blob: 6c23f401c5b1b82a1b7d72de5f34c372ae35376b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohman161ea032009-07-07 17:06:11 +000017// can handle. These classes are reference counted, managed by the const SCEV *
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
Owen Andersone755b092009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohman9545fb02009-07-17 20:47:02 +000069#include "llvm/Operator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohmana7726c32009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/ConstantRange.h"
Edwin Török675d5622009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/Support/InstIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohmanb7d04aa2009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000088using namespace llvm;
89
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman089efff2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman9bc642f2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 cl::init(100));
105
Dan Gohman089efff2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000117
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000118SCEV::~SCEV() {}
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000119
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000121 print(errs());
122 errs() << '\n';
123}
124
125void SCEV::print(std::ostream &o) const {
126 raw_os_ostream OS(o);
127 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000128}
129
Dan Gohman7b560c42008-06-18 16:23:07 +0000130bool SCEV::isZero() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isZero();
133 return false;
134}
135
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000136bool SCEV::isOne() const {
137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138 return SC->getValue()->isOne();
139 return false;
140}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141
Dan Gohmanf05118e2009-06-24 00:30:26 +0000142bool SCEV::isAllOnesValue() const {
143 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
144 return SC->getValue()->isAllOnesValue();
145 return false;
146}
147
Owen Andersonb70139d2009-06-22 21:57:23 +0000148SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmand43a8282009-07-13 20:50:19 +0000149 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000150
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000151bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Edwin Törökbd448e32009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 return false;
154}
155
156const Type *SCEVCouldNotCompute::getType() const {
Edwin Törökbd448e32009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 return 0;
159}
160
161bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Edwin Törökbd448e32009-07-14 16:55:14 +0000162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000163 return false;
164}
165
Dan Gohman9bc642f2009-06-24 04:48:43 +0000166const SCEV *
167SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
168 const SCEV *Sym,
169 const SCEV *Conc,
170 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000171 return this;
172}
173
Dan Gohman13058cc2009-04-21 00:47:46 +0000174void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 OS << "***COULDNOTCOMPUTE***";
176}
177
178bool SCEVCouldNotCompute::classof(const SCEV *S) {
179 return S->getSCEVType() == scCouldNotCompute;
180}
181
Dan Gohman161ea032009-07-07 17:06:11 +0000182const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000183 FoldingSetNodeID ID;
184 ID.AddInteger(scConstant);
185 ID.AddPointer(V);
186 void *IP = 0;
187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
188 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000189 new (S) SCEVConstant(ID, V);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000190 UniqueSCEVs.InsertNode(S, IP);
191 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192}
193
Dan Gohman161ea032009-07-07 17:06:11 +0000194const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersone1f1f822009-07-16 18:04:31 +0000195 return getConstant(Context->getConstantInt(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196}
197
Dan Gohman161ea032009-07-07 17:06:11 +0000198const SCEV *
Dan Gohman8fd520a2009-06-15 22:12:54 +0000199ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Owen Anderson9f5b2aa2009-07-14 23:09:55 +0000200 return getConstant(
201 Context->getConstantInt(cast<IntegerType>(Ty), V, isSigned));
Dan Gohman8fd520a2009-06-15 22:12:54 +0000202}
203
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204const Type *SCEVConstant::getType() const { return V->getType(); }
205
Dan Gohman13058cc2009-04-21 00:47:46 +0000206void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000207 WriteAsOperand(OS, V, false);
208}
209
Dan Gohmand43a8282009-07-13 20:50:19 +0000210SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
211 unsigned SCEVTy, const SCEV *op, const Type *ty)
212 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000213
Dan Gohman2a381532009-04-21 01:25:57 +0000214bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
215 return Op->dominates(BB, DT);
216}
217
Dan Gohmand43a8282009-07-13 20:50:19 +0000218SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
219 const SCEV *op, const Type *ty)
220 : SCEVCastExpr(ID, scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000221 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
222 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224}
225
Dan Gohman13058cc2009-04-21 00:47:46 +0000226void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000227 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228}
229
Dan Gohmand43a8282009-07-13 20:50:19 +0000230SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
231 const SCEV *op, const Type *ty)
232 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000233 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
234 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236}
237
Dan Gohman13058cc2009-04-21 00:47:46 +0000238void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000239 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240}
241
Dan Gohmand43a8282009-07-13 20:50:19 +0000242SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
243 const SCEV *op, const Type *ty)
244 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000245 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
246 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000247 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000248}
249
Dan Gohman13058cc2009-04-21 00:47:46 +0000250void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000251 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252}
253
Dan Gohman13058cc2009-04-21 00:47:46 +0000254void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
256 const char *OpStr = getOperationStr();
257 OS << "(" << *Operands[0];
258 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
259 OS << OpStr << *Operands[i];
260 OS << ")";
261}
262
Dan Gohman9bc642f2009-06-24 04:48:43 +0000263const SCEV *
264SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
265 const SCEV *Sym,
266 const SCEV *Conc,
267 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000269 const SCEV *H =
Dan Gohman89f85052007-10-22 18:31:58 +0000270 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000271 if (H != getOperand(i)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000272 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 NewOps.reserve(getNumOperands());
274 for (unsigned j = 0; j != i; ++j)
275 NewOps.push_back(getOperand(j));
276 NewOps.push_back(H);
277 for (++i; i != e; ++i)
278 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000279 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280
281 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000282 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000284 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000285 else if (isa<SCEVSMaxExpr>(this))
286 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000287 else if (isa<SCEVUMaxExpr>(this))
288 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 else
Edwin Törökbd448e32009-07-14 16:55:14 +0000290 llvm_unreachable("Unknown commutative expr!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 }
292 }
293 return this;
294}
295
Dan Gohman72a8a022009-05-07 14:00:19 +0000296bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000297 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
298 if (!getOperand(i)->dominates(BB, DT))
299 return false;
300 }
301 return true;
302}
303
Evan Cheng98c073b2009-02-17 00:13:06 +0000304bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
305 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
306}
307
Dan Gohman13058cc2009-04-21 00:47:46 +0000308void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000309 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000310}
311
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000312const Type *SCEVUDivExpr::getType() const {
Dan Gohman140f08f2009-05-26 17:44:05 +0000313 // In most cases the types of LHS and RHS will be the same, but in some
314 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
315 // depend on the type for correctness, but handling types carefully can
316 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
317 // a pointer type than the RHS, so use the RHS' type here.
318 return RHS->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319}
320
Dan Gohman9bc642f2009-06-24 04:48:43 +0000321const SCEV *
322SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
323 const SCEV *Conc,
324 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000325 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000326 const SCEV *H =
Dan Gohman89f85052007-10-22 18:31:58 +0000327 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 if (H != getOperand(i)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000329 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330 NewOps.reserve(getNumOperands());
331 for (unsigned j = 0; j != i; ++j)
332 NewOps.push_back(getOperand(j));
333 NewOps.push_back(H);
334 for (++i; i != e; ++i)
335 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000336 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337
Dan Gohman89f85052007-10-22 18:31:58 +0000338 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 }
340 }
341 return this;
342}
343
344
345bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000346 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohman2d888d82009-06-26 22:17:21 +0000347 if (!QueryLoop)
348 return false;
349
350 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
351 if (QueryLoop->contains(L->getHeader()))
352 return false;
353
354 // This recurrence is variant w.r.t. QueryLoop if any of its operands
355 // are variant.
356 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
357 if (!getOperand(i)->isLoopInvariant(QueryLoop))
358 return false;
359
360 // Otherwise it's loop-invariant.
361 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362}
363
Dan Gohman13058cc2009-04-21 00:47:46 +0000364void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365 OS << "{" << *Operands[0];
366 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
367 OS << ",+," << *Operands[i];
368 OS << "}<" << L->getHeader()->getName() + ">";
369}
370
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
372 // All non-instruction values are loop invariant. All instructions are loop
373 // invariant if they are not contained in the specified loop.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000374 // Instructions are never considered invariant in the function body
375 // (null loop) because they are defined within the "loop".
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000377 return L && !L->contains(I->getParent());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 return true;
379}
380
Evan Cheng98c073b2009-02-17 00:13:06 +0000381bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
382 if (Instruction *I = dyn_cast<Instruction>(getValue()))
383 return DT->dominates(I->getParent(), BB);
384 return true;
385}
386
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387const Type *SCEVUnknown::getType() const {
388 return V->getType();
389}
390
Dan Gohman13058cc2009-04-21 00:47:46 +0000391void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392 WriteAsOperand(OS, V, false);
393}
394
395//===----------------------------------------------------------------------===//
396// SCEV Utilities
397//===----------------------------------------------------------------------===//
398
399namespace {
400 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
401 /// than the complexity of the RHS. This comparator is used to canonicalize
402 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000403 class VISIBILITY_HIDDEN SCEVComplexityCompare {
404 LoopInfo *LI;
405 public:
406 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
407
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000408 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000409 // Primarily, sort the SCEVs by their getSCEVType().
410 if (LHS->getSCEVType() != RHS->getSCEVType())
411 return LHS->getSCEVType() < RHS->getSCEVType();
412
413 // Aside from the getSCEVType() ordering, the particular ordering
414 // isn't very important except that it's beneficial to be consistent,
415 // so that (a + b) and (b + a) don't end up as different expressions.
416
417 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
418 // not as complete as it could be.
419 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
420 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
421
Dan Gohmand0c01232009-05-19 02:15:55 +0000422 // Order pointer values after integer values. This helps SCEVExpander
423 // form GEPs.
424 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
425 return false;
426 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
427 return true;
428
Dan Gohman5d486452009-05-07 14:39:04 +0000429 // Compare getValueID values.
430 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
431 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
432
433 // Sort arguments by their position.
434 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
435 const Argument *RA = cast<Argument>(RU->getValue());
436 return LA->getArgNo() < RA->getArgNo();
437 }
438
439 // For instructions, compare their loop depth, and their opcode.
440 // This is pretty loose.
441 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
442 Instruction *RV = cast<Instruction>(RU->getValue());
443
444 // Compare loop depths.
445 if (LI->getLoopDepth(LV->getParent()) !=
446 LI->getLoopDepth(RV->getParent()))
447 return LI->getLoopDepth(LV->getParent()) <
448 LI->getLoopDepth(RV->getParent());
449
450 // Compare opcodes.
451 if (LV->getOpcode() != RV->getOpcode())
452 return LV->getOpcode() < RV->getOpcode();
453
454 // Compare the number of operands.
455 if (LV->getNumOperands() != RV->getNumOperands())
456 return LV->getNumOperands() < RV->getNumOperands();
457 }
458
459 return false;
460 }
461
Dan Gohman56fc8f12009-06-14 22:51:25 +0000462 // Compare constant values.
463 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
464 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewycky9bb14052009-07-04 17:24:52 +0000465 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
466 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman56fc8f12009-06-14 22:51:25 +0000467 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
468 }
469
470 // Compare addrec loop depths.
471 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
472 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
473 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
474 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
475 }
Dan Gohman5d486452009-05-07 14:39:04 +0000476
477 // Lexicographically compare n-ary expressions.
478 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
479 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
480 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
481 if (i >= RC->getNumOperands())
482 return false;
483 if (operator()(LC->getOperand(i), RC->getOperand(i)))
484 return true;
485 if (operator()(RC->getOperand(i), LC->getOperand(i)))
486 return false;
487 }
488 return LC->getNumOperands() < RC->getNumOperands();
489 }
490
Dan Gohman6e10db12009-05-07 19:23:21 +0000491 // Lexicographically compare udiv expressions.
492 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
493 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
494 if (operator()(LC->getLHS(), RC->getLHS()))
495 return true;
496 if (operator()(RC->getLHS(), LC->getLHS()))
497 return false;
498 if (operator()(LC->getRHS(), RC->getRHS()))
499 return true;
500 if (operator()(RC->getRHS(), LC->getRHS()))
501 return false;
502 return false;
503 }
504
Dan Gohman5d486452009-05-07 14:39:04 +0000505 // Compare cast expressions by operand.
506 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
507 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
508 return operator()(LC->getOperand(), RC->getOperand());
509 }
510
Edwin Törökbd448e32009-07-14 16:55:14 +0000511 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman5d486452009-05-07 14:39:04 +0000512 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000513 }
514 };
515}
516
517/// GroupByComplexity - Given a list of SCEV objects, order them by their
518/// complexity, and group objects of the same complexity together by value.
519/// When this routine is finished, we know that any duplicates in the vector are
520/// consecutive and that complexity is monotonically increasing.
521///
522/// Note that we go take special precautions to ensure that we get determinstic
523/// results from this routine. In other words, we don't want the results of
524/// this to depend on where the addresses of various SCEV objects happened to
525/// land in memory.
526///
Dan Gohman161ea032009-07-07 17:06:11 +0000527static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman5d486452009-05-07 14:39:04 +0000528 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000529 if (Ops.size() < 2) return; // Noop
530 if (Ops.size() == 2) {
531 // This is the common case, which also happens to be trivially simple.
532 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000533 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000534 std::swap(Ops[0], Ops[1]);
535 return;
536 }
537
538 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000539 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000540
541 // Now that we are sorted by complexity, group elements of the same
542 // complexity. Note that this is, at worst, N^2, but the vector is likely to
543 // be extremely short in practice. Note that we take this approach because we
544 // do not want to depend on the addresses of the objects we are grouping.
545 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000546 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000547 unsigned Complexity = S->getSCEVType();
548
549 // If there are any objects of the same complexity and same value as this
550 // one, group them.
551 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
552 if (Ops[j] == S) { // Found a duplicate.
553 // Move it to immediately after i'th element.
554 std::swap(Ops[i+1], Ops[j]);
555 ++i; // no need to rescan it.
556 if (i == e-2) return; // Done!
557 }
558 }
559 }
560}
561
562
563
564//===----------------------------------------------------------------------===//
565// Simple SCEV method implementations
566//===----------------------------------------------------------------------===//
567
Eli Friedman7489ec92008-08-04 23:49:06 +0000568/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohmanc8a29272009-05-24 23:45:28 +0000569/// Assume, K > 0.
Dan Gohman161ea032009-07-07 17:06:11 +0000570static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000571 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000572 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000573 // Handle the simplest case efficiently.
574 if (K == 1)
575 return SE.getTruncateOrZeroExtend(It, ResultTy);
576
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000577 // We are using the following formula for BC(It, K):
578 //
579 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
580 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000581 // Suppose, W is the bitwidth of the return value. We must be prepared for
582 // overflow. Hence, we must assure that the result of our computation is
583 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
584 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000585 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000586 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman9bc642f2009-06-24 04:48:43 +0000587 // is something like the following, where T is the number of factors of 2 in
Eli Friedman7489ec92008-08-04 23:49:06 +0000588 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
589 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000590 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000591 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000592 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000593 // This formula is trivially equivalent to the previous formula. However,
594 // this formula can be implemented much more efficiently. The trick is that
595 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
596 // arithmetic. To do exact division in modular arithmetic, all we have
597 // to do is multiply by the inverse. Therefore, this step can be done at
598 // width W.
Dan Gohman9bc642f2009-06-24 04:48:43 +0000599 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000600 // The next issue is how to safely do the division by 2^T. The way this
601 // is done is by doing the multiplication step at a width of at least W + T
602 // bits. This way, the bottom W+T bits of the product are accurate. Then,
603 // when we perform the division by 2^T (which is equivalent to a right shift
604 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
605 // truncated out after the division by 2^T.
606 //
607 // In comparison to just directly using the first formula, this technique
608 // is much more efficient; using the first formula requires W * K bits,
609 // but this formula less than W + K bits. Also, the first formula requires
610 // a division step, whereas this formula only requires multiplies and shifts.
611 //
612 // It doesn't matter whether the subtraction step is done in the calculation
613 // width or the input iteration count's width; if the subtraction overflows,
614 // the result must be zero anyway. We prefer here to do it in the width of
615 // the induction variable because it helps a lot for certain cases; CodeGen
616 // isn't smart enough to ignore the overflow, which leads to much less
617 // efficient code if the width of the subtraction is wider than the native
618 // register width.
619 //
620 // (It's possible to not widen at all by pulling out factors of 2 before
621 // the multiplication; for example, K=2 can be calculated as
622 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
623 // extra arithmetic, so it's not an obvious win, and it gets
624 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000625
Eli Friedman7489ec92008-08-04 23:49:06 +0000626 // Protection from insane SCEVs; this bound is conservative,
627 // but it probably doesn't matter.
628 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000629 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000630
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000631 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000632
Eli Friedman7489ec92008-08-04 23:49:06 +0000633 // Calculate K! / 2^T and T; we divide out the factors of two before
634 // multiplying for calculating K! / 2^T to avoid overflow.
635 // Other overflow doesn't matter because we only care about the bottom
636 // W bits of the result.
637 APInt OddFactorial(W, 1);
638 unsigned T = 1;
639 for (unsigned i = 3; i <= K; ++i) {
640 APInt Mult(W, i);
641 unsigned TwoFactors = Mult.countTrailingZeros();
642 T += TwoFactors;
643 Mult = Mult.lshr(TwoFactors);
644 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000645 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000646
Eli Friedman7489ec92008-08-04 23:49:06 +0000647 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000648 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000649
650 // Calcuate 2^T, at width T+W.
651 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
652
653 // Calculate the multiplicative inverse of K! / 2^T;
654 // this multiplication factor will perform the exact division by
655 // K! / 2^T.
656 APInt Mod = APInt::getSignedMinValue(W+1);
657 APInt MultiplyFactor = OddFactorial.zext(W+1);
658 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
659 MultiplyFactor = MultiplyFactor.trunc(W);
660
661 // Calculate the product, at width T+W
662 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
Dan Gohman161ea032009-07-07 17:06:11 +0000663 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman7489ec92008-08-04 23:49:06 +0000664 for (unsigned i = 1; i != K; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000665 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedman7489ec92008-08-04 23:49:06 +0000666 Dividend = SE.getMulExpr(Dividend,
667 SE.getTruncateOrZeroExtend(S, CalculationTy));
668 }
669
670 // Divide by 2^T
Dan Gohman161ea032009-07-07 17:06:11 +0000671 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman7489ec92008-08-04 23:49:06 +0000672
673 // Truncate the result, and divide by K! / 2^T.
674
675 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
676 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677}
678
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000679/// evaluateAtIteration - Return the value of this chain of recurrences at
680/// the specified iteration number. We can evaluate this recurrence by
681/// multiplying each element in the chain by the binomial coefficient
682/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
683///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000684/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000685///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000686/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000687///
Dan Gohman161ea032009-07-07 17:06:11 +0000688const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman89f85052007-10-22 18:31:58 +0000689 ScalarEvolution &SE) const {
Dan Gohman161ea032009-07-07 17:06:11 +0000690 const SCEV *Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000691 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000692 // The computation is correct in the face of overflow provided that the
693 // multiplication is performed _after_ the evaluation of the binomial
694 // coefficient.
Dan Gohman161ea032009-07-07 17:06:11 +0000695 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000696 if (isa<SCEVCouldNotCompute>(Coeff))
697 return Coeff;
698
699 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700 }
701 return Result;
702}
703
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704//===----------------------------------------------------------------------===//
705// SCEV Expression folder implementations
706//===----------------------------------------------------------------------===//
707
Dan Gohman161ea032009-07-07 17:06:11 +0000708const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohman69eacc72009-07-13 22:05:32 +0000709 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000710 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000711 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000712 assert(isSCEVable(Ty) &&
713 "This is not a conversion to a SCEVable type!");
714 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000715
Dan Gohmand43a8282009-07-13 20:50:19 +0000716 FoldingSetNodeID ID;
717 ID.AddInteger(scTruncate);
718 ID.AddPointer(Op);
719 ID.AddPointer(Ty);
720 void *IP = 0;
721 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
722
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000723 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000724 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman55788cf2009-06-24 00:38:39 +0000725 return getConstant(
726 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727
Dan Gohman1a5c4992009-04-22 16:20:48 +0000728 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000729 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000730 return getTruncateExpr(ST->getOperand(), Ty);
731
Nick Lewycky37d04642009-04-23 05:15:08 +0000732 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000733 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000734 return getTruncateOrSignExtend(SS->getOperand(), Ty);
735
736 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000737 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000738 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
739
Dan Gohman1c0aa2c2009-06-18 16:24:47 +0000740 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000741 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000742 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000744 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
745 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 }
747
Dan Gohmand43a8282009-07-13 20:50:19 +0000748 // The cast wasn't folded; create an explicit cast node.
749 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000750 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
751 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000752 new (S) SCEVTruncateExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000753 UniqueSCEVs.InsertNode(S, IP);
754 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755}
756
Dan Gohman161ea032009-07-07 17:06:11 +0000757const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohman69eacc72009-07-13 22:05:32 +0000758 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000759 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000760 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000761 assert(isSCEVable(Ty) &&
762 "This is not a conversion to a SCEVable type!");
763 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000764
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000765 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000766 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000767 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000768 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
769 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohman55788cf2009-06-24 00:38:39 +0000770 return getConstant(cast<ConstantInt>(C));
Dan Gohman01c2ee72009-04-16 03:18:22 +0000771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772
Dan Gohman1a5c4992009-04-22 16:20:48 +0000773 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000774 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000775 return getZeroExtendExpr(SZ->getOperand(), Ty);
776
Dan Gohmandb888422009-07-13 20:55:53 +0000777 // Before doing any expensive analysis, check to see if we've already
778 // computed a SCEV for this Op and Ty.
779 FoldingSetNodeID ID;
780 ID.AddInteger(scZeroExtend);
781 ID.AddPointer(Op);
782 ID.AddPointer(Ty);
783 void *IP = 0;
784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
785
Dan Gohmana9dba962009-04-27 20:16:15 +0000786 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000788 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000789 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000790 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000791 if (AR->isAffine()) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000792 const SCEV *Start = AR->getStart();
793 const SCEV *Step = AR->getStepRecurrence(*this);
794 unsigned BitWidth = getTypeSizeInBits(AR->getType());
795 const Loop *L = AR->getLoop();
796
Dan Gohmana9dba962009-04-27 20:16:15 +0000797 // Check whether the backedge-taken count is SCEVCouldNotCompute.
798 // Note that this serves two purposes: It filters out loops that are
799 // simply not analyzable, and it covers the case where this code is
800 // being called from within backedge-taken count analysis, such that
801 // attempting to ask for the backedge-taken count would likely result
802 // in infinite recursion. In the later case, the analysis code will
803 // cope with a conservative value, and it will take care to purge
804 // that value once it has finished.
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000805 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000806 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000807 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000808 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000809
810 // Check whether the backedge-taken count can be losslessly casted to
811 // the addrec's type. The count is always unsigned.
Dan Gohman161ea032009-07-07 17:06:11 +0000812 const SCEV *CastedMaxBECount =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000813 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman161ea032009-07-07 17:06:11 +0000814 const SCEV *RecastedMaxBECount =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000815 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
816 if (MaxBECount == RecastedMaxBECount) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000817 const Type *WideTy = IntegerType::get(BitWidth * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000818 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman161ea032009-07-07 17:06:11 +0000819 const SCEV *ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000820 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000821 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman161ea032009-07-07 17:06:11 +0000822 const SCEV *Add = getAddExpr(Start, ZMul);
823 const SCEV *OperandExtendedAdd =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000824 getAddExpr(getZeroExtendExpr(Start, WideTy),
825 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
826 getZeroExtendExpr(Step, WideTy)));
827 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000828 // Return the expression with the addrec on the outside.
829 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
830 getZeroExtendExpr(Step, Ty),
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000831 L);
Dan Gohmana9dba962009-04-27 20:16:15 +0000832
833 // Similar to above, only this time treat the step value as signed.
834 // This covers loops that count down.
Dan Gohman161ea032009-07-07 17:06:11 +0000835 const SCEV *SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000836 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000837 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000838 Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000839 OperandExtendedAdd =
840 getAddExpr(getZeroExtendExpr(Start, WideTy),
841 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
842 getSignExtendExpr(Step, WideTy)));
843 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000844 // Return the expression with the addrec on the outside.
845 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
846 getSignExtendExpr(Step, Ty),
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000847 L);
848 }
849
850 // If the backedge is guarded by a comparison with the pre-inc value
851 // the addrec is safe. Also, if the entry is guarded by a comparison
852 // with the start value and the backedge is guarded by a comparison
853 // with the post-inc value, the addrec is safe.
854 if (isKnownPositive(Step)) {
855 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
856 getUnsignedRange(Step).getUnsignedMax());
857 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
858 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
859 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
860 AR->getPostIncExpr(*this), N)))
861 // Return the expression with the addrec on the outside.
862 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
863 getZeroExtendExpr(Step, Ty),
864 L);
865 } else if (isKnownNegative(Step)) {
866 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
867 getSignedRange(Step).getSignedMin());
868 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
869 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
870 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
871 AR->getPostIncExpr(*this), N)))
872 // Return the expression with the addrec on the outside.
873 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
874 getSignExtendExpr(Step, Ty),
875 L);
Dan Gohmana9dba962009-04-27 20:16:15 +0000876 }
877 }
878 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879
Dan Gohmandb888422009-07-13 20:55:53 +0000880 // The cast wasn't folded; create an explicit cast node.
881 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000882 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
883 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000884 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000885 UniqueSCEVs.InsertNode(S, IP);
886 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000887}
888
Dan Gohman161ea032009-07-07 17:06:11 +0000889const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohman69eacc72009-07-13 22:05:32 +0000890 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000891 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000892 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000893 assert(isSCEVable(Ty) &&
894 "This is not a conversion to a SCEVable type!");
895 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000896
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000897 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000898 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000899 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000900 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
901 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohman55788cf2009-06-24 00:38:39 +0000902 return getConstant(cast<ConstantInt>(C));
Dan Gohman01c2ee72009-04-16 03:18:22 +0000903 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904
Dan Gohman1a5c4992009-04-22 16:20:48 +0000905 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000906 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000907 return getSignExtendExpr(SS->getOperand(), Ty);
908
Dan Gohmandb888422009-07-13 20:55:53 +0000909 // Before doing any expensive analysis, check to see if we've already
910 // computed a SCEV for this Op and Ty.
911 FoldingSetNodeID ID;
912 ID.AddInteger(scSignExtend);
913 ID.AddPointer(Op);
914 ID.AddPointer(Ty);
915 void *IP = 0;
916 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
917
Dan Gohmana9dba962009-04-27 20:16:15 +0000918 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000919 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000920 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000921 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000922 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000923 if (AR->isAffine()) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000924 const SCEV *Start = AR->getStart();
925 const SCEV *Step = AR->getStepRecurrence(*this);
926 unsigned BitWidth = getTypeSizeInBits(AR->getType());
927 const Loop *L = AR->getLoop();
928
Dan Gohmana9dba962009-04-27 20:16:15 +0000929 // Check whether the backedge-taken count is SCEVCouldNotCompute.
930 // Note that this serves two purposes: It filters out loops that are
931 // simply not analyzable, and it covers the case where this code is
932 // being called from within backedge-taken count analysis, such that
933 // attempting to ask for the backedge-taken count would likely result
934 // in infinite recursion. In the later case, the analysis code will
935 // cope with a conservative value, and it will take care to purge
936 // that value once it has finished.
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000937 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000938 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000939 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000940 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000941
942 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000943 // the addrec's type. The count is always unsigned.
Dan Gohman161ea032009-07-07 17:06:11 +0000944 const SCEV *CastedMaxBECount =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000945 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman161ea032009-07-07 17:06:11 +0000946 const SCEV *RecastedMaxBECount =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000947 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
948 if (MaxBECount == RecastedMaxBECount) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000949 const Type *WideTy = IntegerType::get(BitWidth * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000950 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman161ea032009-07-07 17:06:11 +0000951 const SCEV *SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000952 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000953 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman161ea032009-07-07 17:06:11 +0000954 const SCEV *Add = getAddExpr(Start, SMul);
955 const SCEV *OperandExtendedAdd =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000956 getAddExpr(getSignExtendExpr(Start, WideTy),
957 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
958 getSignExtendExpr(Step, WideTy)));
959 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000960 // Return the expression with the addrec on the outside.
961 return getAddRecExpr(getSignExtendExpr(Start, Ty),
962 getSignExtendExpr(Step, Ty),
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000963 L);
Dan Gohman2d4f5b12009-07-16 17:34:36 +0000964
965 // Similar to above, only this time treat the step value as unsigned.
966 // This covers loops that count up with an unsigned step.
967 const SCEV *UMul =
968 getMulExpr(CastedMaxBECount,
969 getTruncateOrZeroExtend(Step, Start->getType()));
970 Add = getAddExpr(Start, UMul);
971 OperandExtendedAdd =
972 getAddExpr(getZeroExtendExpr(Start, WideTy),
973 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
974 getZeroExtendExpr(Step, WideTy)));
975 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
976 // Return the expression with the addrec on the outside.
977 return getAddRecExpr(getSignExtendExpr(Start, Ty),
978 getZeroExtendExpr(Step, Ty),
979 L);
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000980 }
981
982 // If the backedge is guarded by a comparison with the pre-inc value
983 // the addrec is safe. Also, if the entry is guarded by a comparison
984 // with the start value and the backedge is guarded by a comparison
985 // with the post-inc value, the addrec is safe.
986 if (isKnownPositive(Step)) {
987 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
988 getSignedRange(Step).getSignedMax());
989 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
990 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
991 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
992 AR->getPostIncExpr(*this), N)))
993 // Return the expression with the addrec on the outside.
994 return getAddRecExpr(getSignExtendExpr(Start, Ty),
995 getSignExtendExpr(Step, Ty),
996 L);
997 } else if (isKnownNegative(Step)) {
998 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
999 getSignedRange(Step).getSignedMin());
1000 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1001 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1002 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1003 AR->getPostIncExpr(*this), N)))
1004 // Return the expression with the addrec on the outside.
1005 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1006 getSignExtendExpr(Step, Ty),
1007 L);
Dan Gohmana9dba962009-04-27 20:16:15 +00001008 }
1009 }
1010 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011
Dan Gohmandb888422009-07-13 20:55:53 +00001012 // The cast wasn't folded; create an explicit cast node.
1013 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001014 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1015 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001016 new (S) SCEVSignExtendExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001017 UniqueSCEVs.InsertNode(S, IP);
1018 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019}
1020
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001021/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1022/// unspecified bits out to the given type.
1023///
Dan Gohman161ea032009-07-07 17:06:11 +00001024const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001025 const Type *Ty) {
1026 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1027 "This is not an extending conversion!");
1028 assert(isSCEVable(Ty) &&
1029 "This is not a conversion to a SCEVable type!");
1030 Ty = getEffectiveSCEVType(Ty);
1031
1032 // Sign-extend negative constants.
1033 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1034 if (SC->getValue()->getValue().isNegative())
1035 return getSignExtendExpr(Op, Ty);
1036
1037 // Peel off a truncate cast.
1038 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman161ea032009-07-07 17:06:11 +00001039 const SCEV *NewOp = T->getOperand();
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001040 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1041 return getAnyExtendExpr(NewOp, Ty);
1042 return getTruncateOrNoop(NewOp, Ty);
1043 }
1044
1045 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman161ea032009-07-07 17:06:11 +00001046 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001047 if (!isa<SCEVZeroExtendExpr>(ZExt))
1048 return ZExt;
1049
1050 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman161ea032009-07-07 17:06:11 +00001051 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001052 if (!isa<SCEVSignExtendExpr>(SExt))
1053 return SExt;
1054
1055 // If the expression is obviously signed, use the sext cast value.
1056 if (isa<SCEVSMaxExpr>(Op))
1057 return SExt;
1058
1059 // Absent any other information, use the zext cast value.
1060 return ZExt;
1061}
1062
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001063/// CollectAddOperandsWithScales - Process the given Ops list, which is
1064/// a list of operands to be added under the given scale, update the given
1065/// map. This is a helper function for getAddRecExpr. As an example of
1066/// what it does, given a sequence of operands that would form an add
1067/// expression like this:
1068///
1069/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1070///
1071/// where A and B are constants, update the map with these values:
1072///
1073/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1074///
1075/// and add 13 + A*B*29 to AccumulatedConstant.
1076/// This will allow getAddRecExpr to produce this:
1077///
1078/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1079///
1080/// This form often exposes folding opportunities that are hidden in
1081/// the original operand list.
1082///
1083/// Return true iff it appears that any interesting folding opportunities
1084/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1085/// the common case where no interesting opportunities are present, and
1086/// is also used as a check to avoid infinite recursion.
1087///
1088static bool
Dan Gohman161ea032009-07-07 17:06:11 +00001089CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1090 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001091 APInt &AccumulatedConstant,
Dan Gohman161ea032009-07-07 17:06:11 +00001092 const SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001093 const APInt &Scale,
1094 ScalarEvolution &SE) {
1095 bool Interesting = false;
1096
1097 // Iterate over the add operands.
1098 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1099 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1100 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1101 APInt NewScale =
1102 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1103 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1104 // A multiplication of a constant with another add; recurse.
1105 Interesting |=
1106 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1107 cast<SCEVAddExpr>(Mul->getOperand(1))
1108 ->getOperands(),
1109 NewScale, SE);
1110 } else {
1111 // A multiplication of a constant with some other value. Update
1112 // the map.
Dan Gohman161ea032009-07-07 17:06:11 +00001113 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1114 const SCEV *Key = SE.getMulExpr(MulOps);
1115 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman3bf01f02009-06-29 18:25:52 +00001116 M.insert(std::make_pair(Key, NewScale));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001117 if (Pair.second) {
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001118 NewOps.push_back(Pair.first->first);
1119 } else {
1120 Pair.first->second += NewScale;
1121 // The map already had an entry for this value, which may indicate
1122 // a folding opportunity.
1123 Interesting = true;
1124 }
1125 }
1126 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1127 // Pull a buried constant out to the outside.
1128 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1129 Interesting = true;
1130 AccumulatedConstant += Scale * C->getValue()->getValue();
1131 } else {
1132 // An ordinary operand. Update the map.
Dan Gohman161ea032009-07-07 17:06:11 +00001133 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman3bf01f02009-06-29 18:25:52 +00001134 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001135 if (Pair.second) {
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001136 NewOps.push_back(Pair.first->first);
1137 } else {
1138 Pair.first->second += Scale;
1139 // The map already had an entry for this value, which may indicate
1140 // a folding opportunity.
1141 Interesting = true;
1142 }
1143 }
1144 }
1145
1146 return Interesting;
1147}
1148
1149namespace {
1150 struct APIntCompare {
1151 bool operator()(const APInt &LHS, const APInt &RHS) const {
1152 return LHS.ult(RHS);
1153 }
1154 };
1155}
1156
Dan Gohmanc8a29272009-05-24 23:45:28 +00001157/// getAddExpr - Get a canonical add expression, or something simpler if
1158/// possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001159const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 assert(!Ops.empty() && "Cannot get empty add!");
1161 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001162#ifndef NDEBUG
1163 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1164 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1165 getEffectiveSCEVType(Ops[0]->getType()) &&
1166 "SCEVAddExpr operand types don't match!");
1167#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001168
1169 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001170 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171
1172 // If there are any constants, fold them together.
1173 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001174 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001175 ++Idx;
1176 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001177 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001178 // We found two constants, fold them together!
Dan Gohman02ff9392009-06-14 22:47:23 +00001179 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1180 RHSC->getValue()->getValue());
Dan Gohman68f23e82009-06-14 22:53:57 +00001181 if (Ops.size() == 2) return Ops[0];
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001182 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001183 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001184 }
1185
1186 // If we are left with a constant zero being added, strip it off.
1187 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1188 Ops.erase(Ops.begin());
1189 --Idx;
1190 }
1191 }
1192
1193 if (Ops.size() == 1) return Ops[0];
1194
1195 // Okay, check to see if the same value occurs in the operand list twice. If
1196 // so, merge them together into an multiply expression. Since we sorted the
1197 // list, these values are required to be adjacent.
1198 const Type *Ty = Ops[0]->getType();
1199 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1200 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1201 // Found a match, merge the two values into a multiply, and add any
1202 // remaining values to the result.
Dan Gohman161ea032009-07-07 17:06:11 +00001203 const SCEV *Two = getIntegerSCEV(2, Ty);
1204 const SCEV *Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001205 if (Ops.size() == 2)
1206 return Mul;
1207 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1208 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +00001209 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001210 }
1211
Dan Gohman45b3b542009-05-08 21:03:19 +00001212 // Check for truncates. If all the operands are truncated from the same
1213 // type, see if factoring out the truncate would permit the result to be
1214 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1215 // if the contents of the resulting outer trunc fold to something simple.
1216 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1217 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1218 const Type *DstType = Trunc->getType();
1219 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00001220 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001221 bool Ok = true;
1222 // Check all the operands to see if they can be represented in the
1223 // source type of the truncate.
1224 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1225 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1226 if (T->getOperand()->getType() != SrcType) {
1227 Ok = false;
1228 break;
1229 }
1230 LargeOps.push_back(T->getOperand());
1231 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1232 // This could be either sign or zero extension, but sign extension
1233 // is much more likely to be foldable here.
1234 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1235 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman161ea032009-07-07 17:06:11 +00001236 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001237 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1238 if (const SCEVTruncateExpr *T =
1239 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1240 if (T->getOperand()->getType() != SrcType) {
1241 Ok = false;
1242 break;
1243 }
1244 LargeMulOps.push_back(T->getOperand());
1245 } else if (const SCEVConstant *C =
1246 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1247 // This could be either sign or zero extension, but sign extension
1248 // is much more likely to be foldable here.
1249 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1250 } else {
1251 Ok = false;
1252 break;
1253 }
1254 }
1255 if (Ok)
1256 LargeOps.push_back(getMulExpr(LargeMulOps));
1257 } else {
1258 Ok = false;
1259 break;
1260 }
1261 }
1262 if (Ok) {
1263 // Evaluate the expression in the larger type.
Dan Gohman161ea032009-07-07 17:06:11 +00001264 const SCEV *Fold = getAddExpr(LargeOps);
Dan Gohman45b3b542009-05-08 21:03:19 +00001265 // If it folds to something simple, use it. Otherwise, don't.
1266 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1267 return getTruncateExpr(Fold, DstType);
1268 }
1269 }
1270
1271 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001272 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1273 ++Idx;
1274
1275 // If there are add operands they would be next.
1276 if (Idx < Ops.size()) {
1277 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001278 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 // If we have an add, expand the add operands onto the end of the operands
1280 // list.
1281 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1282 Ops.erase(Ops.begin()+Idx);
1283 DeletedAdd = true;
1284 }
1285
1286 // If we deleted at least one add, we added operands to the end of the list,
1287 // and they are not necessarily sorted. Recurse to resort and resimplify
1288 // any operands we just aquired.
1289 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001290 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001291 }
1292
1293 // Skip over the add expression until we get to a multiply.
1294 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1295 ++Idx;
1296
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001297 // Check to see if there are any folding opportunities present with
1298 // operands multiplied by constant values.
1299 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1300 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman161ea032009-07-07 17:06:11 +00001301 DenseMap<const SCEV *, APInt> M;
1302 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001303 APInt AccumulatedConstant(BitWidth, 0);
1304 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1305 Ops, APInt(BitWidth, 1), *this)) {
1306 // Some interesting folding opportunity is present, so its worthwhile to
1307 // re-generate the operands list. Group the operands by constant scale,
1308 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman161ea032009-07-07 17:06:11 +00001309 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1310 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001311 E = NewOps.end(); I != E; ++I)
1312 MulOpLists[M.find(*I)->second].push_back(*I);
1313 // Re-generate the operands list.
1314 Ops.clear();
1315 if (AccumulatedConstant != 0)
1316 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman9bc642f2009-06-24 04:48:43 +00001317 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1318 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001319 if (I->first != 0)
Dan Gohman9bc642f2009-06-24 04:48:43 +00001320 Ops.push_back(getMulExpr(getConstant(I->first),
1321 getAddExpr(I->second)));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001322 if (Ops.empty())
1323 return getIntegerSCEV(0, Ty);
1324 if (Ops.size() == 1)
1325 return Ops[0];
1326 return getAddExpr(Ops);
1327 }
1328 }
1329
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001330 // If we are adding something to a multiply expression, make sure the
1331 // something is not already an operand of the multiply. If so, merge it into
1332 // the multiply.
1333 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001334 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001336 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001337 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman02ff9392009-06-14 22:47:23 +00001338 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001339 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman161ea032009-07-07 17:06:11 +00001340 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341 if (Mul->getNumOperands() != 2) {
1342 // If the multiply has more than two operands, we must get the
1343 // Y*Z term.
Dan Gohman161ea032009-07-07 17:06:11 +00001344 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001345 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001346 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001347 }
Dan Gohman161ea032009-07-07 17:06:11 +00001348 const SCEV *One = getIntegerSCEV(1, Ty);
1349 const SCEV *AddOne = getAddExpr(InnerMul, One);
1350 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001351 if (Ops.size() == 2) return OuterMul;
1352 if (AddOp < Idx) {
1353 Ops.erase(Ops.begin()+AddOp);
1354 Ops.erase(Ops.begin()+Idx-1);
1355 } else {
1356 Ops.erase(Ops.begin()+Idx);
1357 Ops.erase(Ops.begin()+AddOp-1);
1358 }
1359 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001360 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001361 }
1362
1363 // Check this multiply against other multiplies being added together.
1364 for (unsigned OtherMulIdx = Idx+1;
1365 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1366 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001367 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368 // If MulOp occurs in OtherMul, we can fold the two multiplies
1369 // together.
1370 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1371 OMulOp != e; ++OMulOp)
1372 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1373 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman161ea032009-07-07 17:06:11 +00001374 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001375 if (Mul->getNumOperands() != 2) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00001376 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1377 Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001378 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001379 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380 }
Dan Gohman161ea032009-07-07 17:06:11 +00001381 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001382 if (OtherMul->getNumOperands() != 2) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00001383 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1384 OtherMul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001385 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001386 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001387 }
Dan Gohman161ea032009-07-07 17:06:11 +00001388 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1389 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390 if (Ops.size() == 2) return OuterMul;
1391 Ops.erase(Ops.begin()+Idx);
1392 Ops.erase(Ops.begin()+OtherMulIdx-1);
1393 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001394 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001395 }
1396 }
1397 }
1398 }
1399
1400 // If there are any add recurrences in the operands list, see if any other
1401 // added values are loop invariant. If so, we can fold them into the
1402 // recurrence.
1403 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1404 ++Idx;
1405
1406 // Scan over all recurrences, trying to fold loop invariants into them.
1407 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1408 // Scan all of the other operands to this add and add them to the vector if
1409 // they are loop invariant w.r.t. the recurrence.
Dan Gohman161ea032009-07-07 17:06:11 +00001410 SmallVector<const SCEV *, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001411 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001412 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1413 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1414 LIOps.push_back(Ops[i]);
1415 Ops.erase(Ops.begin()+i);
1416 --i; --e;
1417 }
1418
1419 // If we found some loop invariants, fold them into the recurrence.
1420 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001421 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001422 LIOps.push_back(AddRec->getStart());
1423
Dan Gohman161ea032009-07-07 17:06:11 +00001424 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001425 AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001426 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001427
Dan Gohman161ea032009-07-07 17:06:11 +00001428 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429 // If all of the other operands were loop invariant, we are done.
1430 if (Ops.size() == 1) return NewRec;
1431
1432 // Otherwise, add the folded AddRec by the non-liv parts.
1433 for (unsigned i = 0;; ++i)
1434 if (Ops[i] == AddRec) {
1435 Ops[i] = NewRec;
1436 break;
1437 }
Dan Gohman89f85052007-10-22 18:31:58 +00001438 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001439 }
1440
1441 // Okay, if there weren't any loop invariants to be folded, check to see if
1442 // there are multiple AddRec's with the same loop induction variable being
1443 // added together. If so, we can fold them.
1444 for (unsigned OtherIdx = Idx+1;
1445 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1446 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001447 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001448 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1449 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman9bc642f2009-06-24 04:48:43 +00001450 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1451 AddRec->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001452 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1453 if (i >= NewOps.size()) {
1454 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1455 OtherAddRec->op_end());
1456 break;
1457 }
Dan Gohman89f85052007-10-22 18:31:58 +00001458 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459 }
Dan Gohman161ea032009-07-07 17:06:11 +00001460 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001461
1462 if (Ops.size() == 2) return NewAddRec;
1463
1464 Ops.erase(Ops.begin()+Idx);
1465 Ops.erase(Ops.begin()+OtherIdx-1);
1466 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001467 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001468 }
1469 }
1470
1471 // Otherwise couldn't fold anything into this recurrence. Move onto the
1472 // next one.
1473 }
1474
1475 // Okay, it looks like we really DO need an add expr. Check to see if we
1476 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001477 FoldingSetNodeID ID;
1478 ID.AddInteger(scAddExpr);
1479 ID.AddInteger(Ops.size());
1480 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1481 ID.AddPointer(Ops[i]);
1482 void *IP = 0;
1483 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1484 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001485 new (S) SCEVAddExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001486 UniqueSCEVs.InsertNode(S, IP);
1487 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001488}
1489
1490
Dan Gohmanc8a29272009-05-24 23:45:28 +00001491/// getMulExpr - Get a canonical multiply expression, or something simpler if
1492/// possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001493const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana77b3d42009-05-18 15:44:58 +00001495#ifndef NDEBUG
1496 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1497 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1498 getEffectiveSCEVType(Ops[0]->getType()) &&
1499 "SCEVMulExpr operand types don't match!");
1500#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501
1502 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001503 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504
1505 // If there are any constants, fold them together.
1506 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001507 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001508
1509 // C1*(C2+V) -> C1*C2 + C1*V
1510 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001511 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001512 if (Add->getNumOperands() == 2 &&
1513 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001514 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1515 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001516
1517
1518 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001519 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520 // We found two constants, fold them together!
Owen Andersone1f1f822009-07-16 18:04:31 +00001521 ConstantInt *Fold = Context->getConstantInt(LHSC->getValue()->getValue() *
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001522 RHSC->getValue()->getValue());
1523 Ops[0] = getConstant(Fold);
1524 Ops.erase(Ops.begin()+1); // Erase the folded element
1525 if (Ops.size() == 1) return Ops[0];
1526 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001527 }
1528
1529 // If we are left with a constant one being multiplied, strip it off.
1530 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1531 Ops.erase(Ops.begin());
1532 --Idx;
1533 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1534 // If we have a multiply of zero, it will always be zero.
1535 return Ops[0];
1536 }
1537 }
1538
1539 // Skip over the add expression until we get to a multiply.
1540 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1541 ++Idx;
1542
1543 if (Ops.size() == 1)
1544 return Ops[0];
1545
1546 // If there are mul operands inline them all into this expression.
1547 if (Idx < Ops.size()) {
1548 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001549 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001550 // If we have an mul, expand the mul operands onto the end of the operands
1551 // list.
1552 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1553 Ops.erase(Ops.begin()+Idx);
1554 DeletedMul = true;
1555 }
1556
1557 // If we deleted at least one mul, we added operands to the end of the list,
1558 // and they are not necessarily sorted. Recurse to resort and resimplify
1559 // any operands we just aquired.
1560 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001561 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001562 }
1563
1564 // If there are any add recurrences in the operands list, see if any other
1565 // added values are loop invariant. If so, we can fold them into the
1566 // recurrence.
1567 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1568 ++Idx;
1569
1570 // Scan over all recurrences, trying to fold loop invariants into them.
1571 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1572 // Scan all of the other operands to this mul and add them to the vector if
1573 // they are loop invariant w.r.t. the recurrence.
Dan Gohman161ea032009-07-07 17:06:11 +00001574 SmallVector<const SCEV *, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001575 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001576 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1577 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1578 LIOps.push_back(Ops[i]);
1579 Ops.erase(Ops.begin()+i);
1580 --i; --e;
1581 }
1582
1583 // If we found some loop invariants, fold them into the recurrence.
1584 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001585 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman161ea032009-07-07 17:06:11 +00001586 SmallVector<const SCEV *, 4> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001587 NewOps.reserve(AddRec->getNumOperands());
1588 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001589 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001590 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001591 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 } else {
1593 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001594 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001595 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001596 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001597 }
1598 }
1599
Dan Gohman161ea032009-07-07 17:06:11 +00001600 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001601
1602 // If all of the other operands were loop invariant, we are done.
1603 if (Ops.size() == 1) return NewRec;
1604
1605 // Otherwise, multiply the folded AddRec by the non-liv parts.
1606 for (unsigned i = 0;; ++i)
1607 if (Ops[i] == AddRec) {
1608 Ops[i] = NewRec;
1609 break;
1610 }
Dan Gohman89f85052007-10-22 18:31:58 +00001611 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001612 }
1613
1614 // Okay, if there weren't any loop invariants to be folded, check to see if
1615 // there are multiple AddRec's with the same loop induction variable being
1616 // multiplied together. If so, we can fold them.
1617 for (unsigned OtherIdx = Idx+1;
1618 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1619 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001620 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001621 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1622 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001623 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman161ea032009-07-07 17:06:11 +00001624 const SCEV *NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001625 G->getStart());
Dan Gohman161ea032009-07-07 17:06:11 +00001626 const SCEV *B = F->getStepRecurrence(*this);
1627 const SCEV *D = G->getStepRecurrence(*this);
1628 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman89f85052007-10-22 18:31:58 +00001629 getMulExpr(G, B),
1630 getMulExpr(B, D));
Dan Gohman161ea032009-07-07 17:06:11 +00001631 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman89f85052007-10-22 18:31:58 +00001632 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001633 if (Ops.size() == 2) return NewAddRec;
1634
1635 Ops.erase(Ops.begin()+Idx);
1636 Ops.erase(Ops.begin()+OtherIdx-1);
1637 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001638 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001639 }
1640 }
1641
1642 // Otherwise couldn't fold anything into this recurrence. Move onto the
1643 // next one.
1644 }
1645
1646 // Okay, it looks like we really DO need an mul expr. Check to see if we
1647 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001648 FoldingSetNodeID ID;
1649 ID.AddInteger(scMulExpr);
1650 ID.AddInteger(Ops.size());
1651 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1652 ID.AddPointer(Ops[i]);
1653 void *IP = 0;
1654 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1655 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001656 new (S) SCEVMulExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001657 UniqueSCEVs.InsertNode(S, IP);
1658 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001659}
1660
Dan Gohmanc8a29272009-05-24 23:45:28 +00001661/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1662/// possible.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001663const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1664 const SCEV *RHS) {
Dan Gohmana77b3d42009-05-18 15:44:58 +00001665 assert(getEffectiveSCEVType(LHS->getType()) ==
1666 getEffectiveSCEVType(RHS->getType()) &&
1667 "SCEVUDivExpr operand types don't match!");
1668
Dan Gohmanc76b5452009-05-04 22:02:23 +00001669 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001670 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001671 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001672 if (RHSC->isZero())
1673 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001674
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001675 // Determine if the division can be folded into the operands of
1676 // its operands.
1677 // TODO: Generalize this to non-constants by using known-bits information.
1678 const Type *Ty = LHS->getType();
1679 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1680 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1681 // For non-power-of-two values, effectively round the value up to the
1682 // nearest power of two.
1683 if (!RHSC->getValue()->getValue().isPowerOf2())
1684 ++MaxShiftAmt;
1685 const IntegerType *ExtTy =
1686 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1687 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1688 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1689 if (const SCEVConstant *Step =
1690 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1691 if (!Step->getValue()->getValue()
1692 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001693 getZeroExtendExpr(AR, ExtTy) ==
1694 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1695 getZeroExtendExpr(Step, ExtTy),
1696 AR->getLoop())) {
Dan Gohman161ea032009-07-07 17:06:11 +00001697 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001698 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1699 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1700 return getAddRecExpr(Operands, AR->getLoop());
1701 }
1702 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001703 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman161ea032009-07-07 17:06:11 +00001704 SmallVector<const SCEV *, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001705 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1706 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1707 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001708 // Find an operand that's safely divisible.
1709 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001710 const SCEV *Op = M->getOperand(i);
1711 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001712 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman161ea032009-07-07 17:06:11 +00001713 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1714 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001715 MOperands.end());
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001716 Operands[i] = Div;
1717 return getMulExpr(Operands);
1718 }
1719 }
Dan Gohman14374d32009-05-08 23:11:16 +00001720 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001721 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001722 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman161ea032009-07-07 17:06:11 +00001723 SmallVector<const SCEV *, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001724 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1725 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1726 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1727 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001728 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001729 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001730 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1731 break;
1732 Operands.push_back(Op);
1733 }
1734 if (Operands.size() == A->getNumOperands())
1735 return getAddExpr(Operands);
1736 }
Dan Gohman14374d32009-05-08 23:11:16 +00001737 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001738
1739 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001740 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001741 Constant *LHSCV = LHSC->getValue();
1742 Constant *RHSCV = RHSC->getValue();
Owen Anderson8be68a32009-07-13 23:50:59 +00001743 return getConstant(cast<ConstantInt>(Context->getConstantExprUDiv(LHSCV,
Dan Gohman55788cf2009-06-24 00:38:39 +00001744 RHSCV)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001745 }
1746 }
1747
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001748 FoldingSetNodeID ID;
1749 ID.AddInteger(scUDivExpr);
1750 ID.AddPointer(LHS);
1751 ID.AddPointer(RHS);
1752 void *IP = 0;
1753 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1754 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001755 new (S) SCEVUDivExpr(ID, LHS, RHS);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001756 UniqueSCEVs.InsertNode(S, IP);
1757 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758}
1759
1760
Dan Gohmanc8a29272009-05-24 23:45:28 +00001761/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1762/// Simplify the expression as much as possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001763const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1764 const SCEV *Step, const Loop *L) {
1765 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001767 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768 if (StepChrec->getLoop() == L) {
1769 Operands.insert(Operands.end(), StepChrec->op_begin(),
1770 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001771 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001772 }
1773
1774 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001775 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001776}
1777
Dan Gohmanc8a29272009-05-24 23:45:28 +00001778/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1779/// Simplify the expression as much as possible.
Dan Gohman9bc642f2009-06-24 04:48:43 +00001780const SCEV *
Dan Gohman161ea032009-07-07 17:06:11 +00001781ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman9bc642f2009-06-24 04:48:43 +00001782 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001783 if (Operands.size() == 1) return Operands[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001784#ifndef NDEBUG
1785 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1786 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1787 getEffectiveSCEVType(Operands[0]->getType()) &&
1788 "SCEVAddRecExpr operand types don't match!");
1789#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001790
Dan Gohman7b560c42008-06-18 16:23:07 +00001791 if (Operands.back()->isZero()) {
1792 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001793 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001794 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001795
Dan Gohman42936882008-08-08 18:33:12 +00001796 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001797 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001798 const Loop* NestedLoop = NestedAR->getLoop();
1799 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Dan Gohman161ea032009-07-07 17:06:11 +00001800 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001801 NestedAR->op_end());
Dan Gohman42936882008-08-08 18:33:12 +00001802 Operands[0] = NestedAR->getStart();
Dan Gohman08c4c072009-06-26 22:36:20 +00001803 // AddRecs require their operands be loop-invariant with respect to their
1804 // loops. Don't perform this transformation if it would break this
1805 // requirement.
1806 bool AllInvariant = true;
1807 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1808 if (!Operands[i]->isLoopInvariant(L)) {
1809 AllInvariant = false;
1810 break;
1811 }
1812 if (AllInvariant) {
1813 NestedOperands[0] = getAddRecExpr(Operands, L);
1814 AllInvariant = true;
1815 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1816 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1817 AllInvariant = false;
1818 break;
1819 }
1820 if (AllInvariant)
1821 // Ok, both add recurrences are valid after the transformation.
1822 return getAddRecExpr(NestedOperands, NestedLoop);
1823 }
1824 // Reset Operands to its original state.
1825 Operands[0] = NestedAR;
Dan Gohman42936882008-08-08 18:33:12 +00001826 }
1827 }
1828
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001829 FoldingSetNodeID ID;
1830 ID.AddInteger(scAddRecExpr);
1831 ID.AddInteger(Operands.size());
1832 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1833 ID.AddPointer(Operands[i]);
1834 ID.AddPointer(L);
1835 void *IP = 0;
1836 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1837 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001838 new (S) SCEVAddRecExpr(ID, Operands, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001839 UniqueSCEVs.InsertNode(S, IP);
1840 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841}
1842
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001843const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1844 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00001845 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky711640a2007-11-25 22:41:31 +00001846 Ops.push_back(LHS);
1847 Ops.push_back(RHS);
1848 return getSMaxExpr(Ops);
1849}
1850
Dan Gohman161ea032009-07-07 17:06:11 +00001851const SCEV *
1852ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001853 assert(!Ops.empty() && "Cannot get empty smax!");
1854 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001855#ifndef NDEBUG
1856 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1857 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1858 getEffectiveSCEVType(Ops[0]->getType()) &&
1859 "SCEVSMaxExpr operand types don't match!");
1860#endif
Nick Lewycky711640a2007-11-25 22:41:31 +00001861
1862 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001863 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001864
1865 // If there are any constants, fold them together.
1866 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001867 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001868 ++Idx;
1869 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001870 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001871 // We found two constants, fold them together!
Owen Andersone1f1f822009-07-16 18:04:31 +00001872 ConstantInt *Fold = Context->getConstantInt(
Nick Lewycky711640a2007-11-25 22:41:31 +00001873 APIntOps::smax(LHSC->getValue()->getValue(),
1874 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001875 Ops[0] = getConstant(Fold);
1876 Ops.erase(Ops.begin()+1); // Erase the folded element
1877 if (Ops.size() == 1) return Ops[0];
1878 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001879 }
1880
Dan Gohmand156c092009-06-24 14:46:22 +00001881 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky711640a2007-11-25 22:41:31 +00001882 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1883 Ops.erase(Ops.begin());
1884 --Idx;
Dan Gohmand156c092009-06-24 14:46:22 +00001885 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1886 // If we have an smax with a constant maximum-int, it will always be
1887 // maximum-int.
1888 return Ops[0];
Nick Lewycky711640a2007-11-25 22:41:31 +00001889 }
1890 }
1891
1892 if (Ops.size() == 1) return Ops[0];
1893
1894 // Find the first SMax
1895 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1896 ++Idx;
1897
1898 // Check to see if one of the operands is an SMax. If so, expand its operands
1899 // onto our operand list, and recurse to simplify.
1900 if (Idx < Ops.size()) {
1901 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001902 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001903 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1904 Ops.erase(Ops.begin()+Idx);
1905 DeletedSMax = true;
1906 }
1907
1908 if (DeletedSMax)
1909 return getSMaxExpr(Ops);
1910 }
1911
1912 // Okay, check to see if the same value occurs in the operand list twice. If
1913 // so, delete one. Since we sorted the list, these values are required to
1914 // be adjacent.
1915 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1916 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1917 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1918 --i; --e;
1919 }
1920
1921 if (Ops.size() == 1) return Ops[0];
1922
1923 assert(!Ops.empty() && "Reduced smax down to nothing!");
1924
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001925 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001926 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001927 FoldingSetNodeID ID;
1928 ID.AddInteger(scSMaxExpr);
1929 ID.AddInteger(Ops.size());
1930 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1931 ID.AddPointer(Ops[i]);
1932 void *IP = 0;
1933 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1934 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001935 new (S) SCEVSMaxExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001936 UniqueSCEVs.InsertNode(S, IP);
1937 return S;
Nick Lewycky711640a2007-11-25 22:41:31 +00001938}
1939
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001940const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1941 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00001942 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001943 Ops.push_back(LHS);
1944 Ops.push_back(RHS);
1945 return getUMaxExpr(Ops);
1946}
1947
Dan Gohman161ea032009-07-07 17:06:11 +00001948const SCEV *
1949ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001950 assert(!Ops.empty() && "Cannot get empty umax!");
1951 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001952#ifndef NDEBUG
1953 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1954 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1955 getEffectiveSCEVType(Ops[0]->getType()) &&
1956 "SCEVUMaxExpr operand types don't match!");
1957#endif
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001958
1959 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001960 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001961
1962 // If there are any constants, fold them together.
1963 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001964 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001965 ++Idx;
1966 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001967 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001968 // We found two constants, fold them together!
Owen Andersone1f1f822009-07-16 18:04:31 +00001969 ConstantInt *Fold = Context->getConstantInt(
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001970 APIntOps::umax(LHSC->getValue()->getValue(),
1971 RHSC->getValue()->getValue()));
1972 Ops[0] = getConstant(Fold);
1973 Ops.erase(Ops.begin()+1); // Erase the folded element
1974 if (Ops.size() == 1) return Ops[0];
1975 LHSC = cast<SCEVConstant>(Ops[0]);
1976 }
1977
Dan Gohmand156c092009-06-24 14:46:22 +00001978 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001979 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1980 Ops.erase(Ops.begin());
1981 --Idx;
Dan Gohmand156c092009-06-24 14:46:22 +00001982 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1983 // If we have an umax with a constant maximum-int, it will always be
1984 // maximum-int.
1985 return Ops[0];
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001986 }
1987 }
1988
1989 if (Ops.size() == 1) return Ops[0];
1990
1991 // Find the first UMax
1992 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1993 ++Idx;
1994
1995 // Check to see if one of the operands is a UMax. If so, expand its operands
1996 // onto our operand list, and recurse to simplify.
1997 if (Idx < Ops.size()) {
1998 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001999 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002000 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2001 Ops.erase(Ops.begin()+Idx);
2002 DeletedUMax = true;
2003 }
2004
2005 if (DeletedUMax)
2006 return getUMaxExpr(Ops);
2007 }
2008
2009 // Okay, check to see if the same value occurs in the operand list twice. If
2010 // so, delete one. Since we sorted the list, these values are required to
2011 // be adjacent.
2012 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2013 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2014 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2015 --i; --e;
2016 }
2017
2018 if (Ops.size() == 1) return Ops[0];
2019
2020 assert(!Ops.empty() && "Reduced umax down to nothing!");
2021
2022 // Okay, it looks like we really DO need a umax expr. Check to see if we
2023 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002024 FoldingSetNodeID ID;
2025 ID.AddInteger(scUMaxExpr);
2026 ID.AddInteger(Ops.size());
2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2028 ID.AddPointer(Ops[i]);
2029 void *IP = 0;
2030 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2031 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00002032 new (S) SCEVUMaxExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002033 UniqueSCEVs.InsertNode(S, IP);
2034 return S;
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002035}
2036
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002037const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2038 const SCEV *RHS) {
Dan Gohmand01fff82009-06-22 03:18:45 +00002039 // ~smax(~x, ~y) == smin(x, y).
2040 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2041}
2042
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002043const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2044 const SCEV *RHS) {
Dan Gohmand01fff82009-06-22 03:18:45 +00002045 // ~umax(~x, ~y) == umin(x, y)
2046 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2047}
2048
Dan Gohman161ea032009-07-07 17:06:11 +00002049const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman984c78a2009-06-24 00:54:57 +00002050 // Don't attempt to do anything other than create a SCEVUnknown object
2051 // here. createSCEV only calls getUnknown after checking for all other
2052 // interesting possibilities, and any other code that calls getUnknown
2053 // is doing so in order to hide a value from SCEV canonicalization.
2054
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002055 FoldingSetNodeID ID;
2056 ID.AddInteger(scUnknown);
2057 ID.AddPointer(V);
2058 void *IP = 0;
2059 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2060 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
Dan Gohmand43a8282009-07-13 20:50:19 +00002061 new (S) SCEVUnknown(ID, V);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002062 UniqueSCEVs.InsertNode(S, IP);
2063 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002064}
2065
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002066//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002067// Basic SCEV Analysis and PHI Idiom Recognition Code
2068//
2069
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002070/// isSCEVable - Test if values of the given type are analyzable within
2071/// the SCEV framework. This primarily includes integer types, and it
2072/// can optionally include pointer types if the ScalarEvolution class
2073/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002074bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002075 // Integers are always SCEVable.
2076 if (Ty->isInteger())
2077 return true;
2078
2079 // Pointers are SCEVable if TargetData information is available
2080 // to provide pointer size information.
2081 if (isa<PointerType>(Ty))
2082 return TD != NULL;
2083
2084 // Otherwise it's not SCEVable.
2085 return false;
2086}
2087
2088/// getTypeSizeInBits - Return the size in bits of the specified type,
2089/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002090uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002091 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2092
2093 // If we have a TargetData, use it!
2094 if (TD)
2095 return TD->getTypeSizeInBits(Ty);
2096
2097 // Otherwise, we support only integer types.
2098 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2099 return Ty->getPrimitiveSizeInBits();
2100}
2101
2102/// getEffectiveSCEVType - Return a type with the same bitwidth as
2103/// the given type and which represents how SCEV will treat the given
2104/// type, for which isSCEVable must return true. For pointer types,
2105/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002106const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002107 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2108
2109 if (Ty->isInteger())
2110 return Ty;
2111
2112 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2113 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00002114}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002115
Dan Gohman161ea032009-07-07 17:06:11 +00002116const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002117 return &CouldNotCompute;
Dan Gohman0ad08b02009-04-18 17:58:19 +00002118}
2119
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002120/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2121/// expression and create a new one.
Dan Gohman161ea032009-07-07 17:06:11 +00002122const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002123 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002124
Dan Gohman161ea032009-07-07 17:06:11 +00002125 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002126 if (I != Scalars.end()) return I->second;
Dan Gohman161ea032009-07-07 17:06:11 +00002127 const SCEV *S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00002128 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002129 return S;
2130}
2131
Dan Gohman984c78a2009-06-24 00:54:57 +00002132/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman01c2ee72009-04-16 03:18:22 +00002133/// specified signed integer value and return a SCEV for the constant.
Dan Gohman161ea032009-07-07 17:06:11 +00002134const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohman984c78a2009-06-24 00:54:57 +00002135 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Anderson9f5b2aa2009-07-14 23:09:55 +00002136 return getConstant(Context->getConstantInt(ITy, Val));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002137}
2138
2139/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2140///
Dan Gohman161ea032009-07-07 17:06:11 +00002141const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002142 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson15b39322009-07-13 04:09:18 +00002143 return getConstant(
2144 cast<ConstantInt>(Context->getConstantExprNeg(VC->getValue())));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002145
2146 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002147 Ty = getEffectiveSCEVType(Ty);
Owen Anderson035d41d2009-07-13 20:58:05 +00002148 return getMulExpr(V,
2149 getConstant(cast<ConstantInt>(Context->getAllOnesValue(Ty))));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002150}
2151
2152/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman161ea032009-07-07 17:06:11 +00002153const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002154 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson035d41d2009-07-13 20:58:05 +00002155 return getConstant(
2156 cast<ConstantInt>(Context->getConstantExprNot(VC->getValue())));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002157
2158 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002159 Ty = getEffectiveSCEVType(Ty);
Owen Anderson035d41d2009-07-13 20:58:05 +00002160 const SCEV *AllOnes =
2161 getConstant(cast<ConstantInt>(Context->getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002162 return getMinusSCEV(AllOnes, V);
2163}
2164
2165/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2166///
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002167const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2168 const SCEV *RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002169 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002170 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002171}
2172
2173/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2174/// input value to the specified type. If the type must be extended, it is zero
2175/// extended.
Dan Gohman161ea032009-07-07 17:06:11 +00002176const SCEV *
2177ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky37d04642009-04-23 05:15:08 +00002178 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002179 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002180 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2181 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00002182 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002183 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00002184 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002185 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002186 return getTruncateExpr(V, Ty);
2187 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002188}
2189
2190/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2191/// input value to the specified type. If the type must be extended, it is sign
2192/// extended.
Dan Gohman161ea032009-07-07 17:06:11 +00002193const SCEV *
2194ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky37d04642009-04-23 05:15:08 +00002195 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002196 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002197 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2198 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00002199 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002200 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00002201 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002202 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002203 return getTruncateExpr(V, Ty);
2204 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002205}
2206
Dan Gohmanac959332009-05-13 03:46:30 +00002207/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2208/// input value to the specified type. If the type must be extended, it is zero
2209/// extended. The conversion must not be narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002210const SCEV *
2211ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002212 const Type *SrcTy = V->getType();
2213 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2214 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2215 "Cannot noop or zero extend with non-integer arguments!");
2216 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2217 "getNoopOrZeroExtend cannot truncate!");
2218 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2219 return V; // No conversion
2220 return getZeroExtendExpr(V, Ty);
2221}
2222
2223/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2224/// input value to the specified type. If the type must be extended, it is sign
2225/// extended. The conversion must not be narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002226const SCEV *
2227ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002228 const Type *SrcTy = V->getType();
2229 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2230 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2231 "Cannot noop or sign extend with non-integer arguments!");
2232 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2233 "getNoopOrSignExtend cannot truncate!");
2234 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2235 return V; // No conversion
2236 return getSignExtendExpr(V, Ty);
2237}
2238
Dan Gohmane1ca7e82009-06-13 15:56:47 +00002239/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2240/// the input value to the specified type. If the type must be extended,
2241/// it is extended with unspecified bits. The conversion must not be
2242/// narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002243const SCEV *
2244ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohmane1ca7e82009-06-13 15:56:47 +00002245 const Type *SrcTy = V->getType();
2246 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2247 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2248 "Cannot noop or any extend with non-integer arguments!");
2249 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2250 "getNoopOrAnyExtend cannot truncate!");
2251 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2252 return V; // No conversion
2253 return getAnyExtendExpr(V, Ty);
2254}
2255
Dan Gohmanac959332009-05-13 03:46:30 +00002256/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2257/// input value to the specified type. The conversion must not be widening.
Dan Gohman161ea032009-07-07 17:06:11 +00002258const SCEV *
2259ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002260 const Type *SrcTy = V->getType();
2261 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2262 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2263 "Cannot truncate or noop with non-integer arguments!");
2264 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2265 "getTruncateOrNoop cannot extend!");
2266 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2267 return V; // No conversion
2268 return getTruncateExpr(V, Ty);
2269}
2270
Dan Gohman8e8b5232009-06-22 00:31:57 +00002271/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2272/// the types using zero-extension, and then perform a umax operation
2273/// with them.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002274const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2275 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00002276 const SCEV *PromotedLHS = LHS;
2277 const SCEV *PromotedRHS = RHS;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002278
2279 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2280 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2281 else
2282 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2283
2284 return getUMaxExpr(PromotedLHS, PromotedRHS);
2285}
2286
Dan Gohman9e62bb02009-06-22 15:03:27 +00002287/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2288/// the types using zero-extension, and then perform a umin operation
2289/// with them.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002290const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2291 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00002292 const SCEV *PromotedLHS = LHS;
2293 const SCEV *PromotedRHS = RHS;
Dan Gohman9e62bb02009-06-22 15:03:27 +00002294
2295 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2296 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2297 else
2298 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2299
2300 return getUMinExpr(PromotedLHS, PromotedRHS);
2301}
2302
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002303/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2304/// the specified instruction and replaces any references to the symbolic value
2305/// SymName with the specified value. This is used during PHI resolution.
Dan Gohman9bc642f2009-06-24 04:48:43 +00002306void
2307ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
2308 const SCEV *SymName,
2309 const SCEV *NewVal) {
Dan Gohman161ea032009-07-07 17:06:11 +00002310 std::map<SCEVCallbackVH, const SCEV *>::iterator SI =
Dan Gohmanbff6b582009-05-04 22:30:44 +00002311 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002312 if (SI == Scalars.end()) return;
2313
Dan Gohman161ea032009-07-07 17:06:11 +00002314 const SCEV *NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002315 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002316 if (NV == SI->second) return; // No change.
2317
2318 SI->second = NV; // Update the scalars map!
2319
2320 // Any instruction values that use this instruction might also need to be
2321 // updated!
2322 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2323 UI != E; ++UI)
2324 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2325}
2326
2327/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2328/// a loop header, making it a potential recurrence, or it doesn't.
2329///
Dan Gohman161ea032009-07-07 17:06:11 +00002330const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002331 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002332 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002333 if (L->getHeader() == PN->getParent()) {
2334 // If it lives in the loop header, it has two incoming values, one
2335 // from outside the loop, and one from inside.
2336 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2337 unsigned BackEdge = IncomingEdge^1;
2338
2339 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman161ea032009-07-07 17:06:11 +00002340 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002341 assert(Scalars.find(PN) == Scalars.end() &&
2342 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00002343 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002344
2345 // Using this symbolic name for the PHI, analyze the value coming around
2346 // the back-edge.
Dan Gohman161ea032009-07-07 17:06:11 +00002347 const SCEV *BEValue = getSCEV(PN->getIncomingValue(BackEdge));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002348
2349 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2350 // has a special value for the first iteration of the loop.
2351
2352 // If the value coming around the backedge is an add with the symbolic
2353 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00002354 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355 // If there is a single occurrence of the symbolic value, replace it
2356 // with a recurrence.
2357 unsigned FoundIndex = Add->getNumOperands();
2358 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2359 if (Add->getOperand(i) == SymbolicName)
2360 if (FoundIndex == e) {
2361 FoundIndex = i;
2362 break;
2363 }
2364
2365 if (FoundIndex != Add->getNumOperands()) {
2366 // Create an add with everything but the specified operand.
Dan Gohman161ea032009-07-07 17:06:11 +00002367 SmallVector<const SCEV *, 8> Ops;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002368 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2369 if (i != FoundIndex)
2370 Ops.push_back(Add->getOperand(i));
Dan Gohman161ea032009-07-07 17:06:11 +00002371 const SCEV *Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372
2373 // This is not a valid addrec if the step amount is varying each
2374 // loop iteration, but is not itself an addrec in this loop.
2375 if (Accum->isLoopInvariant(L) ||
2376 (isa<SCEVAddRecExpr>(Accum) &&
2377 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00002378 const SCEV *StartVal =
2379 getSCEV(PN->getIncomingValue(IncomingEdge));
2380 const SCEV *PHISCEV =
2381 getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002382
2383 // Okay, for the entire analysis of this edge we assumed the PHI
2384 // to be symbolic. We now need to go back and update all of the
2385 // entries for the scalars that use the PHI (except for the PHI
2386 // itself) to use the new analyzed value instead of the "symbolic"
2387 // value.
2388 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2389 return PHISCEV;
2390 }
2391 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00002392 } else if (const SCEVAddRecExpr *AddRec =
2393 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 // Otherwise, this could be a loop like this:
2395 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2396 // In this case, j = {1,+,1} and BEValue is j.
2397 // Because the other in-value of i (0) fits the evolution of BEValue
2398 // i really is an addrec evolution.
2399 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman161ea032009-07-07 17:06:11 +00002400 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002401
2402 // If StartVal = j.start - j.stride, we can use StartVal as the
2403 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002404 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00002405 AddRec->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00002406 const SCEV *PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002407 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408
2409 // Okay, for the entire analysis of this edge we assumed the PHI
2410 // to be symbolic. We now need to go back and update all of the
2411 // entries for the scalars that use the PHI (except for the PHI
2412 // itself) to use the new analyzed value instead of the "symbolic"
2413 // value.
2414 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2415 return PHISCEV;
2416 }
2417 }
2418 }
2419
2420 return SymbolicName;
2421 }
2422
Dan Gohman32f35cc2009-07-14 14:06:25 +00002423 // It's tempting to recognize PHIs with a unique incoming value, however
2424 // this leads passes like indvars to break LCSSA form. Fortunately, such
2425 // PHIs are rare, as instcombine zaps them.
2426
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002428 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002429}
2430
Dan Gohman509cf4d2009-05-08 20:26:55 +00002431/// createNodeForGEP - Expand GEP instructions into add and multiply
2432/// operations. This allows them to be analyzed by regular SCEV code.
2433///
Dan Gohman9545fb02009-07-17 20:47:02 +00002434const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00002435
2436 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002437 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00002438 // Don't attempt to analyze GEPs over unsized objects.
2439 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2440 return getUnknown(GEP);
Dan Gohman161ea032009-07-07 17:06:11 +00002441 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002442 gep_type_iterator GTI = gep_type_begin(GEP);
2443 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2444 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00002445 I != E; ++I) {
2446 Value *Index = *I;
2447 // Compute the (potentially symbolic) offset in bytes for this index.
2448 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2449 // For a struct, add the member offset.
2450 const StructLayout &SL = *TD->getStructLayout(STy);
2451 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2452 uint64_t Offset = SL.getElementOffset(FieldNo);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002453 TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
Dan Gohman509cf4d2009-05-08 20:26:55 +00002454 } else {
2455 // For an array, add the element offset, explicitly scaled.
Dan Gohman161ea032009-07-07 17:06:11 +00002456 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002457 if (!isa<PointerType>(LocalOffset->getType()))
2458 // Getelementptr indicies are signed.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002459 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002460 LocalOffset =
2461 getMulExpr(LocalOffset,
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002462 getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
Dan Gohman509cf4d2009-05-08 20:26:55 +00002463 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2464 }
2465 }
2466 return getAddExpr(getSCEV(Base), TotalOffset);
2467}
2468
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002469/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2470/// guaranteed to end in (at every loop iteration). It is, at the same time,
2471/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2472/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman6e923a72009-06-19 23:29:04 +00002473uint32_t
Dan Gohman161ea032009-07-07 17:06:11 +00002474ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002475 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002476 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002477
Dan Gohmanc76b5452009-05-04 22:02:23 +00002478 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman6e923a72009-06-19 23:29:04 +00002479 return std::min(GetMinTrailingZeros(T->getOperand()),
2480 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002481
Dan Gohmanc76b5452009-05-04 22:02:23 +00002482 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002483 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2484 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2485 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002486 }
2487
Dan Gohmanc76b5452009-05-04 22:02:23 +00002488 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002489 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2490 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2491 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002492 }
2493
Dan Gohmanc76b5452009-05-04 22:02:23 +00002494 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002495 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002496 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002497 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002498 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002499 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500 }
2501
Dan Gohmanc76b5452009-05-04 22:02:23 +00002502 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002503 // The result is the sum of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002504 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2505 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002506 for (unsigned i = 1, e = M->getNumOperands();
2507 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002508 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002509 BitWidth);
2510 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002511 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002512
Dan Gohmanc76b5452009-05-04 22:02:23 +00002513 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002514 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002515 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002516 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002517 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002518 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002519 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002520
Dan Gohmanc76b5452009-05-04 22:02:23 +00002521 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002522 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002523 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky711640a2007-11-25 22:41:31 +00002524 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002525 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky711640a2007-11-25 22:41:31 +00002526 return MinOpRes;
2527 }
2528
Dan Gohmanc76b5452009-05-04 22:02:23 +00002529 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002530 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002531 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002532 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002533 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002534 return MinOpRes;
2535 }
2536
Dan Gohman6e923a72009-06-19 23:29:04 +00002537 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2538 // For a SCEVUnknown, ask ValueTracking.
2539 unsigned BitWidth = getTypeSizeInBits(U->getType());
2540 APInt Mask = APInt::getAllOnesValue(BitWidth);
2541 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2542 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2543 return Zeros.countTrailingOnes();
2544 }
2545
2546 // SCEVUDivExpr
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002547 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002548}
2549
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002550/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2551///
2552ConstantRange
2553ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002554
2555 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002556 return ConstantRange(C->getValue()->getValue());
Dan Gohman6e923a72009-06-19 23:29:04 +00002557
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002558 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2559 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2560 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2561 X = X.add(getUnsignedRange(Add->getOperand(i)));
2562 return X;
2563 }
2564
2565 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2566 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2567 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2568 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2569 return X;
2570 }
2571
2572 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2573 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2574 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2575 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2576 return X;
2577 }
2578
2579 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2580 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2581 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2582 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2583 return X;
2584 }
2585
2586 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2587 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2588 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2589 return X.udiv(Y);
2590 }
2591
2592 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2593 ConstantRange X = getUnsignedRange(ZExt->getOperand());
2594 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2595 }
2596
2597 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2598 ConstantRange X = getUnsignedRange(SExt->getOperand());
2599 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2600 }
2601
2602 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2603 ConstantRange X = getUnsignedRange(Trunc->getOperand());
2604 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2605 }
2606
2607 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2608
2609 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2610 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2611 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2612 if (!Trip) return FullSet;
2613
2614 // TODO: non-affine addrec
2615 if (AddRec->isAffine()) {
2616 const Type *Ty = AddRec->getType();
2617 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2618 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2619 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2620
2621 const SCEV *Start = AddRec->getStart();
2622 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2623
2624 // Check for overflow.
2625 if (!isKnownPredicate(ICmpInst::ICMP_ULE, Start, End))
2626 return FullSet;
2627
2628 ConstantRange StartRange = getUnsignedRange(Start);
2629 ConstantRange EndRange = getUnsignedRange(End);
2630 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2631 EndRange.getUnsignedMin());
2632 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2633 EndRange.getUnsignedMax());
2634 if (Min.isMinValue() && Max.isMaxValue())
2635 return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
2636 return ConstantRange(Min, Max+1);
2637 }
2638 }
Dan Gohman6e923a72009-06-19 23:29:04 +00002639 }
2640
2641 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2642 // For a SCEVUnknown, ask ValueTracking.
2643 unsigned BitWidth = getTypeSizeInBits(U->getType());
2644 APInt Mask = APInt::getAllOnesValue(BitWidth);
2645 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2646 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002647 return ConstantRange(Ones, ~Zeros);
Dan Gohman6e923a72009-06-19 23:29:04 +00002648 }
2649
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002650 return FullSet;
Dan Gohman6e923a72009-06-19 23:29:04 +00002651}
2652
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002653/// getSignedRange - Determine the signed range for a particular SCEV.
2654///
2655ConstantRange
2656ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002657
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2659 return ConstantRange(C->getValue()->getValue());
2660
2661 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2662 ConstantRange X = getSignedRange(Add->getOperand(0));
2663 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2664 X = X.add(getSignedRange(Add->getOperand(i)));
2665 return X;
Dan Gohman6e923a72009-06-19 23:29:04 +00002666 }
2667
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002668 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2669 ConstantRange X = getSignedRange(Mul->getOperand(0));
2670 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2671 X = X.multiply(getSignedRange(Mul->getOperand(i)));
2672 return X;
Dan Gohman6e923a72009-06-19 23:29:04 +00002673 }
2674
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002675 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2676 ConstantRange X = getSignedRange(SMax->getOperand(0));
2677 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2678 X = X.smax(getSignedRange(SMax->getOperand(i)));
2679 return X;
2680 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002681
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002682 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2683 ConstantRange X = getSignedRange(UMax->getOperand(0));
2684 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2685 X = X.umax(getSignedRange(UMax->getOperand(i)));
2686 return X;
2687 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002688
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002689 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2690 ConstantRange X = getSignedRange(UDiv->getLHS());
2691 ConstantRange Y = getSignedRange(UDiv->getRHS());
2692 return X.udiv(Y);
2693 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002694
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002695 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2696 ConstantRange X = getSignedRange(ZExt->getOperand());
2697 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2698 }
2699
2700 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2701 ConstantRange X = getSignedRange(SExt->getOperand());
2702 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2703 }
2704
2705 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2706 ConstantRange X = getSignedRange(Trunc->getOperand());
2707 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2708 }
2709
2710 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2711
2712 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2713 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2714 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2715 if (!Trip) return FullSet;
2716
2717 // TODO: non-affine addrec
2718 if (AddRec->isAffine()) {
2719 const Type *Ty = AddRec->getType();
2720 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2721 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2722 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2723
2724 const SCEV *Start = AddRec->getStart();
2725 const SCEV *Step = AddRec->getStepRecurrence(*this);
2726 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2727
2728 // Check for overflow.
2729 if (!(isKnownPositive(Step) &&
2730 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2731 !(isKnownNegative(Step) &&
2732 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2733 return FullSet;
2734
2735 ConstantRange StartRange = getSignedRange(Start);
2736 ConstantRange EndRange = getSignedRange(End);
2737 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2738 EndRange.getSignedMin());
2739 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2740 EndRange.getSignedMax());
2741 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2742 return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
2743 return ConstantRange(Min, Max+1);
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002744 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002745 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002746 }
2747
Dan Gohman6e923a72009-06-19 23:29:04 +00002748 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2749 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002750 unsigned BitWidth = getTypeSizeInBits(U->getType());
2751 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2752 if (NS == 1)
2753 return FullSet;
2754 return
2755 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2756 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
Dan Gohman6e923a72009-06-19 23:29:04 +00002757 }
2758
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002759 return FullSet;
Dan Gohman6e923a72009-06-19 23:29:04 +00002760}
2761
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002762/// createSCEV - We know that there is no SCEV for the specified value.
2763/// Analyze the expression.
2764///
Dan Gohman161ea032009-07-07 17:06:11 +00002765const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002766 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002767 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002768
Dan Gohman3996f472008-06-22 19:56:46 +00002769 unsigned Opcode = Instruction::UserOp1;
2770 if (Instruction *I = dyn_cast<Instruction>(V))
2771 Opcode = I->getOpcode();
2772 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2773 Opcode = CE->getOpcode();
Dan Gohman984c78a2009-06-24 00:54:57 +00002774 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2775 return getConstant(CI);
2776 else if (isa<ConstantPointerNull>(V))
2777 return getIntegerSCEV(0, V->getType());
2778 else if (isa<UndefValue>(V))
2779 return getIntegerSCEV(0, V->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002780 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002781 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002782
Dan Gohman9545fb02009-07-17 20:47:02 +00002783 Operator *U = cast<Operator>(V);
Dan Gohman3996f472008-06-22 19:56:46 +00002784 switch (Opcode) {
2785 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002786 return getAddExpr(getSCEV(U->getOperand(0)),
2787 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002788 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002789 return getMulExpr(getSCEV(U->getOperand(0)),
2790 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002791 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002792 return getUDivExpr(getSCEV(U->getOperand(0)),
2793 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002794 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002795 return getMinusSCEV(getSCEV(U->getOperand(0)),
2796 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002797 case Instruction::And:
2798 // For an expression like x&255 that merely masks off the high bits,
2799 // use zext(trunc(x)) as the SCEV expression.
2800 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002801 if (CI->isNullValue())
2802 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002803 if (CI->isAllOnesValue())
2804 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002805 const APInt &A = CI->getValue();
Dan Gohmana7726c32009-06-16 19:52:01 +00002806
2807 // Instcombine's ShrinkDemandedConstant may strip bits out of
2808 // constants, obscuring what would otherwise be a low-bits mask.
2809 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2810 // knew about to reconstruct a low-bits mask value.
2811 unsigned LZ = A.countLeadingZeros();
2812 unsigned BitWidth = A.getBitWidth();
2813 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2814 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2815 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2816
2817 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2818
Dan Gohmanae1d7dd2009-06-17 23:54:37 +00002819 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman53bf64a2009-04-21 02:26:00 +00002820 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002821 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Dan Gohmana7726c32009-06-16 19:52:01 +00002822 IntegerType::get(BitWidth - LZ)),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002823 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002824 }
2825 break;
Dan Gohmana7726c32009-06-16 19:52:01 +00002826
Dan Gohman3996f472008-06-22 19:56:46 +00002827 case Instruction::Or:
2828 // If the RHS of the Or is a constant, we may have something like:
2829 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2830 // optimizations will transparently handle this case.
2831 //
2832 // In order for this transformation to be safe, the LHS must be of the
2833 // form X*(2^n) and the Or constant must be less than 2^n.
2834 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00002835 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman3996f472008-06-22 19:56:46 +00002836 const APInt &CIVal = CI->getValue();
Dan Gohman6e923a72009-06-19 23:29:04 +00002837 if (GetMinTrailingZeros(LHS) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002838 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002839 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002840 }
Dan Gohman3996f472008-06-22 19:56:46 +00002841 break;
2842 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002843 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002844 // If the RHS of the xor is a signbit, then this is just an add.
2845 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002846 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002847 return getAddExpr(getSCEV(U->getOperand(0)),
2848 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002849
2850 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmanc897f752009-05-18 16:17:44 +00002851 if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002852 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohmanfc78cff2009-05-18 16:29:04 +00002853
2854 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2855 // This is a variant of the check for xor with -1, and it handles
2856 // the case where instcombine has trimmed non-demanded bits out
2857 // of an xor with -1.
2858 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2859 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2860 if (BO->getOpcode() == Instruction::And &&
2861 LCI->getValue() == CI->getValue())
2862 if (const SCEVZeroExtendExpr *Z =
Dan Gohmane49ae432009-06-17 01:22:39 +00002863 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohmaned1d8bb2009-06-18 00:00:20 +00002864 const Type *UTy = U->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00002865 const SCEV *Z0 = Z->getOperand();
Dan Gohmaned1d8bb2009-06-18 00:00:20 +00002866 const Type *Z0Ty = Z0->getType();
2867 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2868
2869 // If C is a low-bits mask, the zero extend is zerving to
2870 // mask off the high bits. Complement the operand and
2871 // re-apply the zext.
2872 if (APIntOps::isMask(Z0TySize, CI->getValue()))
2873 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2874
2875 // If C is a single bit, it may be in the sign-bit position
2876 // before the zero-extend. In this case, represent the xor
2877 // using an add, which is equivalent, and re-apply the zext.
2878 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2879 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2880 Trunc.isSignBit())
2881 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2882 UTy);
Dan Gohmane49ae432009-06-17 01:22:39 +00002883 }
Dan Gohman3996f472008-06-22 19:56:46 +00002884 }
2885 break;
2886
2887 case Instruction::Shl:
2888 // Turn shift left of a constant amount into a multiply.
2889 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2890 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersone1f1f822009-07-16 18:04:31 +00002891 Constant *X = Context->getConstantInt(
Dan Gohman3996f472008-06-22 19:56:46 +00002892 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002893 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002894 }
2895 break;
2896
Nick Lewycky7fd27892008-07-07 06:15:49 +00002897 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002898 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002899 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2900 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersone1f1f822009-07-16 18:04:31 +00002901 Constant *X = Context->getConstantInt(
Nick Lewycky7fd27892008-07-07 06:15:49 +00002902 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002903 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002904 }
2905 break;
2906
Dan Gohman53bf64a2009-04-21 02:26:00 +00002907 case Instruction::AShr:
2908 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2909 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2910 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2911 if (L->getOpcode() == Instruction::Shl &&
2912 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002913 unsigned BitWidth = getTypeSizeInBits(U->getType());
2914 uint64_t Amt = BitWidth - CI->getZExtValue();
2915 if (Amt == BitWidth)
2916 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2917 if (Amt > BitWidth)
2918 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002919 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002920 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002921 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002922 U->getType());
2923 }
2924 break;
2925
Dan Gohman3996f472008-06-22 19:56:46 +00002926 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002927 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002928
2929 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002930 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002931
2932 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002933 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002934
2935 case Instruction::BitCast:
2936 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002937 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002938 return getSCEV(U->getOperand(0));
2939 break;
2940
Dan Gohman01c2ee72009-04-16 03:18:22 +00002941 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002942 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002943 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002944 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00002945
2946 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002947 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002948 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2949 U->getType());
2950
Dan Gohman509cf4d2009-05-08 20:26:55 +00002951 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002952 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002953 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002954
Dan Gohman3996f472008-06-22 19:56:46 +00002955 case Instruction::PHI:
2956 return createNodeForPHI(cast<PHINode>(U));
2957
2958 case Instruction::Select:
2959 // This could be a smax or umax that was lowered earlier.
2960 // Try to recover it.
2961 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2962 Value *LHS = ICI->getOperand(0);
2963 Value *RHS = ICI->getOperand(1);
2964 switch (ICI->getPredicate()) {
2965 case ICmpInst::ICMP_SLT:
2966 case ICmpInst::ICMP_SLE:
2967 std::swap(LHS, RHS);
2968 // fall through
2969 case ICmpInst::ICMP_SGT:
2970 case ICmpInst::ICMP_SGE:
2971 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002972 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002973 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmand01fff82009-06-22 03:18:45 +00002974 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002975 break;
2976 case ICmpInst::ICMP_ULT:
2977 case ICmpInst::ICMP_ULE:
2978 std::swap(LHS, RHS);
2979 // fall through
2980 case ICmpInst::ICMP_UGT:
2981 case ICmpInst::ICMP_UGE:
2982 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002983 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002984 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmand01fff82009-06-22 03:18:45 +00002985 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002986 break;
Dan Gohmanf27dc692009-06-18 20:21:07 +00002987 case ICmpInst::ICMP_NE:
2988 // n != 0 ? n : 1 -> umax(n, 1)
2989 if (LHS == U->getOperand(1) &&
2990 isa<ConstantInt>(U->getOperand(2)) &&
2991 cast<ConstantInt>(U->getOperand(2))->isOne() &&
2992 isa<ConstantInt>(RHS) &&
2993 cast<ConstantInt>(RHS)->isZero())
2994 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2995 break;
2996 case ICmpInst::ICMP_EQ:
2997 // n == 0 ? 1 : n -> umax(n, 1)
2998 if (LHS == U->getOperand(2) &&
2999 isa<ConstantInt>(U->getOperand(1)) &&
3000 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3001 isa<ConstantInt>(RHS) &&
3002 cast<ConstantInt>(RHS)->isZero())
3003 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3004 break;
Dan Gohman3996f472008-06-22 19:56:46 +00003005 default:
3006 break;
3007 }
3008 }
3009
3010 default: // We cannot analyze this expression.
3011 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003012 }
3013
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003014 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003015}
3016
3017
3018
3019//===----------------------------------------------------------------------===//
3020// Iteration Count Computation Code
3021//
3022
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003023/// getBackedgeTakenCount - If the specified loop has a predictable
3024/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3025/// object. The backedge-taken count is the number of times the loop header
3026/// will be branched to from within the loop. This is one less than the
3027/// trip count of the loop, since it doesn't count the first iteration,
3028/// when the header is branched to from outside the loop.
3029///
3030/// Note that it is not valid to call this method on a loop without a
3031/// loop-invariant backedge-taken count (see
3032/// hasLoopInvariantBackedgeTakenCount).
3033///
Dan Gohman161ea032009-07-07 17:06:11 +00003034const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003035 return getBackedgeTakenInfo(L).Exact;
3036}
3037
3038/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3039/// return the least SCEV value that is known never to be less than the
3040/// actual backedge taken count.
Dan Gohman161ea032009-07-07 17:06:11 +00003041const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003042 return getBackedgeTakenInfo(L).Max;
3043}
3044
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003045/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3046/// onto the given Worklist.
3047static void
3048PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3049 BasicBlock *Header = L->getHeader();
3050
3051 // Push all Loop-header PHIs onto the Worklist stack.
3052 for (BasicBlock::iterator I = Header->begin();
3053 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3054 Worklist.push_back(PN);
3055}
3056
3057/// PushDefUseChildren - Push users of the given Instruction
3058/// onto the given Worklist.
3059static void
3060PushDefUseChildren(Instruction *I,
3061 SmallVectorImpl<Instruction *> &Worklist) {
3062 // Push the def-use children onto the Worklist stack.
3063 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
3064 UI != UE; ++UI)
3065 Worklist.push_back(cast<Instruction>(UI));
3066}
3067
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003068const ScalarEvolution::BackedgeTakenInfo &
3069ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00003070 // Initially insert a CouldNotCompute for this loop. If the insertion
3071 // succeeds, procede to actually compute a backedge-taken count and
3072 // update the value. The temporary CouldNotCompute value tells SCEV
3073 // code elsewhere that it shouldn't attempt to request a new
3074 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003075 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00003076 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3077 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003078 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003079 if (ItCount.Exact != getCouldNotCompute()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003080 assert(ItCount.Exact->isLoopInvariant(L) &&
3081 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003082 "Computed trip count isn't loop invariant for loop!");
3083 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00003084
Dan Gohmana9dba962009-04-27 20:16:15 +00003085 // Update the value in the map.
3086 Pair.first->second = ItCount;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003087 } else {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003088 if (ItCount.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003089 // Update the value in the map.
3090 Pair.first->second = ItCount;
3091 if (isa<PHINode>(L->getHeader()->begin()))
3092 // Only count loops that have phi nodes as not being computable.
3093 ++NumTripCountsNotComputed;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003094 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003095
3096 // Now that we know more about the trip count for this loop, forget any
3097 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003098 // conservative estimates made without the benefit of trip count
3099 // information. This is similar to the code in
3100 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3101 // nodes specially.
3102 if (ItCount.hasAnyInfo()) {
3103 SmallVector<Instruction *, 16> Worklist;
3104 PushLoopPHIs(L, Worklist);
3105
3106 SmallPtrSet<Instruction *, 8> Visited;
3107 while (!Worklist.empty()) {
3108 Instruction *I = Worklist.pop_back_val();
3109 if (!Visited.insert(I)) continue;
3110
3111 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3112 Scalars.find(static_cast<Value *>(I));
3113 if (It != Scalars.end()) {
3114 // SCEVUnknown for a PHI either means that it has an unrecognized
3115 // structure, or it's a PHI that's in the progress of being computed
Dan Gohman0fa91f32009-07-13 22:04:06 +00003116 // by createNodeForPHI. In the former case, additional loop trip
3117 // count information isn't going to change anything. In the later
3118 // case, createNodeForPHI will perform the necessary updates on its
3119 // own when it gets to that point.
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003120 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
3121 Scalars.erase(It);
3122 ValuesAtScopes.erase(I);
3123 if (PHINode *PN = dyn_cast<PHINode>(I))
3124 ConstantEvolutionLoopExitValue.erase(PN);
3125 }
3126
3127 PushDefUseChildren(I, Worklist);
3128 }
3129 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003130 }
Dan Gohmana9dba962009-04-27 20:16:15 +00003131 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003132}
3133
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003134/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00003135/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003136/// ScalarEvolution's ability to compute a trip count, or if the loop
3137/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003138void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003139 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00003140
Dan Gohmanbff6b582009-05-04 22:30:44 +00003141 SmallVector<Instruction *, 16> Worklist;
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003142 PushLoopPHIs(L, Worklist);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003143
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003144 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmanbff6b582009-05-04 22:30:44 +00003145 while (!Worklist.empty()) {
3146 Instruction *I = Worklist.pop_back_val();
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003147 if (!Visited.insert(I)) continue;
3148
3149 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3150 Scalars.find(static_cast<Value *>(I));
3151 if (It != Scalars.end()) {
3152 Scalars.erase(It);
3153 ValuesAtScopes.erase(I);
3154 if (PHINode *PN = dyn_cast<PHINode>(I))
3155 ConstantEvolutionLoopExitValue.erase(PN);
3156 }
3157
3158 PushDefUseChildren(I, Worklist);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003159 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00003160}
3161
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003162/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3163/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003164ScalarEvolution::BackedgeTakenInfo
3165ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman8e8b5232009-06-22 00:31:57 +00003166 SmallVector<BasicBlock*, 8> ExitingBlocks;
3167 L->getExitingBlocks(ExitingBlocks);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003168
Dan Gohman8e8b5232009-06-22 00:31:57 +00003169 // Examine all exits and pick the most conservative values.
Dan Gohman161ea032009-07-07 17:06:11 +00003170 const SCEV *BECount = getCouldNotCompute();
3171 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003172 bool CouldNotComputeBECount = false;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003173 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3174 BackedgeTakenInfo NewBTI =
3175 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003176
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003177 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohman8e8b5232009-06-22 00:31:57 +00003178 // We couldn't compute an exact value for this exit, so
Dan Gohmanc6e8c832009-06-22 21:10:22 +00003179 // we won't be able to compute an exact value for the loop.
Dan Gohman8e8b5232009-06-22 00:31:57 +00003180 CouldNotComputeBECount = true;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003181 BECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003182 } else if (!CouldNotComputeBECount) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003183 if (BECount == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003184 BECount = NewBTI.Exact;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003185 else
Dan Gohman423ed6c2009-06-24 01:18:18 +00003186 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003187 }
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003188 if (MaxBECount == getCouldNotCompute())
Dan Gohman423ed6c2009-06-24 01:18:18 +00003189 MaxBECount = NewBTI.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003190 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman423ed6c2009-06-24 01:18:18 +00003191 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003192 }
3193
3194 return BackedgeTakenInfo(BECount, MaxBECount);
3195}
3196
3197/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3198/// of the specified loop will execute if it exits via the specified block.
3199ScalarEvolution::BackedgeTakenInfo
3200ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3201 BasicBlock *ExitingBlock) {
3202
3203 // Okay, we've chosen an exiting block. See what condition causes us to
3204 // exit at this block.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003205 //
3206 // FIXME: we should be able to handle switch instructions (with a single exit)
3207 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003208 if (ExitBr == 0) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003209 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman9bc642f2009-06-24 04:48:43 +00003210
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003211 // At this point, we know we have a conditional branch that determines whether
3212 // the loop is exited. However, we don't know if the branch is executed each
3213 // time through the loop. If not, then the execution count of the branch will
3214 // not be equal to the trip count of the loop.
3215 //
3216 // Currently we check for this by checking to see if the Exit branch goes to
3217 // the loop header. If so, we know it will always execute the same number of
3218 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman8e8b5232009-06-22 00:31:57 +00003219 // loop header. This is common for un-rotated loops.
3220 //
3221 // If both of those tests fail, walk up the unique predecessor chain to the
3222 // header, stopping if there is an edge that doesn't exit the loop. If the
3223 // header is reached, the execution count of the branch will be equal to the
3224 // trip count of the loop.
3225 //
3226 // More extensive analysis could be done to handle more cases here.
3227 //
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003228 if (ExitBr->getSuccessor(0) != L->getHeader() &&
3229 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohman8e8b5232009-06-22 00:31:57 +00003230 ExitBr->getParent() != L->getHeader()) {
3231 // The simple checks failed, try climbing the unique predecessor chain
3232 // up to the header.
3233 bool Ok = false;
3234 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3235 BasicBlock *Pred = BB->getUniquePredecessor();
3236 if (!Pred)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003237 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003238 TerminatorInst *PredTerm = Pred->getTerminator();
3239 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3240 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3241 if (PredSucc == BB)
3242 continue;
3243 // If the predecessor has a successor that isn't BB and isn't
3244 // outside the loop, assume the worst.
3245 if (L->contains(PredSucc))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003246 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003247 }
3248 if (Pred == L->getHeader()) {
3249 Ok = true;
3250 break;
3251 }
3252 BB = Pred;
3253 }
3254 if (!Ok)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003255 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003256 }
3257
3258 // Procede to the next level to examine the exit condition expression.
3259 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3260 ExitBr->getSuccessor(0),
3261 ExitBr->getSuccessor(1));
3262}
3263
3264/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3265/// backedge of the specified loop will execute if its exit condition
3266/// were a conditional branch of ExitCond, TBB, and FBB.
3267ScalarEvolution::BackedgeTakenInfo
3268ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3269 Value *ExitCond,
3270 BasicBlock *TBB,
3271 BasicBlock *FBB) {
Dan Gohman423ed6c2009-06-24 01:18:18 +00003272 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman8e8b5232009-06-22 00:31:57 +00003273 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3274 if (BO->getOpcode() == Instruction::And) {
3275 // Recurse on the operands of the and.
3276 BackedgeTakenInfo BTI0 =
3277 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3278 BackedgeTakenInfo BTI1 =
3279 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman161ea032009-07-07 17:06:11 +00003280 const SCEV *BECount = getCouldNotCompute();
3281 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003282 if (L->contains(TBB)) {
3283 // Both conditions must be true for the loop to continue executing.
3284 // Choose the less conservative count.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003285 if (BTI0.Exact == getCouldNotCompute() ||
3286 BTI1.Exact == getCouldNotCompute())
3287 BECount = getCouldNotCompute();
Dan Gohmanac958b32009-06-22 15:09:28 +00003288 else
3289 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003290 if (BTI0.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003291 MaxBECount = BTI1.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003292 else if (BTI1.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003293 MaxBECount = BTI0.Max;
Dan Gohmanac958b32009-06-22 15:09:28 +00003294 else
3295 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003296 } else {
3297 // Both conditions must be true for the loop to exit.
3298 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003299 if (BTI0.Exact != getCouldNotCompute() &&
3300 BTI1.Exact != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003301 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003302 if (BTI0.Max != getCouldNotCompute() &&
3303 BTI1.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003304 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3305 }
3306
3307 return BackedgeTakenInfo(BECount, MaxBECount);
3308 }
3309 if (BO->getOpcode() == Instruction::Or) {
3310 // Recurse on the operands of the or.
3311 BackedgeTakenInfo BTI0 =
3312 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3313 BackedgeTakenInfo BTI1 =
3314 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman161ea032009-07-07 17:06:11 +00003315 const SCEV *BECount = getCouldNotCompute();
3316 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003317 if (L->contains(FBB)) {
3318 // Both conditions must be false for the loop to continue executing.
3319 // Choose the less conservative count.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003320 if (BTI0.Exact == getCouldNotCompute() ||
3321 BTI1.Exact == getCouldNotCompute())
3322 BECount = getCouldNotCompute();
Dan Gohmanac958b32009-06-22 15:09:28 +00003323 else
3324 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003325 if (BTI0.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003326 MaxBECount = BTI1.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003327 else if (BTI1.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003328 MaxBECount = BTI0.Max;
Dan Gohmanac958b32009-06-22 15:09:28 +00003329 else
3330 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003331 } else {
3332 // Both conditions must be false for the loop to exit.
3333 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003334 if (BTI0.Exact != getCouldNotCompute() &&
3335 BTI1.Exact != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003336 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003337 if (BTI0.Max != getCouldNotCompute() &&
3338 BTI1.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003339 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3340 }
3341
3342 return BackedgeTakenInfo(BECount, MaxBECount);
3343 }
3344 }
3345
3346 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3347 // Procede to the next level to examine the icmp.
3348 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3349 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003350
Eli Friedman459d7292009-05-09 12:32:42 +00003351 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohman8e8b5232009-06-22 00:31:57 +00003352 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3353}
3354
3355/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3356/// backedge of the specified loop will execute if its exit condition
3357/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3358ScalarEvolution::BackedgeTakenInfo
3359ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3360 ICmpInst *ExitCond,
3361 BasicBlock *TBB,
3362 BasicBlock *FBB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003363
3364 // If the condition was exit on true, convert the condition to exit on false
3365 ICmpInst::Predicate Cond;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003366 if (!L->contains(FBB))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003367 Cond = ExitCond->getPredicate();
3368 else
3369 Cond = ExitCond->getInversePredicate();
3370
3371 // Handle common loops like: for (X = "string"; *X; ++X)
3372 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3373 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00003374 const SCEV *ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003375 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003376 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3377 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3378 return BackedgeTakenInfo(ItCnt,
3379 isa<SCEVConstant>(ItCnt) ? ItCnt :
3380 getConstant(APInt::getMaxValue(BitWidth)-1));
3381 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003382 }
3383
Dan Gohman161ea032009-07-07 17:06:11 +00003384 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3385 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003386
3387 // Try to evaluate any dependencies out of the loop.
Dan Gohmanaff14d62009-05-24 23:25:42 +00003388 LHS = getSCEVAtScope(LHS, L);
3389 RHS = getSCEVAtScope(RHS, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003390
Dan Gohman9bc642f2009-06-24 04:48:43 +00003391 // At this point, we would like to compute how many iterations of the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003392 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00003393 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3394 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003395 std::swap(LHS, RHS);
3396 Cond = ICmpInst::getSwappedPredicate(Cond);
3397 }
3398
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003399 // If we have a comparison of a chrec against a constant, try to use value
3400 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003401 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3402 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003403 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00003404 // Form the constant range.
3405 ConstantRange CompRange(
3406 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003407
Dan Gohman161ea032009-07-07 17:06:11 +00003408 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman459d7292009-05-09 12:32:42 +00003409 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003410 }
3411
3412 switch (Cond) {
3413 case ICmpInst::ICMP_NE: { // while (X != Y)
3414 // Convert to: while (X-Y != 0)
Dan Gohman161ea032009-07-07 17:06:11 +00003415 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003416 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3417 break;
3418 }
3419 case ICmpInst::ICMP_EQ: {
3420 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohman161ea032009-07-07 17:06:11 +00003421 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003422 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3423 break;
3424 }
3425 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003426 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3427 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003428 break;
3429 }
3430 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003431 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3432 getNotSCEV(RHS), L, true);
3433 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00003434 break;
3435 }
3436 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003437 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3438 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00003439 break;
3440 }
3441 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003442 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3443 getNotSCEV(RHS), L, false);
3444 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003445 break;
3446 }
3447 default:
3448#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003449 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003450 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00003451 errs() << "[unsigned] ";
3452 errs() << *LHS << " "
Dan Gohman9bc642f2009-06-24 04:48:43 +00003453 << Instruction::getOpcodeName(Instruction::ICmp)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003454 << " " << *RHS << "\n";
3455#endif
3456 break;
3457 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003458 return
Dan Gohman8e8b5232009-06-22 00:31:57 +00003459 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003460}
3461
3462static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00003463EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3464 ScalarEvolution &SE) {
Dan Gohman161ea032009-07-07 17:06:11 +00003465 const SCEV *InVal = SE.getConstant(C);
3466 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003467 assert(isa<SCEVConstant>(Val) &&
3468 "Evaluation of SCEV at constant didn't fold correctly?");
3469 return cast<SCEVConstant>(Val)->getValue();
3470}
3471
3472/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3473/// and a GEP expression (missing the pointer index) indexing into it, return
3474/// the addressed element of the initializer or null if the index expression is
3475/// invalid.
3476static Constant *
Owen Anderson15b39322009-07-13 04:09:18 +00003477GetAddressedElementFromGlobal(LLVMContext *Context, GlobalVariable *GV,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003478 const std::vector<ConstantInt*> &Indices) {
3479 Constant *Init = GV->getInitializer();
3480 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3481 uint64_t Idx = Indices[i]->getZExtValue();
3482 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3483 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3484 Init = cast<Constant>(CS->getOperand(Idx));
3485 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3486 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3487 Init = cast<Constant>(CA->getOperand(Idx));
3488 } else if (isa<ConstantAggregateZero>(Init)) {
3489 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3490 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Anderson15b39322009-07-13 04:09:18 +00003491 Init = Context->getNullValue(STy->getElementType(Idx));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003492 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3493 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Anderson15b39322009-07-13 04:09:18 +00003494 Init = Context->getNullValue(ATy->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003495 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00003496 llvm_unreachable("Unknown constant aggregate type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003497 }
3498 return 0;
3499 } else {
3500 return 0; // Unknown initializer type
3501 }
3502 }
3503 return Init;
3504}
3505
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003506/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3507/// 'icmp op load X, cst', try to see if we can compute the backedge
3508/// execution count.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003509const SCEV *
3510ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3511 LoadInst *LI,
3512 Constant *RHS,
3513 const Loop *L,
3514 ICmpInst::Predicate predicate) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003515 if (LI->isVolatile()) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516
3517 // Check to see if the loaded pointer is a getelementptr of a global.
3518 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003519 if (!GEP) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003520
3521 // Make sure that it is really a constant global we are gepping, with an
3522 // initializer, and make sure the first IDX is really 0.
3523 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3524 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3525 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3526 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003527 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003528
3529 // Okay, we allow one non-constant index into the GEP instruction.
3530 Value *VarIdx = 0;
3531 std::vector<ConstantInt*> Indexes;
3532 unsigned VarIdxNum = 0;
3533 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3534 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3535 Indexes.push_back(CI);
3536 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003537 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003538 VarIdx = GEP->getOperand(i);
3539 VarIdxNum = i-2;
3540 Indexes.push_back(0);
3541 }
3542
3543 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3544 // Check to see if X is a loop variant variable value now.
Dan Gohman161ea032009-07-07 17:06:11 +00003545 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmanaff14d62009-05-24 23:25:42 +00003546 Idx = getSCEVAtScope(Idx, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003547
3548 // We can only recognize very limited forms of loop index expressions, in
3549 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00003550 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3552 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3553 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003554 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003555
3556 unsigned MaxSteps = MaxBruteForceIterations;
3557 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Anderson9f5b2aa2009-07-14 23:09:55 +00003558 ConstantInt *ItCst = Context->getConstantInt(
3559 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003560 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003561
3562 // Form the GEP offset.
3563 Indexes[VarIdxNum] = Val;
3564
Owen Anderson15b39322009-07-13 04:09:18 +00003565 Constant *Result = GetAddressedElementFromGlobal(Context, GV, Indexes);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003566 if (Result == 0) break; // Cannot compute!
3567
3568 // Evaluate the condition for this iteration.
3569 Result = ConstantExpr::getICmp(predicate, Result, RHS);
3570 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
3571 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3572#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003573 errs() << "\n***\n*** Computed loop count " << *ItCst
3574 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3575 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003576#endif
3577 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003578 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003579 }
3580 }
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003581 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003582}
3583
3584
3585/// CanConstantFold - Return true if we can constant fold an instruction of the
3586/// specified type, assuming that all operands were constants.
3587static bool CanConstantFold(const Instruction *I) {
3588 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3589 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3590 return true;
3591
3592 if (const CallInst *CI = dyn_cast<CallInst>(I))
3593 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00003594 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003595 return false;
3596}
3597
3598/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3599/// in the loop that V is derived from. We allow arbitrary operations along the
3600/// way, but the operands of an operation must either be constants or a value
3601/// derived from a constant PHI. If this expression does not fit with these
3602/// constraints, return null.
3603static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3604 // If this is not an instruction, or if this is an instruction outside of the
3605 // loop, it can't be derived from a loop PHI.
3606 Instruction *I = dyn_cast<Instruction>(V);
3607 if (I == 0 || !L->contains(I->getParent())) return 0;
3608
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00003609 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003610 if (L->getHeader() == I->getParent())
3611 return PN;
3612 else
3613 // We don't currently keep track of the control flow needed to evaluate
3614 // PHIs, so we cannot handle PHIs inside of loops.
3615 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00003616 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003617
3618 // If we won't be able to constant fold this expression even if the operands
3619 // are constants, return early.
3620 if (!CanConstantFold(I)) return 0;
3621
3622 // Otherwise, we can evaluate this instruction if all of its operands are
3623 // constant or derived from a PHI node themselves.
3624 PHINode *PHI = 0;
3625 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3626 if (!(isa<Constant>(I->getOperand(Op)) ||
3627 isa<GlobalValue>(I->getOperand(Op)))) {
3628 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3629 if (P == 0) return 0; // Not evolving from PHI
3630 if (PHI == 0)
3631 PHI = P;
3632 else if (PHI != P)
3633 return 0; // Evolving from multiple different PHIs.
3634 }
3635
3636 // This is a expression evolving from a constant PHI!
3637 return PHI;
3638}
3639
3640/// EvaluateExpression - Given an expression that passes the
3641/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3642/// in the loop has the value PHIVal. If we can't fold this expression for some
3643/// reason, return null.
3644static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3645 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003646 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003647 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 Instruction *I = cast<Instruction>(V);
Owen Anderson5349f052009-07-06 23:00:19 +00003649 LLVMContext *Context = I->getParent()->getContext();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003650
3651 std::vector<Constant*> Operands;
3652 Operands.resize(I->getNumOperands());
3653
3654 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3655 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3656 if (Operands[i] == 0) return 0;
3657 }
3658
Chris Lattnerd6e56912007-12-10 22:53:04 +00003659 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3660 return ConstantFoldCompareInstOperands(CI->getPredicate(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003661 &Operands[0], Operands.size(),
3662 Context);
Chris Lattnerd6e56912007-12-10 22:53:04 +00003663 else
3664 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003665 &Operands[0], Operands.size(),
3666 Context);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003667}
3668
3669/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3670/// in the header of its containing loop, we know the loop executes a
3671/// constant number of times, and the PHI node is just a recurrence
3672/// involving constants, fold it.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003673Constant *
3674ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3675 const APInt& BEs,
3676 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003677 std::map<PHINode*, Constant*>::iterator I =
3678 ConstantEvolutionLoopExitValue.find(PN);
3679 if (I != ConstantEvolutionLoopExitValue.end())
3680 return I->second;
3681
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003682 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003683 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3684
3685 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3686
3687 // Since the loop is canonicalized, the PHI node must have two entries. One
3688 // entry must be a constant (coming in from outside of the loop), and the
3689 // second must be derived from the same PHI.
3690 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3691 Constant *StartCST =
3692 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3693 if (StartCST == 0)
3694 return RetVal = 0; // Must be a constant.
3695
3696 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3697 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3698 if (PN2 != PN)
3699 return RetVal = 0; // Not derived from same PHI.
3700
3701 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003702 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003703 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3704
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003705 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003706 unsigned IterationNum = 0;
3707 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3708 if (IterationNum == NumIterations)
3709 return RetVal = PHIVal; // Got exit value!
3710
3711 // Compute the value of the PHI node for the next iteration.
3712 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3713 if (NextPHI == PHIVal)
3714 return RetVal = NextPHI; // Stopped evolving!
3715 if (NextPHI == 0)
3716 return 0; // Couldn't evaluate!
3717 PHIVal = NextPHI;
3718 }
3719}
3720
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003721/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003722/// constant number of times (the condition evolves only from constants),
3723/// try to evaluate a few iterations of the loop until we get the exit
3724/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003725/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman9bc642f2009-06-24 04:48:43 +00003726const SCEV *
3727ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3728 Value *Cond,
3729 bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003730 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003731 if (PN == 0) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003732
3733 // Since the loop is canonicalized, the PHI node must have two entries. One
3734 // entry must be a constant (coming in from outside of the loop), and the
3735 // second must be derived from the same PHI.
3736 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3737 Constant *StartCST =
3738 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003739 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003740
3741 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3742 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003743 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003744
3745 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3746 // the loop symbolically to determine when the condition gets a value of
3747 // "ExitWhen".
3748 unsigned IterationNum = 0;
3749 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3750 for (Constant *PHIVal = StartCST;
3751 IterationNum != MaxIterations; ++IterationNum) {
3752 ConstantInt *CondVal =
3753 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3754
3755 // Couldn't symbolically evaluate.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003756 if (!CondVal) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003757
3758 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003759 ++NumBruteForceTripCountsComputed;
Dan Gohman8fd520a2009-06-15 22:12:54 +00003760 return getConstant(Type::Int32Ty, IterationNum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003761 }
3762
3763 // Compute the value of the PHI node for the next iteration.
3764 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3765 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003766 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003767 PHIVal = NextPHI;
3768 }
3769
3770 // Too many iterations were needed to evaluate.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003771 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003772}
3773
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003774/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3775/// at the specified scope in the program. The L value specifies a loop
3776/// nest to evaluate the expression at, where null is the top-level or a
3777/// specified loop is immediately inside of the loop.
3778///
3779/// This method can be used to compute the exit value for a variable defined
3780/// in a loop by querying what the value will hold in the parent loop.
3781///
Dan Gohmanaff14d62009-05-24 23:25:42 +00003782/// In the case that a relevant loop exit value cannot be computed, the
3783/// original value V is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00003784const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003785 // FIXME: this should be turned into a virtual method on SCEV!
3786
3787 if (isa<SCEVConstant>(V)) return V;
3788
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003789 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003790 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003791 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003792 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003793 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003794 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3795 if (PHINode *PN = dyn_cast<PHINode>(I))
3796 if (PN->getParent() == LI->getHeader()) {
3797 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003798 // to see if the loop that contains it has a known backedge-taken
3799 // count. If so, we may be able to force computation of the exit
3800 // value.
Dan Gohman161ea032009-07-07 17:06:11 +00003801 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003802 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003803 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003804 // Okay, we know how many times the containing loop executes. If
3805 // this is a constant evolving PHI node, get the final value at
3806 // the specified iteration number.
3807 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003808 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809 LI);
Dan Gohman652caf12009-06-29 21:31:18 +00003810 if (RV) return getSCEV(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003811 }
3812 }
3813
3814 // Okay, this is an expression that we cannot symbolically evaluate
3815 // into a SCEV. Check to see if it's possible to symbolically evaluate
3816 // the arguments into constants, and if so, try to constant propagate the
3817 // result. This is particularly useful for computing loop exit values.
3818 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00003819 // Check to see if we've folded this instruction at this loop before.
3820 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3821 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3822 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3823 if (!Pair.second)
Dan Gohman652caf12009-06-29 21:31:18 +00003824 return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
Dan Gohmanda0071e2009-05-08 20:47:27 +00003825
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003826 std::vector<Constant*> Operands;
3827 Operands.reserve(I->getNumOperands());
3828 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3829 Value *Op = I->getOperand(i);
3830 if (Constant *C = dyn_cast<Constant>(Op)) {
3831 Operands.push_back(C);
3832 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00003833 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00003834 // non-integer and non-pointer, don't even try to analyze them
3835 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00003836 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00003837 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003838
Dan Gohman55e2d7e2009-07-13 21:35:55 +00003839 const SCEV* OpV = getSCEVAtScope(Op, L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003840 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003841 Constant *C = SC->getValue();
3842 if (C->getType() != Op->getType())
3843 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3844 Op->getType(),
3845 false),
3846 C, Op->getType());
3847 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003848 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003849 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3850 if (C->getType() != Op->getType())
3851 C =
3852 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3853 Op->getType(),
3854 false),
3855 C, Op->getType());
3856 Operands.push_back(C);
3857 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003858 return V;
3859 } else {
3860 return V;
3861 }
3862 }
3863 }
Dan Gohman9bc642f2009-06-24 04:48:43 +00003864
Chris Lattnerd6e56912007-12-10 22:53:04 +00003865 Constant *C;
3866 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3867 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003868 &Operands[0], Operands.size(),
3869 Context);
Chris Lattnerd6e56912007-12-10 22:53:04 +00003870 else
3871 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003872 &Operands[0], Operands.size(), Context);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003873 Pair.first->second = C;
Dan Gohman652caf12009-06-29 21:31:18 +00003874 return getSCEV(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003875 }
3876 }
3877
3878 // This is some other type of SCEVUnknown, just return it.
3879 return V;
3880 }
3881
Dan Gohmanc76b5452009-05-04 22:02:23 +00003882 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003883 // Avoid performing the look-up in the common case where the specified
3884 // expression has no loop-variant portions.
3885 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00003886 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 if (OpAtScope != Comm->getOperand(i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888 // Okay, at least one of these operands is loop variant but might be
3889 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003890 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3891 Comm->op_begin()+i);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003892 NewOps.push_back(OpAtScope);
3893
3894 for (++i; i != e; ++i) {
3895 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003896 NewOps.push_back(OpAtScope);
3897 }
3898 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003899 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003900 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003901 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003902 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003903 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003904 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003905 return getUMaxExpr(NewOps);
Edwin Törökbd448e32009-07-14 16:55:14 +00003906 llvm_unreachable("Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003907 }
3908 }
3909 // If we got here, all operands are loop invariant.
3910 return Comm;
3911 }
3912
Dan Gohmanc76b5452009-05-04 22:02:23 +00003913 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003914 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
3915 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003916 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3917 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003918 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003919 }
3920
3921 // If this is a loop recurrence for a loop that does not contain L, then we
3922 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003923 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003924 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3925 // To evaluate this recurrence, we need to know how many times the AddRec
3926 // loop iterates. Compute this now.
Dan Gohman161ea032009-07-07 17:06:11 +00003927 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003928 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003929
Eli Friedman7489ec92008-08-04 23:49:06 +00003930 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003931 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003932 }
Dan Gohmanaff14d62009-05-24 23:25:42 +00003933 return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003934 }
3935
Dan Gohmanc76b5452009-05-04 22:02:23 +00003936 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003937 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003938 if (Op == Cast->getOperand())
3939 return Cast; // must be loop invariant
3940 return getZeroExtendExpr(Op, Cast->getType());
3941 }
3942
Dan Gohmanc76b5452009-05-04 22:02:23 +00003943 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003944 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003945 if (Op == Cast->getOperand())
3946 return Cast; // must be loop invariant
3947 return getSignExtendExpr(Op, Cast->getType());
3948 }
3949
Dan Gohmanc76b5452009-05-04 22:02:23 +00003950 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003951 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003952 if (Op == Cast->getOperand())
3953 return Cast; // must be loop invariant
3954 return getTruncateExpr(Op, Cast->getType());
3955 }
3956
Edwin Törökbd448e32009-07-14 16:55:14 +00003957 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbara95d96c2009-05-18 16:43:04 +00003958 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959}
3960
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003961/// getSCEVAtScope - This is a convenience function which does
3962/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman161ea032009-07-07 17:06:11 +00003963const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003964 return getSCEVAtScope(getSCEV(V), L);
3965}
3966
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003967/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3968/// following equation:
3969///
3970/// A * X = B (mod N)
3971///
3972/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3973/// A and B isn't important.
3974///
3975/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00003976static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003977 ScalarEvolution &SE) {
3978 uint32_t BW = A.getBitWidth();
3979 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3980 assert(A != 0 && "A must be non-zero.");
3981
3982 // 1. D = gcd(A, N)
3983 //
3984 // The gcd of A and N may have only one prime factor: 2. The number of
3985 // trailing zeros in A is its multiplicity
3986 uint32_t Mult2 = A.countTrailingZeros();
3987 // D = 2^Mult2
3988
3989 // 2. Check if B is divisible by D.
3990 //
3991 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3992 // is not less than multiplicity of this prime factor for D.
3993 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003994 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003995
3996 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3997 // modulo (N / D).
3998 //
3999 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4000 // bit width during computations.
4001 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4002 APInt Mod(BW + 1, 0);
4003 Mod.set(BW - Mult2); // Mod = N / D
4004 APInt I = AD.multiplicativeInverse(Mod);
4005
4006 // 4. Compute the minimum unsigned root of the equation:
4007 // I * (B / D) mod (N / D)
4008 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4009
4010 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4011 // bits.
4012 return SE.getConstant(Result.trunc(BW));
4013}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004014
4015/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4016/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4017/// might be the same) or two SCEVCouldNotCompute objects.
4018///
Dan Gohman161ea032009-07-07 17:06:11 +00004019static std::pair<const SCEV *,const SCEV *>
Dan Gohman89f85052007-10-22 18:31:58 +00004020SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004021 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00004022 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4023 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4024 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004025
4026 // We currently can only solve this if the coefficients are constants.
4027 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00004028 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004029 return std::make_pair(CNC, CNC);
4030 }
4031
4032 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4033 const APInt &L = LC->getValue()->getValue();
4034 const APInt &M = MC->getValue()->getValue();
4035 const APInt &N = NC->getValue()->getValue();
4036 APInt Two(BitWidth, 2);
4037 APInt Four(BitWidth, 4);
4038
Dan Gohman9bc642f2009-06-24 04:48:43 +00004039 {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004040 using namespace APIntOps;
4041 const APInt& C = L;
4042 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4043 // The B coefficient is M-N/2
4044 APInt B(M);
4045 B -= sdiv(N,Two);
4046
4047 // The A coefficient is N/2
4048 APInt A(N.sdiv(Two));
4049
4050 // Compute the B^2-4ac term.
4051 APInt SqrtTerm(B);
4052 SqrtTerm *= B;
4053 SqrtTerm -= Four * (A * C);
4054
4055 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4056 // integer value or else APInt::sqrt() will assert.
4057 APInt SqrtVal(SqrtTerm.sqrt());
4058
Dan Gohman9bc642f2009-06-24 04:48:43 +00004059 // Compute the two solutions for the quadratic formula.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004060 // The divisions must be performed as signed divisions.
4061 APInt NegB(-B);
4062 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00004063 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00004064 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00004065 return std::make_pair(CNC, CNC);
4066 }
4067
Owen Andersone755b092009-07-06 22:37:39 +00004068 LLVMContext *Context = SE.getContext();
4069
4070 ConstantInt *Solution1 =
4071 Context->getConstantInt((NegB + SqrtVal).sdiv(TwoA));
4072 ConstantInt *Solution2 =
4073 Context->getConstantInt((NegB - SqrtVal).sdiv(TwoA));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004074
Dan Gohman9bc642f2009-06-24 04:48:43 +00004075 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman89f85052007-10-22 18:31:58 +00004076 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004077 } // end APIntOps namespace
4078}
4079
4080/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman0c850912009-06-06 14:37:11 +00004081/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohman161ea032009-07-07 17:06:11 +00004082const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004083 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00004084 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004085 // If the value is already zero, the branch will execute zero times.
4086 if (C->getValue()->isZero()) return C;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004087 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004088 }
4089
Dan Gohmanbff6b582009-05-04 22:30:44 +00004090 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004091 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004092 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004093
4094 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004095 // If this is an affine expression, the execution count of this branch is
4096 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004097 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004098 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004099 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004100 // equivalent to:
4101 //
4102 // Step*N = -Start (mod 2^BW)
4103 //
4104 // where BW is the common bit width of Start and Step.
4105
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004106 // Get the initial value for the loop.
Dan Gohman9bc642f2009-06-24 04:48:43 +00004107 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4108 L->getParentLoop());
4109 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4110 L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004111
Dan Gohmanc76b5452009-05-04 22:02:23 +00004112 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004113 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004114
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004115 // First, handle unitary steps.
4116 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004117 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004118 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4119 return Start; // N = Start (as unsigned)
4120
4121 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00004122 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004123 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004124 -StartC->getValue()->getValue(),
4125 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004126 }
4127 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4128 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4129 // the quadratic equation to solve it.
Dan Gohman161ea032009-07-07 17:06:11 +00004130 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004131 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004132 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4133 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004134 if (R1) {
4135#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00004136 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4137 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004138#endif
4139 // Pick the smallest positive root value.
4140 if (ConstantInt *CB =
Owen Andersone755b092009-07-06 22:37:39 +00004141 dyn_cast<ConstantInt>(Context->getConstantExprICmp(ICmpInst::ICMP_ULT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004142 R1->getValue(), R2->getValue()))) {
4143 if (CB->getZExtValue() == false)
4144 std::swap(R1, R2); // R1 is the minimum root now.
4145
4146 // We can only use this value if the chrec ends up with an exact zero
4147 // value at this index. When solving for "X*X != 5", for example, we
4148 // should not accept a root of 2.
Dan Gohman161ea032009-07-07 17:06:11 +00004149 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00004150 if (Val->isZero())
4151 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004152 }
4153 }
4154 }
4155
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004156 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004157}
4158
4159/// HowFarToNonZero - Return the number of times a backedge checking the
4160/// specified value for nonzero will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00004161/// CouldNotCompute
Dan Gohman161ea032009-07-07 17:06:11 +00004162const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004163 // Loops that look like: while (X == 0) are very strange indeed. We don't
4164 // handle them yet except for the trivial case. This could be expanded in the
4165 // future as needed.
4166
4167 // If the value is a constant, check to see if it is known to be non-zero
4168 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00004169 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00004170 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004171 return getIntegerSCEV(0, C->getType());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004172 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004173 }
4174
4175 // We could implement others, but I really doubt anyone writes loops like
4176 // this, and if they did, they would already be constant folded.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004177 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004178}
4179
Dan Gohmanab157b22009-05-18 15:36:09 +00004180/// getLoopPredecessor - If the given loop's header has exactly one unique
4181/// predecessor outside the loop, return it. Otherwise return null.
4182///
4183BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4184 BasicBlock *Header = L->getHeader();
4185 BasicBlock *Pred = 0;
4186 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4187 PI != E; ++PI)
4188 if (!L->contains(*PI)) {
4189 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4190 Pred = *PI;
4191 }
4192 return Pred;
4193}
4194
Dan Gohman1cddf972008-09-15 22:18:04 +00004195/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4196/// (which may not be an immediate predecessor) which has exactly one
4197/// successor from which BB is reachable, or null if no such block is
4198/// found.
4199///
4200BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004201ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00004202 // If the block has a unique predecessor, then there is no path from the
4203 // predecessor to the block that does not go through the direct edge
4204 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00004205 if (BasicBlock *Pred = BB->getSinglePredecessor())
4206 return Pred;
4207
4208 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00004209 // If the header has a unique predecessor outside the loop, it must be
4210 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004211 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00004212 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00004213
4214 return 0;
4215}
4216
Dan Gohmanbc1e3472009-06-20 00:35:32 +00004217/// HasSameValue - SCEV structural equivalence is usually sufficient for
4218/// testing whether two expressions are equal, however for the purposes of
4219/// looking for a condition guarding a loop, it can be useful to be a little
4220/// more general, since a front-end may have replicated the controlling
4221/// expression.
4222///
Dan Gohman161ea032009-07-07 17:06:11 +00004223static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohmanbc1e3472009-06-20 00:35:32 +00004224 // Quick check to see if they are the same SCEV.
4225 if (A == B) return true;
4226
4227 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4228 // two different instructions with the same value. Check for this case.
4229 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4230 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4231 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4232 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4233 if (AI->isIdenticalTo(BI))
4234 return true;
4235
4236 // Otherwise assume they may have a different value.
4237 return false;
4238}
4239
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004240bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4241 return getSignedRange(S).getSignedMax().isNegative();
4242}
4243
4244bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4245 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4246}
4247
4248bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4249 return !getSignedRange(S).getSignedMin().isNegative();
4250}
4251
4252bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4253 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4254}
4255
4256bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4257 return isKnownNegative(S) || isKnownPositive(S);
4258}
4259
4260bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4261 const SCEV *LHS, const SCEV *RHS) {
4262
4263 if (HasSameValue(LHS, RHS))
4264 return ICmpInst::isTrueWhenEqual(Pred);
4265
4266 switch (Pred) {
4267 default:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004268 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004269 break;
4270 case ICmpInst::ICMP_SGT:
4271 Pred = ICmpInst::ICMP_SLT;
4272 std::swap(LHS, RHS);
4273 case ICmpInst::ICMP_SLT: {
4274 ConstantRange LHSRange = getSignedRange(LHS);
4275 ConstantRange RHSRange = getSignedRange(RHS);
4276 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4277 return true;
4278 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4279 return false;
4280
4281 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4282 ConstantRange DiffRange = getUnsignedRange(Diff);
4283 if (isKnownNegative(Diff)) {
4284 if (DiffRange.getUnsignedMax().ult(LHSRange.getUnsignedMin()))
4285 return true;
4286 if (DiffRange.getUnsignedMin().uge(LHSRange.getUnsignedMax()))
4287 return false;
4288 } else if (isKnownPositive(Diff)) {
4289 if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
4290 return true;
4291 if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
4292 return false;
4293 }
4294 break;
4295 }
4296 case ICmpInst::ICMP_SGE:
4297 Pred = ICmpInst::ICMP_SLE;
4298 std::swap(LHS, RHS);
4299 case ICmpInst::ICMP_SLE: {
4300 ConstantRange LHSRange = getSignedRange(LHS);
4301 ConstantRange RHSRange = getSignedRange(RHS);
4302 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4303 return true;
4304 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4305 return false;
4306
4307 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4308 ConstantRange DiffRange = getUnsignedRange(Diff);
4309 if (isKnownNonPositive(Diff)) {
4310 if (DiffRange.getUnsignedMax().ule(LHSRange.getUnsignedMin()))
4311 return true;
4312 if (DiffRange.getUnsignedMin().ugt(LHSRange.getUnsignedMax()))
4313 return false;
4314 } else if (isKnownNonNegative(Diff)) {
4315 if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
4316 return true;
4317 if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
4318 return false;
4319 }
4320 break;
4321 }
4322 case ICmpInst::ICMP_UGT:
4323 Pred = ICmpInst::ICMP_ULT;
4324 std::swap(LHS, RHS);
4325 case ICmpInst::ICMP_ULT: {
4326 ConstantRange LHSRange = getUnsignedRange(LHS);
4327 ConstantRange RHSRange = getUnsignedRange(RHS);
4328 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4329 return true;
4330 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4331 return false;
4332
4333 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4334 ConstantRange DiffRange = getUnsignedRange(Diff);
4335 if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
4336 return true;
4337 if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
4338 return false;
4339 break;
4340 }
4341 case ICmpInst::ICMP_UGE:
4342 Pred = ICmpInst::ICMP_ULE;
4343 std::swap(LHS, RHS);
4344 case ICmpInst::ICMP_ULE: {
4345 ConstantRange LHSRange = getUnsignedRange(LHS);
4346 ConstantRange RHSRange = getUnsignedRange(RHS);
4347 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4348 return true;
4349 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4350 return false;
4351
4352 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4353 ConstantRange DiffRange = getUnsignedRange(Diff);
4354 if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
4355 return true;
4356 if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
4357 return false;
4358 break;
4359 }
4360 case ICmpInst::ICMP_NE: {
4361 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4362 return true;
4363 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4364 return true;
4365
4366 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4367 if (isKnownNonZero(Diff))
4368 return true;
4369 break;
4370 }
4371 case ICmpInst::ICMP_EQ:
4372 break;
4373 }
4374 return false;
4375}
4376
4377/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4378/// protected by a conditional between LHS and RHS. This is used to
4379/// to eliminate casts.
4380bool
4381ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4382 ICmpInst::Predicate Pred,
4383 const SCEV *LHS, const SCEV *RHS) {
4384 // Interpret a null as meaning no loop, where there is obviously no guard
4385 // (interprocedural conditions notwithstanding).
4386 if (!L) return true;
4387
4388 BasicBlock *Latch = L->getLoopLatch();
4389 if (!Latch)
4390 return false;
4391
4392 BranchInst *LoopContinuePredicate =
4393 dyn_cast<BranchInst>(Latch->getTerminator());
4394 if (!LoopContinuePredicate ||
4395 LoopContinuePredicate->isUnconditional())
4396 return false;
4397
4398 return
4399 isNecessaryCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4400 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4401}
4402
4403/// isLoopGuardedByCond - Test whether entry to the loop is protected
4404/// by a conditional between LHS and RHS. This is used to help avoid max
4405/// expressions in loop trip counts, and to eliminate casts.
4406bool
4407ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4408 ICmpInst::Predicate Pred,
4409 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8b938182009-05-18 16:03:58 +00004410 // Interpret a null as meaning no loop, where there is obviously no guard
4411 // (interprocedural conditions notwithstanding).
4412 if (!L) return false;
4413
Dan Gohmanab157b22009-05-18 15:36:09 +00004414 BasicBlock *Predecessor = getLoopPredecessor(L);
4415 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004416
Dan Gohmanab157b22009-05-18 15:36:09 +00004417 // Starting at the loop predecessor, climb up the predecessor chain, as long
4418 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00004419 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00004420 for (; Predecessor;
4421 PredecessorDest = Predecessor,
4422 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00004423
4424 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00004425 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00004426 if (!LoopEntryPredicate ||
4427 LoopEntryPredicate->isUnconditional())
4428 continue;
4429
Dan Gohman423ed6c2009-06-24 01:18:18 +00004430 if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4431 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohmanab678fb2008-08-12 20:17:31 +00004432 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004433 }
4434
Dan Gohmanab678fb2008-08-12 20:17:31 +00004435 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004436}
4437
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004438/// isNecessaryCond - Test whether the condition described by Pred, LHS,
4439/// and RHS is a necessary condition for the given Cond value to evaluate
4440/// to true.
Dan Gohman423ed6c2009-06-24 01:18:18 +00004441bool ScalarEvolution::isNecessaryCond(Value *CondValue,
4442 ICmpInst::Predicate Pred,
4443 const SCEV *LHS, const SCEV *RHS,
4444 bool Inverse) {
4445 // Recursivly handle And and Or conditions.
4446 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4447 if (BO->getOpcode() == Instruction::And) {
4448 if (!Inverse)
4449 return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4450 isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4451 } else if (BO->getOpcode() == Instruction::Or) {
4452 if (Inverse)
4453 return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4454 isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4455 }
4456 }
4457
4458 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4459 if (!ICI) return false;
4460
4461 // Now that we found a conditional branch that dominates the loop, check to
4462 // see if it is the comparison we are looking for.
4463 Value *PreCondLHS = ICI->getOperand(0);
4464 Value *PreCondRHS = ICI->getOperand(1);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004465 ICmpInst::Predicate FoundPred;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004466 if (Inverse)
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004467 FoundPred = ICI->getInversePredicate();
Dan Gohman423ed6c2009-06-24 01:18:18 +00004468 else
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004469 FoundPred = ICI->getPredicate();
Dan Gohman423ed6c2009-06-24 01:18:18 +00004470
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004471 if (FoundPred == Pred)
Dan Gohman423ed6c2009-06-24 01:18:18 +00004472 ; // An exact match.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004473 else if (!ICmpInst::isTrueWhenEqual(FoundPred) && Pred == ICmpInst::ICMP_NE) {
4474 // The actual condition is beyond sufficient.
4475 FoundPred = ICmpInst::ICMP_NE;
4476 // NE is symmetric but the original comparison may not be. Swap
4477 // the operands if necessary so that they match below.
4478 if (isa<SCEVConstant>(LHS))
4479 std::swap(PreCondLHS, PreCondRHS);
4480 } else
Dan Gohman423ed6c2009-06-24 01:18:18 +00004481 // Check a few special cases.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004482 switch (FoundPred) {
Dan Gohman423ed6c2009-06-24 01:18:18 +00004483 case ICmpInst::ICMP_UGT:
4484 if (Pred == ICmpInst::ICMP_ULT) {
4485 std::swap(PreCondLHS, PreCondRHS);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004486 FoundPred = ICmpInst::ICMP_ULT;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004487 break;
4488 }
4489 return false;
4490 case ICmpInst::ICMP_SGT:
4491 if (Pred == ICmpInst::ICMP_SLT) {
4492 std::swap(PreCondLHS, PreCondRHS);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004493 FoundPred = ICmpInst::ICMP_SLT;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004494 break;
4495 }
4496 return false;
4497 case ICmpInst::ICMP_NE:
4498 // Expressions like (x >u 0) are often canonicalized to (x != 0),
4499 // so check for this case by checking if the NE is comparing against
4500 // a minimum or maximum constant.
4501 if (!ICmpInst::isTrueWhenEqual(Pred))
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004502 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(RHS)) {
4503 const APInt &A = C->getValue()->getValue();
Dan Gohman423ed6c2009-06-24 01:18:18 +00004504 switch (Pred) {
4505 case ICmpInst::ICMP_SLT:
4506 if (A.isMaxSignedValue()) break;
4507 return false;
4508 case ICmpInst::ICMP_SGT:
4509 if (A.isMinSignedValue()) break;
4510 return false;
4511 case ICmpInst::ICMP_ULT:
4512 if (A.isMaxValue()) break;
4513 return false;
4514 case ICmpInst::ICMP_UGT:
4515 if (A.isMinValue()) break;
4516 return false;
4517 default:
4518 return false;
4519 }
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004520 FoundPred = Pred;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004521 // NE is symmetric but the original comparison may not be. Swap
4522 // the operands if necessary so that they match below.
4523 if (isa<SCEVConstant>(LHS))
4524 std::swap(PreCondLHS, PreCondRHS);
4525 break;
4526 }
4527 return false;
4528 default:
4529 // We weren't able to reconcile the condition.
4530 return false;
4531 }
4532
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004533 assert(Pred == FoundPred && "Conditions were not reconciled!");
Dan Gohman423ed6c2009-06-24 01:18:18 +00004534
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004535 // Bail if the ICmp's operands' types are wider than the needed type
4536 // before attempting to call getSCEV on them. This avoids infinite
4537 // recursion, since the analysis of widening casts can require loop
4538 // exit condition information for overflow checking, which would
4539 // lead back here.
4540 if (getTypeSizeInBits(LHS->getType()) <
4541 getTypeSizeInBits(PreCondLHS->getType()))
4542 return false;
4543
4544 const SCEV *FoundLHS = getSCEV(PreCondLHS);
4545 const SCEV *FoundRHS = getSCEV(PreCondRHS);
4546
4547 // Balance the types. The case where FoundLHS' type is wider than
4548 // LHS' type is checked for above.
4549 if (getTypeSizeInBits(LHS->getType()) >
4550 getTypeSizeInBits(FoundLHS->getType())) {
4551 if (CmpInst::isSigned(Pred)) {
4552 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4553 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4554 } else {
4555 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4556 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4557 }
4558 }
4559
4560 return isNecessaryCondOperands(Pred, LHS, RHS,
4561 FoundLHS, FoundRHS) ||
4562 // ~x < ~y --> x > y
4563 isNecessaryCondOperands(Pred, LHS, RHS,
4564 getNotSCEV(FoundRHS), getNotSCEV(FoundLHS));
4565}
4566
4567/// isNecessaryCondOperands - Test whether the condition described by Pred,
4568/// LHS, and RHS is a necessary condition for the condition described by
4569/// Pred, FoundLHS, and FoundRHS to evaluate to true.
4570bool
4571ScalarEvolution::isNecessaryCondOperands(ICmpInst::Predicate Pred,
4572 const SCEV *LHS, const SCEV *RHS,
4573 const SCEV *FoundLHS,
4574 const SCEV *FoundRHS) {
4575 switch (Pred) {
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004576 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4577 case ICmpInst::ICMP_EQ:
4578 case ICmpInst::ICMP_NE:
4579 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4580 return true;
4581 break;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004582 case ICmpInst::ICMP_SLT:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004583 case ICmpInst::ICMP_SLE:
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004584 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4585 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4586 return true;
4587 break;
4588 case ICmpInst::ICMP_SGT:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004589 case ICmpInst::ICMP_SGE:
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004590 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4591 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4592 return true;
4593 break;
4594 case ICmpInst::ICMP_ULT:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004595 case ICmpInst::ICMP_ULE:
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004596 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4597 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4598 return true;
4599 break;
4600 case ICmpInst::ICMP_UGT:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004601 case ICmpInst::ICMP_UGE:
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004602 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4603 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4604 return true;
4605 break;
4606 }
4607
4608 return false;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004609}
4610
Dan Gohmand2b62c42009-06-21 23:46:38 +00004611/// getBECount - Subtract the end and start values and divide by the step,
4612/// rounding up, to get the number of times the backedge is executed. Return
4613/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman161ea032009-07-07 17:06:11 +00004614const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohman69eacc72009-07-13 22:05:32 +00004615 const SCEV *End,
4616 const SCEV *Step) {
Dan Gohmand2b62c42009-06-21 23:46:38 +00004617 const Type *Ty = Start->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00004618 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4619 const SCEV *Diff = getMinusSCEV(End, Start);
4620 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004621
4622 // Add an adjustment to the difference between End and Start so that
4623 // the division will effectively round up.
Dan Gohman161ea032009-07-07 17:06:11 +00004624 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004625
4626 // Check Add for unsigned overflow.
4627 // TODO: More sophisticated things could be done here.
Owen Andersone755b092009-07-06 22:37:39 +00004628 const Type *WideTy = Context->getIntegerType(getTypeSizeInBits(Ty) + 1);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004629 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4630 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4631 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004632 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004633 return getCouldNotCompute();
Dan Gohmand2b62c42009-06-21 23:46:38 +00004634
4635 return getUDivExpr(Add, Step);
4636}
4637
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004638/// HowManyLessThans - Return the number of times a backedge containing the
4639/// specified less-than comparison will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00004640/// CouldNotCompute.
Dan Gohman9bc642f2009-06-24 04:48:43 +00004641ScalarEvolution::BackedgeTakenInfo
4642ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4643 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004644 // Only handle: "ADDREC < LoopInvariant".
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004645 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004646
Dan Gohmanbff6b582009-05-04 22:30:44 +00004647 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004648 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004649 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004650
4651 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00004652 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004653 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman161ea032009-07-07 17:06:11 +00004654 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004655
4656 // TODO: handle non-constant strides.
4657 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4658 if (!CStep || CStep->isZero())
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004659 return getCouldNotCompute();
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00004660 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004661 // With unit stride, the iteration never steps past the limit value.
4662 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4663 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4664 // Test whether a positive iteration iteration can step past the limit
4665 // value and past the maximum value for its type in a single step.
4666 if (isSigned) {
4667 APInt Max = APInt::getSignedMaxValue(BitWidth);
4668 if ((Max - CStep->getValue()->getValue())
4669 .slt(CLimit->getValue()->getValue()))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004670 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004671 } else {
4672 APInt Max = APInt::getMaxValue(BitWidth);
4673 if ((Max - CStep->getValue()->getValue())
4674 .ult(CLimit->getValue()->getValue()))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004675 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004676 }
4677 } else
4678 // TODO: handle non-constant limit values below.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004679 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004680 } else
4681 // TODO: handle negative strides below.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004682 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004683
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004684 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4685 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4686 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00004687 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004688
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004689 // First, we get the value of the LHS in the first iteration: n
Dan Gohman161ea032009-07-07 17:06:11 +00004690 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004691
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004692 // Determine the minimum constant start value.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004693 const SCEV *MinStart = getConstant(isSigned ?
4694 getSignedRange(Start).getSignedMin() :
4695 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004696
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004697 // If we know that the condition is true in order to enter the loop,
4698 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohmanc8a29272009-05-24 23:45:28 +00004699 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4700 // the division must round up.
Dan Gohman161ea032009-07-07 17:06:11 +00004701 const SCEV *End = RHS;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004702 if (!isLoopGuardedByCond(L,
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004703 isSigned ? ICmpInst::ICMP_SLT :
4704 ICmpInst::ICMP_ULT,
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004705 getMinusSCEV(Start, Step), RHS))
4706 End = isSigned ? getSMaxExpr(RHS, Start)
4707 : getUMaxExpr(RHS, Start);
4708
4709 // Determine the maximum constant end value.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004710 const SCEV *MaxEnd = getConstant(isSigned ?
4711 getSignedRange(End).getSignedMax() :
4712 getUnsignedRange(End).getUnsignedMax());
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004713
4714 // Finally, we subtract these two values and divide, rounding up, to get
4715 // the number of times the backedge is executed.
Dan Gohman161ea032009-07-07 17:06:11 +00004716 const SCEV *BECount = getBECount(Start, End, Step);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004717
4718 // The maximum backedge count is similar, except using the minimum start
4719 // value and the maximum end value.
Dan Gohman161ea032009-07-07 17:06:11 +00004720 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004721
4722 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004723 }
4724
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004725 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004726}
4727
4728/// getNumIterationsInRange - Return the number of iterations of this loop that
4729/// produce values in the specified constant range. Another way of looking at
4730/// this is that it returns the first iteration number where the value is not in
4731/// the condition, thus computing the exit count. If the iteration count can't
4732/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00004733const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman9bc642f2009-06-24 04:48:43 +00004734 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004735 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00004736 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004737
4738 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00004739 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004740 if (!SC->getValue()->isZero()) {
Dan Gohman161ea032009-07-07 17:06:11 +00004741 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00004742 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman161ea032009-07-07 17:06:11 +00004743 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00004744 if (const SCEVAddRecExpr *ShiftedAddRec =
4745 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004746 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00004747 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004748 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00004749 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004750 }
4751
4752 // The only time we can solve this is when we have all constant indices.
4753 // Otherwise, we cannot determine the overflow conditions.
4754 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4755 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00004756 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004757
4758
4759 // Okay at this point we know that all elements of the chrec are constants and
4760 // that the start element is zero.
4761
4762 // First check to see if the range contains zero. If not, the first
4763 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00004764 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00004765 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman8fd520a2009-06-15 22:12:54 +00004766 return SE.getIntegerSCEV(0, getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004767
4768 if (isAffine()) {
4769 // If this is an affine expression then we have this situation:
4770 // Solve {0,+,A} in Range === Ax in Range
4771
4772 // We know that zero is in the range. If A is positive then we know that
4773 // the upper value of the range must be the first possible exit value.
4774 // If A is negative then the lower of the range is the last possible loop
4775 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00004776 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004777 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4778 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4779
4780 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00004781 APInt ExitVal = (End + A).udiv(A);
Owen Andersone755b092009-07-06 22:37:39 +00004782 ConstantInt *ExitValue = SE.getContext()->getConstantInt(ExitVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004783
4784 // Evaluate at the exit value. If we really did fall out of the valid
4785 // range, then we computed our trip count, otherwise wrap around or other
4786 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00004787 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004788 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00004789 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004790
4791 // Ensure that the previous value is in the range. This is a sanity check.
4792 assert(Range.contains(
Dan Gohman9bc642f2009-06-24 04:48:43 +00004793 EvaluateConstantChrecAtConstant(this,
Owen Andersone755b092009-07-06 22:37:39 +00004794 SE.getContext()->getConstantInt(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004795 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00004796 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004797 } else if (isQuadratic()) {
4798 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4799 // quadratic equation to solve it. To do this, we must frame our problem in
4800 // terms of figuring out when zero is crossed, instead of when
4801 // Range.getUpper() is crossed.
Dan Gohman161ea032009-07-07 17:06:11 +00004802 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00004803 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman161ea032009-07-07 17:06:11 +00004804 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004805
4806 // Next, solve the constructed addrec
Dan Gohman161ea032009-07-07 17:06:11 +00004807 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00004808 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004809 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4810 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004811 if (R1) {
4812 // Pick the smallest positive root value.
4813 if (ConstantInt *CB =
Owen Andersone755b092009-07-06 22:37:39 +00004814 dyn_cast<ConstantInt>(
4815 SE.getContext()->getConstantExprICmp(ICmpInst::ICMP_ULT,
4816 R1->getValue(), R2->getValue()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004817 if (CB->getZExtValue() == false)
4818 std::swap(R1, R2); // R1 is the minimum root now.
4819
4820 // Make sure the root is not off by one. The returned iteration should
4821 // not be in the range, but the previous one should be. When solving
4822 // for "X*X < 5", for example, we should not return a root of 2.
4823 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00004824 R1->getValue(),
4825 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004826 if (Range.contains(R1Val->getValue())) {
4827 // The next iteration must be out of the range...
Owen Andersone755b092009-07-06 22:37:39 +00004828 ConstantInt *NextVal =
4829 SE.getContext()->getConstantInt(R1->getValue()->getValue()+1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004830
Dan Gohman89f85052007-10-22 18:31:58 +00004831 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004832 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00004833 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00004834 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004835 }
4836
4837 // If R1 was not in the range, then it is a good return value. Make
4838 // sure that R1-1 WAS in the range though, just in case.
Owen Andersone755b092009-07-06 22:37:39 +00004839 ConstantInt *NextVal =
4840 SE.getContext()->getConstantInt(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00004841 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004842 if (Range.contains(R1Val->getValue()))
4843 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00004844 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004845 }
4846 }
4847 }
4848
Dan Gohman0ad08b02009-04-18 17:58:19 +00004849 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004850}
4851
4852
4853
4854//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00004855// SCEVCallbackVH Class Implementation
4856//===----------------------------------------------------------------------===//
4857
Dan Gohman999d14e2009-05-19 19:22:47 +00004858void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohman31b69c12009-07-13 22:20:53 +00004859 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00004860 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4861 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004862 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4863 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004864 SE->Scalars.erase(getValPtr());
4865 // this now dangles!
4866}
4867
Dan Gohman999d14e2009-05-19 19:22:47 +00004868void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohman31b69c12009-07-13 22:20:53 +00004869 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00004870
4871 // Forget all the expressions associated with users of the old value,
4872 // so that future queries will recompute the expressions using the new
4873 // value.
4874 SmallVector<User *, 16> Worklist;
Dan Gohman6b9da312009-07-14 14:34:04 +00004875 SmallPtrSet<User *, 8> Visited;
Dan Gohmanbff6b582009-05-04 22:30:44 +00004876 Value *Old = getValPtr();
4877 bool DeleteOld = false;
4878 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4879 UI != UE; ++UI)
4880 Worklist.push_back(*UI);
4881 while (!Worklist.empty()) {
4882 User *U = Worklist.pop_back_val();
4883 // Deleting the Old value will cause this to dangle. Postpone
4884 // that until everything else is done.
4885 if (U == Old) {
4886 DeleteOld = true;
4887 continue;
4888 }
Dan Gohman6b9da312009-07-14 14:34:04 +00004889 if (!Visited.insert(U))
4890 continue;
Dan Gohmanbff6b582009-05-04 22:30:44 +00004891 if (PHINode *PN = dyn_cast<PHINode>(U))
4892 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004893 if (Instruction *I = dyn_cast<Instruction>(U))
4894 SE->ValuesAtScopes.erase(I);
Dan Gohman6b9da312009-07-14 14:34:04 +00004895 SE->Scalars.erase(U);
4896 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4897 UI != UE; ++UI)
4898 Worklist.push_back(*UI);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004899 }
Dan Gohman6b9da312009-07-14 14:34:04 +00004900 // Delete the Old value if it (indirectly) references itself.
Dan Gohmanbff6b582009-05-04 22:30:44 +00004901 if (DeleteOld) {
4902 if (PHINode *PN = dyn_cast<PHINode>(Old))
4903 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004904 if (Instruction *I = dyn_cast<Instruction>(Old))
4905 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004906 SE->Scalars.erase(Old);
4907 // this now dangles!
4908 }
4909 // this may dangle!
4910}
4911
Dan Gohman999d14e2009-05-19 19:22:47 +00004912ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohmanbff6b582009-05-04 22:30:44 +00004913 : CallbackVH(V), SE(se) {}
4914
4915//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004916// ScalarEvolution Class Implementation
4917//===----------------------------------------------------------------------===//
4918
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004919ScalarEvolution::ScalarEvolution()
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004920 : FunctionPass(&ID) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004921}
4922
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004923bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004924 this->F = &F;
4925 LI = &getAnalysis<LoopInfo>();
4926 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004927 return false;
4928}
4929
4930void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004931 Scalars.clear();
4932 BackedgeTakenCounts.clear();
4933 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00004934 ValuesAtScopes.clear();
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004935 UniqueSCEVs.clear();
4936 SCEVAllocator.Reset();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004937}
4938
4939void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4940 AU.setPreservesAll();
4941 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00004942}
4943
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004944bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004945 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004946}
4947
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004948static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004949 const Loop *L) {
4950 // Print all inner loops first
4951 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4952 PrintLoopInfo(OS, SE, *I);
4953
Nick Lewyckye5da1912008-01-02 02:49:20 +00004954 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004955
Devang Patel02451fa2007-08-21 00:31:24 +00004956 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004957 L->getExitBlocks(ExitBlocks);
4958 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00004959 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004960
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004961 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4962 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004963 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004964 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004965 }
4966
Nick Lewyckye5da1912008-01-02 02:49:20 +00004967 OS << "\n";
Dan Gohmanb6b9e9e2009-06-24 00:33:16 +00004968 OS << "Loop " << L->getHeader()->getName() << ": ";
4969
4970 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
4971 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
4972 } else {
4973 OS << "Unpredictable max backedge-taken count. ";
4974 }
4975
4976 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004977}
4978
Dan Gohman13058cc2009-04-21 00:47:46 +00004979void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004980 // ScalarEvolution's implementaiton of the print method is to print
4981 // out SCEV values of all instructions that are interesting. Doing
4982 // this potentially causes it to create new SCEV objects though,
4983 // which technically conflicts with the const qualifier. This isn't
Dan Gohmanac2a9d62009-07-10 20:25:29 +00004984 // observable from outside the class though, so casting away the
4985 // const isn't dangerous.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004986 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004987
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004988 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004989 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00004990 if (isSCEVable(I->getType())) {
Dan Gohman12668ad2009-07-13 23:03:05 +00004991 OS << *I << '\n';
Dan Gohmanabe991f2008-09-14 17:21:12 +00004992 OS << " --> ";
Dan Gohman161ea032009-07-07 17:06:11 +00004993 const SCEV *SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004994 SV->print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004995
Dan Gohman8db598a2009-06-19 17:49:54 +00004996 const Loop *L = LI->getLoopFor((*I).getParent());
4997
Dan Gohman161ea032009-07-07 17:06:11 +00004998 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman8db598a2009-06-19 17:49:54 +00004999 if (AtUse != SV) {
5000 OS << " --> ";
5001 AtUse->print(OS);
5002 }
5003
5004 if (L) {
Dan Gohmane5b60842009-06-18 00:37:45 +00005005 OS << "\t\t" "Exits: ";
Dan Gohman161ea032009-07-07 17:06:11 +00005006 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00005007 if (!ExitValue->isLoopInvariant(L)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005008 OS << "<<Unknown>>";
5009 } else {
5010 OS << *ExitValue;
5011 }
5012 }
5013
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005014 OS << "\n";
5015 }
5016
Dan Gohmanffd36ba2009-04-21 23:15:49 +00005017 OS << "Determining loop execution counts for: " << F->getName() << "\n";
5018 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5019 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005020}
Dan Gohman13058cc2009-04-21 00:47:46 +00005021
5022void ScalarEvolution::print(std::ostream &o, const Module *M) const {
5023 raw_os_ostream OS(o);
5024 print(OS, M);
5025}