blob: 7ab552839c1000a509446d6c30aa2a1a6a81b558 [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Owen Anderson07000c62006-05-12 06:33:49 +000015#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000016#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000018#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000019#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000020#include "llvm/ADT/StringExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000021#include "llvm/Support/MathExtras.h"
Chris Lattner310968c2005-01-07 07:44:53 +000022using namespace llvm;
23
Evan Cheng56966222007-01-12 02:11:51 +000024/// InitLibcallNames - Set default libcall names.
25///
Evan Cheng79cca502007-01-12 22:51:10 +000026static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000027 Names[RTLIB::SHL_I32] = "__ashlsi3";
28 Names[RTLIB::SHL_I64] = "__ashldi3";
29 Names[RTLIB::SRL_I32] = "__lshrsi3";
30 Names[RTLIB::SRL_I64] = "__lshrdi3";
31 Names[RTLIB::SRA_I32] = "__ashrsi3";
32 Names[RTLIB::SRA_I64] = "__ashrdi3";
33 Names[RTLIB::MUL_I32] = "__mulsi3";
34 Names[RTLIB::MUL_I64] = "__muldi3";
35 Names[RTLIB::SDIV_I32] = "__divsi3";
36 Names[RTLIB::SDIV_I64] = "__divdi3";
37 Names[RTLIB::UDIV_I32] = "__udivsi3";
38 Names[RTLIB::UDIV_I64] = "__udivdi3";
39 Names[RTLIB::SREM_I32] = "__modsi3";
40 Names[RTLIB::SREM_I64] = "__moddi3";
41 Names[RTLIB::UREM_I32] = "__umodsi3";
42 Names[RTLIB::UREM_I64] = "__umoddi3";
43 Names[RTLIB::NEG_I32] = "__negsi2";
44 Names[RTLIB::NEG_I64] = "__negdi2";
45 Names[RTLIB::ADD_F32] = "__addsf3";
46 Names[RTLIB::ADD_F64] = "__adddf3";
47 Names[RTLIB::SUB_F32] = "__subsf3";
48 Names[RTLIB::SUB_F64] = "__subdf3";
49 Names[RTLIB::MUL_F32] = "__mulsf3";
50 Names[RTLIB::MUL_F64] = "__muldf3";
51 Names[RTLIB::DIV_F32] = "__divsf3";
52 Names[RTLIB::DIV_F64] = "__divdf3";
53 Names[RTLIB::REM_F32] = "fmodf";
54 Names[RTLIB::REM_F64] = "fmod";
55 Names[RTLIB::NEG_F32] = "__negsf2";
56 Names[RTLIB::NEG_F64] = "__negdf2";
57 Names[RTLIB::POWI_F32] = "__powisf2";
58 Names[RTLIB::POWI_F64] = "__powidf2";
59 Names[RTLIB::SQRT_F32] = "sqrtf";
60 Names[RTLIB::SQRT_F64] = "sqrt";
61 Names[RTLIB::SIN_F32] = "sinf";
62 Names[RTLIB::SIN_F64] = "sin";
63 Names[RTLIB::COS_F32] = "cosf";
64 Names[RTLIB::COS_F64] = "cos";
65 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
66 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
67 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
68 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
69 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
70 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
71 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
72 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
73 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
74 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
75 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
76 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
77 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
78 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
79 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
80 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
81 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
82 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
83 Names[RTLIB::OEQ_F32] = "__eqsf2";
84 Names[RTLIB::OEQ_F64] = "__eqdf2";
85 Names[RTLIB::UNE_F32] = "__nesf2";
86 Names[RTLIB::UNE_F64] = "__nedf2";
87 Names[RTLIB::OGE_F32] = "__gesf2";
88 Names[RTLIB::OGE_F64] = "__gedf2";
89 Names[RTLIB::OLT_F32] = "__ltsf2";
90 Names[RTLIB::OLT_F64] = "__ltdf2";
91 Names[RTLIB::OLE_F32] = "__lesf2";
92 Names[RTLIB::OLE_F64] = "__ledf2";
93 Names[RTLIB::OGT_F32] = "__gtsf2";
94 Names[RTLIB::OGT_F64] = "__gtdf2";
95 Names[RTLIB::UO_F32] = "__unordsf2";
96 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +000097 Names[RTLIB::O_F32] = "__unordsf2";
98 Names[RTLIB::O_F64] = "__unorddf2";
99}
100
101/// InitCmpLibcallCCs - Set default comparison libcall CC.
102///
103static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
104 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
105 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
106 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
107 CCs[RTLIB::UNE_F32] = ISD::SETNE;
108 CCs[RTLIB::UNE_F64] = ISD::SETNE;
109 CCs[RTLIB::OGE_F32] = ISD::SETGE;
110 CCs[RTLIB::OGE_F64] = ISD::SETGE;
111 CCs[RTLIB::OLT_F32] = ISD::SETLT;
112 CCs[RTLIB::OLT_F64] = ISD::SETLT;
113 CCs[RTLIB::OLE_F32] = ISD::SETLE;
114 CCs[RTLIB::OLE_F64] = ISD::SETLE;
115 CCs[RTLIB::OGT_F32] = ISD::SETGT;
116 CCs[RTLIB::OGT_F64] = ISD::SETGT;
117 CCs[RTLIB::UO_F32] = ISD::SETNE;
118 CCs[RTLIB::UO_F64] = ISD::SETNE;
119 CCs[RTLIB::O_F32] = ISD::SETEQ;
120 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000121}
122
Chris Lattner310968c2005-01-07 07:44:53 +0000123TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000124 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000125 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000126 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000127 // All operations default to being supported.
128 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000129 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000130 memset(&StoreXActions, 0, sizeof(StoreXActions));
Evan Cheng5ff839f2006-11-09 18:56:43 +0000131 // Initialize all indexed load / store to expand.
132 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
133 for (unsigned IM = (unsigned)ISD::PRE_INC;
134 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
135 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
136 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
137 }
138 }
Chris Lattner310968c2005-01-07 07:44:53 +0000139
Owen Andersona69571c2006-05-03 01:29:57 +0000140 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000141 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000142 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000143 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000144 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Chris Lattner00ffed02006-03-01 04:52:55 +0000145 memset(TargetDAGCombineArray, 0,
146 sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000147 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000148 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000149 UseUnderscoreSetJmp = false;
150 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000151 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000152 IntDivIsCheap = false;
153 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000154 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000155 ExceptionPointerRegister = 0;
156 ExceptionSelectorRegister = 0;
Evan Cheng0577a222006-01-25 18:52:42 +0000157 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000158 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000159 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000160 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000161
162 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000163 InitCmpLibcallCCs(CmpLibcallCCs);
Chris Lattner310968c2005-01-07 07:44:53 +0000164}
165
Chris Lattnercba82f92005-01-16 07:28:11 +0000166TargetLowering::~TargetLowering() {}
167
Chris Lattnerbb97d812005-01-16 01:10:58 +0000168/// setValueTypeAction - Set the action for a particular value type. This
169/// assumes an action has not already been set for this value type.
Chris Lattnercba82f92005-01-16 07:28:11 +0000170static void SetValueTypeAction(MVT::ValueType VT,
171 TargetLowering::LegalizeAction Action,
Chris Lattnerbb97d812005-01-16 01:10:58 +0000172 TargetLowering &TLI,
173 MVT::ValueType *TransformToType,
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000174 TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
175 ValueTypeActions.setTypeAction(VT, Action);
Chris Lattnercba82f92005-01-16 07:28:11 +0000176 if (Action == TargetLowering::Promote) {
Chris Lattnerbb97d812005-01-16 01:10:58 +0000177 MVT::ValueType PromoteTo;
178 if (VT == MVT::f32)
179 PromoteTo = MVT::f64;
180 else {
181 unsigned LargerReg = VT+1;
Chris Lattner9ed62c12005-08-24 16:34:12 +0000182 while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
Chris Lattnerbb97d812005-01-16 01:10:58 +0000183 ++LargerReg;
184 assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
185 "Nothing to promote to??");
186 }
187 PromoteTo = (MVT::ValueType)LargerReg;
188 }
189
190 assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
191 MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
192 "Can only promote from int->int or fp->fp!");
193 assert(VT < PromoteTo && "Must promote to a larger type!");
194 TransformToType[VT] = PromoteTo;
Chris Lattnercba82f92005-01-16 07:28:11 +0000195 } else if (Action == TargetLowering::Expand) {
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000196 // f32 and f64 is each expanded to corresponding integer type of same size.
197 if (VT == MVT::f32)
198 TransformToType[VT] = MVT::i32;
199 else if (VT == MVT::f64)
200 TransformToType[VT] = MVT::i64;
201 else {
Dan Gohman7f321562007-06-25 16:23:39 +0000202 assert((MVT::isVector(VT) || MVT::isInteger(VT)) && VT > MVT::i8 &&
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000203 "Cannot expand this type: target must support SOME integer reg!");
204 // Expand to the next smaller integer type!
205 TransformToType[VT] = (MVT::ValueType)(VT-1);
206 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000207 }
208}
209
210
Chris Lattner310968c2005-01-07 07:44:53 +0000211/// computeRegisterProperties - Once all of the register classes are added,
212/// this allows us to compute derived properties we expose.
213void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000214 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000215 "Too many value types for ValueTypeActions to hold!");
216
Chris Lattner310968c2005-01-07 07:44:53 +0000217 // Everything defaults to one.
218 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
Dan Gohmanb9f10192007-06-21 14:42:22 +0000219 NumRegistersForVT[i] = 1;
Misha Brukmanf976c852005-04-21 22:55:34 +0000220
Chris Lattner310968c2005-01-07 07:44:53 +0000221 // Find the largest integer register class.
222 unsigned LargestIntReg = MVT::i128;
223 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
224 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
225
226 // Every integer value type larger than this largest register takes twice as
227 // many registers to represent as the previous ValueType.
228 unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
229 for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
Dan Gohmanb9f10192007-06-21 14:42:22 +0000230 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Chris Lattner310968c2005-01-07 07:44:53 +0000231
Chris Lattnerbb97d812005-01-16 01:10:58 +0000232 // Inspect all of the ValueType's possible, deciding how to process them.
233 for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
234 // If we are expanding this type, expand it!
Dan Gohmanb9f10192007-06-21 14:42:22 +0000235 if (getNumRegisters((MVT::ValueType)IntReg) != 1)
Chris Lattnercba82f92005-01-16 07:28:11 +0000236 SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
Chris Lattnerbb97d812005-01-16 01:10:58 +0000237 ValueTypeActions);
Chris Lattner9ed62c12005-08-24 16:34:12 +0000238 else if (!isTypeLegal((MVT::ValueType)IntReg))
Chris Lattnerbb97d812005-01-16 01:10:58 +0000239 // Otherwise, if we don't have native support, we must promote to a
240 // larger type.
Chris Lattnercba82f92005-01-16 07:28:11 +0000241 SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
242 TransformToType, ValueTypeActions);
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000243 else
244 TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
Misha Brukmanf976c852005-04-21 22:55:34 +0000245
Dan Gohman2d74a312007-06-21 14:48:26 +0000246 // If the target does not have native f64 support, expand it to i64. We will
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000247 // be generating soft float library calls. If the target does not have native
Dan Gohman2d74a312007-06-21 14:48:26 +0000248 // support for f32, promote it to f64 if it is legal. Otherwise, expand it to
249 // i32.
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000250 if (isTypeLegal(MVT::f64))
251 TransformToType[MVT::f64] = MVT::f64;
252 else {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000253 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000254 SetValueTypeAction(MVT::f64, Expand, *this, TransformToType,
255 ValueTypeActions);
256 }
257 if (isTypeLegal(MVT::f32))
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000258 TransformToType[MVT::f32] = MVT::f32;
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000259 else if (isTypeLegal(MVT::f64))
260 SetValueTypeAction(MVT::f32, Promote, *this, TransformToType,
261 ValueTypeActions);
262 else {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000263 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000264 SetValueTypeAction(MVT::f32, Expand, *this, TransformToType,
265 ValueTypeActions);
266 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000267
Chris Lattner3a5935842006-03-16 19:50:01 +0000268 // Loop over all of the legal vector value types, specifying an identity type
269 // transformation.
270 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000271 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Chris Lattner3a5935842006-03-16 19:50:01 +0000272 if (isTypeLegal((MVT::ValueType)i))
273 TransformToType[i] = (MVT::ValueType)i;
Dan Gohman7f321562007-06-25 16:23:39 +0000274 else {
275 MVT::ValueType VT1, VT2;
276 NumRegistersForVT[i] = getVectorTypeBreakdown(i, VT1, VT2);
277 SetValueTypeAction(i, Expand, *this, TransformToType,
278 ValueTypeActions);
279 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000280 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000281}
Chris Lattnercba82f92005-01-16 07:28:11 +0000282
Evan Cheng72261582005-12-20 06:22:03 +0000283const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
284 return NULL;
285}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000286
Dan Gohman7f321562007-06-25 16:23:39 +0000287/// getVectorTypeBreakdown - Vector types are broken down into some number of
288/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000289/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000290/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000291///
Dan Gohman7f321562007-06-25 16:23:39 +0000292/// This method returns the number of registers needed, and the VT for each
293/// register. It also returns the VT of the VectorType elements before they
294/// are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000295///
Dan Gohman7f321562007-06-25 16:23:39 +0000296unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
297 MVT::ValueType &ElementVT,
298 MVT::ValueType &LegalElementVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000299 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000300 unsigned NumElts = MVT::getVectorNumElements(VT);
301 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000302
303 unsigned NumVectorRegs = 1;
304
305 // Divide the input until we get to a supported size. This will always
306 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000307 while (NumElts > 1 &&
308 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000309 NumElts >>= 1;
310 NumVectorRegs <<= 1;
311 }
312
Dan Gohman7f321562007-06-25 16:23:39 +0000313 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
314 if (!isTypeLegal(NewVT))
315 NewVT = EltTy;
316 ElementVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000317
Dan Gohman7f321562007-06-25 16:23:39 +0000318 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
319 LegalElementVT = DestVT;
320 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000321 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000322 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000323 } else {
324 // Otherwise, promotion or legal types use the same number of registers as
325 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000326 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000327 }
328
Evan Chenge9b3da12006-05-17 18:10:06 +0000329 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000330}
331
Chris Lattnereb8146b2006-02-04 02:13:02 +0000332//===----------------------------------------------------------------------===//
333// Optimization Methods
334//===----------------------------------------------------------------------===//
335
Nate Begeman368e18d2006-02-16 21:11:51 +0000336/// ShrinkDemandedConstant - Check to see if the specified operand of the
337/// specified instruction is a constant integer. If so, check to see if there
338/// are any bits set in the constant that are not demanded. If so, shrink the
339/// constant and return true.
340bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
341 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000342 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000343 switch(Op.getOpcode()) {
344 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000345 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000346 case ISD::OR:
347 case ISD::XOR:
348 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
349 if ((~Demanded & C->getValue()) != 0) {
350 MVT::ValueType VT = Op.getValueType();
351 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
352 DAG.getConstant(Demanded & C->getValue(),
353 VT));
354 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000355 }
Nate Begemande996292006-02-03 22:24:05 +0000356 break;
357 }
358 return false;
359}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000360
Nate Begeman368e18d2006-02-16 21:11:51 +0000361/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
362/// DemandedMask bits of the result of Op are ever used downstream. If we can
363/// use this information to simplify Op, create a new simplified DAG node and
364/// return true, returning the original and new nodes in Old and New. Otherwise,
365/// analyze the expression and return a mask of KnownOne and KnownZero bits for
366/// the expression (used to simplify the caller). The KnownZero/One bits may
367/// only be accurate for those bits in the DemandedMask.
368bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
369 uint64_t &KnownZero,
370 uint64_t &KnownOne,
371 TargetLoweringOpt &TLO,
372 unsigned Depth) const {
373 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000374
375 // The masks are not wide enough to represent this type! Should use APInt.
376 if (Op.getValueType() == MVT::i128)
377 return false;
378
Nate Begeman368e18d2006-02-16 21:11:51 +0000379 // Other users may use these bits.
380 if (!Op.Val->hasOneUse()) {
381 if (Depth != 0) {
382 // If not at the root, Just compute the KnownZero/KnownOne bits to
383 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000384 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000385 return false;
386 }
387 // If this is the root being simplified, allow it to have multiple uses,
388 // just set the DemandedMask to all bits.
389 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
390 } else if (DemandedMask == 0) {
391 // Not demanding any bits from Op.
392 if (Op.getOpcode() != ISD::UNDEF)
393 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
394 return false;
395 } else if (Depth == 6) { // Limit search depth.
396 return false;
397 }
398
399 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000400 switch (Op.getOpcode()) {
401 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000402 // We know all of the bits for a constant!
403 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
404 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000405 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000406 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000407 // If the RHS is a constant, check to see if the LHS would be zero without
408 // using the bits from the RHS. Below, we use knowledge about the RHS to
409 // simplify the LHS, here we're using information from the LHS to simplify
410 // the RHS.
411 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
412 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000413 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
414 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000415 // If the LHS already has zeros where RHSC does, this and is dead.
416 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
417 return TLO.CombineTo(Op, Op.getOperand(0));
418 // If any of the set bits in the RHS are known zero on the LHS, shrink
419 // the constant.
420 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
421 return true;
422 }
423
Nate Begeman368e18d2006-02-16 21:11:51 +0000424 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
425 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000426 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000427 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000428 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
429 KnownZero2, KnownOne2, TLO, Depth+1))
430 return true;
431 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
432
433 // If all of the demanded bits are known one on one side, return the other.
434 // These bits cannot contribute to the result of the 'and'.
435 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
436 return TLO.CombineTo(Op, Op.getOperand(0));
437 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
438 return TLO.CombineTo(Op, Op.getOperand(1));
439 // If all of the demanded bits in the inputs are known zeros, return zero.
440 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
441 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
442 // If the RHS is a constant, see if we can simplify it.
443 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
444 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000445
Nate Begeman368e18d2006-02-16 21:11:51 +0000446 // Output known-1 bits are only known if set in both the LHS & RHS.
447 KnownOne &= KnownOne2;
448 // Output known-0 are known to be clear if zero in either the LHS | RHS.
449 KnownZero |= KnownZero2;
450 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000451 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000452 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
453 KnownOne, TLO, Depth+1))
454 return true;
455 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
456 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
457 KnownZero2, KnownOne2, TLO, Depth+1))
458 return true;
459 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
460
461 // If all of the demanded bits are known zero on one side, return the other.
462 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000463 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000464 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000465 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000466 return TLO.CombineTo(Op, Op.getOperand(1));
467 // If all of the potentially set bits on one side are known to be set on
468 // the other side, just use the 'other' side.
469 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
470 (DemandedMask & (~KnownZero)))
471 return TLO.CombineTo(Op, Op.getOperand(0));
472 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
473 (DemandedMask & (~KnownZero2)))
474 return TLO.CombineTo(Op, Op.getOperand(1));
475 // If the RHS is a constant, see if we can simplify it.
476 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
477 return true;
478
479 // Output known-0 bits are only known if clear in both the LHS & RHS.
480 KnownZero &= KnownZero2;
481 // Output known-1 are known to be set if set in either the LHS | RHS.
482 KnownOne |= KnownOne2;
483 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000484 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000485 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
486 KnownOne, TLO, Depth+1))
487 return true;
488 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
489 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
490 KnownOne2, TLO, Depth+1))
491 return true;
492 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
493
494 // If all of the demanded bits are known zero on one side, return the other.
495 // These bits cannot contribute to the result of the 'xor'.
496 if ((DemandedMask & KnownZero) == DemandedMask)
497 return TLO.CombineTo(Op, Op.getOperand(0));
498 if ((DemandedMask & KnownZero2) == DemandedMask)
499 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000500
501 // If all of the unknown bits are known to be zero on one side or the other
502 // (but not both) turn this into an *inclusive* or.
503 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
504 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
505 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
506 Op.getOperand(0),
507 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000508
509 // Output known-0 bits are known if clear or set in both the LHS & RHS.
510 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
511 // Output known-1 are known to be set if set in only one of the LHS, RHS.
512 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
513
Nate Begeman368e18d2006-02-16 21:11:51 +0000514 // If all of the demanded bits on one side are known, and all of the set
515 // bits on that side are also known to be set on the other side, turn this
516 // into an AND, as we know the bits will be cleared.
517 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
518 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
519 if ((KnownOne & KnownOne2) == KnownOne) {
520 MVT::ValueType VT = Op.getValueType();
521 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
522 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
523 ANDC));
524 }
525 }
526
527 // If the RHS is a constant, see if we can simplify it.
528 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
529 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
530 return true;
531
532 KnownZero = KnownZeroOut;
533 KnownOne = KnownOneOut;
534 break;
535 case ISD::SETCC:
536 // If we know the result of a setcc has the top bits zero, use this info.
537 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
538 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
539 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000540 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000541 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
542 KnownOne, TLO, Depth+1))
543 return true;
544 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
545 KnownOne2, TLO, Depth+1))
546 return true;
547 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
548 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
549
550 // If the operands are constants, see if we can simplify them.
551 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
552 return true;
553
554 // Only known if known in both the LHS and RHS.
555 KnownOne &= KnownOne2;
556 KnownZero &= KnownZero2;
557 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000558 case ISD::SELECT_CC:
559 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
560 KnownOne, TLO, Depth+1))
561 return true;
562 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
563 KnownOne2, TLO, Depth+1))
564 return true;
565 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
566 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
567
568 // If the operands are constants, see if we can simplify them.
569 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
570 return true;
571
572 // Only known if known in both the LHS and RHS.
573 KnownOne &= KnownOne2;
574 KnownZero &= KnownZero2;
575 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000576 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000577 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000578 unsigned ShAmt = SA->getValue();
579 SDOperand InOp = Op.getOperand(0);
580
581 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
582 // single shift. We can do this if the bottom bits (which are shifted
583 // out) are never demanded.
584 if (InOp.getOpcode() == ISD::SRL &&
585 isa<ConstantSDNode>(InOp.getOperand(1))) {
586 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
587 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
588 unsigned Opc = ISD::SHL;
589 int Diff = ShAmt-C1;
590 if (Diff < 0) {
591 Diff = -Diff;
592 Opc = ISD::SRL;
593 }
594
595 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000596 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000597 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000598 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000599 InOp.getOperand(0), NewSA));
600 }
601 }
602
603 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000604 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000605 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000606 KnownZero <<= SA->getValue();
607 KnownOne <<= SA->getValue();
608 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000609 }
610 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000611 case ISD::SRL:
612 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
613 MVT::ValueType VT = Op.getValueType();
614 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000615 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
616 unsigned VTSize = MVT::getSizeInBits(VT);
617 SDOperand InOp = Op.getOperand(0);
618
619 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
620 // single shift. We can do this if the top bits (which are shifted out)
621 // are never demanded.
622 if (InOp.getOpcode() == ISD::SHL &&
623 isa<ConstantSDNode>(InOp.getOperand(1))) {
624 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
625 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
626 unsigned Opc = ISD::SRL;
627 int Diff = ShAmt-C1;
628 if (Diff < 0) {
629 Diff = -Diff;
630 Opc = ISD::SHL;
631 }
632
633 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000634 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000635 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
636 InOp.getOperand(0), NewSA));
637 }
638 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000639
640 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000641 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000642 KnownZero, KnownOne, TLO, Depth+1))
643 return true;
644 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
645 KnownZero &= TypeMask;
646 KnownOne &= TypeMask;
647 KnownZero >>= ShAmt;
648 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000649
650 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000651 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000652 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000653 }
654 break;
655 case ISD::SRA:
656 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
657 MVT::ValueType VT = Op.getValueType();
658 unsigned ShAmt = SA->getValue();
659
660 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000661 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
662
Chris Lattner1b737132006-05-08 17:22:53 +0000663 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
664
665 // If any of the demanded bits are produced by the sign extension, we also
666 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000667 uint64_t HighBits = (1ULL << ShAmt)-1;
668 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000669 if (HighBits & DemandedMask)
670 InDemandedMask |= MVT::getIntVTSignBit(VT);
671
672 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000673 KnownZero, KnownOne, TLO, Depth+1))
674 return true;
675 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
676 KnownZero &= TypeMask;
677 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000678 KnownZero >>= ShAmt;
679 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000680
681 // Handle the sign bits.
682 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000683 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000684
685 // If the input sign bit is known to be zero, or if none of the top bits
686 // are demanded, turn this into an unsigned shift right.
687 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
688 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
689 Op.getOperand(1)));
690 } else if (KnownOne & SignBit) { // New bits are known one.
691 KnownOne |= HighBits;
692 }
693 }
694 break;
695 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000696 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
697
Chris Lattnerec665152006-02-26 23:36:02 +0000698 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000699 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000700 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000701
Chris Lattnerec665152006-02-26 23:36:02 +0000702 // If none of the extended bits are demanded, eliminate the sextinreg.
703 if (NewBits == 0)
704 return TLO.CombineTo(Op, Op.getOperand(0));
705
Nate Begeman368e18d2006-02-16 21:11:51 +0000706 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
707 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
708
Chris Lattnerec665152006-02-26 23:36:02 +0000709 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000710 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000711 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000712
713 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
714 KnownZero, KnownOne, TLO, Depth+1))
715 return true;
716 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
717
718 // If the sign bit of the input is known set or clear, then we know the
719 // top bits of the result.
720
Chris Lattnerec665152006-02-26 23:36:02 +0000721 // If the input sign bit is known zero, convert this into a zero extension.
722 if (KnownZero & InSignBit)
723 return TLO.CombineTo(Op,
724 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
725
726 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000727 KnownOne |= NewBits;
728 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000729 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000730 KnownZero &= ~NewBits;
731 KnownOne &= ~NewBits;
732 }
733 break;
734 }
Chris Lattnerec665152006-02-26 23:36:02 +0000735 case ISD::CTTZ:
736 case ISD::CTLZ:
737 case ISD::CTPOP: {
738 MVT::ValueType VT = Op.getValueType();
739 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
740 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
741 KnownOne = 0;
742 break;
743 }
Evan Cheng466685d2006-10-09 20:57:25 +0000744 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000745 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000746 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000747 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000748 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
749 }
Chris Lattnerec665152006-02-26 23:36:02 +0000750 break;
751 }
752 case ISD::ZERO_EXTEND: {
753 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
754
755 // If none of the top bits are demanded, convert this into an any_extend.
756 uint64_t NewBits = (~InMask) & DemandedMask;
757 if (NewBits == 0)
758 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
759 Op.getValueType(),
760 Op.getOperand(0)));
761
762 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
763 KnownZero, KnownOne, TLO, Depth+1))
764 return true;
765 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
766 KnownZero |= NewBits;
767 break;
768 }
769 case ISD::SIGN_EXTEND: {
770 MVT::ValueType InVT = Op.getOperand(0).getValueType();
771 uint64_t InMask = MVT::getIntVTBitMask(InVT);
772 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
773 uint64_t NewBits = (~InMask) & DemandedMask;
774
775 // If none of the top bits are demanded, convert this into an any_extend.
776 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000777 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000778 Op.getOperand(0)));
779
780 // Since some of the sign extended bits are demanded, we know that the sign
781 // bit is demanded.
782 uint64_t InDemandedBits = DemandedMask & InMask;
783 InDemandedBits |= InSignBit;
784
785 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
786 KnownOne, TLO, Depth+1))
787 return true;
788
789 // If the sign bit is known zero, convert this to a zero extend.
790 if (KnownZero & InSignBit)
791 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
792 Op.getValueType(),
793 Op.getOperand(0)));
794
795 // If the sign bit is known one, the top bits match.
796 if (KnownOne & InSignBit) {
797 KnownOne |= NewBits;
798 KnownZero &= ~NewBits;
799 } else { // Otherwise, top bits aren't known.
800 KnownOne &= ~NewBits;
801 KnownZero &= ~NewBits;
802 }
803 break;
804 }
805 case ISD::ANY_EXTEND: {
806 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
807 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
808 KnownZero, KnownOne, TLO, Depth+1))
809 return true;
810 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
811 break;
812 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000813 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000814 // Simplify the input, using demanded bit information, and compute the known
815 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000816 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
817 KnownZero, KnownOne, TLO, Depth+1))
818 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000819
820 // If the input is only used by this truncate, see if we can shrink it based
821 // on the known demanded bits.
822 if (Op.getOperand(0).Val->hasOneUse()) {
823 SDOperand In = Op.getOperand(0);
824 switch (In.getOpcode()) {
825 default: break;
826 case ISD::SRL:
827 // Shrink SRL by a constant if none of the high bits shifted in are
828 // demanded.
829 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
830 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
831 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
832 HighBits >>= ShAmt->getValue();
833
834 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
835 (DemandedMask & HighBits) == 0) {
836 // None of the shifted in bits are needed. Add a truncate of the
837 // shift input, then shift it.
838 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
839 Op.getValueType(),
840 In.getOperand(0));
841 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
842 NewTrunc, In.getOperand(1)));
843 }
844 }
845 break;
846 }
847 }
848
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000849 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
850 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
851 KnownZero &= OutMask;
852 KnownOne &= OutMask;
853 break;
854 }
Chris Lattnerec665152006-02-26 23:36:02 +0000855 case ISD::AssertZext: {
856 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
857 uint64_t InMask = MVT::getIntVTBitMask(VT);
858 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
859 KnownZero, KnownOne, TLO, Depth+1))
860 return true;
861 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
862 KnownZero |= ~InMask & DemandedMask;
863 break;
864 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000865 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000866 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000867 case ISD::INTRINSIC_WO_CHAIN:
868 case ISD::INTRINSIC_W_CHAIN:
869 case ISD::INTRINSIC_VOID:
870 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000871 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000872 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000873 }
Chris Lattnerec665152006-02-26 23:36:02 +0000874
875 // If we know the value of all of the demanded bits, return this as a
876 // constant.
877 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
878 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
879
Nate Begeman368e18d2006-02-16 21:11:51 +0000880 return false;
881}
882
Nate Begeman368e18d2006-02-16 21:11:51 +0000883/// computeMaskedBitsForTargetNode - Determine which of the bits specified
884/// in Mask are known to be either zero or one and return them in the
885/// KnownZero/KnownOne bitsets.
886void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
887 uint64_t Mask,
888 uint64_t &KnownZero,
889 uint64_t &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +0000890 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +0000891 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000892 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
893 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
894 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
895 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000896 "Should use MaskedValueIsZero if you don't know whether Op"
897 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +0000898 KnownZero = 0;
899 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000900}
Chris Lattner4ccb0702006-01-26 20:37:03 +0000901
Chris Lattner5c3e21d2006-05-06 09:27:13 +0000902/// ComputeNumSignBitsForTargetNode - This method can be implemented by
903/// targets that want to expose additional information about sign bits to the
904/// DAG Combiner.
905unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
906 unsigned Depth) const {
907 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
908 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
909 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
910 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
911 "Should use ComputeNumSignBits if you don't know whether Op"
912 " is a target node!");
913 return 1;
914}
915
916
Evan Chengfa1eb272007-02-08 22:13:59 +0000917/// SimplifySetCC - Try to simplify a setcc built with the specified operands
918/// and cc. If it is unable to simplify it, return a null SDOperand.
919SDOperand
920TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
921 ISD::CondCode Cond, bool foldBooleans,
922 DAGCombinerInfo &DCI) const {
923 SelectionDAG &DAG = DCI.DAG;
924
925 // These setcc operations always fold.
926 switch (Cond) {
927 default: break;
928 case ISD::SETFALSE:
929 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
930 case ISD::SETTRUE:
931 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
932 }
933
934 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
935 uint64_t C1 = N1C->getValue();
936 if (isa<ConstantSDNode>(N0.Val)) {
937 return DAG.FoldSetCC(VT, N0, N1, Cond);
938 } else {
939 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
940 // equality comparison, then we're just comparing whether X itself is
941 // zero.
942 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
943 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
944 N0.getOperand(1).getOpcode() == ISD::Constant) {
945 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
946 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
947 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
948 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
949 // (srl (ctlz x), 5) == 0 -> X != 0
950 // (srl (ctlz x), 5) != 1 -> X != 0
951 Cond = ISD::SETNE;
952 } else {
953 // (srl (ctlz x), 5) != 0 -> X == 0
954 // (srl (ctlz x), 5) == 1 -> X == 0
955 Cond = ISD::SETEQ;
956 }
957 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
958 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
959 Zero, Cond);
960 }
961 }
962
963 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
964 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
965 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
966
967 // If the comparison constant has bits in the upper part, the
968 // zero-extended value could never match.
969 if (C1 & (~0ULL << InSize)) {
970 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
971 switch (Cond) {
972 case ISD::SETUGT:
973 case ISD::SETUGE:
974 case ISD::SETEQ: return DAG.getConstant(0, VT);
975 case ISD::SETULT:
976 case ISD::SETULE:
977 case ISD::SETNE: return DAG.getConstant(1, VT);
978 case ISD::SETGT:
979 case ISD::SETGE:
980 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000981 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000982 case ISD::SETLT:
983 case ISD::SETLE:
984 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000985 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000986 default:
987 break;
988 }
989 }
990
991 // Otherwise, we can perform the comparison with the low bits.
992 switch (Cond) {
993 case ISD::SETEQ:
994 case ISD::SETNE:
995 case ISD::SETUGT:
996 case ISD::SETUGE:
997 case ISD::SETULT:
998 case ISD::SETULE:
999 return DAG.getSetCC(VT, N0.getOperand(0),
1000 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1001 Cond);
1002 default:
1003 break; // todo, be more careful with signed comparisons
1004 }
1005 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1006 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1007 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1008 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1009 MVT::ValueType ExtDstTy = N0.getValueType();
1010 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1011
1012 // If the extended part has any inconsistent bits, it cannot ever
1013 // compare equal. In other words, they have to be all ones or all
1014 // zeros.
1015 uint64_t ExtBits =
1016 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1017 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1018 return DAG.getConstant(Cond == ISD::SETNE, VT);
1019
1020 SDOperand ZextOp;
1021 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1022 if (Op0Ty == ExtSrcTy) {
1023 ZextOp = N0.getOperand(0);
1024 } else {
1025 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1026 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1027 DAG.getConstant(Imm, Op0Ty));
1028 }
1029 if (!DCI.isCalledByLegalizer())
1030 DCI.AddToWorklist(ZextOp.Val);
1031 // Otherwise, make this a use of a zext.
1032 return DAG.getSetCC(VT, ZextOp,
1033 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1034 ExtDstTy),
1035 Cond);
1036 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1037 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1038
1039 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1040 if (N0.getOpcode() == ISD::SETCC) {
1041 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1042 if (TrueWhenTrue)
1043 return N0;
1044
1045 // Invert the condition.
1046 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1047 CC = ISD::getSetCCInverse(CC,
1048 MVT::isInteger(N0.getOperand(0).getValueType()));
1049 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1050 }
1051
1052 if ((N0.getOpcode() == ISD::XOR ||
1053 (N0.getOpcode() == ISD::AND &&
1054 N0.getOperand(0).getOpcode() == ISD::XOR &&
1055 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1056 isa<ConstantSDNode>(N0.getOperand(1)) &&
1057 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1058 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1059 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001060 if (DAG.MaskedValueIsZero(N0,
1061 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001062 // Okay, get the un-inverted input value.
1063 SDOperand Val;
1064 if (N0.getOpcode() == ISD::XOR)
1065 Val = N0.getOperand(0);
1066 else {
1067 assert(N0.getOpcode() == ISD::AND &&
1068 N0.getOperand(0).getOpcode() == ISD::XOR);
1069 // ((X^1)&1)^1 -> X & 1
1070 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1071 N0.getOperand(0).getOperand(0),
1072 N0.getOperand(1));
1073 }
1074 return DAG.getSetCC(VT, Val, N1,
1075 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1076 }
1077 }
1078 }
1079
1080 uint64_t MinVal, MaxVal;
1081 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1082 if (ISD::isSignedIntSetCC(Cond)) {
1083 MinVal = 1ULL << (OperandBitSize-1);
1084 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1085 MaxVal = ~0ULL >> (65-OperandBitSize);
1086 else
1087 MaxVal = 0;
1088 } else {
1089 MinVal = 0;
1090 MaxVal = ~0ULL >> (64-OperandBitSize);
1091 }
1092
1093 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1094 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1095 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1096 --C1; // X >= C0 --> X > (C0-1)
1097 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1098 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1099 }
1100
1101 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1102 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1103 ++C1; // X <= C0 --> X < (C0+1)
1104 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1105 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1106 }
1107
1108 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1109 return DAG.getConstant(0, VT); // X < MIN --> false
1110 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1111 return DAG.getConstant(1, VT); // X >= MIN --> true
1112 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1113 return DAG.getConstant(0, VT); // X > MAX --> false
1114 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1115 return DAG.getConstant(1, VT); // X <= MAX --> true
1116
1117 // Canonicalize setgt X, Min --> setne X, Min
1118 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1119 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1120 // Canonicalize setlt X, Max --> setne X, Max
1121 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1122 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1123
1124 // If we have setult X, 1, turn it into seteq X, 0
1125 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1126 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1127 ISD::SETEQ);
1128 // If we have setugt X, Max-1, turn it into seteq X, Max
1129 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1130 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1131 ISD::SETEQ);
1132
1133 // If we have "setcc X, C0", check to see if we can shrink the immediate
1134 // by changing cc.
1135
1136 // SETUGT X, SINTMAX -> SETLT X, 0
1137 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1138 C1 == (~0ULL >> (65-OperandBitSize)))
1139 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1140 ISD::SETLT);
1141
1142 // FIXME: Implement the rest of these.
1143
1144 // Fold bit comparisons when we can.
1145 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1146 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1147 if (ConstantSDNode *AndRHS =
1148 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1149 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1150 // Perform the xform if the AND RHS is a single bit.
1151 if (isPowerOf2_64(AndRHS->getValue())) {
1152 return DAG.getNode(ISD::SRL, VT, N0,
1153 DAG.getConstant(Log2_64(AndRHS->getValue()),
1154 getShiftAmountTy()));
1155 }
1156 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1157 // (X & 8) == 8 --> (X & 8) >> 3
1158 // Perform the xform if C1 is a single bit.
1159 if (isPowerOf2_64(C1)) {
1160 return DAG.getNode(ISD::SRL, VT, N0,
1161 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1162 }
1163 }
1164 }
1165 }
1166 } else if (isa<ConstantSDNode>(N0.Val)) {
1167 // Ensure that the constant occurs on the RHS.
1168 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1169 }
1170
1171 if (isa<ConstantFPSDNode>(N0.Val)) {
1172 // Constant fold or commute setcc.
1173 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1174 if (O.Val) return O;
1175 }
1176
1177 if (N0 == N1) {
1178 // We can always fold X == X for integer setcc's.
1179 if (MVT::isInteger(N0.getValueType()))
1180 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1181 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1182 if (UOF == 2) // FP operators that are undefined on NaNs.
1183 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1184 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1185 return DAG.getConstant(UOF, VT);
1186 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1187 // if it is not already.
1188 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1189 if (NewCond != Cond)
1190 return DAG.getSetCC(VT, N0, N1, NewCond);
1191 }
1192
1193 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1194 MVT::isInteger(N0.getValueType())) {
1195 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1196 N0.getOpcode() == ISD::XOR) {
1197 // Simplify (X+Y) == (X+Z) --> Y == Z
1198 if (N0.getOpcode() == N1.getOpcode()) {
1199 if (N0.getOperand(0) == N1.getOperand(0))
1200 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1201 if (N0.getOperand(1) == N1.getOperand(1))
1202 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1203 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1204 // If X op Y == Y op X, try other combinations.
1205 if (N0.getOperand(0) == N1.getOperand(1))
1206 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1207 if (N0.getOperand(1) == N1.getOperand(0))
1208 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1209 }
1210 }
1211
1212 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1213 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1214 // Turn (X+C1) == C2 --> X == C2-C1
1215 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1216 return DAG.getSetCC(VT, N0.getOperand(0),
1217 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1218 N0.getValueType()), Cond);
1219 }
1220
1221 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1222 if (N0.getOpcode() == ISD::XOR)
1223 // If we know that all of the inverted bits are zero, don't bother
1224 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001225 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001226 return DAG.getSetCC(VT, N0.getOperand(0),
1227 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1228 N0.getValueType()), Cond);
1229 }
1230
1231 // Turn (C1-X) == C2 --> X == C1-C2
1232 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1233 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1234 return DAG.getSetCC(VT, N0.getOperand(1),
1235 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1236 N0.getValueType()), Cond);
1237 }
1238 }
1239 }
1240
1241 // Simplify (X+Z) == X --> Z == 0
1242 if (N0.getOperand(0) == N1)
1243 return DAG.getSetCC(VT, N0.getOperand(1),
1244 DAG.getConstant(0, N0.getValueType()), Cond);
1245 if (N0.getOperand(1) == N1) {
1246 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1247 return DAG.getSetCC(VT, N0.getOperand(0),
1248 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001249 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001250 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1251 // (Z-X) == X --> Z == X<<1
1252 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1253 N1,
1254 DAG.getConstant(1, getShiftAmountTy()));
1255 if (!DCI.isCalledByLegalizer())
1256 DCI.AddToWorklist(SH.Val);
1257 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1258 }
1259 }
1260 }
1261
1262 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1263 N1.getOpcode() == ISD::XOR) {
1264 // Simplify X == (X+Z) --> Z == 0
1265 if (N1.getOperand(0) == N0) {
1266 return DAG.getSetCC(VT, N1.getOperand(1),
1267 DAG.getConstant(0, N1.getValueType()), Cond);
1268 } else if (N1.getOperand(1) == N0) {
1269 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1270 return DAG.getSetCC(VT, N1.getOperand(0),
1271 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001272 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001273 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1274 // X == (Z-X) --> X<<1 == Z
1275 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1276 DAG.getConstant(1, getShiftAmountTy()));
1277 if (!DCI.isCalledByLegalizer())
1278 DCI.AddToWorklist(SH.Val);
1279 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1280 }
1281 }
1282 }
1283 }
1284
1285 // Fold away ALL boolean setcc's.
1286 SDOperand Temp;
1287 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1288 switch (Cond) {
1289 default: assert(0 && "Unknown integer setcc!");
1290 case ISD::SETEQ: // X == Y -> (X^Y)^1
1291 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1292 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1293 if (!DCI.isCalledByLegalizer())
1294 DCI.AddToWorklist(Temp.Val);
1295 break;
1296 case ISD::SETNE: // X != Y --> (X^Y)
1297 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1298 break;
1299 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1300 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1301 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1302 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1303 if (!DCI.isCalledByLegalizer())
1304 DCI.AddToWorklist(Temp.Val);
1305 break;
1306 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1307 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1308 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1309 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1310 if (!DCI.isCalledByLegalizer())
1311 DCI.AddToWorklist(Temp.Val);
1312 break;
1313 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1314 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1315 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1316 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1317 if (!DCI.isCalledByLegalizer())
1318 DCI.AddToWorklist(Temp.Val);
1319 break;
1320 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1321 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1322 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1323 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1324 break;
1325 }
1326 if (VT != MVT::i1) {
1327 if (!DCI.isCalledByLegalizer())
1328 DCI.AddToWorklist(N0.Val);
1329 // FIXME: If running after legalize, we probably can't do this.
1330 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1331 }
1332 return N0;
1333 }
1334
1335 // Could not fold it.
1336 return SDOperand();
1337}
1338
Chris Lattner00ffed02006-03-01 04:52:55 +00001339SDOperand TargetLowering::
1340PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1341 // Default implementation: no optimization.
1342 return SDOperand();
1343}
1344
Chris Lattnereb8146b2006-02-04 02:13:02 +00001345//===----------------------------------------------------------------------===//
1346// Inline Assembler Implementation Methods
1347//===----------------------------------------------------------------------===//
1348
1349TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001350TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001351 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001352 if (Constraint.size() == 1) {
1353 switch (Constraint[0]) {
1354 default: break;
1355 case 'r': return C_RegisterClass;
1356 case 'm': // memory
1357 case 'o': // offsetable
1358 case 'V': // not offsetable
1359 return C_Memory;
1360 case 'i': // Simple Integer or Relocatable Constant
1361 case 'n': // Simple Integer
1362 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001363 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001364 case 'I': // Target registers.
1365 case 'J':
1366 case 'K':
1367 case 'L':
1368 case 'M':
1369 case 'N':
1370 case 'O':
1371 case 'P':
1372 return C_Other;
1373 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001374 }
Chris Lattner065421f2007-03-25 02:18:14 +00001375
1376 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1377 Constraint[Constraint.size()-1] == '}')
1378 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001379 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001380}
1381
Chris Lattnerdba1aee2006-10-31 19:40:43 +00001382/// isOperandValidForConstraint - Return the specified operand (possibly
1383/// modified) if the specified SDOperand is valid for the specified target
1384/// constraint letter, otherwise return null.
1385SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
1386 char ConstraintLetter,
1387 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001388 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001389 default: break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001390 case 'i': // Simple Integer or Relocatable Constant
1391 case 'n': // Simple Integer
1392 case 's': // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001393 case 'X': { // Allows any operand.
1394 // These operands are interested in values of the form (GV+C), where C may
1395 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1396 // is possible and fine if either GV or C are missing.
1397 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1398 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1399
1400 // If we have "(add GV, C)", pull out GV/C
1401 if (Op.getOpcode() == ISD::ADD) {
1402 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1403 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1404 if (C == 0 || GA == 0) {
1405 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1406 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1407 }
1408 if (C == 0 || GA == 0)
1409 C = 0, GA = 0;
1410 }
1411
1412 // If we find a valid operand, map to the TargetXXX version so that the
1413 // value itself doesn't get selected.
1414 if (GA) { // Either &GV or &GV+C
1415 if (ConstraintLetter != 'n') {
1416 int64_t Offs = GA->getOffset();
1417 if (C) Offs += C->getValue();
1418 return DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(),
1419 Offs);
1420 }
1421 }
1422 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001423 // Simple constants are not allowed for 's'.
1424 if (ConstraintLetter != 's')
1425 return DAG.getTargetConstant(C->getValue(), Op.getValueType());
1426 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001427 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001428 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001429 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001430 return SDOperand(0,0);
Chris Lattnereb8146b2006-02-04 02:13:02 +00001431}
1432
Chris Lattner4ccb0702006-01-26 20:37:03 +00001433std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001434getRegClassForInlineAsmConstraint(const std::string &Constraint,
1435 MVT::ValueType VT) const {
1436 return std::vector<unsigned>();
1437}
1438
1439
1440std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001441getRegForInlineAsmConstraint(const std::string &Constraint,
1442 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001443 if (Constraint[0] != '{')
1444 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001445 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1446
1447 // Remove the braces from around the name.
1448 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001449
1450 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001451 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001452 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1453 E = RI->regclass_end(); RCI != E; ++RCI) {
1454 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001455
1456 // If none of the the value types for this register class are valid, we
1457 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1458 bool isLegal = false;
1459 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1460 I != E; ++I) {
1461 if (isTypeLegal(*I)) {
1462 isLegal = true;
1463 break;
1464 }
1465 }
1466
1467 if (!isLegal) continue;
1468
Chris Lattner1efa40f2006-02-22 00:56:39 +00001469 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1470 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001471 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001472 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001473 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001474 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001475
Chris Lattner1efa40f2006-02-22 00:56:39 +00001476 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001477}
Evan Cheng30b37b52006-03-13 23:18:16 +00001478
1479//===----------------------------------------------------------------------===//
1480// Loop Strength Reduction hooks
1481//===----------------------------------------------------------------------===//
1482
Chris Lattner1436bb62007-03-30 23:14:50 +00001483/// isLegalAddressingMode - Return true if the addressing mode represented
1484/// by AM is legal for this target, for a load/store of the specified type.
1485bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1486 const Type *Ty) const {
1487 // The default implementation of this implements a conservative RISCy, r+r and
1488 // r+i addr mode.
1489
1490 // Allows a sign-extended 16-bit immediate field.
1491 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1492 return false;
1493
1494 // No global is ever allowed as a base.
1495 if (AM.BaseGV)
1496 return false;
1497
1498 // Only support r+r,
1499 switch (AM.Scale) {
1500 case 0: // "r+i" or just "i", depending on HasBaseReg.
1501 break;
1502 case 1:
1503 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1504 return false;
1505 // Otherwise we have r+r or r+i.
1506 break;
1507 case 2:
1508 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1509 return false;
1510 // Allow 2*r as r+r.
1511 break;
1512 }
1513
1514 return true;
1515}
1516
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001517// Magic for divide replacement
1518
1519struct ms {
1520 int64_t m; // magic number
1521 int64_t s; // shift amount
1522};
1523
1524struct mu {
1525 uint64_t m; // magic number
1526 int64_t a; // add indicator
1527 int64_t s; // shift amount
1528};
1529
1530/// magic - calculate the magic numbers required to codegen an integer sdiv as
1531/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1532/// or -1.
1533static ms magic32(int32_t d) {
1534 int32_t p;
1535 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1536 const uint32_t two31 = 0x80000000U;
1537 struct ms mag;
1538
1539 ad = abs(d);
1540 t = two31 + ((uint32_t)d >> 31);
1541 anc = t - 1 - t%ad; // absolute value of nc
1542 p = 31; // initialize p
1543 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1544 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1545 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1546 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1547 do {
1548 p = p + 1;
1549 q1 = 2*q1; // update q1 = 2p/abs(nc)
1550 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1551 if (r1 >= anc) { // must be unsigned comparison
1552 q1 = q1 + 1;
1553 r1 = r1 - anc;
1554 }
1555 q2 = 2*q2; // update q2 = 2p/abs(d)
1556 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1557 if (r2 >= ad) { // must be unsigned comparison
1558 q2 = q2 + 1;
1559 r2 = r2 - ad;
1560 }
1561 delta = ad - r2;
1562 } while (q1 < delta || (q1 == delta && r1 == 0));
1563
1564 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1565 if (d < 0) mag.m = -mag.m; // resulting magic number
1566 mag.s = p - 32; // resulting shift
1567 return mag;
1568}
1569
1570/// magicu - calculate the magic numbers required to codegen an integer udiv as
1571/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1572static mu magicu32(uint32_t d) {
1573 int32_t p;
1574 uint32_t nc, delta, q1, r1, q2, r2;
1575 struct mu magu;
1576 magu.a = 0; // initialize "add" indicator
1577 nc = - 1 - (-d)%d;
1578 p = 31; // initialize p
1579 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1580 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1581 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1582 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1583 do {
1584 p = p + 1;
1585 if (r1 >= nc - r1 ) {
1586 q1 = 2*q1 + 1; // update q1
1587 r1 = 2*r1 - nc; // update r1
1588 }
1589 else {
1590 q1 = 2*q1; // update q1
1591 r1 = 2*r1; // update r1
1592 }
1593 if (r2 + 1 >= d - r2) {
1594 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1595 q2 = 2*q2 + 1; // update q2
1596 r2 = 2*r2 + 1 - d; // update r2
1597 }
1598 else {
1599 if (q2 >= 0x80000000) magu.a = 1;
1600 q2 = 2*q2; // update q2
1601 r2 = 2*r2 + 1; // update r2
1602 }
1603 delta = d - 1 - r2;
1604 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1605 magu.m = q2 + 1; // resulting magic number
1606 magu.s = p - 32; // resulting shift
1607 return magu;
1608}
1609
1610/// magic - calculate the magic numbers required to codegen an integer sdiv as
1611/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1612/// or -1.
1613static ms magic64(int64_t d) {
1614 int64_t p;
1615 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1616 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1617 struct ms mag;
1618
1619 ad = d >= 0 ? d : -d;
1620 t = two63 + ((uint64_t)d >> 63);
1621 anc = t - 1 - t%ad; // absolute value of nc
1622 p = 63; // initialize p
1623 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1624 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1625 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1626 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1627 do {
1628 p = p + 1;
1629 q1 = 2*q1; // update q1 = 2p/abs(nc)
1630 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1631 if (r1 >= anc) { // must be unsigned comparison
1632 q1 = q1 + 1;
1633 r1 = r1 - anc;
1634 }
1635 q2 = 2*q2; // update q2 = 2p/abs(d)
1636 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1637 if (r2 >= ad) { // must be unsigned comparison
1638 q2 = q2 + 1;
1639 r2 = r2 - ad;
1640 }
1641 delta = ad - r2;
1642 } while (q1 < delta || (q1 == delta && r1 == 0));
1643
1644 mag.m = q2 + 1;
1645 if (d < 0) mag.m = -mag.m; // resulting magic number
1646 mag.s = p - 64; // resulting shift
1647 return mag;
1648}
1649
1650/// magicu - calculate the magic numbers required to codegen an integer udiv as
1651/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1652static mu magicu64(uint64_t d)
1653{
1654 int64_t p;
1655 uint64_t nc, delta, q1, r1, q2, r2;
1656 struct mu magu;
1657 magu.a = 0; // initialize "add" indicator
1658 nc = - 1 - (-d)%d;
1659 p = 63; // initialize p
1660 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1661 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1662 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1663 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1664 do {
1665 p = p + 1;
1666 if (r1 >= nc - r1 ) {
1667 q1 = 2*q1 + 1; // update q1
1668 r1 = 2*r1 - nc; // update r1
1669 }
1670 else {
1671 q1 = 2*q1; // update q1
1672 r1 = 2*r1; // update r1
1673 }
1674 if (r2 + 1 >= d - r2) {
1675 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1676 q2 = 2*q2 + 1; // update q2
1677 r2 = 2*r2 + 1 - d; // update r2
1678 }
1679 else {
1680 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1681 q2 = 2*q2; // update q2
1682 r2 = 2*r2 + 1; // update r2
1683 }
1684 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001685 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001686 magu.m = q2 + 1; // resulting magic number
1687 magu.s = p - 64; // resulting shift
1688 return magu;
1689}
1690
1691/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1692/// return a DAG expression to select that will generate the same value by
1693/// multiplying by a magic number. See:
1694/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1695SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001696 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001697 MVT::ValueType VT = N->getValueType(0);
1698
1699 // Check to see if we can do this.
1700 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1701 return SDOperand(); // BuildSDIV only operates on i32 or i64
1702 if (!isOperationLegal(ISD::MULHS, VT))
1703 return SDOperand(); // Make sure the target supports MULHS.
1704
1705 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1706 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1707
1708 // Multiply the numerator (operand 0) by the magic value
1709 SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1710 DAG.getConstant(magics.m, VT));
1711 // If d > 0 and m < 0, add the numerator
1712 if (d > 0 && magics.m < 0) {
1713 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1714 if (Created)
1715 Created->push_back(Q.Val);
1716 }
1717 // If d < 0 and m > 0, subtract the numerator.
1718 if (d < 0 && magics.m > 0) {
1719 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1720 if (Created)
1721 Created->push_back(Q.Val);
1722 }
1723 // Shift right algebraic if shift value is nonzero
1724 if (magics.s > 0) {
1725 Q = DAG.getNode(ISD::SRA, VT, Q,
1726 DAG.getConstant(magics.s, getShiftAmountTy()));
1727 if (Created)
1728 Created->push_back(Q.Val);
1729 }
1730 // Extract the sign bit and add it to the quotient
1731 SDOperand T =
1732 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1733 getShiftAmountTy()));
1734 if (Created)
1735 Created->push_back(T.Val);
1736 return DAG.getNode(ISD::ADD, VT, Q, T);
1737}
1738
1739/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1740/// return a DAG expression to select that will generate the same value by
1741/// multiplying by a magic number. See:
1742/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1743SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001744 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001745 MVT::ValueType VT = N->getValueType(0);
1746
1747 // Check to see if we can do this.
1748 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1749 return SDOperand(); // BuildUDIV only operates on i32 or i64
1750 if (!isOperationLegal(ISD::MULHU, VT))
1751 return SDOperand(); // Make sure the target supports MULHU.
1752
1753 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1754 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1755
1756 // Multiply the numerator (operand 0) by the magic value
1757 SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1758 DAG.getConstant(magics.m, VT));
1759 if (Created)
1760 Created->push_back(Q.Val);
1761
1762 if (magics.a == 0) {
1763 return DAG.getNode(ISD::SRL, VT, Q,
1764 DAG.getConstant(magics.s, getShiftAmountTy()));
1765 } else {
1766 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1767 if (Created)
1768 Created->push_back(NPQ.Val);
1769 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1770 DAG.getConstant(1, getShiftAmountTy()));
1771 if (Created)
1772 Created->push_back(NPQ.Val);
1773 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1774 if (Created)
1775 Created->push_back(NPQ.Val);
1776 return DAG.getNode(ISD::SRL, VT, NPQ,
1777 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1778 }
1779}