blob: 4491afb834e316bd786a3dede9226f2adc18abda [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000030 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000031 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000032 </ol>
33 </li>
Chris Lattner00950542001-06-06 20:29:01 +000034 <li><a href="#typesystem">Type System</a>
35 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000036 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000037 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000038 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000039 <li><a href="#t_floating">Floating Point Types</a></li>
40 <li><a href="#t_void">Void Type</a></li>
41 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000042 </ol>
43 </li>
Chris Lattner00950542001-06-06 20:29:01 +000044 <li><a href="#t_derived">Derived Types</a>
45 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000046 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000047 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000048 <li><a href="#t_function">Function Type</a></li>
49 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000051 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000052 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000053 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000054 </ol>
55 </li>
56 </ol>
57 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000058 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000059 <ol>
60 <li><a href="#simpleconstants">Simple Constants</a>
61 <li><a href="#aggregateconstants">Aggregate Constants</a>
62 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63 <li><a href="#undefvalues">Undefined Values</a>
64 <li><a href="#constantexprs">Constant Expressions</a>
65 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000066 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000067 <li><a href="#othervalues">Other Values</a>
68 <ol>
69 <li><a href="#inlineasm">Inline Assembler Expressions</a>
70 </ol>
71 </li>
Chris Lattner00950542001-06-06 20:29:01 +000072 <li><a href="#instref">Instruction Reference</a>
73 <ol>
74 <li><a href="#terminators">Terminator Instructions</a>
75 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000076 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000078 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000080 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000081 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000082 </ol>
83 </li>
Chris Lattner00950542001-06-06 20:29:01 +000084 <li><a href="#binaryops">Binary Operations</a>
85 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000086 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000089 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000092 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 </ol>
96 </li>
Chris Lattner00950542001-06-06 20:29:01 +000097 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000099 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000102 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000104 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 </ol>
106 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 <li><a href="#vectorops">Vector Operations</a>
108 <ol>
109 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000112 </ol>
113 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000114 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000115 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000116 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
117 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
118 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000119 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
120 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
121 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 </ol>
123 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000124 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000125 <ol>
126 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
127 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
128 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
129 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
130 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000131 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
132 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
133 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
134 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000135 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
136 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000137 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000138 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000139 <li><a href="#otherops">Other Operations</a>
140 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000141 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
142 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000143 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000144 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000145 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000146 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000147 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000148 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000149 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000150 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000151 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000152 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
154 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000155 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
156 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
157 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </ol>
159 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000160 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
161 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000162 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
163 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
164 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000165 </ol>
166 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000167 <li><a href="#int_codegen">Code Generator Intrinsics</a>
168 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000169 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
170 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
171 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
172 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
173 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
174 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
175 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000176 </ol>
177 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000178 <li><a href="#int_libc">Standard C Library Intrinsics</a>
179 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000180 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
181 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
182 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
183 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
184 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000185 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
186 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
187 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 </ol>
189 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000190 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000191 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000192 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000193 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
194 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
195 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000196 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
197 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000198 </ol>
199 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000200 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000201 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000202 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000203 <ol>
204 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000205 </ol>
206 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000207 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000208 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000209 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000210 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Reid Spencer20677642007-07-20 19:59:11 +0000211 </ol>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000212 <ol>
213 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000214 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000215 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000216 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000217 </ol>
218 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000219</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000220
221<div class="doc_author">
222 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
223 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000224</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000225
Chris Lattner00950542001-06-06 20:29:01 +0000226<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000227<div class="doc_section"> <a name="abstract">Abstract </a></div>
228<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000229
Misha Brukman9d0919f2003-11-08 01:05:38 +0000230<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000231<p>This document is a reference manual for the LLVM assembly language.
232LLVM is an SSA based representation that provides type safety,
233low-level operations, flexibility, and the capability of representing
234'all' high-level languages cleanly. It is the common code
235representation used throughout all phases of the LLVM compilation
236strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000237</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000238
Chris Lattner00950542001-06-06 20:29:01 +0000239<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000240<div class="doc_section"> <a name="introduction">Introduction</a> </div>
241<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000242
Misha Brukman9d0919f2003-11-08 01:05:38 +0000243<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000244
Chris Lattner261efe92003-11-25 01:02:51 +0000245<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000246different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000247representation (suitable for fast loading by a Just-In-Time compiler),
248and as a human readable assembly language representation. This allows
249LLVM to provide a powerful intermediate representation for efficient
250compiler transformations and analysis, while providing a natural means
251to debug and visualize the transformations. The three different forms
252of LLVM are all equivalent. This document describes the human readable
253representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000254
John Criswellc1f786c2005-05-13 22:25:59 +0000255<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000256while being expressive, typed, and extensible at the same time. It
257aims to be a "universal IR" of sorts, by being at a low enough level
258that high-level ideas may be cleanly mapped to it (similar to how
259microprocessors are "universal IR's", allowing many source languages to
260be mapped to them). By providing type information, LLVM can be used as
261the target of optimizations: for example, through pointer analysis, it
262can be proven that a C automatic variable is never accessed outside of
263the current function... allowing it to be promoted to a simple SSA
264value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Misha Brukman9d0919f2003-11-08 01:05:38 +0000266</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner00950542001-06-06 20:29:01 +0000268<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000269<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Misha Brukman9d0919f2003-11-08 01:05:38 +0000271<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000272
Chris Lattner261efe92003-11-25 01:02:51 +0000273<p>It is important to note that this document describes 'well formed'
274LLVM assembly language. There is a difference between what the parser
275accepts and what is considered 'well formed'. For example, the
276following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000277
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000278<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000279<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000280%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000281</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000282</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000283
Chris Lattner261efe92003-11-25 01:02:51 +0000284<p>...because the definition of <tt>%x</tt> does not dominate all of
285its uses. The LLVM infrastructure provides a verification pass that may
286be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000287automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000288the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000289by the verifier pass indicate bugs in transformation passes or input to
290the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000291</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000292
Chris Lattnercc689392007-10-03 17:34:29 +0000293<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Chris Lattner00950542001-06-06 20:29:01 +0000295<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000296<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000297<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000298
Misha Brukman9d0919f2003-11-08 01:05:38 +0000299<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
Reid Spencer2c452282007-08-07 14:34:28 +0000301 <p>LLVM identifiers come in two basic types: global and local. Global
302 identifiers (functions, global variables) begin with the @ character. Local
303 identifiers (register names, types) begin with the % character. Additionally,
304 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000305
Chris Lattner00950542001-06-06 20:29:01 +0000306<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000307 <li>Named values are represented as a string of characters with their prefix.
308 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
309 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000310 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000311 with quotes. In this way, anything except a <tt>&quot;</tt> character can
312 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000313
Reid Spencer2c452282007-08-07 14:34:28 +0000314 <li>Unnamed values are represented as an unsigned numeric value with their
315 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000316
Reid Spencercc16dc32004-12-09 18:02:53 +0000317 <li>Constants, which are described in a <a href="#constants">section about
318 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000319</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000320
Reid Spencer2c452282007-08-07 14:34:28 +0000321<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000322don't need to worry about name clashes with reserved words, and the set of
323reserved words may be expanded in the future without penalty. Additionally,
324unnamed identifiers allow a compiler to quickly come up with a temporary
325variable without having to avoid symbol table conflicts.</p>
326
Chris Lattner261efe92003-11-25 01:02:51 +0000327<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000328languages. There are keywords for different opcodes
329('<tt><a href="#i_add">add</a></tt>',
330 '<tt><a href="#i_bitcast">bitcast</a></tt>',
331 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000332href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000333and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000334none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000335
336<p>Here is an example of LLVM code to multiply the integer variable
337'<tt>%X</tt>' by 8:</p>
338
Misha Brukman9d0919f2003-11-08 01:05:38 +0000339<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000341<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000342<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000343%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000344</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000345</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Misha Brukman9d0919f2003-11-08 01:05:38 +0000347<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000348
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000349<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000351%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000353</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000354
Misha Brukman9d0919f2003-11-08 01:05:38 +0000355<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000357<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000358<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000359<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
360<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
361%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000363</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364
Chris Lattner261efe92003-11-25 01:02:51 +0000365<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
366important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Chris Lattner00950542001-06-06 20:29:01 +0000368<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369
370 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
371 line.</li>
372
373 <li>Unnamed temporaries are created when the result of a computation is not
374 assigned to a named value.</li>
375
Misha Brukman9d0919f2003-11-08 01:05:38 +0000376 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377
Misha Brukman9d0919f2003-11-08 01:05:38 +0000378</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379
John Criswelle4c57cc2005-05-12 16:52:32 +0000380<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381demonstrating instructions, we will follow an instruction with a comment that
382defines the type and name of value produced. Comments are shown in italic
383text.</p>
384
Misha Brukman9d0919f2003-11-08 01:05:38 +0000385</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000386
387<!-- *********************************************************************** -->
388<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
389<!-- *********************************************************************** -->
390
391<!-- ======================================================================= -->
392<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
393</div>
394
395<div class="doc_text">
396
397<p>LLVM programs are composed of "Module"s, each of which is a
398translation unit of the input programs. Each module consists of
399functions, global variables, and symbol table entries. Modules may be
400combined together with the LLVM linker, which merges function (and
401global variable) definitions, resolves forward declarations, and merges
402symbol table entries. Here is an example of the "hello world" module:</p>
403
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000404<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000405<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000406<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
407 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000408
409<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000410<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000411
412<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000413define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000414 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000415 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000416 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000417
418 <i>; Call puts function to write out the string to stdout...</i>
419 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000420 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000421 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000422 href="#i_ret">ret</a> i32 0<br>}<br>
423</pre>
424</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000425
426<p>This example is made up of a <a href="#globalvars">global variable</a>
427named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
428function, and a <a href="#functionstructure">function definition</a>
429for "<tt>main</tt>".</p>
430
Chris Lattnere5d947b2004-12-09 16:36:40 +0000431<p>In general, a module is made up of a list of global values,
432where both functions and global variables are global values. Global values are
433represented by a pointer to a memory location (in this case, a pointer to an
434array of char, and a pointer to a function), and have one of the following <a
435href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000436
Chris Lattnere5d947b2004-12-09 16:36:40 +0000437</div>
438
439<!-- ======================================================================= -->
440<div class="doc_subsection">
441 <a name="linkage">Linkage Types</a>
442</div>
443
444<div class="doc_text">
445
446<p>
447All Global Variables and Functions have one of the following types of linkage:
448</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000449
450<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000451
Chris Lattnerfa730212004-12-09 16:11:40 +0000452 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000453
454 <dd>Global values with internal linkage are only directly accessible by
455 objects in the current module. In particular, linking code into a module with
456 an internal global value may cause the internal to be renamed as necessary to
457 avoid collisions. Because the symbol is internal to the module, all
458 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000459 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000460 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461
Chris Lattnerfa730212004-12-09 16:11:40 +0000462 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000463
Chris Lattner4887bd82007-01-14 06:51:48 +0000464 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
465 the same name when linkage occurs. This is typically used to implement
466 inline functions, templates, or other code which must be generated in each
467 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
468 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000469 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000470
Chris Lattnerfa730212004-12-09 16:11:40 +0000471 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000472
473 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
474 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattner4887bd82007-01-14 06:51:48 +0000475 used for globals that may be emitted in multiple translation units, but that
476 are not guaranteed to be emitted into every translation unit that uses them.
477 One example of this are common globals in C, such as "<tt>int X;</tt>" at
478 global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000479 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
Chris Lattnerfa730212004-12-09 16:11:40 +0000481 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000482
483 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
484 pointer to array type. When two global variables with appending linkage are
485 linked together, the two global arrays are appended together. This is the
486 LLVM, typesafe, equivalent of having the system linker append together
487 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000488 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000489
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000490 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
491 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
492 until linked, if not linked, the symbol becomes null instead of being an
493 undefined reference.
494 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000495
Chris Lattnerfa730212004-12-09 16:11:40 +0000496 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000497
498 <dd>If none of the above identifiers are used, the global is externally
499 visible, meaning that it participates in linkage and can be used to resolve
500 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000501 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000502</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000503
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000504 <p>
505 The next two types of linkage are targeted for Microsoft Windows platform
506 only. They are designed to support importing (exporting) symbols from (to)
507 DLLs.
508 </p>
509
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000510 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000511 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
512
513 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
514 or variable via a global pointer to a pointer that is set up by the DLL
515 exporting the symbol. On Microsoft Windows targets, the pointer name is
516 formed by combining <code>_imp__</code> and the function or variable name.
517 </dd>
518
519 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
520
521 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
522 pointer to a pointer in a DLL, so that it can be referenced with the
523 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
524 name is formed by combining <code>_imp__</code> and the function or variable
525 name.
526 </dd>
527
Chris Lattnerfa730212004-12-09 16:11:40 +0000528</dl>
529
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000530<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000531variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
532variable and was linked with this one, one of the two would be renamed,
533preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
534external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000535outside of the current module.</p>
536<p>It is illegal for a function <i>declaration</i>
537to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000538or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000539<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
540linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000541</div>
542
543<!-- ======================================================================= -->
544<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000545 <a name="callingconv">Calling Conventions</a>
546</div>
547
548<div class="doc_text">
549
550<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
551and <a href="#i_invoke">invokes</a> can all have an optional calling convention
552specified for the call. The calling convention of any pair of dynamic
553caller/callee must match, or the behavior of the program is undefined. The
554following calling conventions are supported by LLVM, and more may be added in
555the future:</p>
556
557<dl>
558 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
559
560 <dd>This calling convention (the default if no other calling convention is
561 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000562 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000563 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000564 </dd>
565
566 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
567
568 <dd>This calling convention attempts to make calls as fast as possible
569 (e.g. by passing things in registers). This calling convention allows the
570 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000571 without having to conform to an externally specified ABI. Implementations of
572 this convention should allow arbitrary tail call optimization to be supported.
573 This calling convention does not support varargs and requires the prototype of
574 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000575 </dd>
576
577 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
578
579 <dd>This calling convention attempts to make code in the caller as efficient
580 as possible under the assumption that the call is not commonly executed. As
581 such, these calls often preserve all registers so that the call does not break
582 any live ranges in the caller side. This calling convention does not support
583 varargs and requires the prototype of all callees to exactly match the
584 prototype of the function definition.
585 </dd>
586
Chris Lattnercfe6b372005-05-07 01:46:40 +0000587 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000588
589 <dd>Any calling convention may be specified by number, allowing
590 target-specific calling conventions to be used. Target specific calling
591 conventions start at 64.
592 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000593</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000594
595<p>More calling conventions can be added/defined on an as-needed basis, to
596support pascal conventions or any other well-known target-independent
597convention.</p>
598
599</div>
600
601<!-- ======================================================================= -->
602<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000603 <a name="visibility">Visibility Styles</a>
604</div>
605
606<div class="doc_text">
607
608<p>
609All Global Variables and Functions have one of the following visibility styles:
610</p>
611
612<dl>
613 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
614
615 <dd>On ELF, default visibility means that the declaration is visible to other
616 modules and, in shared libraries, means that the declared entity may be
617 overridden. On Darwin, default visibility means that the declaration is
618 visible to other modules. Default visibility corresponds to "external
619 linkage" in the language.
620 </dd>
621
622 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
623
624 <dd>Two declarations of an object with hidden visibility refer to the same
625 object if they are in the same shared object. Usually, hidden visibility
626 indicates that the symbol will not be placed into the dynamic symbol table,
627 so no other module (executable or shared library) can reference it
628 directly.
629 </dd>
630
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000631 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
632
633 <dd>On ELF, protected visibility indicates that the symbol will be placed in
634 the dynamic symbol table, but that references within the defining module will
635 bind to the local symbol. That is, the symbol cannot be overridden by another
636 module.
637 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000638</dl>
639
640</div>
641
642<!-- ======================================================================= -->
643<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000644 <a name="globalvars">Global Variables</a>
645</div>
646
647<div class="doc_text">
648
Chris Lattner3689a342005-02-12 19:30:21 +0000649<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000650instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000651an explicit section to be placed in, and may have an optional explicit alignment
652specified. A variable may be defined as "thread_local", which means that it
653will not be shared by threads (each thread will have a separated copy of the
654variable). A variable may be defined as a global "constant," which indicates
655that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000656optimization, allowing the global data to be placed in the read-only section of
657an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000658cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000659
660<p>
661LLVM explicitly allows <em>declarations</em> of global variables to be marked
662constant, even if the final definition of the global is not. This capability
663can be used to enable slightly better optimization of the program, but requires
664the language definition to guarantee that optimizations based on the
665'constantness' are valid for the translation units that do not include the
666definition.
667</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000668
669<p>As SSA values, global variables define pointer values that are in
670scope (i.e. they dominate) all basic blocks in the program. Global
671variables always define a pointer to their "content" type because they
672describe a region of memory, and all memory objects in LLVM are
673accessed through pointers.</p>
674
Christopher Lamb284d9922007-12-11 09:31:00 +0000675<p>A global variable may be declared to reside in a target-specifc numbered
676address space. For targets that support them, address spaces may affect how
677optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000678the variable. The default address space is zero. The address space qualifier
679must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000680
Chris Lattner88f6c462005-11-12 00:45:07 +0000681<p>LLVM allows an explicit section to be specified for globals. If the target
682supports it, it will emit globals to the section specified.</p>
683
Chris Lattner2cbdc452005-11-06 08:02:57 +0000684<p>An explicit alignment may be specified for a global. If not present, or if
685the alignment is set to zero, the alignment of the global is set by the target
686to whatever it feels convenient. If an explicit alignment is specified, the
687global is forced to have at least that much alignment. All alignments must be
688a power of 2.</p>
689
Christopher Lamb284d9922007-12-11 09:31:00 +0000690<p>For example, the following defines a global in a numbered address space with
691an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000692
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000693<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000694<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000695@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000696</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000697</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000698
Chris Lattnerfa730212004-12-09 16:11:40 +0000699</div>
700
701
702<!-- ======================================================================= -->
703<div class="doc_subsection">
704 <a name="functionstructure">Functions</a>
705</div>
706
707<div class="doc_text">
708
Reid Spencerca86e162006-12-31 07:07:53 +0000709<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
710an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000711<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000712<a href="#callingconv">calling convention</a>, a return type, an optional
713<a href="#paramattrs">parameter attribute</a> for the return type, a function
714name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000715<a href="#paramattrs">parameter attributes</a>), an optional section, an
Gordon Henriksene754abe2007-12-10 03:30:21 +0000716optional alignment, an optional <a href="#gc">garbage collector name</a>, an
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000717opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000718
719LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
720optional <a href="#linkage">linkage type</a>, an optional
721<a href="#visibility">visibility style</a>, an optional
722<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000723<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000724name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000725<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000726
727<p>A function definition contains a list of basic blocks, forming the CFG for
728the function. Each basic block may optionally start with a label (giving the
729basic block a symbol table entry), contains a list of instructions, and ends
730with a <a href="#terminators">terminator</a> instruction (such as a branch or
731function return).</p>
732
Chris Lattner4a3c9012007-06-08 16:52:14 +0000733<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000734executed on entrance to the function, and it is not allowed to have predecessor
735basic blocks (i.e. there can not be any branches to the entry block of a
736function). Because the block can have no predecessors, it also cannot have any
737<a href="#i_phi">PHI nodes</a>.</p>
738
Chris Lattner88f6c462005-11-12 00:45:07 +0000739<p>LLVM allows an explicit section to be specified for functions. If the target
740supports it, it will emit functions to the section specified.</p>
741
Chris Lattner2cbdc452005-11-06 08:02:57 +0000742<p>An explicit alignment may be specified for a function. If not present, or if
743the alignment is set to zero, the alignment of the function is set by the target
744to whatever it feels convenient. If an explicit alignment is specified, the
745function is forced to have at least that much alignment. All alignments must be
746a power of 2.</p>
747
Chris Lattnerfa730212004-12-09 16:11:40 +0000748</div>
749
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000750
751<!-- ======================================================================= -->
752<div class="doc_subsection">
753 <a name="aliasstructure">Aliases</a>
754</div>
755<div class="doc_text">
756 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikova80e1182007-04-28 13:45:00 +0000757 function or global variable or bitcast of global value). Aliases may have an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000758 optional <a href="#linkage">linkage type</a>, and an
759 optional <a href="#visibility">visibility style</a>.</p>
760
761 <h5>Syntax:</h5>
762
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000763<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000764<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000765@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000766</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000767</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000768
769</div>
770
771
772
Chris Lattner4e9aba72006-01-23 23:23:47 +0000773<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000774<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
775<div class="doc_text">
776 <p>The return type and each parameter of a function type may have a set of
777 <i>parameter attributes</i> associated with them. Parameter attributes are
778 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000779 a function. Parameter attributes are considered to be part of the function,
780 not of the function type, so functions with different parameter attributes
781 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000782
Reid Spencer950e9f82007-01-15 18:27:39 +0000783 <p>Parameter attributes are simple keywords that follow the type specified. If
784 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000785 example:</p>
786
787<div class="doc_code">
788<pre>
Duncan Sandsdc024672007-11-27 13:23:08 +0000789declare i32 @printf(i8* noalias , ...) nounwind
790declare i32 @atoi(i8*) nounwind readonly
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000791</pre>
792</div>
793
Duncan Sandsdc024672007-11-27 13:23:08 +0000794 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
795 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000796
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000797 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000798 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000799 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000800 <dd>This indicates that the parameter should be zero extended just before
801 a call to this function.</dd>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000802 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000803 <dd>This indicates that the parameter should be sign extended just before
804 a call to this function.</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000805 <dt><tt>inreg</tt></dt>
806 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000807 possible) during assembling function call. Support for this attribute is
808 target-specific</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000809 <dt><tt>sret</tt></dt>
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000810 <dd>This indicates that the parameter specifies the address of a structure
Reid Spencer67606122007-03-22 02:02:11 +0000811 that is the return value of the function in the source program.</dd>
Zhou Shengfebca342007-06-05 05:28:26 +0000812 <dt><tt>noalias</tt></dt>
813 <dd>This indicates that the parameter not alias any other object or any
814 other "noalias" objects during the function call.
Reid Spencer2dc52012007-03-22 02:18:56 +0000815 <dt><tt>noreturn</tt></dt>
816 <dd>This function attribute indicates that the function never returns. This
817 indicates to LLVM that every call to this function should be treated as if
818 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Reid Spencer67606122007-03-22 02:02:11 +0000819 <dt><tt>nounwind</tt></dt>
820 <dd>This function attribute indicates that the function type does not use
821 the unwind instruction and does not allow stack unwinding to propagate
822 through it.</dd>
Duncan Sands50f19f52007-07-27 19:57:41 +0000823 <dt><tt>nest</tt></dt>
824 <dd>This indicates that the parameter can be excised using the
825 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000826 <dt><tt>readonly</tt></dt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000827 <dd>This function attribute indicates that the function has no side-effects
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000828 except for producing a return value or throwing an exception. The value
829 returned must only depend on the function arguments and/or global variables.
830 It may use values obtained by dereferencing pointers.</dd>
831 <dt><tt>readnone</tt></dt>
832 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000833 function, but in addition it is not allowed to dereference any pointer arguments
834 or global variables.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000835 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000836
Reid Spencerca86e162006-12-31 07:07:53 +0000837</div>
838
839<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000840<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000841 <a name="gc">Garbage Collector Names</a>
842</div>
843
844<div class="doc_text">
845<p>Each function may specify a garbage collector name, which is simply a
846string.</p>
847
848<div class="doc_code"><pre
849>define void @f() gc "name" { ...</pre></div>
850
851<p>The compiler declares the supported values of <i>name</i>. Specifying a
852collector which will cause the compiler to alter its output in order to support
853the named garbage collection algorithm.</p>
854</div>
855
856<!-- ======================================================================= -->
857<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000858 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000859</div>
860
861<div class="doc_text">
862<p>
863Modules may contain "module-level inline asm" blocks, which corresponds to the
864GCC "file scope inline asm" blocks. These blocks are internally concatenated by
865LLVM and treated as a single unit, but may be separated in the .ll file if
866desired. The syntax is very simple:
867</p>
868
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000869<div class="doc_code">
870<pre>
871module asm "inline asm code goes here"
872module asm "more can go here"
873</pre>
874</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000875
876<p>The strings can contain any character by escaping non-printable characters.
877 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
878 for the number.
879</p>
880
881<p>
882 The inline asm code is simply printed to the machine code .s file when
883 assembly code is generated.
884</p>
885</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000886
Reid Spencerde151942007-02-19 23:54:10 +0000887<!-- ======================================================================= -->
888<div class="doc_subsection">
889 <a name="datalayout">Data Layout</a>
890</div>
891
892<div class="doc_text">
893<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000894data is to be laid out in memory. The syntax for the data layout is simply:</p>
895<pre> target datalayout = "<i>layout specification</i>"</pre>
896<p>The <i>layout specification</i> consists of a list of specifications
897separated by the minus sign character ('-'). Each specification starts with a
898letter and may include other information after the letter to define some
899aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000900<dl>
901 <dt><tt>E</tt></dt>
902 <dd>Specifies that the target lays out data in big-endian form. That is, the
903 bits with the most significance have the lowest address location.</dd>
904 <dt><tt>e</tt></dt>
905 <dd>Specifies that hte target lays out data in little-endian form. That is,
906 the bits with the least significance have the lowest address location.</dd>
907 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
908 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
909 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
910 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
911 too.</dd>
912 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
913 <dd>This specifies the alignment for an integer type of a given bit
914 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
915 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
916 <dd>This specifies the alignment for a vector type of a given bit
917 <i>size</i>.</dd>
918 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
919 <dd>This specifies the alignment for a floating point type of a given bit
920 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
921 (double).</dd>
922 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
923 <dd>This specifies the alignment for an aggregate type of a given bit
924 <i>size</i>.</dd>
925</dl>
926<p>When constructing the data layout for a given target, LLVM starts with a
927default set of specifications which are then (possibly) overriden by the
928specifications in the <tt>datalayout</tt> keyword. The default specifications
929are given in this list:</p>
930<ul>
931 <li><tt>E</tt> - big endian</li>
932 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
933 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
934 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
935 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
936 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
937 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
938 alignment of 64-bits</li>
939 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
940 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
941 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
942 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
943 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
944</ul>
945<p>When llvm is determining the alignment for a given type, it uses the
946following rules:
947<ol>
948 <li>If the type sought is an exact match for one of the specifications, that
949 specification is used.</li>
950 <li>If no match is found, and the type sought is an integer type, then the
951 smallest integer type that is larger than the bitwidth of the sought type is
952 used. If none of the specifications are larger than the bitwidth then the the
953 largest integer type is used. For example, given the default specifications
954 above, the i7 type will use the alignment of i8 (next largest) while both
955 i65 and i256 will use the alignment of i64 (largest specified).</li>
956 <li>If no match is found, and the type sought is a vector type, then the
957 largest vector type that is smaller than the sought vector type will be used
958 as a fall back. This happens because <128 x double> can be implemented in
959 terms of 64 <2 x double>, for example.</li>
960</ol>
961</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000962
Chris Lattner00950542001-06-06 20:29:01 +0000963<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000964<div class="doc_section"> <a name="typesystem">Type System</a> </div>
965<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000966
Misha Brukman9d0919f2003-11-08 01:05:38 +0000967<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000968
Misha Brukman9d0919f2003-11-08 01:05:38 +0000969<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000970intermediate representation. Being typed enables a number of
971optimizations to be performed on the IR directly, without having to do
972extra analyses on the side before the transformation. A strong type
973system makes it easier to read the generated code and enables novel
974analyses and transformations that are not feasible to perform on normal
975three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000976
977</div>
978
Chris Lattner00950542001-06-06 20:29:01 +0000979<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +0000980<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +0000981Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000982<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +0000983<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +0000984classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000985
986<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +0000987 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000988 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000989 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +0000990 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +0000991 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000992 </tr>
993 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +0000994 <td><a href="#t_floating">floating point</a></td>
995 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000996 </tr>
997 <tr>
998 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +0000999 <td><a href="#t_integer">integer</a>,
1000 <a href="#t_floating">floating point</a>,
1001 <a href="#t_pointer">pointer</a>,
1002 <a href="#t_vector">vector</a>
Reid Spencerca86e162006-12-31 07:07:53 +00001003 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001004 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001005 <tr>
1006 <td><a href="#t_primitive">primitive</a></td>
1007 <td><a href="#t_label">label</a>,
1008 <a href="#t_void">void</a>,
1009 <a href="#t_integer">integer</a>,
1010 <a href="#t_floating">floating point</a>.</td>
1011 </tr>
1012 <tr>
1013 <td><a href="#t_derived">derived</a></td>
1014 <td><a href="#t_integer">integer</a>,
1015 <a href="#t_array">array</a>,
1016 <a href="#t_function">function</a>,
1017 <a href="#t_pointer">pointer</a>,
1018 <a href="#t_struct">structure</a>,
1019 <a href="#t_pstruct">packed structure</a>,
1020 <a href="#t_vector">vector</a>,
1021 <a href="#t_opaque">opaque</a>.
1022 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001023 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001024</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001025
Chris Lattner261efe92003-11-25 01:02:51 +00001026<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1027most important. Values of these types are the only ones which can be
1028produced by instructions, passed as arguments, or used as operands to
1029instructions. This means that all structures and arrays must be
1030manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001031</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001032
Chris Lattner00950542001-06-06 20:29:01 +00001033<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001034<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001035
Chris Lattner4f69f462008-01-04 04:32:38 +00001036<div class="doc_text">
1037<p>The primitive types are the fundamental building blocks of the LLVM
1038system.</p>
1039
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001040</div>
1041
Chris Lattner4f69f462008-01-04 04:32:38 +00001042<!-- _______________________________________________________________________ -->
1043<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1044
1045<div class="doc_text">
1046 <table>
1047 <tbody>
1048 <tr><th>Type</th><th>Description</th></tr>
1049 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1050 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1051 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1052 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1053 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1054 </tbody>
1055 </table>
1056</div>
1057
1058<!-- _______________________________________________________________________ -->
1059<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1060
1061<div class="doc_text">
1062<h5>Overview:</h5>
1063<p>The void type does not represent any value and has no size.</p>
1064
1065<h5>Syntax:</h5>
1066
1067<pre>
1068 void
1069</pre>
1070</div>
1071
1072<!-- _______________________________________________________________________ -->
1073<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1074
1075<div class="doc_text">
1076<h5>Overview:</h5>
1077<p>The label type represents code labels.</p>
1078
1079<h5>Syntax:</h5>
1080
1081<pre>
1082 label
1083</pre>
1084</div>
1085
1086
1087<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001088<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001089
Misha Brukman9d0919f2003-11-08 01:05:38 +00001090<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001091
Chris Lattner261efe92003-11-25 01:02:51 +00001092<p>The real power in LLVM comes from the derived types in the system.
1093This is what allows a programmer to represent arrays, functions,
1094pointers, and other useful types. Note that these derived types may be
1095recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001096
Misha Brukman9d0919f2003-11-08 01:05:38 +00001097</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001098
Chris Lattner00950542001-06-06 20:29:01 +00001099<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001100<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1101
1102<div class="doc_text">
1103
1104<h5>Overview:</h5>
1105<p>The integer type is a very simple derived type that simply specifies an
1106arbitrary bit width for the integer type desired. Any bit width from 1 bit to
11072^23-1 (about 8 million) can be specified.</p>
1108
1109<h5>Syntax:</h5>
1110
1111<pre>
1112 iN
1113</pre>
1114
1115<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1116value.</p>
1117
1118<h5>Examples:</h5>
1119<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001120 <tbody>
1121 <tr>
1122 <td><tt>i1</tt></td>
1123 <td>a single-bit integer.</td>
1124 </tr><tr>
1125 <td><tt>i32</tt></td>
1126 <td>a 32-bit integer.</td>
1127 </tr><tr>
1128 <td><tt>i1942652</tt></td>
1129 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001130 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001131 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001132</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001133</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001134
1135<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001136<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001137
Misha Brukman9d0919f2003-11-08 01:05:38 +00001138<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001139
Chris Lattner00950542001-06-06 20:29:01 +00001140<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001141
Misha Brukman9d0919f2003-11-08 01:05:38 +00001142<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001143sequentially in memory. The array type requires a size (number of
1144elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001145
Chris Lattner7faa8832002-04-14 06:13:44 +00001146<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001147
1148<pre>
1149 [&lt;# elements&gt; x &lt;elementtype&gt;]
1150</pre>
1151
John Criswelle4c57cc2005-05-12 16:52:32 +00001152<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001153be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001154
Chris Lattner7faa8832002-04-14 06:13:44 +00001155<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001156<table class="layout">
1157 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001158 <td class="left"><tt>[40 x i32]</tt></td>
1159 <td class="left">Array of 40 32-bit integer values.</td>
1160 </tr>
1161 <tr class="layout">
1162 <td class="left"><tt>[41 x i32]</tt></td>
1163 <td class="left">Array of 41 32-bit integer values.</td>
1164 </tr>
1165 <tr class="layout">
1166 <td class="left"><tt>[4 x i8]</tt></td>
1167 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001168 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001169</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001170<p>Here are some examples of multidimensional arrays:</p>
1171<table class="layout">
1172 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001173 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1174 <td class="left">3x4 array of 32-bit integer values.</td>
1175 </tr>
1176 <tr class="layout">
1177 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1178 <td class="left">12x10 array of single precision floating point values.</td>
1179 </tr>
1180 <tr class="layout">
1181 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1182 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001183 </tr>
1184</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001185
John Criswell0ec250c2005-10-24 16:17:18 +00001186<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1187length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001188LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1189As a special case, however, zero length arrays are recognized to be variable
1190length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001191type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001192
Misha Brukman9d0919f2003-11-08 01:05:38 +00001193</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001194
Chris Lattner00950542001-06-06 20:29:01 +00001195<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001196<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001197<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001198<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001199<p>The function type can be thought of as a function signature. It
1200consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +00001201Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +00001202(which are structures of pointers to functions), for indirect function
1203calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +00001204<p>
1205The return type of a function type cannot be an aggregate type.
1206</p>
Chris Lattner00950542001-06-06 20:29:01 +00001207<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001208<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +00001209<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001210specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001211which indicates that the function takes a variable number of arguments.
1212Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +00001213 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001214<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001215<table class="layout">
1216 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001217 <td class="left"><tt>i32 (i32)</tt></td>
1218 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001219 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001220 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001221 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001222 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001223 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1224 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001225 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001226 <tt>float</tt>.
1227 </td>
1228 </tr><tr class="layout">
1229 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1230 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001231 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001232 which returns an integer. This is the signature for <tt>printf</tt> in
1233 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001234 </td>
1235 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001236</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001237
Misha Brukman9d0919f2003-11-08 01:05:38 +00001238</div>
Chris Lattner00950542001-06-06 20:29:01 +00001239<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001240<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001241<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001242<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001243<p>The structure type is used to represent a collection of data members
1244together in memory. The packing of the field types is defined to match
1245the ABI of the underlying processor. The elements of a structure may
1246be any type that has a size.</p>
1247<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1248and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1249field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1250instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001251<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001252<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001253<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001254<table class="layout">
1255 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001256 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1257 <td class="left">A triple of three <tt>i32</tt> values</td>
1258 </tr><tr class="layout">
1259 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1260 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1261 second element is a <a href="#t_pointer">pointer</a> to a
1262 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1263 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001264 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001265</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001266</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001267
Chris Lattner00950542001-06-06 20:29:01 +00001268<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001269<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1270</div>
1271<div class="doc_text">
1272<h5>Overview:</h5>
1273<p>The packed structure type is used to represent a collection of data members
1274together in memory. There is no padding between fields. Further, the alignment
1275of a packed structure is 1 byte. The elements of a packed structure may
1276be any type that has a size.</p>
1277<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1278and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1279field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1280instruction.</p>
1281<h5>Syntax:</h5>
1282<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1283<h5>Examples:</h5>
1284<table class="layout">
1285 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001286 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1287 <td class="left">A triple of three <tt>i32</tt> values</td>
1288 </tr><tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001289 <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001290 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1291 second element is a <a href="#t_pointer">pointer</a> to a
1292 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1293 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001294 </tr>
1295</table>
1296</div>
1297
1298<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001299<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001300<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001301<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001302<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001303reference to another object, which must live in memory. Pointer types may have
1304an optional address space attribute defining the target-specific numbered
1305address space where the pointed-to object resides. The default address space is
1306zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001307<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001308<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001309<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001310<table class="layout">
1311 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001312 <td class="left"><tt>[4x i32]*</tt></td>
1313 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1314 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1315 </tr>
1316 <tr class="layout">
1317 <td class="left"><tt>i32 (i32 *) *</tt></td>
1318 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001319 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001320 <tt>i32</tt>.</td>
1321 </tr>
1322 <tr class="layout">
1323 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1324 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1325 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001326 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001327</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001328</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001329
Chris Lattnera58561b2004-08-12 19:12:28 +00001330<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001331<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001332<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001333
Chris Lattnera58561b2004-08-12 19:12:28 +00001334<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001335
Reid Spencer485bad12007-02-15 03:07:05 +00001336<p>A vector type is a simple derived type that represents a vector
1337of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001338are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001339A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001340elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001341of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001342considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001343
Chris Lattnera58561b2004-08-12 19:12:28 +00001344<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001345
1346<pre>
1347 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1348</pre>
1349
John Criswellc1f786c2005-05-13 22:25:59 +00001350<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001351be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001352
Chris Lattnera58561b2004-08-12 19:12:28 +00001353<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001354
Reid Spencerd3f876c2004-11-01 08:19:36 +00001355<table class="layout">
1356 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001357 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1358 <td class="left">Vector of 4 32-bit integer values.</td>
1359 </tr>
1360 <tr class="layout">
1361 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1362 <td class="left">Vector of 8 32-bit floating-point values.</td>
1363 </tr>
1364 <tr class="layout">
1365 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1366 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001367 </tr>
1368</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001369</div>
1370
Chris Lattner69c11bb2005-04-25 17:34:15 +00001371<!-- _______________________________________________________________________ -->
1372<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1373<div class="doc_text">
1374
1375<h5>Overview:</h5>
1376
1377<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001378corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001379In LLVM, opaque types can eventually be resolved to any type (not just a
1380structure type).</p>
1381
1382<h5>Syntax:</h5>
1383
1384<pre>
1385 opaque
1386</pre>
1387
1388<h5>Examples:</h5>
1389
1390<table class="layout">
1391 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001392 <td class="left"><tt>opaque</tt></td>
1393 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001394 </tr>
1395</table>
1396</div>
1397
1398
Chris Lattnerc3f59762004-12-09 17:30:23 +00001399<!-- *********************************************************************** -->
1400<div class="doc_section"> <a name="constants">Constants</a> </div>
1401<!-- *********************************************************************** -->
1402
1403<div class="doc_text">
1404
1405<p>LLVM has several different basic types of constants. This section describes
1406them all and their syntax.</p>
1407
1408</div>
1409
1410<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001411<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001412
1413<div class="doc_text">
1414
1415<dl>
1416 <dt><b>Boolean constants</b></dt>
1417
1418 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001419 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001420 </dd>
1421
1422 <dt><b>Integer constants</b></dt>
1423
Reid Spencercc16dc32004-12-09 18:02:53 +00001424 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001425 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001426 integer types.
1427 </dd>
1428
1429 <dt><b>Floating point constants</b></dt>
1430
1431 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1432 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001433 notation (see below). Floating point constants must have a <a
1434 href="#t_floating">floating point</a> type. </dd>
1435
1436 <dt><b>Null pointer constants</b></dt>
1437
John Criswell9e2485c2004-12-10 15:51:16 +00001438 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001439 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1440
1441</dl>
1442
John Criswell9e2485c2004-12-10 15:51:16 +00001443<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001444of floating point constants. For example, the form '<tt>double
14450x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
14464.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001447(and the only time that they are generated by the disassembler) is when a
1448floating point constant must be emitted but it cannot be represented as a
1449decimal floating point number. For example, NaN's, infinities, and other
1450special values are represented in their IEEE hexadecimal format so that
1451assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001452
1453</div>
1454
1455<!-- ======================================================================= -->
1456<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1457</div>
1458
1459<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001460<p>Aggregate constants arise from aggregation of simple constants
1461and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001462
1463<dl>
1464 <dt><b>Structure constants</b></dt>
1465
1466 <dd>Structure constants are represented with notation similar to structure
1467 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001468 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1469 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001470 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001471 types of elements must match those specified by the type.
1472 </dd>
1473
1474 <dt><b>Array constants</b></dt>
1475
1476 <dd>Array constants are represented with notation similar to array type
1477 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001478 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001479 constants must have <a href="#t_array">array type</a>, and the number and
1480 types of elements must match those specified by the type.
1481 </dd>
1482
Reid Spencer485bad12007-02-15 03:07:05 +00001483 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001484
Reid Spencer485bad12007-02-15 03:07:05 +00001485 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001486 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001487 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001488 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001489 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001490 match those specified by the type.
1491 </dd>
1492
1493 <dt><b>Zero initialization</b></dt>
1494
1495 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1496 value to zero of <em>any</em> type, including scalar and aggregate types.
1497 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001498 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001499 initializers.
1500 </dd>
1501</dl>
1502
1503</div>
1504
1505<!-- ======================================================================= -->
1506<div class="doc_subsection">
1507 <a name="globalconstants">Global Variable and Function Addresses</a>
1508</div>
1509
1510<div class="doc_text">
1511
1512<p>The addresses of <a href="#globalvars">global variables</a> and <a
1513href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001514constants. These constants are explicitly referenced when the <a
1515href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001516href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1517file:</p>
1518
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001519<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001520<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001521@X = global i32 17
1522@Y = global i32 42
1523@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001524</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001525</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001526
1527</div>
1528
1529<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001530<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001531<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001532 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001533 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001534 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001535
Reid Spencer2dc45b82004-12-09 18:13:12 +00001536 <p>Undefined values indicate to the compiler that the program is well defined
1537 no matter what value is used, giving the compiler more freedom to optimize.
1538 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001539</div>
1540
1541<!-- ======================================================================= -->
1542<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1543</div>
1544
1545<div class="doc_text">
1546
1547<p>Constant expressions are used to allow expressions involving other constants
1548to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001549href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001550that does not have side effects (e.g. load and call are not supported). The
1551following is the syntax for constant expressions:</p>
1552
1553<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001554 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1555 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001556 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001557
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001558 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1559 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001560 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001561
1562 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1563 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001564 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001565
1566 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1567 <dd>Truncate a floating point constant to another floating point type. The
1568 size of CST must be larger than the size of TYPE. Both types must be
1569 floating point.</dd>
1570
1571 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1572 <dd>Floating point extend a constant to another type. The size of CST must be
1573 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1574
Reid Spencer1539a1c2007-07-31 14:40:14 +00001575 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001576 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001577 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1578 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1579 of the same number of elements. If the value won't fit in the integer type,
1580 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001581
Reid Spencerd4448792006-11-09 23:03:26 +00001582 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001583 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001584 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1585 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1586 of the same number of elements. If the value won't fit in the integer type,
1587 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001588
Reid Spencerd4448792006-11-09 23:03:26 +00001589 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001590 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001591 constant. TYPE must be a scalar or vector floating point type. CST must be of
1592 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1593 of the same number of elements. If the value won't fit in the floating point
1594 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001595
Reid Spencerd4448792006-11-09 23:03:26 +00001596 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001597 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001598 constant. TYPE must be a scalar or vector floating point type. CST must be of
1599 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1600 of the same number of elements. If the value won't fit in the floating point
1601 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001602
Reid Spencer5c0ef472006-11-11 23:08:07 +00001603 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1604 <dd>Convert a pointer typed constant to the corresponding integer constant
1605 TYPE must be an integer type. CST must be of pointer type. The CST value is
1606 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1607
1608 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1609 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1610 pointer type. CST must be of integer type. The CST value is zero extended,
1611 truncated, or unchanged to make it fit in a pointer size. This one is
1612 <i>really</i> dangerous!</dd>
1613
1614 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001615 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1616 identical (same number of bits). The conversion is done as if the CST value
1617 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001618 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001619 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001620 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001621 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001622
1623 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1624
1625 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1626 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1627 instruction, the index list may have zero or more indexes, which are required
1628 to make sense for the type of "CSTPTR".</dd>
1629
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001630 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1631
1632 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001633 constants.</dd>
1634
1635 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1636 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1637
1638 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1639 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001640
1641 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1642
1643 <dd>Perform the <a href="#i_extractelement">extractelement
1644 operation</a> on constants.
1645
Robert Bocchino05ccd702006-01-15 20:48:27 +00001646 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1647
1648 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001649 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001650
Chris Lattnerc1989542006-04-08 00:13:41 +00001651
1652 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1653
1654 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001655 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001656
Chris Lattnerc3f59762004-12-09 17:30:23 +00001657 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1658
Reid Spencer2dc45b82004-12-09 18:13:12 +00001659 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1660 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001661 binary</a> operations. The constraints on operands are the same as those for
1662 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001663 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001664</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001665</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001666
Chris Lattner00950542001-06-06 20:29:01 +00001667<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001668<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1669<!-- *********************************************************************** -->
1670
1671<!-- ======================================================================= -->
1672<div class="doc_subsection">
1673<a name="inlineasm">Inline Assembler Expressions</a>
1674</div>
1675
1676<div class="doc_text">
1677
1678<p>
1679LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1680Module-Level Inline Assembly</a>) through the use of a special value. This
1681value represents the inline assembler as a string (containing the instructions
1682to emit), a list of operand constraints (stored as a string), and a flag that
1683indicates whether or not the inline asm expression has side effects. An example
1684inline assembler expression is:
1685</p>
1686
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001687<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001688<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001689i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001690</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001691</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001692
1693<p>
1694Inline assembler expressions may <b>only</b> be used as the callee operand of
1695a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1696</p>
1697
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001698<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001699<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001700%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001701</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001702</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001703
1704<p>
1705Inline asms with side effects not visible in the constraint list must be marked
1706as having side effects. This is done through the use of the
1707'<tt>sideeffect</tt>' keyword, like so:
1708</p>
1709
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001710<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001711<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001712call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001713</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001714</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001715
1716<p>TODO: The format of the asm and constraints string still need to be
1717documented here. Constraints on what can be done (e.g. duplication, moving, etc
1718need to be documented).
1719</p>
1720
1721</div>
1722
1723<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001724<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1725<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001726
Misha Brukman9d0919f2003-11-08 01:05:38 +00001727<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001728
Chris Lattner261efe92003-11-25 01:02:51 +00001729<p>The LLVM instruction set consists of several different
1730classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001731instructions</a>, <a href="#binaryops">binary instructions</a>,
1732<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001733 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1734instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001735
Misha Brukman9d0919f2003-11-08 01:05:38 +00001736</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001737
Chris Lattner00950542001-06-06 20:29:01 +00001738<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001739<div class="doc_subsection"> <a name="terminators">Terminator
1740Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001741
Misha Brukman9d0919f2003-11-08 01:05:38 +00001742<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001743
Chris Lattner261efe92003-11-25 01:02:51 +00001744<p>As mentioned <a href="#functionstructure">previously</a>, every
1745basic block in a program ends with a "Terminator" instruction, which
1746indicates which block should be executed after the current block is
1747finished. These terminator instructions typically yield a '<tt>void</tt>'
1748value: they produce control flow, not values (the one exception being
1749the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001750<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001751 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1752instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001753the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1754 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1755 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001756
Misha Brukman9d0919f2003-11-08 01:05:38 +00001757</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001758
Chris Lattner00950542001-06-06 20:29:01 +00001759<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001760<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1761Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001762<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001763<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001764<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001765 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001766</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001767<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001768<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001769value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001770<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001771returns a value and then causes control flow, and one that just causes
1772control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001773<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001774<p>The '<tt>ret</tt>' instruction may return any '<a
1775 href="#t_firstclass">first class</a>' type. Notice that a function is
1776not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1777instruction inside of the function that returns a value that does not
1778match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001779<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001780<p>When the '<tt>ret</tt>' instruction is executed, control flow
1781returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001782 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001783the instruction after the call. If the caller was an "<a
1784 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001785at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001786returns a value, that value shall set the call or invoke instruction's
1787return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001788<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001789<pre> ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001790 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001791</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001792</div>
Chris Lattner00950542001-06-06 20:29:01 +00001793<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001794<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001795<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001796<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001797<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001798</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001799<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001800<p>The '<tt>br</tt>' instruction is used to cause control flow to
1801transfer to a different basic block in the current function. There are
1802two forms of this instruction, corresponding to a conditional branch
1803and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001804<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001805<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001806single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001807unconditional form of the '<tt>br</tt>' instruction takes a single
1808'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001809<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001810<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001811argument is evaluated. If the value is <tt>true</tt>, control flows
1812to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1813control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001814<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001815<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001816 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001817</div>
Chris Lattner00950542001-06-06 20:29:01 +00001818<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001819<div class="doc_subsubsection">
1820 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1821</div>
1822
Misha Brukman9d0919f2003-11-08 01:05:38 +00001823<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001824<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001825
1826<pre>
1827 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1828</pre>
1829
Chris Lattner00950542001-06-06 20:29:01 +00001830<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001831
1832<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1833several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001834instruction, allowing a branch to occur to one of many possible
1835destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001836
1837
Chris Lattner00950542001-06-06 20:29:01 +00001838<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001839
1840<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1841comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1842an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1843table is not allowed to contain duplicate constant entries.</p>
1844
Chris Lattner00950542001-06-06 20:29:01 +00001845<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001846
Chris Lattner261efe92003-11-25 01:02:51 +00001847<p>The <tt>switch</tt> instruction specifies a table of values and
1848destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001849table is searched for the given value. If the value is found, control flow is
1850transfered to the corresponding destination; otherwise, control flow is
1851transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001852
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001853<h5>Implementation:</h5>
1854
1855<p>Depending on properties of the target machine and the particular
1856<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001857ways. For example, it could be generated as a series of chained conditional
1858branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001859
1860<h5>Example:</h5>
1861
1862<pre>
1863 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001864 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001865 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001866
1867 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001868 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001869
1870 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001871 switch i32 %val, label %otherwise [ i32 0, label %onzero
1872 i32 1, label %onone
1873 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001874</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001875</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001876
Chris Lattner00950542001-06-06 20:29:01 +00001877<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001878<div class="doc_subsubsection">
1879 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1880</div>
1881
Misha Brukman9d0919f2003-11-08 01:05:38 +00001882<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001883
Chris Lattner00950542001-06-06 20:29:01 +00001884<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001885
1886<pre>
1887 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001888 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001889</pre>
1890
Chris Lattner6536cfe2002-05-06 22:08:29 +00001891<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001892
1893<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1894function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001895'<tt>normal</tt>' label or the
1896'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001897"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1898"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001899href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1900continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001901
Chris Lattner00950542001-06-06 20:29:01 +00001902<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001903
Misha Brukman9d0919f2003-11-08 01:05:38 +00001904<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001905
Chris Lattner00950542001-06-06 20:29:01 +00001906<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001907 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00001908 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001909 convention</a> the call should use. If none is specified, the call defaults
1910 to using C calling conventions.
1911 </li>
1912 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1913 function value being invoked. In most cases, this is a direct function
1914 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1915 an arbitrary pointer to function value.
1916 </li>
1917
1918 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1919 function to be invoked. </li>
1920
1921 <li>'<tt>function args</tt>': argument list whose types match the function
1922 signature argument types. If the function signature indicates the function
1923 accepts a variable number of arguments, the extra arguments can be
1924 specified. </li>
1925
1926 <li>'<tt>normal label</tt>': the label reached when the called function
1927 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1928
1929 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1930 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1931
Chris Lattner00950542001-06-06 20:29:01 +00001932</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001933
Chris Lattner00950542001-06-06 20:29:01 +00001934<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001935
Misha Brukman9d0919f2003-11-08 01:05:38 +00001936<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001937href="#i_call">call</a></tt>' instruction in most regards. The primary
1938difference is that it establishes an association with a label, which is used by
1939the runtime library to unwind the stack.</p>
1940
1941<p>This instruction is used in languages with destructors to ensure that proper
1942cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1943exception. Additionally, this is important for implementation of
1944'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1945
Chris Lattner00950542001-06-06 20:29:01 +00001946<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001947<pre>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001948 %retval = invoke i32 %Test(i32 15) to label %Continue
1949 unwind label %TestCleanup <i>; {i32}:retval set</i>
1950 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1951 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001952</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001953</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001954
1955
Chris Lattner27f71f22003-09-03 00:41:47 +00001956<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001957
Chris Lattner261efe92003-11-25 01:02:51 +00001958<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1959Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001960
Misha Brukman9d0919f2003-11-08 01:05:38 +00001961<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001962
Chris Lattner27f71f22003-09-03 00:41:47 +00001963<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001964<pre>
1965 unwind
1966</pre>
1967
Chris Lattner27f71f22003-09-03 00:41:47 +00001968<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001969
1970<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1971at the first callee in the dynamic call stack which used an <a
1972href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1973primarily used to implement exception handling.</p>
1974
Chris Lattner27f71f22003-09-03 00:41:47 +00001975<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001976
1977<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1978immediately halt. The dynamic call stack is then searched for the first <a
1979href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1980execution continues at the "exceptional" destination block specified by the
1981<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1982dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001983</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001984
1985<!-- _______________________________________________________________________ -->
1986
1987<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1988Instruction</a> </div>
1989
1990<div class="doc_text">
1991
1992<h5>Syntax:</h5>
1993<pre>
1994 unreachable
1995</pre>
1996
1997<h5>Overview:</h5>
1998
1999<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2000instruction is used to inform the optimizer that a particular portion of the
2001code is not reachable. This can be used to indicate that the code after a
2002no-return function cannot be reached, and other facts.</p>
2003
2004<h5>Semantics:</h5>
2005
2006<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2007</div>
2008
2009
2010
Chris Lattner00950542001-06-06 20:29:01 +00002011<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002012<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002013<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002014<p>Binary operators are used to do most of the computation in a
2015program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002016produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002017multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnera58561b2004-08-12 19:12:28 +00002018The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00002019necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002020<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002021</div>
Chris Lattner00950542001-06-06 20:29:01 +00002022<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002023<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
2024Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002025<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002026<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002027<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002028</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002029<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002030<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002031<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002032<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00002033 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
Reid Spencer485bad12007-02-15 03:07:05 +00002034 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002035Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002036<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002037<p>The value produced is the integer or floating point sum of the two
2038operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002039<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002040<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002041</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002042</div>
Chris Lattner00950542001-06-06 20:29:01 +00002043<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002044<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
2045Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002046<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002047<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002048<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002049</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002050<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002051<p>The '<tt>sub</tt>' instruction returns the difference of its two
2052operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002053<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
2054instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002055<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002056<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00002057 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00002058values.
Reid Spencer485bad12007-02-15 03:07:05 +00002059This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002060Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002061<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002062<p>The value produced is the integer or floating point difference of
2063the two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002064<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002065<pre>
2066 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002067 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002068</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002069</div>
Chris Lattner00950542001-06-06 20:29:01 +00002070<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002071<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
2072Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002073<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002074<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002075<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002076</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002077<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002078<p>The '<tt>mul</tt>' instruction returns the product of its two
2079operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002080<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002081<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00002082 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00002083values.
Reid Spencer485bad12007-02-15 03:07:05 +00002084This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002085Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002086<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002087<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002088two operands.</p>
Reid Spencera5173382007-01-04 16:43:23 +00002089<p>Because the operands are the same width, the result of an integer
2090multiplication is the same whether the operands should be deemed unsigned or
2091signed.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002092<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002093<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002094</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002095</div>
Chris Lattner00950542001-06-06 20:29:01 +00002096<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002097<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2098</a></div>
2099<div class="doc_text">
2100<h5>Syntax:</h5>
2101<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2102</pre>
2103<h5>Overview:</h5>
2104<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2105operands.</p>
2106<h5>Arguments:</h5>
2107<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2108<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002109types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002110of the values in which case the elements must be integers.</p>
2111<h5>Semantics:</h5>
2112<p>The value produced is the unsigned integer quotient of the two operands. This
2113instruction always performs an unsigned division operation, regardless of
2114whether the arguments are unsigned or not.</p>
2115<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002116<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002117</pre>
2118</div>
2119<!-- _______________________________________________________________________ -->
2120<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2121</a> </div>
2122<div class="doc_text">
2123<h5>Syntax:</h5>
2124<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2125</pre>
2126<h5>Overview:</h5>
2127<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2128operands.</p>
2129<h5>Arguments:</h5>
2130<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2131<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002132types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002133of the values in which case the elements must be integers.</p>
2134<h5>Semantics:</h5>
2135<p>The value produced is the signed integer quotient of the two operands. This
2136instruction always performs a signed division operation, regardless of whether
2137the arguments are signed or not.</p>
2138<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002139<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002140</pre>
2141</div>
2142<!-- _______________________________________________________________________ -->
2143<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002144Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002145<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002146<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002147<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002148</pre>
2149<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002150<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002151operands.</p>
2152<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002153<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Reid Spencer1628cec2006-10-26 06:15:43 +00002154<a href="#t_floating">floating point</a> values. Both arguments must have
Reid Spencer485bad12007-02-15 03:07:05 +00002155identical types. This instruction can also take <a href="#t_vector">vector</a>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002156versions of floating point values.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002157<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002158<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002159<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002160<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002161</pre>
2162</div>
2163<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002164<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2165</div>
2166<div class="doc_text">
2167<h5>Syntax:</h5>
2168<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2169</pre>
2170<h5>Overview:</h5>
2171<p>The '<tt>urem</tt>' instruction returns the remainder from the
2172unsigned division of its two arguments.</p>
2173<h5>Arguments:</h5>
2174<p>The two arguments to the '<tt>urem</tt>' instruction must be
2175<a href="#t_integer">integer</a> values. Both arguments must have identical
Dan Gohman80176312007-11-05 23:35:22 +00002176types. This instruction can also take <a href="#t_vector">vector</a> versions
2177of the values in which case the elements must be integers.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002178<h5>Semantics:</h5>
2179<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2180This instruction always performs an unsigned division to get the remainder,
2181regardless of whether the arguments are unsigned or not.</p>
2182<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002183<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002184</pre>
2185
2186</div>
2187<!-- _______________________________________________________________________ -->
2188<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002189Instruction</a> </div>
2190<div class="doc_text">
2191<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002192<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002193</pre>
2194<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002195<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002196signed division of its two operands. This instruction can also take
2197<a href="#t_vector">vector</a> versions of the values in which case
2198the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002199
Chris Lattner261efe92003-11-25 01:02:51 +00002200<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002201<p>The two arguments to the '<tt>srem</tt>' instruction must be
2202<a href="#t_integer">integer</a> values. Both arguments must have identical
2203types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002204<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002205<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002206has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2207operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2208a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002209 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002210Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002211please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002212Wikipedia: modulo operation</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002213<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002214<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002215</pre>
2216
2217</div>
2218<!-- _______________________________________________________________________ -->
2219<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2220Instruction</a> </div>
2221<div class="doc_text">
2222<h5>Syntax:</h5>
2223<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2224</pre>
2225<h5>Overview:</h5>
2226<p>The '<tt>frem</tt>' instruction returns the remainder from the
2227division of its two operands.</p>
2228<h5>Arguments:</h5>
2229<p>The two arguments to the '<tt>frem</tt>' instruction must be
2230<a href="#t_floating">floating point</a> values. Both arguments must have
Dan Gohman80176312007-11-05 23:35:22 +00002231identical types. This instruction can also take <a href="#t_vector">vector</a>
2232versions of floating point values.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002233<h5>Semantics:</h5>
2234<p>This instruction returns the <i>remainder</i> of a division.</p>
2235<h5>Example:</h5>
2236<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002237</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002238</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002239
Reid Spencer8e11bf82007-02-02 13:57:07 +00002240<!-- ======================================================================= -->
2241<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2242Operations</a> </div>
2243<div class="doc_text">
2244<p>Bitwise binary operators are used to do various forms of
2245bit-twiddling in a program. They are generally very efficient
2246instructions and can commonly be strength reduced from other
2247instructions. They require two operands, execute an operation on them,
2248and produce a single value. The resulting value of the bitwise binary
2249operators is always the same type as its first operand.</p>
2250</div>
2251
Reid Spencer569f2fa2007-01-31 21:39:12 +00002252<!-- _______________________________________________________________________ -->
2253<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2254Instruction</a> </div>
2255<div class="doc_text">
2256<h5>Syntax:</h5>
2257<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2258</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002259
Reid Spencer569f2fa2007-01-31 21:39:12 +00002260<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002261
Reid Spencer569f2fa2007-01-31 21:39:12 +00002262<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2263the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002264
Reid Spencer569f2fa2007-01-31 21:39:12 +00002265<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002266
Reid Spencer569f2fa2007-01-31 21:39:12 +00002267<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2268 href="#t_integer">integer</a> type.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002269
Reid Spencer569f2fa2007-01-31 21:39:12 +00002270<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002271
2272<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>. If
2273<tt>var2</tt> is (statically or dynamically) equal to or larger than the number
2274of bits in <tt>var1</tt>, the result is undefined.</p>
2275
Reid Spencer569f2fa2007-01-31 21:39:12 +00002276<h5>Example:</h5><pre>
2277 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2278 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2279 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002280 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002281</pre>
2282</div>
2283<!-- _______________________________________________________________________ -->
2284<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2285Instruction</a> </div>
2286<div class="doc_text">
2287<h5>Syntax:</h5>
2288<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2289</pre>
2290
2291<h5>Overview:</h5>
2292<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002293operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002294
2295<h5>Arguments:</h5>
2296<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2297<a href="#t_integer">integer</a> type.</p>
2298
2299<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002300
Reid Spencer569f2fa2007-01-31 21:39:12 +00002301<p>This instruction always performs a logical shift right operation. The most
2302significant bits of the result will be filled with zero bits after the
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002303shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2304the number of bits in <tt>var1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002305
2306<h5>Example:</h5>
2307<pre>
2308 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2309 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2310 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2311 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002312 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002313</pre>
2314</div>
2315
Reid Spencer8e11bf82007-02-02 13:57:07 +00002316<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002317<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2318Instruction</a> </div>
2319<div class="doc_text">
2320
2321<h5>Syntax:</h5>
2322<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2323</pre>
2324
2325<h5>Overview:</h5>
2326<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002327operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002328
2329<h5>Arguments:</h5>
2330<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2331<a href="#t_integer">integer</a> type.</p>
2332
2333<h5>Semantics:</h5>
2334<p>This instruction always performs an arithmetic shift right operation,
2335The most significant bits of the result will be filled with the sign bit
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002336of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2337larger than the number of bits in <tt>var1</tt>, the result is undefined.
2338</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002339
2340<h5>Example:</h5>
2341<pre>
2342 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2343 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2344 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2345 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002346 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002347</pre>
2348</div>
2349
Chris Lattner00950542001-06-06 20:29:01 +00002350<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002351<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2352Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002353<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002354<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002355<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002356</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002357<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002358<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2359its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002360<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002361<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002362 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002363identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002364<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002365<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002366<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002367<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002368<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002369 <tbody>
2370 <tr>
2371 <td>In0</td>
2372 <td>In1</td>
2373 <td>Out</td>
2374 </tr>
2375 <tr>
2376 <td>0</td>
2377 <td>0</td>
2378 <td>0</td>
2379 </tr>
2380 <tr>
2381 <td>0</td>
2382 <td>1</td>
2383 <td>0</td>
2384 </tr>
2385 <tr>
2386 <td>1</td>
2387 <td>0</td>
2388 <td>0</td>
2389 </tr>
2390 <tr>
2391 <td>1</td>
2392 <td>1</td>
2393 <td>1</td>
2394 </tr>
2395 </tbody>
2396</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002397</div>
Chris Lattner00950542001-06-06 20:29:01 +00002398<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002399<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2400 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2401 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002402</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002403</div>
Chris Lattner00950542001-06-06 20:29:01 +00002404<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002405<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002406<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002407<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002408<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002409</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002410<h5>Overview:</h5>
2411<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2412or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002413<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002414<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002415 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002416identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002417<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002418<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002419<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002420<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002421<table border="1" cellspacing="0" cellpadding="4">
2422 <tbody>
2423 <tr>
2424 <td>In0</td>
2425 <td>In1</td>
2426 <td>Out</td>
2427 </tr>
2428 <tr>
2429 <td>0</td>
2430 <td>0</td>
2431 <td>0</td>
2432 </tr>
2433 <tr>
2434 <td>0</td>
2435 <td>1</td>
2436 <td>1</td>
2437 </tr>
2438 <tr>
2439 <td>1</td>
2440 <td>0</td>
2441 <td>1</td>
2442 </tr>
2443 <tr>
2444 <td>1</td>
2445 <td>1</td>
2446 <td>1</td>
2447 </tr>
2448 </tbody>
2449</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002450</div>
Chris Lattner00950542001-06-06 20:29:01 +00002451<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002452<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2453 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2454 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002455</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002456</div>
Chris Lattner00950542001-06-06 20:29:01 +00002457<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002458<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2459Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002460<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002461<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002462<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002463</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002464<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002465<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2466or of its two operands. The <tt>xor</tt> is used to implement the
2467"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002468<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002469<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002470 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002471identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002472<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002473<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002474<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002475<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002476<table border="1" cellspacing="0" cellpadding="4">
2477 <tbody>
2478 <tr>
2479 <td>In0</td>
2480 <td>In1</td>
2481 <td>Out</td>
2482 </tr>
2483 <tr>
2484 <td>0</td>
2485 <td>0</td>
2486 <td>0</td>
2487 </tr>
2488 <tr>
2489 <td>0</td>
2490 <td>1</td>
2491 <td>1</td>
2492 </tr>
2493 <tr>
2494 <td>1</td>
2495 <td>0</td>
2496 <td>1</td>
2497 </tr>
2498 <tr>
2499 <td>1</td>
2500 <td>1</td>
2501 <td>0</td>
2502 </tr>
2503 </tbody>
2504</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002505</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002506<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002507<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002508<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2509 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2510 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2511 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002512</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002513</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002514
Chris Lattner00950542001-06-06 20:29:01 +00002515<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002516<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002517 <a name="vectorops">Vector Operations</a>
2518</div>
2519
2520<div class="doc_text">
2521
2522<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002523target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002524vector-specific operations needed to process vectors effectively. While LLVM
2525does directly support these vector operations, many sophisticated algorithms
2526will want to use target-specific intrinsics to take full advantage of a specific
2527target.</p>
2528
2529</div>
2530
2531<!-- _______________________________________________________________________ -->
2532<div class="doc_subsubsection">
2533 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2534</div>
2535
2536<div class="doc_text">
2537
2538<h5>Syntax:</h5>
2539
2540<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002541 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002542</pre>
2543
2544<h5>Overview:</h5>
2545
2546<p>
2547The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002548element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002549</p>
2550
2551
2552<h5>Arguments:</h5>
2553
2554<p>
2555The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002556value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002557an index indicating the position from which to extract the element.
2558The index may be a variable.</p>
2559
2560<h5>Semantics:</h5>
2561
2562<p>
2563The result is a scalar of the same type as the element type of
2564<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2565<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2566results are undefined.
2567</p>
2568
2569<h5>Example:</h5>
2570
2571<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002572 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002573</pre>
2574</div>
2575
2576
2577<!-- _______________________________________________________________________ -->
2578<div class="doc_subsubsection">
2579 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2580</div>
2581
2582<div class="doc_text">
2583
2584<h5>Syntax:</h5>
2585
2586<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002587 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002588</pre>
2589
2590<h5>Overview:</h5>
2591
2592<p>
2593The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002594element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002595</p>
2596
2597
2598<h5>Arguments:</h5>
2599
2600<p>
2601The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002602value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002603scalar value whose type must equal the element type of the first
2604operand. The third operand is an index indicating the position at
2605which to insert the value. The index may be a variable.</p>
2606
2607<h5>Semantics:</h5>
2608
2609<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002610The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002611element values are those of <tt>val</tt> except at position
2612<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2613exceeds the length of <tt>val</tt>, the results are undefined.
2614</p>
2615
2616<h5>Example:</h5>
2617
2618<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002619 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002620</pre>
2621</div>
2622
2623<!-- _______________________________________________________________________ -->
2624<div class="doc_subsubsection">
2625 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2626</div>
2627
2628<div class="doc_text">
2629
2630<h5>Syntax:</h5>
2631
2632<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002633 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002634</pre>
2635
2636<h5>Overview:</h5>
2637
2638<p>
2639The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2640from two input vectors, returning a vector of the same type.
2641</p>
2642
2643<h5>Arguments:</h5>
2644
2645<p>
2646The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2647with types that match each other and types that match the result of the
2648instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002649of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002650</p>
2651
2652<p>
2653The shuffle mask operand is required to be a constant vector with either
2654constant integer or undef values.
2655</p>
2656
2657<h5>Semantics:</h5>
2658
2659<p>
2660The elements of the two input vectors are numbered from left to right across
2661both of the vectors. The shuffle mask operand specifies, for each element of
2662the result vector, which element of the two input registers the result element
2663gets. The element selector may be undef (meaning "don't care") and the second
2664operand may be undef if performing a shuffle from only one vector.
2665</p>
2666
2667<h5>Example:</h5>
2668
2669<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002670 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002671 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002672 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2673 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002674</pre>
2675</div>
2676
Tanya Lattner09474292006-04-14 19:24:33 +00002677
Chris Lattner3df241e2006-04-08 23:07:04 +00002678<!-- ======================================================================= -->
2679<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002680 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002681</div>
2682
Misha Brukman9d0919f2003-11-08 01:05:38 +00002683<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002684
Chris Lattner261efe92003-11-25 01:02:51 +00002685<p>A key design point of an SSA-based representation is how it
2686represents memory. In LLVM, no memory locations are in SSA form, which
2687makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002688allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002689
Misha Brukman9d0919f2003-11-08 01:05:38 +00002690</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002691
Chris Lattner00950542001-06-06 20:29:01 +00002692<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002693<div class="doc_subsubsection">
2694 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2695</div>
2696
Misha Brukman9d0919f2003-11-08 01:05:38 +00002697<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002698
Chris Lattner00950542001-06-06 20:29:01 +00002699<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002700
2701<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002702 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002703</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002704
Chris Lattner00950542001-06-06 20:29:01 +00002705<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002706
Chris Lattner261efe92003-11-25 01:02:51 +00002707<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00002708heap and returns a pointer to it. The object is always allocated in the generic
2709address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002710
Chris Lattner00950542001-06-06 20:29:01 +00002711<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002712
2713<p>The '<tt>malloc</tt>' instruction allocates
2714<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002715bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002716appropriate type to the program. If "NumElements" is specified, it is the
2717number of elements allocated. If an alignment is specified, the value result
2718of the allocation is guaranteed to be aligned to at least that boundary. If
2719not specified, or if zero, the target can choose to align the allocation on any
2720convenient boundary.</p>
2721
Misha Brukman9d0919f2003-11-08 01:05:38 +00002722<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002723
Chris Lattner00950542001-06-06 20:29:01 +00002724<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002725
Chris Lattner261efe92003-11-25 01:02:51 +00002726<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2727a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002728
Chris Lattner2cbdc452005-11-06 08:02:57 +00002729<h5>Example:</h5>
2730
2731<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002732 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002733
Bill Wendlingaac388b2007-05-29 09:42:13 +00002734 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2735 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2736 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2737 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2738 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002739</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002740</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002741
Chris Lattner00950542001-06-06 20:29:01 +00002742<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002743<div class="doc_subsubsection">
2744 <a name="i_free">'<tt>free</tt>' Instruction</a>
2745</div>
2746
Misha Brukman9d0919f2003-11-08 01:05:38 +00002747<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002748
Chris Lattner00950542001-06-06 20:29:01 +00002749<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002750
2751<pre>
2752 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002753</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002754
Chris Lattner00950542001-06-06 20:29:01 +00002755<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002756
Chris Lattner261efe92003-11-25 01:02:51 +00002757<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002758memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002759
Chris Lattner00950542001-06-06 20:29:01 +00002760<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002761
Chris Lattner261efe92003-11-25 01:02:51 +00002762<p>'<tt>value</tt>' shall be a pointer value that points to a value
2763that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2764instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002765
Chris Lattner00950542001-06-06 20:29:01 +00002766<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002767
John Criswell9e2485c2004-12-10 15:51:16 +00002768<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002769after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002770
Chris Lattner00950542001-06-06 20:29:01 +00002771<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002772
2773<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002774 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2775 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00002776</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002777</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002778
Chris Lattner00950542001-06-06 20:29:01 +00002779<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002780<div class="doc_subsubsection">
2781 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2782</div>
2783
Misha Brukman9d0919f2003-11-08 01:05:38 +00002784<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002785
Chris Lattner00950542001-06-06 20:29:01 +00002786<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002787
2788<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002789 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002790</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002791
Chris Lattner00950542001-06-06 20:29:01 +00002792<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002793
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002794<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2795currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00002796returns to its caller. The object is always allocated in the generic address
2797space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002798
Chris Lattner00950542001-06-06 20:29:01 +00002799<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002800
John Criswell9e2485c2004-12-10 15:51:16 +00002801<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002802bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002803appropriate type to the program. If "NumElements" is specified, it is the
2804number of elements allocated. If an alignment is specified, the value result
2805of the allocation is guaranteed to be aligned to at least that boundary. If
2806not specified, or if zero, the target can choose to align the allocation on any
2807convenient boundary.</p>
2808
Misha Brukman9d0919f2003-11-08 01:05:38 +00002809<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002810
Chris Lattner00950542001-06-06 20:29:01 +00002811<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002812
John Criswellc1f786c2005-05-13 22:25:59 +00002813<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002814memory is automatically released when the function returns. The '<tt>alloca</tt>'
2815instruction is commonly used to represent automatic variables that must
2816have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002817 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002818instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002819
Chris Lattner00950542001-06-06 20:29:01 +00002820<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002821
2822<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002823 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002824 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2825 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002826 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002827</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002828</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002829
Chris Lattner00950542001-06-06 20:29:01 +00002830<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002831<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2832Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002833<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002834<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00002835<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002836<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002837<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002838<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002839<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002840address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002841 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002842marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002843the number or order of execution of this <tt>load</tt> with other
2844volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2845instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00002846<p>
2847The optional "align" argument specifies the alignment of the operation
2848(that is, the alignment of the memory address). A value of 0 or an
2849omitted "align" argument means that the operation has the preferential
2850alignment for the target. It is the responsibility of the code emitter
2851to ensure that the alignment information is correct. Overestimating
2852the alignment results in an undefined behavior. Underestimating the
2853alignment may produce less efficient code. An alignment of 1 is always
2854safe.
2855</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002856<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002857<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002858<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002859<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002860 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002861 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2862 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002863</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002864</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002865<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002866<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2867Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00002868<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002869<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00002870<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2871 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002872</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002873<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002874<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002875<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002876<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002877to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002878operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002879operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002880optimizer is not allowed to modify the number or order of execution of
2881this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2882 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00002883<p>
2884The optional "align" argument specifies the alignment of the operation
2885(that is, the alignment of the memory address). A value of 0 or an
2886omitted "align" argument means that the operation has the preferential
2887alignment for the target. It is the responsibility of the code emitter
2888to ensure that the alignment information is correct. Overestimating
2889the alignment results in an undefined behavior. Underestimating the
2890alignment may produce less efficient code. An alignment of 1 is always
2891safe.
2892</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002893<h5>Semantics:</h5>
2894<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2895at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002896<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002897<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00002898 store i32 3, i32* %ptr <i>; yields {void}</i>
2899 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002900</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00002901</div>
2902
Chris Lattner2b7d3202002-05-06 03:03:22 +00002903<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002904<div class="doc_subsubsection">
2905 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2906</div>
2907
Misha Brukman9d0919f2003-11-08 01:05:38 +00002908<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002909<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002910<pre>
2911 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2912</pre>
2913
Chris Lattner7faa8832002-04-14 06:13:44 +00002914<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002915
2916<p>
2917The '<tt>getelementptr</tt>' instruction is used to get the address of a
2918subelement of an aggregate data structure.</p>
2919
Chris Lattner7faa8832002-04-14 06:13:44 +00002920<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002921
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002922<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002923elements of the aggregate object to index to. The actual types of the arguments
2924provided depend on the type of the first pointer argument. The
2925'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002926levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00002927structure, only <tt>i32</tt> integer constants are allowed. When indexing
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002928into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2929be sign extended to 64-bit values.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002930
Chris Lattner261efe92003-11-25 01:02:51 +00002931<p>For example, let's consider a C code fragment and how it gets
2932compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002933
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002934<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002935<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002936struct RT {
2937 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00002938 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002939 char C;
2940};
2941struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00002942 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002943 double Y;
2944 struct RT Z;
2945};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002946
Chris Lattnercabc8462007-05-29 15:43:56 +00002947int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002948 return &amp;s[1].Z.B[5][13];
2949}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002950</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002951</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002952
Misha Brukman9d0919f2003-11-08 01:05:38 +00002953<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002954
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002955<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002956<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002957%RT = type { i8 , [10 x [20 x i32]], i8 }
2958%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002959
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002960define i32* %foo(%ST* %s) {
2961entry:
2962 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2963 ret i32* %reg
2964}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002965</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002966</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002967
Chris Lattner7faa8832002-04-14 06:13:44 +00002968<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002969
2970<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00002971on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002972and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00002973<a href="#t_integer">integer</a> type but the value will always be sign extended
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002974to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
Reid Spencer42ddd842006-12-03 16:53:48 +00002975<b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002976
Misha Brukman9d0919f2003-11-08 01:05:38 +00002977<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00002978type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002979}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00002980the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2981i8 }</tt>' type, another structure. The third index indexes into the second
2982element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002983array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00002984'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2985to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002986
Chris Lattner261efe92003-11-25 01:02:51 +00002987<p>Note that it is perfectly legal to index partially through a
2988structure, returning a pointer to an inner element. Because of this,
2989the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002990
2991<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002992 define i32* %foo(%ST* %s) {
2993 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002994 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2995 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002996 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2997 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2998 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002999 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003000</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003001
3002<p>Note that it is undefined to access an array out of bounds: array and
3003pointer indexes must always be within the defined bounds of the array type.
3004The one exception for this rules is zero length arrays. These arrays are
3005defined to be accessible as variable length arrays, which requires access
3006beyond the zero'th element.</p>
3007
Chris Lattner884a9702006-08-15 00:45:58 +00003008<p>The getelementptr instruction is often confusing. For some more insight
3009into how it works, see <a href="GetElementPtr.html">the getelementptr
3010FAQ</a>.</p>
3011
Chris Lattner7faa8832002-04-14 06:13:44 +00003012<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003013
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003014<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003015 <i>; yields [12 x i8]*:aptr</i>
3016 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003017</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003018</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003019
Chris Lattner00950542001-06-06 20:29:01 +00003020<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003021<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003022</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003023<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003024<p>The instructions in this category are the conversion instructions (casting)
3025which all take a single operand and a type. They perform various bit conversions
3026on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003027</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003028
Chris Lattner6536cfe2002-05-06 22:08:29 +00003029<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003030<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003031 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3032</div>
3033<div class="doc_text">
3034
3035<h5>Syntax:</h5>
3036<pre>
3037 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3038</pre>
3039
3040<h5>Overview:</h5>
3041<p>
3042The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3043</p>
3044
3045<h5>Arguments:</h5>
3046<p>
3047The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3048be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003049and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003050type. The bit size of <tt>value</tt> must be larger than the bit size of
3051<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003052
3053<h5>Semantics:</h5>
3054<p>
3055The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003056and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3057larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3058It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003059
3060<h5>Example:</h5>
3061<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003062 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003063 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3064 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003065</pre>
3066</div>
3067
3068<!-- _______________________________________________________________________ -->
3069<div class="doc_subsubsection">
3070 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3071</div>
3072<div class="doc_text">
3073
3074<h5>Syntax:</h5>
3075<pre>
3076 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3077</pre>
3078
3079<h5>Overview:</h5>
3080<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3081<tt>ty2</tt>.</p>
3082
3083
3084<h5>Arguments:</h5>
3085<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003086<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3087also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003088<tt>value</tt> must be smaller than the bit size of the destination type,
3089<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003090
3091<h5>Semantics:</h5>
3092<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003093bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003094
Reid Spencerb5929522007-01-12 15:46:11 +00003095<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003096
3097<h5>Example:</h5>
3098<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003099 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003100 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003101</pre>
3102</div>
3103
3104<!-- _______________________________________________________________________ -->
3105<div class="doc_subsubsection">
3106 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3107</div>
3108<div class="doc_text">
3109
3110<h5>Syntax:</h5>
3111<pre>
3112 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3113</pre>
3114
3115<h5>Overview:</h5>
3116<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3117
3118<h5>Arguments:</h5>
3119<p>
3120The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003121<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3122also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003123<tt>value</tt> must be smaller than the bit size of the destination type,
3124<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003125
3126<h5>Semantics:</h5>
3127<p>
3128The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3129bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003130the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003131
Reid Spencerc78f3372007-01-12 03:35:51 +00003132<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003133
3134<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003135<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003136 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003137 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003138</pre>
3139</div>
3140
3141<!-- _______________________________________________________________________ -->
3142<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003143 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3144</div>
3145
3146<div class="doc_text">
3147
3148<h5>Syntax:</h5>
3149
3150<pre>
3151 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3152</pre>
3153
3154<h5>Overview:</h5>
3155<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3156<tt>ty2</tt>.</p>
3157
3158
3159<h5>Arguments:</h5>
3160<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3161 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3162cast it to. The size of <tt>value</tt> must be larger than the size of
3163<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3164<i>no-op cast</i>.</p>
3165
3166<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003167<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3168<a href="#t_floating">floating point</a> type to a smaller
3169<a href="#t_floating">floating point</a> type. If the value cannot fit within
3170the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003171
3172<h5>Example:</h5>
3173<pre>
3174 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3175 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3176</pre>
3177</div>
3178
3179<!-- _______________________________________________________________________ -->
3180<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003181 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3182</div>
3183<div class="doc_text">
3184
3185<h5>Syntax:</h5>
3186<pre>
3187 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3188</pre>
3189
3190<h5>Overview:</h5>
3191<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3192floating point value.</p>
3193
3194<h5>Arguments:</h5>
3195<p>The '<tt>fpext</tt>' instruction takes a
3196<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003197and a <a href="#t_floating">floating point</a> type to cast it to. The source
3198type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003199
3200<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003201<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003202<a href="#t_floating">floating point</a> type to a larger
3203<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003204used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003205<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003206
3207<h5>Example:</h5>
3208<pre>
3209 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3210 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3211</pre>
3212</div>
3213
3214<!-- _______________________________________________________________________ -->
3215<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003216 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003217</div>
3218<div class="doc_text">
3219
3220<h5>Syntax:</h5>
3221<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003222 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003223</pre>
3224
3225<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003226<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003227unsigned integer equivalent of type <tt>ty2</tt>.
3228</p>
3229
3230<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003231<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003232scalar or vector <a href="#t_floating">floating point</a> value, and a type
3233to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3234type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3235vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003236
3237<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003238<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003239<a href="#t_floating">floating point</a> operand into the nearest (rounding
3240towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3241the results are undefined.</p>
3242
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003243<h5>Example:</h5>
3244<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003245 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003246 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003247 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003248</pre>
3249</div>
3250
3251<!-- _______________________________________________________________________ -->
3252<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003253 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003254</div>
3255<div class="doc_text">
3256
3257<h5>Syntax:</h5>
3258<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003259 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003260</pre>
3261
3262<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003263<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003264<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003265</p>
3266
Chris Lattner6536cfe2002-05-06 22:08:29 +00003267<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003268<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003269scalar or vector <a href="#t_floating">floating point</a> value, and a type
3270to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3271type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3272vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003273
Chris Lattner6536cfe2002-05-06 22:08:29 +00003274<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003275<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003276<a href="#t_floating">floating point</a> operand into the nearest (rounding
3277towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3278the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003279
Chris Lattner33ba0d92001-07-09 00:26:23 +00003280<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003281<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003282 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003283 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003284 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003285</pre>
3286</div>
3287
3288<!-- _______________________________________________________________________ -->
3289<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003290 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003291</div>
3292<div class="doc_text">
3293
3294<h5>Syntax:</h5>
3295<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003296 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003297</pre>
3298
3299<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003300<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003301integer and converts that value to the <tt>ty2</tt> type.</p>
3302
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003303<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003304<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3305scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3306to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3307type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3308floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003309
3310<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003311<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003312integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003313the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003314
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003315<h5>Example:</h5>
3316<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003317 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003318 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003319</pre>
3320</div>
3321
3322<!-- _______________________________________________________________________ -->
3323<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003324 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003325</div>
3326<div class="doc_text">
3327
3328<h5>Syntax:</h5>
3329<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003330 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003331</pre>
3332
3333<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003334<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003335integer and converts that value to the <tt>ty2</tt> type.</p>
3336
3337<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003338<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3339scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3340to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3341type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3342floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003343
3344<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003345<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003346integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003347the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003348
3349<h5>Example:</h5>
3350<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003351 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003352 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003353</pre>
3354</div>
3355
3356<!-- _______________________________________________________________________ -->
3357<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003358 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3359</div>
3360<div class="doc_text">
3361
3362<h5>Syntax:</h5>
3363<pre>
3364 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3365</pre>
3366
3367<h5>Overview:</h5>
3368<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3369the integer type <tt>ty2</tt>.</p>
3370
3371<h5>Arguments:</h5>
3372<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003373must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003374<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3375
3376<h5>Semantics:</h5>
3377<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3378<tt>ty2</tt> by interpreting the pointer value as an integer and either
3379truncating or zero extending that value to the size of the integer type. If
3380<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3381<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003382are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3383change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003384
3385<h5>Example:</h5>
3386<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003387 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3388 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003389</pre>
3390</div>
3391
3392<!-- _______________________________________________________________________ -->
3393<div class="doc_subsubsection">
3394 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3395</div>
3396<div class="doc_text">
3397
3398<h5>Syntax:</h5>
3399<pre>
3400 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3401</pre>
3402
3403<h5>Overview:</h5>
3404<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3405a pointer type, <tt>ty2</tt>.</p>
3406
3407<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003408<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003409value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003410<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003411
3412<h5>Semantics:</h5>
3413<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3414<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3415the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3416size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3417the size of a pointer then a zero extension is done. If they are the same size,
3418nothing is done (<i>no-op cast</i>).</p>
3419
3420<h5>Example:</h5>
3421<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003422 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3423 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3424 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003425</pre>
3426</div>
3427
3428<!-- _______________________________________________________________________ -->
3429<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003430 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003431</div>
3432<div class="doc_text">
3433
3434<h5>Syntax:</h5>
3435<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003436 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003437</pre>
3438
3439<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003440<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003441<tt>ty2</tt> without changing any bits.</p>
3442
3443<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003444<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003445a first class value, and a type to cast it to, which must also be a <a
3446 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003447and the destination type, <tt>ty2</tt>, must be identical. If the source
3448type is a pointer, the destination type must also be a pointer.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003449
3450<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003451<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003452<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3453this conversion. The conversion is done as if the <tt>value</tt> had been
3454stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3455converted to other pointer types with this instruction. To convert pointers to
3456other types, use the <a href="#i_inttoptr">inttoptr</a> or
3457<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003458
3459<h5>Example:</h5>
3460<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003461 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003462 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3463 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003464</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003465</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003466
Reid Spencer2fd21e62006-11-08 01:18:52 +00003467<!-- ======================================================================= -->
3468<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3469<div class="doc_text">
3470<p>The instructions in this category are the "miscellaneous"
3471instructions, which defy better classification.</p>
3472</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003473
3474<!-- _______________________________________________________________________ -->
3475<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3476</div>
3477<div class="doc_text">
3478<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003479<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003480</pre>
3481<h5>Overview:</h5>
3482<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3483of its two integer operands.</p>
3484<h5>Arguments:</h5>
3485<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003486the condition code indicating the kind of comparison to perform. It is not
3487a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003488<ol>
3489 <li><tt>eq</tt>: equal</li>
3490 <li><tt>ne</tt>: not equal </li>
3491 <li><tt>ugt</tt>: unsigned greater than</li>
3492 <li><tt>uge</tt>: unsigned greater or equal</li>
3493 <li><tt>ult</tt>: unsigned less than</li>
3494 <li><tt>ule</tt>: unsigned less or equal</li>
3495 <li><tt>sgt</tt>: signed greater than</li>
3496 <li><tt>sge</tt>: signed greater or equal</li>
3497 <li><tt>slt</tt>: signed less than</li>
3498 <li><tt>sle</tt>: signed less or equal</li>
3499</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003500<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003501<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003502<h5>Semantics:</h5>
3503<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3504the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003505yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003506<ol>
3507 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3508 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3509 </li>
3510 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3511 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3512 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3513 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3514 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3515 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3516 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3517 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3518 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3519 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3520 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3521 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3522 <li><tt>sge</tt>: interprets the operands as signed values and yields
3523 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3524 <li><tt>slt</tt>: interprets the operands as signed values and yields
3525 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3526 <li><tt>sle</tt>: interprets the operands as signed values and yields
3527 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003528</ol>
3529<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003530values are compared as if they were integers.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003531
3532<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003533<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3534 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3535 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3536 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3537 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3538 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003539</pre>
3540</div>
3541
3542<!-- _______________________________________________________________________ -->
3543<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3544</div>
3545<div class="doc_text">
3546<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003547<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003548</pre>
3549<h5>Overview:</h5>
3550<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3551of its floating point operands.</p>
3552<h5>Arguments:</h5>
3553<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003554the condition code indicating the kind of comparison to perform. It is not
3555a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003556<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003557 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003558 <li><tt>oeq</tt>: ordered and equal</li>
3559 <li><tt>ogt</tt>: ordered and greater than </li>
3560 <li><tt>oge</tt>: ordered and greater than or equal</li>
3561 <li><tt>olt</tt>: ordered and less than </li>
3562 <li><tt>ole</tt>: ordered and less than or equal</li>
3563 <li><tt>one</tt>: ordered and not equal</li>
3564 <li><tt>ord</tt>: ordered (no nans)</li>
3565 <li><tt>ueq</tt>: unordered or equal</li>
3566 <li><tt>ugt</tt>: unordered or greater than </li>
3567 <li><tt>uge</tt>: unordered or greater than or equal</li>
3568 <li><tt>ult</tt>: unordered or less than </li>
3569 <li><tt>ule</tt>: unordered or less than or equal</li>
3570 <li><tt>une</tt>: unordered or not equal</li>
3571 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003572 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003573</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003574<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003575<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003576<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3577<a href="#t_floating">floating point</a> typed. They must have identical
3578types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003579<h5>Semantics:</h5>
3580<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3581the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003582yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003583<ol>
3584 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003585 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003586 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003587 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003588 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003589 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003590 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003591 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003592 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003593 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003594 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003595 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003596 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003597 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3598 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003599 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003600 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003601 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003602 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003603 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003604 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003605 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003606 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003607 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003608 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003609 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003610 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003611 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3612</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003613
3614<h5>Example:</h5>
3615<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3616 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3617 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3618 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3619</pre>
3620</div>
3621
Reid Spencer2fd21e62006-11-08 01:18:52 +00003622<!-- _______________________________________________________________________ -->
3623<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3624Instruction</a> </div>
3625<div class="doc_text">
3626<h5>Syntax:</h5>
3627<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3628<h5>Overview:</h5>
3629<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3630the SSA graph representing the function.</p>
3631<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003632<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00003633field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3634as arguments, with one pair for each predecessor basic block of the
3635current block. Only values of <a href="#t_firstclass">first class</a>
3636type may be used as the value arguments to the PHI node. Only labels
3637may be used as the label arguments.</p>
3638<p>There must be no non-phi instructions between the start of a basic
3639block and the PHI instructions: i.e. PHI instructions must be first in
3640a basic block.</p>
3641<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003642<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3643specified by the pair corresponding to the predecessor basic block that executed
3644just prior to the current block.</p>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003645<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003646<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003647</div>
3648
Chris Lattnercc37aae2004-03-12 05:50:16 +00003649<!-- _______________________________________________________________________ -->
3650<div class="doc_subsubsection">
3651 <a name="i_select">'<tt>select</tt>' Instruction</a>
3652</div>
3653
3654<div class="doc_text">
3655
3656<h5>Syntax:</h5>
3657
3658<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003659 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003660</pre>
3661
3662<h5>Overview:</h5>
3663
3664<p>
3665The '<tt>select</tt>' instruction is used to choose one value based on a
3666condition, without branching.
3667</p>
3668
3669
3670<h5>Arguments:</h5>
3671
3672<p>
3673The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3674</p>
3675
3676<h5>Semantics:</h5>
3677
3678<p>
3679If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003680value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003681</p>
3682
3683<h5>Example:</h5>
3684
3685<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003686 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003687</pre>
3688</div>
3689
Robert Bocchino05ccd702006-01-15 20:48:27 +00003690
3691<!-- _______________________________________________________________________ -->
3692<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003693 <a name="i_call">'<tt>call</tt>' Instruction</a>
3694</div>
3695
Misha Brukman9d0919f2003-11-08 01:05:38 +00003696<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003697
Chris Lattner00950542001-06-06 20:29:01 +00003698<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003699<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003700 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003701</pre>
3702
Chris Lattner00950542001-06-06 20:29:01 +00003703<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003704
Misha Brukman9d0919f2003-11-08 01:05:38 +00003705<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003706
Chris Lattner00950542001-06-06 20:29:01 +00003707<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003708
Misha Brukman9d0919f2003-11-08 01:05:38 +00003709<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003710
Chris Lattner6536cfe2002-05-06 22:08:29 +00003711<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003712 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003713 <p>The optional "tail" marker indicates whether the callee function accesses
3714 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003715 function call is eligible for tail call optimization. Note that calls may
3716 be marked "tail" even if they do not occur before a <a
3717 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003718 </li>
3719 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00003720 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003721 convention</a> the call should use. If none is specified, the call defaults
3722 to using C calling conventions.
3723 </li>
3724 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003725 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3726 the type of the return value. Functions that return no value are marked
3727 <tt><a href="#t_void">void</a></tt>.</p>
3728 </li>
3729 <li>
3730 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3731 value being invoked. The argument types must match the types implied by
3732 this signature. This type can be omitted if the function is not varargs
3733 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003734 </li>
3735 <li>
3736 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3737 be invoked. In most cases, this is a direct function invocation, but
3738 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003739 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003740 </li>
3741 <li>
3742 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003743 function signature argument types. All arguments must be of
3744 <a href="#t_firstclass">first class</a> type. If the function signature
3745 indicates the function accepts a variable number of arguments, the extra
3746 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003747 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003748</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003749
Chris Lattner00950542001-06-06 20:29:01 +00003750<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003751
Chris Lattner261efe92003-11-25 01:02:51 +00003752<p>The '<tt>call</tt>' instruction is used to cause control flow to
3753transfer to a specified function, with its incoming arguments bound to
3754the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3755instruction in the called function, control flow continues with the
3756instruction after the function call, and the return value of the
3757function is bound to the result argument. This is a simpler case of
3758the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003759
Chris Lattner00950542001-06-06 20:29:01 +00003760<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003761
3762<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003763 %retval = call i32 @test(i32 %argc)
3764 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3765 %X = tail call i32 @foo()
3766 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3767 %Z = call void %foo(i8 97 signext)
Chris Lattner2bff5242005-05-06 05:47:36 +00003768</pre>
3769
Misha Brukman9d0919f2003-11-08 01:05:38 +00003770</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003771
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003772<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003773<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003774 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003775</div>
3776
Misha Brukman9d0919f2003-11-08 01:05:38 +00003777<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003778
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003779<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003780
3781<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003782 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003783</pre>
3784
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003785<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003786
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003787<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003788the "variable argument" area of a function call. It is used to implement the
3789<tt>va_arg</tt> macro in C.</p>
3790
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003791<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003792
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003793<p>This instruction takes a <tt>va_list*</tt> value and the type of
3794the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00003795increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003796actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003797
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003798<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003799
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003800<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3801type from the specified <tt>va_list</tt> and causes the
3802<tt>va_list</tt> to point to the next argument. For more information,
3803see the variable argument handling <a href="#int_varargs">Intrinsic
3804Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003805
3806<p>It is legal for this instruction to be called in a function which does not
3807take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003808function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003809
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003810<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003811href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003812argument.</p>
3813
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003814<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003815
3816<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3817
Misha Brukman9d0919f2003-11-08 01:05:38 +00003818</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003819
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003820<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003821<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3822<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003823
Misha Brukman9d0919f2003-11-08 01:05:38 +00003824<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003825
3826<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00003827well known names and semantics and are required to follow certain restrictions.
3828Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00003829language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00003830adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003831
John Criswellfc6b8952005-05-16 16:17:45 +00003832<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00003833prefix is reserved in LLVM for intrinsic names; thus, function names may not
3834begin with this prefix. Intrinsic functions must always be external functions:
3835you cannot define the body of intrinsic functions. Intrinsic functions may
3836only be used in call or invoke instructions: it is illegal to take the address
3837of an intrinsic function. Additionally, because intrinsic functions are part
3838of the LLVM language, it is required if any are added that they be documented
3839here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003840
Chandler Carruth69940402007-08-04 01:51:18 +00003841<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3842a family of functions that perform the same operation but on different data
3843types. Because LLVM can represent over 8 million different integer types,
3844overloading is used commonly to allow an intrinsic function to operate on any
3845integer type. One or more of the argument types or the result type can be
3846overloaded to accept any integer type. Argument types may also be defined as
3847exactly matching a previous argument's type or the result type. This allows an
3848intrinsic function which accepts multiple arguments, but needs all of them to
3849be of the same type, to only be overloaded with respect to a single argument or
3850the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003851
Chandler Carruth69940402007-08-04 01:51:18 +00003852<p>Overloaded intrinsics will have the names of its overloaded argument types
3853encoded into its function name, each preceded by a period. Only those types
3854which are overloaded result in a name suffix. Arguments whose type is matched
3855against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3856take an integer of any width and returns an integer of exactly the same integer
3857width. This leads to a family of functions such as
3858<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3859Only one type, the return type, is overloaded, and only one type suffix is
3860required. Because the argument's type is matched against the return type, it
3861does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00003862
3863<p>To learn how to add an intrinsic function, please see the
3864<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003865</p>
3866
Misha Brukman9d0919f2003-11-08 01:05:38 +00003867</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003868
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003869<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003870<div class="doc_subsection">
3871 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3872</div>
3873
Misha Brukman9d0919f2003-11-08 01:05:38 +00003874<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003875
Misha Brukman9d0919f2003-11-08 01:05:38 +00003876<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003877 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003878intrinsic functions. These functions are related to the similarly
3879named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003880
Chris Lattner261efe92003-11-25 01:02:51 +00003881<p>All of these functions operate on arguments that use a
3882target-specific value type "<tt>va_list</tt>". The LLVM assembly
3883language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00003884transformations should be prepared to handle these functions regardless of
3885the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003886
Chris Lattner374ab302006-05-15 17:26:46 +00003887<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003888instruction and the variable argument handling intrinsic functions are
3889used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003890
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003891<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003892<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003893define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00003894 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00003895 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00003896 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003897 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003898
3899 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00003900 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00003901
3902 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00003903 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00003904 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00003905 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003906 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003907
3908 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003909 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00003910 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00003911}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003912
3913declare void @llvm.va_start(i8*)
3914declare void @llvm.va_copy(i8*, i8*)
3915declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003916</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003917</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003918
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003919</div>
3920
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003921<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003922<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003923 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003924</div>
3925
3926
Misha Brukman9d0919f2003-11-08 01:05:38 +00003927<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003928<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003929<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003930<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003931<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3932<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3933href="#i_va_arg">va_arg</a></tt>.</p>
3934
3935<h5>Arguments:</h5>
3936
3937<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3938
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003939<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003940
3941<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3942macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00003943<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003944<tt>va_arg</tt> will produce the first variable argument passed to the function.
3945Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00003946last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003947
Misha Brukman9d0919f2003-11-08 01:05:38 +00003948</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003949
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003950<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003951<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003952 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003953</div>
3954
Misha Brukman9d0919f2003-11-08 01:05:38 +00003955<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003956<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003957<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003958<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003959
Jeff Cohenb627eab2007-04-29 01:07:00 +00003960<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00003961which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003962or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003963
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003964<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003965
Jeff Cohenb627eab2007-04-29 01:07:00 +00003966<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003967
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003968<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003969
Misha Brukman9d0919f2003-11-08 01:05:38 +00003970<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003971macro available in C. In a target-dependent way, it destroys the
3972<tt>va_list</tt> element to which the argument points. Calls to <a
3973href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3974<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3975<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003976
Misha Brukman9d0919f2003-11-08 01:05:38 +00003977</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003978
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003979<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003980<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003981 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003982</div>
3983
Misha Brukman9d0919f2003-11-08 01:05:38 +00003984<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003985
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003986<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003987
3988<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003989 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00003990</pre>
3991
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003992<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003993
Jeff Cohenb627eab2007-04-29 01:07:00 +00003994<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3995from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003996
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003997<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003998
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003999<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004000The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004001
Chris Lattnerd7923912004-05-23 21:06:01 +00004002
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004003<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004004
Jeff Cohenb627eab2007-04-29 01:07:00 +00004005<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4006macro available in C. In a target-dependent way, it copies the source
4007<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4008intrinsic is necessary because the <tt><a href="#int_va_start">
4009llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4010example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004011
Misha Brukman9d0919f2003-11-08 01:05:38 +00004012</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004013
Chris Lattner33aec9e2004-02-12 17:01:32 +00004014<!-- ======================================================================= -->
4015<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004016 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4017</div>
4018
4019<div class="doc_text">
4020
4021<p>
4022LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4023Collection</a> requires the implementation and generation of these intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004024These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004025stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004026href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004027Front-ends for type-safe garbage collected languages should generate these
4028intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4029href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4030</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004031
4032<p>The garbage collection intrinsics only operate on objects in the generic
4033 address space (address space zero).</p>
4034
Chris Lattnerd7923912004-05-23 21:06:01 +00004035</div>
4036
4037<!-- _______________________________________________________________________ -->
4038<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004039 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004040</div>
4041
4042<div class="doc_text">
4043
4044<h5>Syntax:</h5>
4045
4046<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004047 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004048</pre>
4049
4050<h5>Overview:</h5>
4051
John Criswell9e2485c2004-12-10 15:51:16 +00004052<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004053the code generator, and allows some metadata to be associated with it.</p>
4054
4055<h5>Arguments:</h5>
4056
4057<p>The first argument specifies the address of a stack object that contains the
4058root pointer. The second pointer (which must be either a constant or a global
4059value address) contains the meta-data to be associated with the root.</p>
4060
4061<h5>Semantics:</h5>
4062
4063<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
4064location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004065the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4066intrinsic may only be used in a function which <a href="#gc">specifies a GC
4067algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004068
4069</div>
4070
4071
4072<!-- _______________________________________________________________________ -->
4073<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004074 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004075</div>
4076
4077<div class="doc_text">
4078
4079<h5>Syntax:</h5>
4080
4081<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004082 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004083</pre>
4084
4085<h5>Overview:</h5>
4086
4087<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4088locations, allowing garbage collector implementations that require read
4089barriers.</p>
4090
4091<h5>Arguments:</h5>
4092
Chris Lattner80626e92006-03-14 20:02:51 +00004093<p>The second argument is the address to read from, which should be an address
4094allocated from the garbage collector. The first object is a pointer to the
4095start of the referenced object, if needed by the language runtime (otherwise
4096null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004097
4098<h5>Semantics:</h5>
4099
4100<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4101instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004102garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4103may only be used in a function which <a href="#gc">specifies a GC
4104algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004105
4106</div>
4107
4108
4109<!-- _______________________________________________________________________ -->
4110<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004111 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004112</div>
4113
4114<div class="doc_text">
4115
4116<h5>Syntax:</h5>
4117
4118<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004119 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004120</pre>
4121
4122<h5>Overview:</h5>
4123
4124<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4125locations, allowing garbage collector implementations that require write
4126barriers (such as generational or reference counting collectors).</p>
4127
4128<h5>Arguments:</h5>
4129
Chris Lattner80626e92006-03-14 20:02:51 +00004130<p>The first argument is the reference to store, the second is the start of the
4131object to store it to, and the third is the address of the field of Obj to
4132store to. If the runtime does not require a pointer to the object, Obj may be
4133null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004134
4135<h5>Semantics:</h5>
4136
4137<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4138instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004139garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4140may only be used in a function which <a href="#gc">specifies a GC
4141algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004142
4143</div>
4144
4145
4146
4147<!-- ======================================================================= -->
4148<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004149 <a name="int_codegen">Code Generator Intrinsics</a>
4150</div>
4151
4152<div class="doc_text">
4153<p>
4154These intrinsics are provided by LLVM to expose special features that may only
4155be implemented with code generator support.
4156</p>
4157
4158</div>
4159
4160<!-- _______________________________________________________________________ -->
4161<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004162 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004163</div>
4164
4165<div class="doc_text">
4166
4167<h5>Syntax:</h5>
4168<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004169 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004170</pre>
4171
4172<h5>Overview:</h5>
4173
4174<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004175The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4176target-specific value indicating the return address of the current function
4177or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004178</p>
4179
4180<h5>Arguments:</h5>
4181
4182<p>
4183The argument to this intrinsic indicates which function to return the address
4184for. Zero indicates the calling function, one indicates its caller, etc. The
4185argument is <b>required</b> to be a constant integer value.
4186</p>
4187
4188<h5>Semantics:</h5>
4189
4190<p>
4191The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4192the return address of the specified call frame, or zero if it cannot be
4193identified. The value returned by this intrinsic is likely to be incorrect or 0
4194for arguments other than zero, so it should only be used for debugging purposes.
4195</p>
4196
4197<p>
4198Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004199aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004200source-language caller.
4201</p>
4202</div>
4203
4204
4205<!-- _______________________________________________________________________ -->
4206<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004207 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004208</div>
4209
4210<div class="doc_text">
4211
4212<h5>Syntax:</h5>
4213<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004214 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004215</pre>
4216
4217<h5>Overview:</h5>
4218
4219<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004220The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4221target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004222</p>
4223
4224<h5>Arguments:</h5>
4225
4226<p>
4227The argument to this intrinsic indicates which function to return the frame
4228pointer for. Zero indicates the calling function, one indicates its caller,
4229etc. The argument is <b>required</b> to be a constant integer value.
4230</p>
4231
4232<h5>Semantics:</h5>
4233
4234<p>
4235The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4236the frame address of the specified call frame, or zero if it cannot be
4237identified. The value returned by this intrinsic is likely to be incorrect or 0
4238for arguments other than zero, so it should only be used for debugging purposes.
4239</p>
4240
4241<p>
4242Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004243aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004244source-language caller.
4245</p>
4246</div>
4247
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004248<!-- _______________________________________________________________________ -->
4249<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004250 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004251</div>
4252
4253<div class="doc_text">
4254
4255<h5>Syntax:</h5>
4256<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004257 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004258</pre>
4259
4260<h5>Overview:</h5>
4261
4262<p>
4263The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004264the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004265<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4266features like scoped automatic variable sized arrays in C99.
4267</p>
4268
4269<h5>Semantics:</h5>
4270
4271<p>
4272This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004273href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004274<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4275<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4276state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4277practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4278that were allocated after the <tt>llvm.stacksave</tt> was executed.
4279</p>
4280
4281</div>
4282
4283<!-- _______________________________________________________________________ -->
4284<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004285 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004286</div>
4287
4288<div class="doc_text">
4289
4290<h5>Syntax:</h5>
4291<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004292 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004293</pre>
4294
4295<h5>Overview:</h5>
4296
4297<p>
4298The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4299the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004300href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004301useful for implementing language features like scoped automatic variable sized
4302arrays in C99.
4303</p>
4304
4305<h5>Semantics:</h5>
4306
4307<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004308See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004309</p>
4310
4311</div>
4312
4313
4314<!-- _______________________________________________________________________ -->
4315<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004316 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004317</div>
4318
4319<div class="doc_text">
4320
4321<h5>Syntax:</h5>
4322<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004323 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004324</pre>
4325
4326<h5>Overview:</h5>
4327
4328
4329<p>
4330The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004331a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4332no
4333effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004334characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004335</p>
4336
4337<h5>Arguments:</h5>
4338
4339<p>
4340<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4341determining if the fetch should be for a read (0) or write (1), and
4342<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004343locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004344<tt>locality</tt> arguments must be constant integers.
4345</p>
4346
4347<h5>Semantics:</h5>
4348
4349<p>
4350This intrinsic does not modify the behavior of the program. In particular,
4351prefetches cannot trap and do not produce a value. On targets that support this
4352intrinsic, the prefetch can provide hints to the processor cache for better
4353performance.
4354</p>
4355
4356</div>
4357
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004358<!-- _______________________________________________________________________ -->
4359<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004360 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004361</div>
4362
4363<div class="doc_text">
4364
4365<h5>Syntax:</h5>
4366<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004367 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004368</pre>
4369
4370<h5>Overview:</h5>
4371
4372
4373<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004374The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4375(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004376code to simulators and other tools. The method is target specific, but it is
4377expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004378The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004379after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004380optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004381correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004382</p>
4383
4384<h5>Arguments:</h5>
4385
4386<p>
4387<tt>id</tt> is a numerical id identifying the marker.
4388</p>
4389
4390<h5>Semantics:</h5>
4391
4392<p>
4393This intrinsic does not modify the behavior of the program. Backends that do not
4394support this intrinisic may ignore it.
4395</p>
4396
4397</div>
4398
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004399<!-- _______________________________________________________________________ -->
4400<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004401 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004402</div>
4403
4404<div class="doc_text">
4405
4406<h5>Syntax:</h5>
4407<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004408 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004409</pre>
4410
4411<h5>Overview:</h5>
4412
4413
4414<p>
4415The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4416counter register (or similar low latency, high accuracy clocks) on those targets
4417that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4418As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4419should only be used for small timings.
4420</p>
4421
4422<h5>Semantics:</h5>
4423
4424<p>
4425When directly supported, reading the cycle counter should not modify any memory.
4426Implementations are allowed to either return a application specific value or a
4427system wide value. On backends without support, this is lowered to a constant 0.
4428</p>
4429
4430</div>
4431
Chris Lattner10610642004-02-14 04:08:35 +00004432<!-- ======================================================================= -->
4433<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004434 <a name="int_libc">Standard C Library Intrinsics</a>
4435</div>
4436
4437<div class="doc_text">
4438<p>
Chris Lattner10610642004-02-14 04:08:35 +00004439LLVM provides intrinsics for a few important standard C library functions.
4440These intrinsics allow source-language front-ends to pass information about the
4441alignment of the pointer arguments to the code generator, providing opportunity
4442for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004443</p>
4444
4445</div>
4446
4447<!-- _______________________________________________________________________ -->
4448<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004449 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004450</div>
4451
4452<div class="doc_text">
4453
4454<h5>Syntax:</h5>
4455<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004456 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004457 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004458 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004459 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004460</pre>
4461
4462<h5>Overview:</h5>
4463
4464<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004465The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004466location to the destination location.
4467</p>
4468
4469<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004470Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4471intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004472</p>
4473
4474<h5>Arguments:</h5>
4475
4476<p>
4477The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004478the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004479specifying the number of bytes to copy, and the fourth argument is the alignment
4480of the source and destination locations.
4481</p>
4482
Chris Lattner3301ced2004-02-12 21:18:15 +00004483<p>
4484If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004485the caller guarantees that both the source and destination pointers are aligned
4486to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004487</p>
4488
Chris Lattner33aec9e2004-02-12 17:01:32 +00004489<h5>Semantics:</h5>
4490
4491<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004492The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004493location to the destination location, which are not allowed to overlap. It
4494copies "len" bytes of memory over. If the argument is known to be aligned to
4495some boundary, this can be specified as the fourth argument, otherwise it should
4496be set to 0 or 1.
4497</p>
4498</div>
4499
4500
Chris Lattner0eb51b42004-02-12 18:10:10 +00004501<!-- _______________________________________________________________________ -->
4502<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004503 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00004504</div>
4505
4506<div class="doc_text">
4507
4508<h5>Syntax:</h5>
4509<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004510 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004511 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004512 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004513 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004514</pre>
4515
4516<h5>Overview:</h5>
4517
4518<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004519The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4520location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00004521'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004522</p>
4523
4524<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004525Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4526intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004527</p>
4528
4529<h5>Arguments:</h5>
4530
4531<p>
4532The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004533the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004534specifying the number of bytes to copy, and the fourth argument is the alignment
4535of the source and destination locations.
4536</p>
4537
Chris Lattner3301ced2004-02-12 21:18:15 +00004538<p>
4539If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004540the caller guarantees that the source and destination pointers are aligned to
4541that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004542</p>
4543
Chris Lattner0eb51b42004-02-12 18:10:10 +00004544<h5>Semantics:</h5>
4545
4546<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004547The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004548location to the destination location, which may overlap. It
4549copies "len" bytes of memory over. If the argument is known to be aligned to
4550some boundary, this can be specified as the fourth argument, otherwise it should
4551be set to 0 or 1.
4552</p>
4553</div>
4554
Chris Lattner8ff75902004-01-06 05:31:32 +00004555
Chris Lattner10610642004-02-14 04:08:35 +00004556<!-- _______________________________________________________________________ -->
4557<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004558 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004559</div>
4560
4561<div class="doc_text">
4562
4563<h5>Syntax:</h5>
4564<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004565 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004566 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004567 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004568 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004569</pre>
4570
4571<h5>Overview:</h5>
4572
4573<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004574The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004575byte value.
4576</p>
4577
4578<p>
4579Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4580does not return a value, and takes an extra alignment argument.
4581</p>
4582
4583<h5>Arguments:</h5>
4584
4585<p>
4586The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004587byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004588argument specifying the number of bytes to fill, and the fourth argument is the
4589known alignment of destination location.
4590</p>
4591
4592<p>
4593If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004594the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004595</p>
4596
4597<h5>Semantics:</h5>
4598
4599<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004600The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4601the
Chris Lattner10610642004-02-14 04:08:35 +00004602destination location. If the argument is known to be aligned to some boundary,
4603this can be specified as the fourth argument, otherwise it should be set to 0 or
46041.
4605</p>
4606</div>
4607
4608
Chris Lattner32006282004-06-11 02:28:03 +00004609<!-- _______________________________________________________________________ -->
4610<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004611 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004612</div>
4613
4614<div class="doc_text">
4615
4616<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004617<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00004618floating point or vector of floating point type. Not all targets support all
4619types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00004620<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004621 declare float @llvm.sqrt.f32(float %Val)
4622 declare double @llvm.sqrt.f64(double %Val)
4623 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
4624 declare fp128 @llvm.sqrt.f128(fp128 %Val)
4625 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004626</pre>
4627
4628<h5>Overview:</h5>
4629
4630<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004631The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00004632returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00004633<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4634negative numbers (which allows for better optimization).
4635</p>
4636
4637<h5>Arguments:</h5>
4638
4639<p>
4640The argument and return value are floating point numbers of the same type.
4641</p>
4642
4643<h5>Semantics:</h5>
4644
4645<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00004646This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00004647floating point number.
4648</p>
4649</div>
4650
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004651<!-- _______________________________________________________________________ -->
4652<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004653 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004654</div>
4655
4656<div class="doc_text">
4657
4658<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004659<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00004660floating point or vector of floating point type. Not all targets support all
4661types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004662<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004663 declare float @llvm.powi.f32(float %Val, i32 %power)
4664 declare double @llvm.powi.f64(double %Val, i32 %power)
4665 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
4666 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
4667 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004668</pre>
4669
4670<h5>Overview:</h5>
4671
4672<p>
4673The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4674specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00004675multiplications is not defined. When a vector of floating point type is
4676used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004677</p>
4678
4679<h5>Arguments:</h5>
4680
4681<p>
4682The second argument is an integer power, and the first is a value to raise to
4683that power.
4684</p>
4685
4686<h5>Semantics:</h5>
4687
4688<p>
4689This function returns the first value raised to the second power with an
4690unspecified sequence of rounding operations.</p>
4691</div>
4692
Dan Gohman91c284c2007-10-15 20:30:11 +00004693<!-- _______________________________________________________________________ -->
4694<div class="doc_subsubsection">
4695 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
4696</div>
4697
4698<div class="doc_text">
4699
4700<h5>Syntax:</h5>
4701<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
4702floating point or vector of floating point type. Not all targets support all
4703types however.
4704<pre>
4705 declare float @llvm.sin.f32(float %Val)
4706 declare double @llvm.sin.f64(double %Val)
4707 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
4708 declare fp128 @llvm.sin.f128(fp128 %Val)
4709 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
4710</pre>
4711
4712<h5>Overview:</h5>
4713
4714<p>
4715The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
4716</p>
4717
4718<h5>Arguments:</h5>
4719
4720<p>
4721The argument and return value are floating point numbers of the same type.
4722</p>
4723
4724<h5>Semantics:</h5>
4725
4726<p>
4727This function returns the sine of the specified operand, returning the
4728same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00004729conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00004730</div>
4731
4732<!-- _______________________________________________________________________ -->
4733<div class="doc_subsubsection">
4734 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
4735</div>
4736
4737<div class="doc_text">
4738
4739<h5>Syntax:</h5>
4740<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
4741floating point or vector of floating point type. Not all targets support all
4742types however.
4743<pre>
4744 declare float @llvm.cos.f32(float %Val)
4745 declare double @llvm.cos.f64(double %Val)
4746 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
4747 declare fp128 @llvm.cos.f128(fp128 %Val)
4748 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
4749</pre>
4750
4751<h5>Overview:</h5>
4752
4753<p>
4754The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
4755</p>
4756
4757<h5>Arguments:</h5>
4758
4759<p>
4760The argument and return value are floating point numbers of the same type.
4761</p>
4762
4763<h5>Semantics:</h5>
4764
4765<p>
4766This function returns the cosine of the specified operand, returning the
4767same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00004768conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00004769</div>
4770
4771<!-- _______________________________________________________________________ -->
4772<div class="doc_subsubsection">
4773 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
4774</div>
4775
4776<div class="doc_text">
4777
4778<h5>Syntax:</h5>
4779<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
4780floating point or vector of floating point type. Not all targets support all
4781types however.
4782<pre>
4783 declare float @llvm.pow.f32(float %Val, float %Power)
4784 declare double @llvm.pow.f64(double %Val, double %Power)
4785 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
4786 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
4787 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
4788</pre>
4789
4790<h5>Overview:</h5>
4791
4792<p>
4793The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
4794specified (positive or negative) power.
4795</p>
4796
4797<h5>Arguments:</h5>
4798
4799<p>
4800The second argument is a floating point power, and the first is a value to
4801raise to that power.
4802</p>
4803
4804<h5>Semantics:</h5>
4805
4806<p>
4807This function returns the first value raised to the second power,
4808returning the
4809same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00004810conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00004811</div>
4812
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004813
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004814<!-- ======================================================================= -->
4815<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004816 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004817</div>
4818
4819<div class="doc_text">
4820<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004821LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004822These allow efficient code generation for some algorithms.
4823</p>
4824
4825</div>
4826
4827<!-- _______________________________________________________________________ -->
4828<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004829 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00004830</div>
4831
4832<div class="doc_text">
4833
4834<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004835<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00004836type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00004837<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004838 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4839 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4840 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004841</pre>
4842
4843<h5>Overview:</h5>
4844
4845<p>
Reid Spencer338ea092007-04-02 02:25:19 +00004846The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00004847values with an even number of bytes (positive multiple of 16 bits). These are
4848useful for performing operations on data that is not in the target's native
4849byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00004850</p>
4851
4852<h5>Semantics:</h5>
4853
4854<p>
Chandler Carruth69940402007-08-04 01:51:18 +00004855The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00004856and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4857intrinsic returns an i32 value that has the four bytes of the input i32
4858swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00004859i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4860<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00004861additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00004862</p>
4863
4864</div>
4865
4866<!-- _______________________________________________________________________ -->
4867<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004868 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004869</div>
4870
4871<div class="doc_text">
4872
4873<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004874<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4875width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004876<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004877 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4878 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004879 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004880 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4881 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004882</pre>
4883
4884<h5>Overview:</h5>
4885
4886<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004887The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4888value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004889</p>
4890
4891<h5>Arguments:</h5>
4892
4893<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004894The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004895integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004896</p>
4897
4898<h5>Semantics:</h5>
4899
4900<p>
4901The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4902</p>
4903</div>
4904
4905<!-- _______________________________________________________________________ -->
4906<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004907 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004908</div>
4909
4910<div class="doc_text">
4911
4912<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004913<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4914integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004915<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004916 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4917 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004918 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004919 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4920 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004921</pre>
4922
4923<h5>Overview:</h5>
4924
4925<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004926The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4927leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004928</p>
4929
4930<h5>Arguments:</h5>
4931
4932<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004933The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004934integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004935</p>
4936
4937<h5>Semantics:</h5>
4938
4939<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004940The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4941in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00004942of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004943</p>
4944</div>
Chris Lattner32006282004-06-11 02:28:03 +00004945
4946
Chris Lattnereff29ab2005-05-15 19:39:26 +00004947
4948<!-- _______________________________________________________________________ -->
4949<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004950 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004951</div>
4952
4953<div class="doc_text">
4954
4955<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004956<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4957integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004958<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004959 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4960 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004961 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004962 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4963 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00004964</pre>
4965
4966<h5>Overview:</h5>
4967
4968<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004969The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4970trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004971</p>
4972
4973<h5>Arguments:</h5>
4974
4975<p>
4976The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004977integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004978</p>
4979
4980<h5>Semantics:</h5>
4981
4982<p>
4983The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4984in a variable. If the src == 0 then the result is the size in bits of the type
4985of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4986</p>
4987</div>
4988
Reid Spencer497d93e2007-04-01 08:27:01 +00004989<!-- _______________________________________________________________________ -->
4990<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00004991 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004992</div>
4993
4994<div class="doc_text">
4995
4996<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004997<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004998on any integer bit width.
4999<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005000 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5001 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005002</pre>
5003
5004<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005005<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005006range of bits from an integer value and returns them in the same bit width as
5007the original value.</p>
5008
5009<h5>Arguments:</h5>
5010<p>The first argument, <tt>%val</tt> and the result may be integer types of
5011any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005012arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005013
5014<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005015<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005016of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5017<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5018operates in forward mode.</p>
5019<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5020right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005021only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5022<ol>
5023 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5024 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5025 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5026 to determine the number of bits to retain.</li>
5027 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5028 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5029</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005030<p>In reverse mode, a similar computation is made except that the bits are
5031returned in the reverse order. So, for example, if <tt>X</tt> has the value
5032<tt>i16 0x0ACF (101011001111)</tt> and we apply
5033<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5034<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005035</div>
5036
Reid Spencerf86037f2007-04-11 23:23:49 +00005037<div class="doc_subsubsection">
5038 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5039</div>
5040
5041<div class="doc_text">
5042
5043<h5>Syntax:</h5>
5044<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5045on any integer bit width.
5046<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005047 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5048 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005049</pre>
5050
5051<h5>Overview:</h5>
5052<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5053of bits in an integer value with another integer value. It returns the integer
5054with the replaced bits.</p>
5055
5056<h5>Arguments:</h5>
5057<p>The first argument, <tt>%val</tt> and the result may be integer types of
5058any bit width but they must have the same bit width. <tt>%val</tt> is the value
5059whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5060integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5061type since they specify only a bit index.</p>
5062
5063<h5>Semantics:</h5>
5064<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5065of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5066<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5067operates in forward mode.</p>
5068<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5069truncating it down to the size of the replacement area or zero extending it
5070up to that size.</p>
5071<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5072are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5073in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5074to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005075<p>In reverse mode, a similar computation is made except that the bits are
5076reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5077<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005078<h5>Examples:</h5>
5079<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005080 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005081 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5082 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5083 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005084 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005085</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005086</div>
5087
Chris Lattner8ff75902004-01-06 05:31:32 +00005088<!-- ======================================================================= -->
5089<div class="doc_subsection">
5090 <a name="int_debugger">Debugger Intrinsics</a>
5091</div>
5092
5093<div class="doc_text">
5094<p>
5095The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5096are described in the <a
5097href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5098Debugging</a> document.
5099</p>
5100</div>
5101
5102
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005103<!-- ======================================================================= -->
5104<div class="doc_subsection">
5105 <a name="int_eh">Exception Handling Intrinsics</a>
5106</div>
5107
5108<div class="doc_text">
5109<p> The LLVM exception handling intrinsics (which all start with
5110<tt>llvm.eh.</tt> prefix), are described in the <a
5111href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5112Handling</a> document. </p>
5113</div>
5114
Tanya Lattner6d806e92007-06-15 20:50:54 +00005115<!-- ======================================================================= -->
5116<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005117 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005118</div>
5119
5120<div class="doc_text">
5121<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005122 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005123 the <tt>nest</tt> attribute, from a function. The result is a callable
5124 function pointer lacking the nest parameter - the caller does not need
5125 to provide a value for it. Instead, the value to use is stored in
5126 advance in a "trampoline", a block of memory usually allocated
5127 on the stack, which also contains code to splice the nest value into the
5128 argument list. This is used to implement the GCC nested function address
5129 extension.
5130</p>
5131<p>
5132 For example, if the function is
5133 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005134 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005135<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005136 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5137 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5138 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5139 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005140</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005141 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5142 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005143</div>
5144
5145<!-- _______________________________________________________________________ -->
5146<div class="doc_subsubsection">
5147 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5148</div>
5149<div class="doc_text">
5150<h5>Syntax:</h5>
5151<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005152declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005153</pre>
5154<h5>Overview:</h5>
5155<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005156 This fills the memory pointed to by <tt>tramp</tt> with code
5157 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005158</p>
5159<h5>Arguments:</h5>
5160<p>
5161 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5162 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5163 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005164 intrinsic. Note that the size and the alignment are target-specific - LLVM
5165 currently provides no portable way of determining them, so a front-end that
5166 generates this intrinsic needs to have some target-specific knowledge.
5167 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005168</p>
5169<h5>Semantics:</h5>
5170<p>
5171 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005172 dependent code, turning it into a function. A pointer to this function is
5173 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005174 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005175 before being called. The new function's signature is the same as that of
5176 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5177 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5178 of pointer type. Calling the new function is equivalent to calling
5179 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5180 missing <tt>nest</tt> argument. If, after calling
5181 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5182 modified, then the effect of any later call to the returned function pointer is
5183 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005184</p>
5185</div>
5186
5187<!-- ======================================================================= -->
5188<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00005189 <a name="int_general">General Intrinsics</a>
5190</div>
5191
5192<div class="doc_text">
5193<p> This class of intrinsics is designed to be generic and has
5194no specific purpose. </p>
5195</div>
5196
5197<!-- _______________________________________________________________________ -->
5198<div class="doc_subsubsection">
5199 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5200</div>
5201
5202<div class="doc_text">
5203
5204<h5>Syntax:</h5>
5205<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005206 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00005207</pre>
5208
5209<h5>Overview:</h5>
5210
5211<p>
5212The '<tt>llvm.var.annotation</tt>' intrinsic
5213</p>
5214
5215<h5>Arguments:</h5>
5216
5217<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005218The first argument is a pointer to a value, the second is a pointer to a
5219global string, the third is a pointer to a global string which is the source
5220file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005221</p>
5222
5223<h5>Semantics:</h5>
5224
5225<p>
5226This intrinsic allows annotation of local variables with arbitrary strings.
5227This can be useful for special purpose optimizations that want to look for these
5228 annotations. These have no other defined use, they are ignored by code
5229 generation and optimization.
5230</div>
5231
Tanya Lattnerb6367882007-09-21 22:59:12 +00005232<!-- _______________________________________________________________________ -->
5233<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00005234 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005235</div>
5236
5237<div class="doc_text">
5238
5239<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00005240<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
5241any integer bit width.
5242</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005243<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00005244 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5245 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5246 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5247 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5248 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00005249</pre>
5250
5251<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00005252
5253<p>
5254The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00005255</p>
5256
5257<h5>Arguments:</h5>
5258
5259<p>
5260The first argument is an integer value (result of some expression),
5261the second is a pointer to a global string, the third is a pointer to a global
5262string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00005263It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00005264</p>
5265
5266<h5>Semantics:</h5>
5267
5268<p>
5269This intrinsic allows annotations to be put on arbitrary expressions
5270with arbitrary strings. This can be useful for special purpose optimizations
5271that want to look for these annotations. These have no other defined use, they
5272are ignored by code generation and optimization.
5273</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005274
Chris Lattner00950542001-06-06 20:29:01 +00005275<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00005276<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005277<address>
5278 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5279 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5280 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00005281 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005282
5283 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00005284 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005285 Last modified: $Date$
5286</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00005287
Misha Brukman9d0919f2003-11-08 01:05:38 +00005288</body>
5289</html>