa<SCEVCouldNotCompute>(Coeff))
834 return Coeff;
835
836 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000837 }
838 return Result;
839}
840
Chris Lattner53e677a2004-04-02 20:23:17 +0000841//===----------------------------------------------------------------------===//
842// SCEV Expression folder implementations
843//===----------------------------------------------------------------------===//
844
Dan Gohman0bba49c2009-07-07 17:06:11 +0000845const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000846 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000847 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000848 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000849 assert(isSCEVable(Ty) &&
850 "This is not a conversion to a SCEVable type!");
851 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000852
Dan Gohmanc050fd92009-07-13 20:50:19 +0000853 FoldingSetNodeID ID;
854 ID.AddInteger(scTruncate);
855 ID.AddPointer(Op);
856 ID.AddPointer(Ty);
857 void *IP = 0;
858 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
859
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000860 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000861 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000862 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000863 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
864 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000865
Dan Gohman20900ca2009-04-22 16:20:48 +0000866 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000867 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000868 return getTruncateExpr(ST->getOperand(), Ty);
869
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000870 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000871 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000872 return getTruncateOrSignExtend(SS->getOperand(), Ty);
873
874 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000875 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000876 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
877
Dan Gohman6864db62009-06-18 16:24:47 +0000878 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000879 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000880 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000881 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000882 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
883 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000884 }
885
Dan Gohmanf53462d2010-07-15 20:02:11 +0000886 // As a special case, fold trunc(undef) to undef. We don't want to
887 // know too much about SCEVUnknowns, but this special case is handy
888 // and harmless.
889 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
890 if (isa<UndefValue>(U->getValue()))
891 return getSCEV(UndefValue::get(Ty));
892
Dan Gohman420ab912010-06-25 18:47:08 +0000893 // The cast wasn't folded; create an explicit cast node. We can reuse
894 // the existing insert position since if we get here, we won't have
895 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000896 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
897 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000898 UniqueSCEVs.InsertNode(S, IP);
899 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000900}
901
Dan Gohman0bba49c2009-07-07 17:06:11 +0000902const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000903 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000904 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000905 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000906 assert(isSCEVable(Ty) &&
907 "This is not a conversion to a SCEVable type!");
908 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000909
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000910 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000911 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
912 return getConstant(
913 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
914 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000915
Dan Gohman20900ca2009-04-22 16:20:48 +0000916 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000917 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000918 return getZeroExtendExpr(SZ->getOperand(), Ty);
919
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000920 // Before doing any expensive analysis, check to see if we've already
921 // computed a SCEV for this Op and Ty.
922 FoldingSetNodeID ID;
923 ID.AddInteger(scZeroExtend);
924 ID.AddPointer(Op);
925 ID.AddPointer(Ty);
926 void *IP = 0;
927 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
928
Dan Gohman01ecca22009-04-27 20:16:15 +0000929 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000930 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000931 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000932 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000933 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000934 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000935 const SCEV *Start = AR->getStart();
936 const SCEV *Step = AR->getStepRecurrence(*this);
937 unsigned BitWidth = getTypeSizeInBits(AR->getType());
938 const Loop *L = AR->getLoop();
939
Dan Gohmaneb490a72009-07-25 01:22:26 +0000940 // If we have special knowledge that this addrec won't overflow,
941 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000942 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000943 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
944 getZeroExtendExpr(Step, Ty),
945 L);
946
Dan Gohman01ecca22009-04-27 20:16:15 +0000947 // Check whether the backedge-taken count is SCEVCouldNotCompute.
948 // Note that this serves two purposes: It filters out loops that are
949 // simply not analyzable, and it covers the case where this code is
950 // being called from within backedge-taken count analysis, such that
951 // attempting to ask for the backedge-taken count would likely result
952 // in infinite recursion. In the later case, the analysis code will
953 // cope with a conservative value, and it will take care to purge
954 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000955 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000956 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000957 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000958 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000959
960 // Check whether the backedge-taken count can be losslessly casted to
961 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000962 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000963 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000964 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000965 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
966 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000967 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000968 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000969 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000970 const SCEV *Add = getAddExpr(Start, ZMul);
971 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000972 getAddExpr(getZeroExtendExpr(Start, WideTy),
973 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
974 getZeroExtendExpr(Step, WideTy)));
975 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000976 // Return the expression with the addrec on the outside.
977 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
978 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000979 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000980
981 // Similar to above, only this time treat the step value as signed.
982 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000983 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000984 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000985 OperandExtendedAdd =
986 getAddExpr(getZeroExtendExpr(Start, WideTy),
987 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
988 getSignExtendExpr(Step, WideTy)));
989 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000990 // Return the expression with the addrec on the outside.
991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000993 L);
994 }
995
996 // If the backedge is guarded by a comparison with the pre-inc value
997 // the addrec is safe. Also, if the entry is guarded by a comparison
998 // with the start value and the backedge is guarded by a comparison
999 // with the post-inc value, the addrec is safe.
1000 if (isKnownPositive(Step)) {
1001 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1002 getUnsignedRange(Step).getUnsignedMax());
1003 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001004 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001005 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1006 AR->getPostIncExpr(*this), N)))
1007 // Return the expression with the addrec on the outside.
1008 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009 getZeroExtendExpr(Step, Ty),
1010 L);
1011 } else if (isKnownNegative(Step)) {
1012 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1013 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001014 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1015 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001016 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1017 AR->getPostIncExpr(*this), N)))
1018 // Return the expression with the addrec on the outside.
1019 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1020 getSignExtendExpr(Step, Ty),
1021 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001022 }
1023 }
1024 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001025
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001026 // The cast wasn't folded; create an explicit cast node.
1027 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001028 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001029 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1030 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001031 UniqueSCEVs.InsertNode(S, IP);
1032 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001033}
1034
Dan Gohman0bba49c2009-07-07 17:06:11 +00001035const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001036 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001037 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001038 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001039 assert(isSCEVable(Ty) &&
1040 "This is not a conversion to a SCEVable type!");
1041 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001042
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001043 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001044 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1045 return getConstant(
1046 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1047 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001048
Dan Gohman20900ca2009-04-22 16:20:48 +00001049 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001050 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001051 return getSignExtendExpr(SS->getOperand(), Ty);
1052
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001053 // Before doing any expensive analysis, check to see if we've already
1054 // computed a SCEV for this Op and Ty.
1055 FoldingSetNodeID ID;
1056 ID.AddInteger(scSignExtend);
1057 ID.AddPointer(Op);
1058 ID.AddPointer(Ty);
1059 void *IP = 0;
1060 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1061
Dan Gohman01ecca22009-04-27 20:16:15 +00001062 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001063 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001064 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001065 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001066 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001067 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001068 const SCEV *Start = AR->getStart();
1069 const SCEV *Step = AR->getStepRecurrence(*this);
1070 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1071 const Loop *L = AR->getLoop();
1072
Dan Gohmaneb490a72009-07-25 01:22:26 +00001073 // If we have special knowledge that this addrec won't overflow,
1074 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001075 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001076 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1077 getSignExtendExpr(Step, Ty),
1078 L);
1079
Dan Gohman01ecca22009-04-27 20:16:15 +00001080 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1081 // Note that this serves two purposes: It filters out loops that are
1082 // simply not analyzable, and it covers the case where this code is
1083 // being called from within backedge-taken count analysis, such that
1084 // attempting to ask for the backedge-taken count would likely result
1085 // in infinite recursion. In the later case, the analysis code will
1086 // cope with a conservative value, and it will take care to purge
1087 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001088 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001089 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001090 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001091 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001092
1093 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001094 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001095 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001096 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001097 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001098 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1099 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001100 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001101 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001102 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001103 const SCEV *Add = getAddExpr(Start, SMul);
1104 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001105 getAddExpr(getSignExtendExpr(Start, WideTy),
1106 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1107 getSignExtendExpr(Step, WideTy)));
1108 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001109 // Return the expression with the addrec on the outside.
1110 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001112 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001113
1114 // Similar to above, only this time treat the step value as unsigned.
1115 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001116 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001117 Add = getAddExpr(Start, UMul);
1118 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001119 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001120 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1121 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001122 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001123 // Return the expression with the addrec on the outside.
1124 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1125 getZeroExtendExpr(Step, Ty),
1126 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001127 }
1128
1129 // If the backedge is guarded by a comparison with the pre-inc value
1130 // the addrec is safe. Also, if the entry is guarded by a comparison
1131 // with the start value and the backedge is guarded by a comparison
1132 // with the post-inc value, the addrec is safe.
1133 if (isKnownPositive(Step)) {
1134 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1135 getSignedRange(Step).getSignedMax());
1136 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001137 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001138 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1139 AR->getPostIncExpr(*this), N)))
1140 // Return the expression with the addrec on the outside.
1141 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1142 getSignExtendExpr(Step, Ty),
1143 L);
1144 } else if (isKnownNegative(Step)) {
1145 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1146 getSignedRange(Step).getSignedMin());
1147 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001148 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001149 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1150 AR->getPostIncExpr(*this), N)))
1151 // Return the expression with the addrec on the outside.
1152 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1153 getSignExtendExpr(Step, Ty),
1154 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001155 }
1156 }
1157 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001158
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001159 // The cast wasn't folded; create an explicit cast node.
1160 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001161 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001162 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1163 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001164 UniqueSCEVs.InsertNode(S, IP);
1165 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001166}
1167
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001168/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1169/// unspecified bits out to the given type.
1170///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001171const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001172 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001173 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1174 "This is not an extending conversion!");
1175 assert(isSCEVable(Ty) &&
1176 "This is not a conversion to a SCEVable type!");
1177 Ty = getEffectiveSCEVType(Ty);
1178
1179 // Sign-extend negative constants.
1180 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1181 if (SC->getValue()->getValue().isNegative())
1182 return getSignExtendExpr(Op, Ty);
1183
1184 // Peel off a truncate cast.
1185 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001186 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001187 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1188 return getAnyExtendExpr(NewOp, Ty);
1189 return getTruncateOrNoop(NewOp, Ty);
1190 }
1191
1192 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001193 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001194 if (!isa<SCEVZeroExtendExpr>(ZExt))
1195 return ZExt;
1196
1197 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001198 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001199 if (!isa<SCEVSignExtendExpr>(SExt))
1200 return SExt;
1201
Dan Gohmana10756e2010-01-21 02:09:26 +00001202 // Force the cast to be folded into the operands of an addrec.
1203 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1204 SmallVector<const SCEV *, 4> Ops;
1205 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1206 I != E; ++I)
1207 Ops.push_back(getAnyExtendExpr(*I, Ty));
1208 return getAddRecExpr(Ops, AR->getLoop());
1209 }
1210
Dan Gohmanf53462d2010-07-15 20:02:11 +00001211 // As a special case, fold anyext(undef) to undef. We don't want to
1212 // know too much about SCEVUnknowns, but this special case is handy
1213 // and harmless.
1214 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1215 if (isa<UndefValue>(U->getValue()))
1216 return getSCEV(UndefValue::get(Ty));
1217
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001218 // If the expression is obviously signed, use the sext cast value.
1219 if (isa<SCEVSMaxExpr>(Op))
1220 return SExt;
1221
1222 // Absent any other information, use the zext cast value.
1223 return ZExt;
1224}
1225
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001226/// CollectAddOperandsWithScales - Process the given Ops list, which is
1227/// a list of operands to be added under the given scale, update the given
1228/// map. This is a helper function for getAddRecExpr. As an example of
1229/// what it does, given a sequence of operands that would form an add
1230/// expression like this:
1231///
1232/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1233///
1234/// where A and B are constants, update the map with these values:
1235///
1236/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1237///
1238/// and add 13 + A*B*29 to AccumulatedConstant.
1239/// This will allow getAddRecExpr to produce this:
1240///
1241/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1242///
1243/// This form often exposes folding opportunities that are hidden in
1244/// the original operand list.
1245///
1246/// Return true iff it appears that any interesting folding opportunities
1247/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1248/// the common case where no interesting opportunities are present, and
1249/// is also used as a check to avoid infinite recursion.
1250///
1251static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001252CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1253 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001254 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001255 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001256 const APInt &Scale,
1257 ScalarEvolution &SE) {
1258 bool Interesting = false;
1259
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001260 // Iterate over the add operands. They are sorted, with constants first.
1261 unsigned i = 0;
1262 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1263 ++i;
1264 // Pull a buried constant out to the outside.
1265 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1266 Interesting = true;
1267 AccumulatedConstant += Scale * C->getValue()->getValue();
1268 }
1269
1270 // Next comes everything else. We're especially interested in multiplies
1271 // here, but they're in the middle, so just visit the rest with one loop.
1272 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001273 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1274 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1275 APInt NewScale =
1276 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1277 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1278 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001279 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001280 Interesting |=
1281 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001282 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001283 NewScale, SE);
1284 } else {
1285 // A multiplication of a constant with some other value. Update
1286 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001287 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1288 const SCEV *Key = SE.getMulExpr(MulOps);
1289 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001290 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001291 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001292 NewOps.push_back(Pair.first->first);
1293 } else {
1294 Pair.first->second += NewScale;
1295 // The map already had an entry for this value, which may indicate
1296 // a folding opportunity.
1297 Interesting = true;
1298 }
1299 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001300 } else {
1301 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001302 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001303 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001304 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001305 NewOps.push_back(Pair.first->first);
1306 } else {
1307 Pair.first->second += Scale;
1308 // The map already had an entry for this value, which may indicate
1309 // a folding opportunity.
1310 Interesting = true;
1311 }
1312 }
1313 }
1314
1315 return Interesting;
1316}
1317
1318namespace {
1319 struct APIntCompare {
1320 bool operator()(const APInt &LHS, const APInt &RHS) const {
1321 return LHS.ult(RHS);
1322 }
1323 };
1324}
1325
Dan Gohman6c0866c2009-05-24 23:45:28 +00001326/// getAddExpr - Get a canonical add expression, or something simpler if
1327/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001328const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1329 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001330 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001331 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001332#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001333 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001334 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001335 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001336 "SCEVAddExpr operand types don't match!");
1337#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001338
Dan Gohmana10756e2010-01-21 02:09:26 +00001339 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1340 if (!HasNUW && HasNSW) {
1341 bool All = true;
1342 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1343 if (!isKnownNonNegative(Ops[i])) {
1344 All = false;
1345 break;
1346 }
1347 if (All) HasNUW = true;
1348 }
1349
Chris Lattner53e677a2004-04-02 20:23:17 +00001350 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001351 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001352
1353 // If there are any constants, fold them together.
1354 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001355 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001356 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001357 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001358 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001359 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001360 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1361 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001362 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001363 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001364 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001365 }
1366
1367 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001368 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001369 Ops.erase(Ops.begin());
1370 --Idx;
1371 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001372
Dan Gohmanbca091d2010-04-12 23:08:18 +00001373 if (Ops.size() == 1) return Ops[0];
1374 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001375
Chris Lattner53e677a2004-04-02 20:23:17 +00001376 // Okay, check to see if the same value occurs in the operand list twice. If
1377 // so, merge them together into an multiply expression. Since we sorted the
1378 // list, these values are required to be adjacent.
1379 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001380 bool FoundMatch = false;
Chris Lattner53e677a2004-04-02 20:23:17 +00001381 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1382 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1383 // Found a match, merge the two values into a multiply, and add any
1384 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001385 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001386 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001387 if (Ops.size() == 2)
1388 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001389 Ops[i] = Mul;
1390 Ops.erase(Ops.begin()+i+1);
1391 --i; --e;
1392 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001393 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001394 if (FoundMatch)
1395 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001396
Dan Gohman728c7f32009-05-08 21:03:19 +00001397 // Check for truncates. If all the operands are truncated from the same
1398 // type, see if factoring out the truncate would permit the result to be
1399 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1400 // if the contents of the resulting outer trunc fold to something simple.
1401 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1402 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1403 const Type *DstType = Trunc->getType();
1404 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001405 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001406 bool Ok = true;
1407 // Check all the operands to see if they can be represented in the
1408 // source type of the truncate.
1409 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1410 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1411 if (T->getOperand()->getType() != SrcType) {
1412 Ok = false;
1413 break;
1414 }
1415 LargeOps.push_back(T->getOperand());
1416 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001417 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001418 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001419 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001420 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1421 if (const SCEVTruncateExpr *T =
1422 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1423 if (T->getOperand()->getType() != SrcType) {
1424 Ok = false;
1425 break;
1426 }
1427 LargeMulOps.push_back(T->getOperand());
1428 } else if (const SCEVConstant *C =
1429 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001430 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001431 } else {
1432 Ok = false;
1433 break;
1434 }
1435 }
1436 if (Ok)
1437 LargeOps.push_back(getMulExpr(LargeMulOps));
1438 } else {
1439 Ok = false;
1440 break;
1441 }
1442 }
1443 if (Ok) {
1444 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001445 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001446 // If it folds to something simple, use it. Otherwise, don't.
1447 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1448 return getTruncateExpr(Fold, DstType);
1449 }
1450 }
1451
1452 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001453 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1454 ++Idx;
1455
1456 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001457 if (Idx < Ops.size()) {
1458 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001459 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 // If we have an add, expand the add operands onto the end of the operands
1461 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001463 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 DeletedAdd = true;
1465 }
1466
1467 // If we deleted at least one add, we added operands to the end of the list,
1468 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001469 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001471 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001472 }
1473
1474 // Skip over the add expression until we get to a multiply.
1475 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1476 ++Idx;
1477
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001478 // Check to see if there are any folding opportunities present with
1479 // operands multiplied by constant values.
1480 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1481 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001482 DenseMap<const SCEV *, APInt> M;
1483 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001484 APInt AccumulatedConstant(BitWidth, 0);
1485 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001486 Ops.data(), Ops.size(),
1487 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001488 // Some interesting folding opportunity is present, so its worthwhile to
1489 // re-generate the operands list. Group the operands by constant scale,
1490 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001491 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1492 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001493 E = NewOps.end(); I != E; ++I)
1494 MulOpLists[M.find(*I)->second].push_back(*I);
1495 // Re-generate the operands list.
1496 Ops.clear();
1497 if (AccumulatedConstant != 0)
1498 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001499 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1500 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001501 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001502 Ops.push_back(getMulExpr(getConstant(I->first),
1503 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001504 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001505 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001506 if (Ops.size() == 1)
1507 return Ops[0];
1508 return getAddExpr(Ops);
1509 }
1510 }
1511
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 // If we are adding something to a multiply expression, make sure the
1513 // something is not already an operand of the multiply. If so, merge it into
1514 // the multiply.
1515 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001516 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001517 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001518 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001519 if (isa<SCEVConstant>(MulOpSCEV))
1520 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001522 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001523 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001524 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001525 if (Mul->getNumOperands() != 2) {
1526 // If the multiply has more than two operands, we must get the
1527 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001528 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001529 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001530 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001531 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001532 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001533 const SCEV *AddOne = getAddExpr(InnerMul, One);
Dan Gohman918e76b2010-08-12 14:52:55 +00001534 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 if (Ops.size() == 2) return OuterMul;
1536 if (AddOp < Idx) {
1537 Ops.erase(Ops.begin()+AddOp);
1538 Ops.erase(Ops.begin()+Idx-1);
1539 } else {
1540 Ops.erase(Ops.begin()+Idx);
1541 Ops.erase(Ops.begin()+AddOp-1);
1542 }
1543 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001544 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001545 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001546
Chris Lattner53e677a2004-04-02 20:23:17 +00001547 // Check this multiply against other multiplies being added together.
Dan Gohman727356f2010-08-12 15:00:23 +00001548 bool AnyFold = false;
Chris Lattner53e677a2004-04-02 20:23:17 +00001549 for (unsigned OtherMulIdx = Idx+1;
1550 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1551 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001552 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001553 // If MulOp occurs in OtherMul, we can fold the two multiplies
1554 // together.
1555 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1556 OMulOp != e; ++OMulOp)
1557 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1558 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001559 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001560 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001561 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1562 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001564 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001565 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001566 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001567 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001568 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1569 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001570 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001571 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001573 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1574 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 if (Ops.size() == 2) return OuterMul;
Dan Gohman727356f2010-08-12 15:00:23 +00001576 Ops[Idx] = OuterMul;
1577 Ops.erase(Ops.begin()+OtherMulIdx);
1578 OtherMulIdx = Idx;
1579 AnyFold = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001580 }
1581 }
Dan Gohman727356f2010-08-12 15:00:23 +00001582 if (AnyFold)
1583 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 }
1585 }
1586
1587 // If there are any add recurrences in the operands list, see if any other
1588 // added values are loop invariant. If so, we can fold them into the
1589 // recurrence.
1590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1591 ++Idx;
1592
1593 // Scan over all recurrences, trying to fold loop invariants into them.
1594 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1595 // Scan all of the other operands to this add and add them to the vector if
1596 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001597 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001598 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001599 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001600 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001601 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 LIOps.push_back(Ops[i]);
1603 Ops.erase(Ops.begin()+i);
1604 --i; --e;
1605 }
1606
1607 // If we found some loop invariants, fold them into the recurrence.
1608 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001609 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 LIOps.push_back(AddRec->getStart());
1611
Dan Gohman0bba49c2009-07-07 17:06:11 +00001612 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001613 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001614 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001615
Dan Gohmanb9f96512010-06-30 07:16:37 +00001616 // Build the new addrec. Propagate the NUW and NSW flags if both the
1617 // outer add and the inner addrec are guaranteed to have no overflow.
1618 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1619 HasNUW && AddRec->hasNoUnsignedWrap(),
1620 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001621
Chris Lattner53e677a2004-04-02 20:23:17 +00001622 // If all of the other operands were loop invariant, we are done.
1623 if (Ops.size() == 1) return NewRec;
1624
1625 // Otherwise, add the folded AddRec by the non-liv parts.
1626 for (unsigned i = 0;; ++i)
1627 if (Ops[i] == AddRec) {
1628 Ops[i] = NewRec;
1629 break;
1630 }
Dan Gohman246b2562007-10-22 18:31:58 +00001631 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001632 }
1633
1634 // Okay, if there weren't any loop invariants to be folded, check to see if
1635 // there are multiple AddRec's with the same loop induction variable being
1636 // added together. If so, we can fold them.
1637 for (unsigned OtherIdx = Idx+1;
1638 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1639 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001640 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001641 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001642 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001643 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1644 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001645 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1646 if (i >= NewOps.size()) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001647 NewOps.append(OtherAddRec->op_begin()+i,
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 OtherAddRec->op_end());
1649 break;
1650 }
Dan Gohman246b2562007-10-22 18:31:58 +00001651 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001652 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001653 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001654
1655 if (Ops.size() == 2) return NewAddRec;
1656
1657 Ops.erase(Ops.begin()+Idx);
1658 Ops.erase(Ops.begin()+OtherIdx-1);
1659 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001660 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 }
1662 }
1663
1664 // Otherwise couldn't fold anything into this recurrence. Move onto the
1665 // next one.
1666 }
1667
1668 // Okay, it looks like we really DO need an add expr. Check to see if we
1669 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001670 FoldingSetNodeID ID;
1671 ID.AddInteger(scAddExpr);
1672 ID.AddInteger(Ops.size());
1673 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1674 ID.AddPointer(Ops[i]);
1675 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001676 SCEVAddExpr *S =
1677 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1678 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001679 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1680 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001681 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1682 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001683 UniqueSCEVs.InsertNode(S, IP);
1684 }
Dan Gohman3645b012009-10-09 00:10:36 +00001685 if (HasNUW) S->setHasNoUnsignedWrap(true);
1686 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001687 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001688}
1689
Dan Gohman6c0866c2009-05-24 23:45:28 +00001690/// getMulExpr - Get a canonical multiply expression, or something simpler if
1691/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001692const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1693 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001694 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001695 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001696#ifndef NDEBUG
1697 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1698 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1699 getEffectiveSCEVType(Ops[0]->getType()) &&
1700 "SCEVMulExpr operand types don't match!");
1701#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001702
Dan Gohmana10756e2010-01-21 02:09:26 +00001703 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1704 if (!HasNUW && HasNSW) {
1705 bool All = true;
1706 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1707 if (!isKnownNonNegative(Ops[i])) {
1708 All = false;
1709 break;
1710 }
1711 if (All) HasNUW = true;
1712 }
1713
Chris Lattner53e677a2004-04-02 20:23:17 +00001714 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001715 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001716
1717 // If there are any constants, fold them together.
1718 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001719 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001720
1721 // C1*(C2+V) -> C1*C2 + C1*V
1722 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001723 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001724 if (Add->getNumOperands() == 2 &&
1725 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001726 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1727 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001728
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001730 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001732 ConstantInt *Fold = ConstantInt::get(getContext(),
1733 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001734 RHSC->getValue()->getValue());
1735 Ops[0] = getConstant(Fold);
1736 Ops.erase(Ops.begin()+1); // Erase the folded element
1737 if (Ops.size() == 1) return Ops[0];
1738 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 }
1740
1741 // If we are left with a constant one being multiplied, strip it off.
1742 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1743 Ops.erase(Ops.begin());
1744 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001745 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001746 // If we have a multiply of zero, it will always be zero.
1747 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001748 } else if (Ops[0]->isAllOnesValue()) {
1749 // If we have a mul by -1 of an add, try distributing the -1 among the
1750 // add operands.
1751 if (Ops.size() == 2)
1752 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1753 SmallVector<const SCEV *, 4> NewOps;
1754 bool AnyFolded = false;
1755 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1756 I != E; ++I) {
1757 const SCEV *Mul = getMulExpr(Ops[0], *I);
1758 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1759 NewOps.push_back(Mul);
1760 }
1761 if (AnyFolded)
1762 return getAddExpr(NewOps);
1763 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001764 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001765
1766 if (Ops.size() == 1)
1767 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001768 }
1769
1770 // Skip over the add expression until we get to a multiply.
1771 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1772 ++Idx;
1773
Chris Lattner53e677a2004-04-02 20:23:17 +00001774 // If there are mul operands inline them all into this expression.
1775 if (Idx < Ops.size()) {
1776 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001777 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001778 // If we have an mul, expand the mul operands onto the end of the operands
1779 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001780 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001781 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001782 DeletedMul = true;
1783 }
1784
1785 // If we deleted at least one mul, we added operands to the end of the list,
1786 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001787 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001789 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001790 }
1791
1792 // If there are any add recurrences in the operands list, see if any other
1793 // added values are loop invariant. If so, we can fold them into the
1794 // recurrence.
1795 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1796 ++Idx;
1797
1798 // Scan over all recurrences, trying to fold loop invariants into them.
1799 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1800 // Scan all of the other operands to this mul and add them to the vector if
1801 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001802 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001803 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001804 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1805 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1806 LIOps.push_back(Ops[i]);
1807 Ops.erase(Ops.begin()+i);
1808 --i; --e;
1809 }
1810
1811 // If we found some loop invariants, fold them into the recurrence.
1812 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001813 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001814 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001815 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001816 const SCEV *Scale = getMulExpr(LIOps);
1817 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1818 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001819
Dan Gohmanb9f96512010-06-30 07:16:37 +00001820 // Build the new addrec. Propagate the NUW and NSW flags if both the
1821 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohmana10756e2010-01-21 02:09:26 +00001822 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1823 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001824 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001825
1826 // If all of the other operands were loop invariant, we are done.
1827 if (Ops.size() == 1) return NewRec;
1828
1829 // Otherwise, multiply the folded AddRec by the non-liv parts.
1830 for (unsigned i = 0;; ++i)
1831 if (Ops[i] == AddRec) {
1832 Ops[i] = NewRec;
1833 break;
1834 }
Dan Gohman246b2562007-10-22 18:31:58 +00001835 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001836 }
1837
1838 // Okay, if there weren't any loop invariants to be folded, check to see if
1839 // there are multiple AddRec's with the same loop induction variable being
1840 // multiplied together. If so, we can fold them.
1841 for (unsigned OtherIdx = Idx+1;
1842 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1843 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001844 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001845 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1846 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001847 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001848 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001849 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001850 const SCEV *B = F->getStepRecurrence(*this);
1851 const SCEV *D = G->getStepRecurrence(*this);
1852 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001853 getMulExpr(G, B),
1854 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001855 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001856 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001857 if (Ops.size() == 2) return NewAddRec;
1858
1859 Ops.erase(Ops.begin()+Idx);
1860 Ops.erase(Ops.begin()+OtherIdx-1);
1861 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001862 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001863 }
1864 }
1865
1866 // Otherwise couldn't fold anything into this recurrence. Move onto the
1867 // next one.
1868 }
1869
1870 // Okay, it looks like we really DO need an mul expr. Check to see if we
1871 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001872 FoldingSetNodeID ID;
1873 ID.AddInteger(scMulExpr);
1874 ID.AddInteger(Ops.size());
1875 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1876 ID.AddPointer(Ops[i]);
1877 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001878 SCEVMulExpr *S =
1879 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1880 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001881 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1882 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001883 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1884 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001885 UniqueSCEVs.InsertNode(S, IP);
1886 }
Dan Gohman3645b012009-10-09 00:10:36 +00001887 if (HasNUW) S->setHasNoUnsignedWrap(true);
1888 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001889 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001890}
1891
Andreas Bolka8a11c982009-08-07 22:55:26 +00001892/// getUDivExpr - Get a canonical unsigned division expression, or something
1893/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001894const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1895 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001896 assert(getEffectiveSCEVType(LHS->getType()) ==
1897 getEffectiveSCEVType(RHS->getType()) &&
1898 "SCEVUDivExpr operand types don't match!");
1899
Dan Gohman622ed672009-05-04 22:02:23 +00001900 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001901 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001902 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001903 // If the denominator is zero, the result of the udiv is undefined. Don't
1904 // try to analyze it, because the resolution chosen here may differ from
1905 // the resolution chosen in other parts of the compiler.
1906 if (!RHSC->getValue()->isZero()) {
1907 // Determine if the division can be folded into the operands of
1908 // its operands.
1909 // TODO: Generalize this to non-constants by using known-bits information.
1910 const Type *Ty = LHS->getType();
1911 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001912 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001913 // For non-power-of-two values, effectively round the value up to the
1914 // nearest power of two.
1915 if (!RHSC->getValue()->getValue().isPowerOf2())
1916 ++MaxShiftAmt;
1917 const IntegerType *ExtTy =
1918 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1919 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1920 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1921 if (const SCEVConstant *Step =
1922 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1923 if (!Step->getValue()->getValue()
1924 .urem(RHSC->getValue()->getValue()) &&
1925 getZeroExtendExpr(AR, ExtTy) ==
1926 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1927 getZeroExtendExpr(Step, ExtTy),
1928 AR->getLoop())) {
1929 SmallVector<const SCEV *, 4> Operands;
1930 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1931 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1932 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001933 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001934 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1935 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1936 SmallVector<const SCEV *, 4> Operands;
1937 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1938 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1939 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1940 // Find an operand that's safely divisible.
1941 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1942 const SCEV *Op = M->getOperand(i);
1943 const SCEV *Div = getUDivExpr(Op, RHSC);
1944 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1945 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1946 M->op_end());
1947 Operands[i] = Div;
1948 return getMulExpr(Operands);
1949 }
1950 }
Dan Gohman185cf032009-05-08 20:18:49 +00001951 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001952 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1953 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1954 SmallVector<const SCEV *, 4> Operands;
1955 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1956 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1957 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1958 Operands.clear();
1959 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1960 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1961 if (isa<SCEVUDivExpr>(Op) ||
1962 getMulExpr(Op, RHS) != A->getOperand(i))
1963 break;
1964 Operands.push_back(Op);
1965 }
1966 if (Operands.size() == A->getNumOperands())
1967 return getAddExpr(Operands);
1968 }
1969 }
Dan Gohman185cf032009-05-08 20:18:49 +00001970
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001971 // Fold if both operands are constant.
1972 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1973 Constant *LHSCV = LHSC->getValue();
1974 Constant *RHSCV = RHSC->getValue();
1975 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1976 RHSCV)));
1977 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001978 }
1979 }
1980
Dan Gohman1c343752009-06-27 21:21:31 +00001981 FoldingSetNodeID ID;
1982 ID.AddInteger(scUDivExpr);
1983 ID.AddPointer(LHS);
1984 ID.AddPointer(RHS);
1985 void *IP = 0;
1986 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001987 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1988 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001989 UniqueSCEVs.InsertNode(S, IP);
1990 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001991}
1992
1993
Dan Gohman6c0866c2009-05-24 23:45:28 +00001994/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1995/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001996const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001997 const SCEV *Step, const Loop *L,
1998 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001999 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002000 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002001 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002002 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002003 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002004 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002005 }
2006
2007 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002008 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002009}
2010
Dan Gohman6c0866c2009-05-24 23:45:28 +00002011/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2012/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002013const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002014ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002015 const Loop *L,
2016 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002017 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002018#ifndef NDEBUG
2019 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2020 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
2021 getEffectiveSCEVType(Operands[0]->getType()) &&
2022 "SCEVAddRecExpr operand types don't match!");
2023#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002024
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002025 if (Operands.back()->isZero()) {
2026 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002027 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002028 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002029
Dan Gohmanbc028532010-02-19 18:49:22 +00002030 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2031 // use that information to infer NUW and NSW flags. However, computing a
2032 // BE count requires calling getAddRecExpr, so we may not yet have a
2033 // meaningful BE count at this point (and if we don't, we'd be stuck
2034 // with a SCEVCouldNotCompute as the cached BE count).
2035
Dan Gohmana10756e2010-01-21 02:09:26 +00002036 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2037 if (!HasNUW && HasNSW) {
2038 bool All = true;
2039 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2040 if (!isKnownNonNegative(Operands[i])) {
2041 All = false;
2042 break;
2043 }
2044 if (All) HasNUW = true;
2045 }
2046
Dan Gohmand9cc7492008-08-08 18:33:12 +00002047 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002048 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002049 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00002050 if (L->contains(NestedLoop->getHeader()) ?
2051 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2052 (!NestedLoop->contains(L->getHeader()) &&
2053 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002054 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002055 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002056 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002057 // AddRecs require their operands be loop-invariant with respect to their
2058 // loops. Don't perform this transformation if it would break this
2059 // requirement.
2060 bool AllInvariant = true;
2061 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2062 if (!Operands[i]->isLoopInvariant(L)) {
2063 AllInvariant = false;
2064 break;
2065 }
2066 if (AllInvariant) {
2067 NestedOperands[0] = getAddRecExpr(Operands, L);
2068 AllInvariant = true;
2069 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2070 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2071 AllInvariant = false;
2072 break;
2073 }
2074 if (AllInvariant)
2075 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002076 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002077 }
2078 // Reset Operands to its original state.
2079 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002080 }
2081 }
2082
Dan Gohman67847532010-01-19 22:27:22 +00002083 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2084 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002085 FoldingSetNodeID ID;
2086 ID.AddInteger(scAddRecExpr);
2087 ID.AddInteger(Operands.size());
2088 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2089 ID.AddPointer(Operands[i]);
2090 ID.AddPointer(L);
2091 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002092 SCEVAddRecExpr *S =
2093 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2094 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002095 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2096 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002097 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2098 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002099 UniqueSCEVs.InsertNode(S, IP);
2100 }
Dan Gohman3645b012009-10-09 00:10:36 +00002101 if (HasNUW) S->setHasNoUnsignedWrap(true);
2102 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002103 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002104}
2105
Dan Gohman9311ef62009-06-24 14:49:00 +00002106const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2107 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002108 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002109 Ops.push_back(LHS);
2110 Ops.push_back(RHS);
2111 return getSMaxExpr(Ops);
2112}
2113
Dan Gohman0bba49c2009-07-07 17:06:11 +00002114const SCEV *
2115ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002116 assert(!Ops.empty() && "Cannot get empty smax!");
2117 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002118#ifndef NDEBUG
2119 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2120 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2121 getEffectiveSCEVType(Ops[0]->getType()) &&
2122 "SCEVSMaxExpr operand types don't match!");
2123#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002124
2125 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002126 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002127
2128 // If there are any constants, fold them together.
2129 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002130 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002131 ++Idx;
2132 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002133 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002134 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002135 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002136 APIntOps::smax(LHSC->getValue()->getValue(),
2137 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002138 Ops[0] = getConstant(Fold);
2139 Ops.erase(Ops.begin()+1); // Erase the folded element
2140 if (Ops.size() == 1) return Ops[0];
2141 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002142 }
2143
Dan Gohmane5aceed2009-06-24 14:46:22 +00002144 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002145 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2146 Ops.erase(Ops.begin());
2147 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002148 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2149 // If we have an smax with a constant maximum-int, it will always be
2150 // maximum-int.
2151 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002152 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002153
Dan Gohman3ab13122010-04-13 16:49:23 +00002154 if (Ops.size() == 1) return Ops[0];
2155 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002156
2157 // Find the first SMax
2158 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2159 ++Idx;
2160
2161 // Check to see if one of the operands is an SMax. If so, expand its operands
2162 // onto our operand list, and recurse to simplify.
2163 if (Idx < Ops.size()) {
2164 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002165 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002166 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002167 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002168 DeletedSMax = true;
2169 }
2170
2171 if (DeletedSMax)
2172 return getSMaxExpr(Ops);
2173 }
2174
2175 // Okay, check to see if the same value occurs in the operand list twice. If
2176 // so, delete one. Since we sorted the list, these values are required to
2177 // be adjacent.
2178 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002179 // X smax Y smax Y --> X smax Y
2180 // X smax Y --> X, if X is always greater than Y
2181 if (Ops[i] == Ops[i+1] ||
2182 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2183 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2184 --i; --e;
2185 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002186 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2187 --i; --e;
2188 }
2189
2190 if (Ops.size() == 1) return Ops[0];
2191
2192 assert(!Ops.empty() && "Reduced smax down to nothing!");
2193
Nick Lewycky3e630762008-02-20 06:48:22 +00002194 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002195 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002196 FoldingSetNodeID ID;
2197 ID.AddInteger(scSMaxExpr);
2198 ID.AddInteger(Ops.size());
2199 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2200 ID.AddPointer(Ops[i]);
2201 void *IP = 0;
2202 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002203 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2204 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002205 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2206 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002207 UniqueSCEVs.InsertNode(S, IP);
2208 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002209}
2210
Dan Gohman9311ef62009-06-24 14:49:00 +00002211const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2212 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002213 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002214 Ops.push_back(LHS);
2215 Ops.push_back(RHS);
2216 return getUMaxExpr(Ops);
2217}
2218
Dan Gohman0bba49c2009-07-07 17:06:11 +00002219const SCEV *
2220ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002221 assert(!Ops.empty() && "Cannot get empty umax!");
2222 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002223#ifndef NDEBUG
2224 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2225 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2226 getEffectiveSCEVType(Ops[0]->getType()) &&
2227 "SCEVUMaxExpr operand types don't match!");
2228#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002229
2230 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002231 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002232
2233 // If there are any constants, fold them together.
2234 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002235 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002236 ++Idx;
2237 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002238 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002239 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002240 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002241 APIntOps::umax(LHSC->getValue()->getValue(),
2242 RHSC->getValue()->getValue()));
2243 Ops[0] = getConstant(Fold);
2244 Ops.erase(Ops.begin()+1); // Erase the folded element
2245 if (Ops.size() == 1) return Ops[0];
2246 LHSC = cast<SCEVConstant>(Ops[0]);
2247 }
2248
Dan Gohmane5aceed2009-06-24 14:46:22 +00002249 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002250 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2251 Ops.erase(Ops.begin());
2252 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002253 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2254 // If we have an umax with a constant maximum-int, it will always be
2255 // maximum-int.
2256 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002257 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002258
Dan Gohman3ab13122010-04-13 16:49:23 +00002259 if (Ops.size() == 1) return Ops[0];
2260 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002261
2262 // Find the first UMax
2263 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2264 ++Idx;
2265
2266 // Check to see if one of the operands is a UMax. If so, expand its operands
2267 // onto our operand list, and recurse to simplify.
2268 if (Idx < Ops.size()) {
2269 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002270 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002271 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002272 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002273 DeletedUMax = true;
2274 }
2275
2276 if (DeletedUMax)
2277 return getUMaxExpr(Ops);
2278 }
2279
2280 // Okay, check to see if the same value occurs in the operand list twice. If
2281 // so, delete one. Since we sorted the list, these values are required to
2282 // be adjacent.
2283 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002284 // X umax Y umax Y --> X umax Y
2285 // X umax Y --> X, if X is always greater than Y
2286 if (Ops[i] == Ops[i+1] ||
2287 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2288 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2289 --i; --e;
2290 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002291 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2292 --i; --e;
2293 }
2294
2295 if (Ops.size() == 1) return Ops[0];
2296
2297 assert(!Ops.empty() && "Reduced umax down to nothing!");
2298
2299 // Okay, it looks like we really DO need a umax expr. Check to see if we
2300 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002301 FoldingSetNodeID ID;
2302 ID.AddInteger(scUMaxExpr);
2303 ID.AddInteger(Ops.size());
2304 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2305 ID.AddPointer(Ops[i]);
2306 void *IP = 0;
2307 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002308 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2309 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002310 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2311 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002312 UniqueSCEVs.InsertNode(S, IP);
2313 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002314}
2315
Dan Gohman9311ef62009-06-24 14:49:00 +00002316const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2317 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002318 // ~smax(~x, ~y) == smin(x, y).
2319 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2320}
2321
Dan Gohman9311ef62009-06-24 14:49:00 +00002322const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2323 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002324 // ~umax(~x, ~y) == umin(x, y)
2325 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2326}
2327
Dan Gohman4f8eea82010-02-01 18:27:38 +00002328const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002329 // If we have TargetData, we can bypass creating a target-independent
2330 // constant expression and then folding it back into a ConstantInt.
2331 // This is just a compile-time optimization.
2332 if (TD)
2333 return getConstant(TD->getIntPtrType(getContext()),
2334 TD->getTypeAllocSize(AllocTy));
2335
Dan Gohman4f8eea82010-02-01 18:27:38 +00002336 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2337 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002338 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2339 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002340 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2341 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2342}
2343
2344const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2345 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2346 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002347 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2348 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002349 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2350 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2351}
2352
2353const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2354 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002355 // If we have TargetData, we can bypass creating a target-independent
2356 // constant expression and then folding it back into a ConstantInt.
2357 // This is just a compile-time optimization.
2358 if (TD)
2359 return getConstant(TD->getIntPtrType(getContext()),
2360 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2361
Dan Gohman0f5efe52010-01-28 02:15:55 +00002362 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2363 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002364 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2365 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002366 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002367 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002368}
2369
Dan Gohman4f8eea82010-02-01 18:27:38 +00002370const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2371 Constant *FieldNo) {
2372 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002373 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002374 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2375 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002376 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002377 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002378}
2379
Dan Gohman0bba49c2009-07-07 17:06:11 +00002380const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002381 // Don't attempt to do anything other than create a SCEVUnknown object
2382 // here. createSCEV only calls getUnknown after checking for all other
2383 // interesting possibilities, and any other code that calls getUnknown
2384 // is doing so in order to hide a value from SCEV canonicalization.
2385
Dan Gohman1c343752009-06-27 21:21:31 +00002386 FoldingSetNodeID ID;
2387 ID.AddInteger(scUnknown);
2388 ID.AddPointer(V);
2389 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002390 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2391 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2392 "Stale SCEVUnknown in uniquing map!");
2393 return S;
2394 }
2395 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2396 FirstUnknown);
2397 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002398 UniqueSCEVs.InsertNode(S, IP);
2399 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002400}
2401
Chris Lattner53e677a2004-04-02 20:23:17 +00002402//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002403// Basic SCEV Analysis and PHI Idiom Recognition Code
2404//
2405
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002406/// isSCEVable - Test if values of the given type are analyzable within
2407/// the SCEV framework. This primarily includes integer types, and it
2408/// can optionally include pointer types if the ScalarEvolution class
2409/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002410bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002411 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002412 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002413}
2414
2415/// getTypeSizeInBits - Return the size in bits of the specified type,
2416/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002417uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002418 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2419
2420 // If we have a TargetData, use it!
2421 if (TD)
2422 return TD->getTypeSizeInBits(Ty);
2423
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002424 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002425 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002426 return Ty->getPrimitiveSizeInBits();
2427
2428 // The only other support type is pointer. Without TargetData, conservatively
2429 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002430 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002431 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002432}
2433
2434/// getEffectiveSCEVType - Return a type with the same bitwidth as
2435/// the given type and which represents how SCEV will treat the given
2436/// type, for which isSCEVable must return true. For pointer types,
2437/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002438const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002439 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2440
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002441 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002442 return Ty;
2443
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002444 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002445 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002446 if (TD) return TD->getIntPtrType(getContext());
2447
2448 // Without TargetData, conservatively assume pointers are 64-bit.
2449 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002450}
Chris Lattner53e677a2004-04-02 20:23:17 +00002451
Dan Gohman0bba49c2009-07-07 17:06:11 +00002452const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002453 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002454}
2455
Chris Lattner53e677a2004-04-02 20:23:17 +00002456/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2457/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002458const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002459 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002460
Dan Gohman0bba49c2009-07-07 17:06:11 +00002461 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002462 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002463 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002464 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002465 return S;
2466}
2467
Dan Gohman2d1be872009-04-16 03:18:22 +00002468/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2469///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002470const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002471 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002472 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002473 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002474
2475 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002476 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002477 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002478 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002479}
2480
2481/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002482const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002483 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002484 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002485 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002486
2487 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002488 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002489 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002490 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002491 return getMinusSCEV(AllOnes, V);
2492}
2493
2494/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2495///
Dan Gohman9311ef62009-06-24 14:49:00 +00002496const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2497 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002498 // Fast path: X - X --> 0.
2499 if (LHS == RHS)
2500 return getConstant(LHS->getType(), 0);
2501
Dan Gohman2d1be872009-04-16 03:18:22 +00002502 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002503 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002504}
2505
2506/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2507/// input value to the specified type. If the type must be extended, it is zero
2508/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002509const SCEV *
2510ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002511 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002512 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002513 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2514 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002515 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002516 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002517 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002518 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002519 return getTruncateExpr(V, Ty);
2520 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002521}
2522
2523/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2524/// input value to the specified type. If the type must be extended, it is sign
2525/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002526const SCEV *
2527ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002528 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002529 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002530 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2531 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002532 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002533 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002534 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002535 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002536 return getTruncateExpr(V, Ty);
2537 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002538}
2539
Dan Gohman467c4302009-05-13 03:46:30 +00002540/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2541/// input value to the specified type. If the type must be extended, it is zero
2542/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002543const SCEV *
2544ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002545 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002546 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2547 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002548 "Cannot noop or zero extend with non-integer arguments!");
2549 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2550 "getNoopOrZeroExtend cannot truncate!");
2551 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2552 return V; // No conversion
2553 return getZeroExtendExpr(V, Ty);
2554}
2555
2556/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2557/// input value to the specified type. If the type must be extended, it is sign
2558/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002559const SCEV *
2560ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002561 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002562 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2563 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002564 "Cannot noop or sign extend with non-integer arguments!");
2565 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2566 "getNoopOrSignExtend cannot truncate!");
2567 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2568 return V; // No conversion
2569 return getSignExtendExpr(V, Ty);
2570}
2571
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002572/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2573/// the input value to the specified type. If the type must be extended,
2574/// it is extended with unspecified bits. The conversion must not be
2575/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002576const SCEV *
2577ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002578 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002579 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2580 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002581 "Cannot noop or any extend with non-integer arguments!");
2582 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2583 "getNoopOrAnyExtend cannot truncate!");
2584 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2585 return V; // No conversion
2586 return getAnyExtendExpr(V, Ty);
2587}
2588
Dan Gohman467c4302009-05-13 03:46:30 +00002589/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2590/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002591const SCEV *
2592ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002593 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002594 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2595 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002596 "Cannot truncate or noop with non-integer arguments!");
2597 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2598 "getTruncateOrNoop cannot extend!");
2599 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2600 return V; // No conversion
2601 return getTruncateExpr(V, Ty);
2602}
2603
Dan Gohmana334aa72009-06-22 00:31:57 +00002604/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2605/// the types using zero-extension, and then perform a umax operation
2606/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002607const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2608 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002609 const SCEV *PromotedLHS = LHS;
2610 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002611
2612 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2613 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2614 else
2615 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2616
2617 return getUMaxExpr(PromotedLHS, PromotedRHS);
2618}
2619
Dan Gohmanc9759e82009-06-22 15:03:27 +00002620/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2621/// the types using zero-extension, and then perform a umin operation
2622/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002623const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2624 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002625 const SCEV *PromotedLHS = LHS;
2626 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002627
2628 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2629 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2630 else
2631 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2632
2633 return getUMinExpr(PromotedLHS, PromotedRHS);
2634}
2635
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002636/// PushDefUseChildren - Push users of the given Instruction
2637/// onto the given Worklist.
2638static void
2639PushDefUseChildren(Instruction *I,
2640 SmallVectorImpl<Instruction *> &Worklist) {
2641 // Push the def-use children onto the Worklist stack.
2642 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2643 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002644 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002645}
2646
2647/// ForgetSymbolicValue - This looks up computed SCEV values for all
2648/// instructions that depend on the given instruction and removes them from
2649/// the Scalars map if they reference SymName. This is used during PHI
2650/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002651void
Dan Gohman85669632010-02-25 06:57:05 +00002652ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002653 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002654 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002655
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002656 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002657 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002658 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002659 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002660 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002661
Dan Gohman5d984912009-12-18 01:14:11 +00002662 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002663 Scalars.find(static_cast<Value *>(I));
2664 if (It != Scalars.end()) {
2665 // Short-circuit the def-use traversal if the symbolic name
2666 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002667 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002668 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002669
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002670 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002671 // structure, it's a PHI that's in the progress of being computed
2672 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2673 // additional loop trip count information isn't going to change anything.
2674 // In the second case, createNodeForPHI will perform the necessary
2675 // updates on its own when it gets to that point. In the third, we do
2676 // want to forget the SCEVUnknown.
2677 if (!isa<PHINode>(I) ||
2678 !isa<SCEVUnknown>(It->second) ||
2679 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002680 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002681 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002682 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002683 }
2684
2685 PushDefUseChildren(I, Worklist);
2686 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002687}
Chris Lattner53e677a2004-04-02 20:23:17 +00002688
2689/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2690/// a loop header, making it a potential recurrence, or it doesn't.
2691///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002692const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002693 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2694 if (L->getHeader() == PN->getParent()) {
2695 // The loop may have multiple entrances or multiple exits; we can analyze
2696 // this phi as an addrec if it has a unique entry value and a unique
2697 // backedge value.
2698 Value *BEValueV = 0, *StartValueV = 0;
2699 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2700 Value *V = PN->getIncomingValue(i);
2701 if (L->contains(PN->getIncomingBlock(i))) {
2702 if (!BEValueV) {
2703 BEValueV = V;
2704 } else if (BEValueV != V) {
2705 BEValueV = 0;
2706 break;
2707 }
2708 } else if (!StartValueV) {
2709 StartValueV = V;
2710 } else if (StartValueV != V) {
2711 StartValueV = 0;
2712 break;
2713 }
2714 }
2715 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002716 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002717 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002718 assert(Scalars.find(PN) == Scalars.end() &&
2719 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002720 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002721
2722 // Using this symbolic name for the PHI, analyze the value coming around
2723 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002724 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002725
2726 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2727 // has a special value for the first iteration of the loop.
2728
2729 // If the value coming around the backedge is an add with the symbolic
2730 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002732 // If there is a single occurrence of the symbolic value, replace it
2733 // with a recurrence.
2734 unsigned FoundIndex = Add->getNumOperands();
2735 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2736 if (Add->getOperand(i) == SymbolicName)
2737 if (FoundIndex == e) {
2738 FoundIndex = i;
2739 break;
2740 }
2741
2742 if (FoundIndex != Add->getNumOperands()) {
2743 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002744 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002745 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2746 if (i != FoundIndex)
2747 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002748 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002749
2750 // This is not a valid addrec if the step amount is varying each
2751 // loop iteration, but is not itself an addrec in this loop.
2752 if (Accum->isLoopInvariant(L) ||
2753 (isa<SCEVAddRecExpr>(Accum) &&
2754 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002755 bool HasNUW = false;
2756 bool HasNSW = false;
2757
2758 // If the increment doesn't overflow, then neither the addrec nor
2759 // the post-increment will overflow.
2760 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2761 if (OBO->hasNoUnsignedWrap())
2762 HasNUW = true;
2763 if (OBO->hasNoSignedWrap())
2764 HasNSW = true;
2765 }
2766
Dan Gohman27dead42010-04-12 07:49:36 +00002767 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002768 const SCEV *PHISCEV =
2769 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002770
Dan Gohmana10756e2010-01-21 02:09:26 +00002771 // Since the no-wrap flags are on the increment, they apply to the
2772 // post-incremented value as well.
2773 if (Accum->isLoopInvariant(L))
2774 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2775 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002776
2777 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002778 // to be symbolic. We now need to go back and purge all of the
2779 // entries for the scalars that use the symbolic expression.
2780 ForgetSymbolicName(PN, SymbolicName);
2781 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002782 return PHISCEV;
2783 }
2784 }
Dan Gohman622ed672009-05-04 22:02:23 +00002785 } else if (const SCEVAddRecExpr *AddRec =
2786 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002787 // Otherwise, this could be a loop like this:
2788 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2789 // In this case, j = {1,+,1} and BEValue is j.
2790 // Because the other in-value of i (0) fits the evolution of BEValue
2791 // i really is an addrec evolution.
2792 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002793 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002794
2795 // If StartVal = j.start - j.stride, we can use StartVal as the
2796 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002797 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002798 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002799 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002800 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002801
2802 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002803 // to be symbolic. We now need to go back and purge all of the
2804 // entries for the scalars that use the symbolic expression.
2805 ForgetSymbolicName(PN, SymbolicName);
2806 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002807 return PHISCEV;
2808 }
2809 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002810 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002811 }
Dan Gohman27dead42010-04-12 07:49:36 +00002812 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002813
Dan Gohman85669632010-02-25 06:57:05 +00002814 // If the PHI has a single incoming value, follow that value, unless the
2815 // PHI's incoming blocks are in a different loop, in which case doing so
2816 // risks breaking LCSSA form. Instcombine would normally zap these, but
2817 // it doesn't have DominatorTree information, so it may miss cases.
2818 if (Value *V = PN->hasConstantValue(DT)) {
2819 bool AllSameLoop = true;
2820 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2821 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2822 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2823 AllSameLoop = false;
2824 break;
2825 }
2826 if (AllSameLoop)
2827 return getSCEV(V);
2828 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002829
Chris Lattner53e677a2004-04-02 20:23:17 +00002830 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002831 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002832}
2833
Dan Gohman26466c02009-05-08 20:26:55 +00002834/// createNodeForGEP - Expand GEP instructions into add and multiply
2835/// operations. This allows them to be analyzed by regular SCEV code.
2836///
Dan Gohmand281ed22009-12-18 02:09:29 +00002837const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002838
Dan Gohmanb9f96512010-06-30 07:16:37 +00002839 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2840 // Add expression, because the Instruction may be guarded by control flow
2841 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002842 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002843
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002844 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002845 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002846 // Don't attempt to analyze GEPs over unsized objects.
2847 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2848 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002849 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002850 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002851 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002852 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002853 I != E; ++I) {
2854 Value *Index = *I;
2855 // Compute the (potentially symbolic) offset in bytes for this index.
2856 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2857 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002858 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002859 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2860
Dan Gohmanb9f96512010-06-30 07:16:37 +00002861 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002862 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002863 } else {
2864 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002865 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2866 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002867 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002868 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2869
Dan Gohmanb9f96512010-06-30 07:16:37 +00002870 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002871 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002872
2873 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002874 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002875 }
2876 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002877
2878 // Get the SCEV for the GEP base.
2879 const SCEV *BaseS = getSCEV(Base);
2880
Dan Gohmanb9f96512010-06-30 07:16:37 +00002881 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002882 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002883}
2884
Nick Lewycky83bb0052007-11-22 07:59:40 +00002885/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2886/// guaranteed to end in (at every loop iteration). It is, at the same time,
2887/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2888/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002889uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002890ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002891 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002892 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002893
Dan Gohman622ed672009-05-04 22:02:23 +00002894 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002895 return std::min(GetMinTrailingZeros(T->getOperand()),
2896 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002897
Dan Gohman622ed672009-05-04 22:02:23 +00002898 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002899 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2900 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2901 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002902 }
2903
Dan Gohman622ed672009-05-04 22:02:23 +00002904 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002905 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2906 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2907 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002908 }
2909
Dan Gohman622ed672009-05-04 22:02:23 +00002910 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002911 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002912 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002913 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002914 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002915 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002916 }
2917
Dan Gohman622ed672009-05-04 22:02:23 +00002918 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002919 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002920 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2921 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002922 for (unsigned i = 1, e = M->getNumOperands();
2923 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002924 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002925 BitWidth);
2926 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002927 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002928
Dan Gohman622ed672009-05-04 22:02:23 +00002929 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002930 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002931 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002932 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002933 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002934 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002935 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002936
Dan Gohman622ed672009-05-04 22:02:23 +00002937 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002938 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002939 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002940 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002941 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002942 return MinOpRes;
2943 }
2944
Dan Gohman622ed672009-05-04 22:02:23 +00002945 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002946 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002947 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002948 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002949 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002950 return MinOpRes;
2951 }
2952
Dan Gohman2c364ad2009-06-19 23:29:04 +00002953 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2954 // For a SCEVUnknown, ask ValueTracking.
2955 unsigned BitWidth = getTypeSizeInBits(U->getType());
2956 APInt Mask = APInt::getAllOnesValue(BitWidth);
2957 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2958 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2959 return Zeros.countTrailingOnes();
2960 }
2961
2962 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002963 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002964}
Chris Lattner53e677a2004-04-02 20:23:17 +00002965
Dan Gohman85b05a22009-07-13 21:35:55 +00002966/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2967///
2968ConstantRange
2969ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002970
2971 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002972 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002973
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002974 unsigned BitWidth = getTypeSizeInBits(S->getType());
2975 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2976
2977 // If the value has known zeros, the maximum unsigned value will have those
2978 // known zeros as well.
2979 uint32_t TZ = GetMinTrailingZeros(S);
2980 if (TZ != 0)
2981 ConservativeResult =
2982 ConstantRange(APInt::getMinValue(BitWidth),
2983 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2984
Dan Gohman85b05a22009-07-13 21:35:55 +00002985 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2986 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2987 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2988 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002989 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002990 }
2991
2992 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2993 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2994 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2995 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002996 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002997 }
2998
2999 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3000 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3001 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3002 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003003 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003004 }
3005
3006 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3007 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3008 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3009 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003010 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003011 }
3012
3013 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3014 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3015 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003016 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003017 }
3018
3019 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3020 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003021 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003022 }
3023
3024 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3025 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003026 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003027 }
3028
3029 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3030 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003031 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003032 }
3033
Dan Gohman85b05a22009-07-13 21:35:55 +00003034 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003035 // If there's no unsigned wrap, the value will never be less than its
3036 // initial value.
3037 if (AddRec->hasNoUnsignedWrap())
3038 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003039 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003040 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003041 ConservativeResult.intersectWith(
3042 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003043
3044 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003045 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003046 const Type *Ty = AddRec->getType();
3047 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003048 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3049 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003050 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3051
3052 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003053 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003054
3055 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003056 ConstantRange StepRange = getSignedRange(Step);
3057 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3058 ConstantRange EndRange =
3059 StartRange.add(MaxBECountRange.multiply(StepRange));
3060
3061 // Check for overflow. This must be done with ConstantRange arithmetic
3062 // because we could be called from within the ScalarEvolution overflow
3063 // checking code.
3064 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3065 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3066 ConstantRange ExtMaxBECountRange =
3067 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3068 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3069 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3070 ExtEndRange)
3071 return ConservativeResult;
3072
Dan Gohman85b05a22009-07-13 21:35:55 +00003073 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3074 EndRange.getUnsignedMin());
3075 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3076 EndRange.getUnsignedMax());
3077 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003078 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003079 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003080 }
3081 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003082
3083 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003084 }
3085
3086 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3087 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003088 APInt Mask = APInt::getAllOnesValue(BitWidth);
3089 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3090 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003091 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003092 return ConservativeResult;
3093 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003094 }
3095
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003096 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003097}
3098
Dan Gohman85b05a22009-07-13 21:35:55 +00003099/// getSignedRange - Determine the signed range for a particular SCEV.
3100///
3101ConstantRange
3102ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003103
Dan Gohman85b05a22009-07-13 21:35:55 +00003104 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3105 return ConstantRange(C->getValue()->getValue());
3106
Dan Gohman52fddd32010-01-26 04:40:18 +00003107 unsigned BitWidth = getTypeSizeInBits(S->getType());
3108 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3109
3110 // If the value has known zeros, the maximum signed value will have those
3111 // known zeros as well.
3112 uint32_t TZ = GetMinTrailingZeros(S);
3113 if (TZ != 0)
3114 ConservativeResult =
3115 ConstantRange(APInt::getSignedMinValue(BitWidth),
3116 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3117
Dan Gohman85b05a22009-07-13 21:35:55 +00003118 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3119 ConstantRange X = getSignedRange(Add->getOperand(0));
3120 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3121 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003122 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003123 }
3124
Dan Gohman85b05a22009-07-13 21:35:55 +00003125 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3126 ConstantRange X = getSignedRange(Mul->getOperand(0));
3127 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3128 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003129 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003130 }
3131
Dan Gohman85b05a22009-07-13 21:35:55 +00003132 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3133 ConstantRange X = getSignedRange(SMax->getOperand(0));
3134 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3135 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003136 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003137 }
Dan Gohman62849c02009-06-24 01:05:09 +00003138
Dan Gohman85b05a22009-07-13 21:35:55 +00003139 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3140 ConstantRange X = getSignedRange(UMax->getOperand(0));
3141 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3142 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003143 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003144 }
Dan Gohman62849c02009-06-24 01:05:09 +00003145
Dan Gohman85b05a22009-07-13 21:35:55 +00003146 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3147 ConstantRange X = getSignedRange(UDiv->getLHS());
3148 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003149 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003150 }
Dan Gohman62849c02009-06-24 01:05:09 +00003151
Dan Gohman85b05a22009-07-13 21:35:55 +00003152 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3153 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003154 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003155 }
3156
3157 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3158 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003159 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003160 }
3161
3162 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3163 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003164 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003165 }
3166
Dan Gohman85b05a22009-07-13 21:35:55 +00003167 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003168 // If there's no signed wrap, and all the operands have the same sign or
3169 // zero, the value won't ever change sign.
3170 if (AddRec->hasNoSignedWrap()) {
3171 bool AllNonNeg = true;
3172 bool AllNonPos = true;
3173 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3174 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3175 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3176 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003177 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003178 ConservativeResult = ConservativeResult.intersectWith(
3179 ConstantRange(APInt(BitWidth, 0),
3180 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003181 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003182 ConservativeResult = ConservativeResult.intersectWith(
3183 ConstantRange(APInt::getSignedMinValue(BitWidth),
3184 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003185 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003186
3187 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003188 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003189 const Type *Ty = AddRec->getType();
3190 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003191 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3192 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003193 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3194
3195 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003196 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003197
3198 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003199 ConstantRange StepRange = getSignedRange(Step);
3200 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3201 ConstantRange EndRange =
3202 StartRange.add(MaxBECountRange.multiply(StepRange));
3203
3204 // Check for overflow. This must be done with ConstantRange arithmetic
3205 // because we could be called from within the ScalarEvolution overflow
3206 // checking code.
3207 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3208 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3209 ConstantRange ExtMaxBECountRange =
3210 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3211 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3212 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3213 ExtEndRange)
3214 return ConservativeResult;
3215
Dan Gohman85b05a22009-07-13 21:35:55 +00003216 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3217 EndRange.getSignedMin());
3218 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3219 EndRange.getSignedMax());
3220 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003221 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003222 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003223 }
Dan Gohman62849c02009-06-24 01:05:09 +00003224 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003225
3226 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003227 }
3228
Dan Gohman2c364ad2009-06-19 23:29:04 +00003229 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3230 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003231 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003232 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003233 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3234 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003235 return ConservativeResult;
3236 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003237 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003238 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003239 }
3240
Dan Gohman52fddd32010-01-26 04:40:18 +00003241 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003242}
3243
Chris Lattner53e677a2004-04-02 20:23:17 +00003244/// createSCEV - We know that there is no SCEV for the specified value.
3245/// Analyze the expression.
3246///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003247const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003248 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003249 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003250
Dan Gohman6c459a22008-06-22 19:56:46 +00003251 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003252 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003253 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003254
3255 // Don't attempt to analyze instructions in blocks that aren't
3256 // reachable. Such instructions don't matter, and they aren't required
3257 // to obey basic rules for definitions dominating uses which this
3258 // analysis depends on.
3259 if (!DT->isReachableFromEntry(I->getParent()))
3260 return getUnknown(V);
3261 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003262 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003263 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3264 return getConstant(CI);
3265 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003266 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003267 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3268 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003269 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003270 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003271
Dan Gohmanca178902009-07-17 20:47:02 +00003272 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003273 switch (Opcode) {
Dan Gohman70eff632010-06-30 17:27:11 +00003274 case Instruction::Add:
3275 return getAddExpr(getSCEV(U->getOperand(0)),
3276 getSCEV(U->getOperand(1)));
3277 case Instruction::Mul:
3278 return getMulExpr(getSCEV(U->getOperand(0)),
3279 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003280 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003281 return getUDivExpr(getSCEV(U->getOperand(0)),
3282 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003283 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003284 return getMinusSCEV(getSCEV(U->getOperand(0)),
3285 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003286 case Instruction::And:
3287 // For an expression like x&255 that merely masks off the high bits,
3288 // use zext(trunc(x)) as the SCEV expression.
3289 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003290 if (CI->isNullValue())
3291 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003292 if (CI->isAllOnesValue())
3293 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003294 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003295
3296 // Instcombine's ShrinkDemandedConstant may strip bits out of
3297 // constants, obscuring what would otherwise be a low-bits mask.
3298 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3299 // knew about to reconstruct a low-bits mask value.
3300 unsigned LZ = A.countLeadingZeros();
3301 unsigned BitWidth = A.getBitWidth();
3302 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3303 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3304 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3305
3306 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3307
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003308 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003309 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003310 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003311 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003312 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003313 }
3314 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003315
Dan Gohman6c459a22008-06-22 19:56:46 +00003316 case Instruction::Or:
3317 // If the RHS of the Or is a constant, we may have something like:
3318 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3319 // optimizations will transparently handle this case.
3320 //
3321 // In order for this transformation to be safe, the LHS must be of the
3322 // form X*(2^n) and the Or constant must be less than 2^n.
3323 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003324 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003325 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003326 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003327 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3328 // Build a plain add SCEV.
3329 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3330 // If the LHS of the add was an addrec and it has no-wrap flags,
3331 // transfer the no-wrap flags, since an or won't introduce a wrap.
3332 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3333 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3334 if (OldAR->hasNoUnsignedWrap())
3335 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3336 if (OldAR->hasNoSignedWrap())
3337 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3338 }
3339 return S;
3340 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003341 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003342 break;
3343 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003344 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003345 // If the RHS of the xor is a signbit, then this is just an add.
3346 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003347 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003348 return getAddExpr(getSCEV(U->getOperand(0)),
3349 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003350
3351 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003352 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003353 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003354
3355 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3356 // This is a variant of the check for xor with -1, and it handles
3357 // the case where instcombine has trimmed non-demanded bits out
3358 // of an xor with -1.
3359 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3360 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3361 if (BO->getOpcode() == Instruction::And &&
3362 LCI->getValue() == CI->getValue())
3363 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003364 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003365 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003366 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003367 const Type *Z0Ty = Z0->getType();
3368 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3369
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003370 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003371 // mask off the high bits. Complement the operand and
3372 // re-apply the zext.
3373 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3374 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3375
3376 // If C is a single bit, it may be in the sign-bit position
3377 // before the zero-extend. In this case, represent the xor
3378 // using an add, which is equivalent, and re-apply the zext.
3379 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3380 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3381 Trunc.isSignBit())
3382 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3383 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003384 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003385 }
3386 break;
3387
3388 case Instruction::Shl:
3389 // Turn shift left of a constant amount into a multiply.
3390 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003391 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003392
3393 // If the shift count is not less than the bitwidth, the result of
3394 // the shift is undefined. Don't try to analyze it, because the
3395 // resolution chosen here may differ from the resolution chosen in
3396 // other parts of the compiler.
3397 if (SA->getValue().uge(BitWidth))
3398 break;
3399
Owen Andersoneed707b2009-07-24 23:12:02 +00003400 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003401 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003402 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003403 }
3404 break;
3405
Nick Lewycky01eaf802008-07-07 06:15:49 +00003406 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003407 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003408 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003409 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003410
3411 // If the shift count is not less than the bitwidth, the result of
3412 // the shift is undefined. Don't try to analyze it, because the
3413 // resolution chosen here may differ from the resolution chosen in
3414 // other parts of the compiler.
3415 if (SA->getValue().uge(BitWidth))
3416 break;
3417
Owen Andersoneed707b2009-07-24 23:12:02 +00003418 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003419 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003420 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003421 }
3422 break;
3423
Dan Gohman4ee29af2009-04-21 02:26:00 +00003424 case Instruction::AShr:
3425 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3426 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003427 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003428 if (L->getOpcode() == Instruction::Shl &&
3429 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003430 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3431
3432 // If the shift count is not less than the bitwidth, the result of
3433 // the shift is undefined. Don't try to analyze it, because the
3434 // resolution chosen here may differ from the resolution chosen in
3435 // other parts of the compiler.
3436 if (CI->getValue().uge(BitWidth))
3437 break;
3438
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003439 uint64_t Amt = BitWidth - CI->getZExtValue();
3440 if (Amt == BitWidth)
3441 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003442 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003443 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003444 IntegerType::get(getContext(),
3445 Amt)),
3446 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003447 }
3448 break;
3449
Dan Gohman6c459a22008-06-22 19:56:46 +00003450 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003451 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003452
3453 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003454 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003455
3456 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003457 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003458
3459 case Instruction::BitCast:
3460 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003461 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003462 return getSCEV(U->getOperand(0));
3463 break;
3464
Dan Gohman4f8eea82010-02-01 18:27:38 +00003465 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3466 // lead to pointer expressions which cannot safely be expanded to GEPs,
3467 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3468 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003469
Dan Gohman26466c02009-05-08 20:26:55 +00003470 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003471 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003472
Dan Gohman6c459a22008-06-22 19:56:46 +00003473 case Instruction::PHI:
3474 return createNodeForPHI(cast<PHINode>(U));
3475
3476 case Instruction::Select:
3477 // This could be a smax or umax that was lowered earlier.
3478 // Try to recover it.
3479 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3480 Value *LHS = ICI->getOperand(0);
3481 Value *RHS = ICI->getOperand(1);
3482 switch (ICI->getPredicate()) {
3483 case ICmpInst::ICMP_SLT:
3484 case ICmpInst::ICMP_SLE:
3485 std::swap(LHS, RHS);
3486 // fall through
3487 case ICmpInst::ICMP_SGT:
3488 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003489 // a >s b ? a+x : b+x -> smax(a, b)+x
3490 // a >s b ? b+x : a+x -> smin(a, b)+x
3491 if (LHS->getType() == U->getType()) {
3492 const SCEV *LS = getSCEV(LHS);
3493 const SCEV *RS = getSCEV(RHS);
3494 const SCEV *LA = getSCEV(U->getOperand(1));
3495 const SCEV *RA = getSCEV(U->getOperand(2));
3496 const SCEV *LDiff = getMinusSCEV(LA, LS);
3497 const SCEV *RDiff = getMinusSCEV(RA, RS);
3498 if (LDiff == RDiff)
3499 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3500 LDiff = getMinusSCEV(LA, RS);
3501 RDiff = getMinusSCEV(RA, LS);
3502 if (LDiff == RDiff)
3503 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3504 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003505 break;
3506 case ICmpInst::ICMP_ULT:
3507 case ICmpInst::ICMP_ULE:
3508 std::swap(LHS, RHS);
3509 // fall through
3510 case ICmpInst::ICMP_UGT:
3511 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003512 // a >u b ? a+x : b+x -> umax(a, b)+x
3513 // a >u b ? b+x : a+x -> umin(a, b)+x
3514 if (LHS->getType() == U->getType()) {
3515 const SCEV *LS = getSCEV(LHS);
3516 const SCEV *RS = getSCEV(RHS);
3517 const SCEV *LA = getSCEV(U->getOperand(1));
3518 const SCEV *RA = getSCEV(U->getOperand(2));
3519 const SCEV *LDiff = getMinusSCEV(LA, LS);
3520 const SCEV *RDiff = getMinusSCEV(RA, RS);
3521 if (LDiff == RDiff)
3522 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3523 LDiff = getMinusSCEV(LA, RS);
3524 RDiff = getMinusSCEV(RA, LS);
3525 if (LDiff == RDiff)
3526 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3527 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003528 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003529 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003530 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3531 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003532 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003533 cast<ConstantInt>(RHS)->isZero()) {
3534 const SCEV *One = getConstant(LHS->getType(), 1);
3535 const SCEV *LS = getSCEV(LHS);
3536 const SCEV *LA = getSCEV(U->getOperand(1));
3537 const SCEV *RA = getSCEV(U->getOperand(2));
3538 const SCEV *LDiff = getMinusSCEV(LA, LS);
3539 const SCEV *RDiff = getMinusSCEV(RA, One);
3540 if (LDiff == RDiff)
3541 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3542 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003543 break;
3544 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003545 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3546 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003547 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003548 cast<ConstantInt>(RHS)->isZero()) {
3549 const SCEV *One = getConstant(LHS->getType(), 1);
3550 const SCEV *LS = getSCEV(LHS);
3551 const SCEV *LA = getSCEV(U->getOperand(1));
3552 const SCEV *RA = getSCEV(U->getOperand(2));
3553 const SCEV *LDiff = getMinusSCEV(LA, One);
3554 const SCEV *RDiff = getMinusSCEV(RA, LS);
3555 if (LDiff == RDiff)
3556 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3557 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003558 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003559 default:
3560 break;
3561 }
3562 }
3563
3564 default: // We cannot analyze this expression.
3565 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003566 }
3567
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003568 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003569}
3570
3571
3572
3573//===----------------------------------------------------------------------===//
3574// Iteration Count Computation Code
3575//
3576
Dan Gohman46bdfb02009-02-24 18:55:53 +00003577/// getBackedgeTakenCount - If the specified loop has a predictable
3578/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3579/// object. The backedge-taken count is the number of times the loop header
3580/// will be branched to from within the loop. This is one less than the
3581/// trip count of the loop, since it doesn't count the first iteration,
3582/// when the header is branched to from outside the loop.
3583///
3584/// Note that it is not valid to call this method on a loop without a
3585/// loop-invariant backedge-taken count (see
3586/// hasLoopInvariantBackedgeTakenCount).
3587///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003588const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003589 return getBackedgeTakenInfo(L).Exact;
3590}
3591
3592/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3593/// return the least SCEV value that is known never to be less than the
3594/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003595const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003596 return getBackedgeTakenInfo(L).Max;
3597}
3598
Dan Gohman59ae6b92009-07-08 19:23:34 +00003599/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3600/// onto the given Worklist.
3601static void
3602PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3603 BasicBlock *Header = L->getHeader();
3604
3605 // Push all Loop-header PHIs onto the Worklist stack.
3606 for (BasicBlock::iterator I = Header->begin();
3607 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3608 Worklist.push_back(PN);
3609}
3610
Dan Gohmana1af7572009-04-30 20:47:05 +00003611const ScalarEvolution::BackedgeTakenInfo &
3612ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003613 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003614 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003615 // update the value. The temporary CouldNotCompute value tells SCEV
3616 // code elsewhere that it shouldn't attempt to request a new
3617 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003618 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003619 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3620 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003621 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3622 if (BECount.Exact != getCouldNotCompute()) {
3623 assert(BECount.Exact->isLoopInvariant(L) &&
3624 BECount.Max->isLoopInvariant(L) &&
3625 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003626 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003627
Dan Gohman01ecca22009-04-27 20:16:15 +00003628 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003629 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003630 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003631 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003632 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003633 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003634 if (isa<PHINode>(L->getHeader()->begin()))
3635 // Only count loops that have phi nodes as not being computable.
3636 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003637 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003638
3639 // Now that we know more about the trip count for this loop, forget any
3640 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003641 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003642 // information. This is similar to the code in forgetLoop, except that
3643 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003644 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003645 SmallVector<Instruction *, 16> Worklist;
3646 PushLoopPHIs(L, Worklist);
3647
3648 SmallPtrSet<Instruction *, 8> Visited;
3649 while (!Worklist.empty()) {
3650 Instruction *I = Worklist.pop_back_val();
3651 if (!Visited.insert(I)) continue;
3652
Dan Gohman5d984912009-12-18 01:14:11 +00003653 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003654 Scalars.find(static_cast<Value *>(I));
3655 if (It != Scalars.end()) {
3656 // SCEVUnknown for a PHI either means that it has an unrecognized
3657 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003658 // by createNodeForPHI. In the former case, additional loop trip
3659 // count information isn't going to change anything. In the later
3660 // case, createNodeForPHI will perform the necessary updates on its
3661 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003662 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3663 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003664 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003665 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003666 if (PHINode *PN = dyn_cast<PHINode>(I))
3667 ConstantEvolutionLoopExitValue.erase(PN);
3668 }
3669
3670 PushDefUseChildren(I, Worklist);
3671 }
3672 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003673 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003674 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003675}
3676
Dan Gohman4c7279a2009-10-31 15:04:55 +00003677/// forgetLoop - This method should be called by the client when it has
3678/// changed a loop in a way that may effect ScalarEvolution's ability to
3679/// compute a trip count, or if the loop is deleted.
3680void ScalarEvolution::forgetLoop(const Loop *L) {
3681 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003682 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003683
Dan Gohman4c7279a2009-10-31 15:04:55 +00003684 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003685 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003686 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003687
Dan Gohman59ae6b92009-07-08 19:23:34 +00003688 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003689 while (!Worklist.empty()) {
3690 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003691 if (!Visited.insert(I)) continue;
3692
Dan Gohman5d984912009-12-18 01:14:11 +00003693 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003694 Scalars.find(static_cast<Value *>(I));
3695 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003696 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003697 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003698 if (PHINode *PN = dyn_cast<PHINode>(I))
3699 ConstantEvolutionLoopExitValue.erase(PN);
3700 }
3701
3702 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003703 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003704}
3705
Eric Christophere6cbfa62010-07-29 01:25:38 +00003706/// forgetValue - This method should be called by the client when it has
3707/// changed a value in a way that may effect its value, or which may
3708/// disconnect it from a def-use chain linking it to a loop.
3709void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003710 Instruction *I = dyn_cast<Instruction>(V);
3711 if (!I) return;
3712
3713 // Drop information about expressions based on loop-header PHIs.
3714 SmallVector<Instruction *, 16> Worklist;
3715 Worklist.push_back(I);
3716
3717 SmallPtrSet<Instruction *, 8> Visited;
3718 while (!Worklist.empty()) {
3719 I = Worklist.pop_back_val();
3720 if (!Visited.insert(I)) continue;
3721
3722 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3723 Scalars.find(static_cast<Value *>(I));
3724 if (It != Scalars.end()) {
3725 ValuesAtScopes.erase(It->second);
3726 Scalars.erase(It);
3727 if (PHINode *PN = dyn_cast<PHINode>(I))
3728 ConstantEvolutionLoopExitValue.erase(PN);
3729 }
3730
3731 PushDefUseChildren(I, Worklist);
3732 }
3733}
3734
Dan Gohman46bdfb02009-02-24 18:55:53 +00003735/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3736/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003737ScalarEvolution::BackedgeTakenInfo
3738ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003739 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003740 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003741
Dan Gohmana334aa72009-06-22 00:31:57 +00003742 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003743 const SCEV *BECount = getCouldNotCompute();
3744 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003745 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003746 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3747 BackedgeTakenInfo NewBTI =
3748 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003749
Dan Gohman1c343752009-06-27 21:21:31 +00003750 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003751 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003752 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003753 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003754 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003755 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003756 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003757 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003758 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003759 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003760 }
Dan Gohman1c343752009-06-27 21:21:31 +00003761 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003762 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003763 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003764 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003765 }
3766
3767 return BackedgeTakenInfo(BECount, MaxBECount);
3768}
3769
3770/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3771/// of the specified loop will execute if it exits via the specified block.
3772ScalarEvolution::BackedgeTakenInfo
3773ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3774 BasicBlock *ExitingBlock) {
3775
3776 // Okay, we've chosen an exiting block. See what condition causes us to
3777 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003778 //
3779 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003780 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003781 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003782 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003783
Chris Lattner8b0e3602007-01-07 02:24:26 +00003784 // At this point, we know we have a conditional branch that determines whether
3785 // the loop is exited. However, we don't know if the branch is executed each
3786 // time through the loop. If not, then the execution count of the branch will
3787 // not be equal to the trip count of the loop.
3788 //
3789 // Currently we check for this by checking to see if the Exit branch goes to
3790 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003791 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003792 // loop header. This is common for un-rotated loops.
3793 //
3794 // If both of those tests fail, walk up the unique predecessor chain to the
3795 // header, stopping if there is an edge that doesn't exit the loop. If the
3796 // header is reached, the execution count of the branch will be equal to the
3797 // trip count of the loop.
3798 //
3799 // More extensive analysis could be done to handle more cases here.
3800 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003801 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003802 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003803 ExitBr->getParent() != L->getHeader()) {
3804 // The simple checks failed, try climbing the unique predecessor chain
3805 // up to the header.
3806 bool Ok = false;
3807 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3808 BasicBlock *Pred = BB->getUniquePredecessor();
3809 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003810 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003811 TerminatorInst *PredTerm = Pred->getTerminator();
3812 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3813 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3814 if (PredSucc == BB)
3815 continue;
3816 // If the predecessor has a successor that isn't BB and isn't
3817 // outside the loop, assume the worst.
3818 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003819 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 }
3821 if (Pred == L->getHeader()) {
3822 Ok = true;
3823 break;
3824 }
3825 BB = Pred;
3826 }
3827 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003828 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 }
3830
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003831 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003832 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3833 ExitBr->getSuccessor(0),
3834 ExitBr->getSuccessor(1));
3835}
3836
3837/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3838/// backedge of the specified loop will execute if its exit condition
3839/// were a conditional branch of ExitCond, TBB, and FBB.
3840ScalarEvolution::BackedgeTakenInfo
3841ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3842 Value *ExitCond,
3843 BasicBlock *TBB,
3844 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003845 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003846 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3847 if (BO->getOpcode() == Instruction::And) {
3848 // Recurse on the operands of the and.
3849 BackedgeTakenInfo BTI0 =
3850 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3851 BackedgeTakenInfo BTI1 =
3852 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003853 const SCEV *BECount = getCouldNotCompute();
3854 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003855 if (L->contains(TBB)) {
3856 // Both conditions must be true for the loop to continue executing.
3857 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003858 if (BTI0.Exact == getCouldNotCompute() ||
3859 BTI1.Exact == getCouldNotCompute())
3860 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003861 else
3862 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003863 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003864 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003865 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003866 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003867 else
3868 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003869 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003870 // Both conditions must be true at the same time for the loop to exit.
3871 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003872 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003873 if (BTI0.Max == BTI1.Max)
3874 MaxBECount = BTI0.Max;
3875 if (BTI0.Exact == BTI1.Exact)
3876 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003877 }
3878
3879 return BackedgeTakenInfo(BECount, MaxBECount);
3880 }
3881 if (BO->getOpcode() == Instruction::Or) {
3882 // Recurse on the operands of the or.
3883 BackedgeTakenInfo BTI0 =
3884 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3885 BackedgeTakenInfo BTI1 =
3886 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003887 const SCEV *BECount = getCouldNotCompute();
3888 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003889 if (L->contains(FBB)) {
3890 // Both conditions must be false for the loop to continue executing.
3891 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003892 if (BTI0.Exact == getCouldNotCompute() ||
3893 BTI1.Exact == getCouldNotCompute())
3894 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003895 else
3896 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003897 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003898 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003899 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003900 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003901 else
3902 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003903 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003904 // Both conditions must be false at the same time for the loop to exit.
3905 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003906 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003907 if (BTI0.Max == BTI1.Max)
3908 MaxBECount = BTI0.Max;
3909 if (BTI0.Exact == BTI1.Exact)
3910 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003911 }
3912
3913 return BackedgeTakenInfo(BECount, MaxBECount);
3914 }
3915 }
3916
3917 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003918 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003919 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3920 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003921
Dan Gohman00cb5b72010-02-19 18:12:07 +00003922 // Check for a constant condition. These are normally stripped out by
3923 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3924 // preserve the CFG and is temporarily leaving constant conditions
3925 // in place.
3926 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3927 if (L->contains(FBB) == !CI->getZExtValue())
3928 // The backedge is always taken.
3929 return getCouldNotCompute();
3930 else
3931 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003932 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003933 }
3934
Eli Friedman361e54d2009-05-09 12:32:42 +00003935 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003936 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3937}
3938
3939/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3940/// backedge of the specified loop will execute if its exit condition
3941/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3942ScalarEvolution::BackedgeTakenInfo
3943ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3944 ICmpInst *ExitCond,
3945 BasicBlock *TBB,
3946 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003947
Reid Spencere4d87aa2006-12-23 06:05:41 +00003948 // If the condition was exit on true, convert the condition to exit on false
3949 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003950 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003951 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003952 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003953 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003954
3955 // Handle common loops like: for (X = "string"; *X; ++X)
3956 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3957 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003958 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003959 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003960 if (ItCnt.hasAnyInfo())
3961 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003962 }
3963
Dan Gohman0bba49c2009-07-07 17:06:11 +00003964 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3965 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003966
3967 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003968 LHS = getSCEVAtScope(LHS, L);
3969 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003970
Dan Gohman64a845e2009-06-24 04:48:43 +00003971 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003972 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003973 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3974 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003975 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003976 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003977 }
3978
Dan Gohman03557dc2010-05-03 16:35:17 +00003979 // Simplify the operands before analyzing them.
3980 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3981
Chris Lattner53e677a2004-04-02 20:23:17 +00003982 // If we have a comparison of a chrec against a constant, try to use value
3983 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003984 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3985 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003986 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003987 // Form the constant range.
3988 ConstantRange CompRange(
3989 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003990
Dan Gohman0bba49c2009-07-07 17:06:11 +00003991 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003992 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003993 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003994
Chris Lattner53e677a2004-04-02 20:23:17 +00003995 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003996 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003997 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003998 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3999 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004000 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004001 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004002 case ICmpInst::ICMP_EQ: { // while (X == Y)
4003 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004004 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4005 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004006 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004007 }
4008 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004009 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4010 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004011 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004012 }
4013 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004014 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4015 getNotSCEV(RHS), L, true);
4016 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004017 break;
4018 }
4019 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004020 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4021 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004022 break;
4023 }
4024 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004025 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4026 getNotSCEV(RHS), L, false);
4027 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004028 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004029 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004030 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004031#if 0
David Greene25e0e872009-12-23 22:18:14 +00004032 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004033 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004034 dbgs() << "[unsigned] ";
4035 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004036 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004037 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004038#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004039 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004040 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004041 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004042 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004043}
4044
Chris Lattner673e02b2004-10-12 01:49:27 +00004045static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004046EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4047 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004048 const SCEV *InVal = SE.getConstant(C);
4049 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004050 assert(isa<SCEVConstant>(Val) &&
4051 "Evaluation of SCEV at constant didn't fold correctly?");
4052 return cast<SCEVConstant>(Val)->getValue();
4053}
4054
4055/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4056/// and a GEP expression (missing the pointer index) indexing into it, return
4057/// the addressed element of the initializer or null if the index expression is
4058/// invalid.
4059static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004060GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004061 const std::vector<ConstantInt*> &Indices) {
4062 Constant *Init = GV->getInitializer();
4063 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004064 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004065 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4066 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4067 Init = cast<Constant>(CS->getOperand(Idx));
4068 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4069 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4070 Init = cast<Constant>(CA->getOperand(Idx));
4071 } else if (isa<ConstantAggregateZero>(Init)) {
4072 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4073 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004074 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004075 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4076 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004077 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004078 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004079 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004080 }
4081 return 0;
4082 } else {
4083 return 0; // Unknown initializer type
4084 }
4085 }
4086 return Init;
4087}
4088
Dan Gohman46bdfb02009-02-24 18:55:53 +00004089/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4090/// 'icmp op load X, cst', try to see if we can compute the backedge
4091/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004092ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004093ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4094 LoadInst *LI,
4095 Constant *RHS,
4096 const Loop *L,
4097 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004098 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004099
4100 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004101 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004102 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004103 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004104
4105 // Make sure that it is really a constant global we are gepping, with an
4106 // initializer, and make sure the first IDX is really 0.
4107 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004108 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004109 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4110 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004111 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004112
4113 // Okay, we allow one non-constant index into the GEP instruction.
4114 Value *VarIdx = 0;
4115 std::vector<ConstantInt*> Indexes;
4116 unsigned VarIdxNum = 0;
4117 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4118 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4119 Indexes.push_back(CI);
4120 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004121 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004122 VarIdx = GEP->getOperand(i);
4123 VarIdxNum = i-2;
4124 Indexes.push_back(0);
4125 }
4126
4127 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4128 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004129 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004130 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004131
4132 // We can only recognize very limited forms of loop index expressions, in
4133 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004134 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004135 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4136 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4137 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004138 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004139
4140 unsigned MaxSteps = MaxBruteForceIterations;
4141 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004142 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004143 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004144 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004145
4146 // Form the GEP offset.
4147 Indexes[VarIdxNum] = Val;
4148
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004149 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004150 if (Result == 0) break; // Cannot compute!
4151
4152 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004153 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004154 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004155 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004156#if 0
David Greene25e0e872009-12-23 22:18:14 +00004157 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004158 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4159 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004160#endif
4161 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004162 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004163 }
4164 }
Dan Gohman1c343752009-06-27 21:21:31 +00004165 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004166}
4167
4168
Chris Lattner3221ad02004-04-17 22:58:41 +00004169/// CanConstantFold - Return true if we can constant fold an instruction of the
4170/// specified type, assuming that all operands were constants.
4171static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004172 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004173 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4174 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004175
Chris Lattner3221ad02004-04-17 22:58:41 +00004176 if (const CallInst *CI = dyn_cast<CallInst>(I))
4177 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004178 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004179 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004180}
4181
Chris Lattner3221ad02004-04-17 22:58:41 +00004182/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4183/// in the loop that V is derived from. We allow arbitrary operations along the
4184/// way, but the operands of an operation must either be constants or a value
4185/// derived from a constant PHI. If this expression does not fit with these
4186/// constraints, return null.
4187static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4188 // If this is not an instruction, or if this is an instruction outside of the
4189 // loop, it can't be derived from a loop PHI.
4190 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004191 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004192
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004193 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004194 if (L->getHeader() == I->getParent())
4195 return PN;
4196 else
4197 // We don't currently keep track of the control flow needed to evaluate
4198 // PHIs, so we cannot handle PHIs inside of loops.
4199 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004200 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004201
4202 // If we won't be able to constant fold this expression even if the operands
4203 // are constants, return early.
4204 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004205
Chris Lattner3221ad02004-04-17 22:58:41 +00004206 // Otherwise, we can evaluate this instruction if all of its operands are
4207 // constant or derived from a PHI node themselves.
4208 PHINode *PHI = 0;
4209 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004210 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004211 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4212 if (P == 0) return 0; // Not evolving from PHI
4213 if (PHI == 0)
4214 PHI = P;
4215 else if (PHI != P)
4216 return 0; // Evolving from multiple different PHIs.
4217 }
4218
4219 // This is a expression evolving from a constant PHI!
4220 return PHI;
4221}
4222
4223/// EvaluateExpression - Given an expression that passes the
4224/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4225/// in the loop has the value PHIVal. If we can't fold this expression for some
4226/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004227static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4228 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004229 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004230 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004231 Instruction *I = cast<Instruction>(V);
4232
Dan Gohman9d4588f2010-06-22 13:15:46 +00004233 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004234
4235 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004236 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004237 if (Operands[i] == 0) return 0;
4238 }
4239
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004240 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004241 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004242 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004243 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004244 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004245}
4246
4247/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4248/// in the header of its containing loop, we know the loop executes a
4249/// constant number of times, and the PHI node is just a recurrence
4250/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004251Constant *
4252ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004253 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004254 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004255 std::map<PHINode*, Constant*>::iterator I =
4256 ConstantEvolutionLoopExitValue.find(PN);
4257 if (I != ConstantEvolutionLoopExitValue.end())
4258 return I->second;
4259
Dan Gohmane0567812010-04-08 23:03:40 +00004260 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004261 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4262
4263 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4264
4265 // Since the loop is canonicalized, the PHI node must have two entries. One
4266 // entry must be a constant (coming in from outside of the loop), and the
4267 // second must be derived from the same PHI.
4268 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4269 Constant *StartCST =
4270 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4271 if (StartCST == 0)
4272 return RetVal = 0; // Must be a constant.
4273
4274 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004275 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4276 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004277 return RetVal = 0; // Not derived from same PHI.
4278
4279 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004280 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004281 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004282
Dan Gohman46bdfb02009-02-24 18:55:53 +00004283 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004284 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004285 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4286 if (IterationNum == NumIterations)
4287 return RetVal = PHIVal; // Got exit value!
4288
4289 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004290 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004291 if (NextPHI == PHIVal)
4292 return RetVal = NextPHI; // Stopped evolving!
4293 if (NextPHI == 0)
4294 return 0; // Couldn't evaluate!
4295 PHIVal = NextPHI;
4296 }
4297}
4298
Dan Gohman07ad19b2009-07-27 16:09:48 +00004299/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004300/// constant number of times (the condition evolves only from constants),
4301/// try to evaluate a few iterations of the loop until we get the exit
4302/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004303/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004304const SCEV *
4305ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4306 Value *Cond,
4307 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004308 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004309 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004310
Dan Gohmanb92654d2010-06-19 14:17:24 +00004311 // If the loop is canonicalized, the PHI will have exactly two entries.
4312 // That's the only form we support here.
4313 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4314
4315 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004316 // second must be derived from the same PHI.
4317 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4318 Constant *StartCST =
4319 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004320 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004321
4322 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004323 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4324 !isa<Constant>(BEValue))
4325 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004326
4327 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4328 // the loop symbolically to determine when the condition gets a value of
4329 // "ExitWhen".
4330 unsigned IterationNum = 0;
4331 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4332 for (Constant *PHIVal = StartCST;
4333 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004334 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004335 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004336
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004337 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004338 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004339
Reid Spencere8019bb2007-03-01 07:25:48 +00004340 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004341 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004342 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004343 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004344
Chris Lattner3221ad02004-04-17 22:58:41 +00004345 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004346 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004347 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004348 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004349 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004350 }
4351
4352 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004353 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004354}
4355
Dan Gohmane7125f42009-09-03 15:00:26 +00004356/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004357/// at the specified scope in the program. The L value specifies a loop
4358/// nest to evaluate the expression at, where null is the top-level or a
4359/// specified loop is immediately inside of the loop.
4360///
4361/// This method can be used to compute the exit value for a variable defined
4362/// in a loop by querying what the value will hold in the parent loop.
4363///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004364/// In the case that a relevant loop exit value cannot be computed, the
4365/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004366const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004367 // Check to see if we've folded this expression at this loop before.
4368 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4369 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4370 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4371 if (!Pair.second)
4372 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004373
Dan Gohman42214892009-08-31 21:15:23 +00004374 // Otherwise compute it.
4375 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004376 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004377 return C;
4378}
4379
4380const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004381 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004382
Nick Lewycky3e630762008-02-20 06:48:22 +00004383 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004384 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004385 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004386 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004387 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004388 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4389 if (PHINode *PN = dyn_cast<PHINode>(I))
4390 if (PN->getParent() == LI->getHeader()) {
4391 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004392 // to see if the loop that contains it has a known backedge-taken
4393 // count. If so, we may be able to force computation of the exit
4394 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004395 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004396 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004397 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004398 // Okay, we know how many times the containing loop executes. If
4399 // this is a constant evolving PHI node, get the final value at
4400 // the specified iteration number.
4401 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004402 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004403 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004404 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004405 }
4406 }
4407
Reid Spencer09906f32006-12-04 21:33:23 +00004408 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004409 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004410 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004411 // result. This is particularly useful for computing loop exit values.
4412 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004413 SmallVector<Constant *, 4> Operands;
4414 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004415 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4416 Value *Op = I->getOperand(i);
4417 if (Constant *C = dyn_cast<Constant>(Op)) {
4418 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004419 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004420 }
Dan Gohman11046452010-06-29 23:43:06 +00004421
4422 // If any of the operands is non-constant and if they are
4423 // non-integer and non-pointer, don't even try to analyze them
4424 // with scev techniques.
4425 if (!isSCEVable(Op->getType()))
4426 return V;
4427
4428 const SCEV *OrigV = getSCEV(Op);
4429 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4430 MadeImprovement |= OrigV != OpV;
4431
4432 Constant *C = 0;
4433 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4434 C = SC->getValue();
4435 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4436 C = dyn_cast<Constant>(SU->getValue());
4437 if (!C) return V;
4438 if (C->getType() != Op->getType())
4439 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4440 Op->getType(),
4441 false),
4442 C, Op->getType());
4443 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004444 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004445
Dan Gohman11046452010-06-29 23:43:06 +00004446 // Check to see if getSCEVAtScope actually made an improvement.
4447 if (MadeImprovement) {
4448 Constant *C = 0;
4449 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4450 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4451 Operands[0], Operands[1], TD);
4452 else
4453 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4454 &Operands[0], Operands.size(), TD);
4455 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004456 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004457 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004458 }
4459 }
4460
4461 // This is some other type of SCEVUnknown, just return it.
4462 return V;
4463 }
4464
Dan Gohman622ed672009-05-04 22:02:23 +00004465 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004466 // Avoid performing the look-up in the common case where the specified
4467 // expression has no loop-variant portions.
4468 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004469 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004470 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004471 // Okay, at least one of these operands is loop variant but might be
4472 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004473 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4474 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004475 NewOps.push_back(OpAtScope);
4476
4477 for (++i; i != e; ++i) {
4478 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004479 NewOps.push_back(OpAtScope);
4480 }
4481 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004482 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004483 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004484 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004485 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004486 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004487 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004488 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004489 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004490 }
4491 }
4492 // If we got here, all operands are loop invariant.
4493 return Comm;
4494 }
4495
Dan Gohman622ed672009-05-04 22:02:23 +00004496 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004497 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4498 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004499 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4500 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004501 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004502 }
4503
4504 // If this is a loop recurrence for a loop that does not contain L, then we
4505 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004506 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004507 // First, attempt to evaluate each operand.
4508 // Avoid performing the look-up in the common case where the specified
4509 // expression has no loop-variant portions.
4510 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4511 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4512 if (OpAtScope == AddRec->getOperand(i))
4513 continue;
4514
4515 // Okay, at least one of these operands is loop variant but might be
4516 // foldable. Build a new instance of the folded commutative expression.
4517 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4518 AddRec->op_begin()+i);
4519 NewOps.push_back(OpAtScope);
4520 for (++i; i != e; ++i)
4521 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4522
4523 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4524 break;
4525 }
4526
4527 // If the scope is outside the addrec's loop, evaluate it by using the
4528 // loop exit value of the addrec.
4529 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004530 // To evaluate this recurrence, we need to know how many times the AddRec
4531 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004532 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004533 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004534
Eli Friedmanb42a6262008-08-04 23:49:06 +00004535 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004536 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004537 }
Dan Gohman11046452010-06-29 23:43:06 +00004538
Dan Gohmand594e6f2009-05-24 23:25:42 +00004539 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004540 }
4541
Dan Gohman622ed672009-05-04 22:02:23 +00004542 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004543 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004544 if (Op == Cast->getOperand())
4545 return Cast; // must be loop invariant
4546 return getZeroExtendExpr(Op, Cast->getType());
4547 }
4548
Dan Gohman622ed672009-05-04 22:02:23 +00004549 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004550 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004551 if (Op == Cast->getOperand())
4552 return Cast; // must be loop invariant
4553 return getSignExtendExpr(Op, Cast->getType());
4554 }
4555
Dan Gohman622ed672009-05-04 22:02:23 +00004556 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004557 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004558 if (Op == Cast->getOperand())
4559 return Cast; // must be loop invariant
4560 return getTruncateExpr(Op, Cast->getType());
4561 }
4562
Torok Edwinc23197a2009-07-14 16:55:14 +00004563 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004564 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004565}
4566
Dan Gohman66a7e852009-05-08 20:38:54 +00004567/// getSCEVAtScope - This is a convenience function which does
4568/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004569const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004570 return getSCEVAtScope(getSCEV(V), L);
4571}
4572
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004573/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4574/// following equation:
4575///
4576/// A * X = B (mod N)
4577///
4578/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4579/// A and B isn't important.
4580///
4581/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004582static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004583 ScalarEvolution &SE) {
4584 uint32_t BW = A.getBitWidth();
4585 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4586 assert(A != 0 && "A must be non-zero.");
4587
4588 // 1. D = gcd(A, N)
4589 //
4590 // The gcd of A and N may have only one prime factor: 2. The number of
4591 // trailing zeros in A is its multiplicity
4592 uint32_t Mult2 = A.countTrailingZeros();
4593 // D = 2^Mult2
4594
4595 // 2. Check if B is divisible by D.
4596 //
4597 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4598 // is not less than multiplicity of this prime factor for D.
4599 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004600 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004601
4602 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4603 // modulo (N / D).
4604 //
4605 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4606 // bit width during computations.
4607 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4608 APInt Mod(BW + 1, 0);
4609 Mod.set(BW - Mult2); // Mod = N / D
4610 APInt I = AD.multiplicativeInverse(Mod);
4611
4612 // 4. Compute the minimum unsigned root of the equation:
4613 // I * (B / D) mod (N / D)
4614 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4615
4616 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4617 // bits.
4618 return SE.getConstant(Result.trunc(BW));
4619}
Chris Lattner53e677a2004-04-02 20:23:17 +00004620
4621/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4622/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4623/// might be the same) or two SCEVCouldNotCompute objects.
4624///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004625static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004626SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004627 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004628 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4629 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4630 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004631
Chris Lattner53e677a2004-04-02 20:23:17 +00004632 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004633 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004634 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004635 return std::make_pair(CNC, CNC);
4636 }
4637
Reid Spencere8019bb2007-03-01 07:25:48 +00004638 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004639 const APInt &L = LC->getValue()->getValue();
4640 const APInt &M = MC->getValue()->getValue();
4641 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004642 APInt Two(BitWidth, 2);
4643 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004644
Dan Gohman64a845e2009-06-24 04:48:43 +00004645 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004646 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004647 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004648 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4649 // The B coefficient is M-N/2
4650 APInt B(M);
4651 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004652
Reid Spencere8019bb2007-03-01 07:25:48 +00004653 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004654 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004655
Reid Spencere8019bb2007-03-01 07:25:48 +00004656 // Compute the B^2-4ac term.
4657 APInt SqrtTerm(B);
4658 SqrtTerm *= B;
4659 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004660
Reid Spencere8019bb2007-03-01 07:25:48 +00004661 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4662 // integer value or else APInt::sqrt() will assert.
4663 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004664
Dan Gohman64a845e2009-06-24 04:48:43 +00004665 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004666 // The divisions must be performed as signed divisions.
4667 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004668 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004669 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004670 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004671 return std::make_pair(CNC, CNC);
4672 }
4673
Owen Andersone922c022009-07-22 00:24:57 +00004674 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004675
4676 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004677 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004678 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004679 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004680
Dan Gohman64a845e2009-06-24 04:48:43 +00004681 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004682 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004683 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004684}
4685
4686/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004687/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004688ScalarEvolution::BackedgeTakenInfo
4689ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004690 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004691 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004692 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004693 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004694 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004695 }
4696
Dan Gohman35738ac2009-05-04 22:30:44 +00004697 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004698 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004699 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004700
4701 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004702 // If this is an affine expression, the execution count of this branch is
4703 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004704 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004705 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004706 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004707 // equivalent to:
4708 //
4709 // Step*N = -Start (mod 2^BW)
4710 //
4711 // where BW is the common bit width of Start and Step.
4712
Chris Lattner53e677a2004-04-02 20:23:17 +00004713 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004714 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4715 L->getParentLoop());
4716 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4717 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004718
Dan Gohman622ed672009-05-04 22:02:23 +00004719 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004720 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004721
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004722 // First, handle unitary steps.
4723 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004724 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004725 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4726 return Start; // N = Start (as unsigned)
4727
4728 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004729 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004730 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004731 -StartC->getValue()->getValue(),
4732 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004733 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004734 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004735 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4736 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004737 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004738 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004739 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4740 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004741 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004742#if 0
David Greene25e0e872009-12-23 22:18:14 +00004743 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004744 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004745#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004746 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004747 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004748 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004749 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004750 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004751 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004752
Chris Lattner53e677a2004-04-02 20:23:17 +00004753 // We can only use this value if the chrec ends up with an exact zero
4754 // value at this index. When solving for "X*X != 5", for example, we
4755 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004756 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004757 if (Val->isZero())
4758 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004759 }
4760 }
4761 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004762
Dan Gohman1c343752009-06-27 21:21:31 +00004763 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004764}
4765
4766/// HowFarToNonZero - Return the number of times a backedge checking the
4767/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004768/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004769ScalarEvolution::BackedgeTakenInfo
4770ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004771 // Loops that look like: while (X == 0) are very strange indeed. We don't
4772 // handle them yet except for the trivial case. This could be expanded in the
4773 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004774
Chris Lattner53e677a2004-04-02 20:23:17 +00004775 // If the value is a constant, check to see if it is known to be non-zero
4776 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004777 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004778 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004779 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004780 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004781 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004782
Chris Lattner53e677a2004-04-02 20:23:17 +00004783 // We could implement others, but I really doubt anyone writes loops like
4784 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004785 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004786}
4787
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004788/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4789/// (which may not be an immediate predecessor) which has exactly one
4790/// successor from which BB is reachable, or null if no such block is
4791/// found.
4792///
Dan Gohman005752b2010-04-15 16:19:08 +00004793std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004794ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004795 // If the block has a unique predecessor, then there is no path from the
4796 // predecessor to the block that does not go through the direct edge
4797 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004798 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004799 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004800
4801 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004802 // If the header has a unique predecessor outside the loop, it must be
4803 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004804 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004805 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004806
Dan Gohman005752b2010-04-15 16:19:08 +00004807 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004808}
4809
Dan Gohman763bad12009-06-20 00:35:32 +00004810/// HasSameValue - SCEV structural equivalence is usually sufficient for
4811/// testing whether two expressions are equal, however for the purposes of
4812/// looking for a condition guarding a loop, it can be useful to be a little
4813/// more general, since a front-end may have replicated the controlling
4814/// expression.
4815///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004816static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004817 // Quick check to see if they are the same SCEV.
4818 if (A == B) return true;
4819
4820 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4821 // two different instructions with the same value. Check for this case.
4822 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4823 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4824 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4825 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004826 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004827 return true;
4828
4829 // Otherwise assume they may have a different value.
4830 return false;
4831}
4832
Dan Gohmane9796502010-04-24 01:28:42 +00004833/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4834/// predicate Pred. Return true iff any changes were made.
4835///
4836bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4837 const SCEV *&LHS, const SCEV *&RHS) {
4838 bool Changed = false;
4839
4840 // Canonicalize a constant to the right side.
4841 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4842 // Check for both operands constant.
4843 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4844 if (ConstantExpr::getICmp(Pred,
4845 LHSC->getValue(),
4846 RHSC->getValue())->isNullValue())
4847 goto trivially_false;
4848 else
4849 goto trivially_true;
4850 }
4851 // Otherwise swap the operands to put the constant on the right.
4852 std::swap(LHS, RHS);
4853 Pred = ICmpInst::getSwappedPredicate(Pred);
4854 Changed = true;
4855 }
4856
4857 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004858 // addrec's loop, put the addrec on the left. Also make a dominance check,
4859 // as both operands could be addrecs loop-invariant in each other's loop.
4860 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4861 const Loop *L = AR->getLoop();
4862 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004863 std::swap(LHS, RHS);
4864 Pred = ICmpInst::getSwappedPredicate(Pred);
4865 Changed = true;
4866 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004867 }
Dan Gohmane9796502010-04-24 01:28:42 +00004868
4869 // If there's a constant operand, canonicalize comparisons with boundary
4870 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4871 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4872 const APInt &RA = RC->getValue()->getValue();
4873 switch (Pred) {
4874 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4875 case ICmpInst::ICMP_EQ:
4876 case ICmpInst::ICMP_NE:
4877 break;
4878 case ICmpInst::ICMP_UGE:
4879 if ((RA - 1).isMinValue()) {
4880 Pred = ICmpInst::ICMP_NE;
4881 RHS = getConstant(RA - 1);
4882 Changed = true;
4883 break;
4884 }
4885 if (RA.isMaxValue()) {
4886 Pred = ICmpInst::ICMP_EQ;
4887 Changed = true;
4888 break;
4889 }
4890 if (RA.isMinValue()) goto trivially_true;
4891
4892 Pred = ICmpInst::ICMP_UGT;
4893 RHS = getConstant(RA - 1);
4894 Changed = true;
4895 break;
4896 case ICmpInst::ICMP_ULE:
4897 if ((RA + 1).isMaxValue()) {
4898 Pred = ICmpInst::ICMP_NE;
4899 RHS = getConstant(RA + 1);
4900 Changed = true;
4901 break;
4902 }
4903 if (RA.isMinValue()) {
4904 Pred = ICmpInst::ICMP_EQ;
4905 Changed = true;
4906 break;
4907 }
4908 if (RA.isMaxValue()) goto trivially_true;
4909
4910 Pred = ICmpInst::ICMP_ULT;
4911 RHS = getConstant(RA + 1);
4912 Changed = true;
4913 break;
4914 case ICmpInst::ICMP_SGE:
4915 if ((RA - 1).isMinSignedValue()) {
4916 Pred = ICmpInst::ICMP_NE;
4917 RHS = getConstant(RA - 1);
4918 Changed = true;
4919 break;
4920 }
4921 if (RA.isMaxSignedValue()) {
4922 Pred = ICmpInst::ICMP_EQ;
4923 Changed = true;
4924 break;
4925 }
4926 if (RA.isMinSignedValue()) goto trivially_true;
4927
4928 Pred = ICmpInst::ICMP_SGT;
4929 RHS = getConstant(RA - 1);
4930 Changed = true;
4931 break;
4932 case ICmpInst::ICMP_SLE:
4933 if ((RA + 1).isMaxSignedValue()) {
4934 Pred = ICmpInst::ICMP_NE;
4935 RHS = getConstant(RA + 1);
4936 Changed = true;
4937 break;
4938 }
4939 if (RA.isMinSignedValue()) {
4940 Pred = ICmpInst::ICMP_EQ;
4941 Changed = true;
4942 break;
4943 }
4944 if (RA.isMaxSignedValue()) goto trivially_true;
4945
4946 Pred = ICmpInst::ICMP_SLT;
4947 RHS = getConstant(RA + 1);
4948 Changed = true;
4949 break;
4950 case ICmpInst::ICMP_UGT:
4951 if (RA.isMinValue()) {
4952 Pred = ICmpInst::ICMP_NE;
4953 Changed = true;
4954 break;
4955 }
4956 if ((RA + 1).isMaxValue()) {
4957 Pred = ICmpInst::ICMP_EQ;
4958 RHS = getConstant(RA + 1);
4959 Changed = true;
4960 break;
4961 }
4962 if (RA.isMaxValue()) goto trivially_false;
4963 break;
4964 case ICmpInst::ICMP_ULT:
4965 if (RA.isMaxValue()) {
4966 Pred = ICmpInst::ICMP_NE;
4967 Changed = true;
4968 break;
4969 }
4970 if ((RA - 1).isMinValue()) {
4971 Pred = ICmpInst::ICMP_EQ;
4972 RHS = getConstant(RA - 1);
4973 Changed = true;
4974 break;
4975 }
4976 if (RA.isMinValue()) goto trivially_false;
4977 break;
4978 case ICmpInst::ICMP_SGT:
4979 if (RA.isMinSignedValue()) {
4980 Pred = ICmpInst::ICMP_NE;
4981 Changed = true;
4982 break;
4983 }
4984 if ((RA + 1).isMaxSignedValue()) {
4985 Pred = ICmpInst::ICMP_EQ;
4986 RHS = getConstant(RA + 1);
4987 Changed = true;
4988 break;
4989 }
4990 if (RA.isMaxSignedValue()) goto trivially_false;
4991 break;
4992 case ICmpInst::ICMP_SLT:
4993 if (RA.isMaxSignedValue()) {
4994 Pred = ICmpInst::ICMP_NE;
4995 Changed = true;
4996 break;
4997 }
4998 if ((RA - 1).isMinSignedValue()) {
4999 Pred = ICmpInst::ICMP_EQ;
5000 RHS = getConstant(RA - 1);
5001 Changed = true;
5002 break;
5003 }
5004 if (RA.isMinSignedValue()) goto trivially_false;
5005 break;
5006 }
5007 }
5008
5009 // Check for obvious equality.
5010 if (HasSameValue(LHS, RHS)) {
5011 if (ICmpInst::isTrueWhenEqual(Pred))
5012 goto trivially_true;
5013 if (ICmpInst::isFalseWhenEqual(Pred))
5014 goto trivially_false;
5015 }
5016
Dan Gohman03557dc2010-05-03 16:35:17 +00005017 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5018 // adding or subtracting 1 from one of the operands.
5019 switch (Pred) {
5020 case ICmpInst::ICMP_SLE:
5021 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5022 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5023 /*HasNUW=*/false, /*HasNSW=*/true);
5024 Pred = ICmpInst::ICMP_SLT;
5025 Changed = true;
5026 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005027 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005028 /*HasNUW=*/false, /*HasNSW=*/true);
5029 Pred = ICmpInst::ICMP_SLT;
5030 Changed = true;
5031 }
5032 break;
5033 case ICmpInst::ICMP_SGE:
5034 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005035 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005036 /*HasNUW=*/false, /*HasNSW=*/true);
5037 Pred = ICmpInst::ICMP_SGT;
5038 Changed = true;
5039 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5040 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5041 /*HasNUW=*/false, /*HasNSW=*/true);
5042 Pred = ICmpInst::ICMP_SGT;
5043 Changed = true;
5044 }
5045 break;
5046 case ICmpInst::ICMP_ULE:
5047 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005048 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005049 /*HasNUW=*/true, /*HasNSW=*/false);
5050 Pred = ICmpInst::ICMP_ULT;
5051 Changed = true;
5052 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005053 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005054 /*HasNUW=*/true, /*HasNSW=*/false);
5055 Pred = ICmpInst::ICMP_ULT;
5056 Changed = true;
5057 }
5058 break;
5059 case ICmpInst::ICMP_UGE:
5060 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005061 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005062 /*HasNUW=*/true, /*HasNSW=*/false);
5063 Pred = ICmpInst::ICMP_UGT;
5064 Changed = true;
5065 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005066 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005067 /*HasNUW=*/true, /*HasNSW=*/false);
5068 Pred = ICmpInst::ICMP_UGT;
5069 Changed = true;
5070 }
5071 break;
5072 default:
5073 break;
5074 }
5075
Dan Gohmane9796502010-04-24 01:28:42 +00005076 // TODO: More simplifications are possible here.
5077
5078 return Changed;
5079
5080trivially_true:
5081 // Return 0 == 0.
5082 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5083 Pred = ICmpInst::ICMP_EQ;
5084 return true;
5085
5086trivially_false:
5087 // Return 0 != 0.
5088 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5089 Pred = ICmpInst::ICMP_NE;
5090 return true;
5091}
5092
Dan Gohman85b05a22009-07-13 21:35:55 +00005093bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5094 return getSignedRange(S).getSignedMax().isNegative();
5095}
5096
5097bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5098 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5099}
5100
5101bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5102 return !getSignedRange(S).getSignedMin().isNegative();
5103}
5104
5105bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5106 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5107}
5108
5109bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5110 return isKnownNegative(S) || isKnownPositive(S);
5111}
5112
5113bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5114 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005115 // Canonicalize the inputs first.
5116 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5117
Dan Gohman53c66ea2010-04-11 22:16:48 +00005118 // If LHS or RHS is an addrec, check to see if the condition is true in
5119 // every iteration of the loop.
5120 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5121 if (isLoopEntryGuardedByCond(
5122 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5123 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005124 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005125 return true;
5126 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5127 if (isLoopEntryGuardedByCond(
5128 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5129 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005130 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005131 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005132
Dan Gohman53c66ea2010-04-11 22:16:48 +00005133 // Otherwise see what can be done with known constant ranges.
5134 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5135}
5136
5137bool
5138ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5139 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005140 if (HasSameValue(LHS, RHS))
5141 return ICmpInst::isTrueWhenEqual(Pred);
5142
Dan Gohman53c66ea2010-04-11 22:16:48 +00005143 // This code is split out from isKnownPredicate because it is called from
5144 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005145 switch (Pred) {
5146 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005147 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005148 break;
5149 case ICmpInst::ICMP_SGT:
5150 Pred = ICmpInst::ICMP_SLT;
5151 std::swap(LHS, RHS);
5152 case ICmpInst::ICMP_SLT: {
5153 ConstantRange LHSRange = getSignedRange(LHS);
5154 ConstantRange RHSRange = getSignedRange(RHS);
5155 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5156 return true;
5157 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5158 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005159 break;
5160 }
5161 case ICmpInst::ICMP_SGE:
5162 Pred = ICmpInst::ICMP_SLE;
5163 std::swap(LHS, RHS);
5164 case ICmpInst::ICMP_SLE: {
5165 ConstantRange LHSRange = getSignedRange(LHS);
5166 ConstantRange RHSRange = getSignedRange(RHS);
5167 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5168 return true;
5169 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5170 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005171 break;
5172 }
5173 case ICmpInst::ICMP_UGT:
5174 Pred = ICmpInst::ICMP_ULT;
5175 std::swap(LHS, RHS);
5176 case ICmpInst::ICMP_ULT: {
5177 ConstantRange LHSRange = getUnsignedRange(LHS);
5178 ConstantRange RHSRange = getUnsignedRange(RHS);
5179 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5180 return true;
5181 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5182 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005183 break;
5184 }
5185 case ICmpInst::ICMP_UGE:
5186 Pred = ICmpInst::ICMP_ULE;
5187 std::swap(LHS, RHS);
5188 case ICmpInst::ICMP_ULE: {
5189 ConstantRange LHSRange = getUnsignedRange(LHS);
5190 ConstantRange RHSRange = getUnsignedRange(RHS);
5191 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5192 return true;
5193 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5194 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005195 break;
5196 }
5197 case ICmpInst::ICMP_NE: {
5198 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5199 return true;
5200 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5201 return true;
5202
5203 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5204 if (isKnownNonZero(Diff))
5205 return true;
5206 break;
5207 }
5208 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005209 // The check at the top of the function catches the case where
5210 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005211 break;
5212 }
5213 return false;
5214}
5215
5216/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5217/// protected by a conditional between LHS and RHS. This is used to
5218/// to eliminate casts.
5219bool
5220ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5221 ICmpInst::Predicate Pred,
5222 const SCEV *LHS, const SCEV *RHS) {
5223 // Interpret a null as meaning no loop, where there is obviously no guard
5224 // (interprocedural conditions notwithstanding).
5225 if (!L) return true;
5226
5227 BasicBlock *Latch = L->getLoopLatch();
5228 if (!Latch)
5229 return false;
5230
5231 BranchInst *LoopContinuePredicate =
5232 dyn_cast<BranchInst>(Latch->getTerminator());
5233 if (!LoopContinuePredicate ||
5234 LoopContinuePredicate->isUnconditional())
5235 return false;
5236
Dan Gohmanaf08a362010-08-10 23:46:30 +00005237 return isImpliedCond(Pred, LHS, RHS,
5238 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005239 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005240}
5241
Dan Gohman3948d0b2010-04-11 19:27:13 +00005242/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005243/// by a conditional between LHS and RHS. This is used to help avoid max
5244/// expressions in loop trip counts, and to eliminate casts.
5245bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005246ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5247 ICmpInst::Predicate Pred,
5248 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005249 // Interpret a null as meaning no loop, where there is obviously no guard
5250 // (interprocedural conditions notwithstanding).
5251 if (!L) return false;
5252
Dan Gohman859b4822009-05-18 15:36:09 +00005253 // Starting at the loop predecessor, climb up the predecessor chain, as long
5254 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005255 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005256 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005257 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005258 Pair.first;
5259 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005260
5261 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005262 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005263 if (!LoopEntryPredicate ||
5264 LoopEntryPredicate->isUnconditional())
5265 continue;
5266
Dan Gohmanaf08a362010-08-10 23:46:30 +00005267 if (isImpliedCond(Pred, LHS, RHS,
5268 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005269 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005270 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005271 }
5272
Dan Gohman38372182008-08-12 20:17:31 +00005273 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005274}
5275
Dan Gohman0f4b2852009-07-21 23:03:19 +00005276/// isImpliedCond - Test whether the condition described by Pred, LHS,
5277/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005278bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005279 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005280 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005281 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005282 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005283 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005284 if (BO->getOpcode() == Instruction::And) {
5285 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005286 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5287 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005288 } else if (BO->getOpcode() == Instruction::Or) {
5289 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005290 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5291 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005292 }
5293 }
5294
Dan Gohmanaf08a362010-08-10 23:46:30 +00005295 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005296 if (!ICI) return false;
5297
Dan Gohman85b05a22009-07-13 21:35:55 +00005298 // Bail if the ICmp's operands' types are wider than the needed type
5299 // before attempting to call getSCEV on them. This avoids infinite
5300 // recursion, since the analysis of widening casts can require loop
5301 // exit condition information for overflow checking, which would
5302 // lead back here.
5303 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005304 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005305 return false;
5306
Dan Gohman0f4b2852009-07-21 23:03:19 +00005307 // Now that we found a conditional branch that dominates the loop, check to
5308 // see if it is the comparison we are looking for.
5309 ICmpInst::Predicate FoundPred;
5310 if (Inverse)
5311 FoundPred = ICI->getInversePredicate();
5312 else
5313 FoundPred = ICI->getPredicate();
5314
5315 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5316 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005317
5318 // Balance the types. The case where FoundLHS' type is wider than
5319 // LHS' type is checked for above.
5320 if (getTypeSizeInBits(LHS->getType()) >
5321 getTypeSizeInBits(FoundLHS->getType())) {
5322 if (CmpInst::isSigned(Pred)) {
5323 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5324 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5325 } else {
5326 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5327 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5328 }
5329 }
5330
Dan Gohman0f4b2852009-07-21 23:03:19 +00005331 // Canonicalize the query to match the way instcombine will have
5332 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005333 if (SimplifyICmpOperands(Pred, LHS, RHS))
5334 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005335 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005336 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5337 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005338 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005339
5340 // Check to see if we can make the LHS or RHS match.
5341 if (LHS == FoundRHS || RHS == FoundLHS) {
5342 if (isa<SCEVConstant>(RHS)) {
5343 std::swap(FoundLHS, FoundRHS);
5344 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5345 } else {
5346 std::swap(LHS, RHS);
5347 Pred = ICmpInst::getSwappedPredicate(Pred);
5348 }
5349 }
5350
5351 // Check whether the found predicate is the same as the desired predicate.
5352 if (FoundPred == Pred)
5353 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5354
5355 // Check whether swapping the found predicate makes it the same as the
5356 // desired predicate.
5357 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5358 if (isa<SCEVConstant>(RHS))
5359 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5360 else
5361 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5362 RHS, LHS, FoundLHS, FoundRHS);
5363 }
5364
5365 // Check whether the actual condition is beyond sufficient.
5366 if (FoundPred == ICmpInst::ICMP_EQ)
5367 if (ICmpInst::isTrueWhenEqual(Pred))
5368 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5369 return true;
5370 if (Pred == ICmpInst::ICMP_NE)
5371 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5372 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5373 return true;
5374
5375 // Otherwise assume the worst.
5376 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005377}
5378
Dan Gohman0f4b2852009-07-21 23:03:19 +00005379/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005380/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005381/// and FoundRHS is true.
5382bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5383 const SCEV *LHS, const SCEV *RHS,
5384 const SCEV *FoundLHS,
5385 const SCEV *FoundRHS) {
5386 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5387 FoundLHS, FoundRHS) ||
5388 // ~x < ~y --> x > y
5389 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5390 getNotSCEV(FoundRHS),
5391 getNotSCEV(FoundLHS));
5392}
5393
5394/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005395/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005396/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005397bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005398ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5399 const SCEV *LHS, const SCEV *RHS,
5400 const SCEV *FoundLHS,
5401 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005402 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005403 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5404 case ICmpInst::ICMP_EQ:
5405 case ICmpInst::ICMP_NE:
5406 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5407 return true;
5408 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005409 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005410 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005411 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5412 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005413 return true;
5414 break;
5415 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005416 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005417 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5418 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005419 return true;
5420 break;
5421 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005422 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005423 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5424 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005425 return true;
5426 break;
5427 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005428 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005429 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5430 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005431 return true;
5432 break;
5433 }
5434
5435 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005436}
5437
Dan Gohman51f53b72009-06-21 23:46:38 +00005438/// getBECount - Subtract the end and start values and divide by the step,
5439/// rounding up, to get the number of times the backedge is executed. Return
5440/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005441const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005442 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005443 const SCEV *Step,
5444 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005445 assert(!isKnownNegative(Step) &&
5446 "This code doesn't handle negative strides yet!");
5447
Dan Gohman51f53b72009-06-21 23:46:38 +00005448 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005449 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005450 const SCEV *Diff = getMinusSCEV(End, Start);
5451 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005452
5453 // Add an adjustment to the difference between End and Start so that
5454 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005455 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005456
Dan Gohman1f96e672009-09-17 18:05:20 +00005457 if (!NoWrap) {
5458 // Check Add for unsigned overflow.
5459 // TODO: More sophisticated things could be done here.
5460 const Type *WideTy = IntegerType::get(getContext(),
5461 getTypeSizeInBits(Ty) + 1);
5462 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5463 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5464 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5465 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5466 return getCouldNotCompute();
5467 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005468
5469 return getUDivExpr(Add, Step);
5470}
5471
Chris Lattnerdb25de42005-08-15 23:33:51 +00005472/// HowManyLessThans - Return the number of times a backedge containing the
5473/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005474/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005475ScalarEvolution::BackedgeTakenInfo
5476ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5477 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005478 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005479 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005480
Dan Gohman35738ac2009-05-04 22:30:44 +00005481 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005482 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005483 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005484
Dan Gohman1f96e672009-09-17 18:05:20 +00005485 // Check to see if we have a flag which makes analysis easy.
5486 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5487 AddRec->hasNoUnsignedWrap();
5488
Chris Lattnerdb25de42005-08-15 23:33:51 +00005489 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005490 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005491 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005492
Dan Gohman52fddd32010-01-26 04:40:18 +00005493 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005494 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005495 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005496 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005497 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005498 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005499 // value and past the maximum value for its type in a single step.
5500 // Note that it's not sufficient to check NoWrap here, because even
5501 // though the value after a wrap is undefined, it's not undefined
5502 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005503 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005504 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005505 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005506 if (isSigned) {
5507 APInt Max = APInt::getSignedMaxValue(BitWidth);
5508 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5509 .slt(getSignedRange(RHS).getSignedMax()))
5510 return getCouldNotCompute();
5511 } else {
5512 APInt Max = APInt::getMaxValue(BitWidth);
5513 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5514 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5515 return getCouldNotCompute();
5516 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005517 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005518 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005519 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005520
Dan Gohmana1af7572009-04-30 20:47:05 +00005521 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5522 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5523 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005524 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005525
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005526 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005527 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005528
Dan Gohmana1af7572009-04-30 20:47:05 +00005529 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005530 const SCEV *MinStart = getConstant(isSigned ?
5531 getSignedRange(Start).getSignedMin() :
5532 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005533
Dan Gohmana1af7572009-04-30 20:47:05 +00005534 // If we know that the condition is true in order to enter the loop,
5535 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005536 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5537 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005538 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005539 if (!isLoopEntryGuardedByCond(L,
5540 isSigned ? ICmpInst::ICMP_SLT :
5541 ICmpInst::ICMP_ULT,
5542 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005543 End = isSigned ? getSMaxExpr(RHS, Start)
5544 : getUMaxExpr(RHS, Start);
5545
5546 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005547 const SCEV *MaxEnd = getConstant(isSigned ?
5548 getSignedRange(End).getSignedMax() :
5549 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005550
Dan Gohman52fddd32010-01-26 04:40:18 +00005551 // If MaxEnd is within a step of the maximum integer value in its type,
5552 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005553 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005554 // compute the correct value.
5555 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005556 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005557 MaxEnd = isSigned ?
5558 getSMinExpr(MaxEnd,
5559 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5560 StepMinusOne)) :
5561 getUMinExpr(MaxEnd,
5562 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5563 StepMinusOne));
5564
Dan Gohmana1af7572009-04-30 20:47:05 +00005565 // Finally, we subtract these two values and divide, rounding up, to get
5566 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005567 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005568
5569 // The maximum backedge count is similar, except using the minimum start
5570 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005571 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005572
5573 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005574 }
5575
Dan Gohman1c343752009-06-27 21:21:31 +00005576 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005577}
5578
Chris Lattner53e677a2004-04-02 20:23:17 +00005579/// getNumIterationsInRange - Return the number of iterations of this loop that
5580/// produce values in the specified constant range. Another way of looking at
5581/// this is that it returns the first iteration number where the value is not in
5582/// the condition, thus computing the exit count. If the iteration count can't
5583/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005584const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005585 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005586 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005587 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005588
5589 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005590 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005591 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005592 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005593 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005594 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005595 if (const SCEVAddRecExpr *ShiftedAddRec =
5596 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005597 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005598 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005599 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005600 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005601 }
5602
5603 // The only time we can solve this is when we have all constant indices.
5604 // Otherwise, we cannot determine the overflow conditions.
5605 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5606 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005607 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005608
5609
5610 // Okay at this point we know that all elements of the chrec are constants and
5611 // that the start element is zero.
5612
5613 // First check to see if the range contains zero. If not, the first
5614 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005615 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005616 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005617 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005618
Chris Lattner53e677a2004-04-02 20:23:17 +00005619 if (isAffine()) {
5620 // If this is an affine expression then we have this situation:
5621 // Solve {0,+,A} in Range === Ax in Range
5622
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005623 // We know that zero is in the range. If A is positive then we know that
5624 // the upper value of the range must be the first possible exit value.
5625 // If A is negative then the lower of the range is the last possible loop
5626 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005627 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005628 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5629 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005630
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005631 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005632 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005633 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005634
5635 // Evaluate at the exit value. If we really did fall out of the valid
5636 // range, then we computed our trip count, otherwise wrap around or other
5637 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005638 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005639 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005640 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005641
5642 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005643 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005644 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005645 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005646 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005647 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005648 } else if (isQuadratic()) {
5649 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5650 // quadratic equation to solve it. To do this, we must frame our problem in
5651 // terms of figuring out when zero is crossed, instead of when
5652 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005653 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005654 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005655 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005656
5657 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005658 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005659 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005660 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5661 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005662 if (R1) {
5663 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005664 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005665 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005666 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005667 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005668 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005669
Chris Lattner53e677a2004-04-02 20:23:17 +00005670 // Make sure the root is not off by one. The returned iteration should
5671 // not be in the range, but the previous one should be. When solving
5672 // for "X*X < 5", for example, we should not return a root of 2.
5673 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005674 R1->getValue(),
5675 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005676 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005677 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005678 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005679 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005680
Dan Gohman246b2562007-10-22 18:31:58 +00005681 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005682 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005683 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005684 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005685 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005686
Chris Lattner53e677a2004-04-02 20:23:17 +00005687 // If R1 was not in the range, then it is a good return value. Make
5688 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005689 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005690 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005691 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005692 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005693 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005694 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005695 }
5696 }
5697 }
5698
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005699 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005700}
5701
5702
5703
5704//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005705// SCEVCallbackVH Class Implementation
5706//===----------------------------------------------------------------------===//
5707
Dan Gohman1959b752009-05-19 19:22:47 +00005708void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005709 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005710 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5711 SE->ConstantEvolutionLoopExitValue.erase(PN);
5712 SE->Scalars.erase(getValPtr());
5713 // this now dangles!
5714}
5715
Dan Gohman81f91212010-07-28 01:09:07 +00005716void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005717 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005718
Dan Gohman35738ac2009-05-04 22:30:44 +00005719 // Forget all the expressions associated with users of the old value,
5720 // so that future queries will recompute the expressions using the new
5721 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005722 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005723 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005724 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005725 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5726 UI != UE; ++UI)
5727 Worklist.push_back(*UI);
5728 while (!Worklist.empty()) {
5729 User *U = Worklist.pop_back_val();
5730 // Deleting the Old value will cause this to dangle. Postpone
5731 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005732 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005733 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005734 if (!Visited.insert(U))
5735 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005736 if (PHINode *PN = dyn_cast<PHINode>(U))
5737 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005738 SE->Scalars.erase(U);
5739 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5740 UI != UE; ++UI)
5741 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005742 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005743 // Delete the Old value.
5744 if (PHINode *PN = dyn_cast<PHINode>(Old))
5745 SE->ConstantEvolutionLoopExitValue.erase(PN);
5746 SE->Scalars.erase(Old);
5747 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005748}
5749
Dan Gohman1959b752009-05-19 19:22:47 +00005750ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005751 : CallbackVH(V), SE(se) {}
5752
5753//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005754// ScalarEvolution Class Implementation
5755//===----------------------------------------------------------------------===//
5756
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005757ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005758 : FunctionPass(ID), FirstUnknown(0) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005759}
5760
Chris Lattner53e677a2004-04-02 20:23:17 +00005761bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005762 this->F = &F;
5763 LI = &getAnalysis<LoopInfo>();
5764 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005765 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005766 return false;
5767}
5768
5769void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005770 // Iterate through all the SCEVUnknown instances and call their
5771 // destructors, so that they release their references to their values.
5772 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5773 U->~SCEVUnknown();
5774 FirstUnknown = 0;
5775
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005776 Scalars.clear();
5777 BackedgeTakenCounts.clear();
5778 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005779 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005780 UniqueSCEVs.clear();
5781 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005782}
5783
5784void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5785 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005786 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005787 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005788}
5789
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005790bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005791 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005792}
5793
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005794static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005795 const Loop *L) {
5796 // Print all inner loops first
5797 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5798 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005799
Dan Gohman30733292010-01-09 18:17:45 +00005800 OS << "Loop ";
5801 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5802 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005803
Dan Gohman5d984912009-12-18 01:14:11 +00005804 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005805 L->getExitBlocks(ExitBlocks);
5806 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005807 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005808
Dan Gohman46bdfb02009-02-24 18:55:53 +00005809 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5810 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005811 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005812 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005813 }
5814
Dan Gohman30733292010-01-09 18:17:45 +00005815 OS << "\n"
5816 "Loop ";
5817 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5818 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005819
5820 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5821 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5822 } else {
5823 OS << "Unpredictable max backedge-taken count. ";
5824 }
5825
5826 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005827}
5828
Dan Gohman5d984912009-12-18 01:14:11 +00005829void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005830 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005831 // out SCEV values of all instructions that are interesting. Doing
5832 // this potentially causes it to create new SCEV objects though,
5833 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005834 // observable from outside the class though, so casting away the
5835 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005836 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005837
Dan Gohman30733292010-01-09 18:17:45 +00005838 OS << "Classifying expressions for: ";
5839 WriteAsOperand(OS, F, /*PrintType=*/false);
5840 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005841 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005842 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005843 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005844 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005845 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005846 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005847
Dan Gohman0c689c52009-06-19 17:49:54 +00005848 const Loop *L = LI->getLoopFor((*I).getParent());
5849
Dan Gohman0bba49c2009-07-07 17:06:11 +00005850 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005851 if (AtUse != SV) {
5852 OS << " --> ";
5853 AtUse->print(OS);
5854 }
5855
5856 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005857 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005858 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005859 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005860 OS << "<<Unknown>>";
5861 } else {
5862 OS << *ExitValue;
5863 }
5864 }
5865
Chris Lattner53e677a2004-04-02 20:23:17 +00005866 OS << "\n";
5867 }
5868
Dan Gohman30733292010-01-09 18:17:45 +00005869 OS << "Determining loop execution counts for: ";
5870 WriteAsOperand(OS, F, /*PrintType=*/false);
5871 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005872 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5873 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005874}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005875