blob: 72c1ca4c2236982529b4f7f53378d14242a0de86 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Chris Lattner98599d02004-07-11 02:48:28 +000030#include <iostream>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000031using namespace llvm;
32
33namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000034 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
35 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000036 ///
37 enum TypeClass {
38 cByte, cShort, cInt, cFP, cLong
39 };
40}
41
42/// getClass - Turn a primitive type into a "class" number which is based on the
43/// size of the type, and whether or not it is floating point.
44///
45static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000046 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000047 case Type::SByteTyID:
48 case Type::UByteTyID: return cByte; // Byte operands are class #0
49 case Type::ShortTyID:
50 case Type::UShortTyID: return cShort; // Short operands are class #1
51 case Type::IntTyID:
52 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000053 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000054
55 case Type::FloatTyID:
56 case Type::DoubleTyID: return cFP; // Floating Point is #3
57
58 case Type::LongTyID:
59 case Type::ULongTyID: return cLong; // Longs are class #4
60 default:
61 assert(0 && "Invalid type to getClass!");
62 return cByte; // not reached
63 }
64}
65
66// getClassB - Just like getClass, but treat boolean values as ints.
67static inline TypeClass getClassB(const Type *Ty) {
68 if (Ty == Type::BoolTy) return cInt;
69 return getClass(Ty);
70}
71
72namespace {
73 struct ISel : public FunctionPass, InstVisitor<ISel> {
74 TargetMachine &TM;
75 MachineFunction *F; // The function we are compiling into
76 MachineBasicBlock *BB; // The current MBB we are compiling
77 int VarArgsFrameIndex; // FrameIndex for start of varargs area
78 int ReturnAddressIndex; // FrameIndex for the return address
79
Misha Brukman313efcb2004-07-09 15:45:07 +000080 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000081
Misha Brukman2834a4d2004-07-07 20:07:22 +000082 // External functions used in the Module
Misha Brukmanf3f63822004-07-08 19:41:16 +000083 Function *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn, *__udivdi3Fn,
Misha Brukman313efcb2004-07-09 15:45:07 +000084 *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000085
Misha Brukman5dfe3a92004-06-21 16:55:25 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
89 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
93 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
94
Misha Brukman2834a4d2004-07-07 20:07:22 +000095 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000096 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000097 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +000098 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +000099 Type *l = Type::LongTy;
100 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000101 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000102 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000103 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000105 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000107 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000109 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000110 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000111 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000112 // long __fixdfdi(double)
113 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
114 // float __floatdisf(long)
115 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
116 // double __floatdidf(long)
117 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000118 // void* malloc(size_t)
119 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
120 // void free(void*)
121 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000122 return false;
123 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000124
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000125 /// runOnFunction - Top level implementation of instruction selection for
126 /// the entire function.
127 ///
128 bool runOnFunction(Function &Fn) {
129 // First pass over the function, lower any unknown intrinsic functions
130 // with the IntrinsicLowering class.
131 LowerUnknownIntrinsicFunctionCalls(Fn);
132
133 F = &MachineFunction::construct(&Fn, TM);
134
135 // Create all of the machine basic blocks for the function...
136 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
137 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
138
139 BB = &F->front();
140
141 // Set up a frame object for the return address. This is used by the
142 // llvm.returnaddress & llvm.frameaddress intrinisics.
143 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
144
145 // Copy incoming arguments off of the stack...
146 LoadArgumentsToVirtualRegs(Fn);
147
148 // Instruction select everything except PHI nodes
149 visit(Fn);
150
151 // Select the PHI nodes
152 SelectPHINodes();
153
154 RegMap.clear();
155 MBBMap.clear();
156 AllocaMap.clear();
157 F = 0;
158 // We always build a machine code representation for the function
159 return true;
160 }
161
162 virtual const char *getPassName() const {
163 return "PowerPC Simple Instruction Selection";
164 }
165
166 /// visitBasicBlock - This method is called when we are visiting a new basic
167 /// block. This simply creates a new MachineBasicBlock to emit code into
168 /// and adds it to the current MachineFunction. Subsequent visit* for
169 /// instructions will be invoked for all instructions in the basic block.
170 ///
171 void visitBasicBlock(BasicBlock &LLVM_BB) {
172 BB = MBBMap[&LLVM_BB];
173 }
174
175 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
176 /// function, lowering any calls to unknown intrinsic functions into the
177 /// equivalent LLVM code.
178 ///
179 void LowerUnknownIntrinsicFunctionCalls(Function &F);
180
181 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
182 /// from the stack into virtual registers.
183 ///
184 void LoadArgumentsToVirtualRegs(Function &F);
185
186 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
187 /// because we have to generate our sources into the source basic blocks,
188 /// not the current one.
189 ///
190 void SelectPHINodes();
191
192 // Visitation methods for various instructions. These methods simply emit
193 // fixed PowerPC code for each instruction.
194
195 // Control flow operators
196 void visitReturnInst(ReturnInst &RI);
197 void visitBranchInst(BranchInst &BI);
198
199 struct ValueRecord {
200 Value *Val;
201 unsigned Reg;
202 const Type *Ty;
203 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
204 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
205 };
206 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000207 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000208 void visitCallInst(CallInst &I);
209 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
210
211 // Arithmetic operators
212 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
213 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
214 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
215 void visitMul(BinaryOperator &B);
216
217 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
218 void visitRem(BinaryOperator &B) { visitDivRem(B); }
219 void visitDivRem(BinaryOperator &B);
220
221 // Bitwise operators
222 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
223 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
224 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
225
226 // Comparison operators...
227 void visitSetCondInst(SetCondInst &I);
228 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
229 MachineBasicBlock *MBB,
230 MachineBasicBlock::iterator MBBI);
231 void visitSelectInst(SelectInst &SI);
232
233
234 // Memory Instructions
235 void visitLoadInst(LoadInst &I);
236 void visitStoreInst(StoreInst &I);
237 void visitGetElementPtrInst(GetElementPtrInst &I);
238 void visitAllocaInst(AllocaInst &I);
239 void visitMallocInst(MallocInst &I);
240 void visitFreeInst(FreeInst &I);
241
242 // Other operators
243 void visitShiftInst(ShiftInst &I);
244 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
245 void visitCastInst(CastInst &I);
246 void visitVANextInst(VANextInst &I);
247 void visitVAArgInst(VAArgInst &I);
248
249 void visitInstruction(Instruction &I) {
250 std::cerr << "Cannot instruction select: " << I;
251 abort();
252 }
253
254 /// promote32 - Make a value 32-bits wide, and put it somewhere.
255 ///
256 void promote32(unsigned targetReg, const ValueRecord &VR);
257
258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
260 ///
261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
262 Value *Src, User::op_iterator IdxBegin,
263 User::op_iterator IdxEnd, unsigned TargetReg);
264
265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
267 ///
268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
269 Value *Src, const Type *DestTy, unsigned TargetReg);
270
271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
273 ///
274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
275 MachineBasicBlock::iterator IP,
276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
278
279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
285
286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
288
289 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Reg);
292 void doMultiplyConst(MachineBasicBlock *MBB,
293 MachineBasicBlock::iterator MBBI,
294 unsigned DestReg, const Type *DestTy,
295 unsigned Op0Reg, unsigned Op1Val);
296
297 void emitDivRemOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1, bool isDiv,
300 unsigned TargetReg);
301
302 /// emitSetCCOperation - Common code shared between visitSetCondInst and
303 /// constant expression support.
304 ///
305 void emitSetCCOperation(MachineBasicBlock *BB,
306 MachineBasicBlock::iterator IP,
307 Value *Op0, Value *Op1, unsigned Opcode,
308 unsigned TargetReg);
309
310 /// emitShiftOperation - Common code shared between visitShiftInst and
311 /// constant expression support.
312 ///
313 void emitShiftOperation(MachineBasicBlock *MBB,
314 MachineBasicBlock::iterator IP,
315 Value *Op, Value *ShiftAmount, bool isLeftShift,
316 const Type *ResultTy, unsigned DestReg);
317
318 /// emitSelectOperation - Common code shared between visitSelectInst and the
319 /// constant expression support.
320 void emitSelectOperation(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 Value *Cond, Value *TrueVal, Value *FalseVal,
323 unsigned DestReg);
324
325 /// copyConstantToRegister - Output the instructions required to put the
326 /// specified constant into the specified register.
327 ///
328 void copyConstantToRegister(MachineBasicBlock *MBB,
329 MachineBasicBlock::iterator MBBI,
330 Constant *C, unsigned Reg);
331
332 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
333 unsigned LHS, unsigned RHS);
334
335 /// makeAnotherReg - This method returns the next register number we haven't
336 /// yet used.
337 ///
338 /// Long values are handled somewhat specially. They are always allocated
339 /// as pairs of 32 bit integer values. The register number returned is the
340 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
341 /// of the long value.
342 ///
343 unsigned makeAnotherReg(const Type *Ty) {
344 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
345 "Current target doesn't have PPC reg info??");
346 const PowerPCRegisterInfo *MRI =
347 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
348 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
349 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
350 // Create the lower part
351 F->getSSARegMap()->createVirtualRegister(RC);
352 // Create the upper part.
353 return F->getSSARegMap()->createVirtualRegister(RC)-1;
354 }
355
356 // Add the mapping of regnumber => reg class to MachineFunction
357 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
358 return F->getSSARegMap()->createVirtualRegister(RC);
359 }
360
361 /// getReg - This method turns an LLVM value into a register number.
362 ///
363 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
364 unsigned getReg(Value *V) {
365 // Just append to the end of the current bb.
366 MachineBasicBlock::iterator It = BB->end();
367 return getReg(V, BB, It);
368 }
369 unsigned getReg(Value *V, MachineBasicBlock *MBB,
370 MachineBasicBlock::iterator IPt);
371
372 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
373 /// that is to be statically allocated with the initial stack frame
374 /// adjustment.
375 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
376 };
377}
378
379/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
380/// instruction in the entry block, return it. Otherwise, return a null
381/// pointer.
382static AllocaInst *dyn_castFixedAlloca(Value *V) {
383 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
384 BasicBlock *BB = AI->getParent();
385 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
386 return AI;
387 }
388 return 0;
389}
390
391/// getReg - This method turns an LLVM value into a register number.
392///
393unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
394 MachineBasicBlock::iterator IPt) {
395 // If this operand is a constant, emit the code to copy the constant into
396 // the register here...
397 //
Chris Lattnera51e4f62004-07-18 18:45:01 +0000398 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000399 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000400 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000401 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000402 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000403 // Move PC to destination reg
404 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000405 // Move value at PC + distance into return reg
406 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000407 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000408 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000409 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000410 return Reg2;
Chris Lattnera51e4f62004-07-18 18:45:01 +0000411 } else if (Constant *C = dyn_cast<Constant>(V)) {
412 unsigned Reg = makeAnotherReg(V->getType());
413 copyConstantToRegister(MBB, IPt, C, Reg);
414 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000415 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
416 // Do not emit noop casts at all.
417 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
418 return getReg(CI->getOperand(0), MBB, IPt);
419 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
420 unsigned Reg = makeAnotherReg(V->getType());
421 unsigned FI = getFixedSizedAllocaFI(AI);
422 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
423 return Reg;
424 }
425
426 unsigned &Reg = RegMap[V];
427 if (Reg == 0) {
428 Reg = makeAnotherReg(V->getType());
429 RegMap[V] = Reg;
430 }
431
432 return Reg;
433}
434
435/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
436/// that is to be statically allocated with the initial stack frame
437/// adjustment.
438unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
439 // Already computed this?
440 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
441 if (I != AllocaMap.end() && I->first == AI) return I->second;
442
443 const Type *Ty = AI->getAllocatedType();
444 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
445 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
446 TySize *= CUI->getValue(); // Get total allocated size...
447 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
448
449 // Create a new stack object using the frame manager...
450 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
451 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
452 return FrameIdx;
453}
454
455
456/// copyConstantToRegister - Output the instructions required to put the
457/// specified constant into the specified register.
458///
459void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
460 MachineBasicBlock::iterator IP,
461 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000462 if (C->getType()->isIntegral()) {
463 unsigned Class = getClassB(C->getType());
464
465 if (Class == cLong) {
466 // Copy the value into the register pair.
467 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000468 unsigned hiTmp = makeAnotherReg(Type::IntTy);
469 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000470 BuildMI(*MBB, IP, PPC32::LIS, 1, loTmp).addImm(Val >> 48);
Misha Brukman911afde2004-06-25 14:50:41 +0000471 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
472 .addImm((Val >> 32) & 0xFFFF);
Misha Brukmanbebde752004-07-16 21:06:24 +0000473 BuildMI(*MBB, IP, PPC32::LIS, 1, hiTmp).addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000474 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
475 return;
476 }
477
478 assert(Class <= cInt && "Type not handled yet!");
479
480 if (C->getType() == Type::BoolTy) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000481 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000482 } else if (Class == cByte || Class == cShort) {
483 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukmanbebde752004-07-16 21:06:24 +0000484 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000485 } else {
486 ConstantInt *CI = cast<ConstantInt>(C);
487 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
488 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000489 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000490 } else {
491 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000492 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman911afde2004-06-25 14:50:41 +0000493 .addImm(CI->getRawValue() >> 16);
494 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
495 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000496 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000497 }
498 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000499 // We need to spill the constant to memory...
500 MachineConstantPool *CP = F->getConstantPool();
501 unsigned CPI = CP->getConstantPoolIndex(CFP);
502 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503
Misha Brukmand18a31d2004-07-06 22:51:53 +0000504 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000505
506 // Load addr of constant to reg; constant is located at PC + distance
507 unsigned CurPC = makeAnotherReg(Type::IntTy);
508 unsigned Reg1 = makeAnotherReg(Type::IntTy);
509 unsigned Reg2 = makeAnotherReg(Type::IntTy);
510 // Move PC to destination reg
511 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
512 // Move value at PC + distance into return reg
513 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
514 .addConstantPoolIndex(CPI);
515 BuildMI(*MBB, IP, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
516 .addConstantPoolIndex(CPI);
517
Misha Brukmand18a31d2004-07-06 22:51:53 +0000518 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfc879c32004-07-08 18:02:38 +0000519 BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000520 } else if (isa<ConstantPointerNull>(C)) {
521 // Copy zero (null pointer) to the register.
Misha Brukmanbebde752004-07-16 21:06:24 +0000522 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000523 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
524 unsigned AddrReg = getReg(GV, MBB, IP);
Misha Brukman32caa8d2004-07-14 17:57:04 +0000525 BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(AddrReg).addReg(AddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000526 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000527 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000528 assert(0 && "Type not handled yet!");
529 }
530}
531
532/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
533/// the stack into virtual registers.
534///
535/// FIXME: When we can calculate which args are coming in via registers
536/// source them from there instead.
537void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
538 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
539 unsigned GPR_remaining = 8;
540 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000541 unsigned GPR_idx = 0, FPR_idx = 0;
542 static const unsigned GPR[] = {
543 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
544 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
545 };
546 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000547 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000548 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000549 };
Misha Brukman422791f2004-06-21 17:41:12 +0000550
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000551 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000552
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000553 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
554 bool ArgLive = !I->use_empty();
555 unsigned Reg = ArgLive ? getReg(*I) : 0;
556 int FI; // Frame object index
557
558 switch (getClassB(I->getType())) {
559 case cByte:
560 if (ArgLive) {
561 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000562 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000563 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000564 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
565 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000566 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000567 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000568 }
569 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000570 break;
571 case cShort:
572 if (ArgLive) {
573 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000574 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000575 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000576 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
577 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000578 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000579 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000580 }
581 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000582 break;
583 case cInt:
584 if (ArgLive) {
585 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000586 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000587 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000588 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
589 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000590 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000591 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000592 }
593 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000594 break;
595 case cLong:
596 if (ArgLive) {
597 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000598 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000599 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
600 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000601 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
602 .addReg(GPR[GPR_idx]);
603 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
604 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000605 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000606 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
607 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000608 }
609 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000610 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000611 if (GPR_remaining > 1) {
612 GPR_remaining--; // uses up 2 GPRs
613 GPR_idx++;
614 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000615 break;
616 case cFP:
617 if (ArgLive) {
618 unsigned Opcode;
619 if (I->getType() == Type::FloatTy) {
620 Opcode = PPC32::LFS;
621 FI = MFI->CreateFixedObject(4, ArgOffset);
622 } else {
623 Opcode = PPC32::LFD;
624 FI = MFI->CreateFixedObject(8, ArgOffset);
625 }
Misha Brukman422791f2004-06-21 17:41:12 +0000626 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000627 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000628 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
629 FPR_remaining--;
630 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000631 } else {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000632 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000633 }
634 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000635 if (I->getType() == Type::DoubleTy) {
636 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000637 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000638 GPR_remaining--; // uses up 2 GPRs
639 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000640 }
641 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000642 break;
643 default:
644 assert(0 && "Unhandled argument type!");
645 }
646 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000647 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000648 GPR_remaining--; // uses up 2 GPRs
649 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000650 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000651 }
652
653 // If the function takes variable number of arguments, add a frame offset for
654 // the start of the first vararg value... this is used to expand
655 // llvm.va_start.
656 if (Fn.getFunctionType()->isVarArg())
657 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
658}
659
660
661/// SelectPHINodes - Insert machine code to generate phis. This is tricky
662/// because we have to generate our sources into the source basic blocks, not
663/// the current one.
664///
665void ISel::SelectPHINodes() {
666 const TargetInstrInfo &TII = *TM.getInstrInfo();
667 const Function &LF = *F->getFunction(); // The LLVM function...
668 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
669 const BasicBlock *BB = I;
670 MachineBasicBlock &MBB = *MBBMap[I];
671
672 // Loop over all of the PHI nodes in the LLVM basic block...
673 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
674 for (BasicBlock::const_iterator I = BB->begin();
675 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
676
677 // Create a new machine instr PHI node, and insert it.
678 unsigned PHIReg = getReg(*PN);
679 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
680 PPC32::PHI, PN->getNumOperands(), PHIReg);
681
682 MachineInstr *LongPhiMI = 0;
683 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
684 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
685 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
686
687 // PHIValues - Map of blocks to incoming virtual registers. We use this
688 // so that we only initialize one incoming value for a particular block,
689 // even if the block has multiple entries in the PHI node.
690 //
691 std::map<MachineBasicBlock*, unsigned> PHIValues;
692
693 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000694 MachineBasicBlock *PredMBB = 0;
695 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
696 PE = MBB.pred_end (); PI != PE; ++PI)
697 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
698 PredMBB = *PI;
699 break;
700 }
701 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
702
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000703 unsigned ValReg;
704 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
705 PHIValues.lower_bound(PredMBB);
706
707 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
708 // We already inserted an initialization of the register for this
709 // predecessor. Recycle it.
710 ValReg = EntryIt->second;
711
712 } else {
713 // Get the incoming value into a virtual register.
714 //
715 Value *Val = PN->getIncomingValue(i);
716
717 // If this is a constant or GlobalValue, we may have to insert code
718 // into the basic block to compute it into a virtual register.
719 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
720 isa<GlobalValue>(Val)) {
721 // Simple constants get emitted at the end of the basic block,
722 // before any terminator instructions. We "know" that the code to
723 // move a constant into a register will never clobber any flags.
724 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
725 } else {
726 // Because we don't want to clobber any values which might be in
727 // physical registers with the computation of this constant (which
728 // might be arbitrarily complex if it is a constant expression),
729 // just insert the computation at the top of the basic block.
730 MachineBasicBlock::iterator PI = PredMBB->begin();
731
732 // Skip over any PHI nodes though!
733 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
734 ++PI;
735
736 ValReg = getReg(Val, PredMBB, PI);
737 }
738
739 // Remember that we inserted a value for this PHI for this predecessor
740 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
741 }
742
743 PhiMI->addRegOperand(ValReg);
744 PhiMI->addMachineBasicBlockOperand(PredMBB);
745 if (LongPhiMI) {
746 LongPhiMI->addRegOperand(ValReg+1);
747 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
748 }
749 }
750
751 // Now that we emitted all of the incoming values for the PHI node, make
752 // sure to reposition the InsertPoint after the PHI that we just added.
753 // This is needed because we might have inserted a constant into this
754 // block, right after the PHI's which is before the old insert point!
755 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
756 ++PHIInsertPoint;
757 }
758 }
759}
760
761
762// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
763// it into the conditional branch or select instruction which is the only user
764// of the cc instruction. This is the case if the conditional branch is the
765// only user of the setcc, and if the setcc is in the same basic block as the
766// conditional branch. We also don't handle long arguments below, so we reject
767// them here as well.
768//
769static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
770 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
771 if (SCI->hasOneUse()) {
772 Instruction *User = cast<Instruction>(SCI->use_back());
773 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000774 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000775 return SCI;
776 }
777 return 0;
778}
779
780// Return a fixed numbering for setcc instructions which does not depend on the
781// order of the opcodes.
782//
783static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000784 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000785 default: assert(0 && "Unknown setcc instruction!");
786 case Instruction::SetEQ: return 0;
787 case Instruction::SetNE: return 1;
788 case Instruction::SetLT: return 2;
789 case Instruction::SetGE: return 3;
790 case Instruction::SetGT: return 4;
791 case Instruction::SetLE: return 5;
792 }
793}
794
Misha Brukmane9c65512004-07-06 15:32:44 +0000795static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
796 switch (Opcode) {
797 default: assert(0 && "Unknown setcc instruction!");
798 case Instruction::SetEQ: return PPC32::BEQ;
799 case Instruction::SetNE: return PPC32::BNE;
800 case Instruction::SetLT: return PPC32::BLT;
801 case Instruction::SetGE: return PPC32::BGE;
802 case Instruction::SetGT: return PPC32::BGT;
803 case Instruction::SetLE: return PPC32::BLE;
804 }
805}
806
807static unsigned invertPPCBranchOpcode(unsigned Opcode) {
808 switch (Opcode) {
809 default: assert(0 && "Unknown PPC32 branch opcode!");
810 case PPC32::BEQ: return PPC32::BNE;
811 case PPC32::BNE: return PPC32::BEQ;
812 case PPC32::BLT: return PPC32::BGE;
813 case PPC32::BGE: return PPC32::BLT;
814 case PPC32::BGT: return PPC32::BLE;
815 case PPC32::BLE: return PPC32::BGT;
816 }
817}
818
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000819/// emitUCOM - emits an unordered FP compare.
820void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
821 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000822 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000823}
824
Misha Brukmanbebde752004-07-16 21:06:24 +0000825/// EmitComparison - emits a comparison of the two operands, returning the
826/// extended setcc code to use. The result is in CR0.
827///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000828unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
829 MachineBasicBlock *MBB,
830 MachineBasicBlock::iterator IP) {
831 // The arguments are already supposed to be of the same type.
832 const Type *CompTy = Op0->getType();
833 unsigned Class = getClassB(CompTy);
834 unsigned Op0r = getReg(Op0, MBB, IP);
835
836 // Special case handling of: cmp R, i
837 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000838 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000839 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
840 if (Class == cByte || Class == cShort || Class == cInt) {
841 unsigned Op1v = CI->getRawValue();
842
843 // Mask off any upper bits of the constant, if there are any...
844 Op1v &= (1ULL << (8 << Class)) - 1;
845
Misha Brukman422791f2004-06-21 17:41:12 +0000846 // Compare immediate or promote to reg?
847 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000848 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
849 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000850 } else {
851 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000852 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
853 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000854 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000855 return OpNum;
856 } else {
857 assert(Class == cLong && "Unknown integer class!");
858 unsigned LowCst = CI->getRawValue();
859 unsigned HiCst = CI->getRawValue() >> 32;
860 if (OpNum < 2) { // seteq, setne
861 unsigned LoTmp = Op0r;
862 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000863 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000864 unsigned LoTmp = makeAnotherReg(Type::IntTy);
865 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000866 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
867 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000868 }
869 unsigned HiTmp = Op0r+1;
870 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000871 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000872 unsigned HiTmp = makeAnotherReg(Type::IntTy);
873 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000874 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
875 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000876 }
877 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
878 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000879 return OpNum;
880 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000881 unsigned ConstReg = makeAnotherReg(CompTy);
882 unsigned CondReg = makeAnotherReg(Type::IntTy);
883 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
884 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
885 copyConstantToRegister(MBB, IP, CI, ConstReg);
886
887 // FIXME: this is inefficient, but avoids branches
888
889 // compare hi word -> cr0
890 // compare lo word -> cr1
891 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
892 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(ConstReg+1);
893 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
894 .addReg(ConstReg);
895 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
896 // shift amount = 4 * CR0[EQ]
897 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
898 .addImm(29).addImm(29);
899 // shift cr1 into cr0 position if op0.hi and const.hi were equal
900 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
901 .addReg(TmpReg1);
902 // cr0 == ( op0.hi != const.hi ) ? cr0 : cr1
903 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
904
Misha Brukman422791f2004-06-21 17:41:12 +0000905 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000906 }
907 }
908 }
909
910 unsigned Op1r = getReg(Op1, MBB, IP);
911 switch (Class) {
912 default: assert(0 && "Unknown type class!");
913 case cByte:
914 case cShort:
915 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000916 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
917 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000918 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000919
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000920 case cFP:
921 emitUCOM(MBB, IP, Op0r, Op1r);
922 break;
923
924 case cLong:
925 if (OpNum < 2) { // seteq, setne
926 unsigned LoTmp = makeAnotherReg(Type::IntTy);
927 unsigned HiTmp = makeAnotherReg(Type::IntTy);
928 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
929 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
930 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
931 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000932 break; // Allow the sete or setne to be generated from flags set by OR
933 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000934 unsigned CondReg = makeAnotherReg(Type::IntTy);
935 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
936 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
937
938 // FIXME: this is inefficient, but avoids branches
939
940 // compare hi word -> cr0
941 // compare lo word -> cr1
942 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
943 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(Op1r+1);
944 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
945 .addReg(Op1r);
946 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
947 // shift amount = 4 * CR0[EQ]
948 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
949 .addImm(29).addImm(29);
950 // shift cr1 into cr0 position if op0.hi and op1.hi were equal
951 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
952 .addReg(TmpReg1);
953 // cr0 == ( op0.hi != op1.hi ) ? cr0 : cr1
954 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
955
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000956 return OpNum;
957 }
958 }
959 return OpNum;
960}
961
Misha Brukmand18a31d2004-07-06 22:51:53 +0000962/// visitSetCondInst - emit code to calculate the condition via
963/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000964///
965void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000966 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000967 return;
Misha Brukmanbebde752004-07-16 21:06:24 +0000968
Misha Brukman425ff242004-07-01 21:34:10 +0000969 unsigned Op0Reg = getReg(I.getOperand(0));
970 unsigned Op1Reg = getReg(I.getOperand(1));
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000971 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000972 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000973 const Type *Ty = I.getOperand (0)->getType();
974
Misha Brukmand18a31d2004-07-06 22:51:53 +0000975 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
976
977 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000978 MachineBasicBlock *thisMBB = BB;
979 const BasicBlock *LLVM_BB = BB->getBasicBlock();
980 // thisMBB:
981 // ...
982 // cmpTY cr0, r1, r2
983 // bCC copy1MBB
984 // b copy0MBB
985
986 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
987 // if we could insert other, non-terminator instructions after the
988 // bCC. But MBB->getFirstTerminator() can't understand this.
989 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
990 F->getBasicBlockList().push_back(copy1MBB);
991 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
992 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
993 F->getBasicBlockList().push_back(copy0MBB);
994 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
995 // Update machine-CFG edges
996 BB->addSuccessor(copy1MBB);
997 BB->addSuccessor(copy0MBB);
998
999 // copy0MBB:
1000 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +00001001 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001002 BB = copy0MBB;
1003 unsigned FalseValue = makeAnotherReg(I.getType());
Misha Brukmanbebde752004-07-16 21:06:24 +00001004 BuildMI(BB, PPC32::LI, 1, FalseValue).addImm(0);
Misha Brukman425ff242004-07-01 21:34:10 +00001005 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1006 F->getBasicBlockList().push_back(sinkMBB);
1007 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1008 // Update machine-CFG edges
1009 BB->addSuccessor(sinkMBB);
1010
1011 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
1012 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
1013 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
1014 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
1015
1016 // copy1MBB:
1017 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001018 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001019 BB = copy1MBB;
1020 unsigned TrueValue = makeAnotherReg (I.getType ());
Misha Brukmanbebde752004-07-16 21:06:24 +00001021 BuildMI(BB, PPC32::LI, 1, TrueValue).addImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001022 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1023 // Update machine-CFG edges
1024 BB->addSuccessor(sinkMBB);
1025
1026 // sinkMBB:
1027 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1028 // ...
1029 BB = sinkMBB;
1030 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1031 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001032}
1033
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001034void ISel::visitSelectInst(SelectInst &SI) {
1035 unsigned DestReg = getReg(SI);
1036 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001037 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1038 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001039}
1040
1041/// emitSelect - Common code shared between visitSelectInst and the constant
1042/// expression support.
1043/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1044/// no select instruction. FSEL only works for comparisons against zero.
1045void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1046 MachineBasicBlock::iterator IP,
1047 Value *Cond, Value *TrueVal, Value *FalseVal,
1048 unsigned DestReg) {
1049 unsigned SelectClass = getClassB(TrueVal->getType());
1050
Misha Brukmanbebde752004-07-16 21:06:24 +00001051 /*
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001052 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1053 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1054
1055 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +00001056 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001057 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001058 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001059 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001060 }
1061
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001062 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +00001063 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
1064 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001065 return;
1066 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001067 */
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001068
Misha Brukmanbebde752004-07-16 21:06:24 +00001069 // See if we can fold the setcc into the select instruction, or if we have
1070 // to get the register of the Cond value
1071
1072 unsigned Opcode;
1073 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1074 // We successfully folded the setcc into the select instruction.
1075
1076 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1077 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1078 IP);
1079 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1080 } else {
1081 unsigned CondReg = getReg(Cond, MBB, IP);
1082
1083 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addImm(0);
1084 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001085 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001086
1087 // thisMBB:
1088 // ...
1089 // cmpTY cr0, r1, r2
1090 // bCC copy1MBB
1091 // b copy0MBB
1092
1093 MachineBasicBlock *thisMBB = BB;
1094 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1095
1096 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1097 // if we could insert other, non-terminator instructions after the
1098 // bCC. But MBB->getFirstTerminator() can't understand this.
1099 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
1100 F->getBasicBlockList().push_back(copy1MBB);
1101 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1102 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
1103 F->getBasicBlockList().push_back(copy0MBB);
1104 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1105 // Update machine-CFG edges
1106 BB->addSuccessor(copy1MBB);
1107 BB->addSuccessor(copy0MBB);
1108
1109 // FIXME: spill code is being generated after the branch and before copy1MBB
1110 // this is bad, since it will never be run
1111
1112 // copy0MBB:
1113 // %FalseValue = ...
1114 // b sinkMBB
1115 BB = copy0MBB;
1116 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1117 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1118 F->getBasicBlockList().push_back(sinkMBB);
1119 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1120 // Update machine-CFG edges
1121 BB->addSuccessor(sinkMBB);
1122
1123 // copy1MBB:
1124 // %TrueValue = ...
1125 // b sinkMBB
1126 BB = copy1MBB;
1127 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1128 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1129 // Update machine-CFG edges
1130 BB->addSuccessor(sinkMBB);
1131
1132 // sinkMBB:
1133 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1134 // ...
1135 BB = sinkMBB;
1136 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1137 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001138 return;
1139}
1140
1141
1142
1143/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1144/// operand, in the specified target register.
1145///
1146void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1147 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1148
1149 Value *Val = VR.Val;
1150 const Type *Ty = VR.Ty;
1151 if (Val) {
1152 if (Constant *C = dyn_cast<Constant>(Val)) {
1153 Val = ConstantExpr::getCast(C, Type::IntTy);
1154 Ty = Type::IntTy;
1155 }
1156
Misha Brukman2fec9902004-06-21 20:22:03 +00001157 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001158 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1159 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1160
1161 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +00001162 BuildMI(BB, PPC32::LI, 1, targetReg).addImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001163 } else {
1164 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001165 BuildMI(BB, PPC32::LIS, 1, TmpReg).addImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001166 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1167 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001168 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001169 return;
1170 }
1171 }
1172
1173 // Make sure we have the register number for this value...
1174 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1175
1176 switch (getClassB(Ty)) {
1177 case cByte:
1178 // Extend value into target register (8->32)
1179 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001180 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1181 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001182 else
1183 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1184 break;
1185 case cShort:
1186 // Extend value into target register (16->32)
1187 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001188 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1189 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001190 else
1191 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1192 break;
1193 case cInt:
1194 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001195 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001196 break;
1197 default:
1198 assert(0 && "Unpromotable operand class in promote32");
1199 }
1200}
1201
Misha Brukman2fec9902004-06-21 20:22:03 +00001202/// visitReturnInst - implemented with BLR
1203///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001204void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001205 // Only do the processing if this is a non-void return
1206 if (I.getNumOperands() > 0) {
1207 Value *RetVal = I.getOperand(0);
1208 switch (getClassB(RetVal->getType())) {
1209 case cByte: // integral return values: extend or move into r3 and return
1210 case cShort:
1211 case cInt:
1212 promote32(PPC32::R3, ValueRecord(RetVal));
1213 break;
1214 case cFP: { // Floats & Doubles: Return in f1
1215 unsigned RetReg = getReg(RetVal);
1216 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1217 break;
1218 }
1219 case cLong: {
1220 unsigned RetReg = getReg(RetVal);
1221 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1222 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1223 break;
1224 }
1225 default:
1226 visitInstruction(I);
1227 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001228 }
1229 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1230}
1231
1232// getBlockAfter - Return the basic block which occurs lexically after the
1233// specified one.
1234static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1235 Function::iterator I = BB; ++I; // Get iterator to next block
1236 return I != BB->getParent()->end() ? &*I : 0;
1237}
1238
1239/// visitBranchInst - Handle conditional and unconditional branches here. Note
1240/// that since code layout is frozen at this point, that if we are trying to
1241/// jump to a block that is the immediate successor of the current block, we can
1242/// just make a fall-through (but we don't currently).
1243///
1244void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001245 // Update machine-CFG edges
1246 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1247 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001248 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001249
1250 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001251
Misha Brukman2fec9902004-06-21 20:22:03 +00001252 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001253 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001254 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1255 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001256 }
1257
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001258 // See if we can fold the setcc into the branch itself...
1259 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1260 if (SCI == 0) {
1261 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1262 // computed some other way...
1263 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001264 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001265 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001266 if (BI.getSuccessor(1) == NextBB) {
1267 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001268 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001269 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001270 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001271 BuildMI(BB, PPC32::BEQ, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001272 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001273
1274 if (BI.getSuccessor(0) != NextBB)
1275 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1276 }
1277 return;
1278 }
1279
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001280 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001281 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001282 MachineBasicBlock::iterator MII = BB->end();
1283 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001284
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001285 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001286 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001287 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001288 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001289 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001290 } else {
1291 // Change to the inverse condition...
1292 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001293 Opcode = invertPPCBranchOpcode(Opcode);
1294 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001295 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001296 }
1297 }
1298}
1299
Misha Brukmanfc879c32004-07-08 18:02:38 +00001300static Constant* minUConstantForValue(uint64_t val) {
1301 if (val <= 1)
1302 return ConstantBool::get(val);
1303 else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
1304 return ConstantUInt::get(Type::UShortTy, val);
1305 else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
1306 return ConstantUInt::get(Type::UIntTy, val);
1307 else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
1308 return ConstantUInt::get(Type::ULongTy, val);
1309
1310 std::cerr << "Value: " << val << " not accepted for any integral type!\n";
1311 abort();
1312}
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001313
1314/// doCall - This emits an abstract call instruction, setting up the arguments
1315/// and the return value as appropriate. For the actual function call itself,
1316/// it inserts the specified CallMI instruction into the stream.
1317///
1318/// FIXME: See Documentation at the following URL for "correct" behavior
1319/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1320void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001321 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001322 // Count how many bytes are to be pushed on the stack...
1323 unsigned NumBytes = 0;
1324
1325 if (!Args.empty()) {
1326 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1327 switch (getClassB(Args[i].Ty)) {
1328 case cByte: case cShort: case cInt:
1329 NumBytes += 4; break;
1330 case cLong:
1331 NumBytes += 8; break;
1332 case cFP:
1333 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1334 break;
1335 default: assert(0 && "Unknown class!");
1336 }
1337
1338 // Adjust the stack pointer for the new arguments...
1339 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1340
1341 // Arguments go on the stack in reverse order, as specified by the ABI.
1342 unsigned ArgOffset = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001343 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001344 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001345 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001346 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1347 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1348 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001349 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001350 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1351 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1352 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001353 };
Misha Brukman422791f2004-06-21 17:41:12 +00001354
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001355 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1356 unsigned ArgReg;
1357 switch (getClassB(Args[i].Ty)) {
1358 case cByte:
1359 case cShort:
1360 // Promote arg to 32 bits wide into a temporary register...
1361 ArgReg = makeAnotherReg(Type::UIntTy);
1362 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001363
1364 // Reg or stack?
1365 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001366 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001367 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001368 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001369 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1370 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001371 }
1372 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001373 case cInt:
1374 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1375
Misha Brukman422791f2004-06-21 17:41:12 +00001376 // Reg or stack?
1377 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001378 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001379 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001380 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001381 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1382 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001383 }
1384 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001385 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001386 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001387
Misha Brukman422791f2004-06-21 17:41:12 +00001388 // Reg or stack?
1389 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001390 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001391 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001392 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001393 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001394 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001395 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1396 .addReg(PPC32::R1);
1397 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1398 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001399 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001400
1401 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001402 GPR_remaining -= 1; // uses up 2 GPRs
1403 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001404 break;
1405 case cFP:
1406 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1407 if (Args[i].Ty == Type::FloatTy) {
Misha Brukmanfc879c32004-07-08 18:02:38 +00001408 assert(!isVarArg && "Cannot pass floats to vararg functions!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001409 // Reg or stack?
1410 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001411 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001412 FPR_remaining--;
1413 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001414 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001415 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1416 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001417 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001418 } else {
1419 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001420 // Reg or stack?
1421 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001422 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001423 FPR_remaining--;
1424 FPR_idx++;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001425 // For vararg functions, must pass doubles via int regs as well
1426 if (isVarArg) {
Misha Brukman0aa97c62004-07-08 18:27:59 +00001427 Value *Val = Args[i].Val;
1428 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Val)) {
1429 union DU {
1430 double FVal;
1431 struct {
1432 uint32_t hi32;
1433 uint32_t lo32;
1434 } UVal;
1435 } U;
1436 U.FVal = CFP->getValue();
1437 if (GPR_remaining > 0) {
1438 Constant *hi32 = minUConstantForValue(U.UVal.hi32);
1439 copyConstantToRegister(BB, BB->end(), hi32, GPR[GPR_idx]);
1440 }
1441 if (GPR_remaining > 1) {
1442 Constant *lo32 = minUConstantForValue(U.UVal.lo32);
1443 copyConstantToRegister(BB, BB->end(), lo32, GPR[GPR_idx+1]);
1444 }
1445 } else {
1446 // Since this is not a constant, we must load it into int regs
1447 // via memory
1448 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1449 .addReg(PPC32::R1);
1450 if (GPR_remaining > 0)
1451 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1452 .addReg(PPC32::R1);
1453 if (GPR_remaining > 1)
1454 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
1455 .addImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001456 }
1457 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001458 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001459 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1460 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001461 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001462
Misha Brukman1916bf92004-06-24 21:56:15 +00001463 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukmanfc879c32004-07-08 18:02:38 +00001464 GPR_remaining--; // uses up 2 GPRs
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001465 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001466 }
1467 break;
1468
1469 default: assert(0 && "Unknown class!");
1470 }
1471 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001472 GPR_remaining--;
1473 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001474 }
1475 } else {
1476 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1477 }
1478
1479 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001480 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1481
1482 // If there is a return value, scavenge the result from the location the call
1483 // leaves it in...
1484 //
1485 if (Ret.Ty != Type::VoidTy) {
1486 unsigned DestClass = getClassB(Ret.Ty);
1487 switch (DestClass) {
1488 case cByte:
1489 case cShort:
1490 case cInt:
1491 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001492 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001493 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001494 case cFP: // Floating-point return values live in f1
1495 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1496 break;
1497 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001498 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1499 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001500 break;
1501 default: assert(0 && "Unknown class!");
1502 }
1503 }
1504}
1505
1506
1507/// visitCallInst - Push args on stack and do a procedure call instruction.
1508void ISel::visitCallInst(CallInst &CI) {
1509 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001510 Function *F = CI.getCalledFunction();
1511 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001512 // Is it an intrinsic function call?
1513 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1514 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1515 return;
1516 }
1517
1518 // Emit a CALL instruction with PC-relative displacement.
1519 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1520 } else { // Emit an indirect call through the CTR
1521 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman5f8cce12004-07-14 18:26:31 +00001522 BuildMI(BB, PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001523 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1524 }
1525
1526 std::vector<ValueRecord> Args;
1527 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1528 Args.push_back(ValueRecord(CI.getOperand(i)));
1529
1530 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001531 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1532 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001533}
1534
1535
1536/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1537///
1538static Value *dyncastIsNan(Value *V) {
1539 if (CallInst *CI = dyn_cast<CallInst>(V))
1540 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001541 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001542 return CI->getOperand(1);
1543 return 0;
1544}
1545
1546/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1547/// or's whos operands are all calls to the isnan predicate.
1548static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1549 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1550
1551 // Check all uses, which will be or's of isnans if this predicate is true.
1552 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1553 Instruction *I = cast<Instruction>(*UI);
1554 if (I->getOpcode() != Instruction::Or) return false;
1555 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1556 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1557 }
1558
1559 return true;
1560}
1561
1562/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1563/// function, lowering any calls to unknown intrinsic functions into the
1564/// equivalent LLVM code.
1565///
1566void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1567 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1568 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1569 if (CallInst *CI = dyn_cast<CallInst>(I++))
1570 if (Function *F = CI->getCalledFunction())
1571 switch (F->getIntrinsicID()) {
1572 case Intrinsic::not_intrinsic:
1573 case Intrinsic::vastart:
1574 case Intrinsic::vacopy:
1575 case Intrinsic::vaend:
1576 case Intrinsic::returnaddress:
1577 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001578 // FIXME: should lower this ourselves
1579 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001580 // We directly implement these intrinsics
1581 break;
1582 case Intrinsic::readio: {
1583 // On PPC, memory operations are in-order. Lower this intrinsic
1584 // into a volatile load.
1585 Instruction *Before = CI->getPrev();
1586 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1587 CI->replaceAllUsesWith(LI);
1588 BB->getInstList().erase(CI);
1589 break;
1590 }
1591 case Intrinsic::writeio: {
1592 // On PPC, memory operations are in-order. Lower this intrinsic
1593 // into a volatile store.
1594 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001595 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001596 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001597 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001598 BB->getInstList().erase(CI);
1599 break;
1600 }
1601 default:
1602 // All other intrinsic calls we must lower.
1603 Instruction *Before = CI->getPrev();
1604 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1605 if (Before) { // Move iterator to instruction after call
1606 I = Before; ++I;
1607 } else {
1608 I = BB->begin();
1609 }
1610 }
1611}
1612
1613void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1614 unsigned TmpReg1, TmpReg2, TmpReg3;
1615 switch (ID) {
1616 case Intrinsic::vastart:
1617 // Get the address of the first vararg value...
1618 TmpReg1 = getReg(CI);
1619 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1620 return;
1621
1622 case Intrinsic::vacopy:
1623 TmpReg1 = getReg(CI);
1624 TmpReg2 = getReg(CI.getOperand(1));
1625 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1626 return;
1627 case Intrinsic::vaend: return;
1628
1629 case Intrinsic::returnaddress:
1630 case Intrinsic::frameaddress:
1631 TmpReg1 = getReg(CI);
1632 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1633 if (ID == Intrinsic::returnaddress) {
1634 // Just load the return address
1635 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1636 ReturnAddressIndex);
1637 } else {
1638 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1639 ReturnAddressIndex, -4, false);
1640 }
1641 } else {
1642 // Values other than zero are not implemented yet.
Misha Brukmanbebde752004-07-16 21:06:24 +00001643 BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001644 }
1645 return;
1646
Misha Brukmana2916ce2004-06-21 17:58:36 +00001647#if 0
1648 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001649 case Intrinsic::isnan:
1650 // If this is only used by 'isunordered' style comparisons, don't emit it.
1651 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1652 TmpReg1 = getReg(CI.getOperand(1));
1653 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001654 TmpReg2 = makeAnotherReg(Type::IntTy);
1655 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001656 TmpReg3 = getReg(CI);
1657 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1658 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001659#endif
1660
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001661 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1662 }
1663}
1664
1665/// visitSimpleBinary - Implement simple binary operators for integral types...
1666/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1667/// Xor.
1668///
1669void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1670 unsigned DestReg = getReg(B);
1671 MachineBasicBlock::iterator MI = BB->end();
1672 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1673 unsigned Class = getClassB(B.getType());
1674
1675 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1676}
1677
1678/// emitBinaryFPOperation - This method handles emission of floating point
1679/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1680void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1681 MachineBasicBlock::iterator IP,
1682 Value *Op0, Value *Op1,
1683 unsigned OperatorClass, unsigned DestReg) {
1684
1685 // Special case: op Reg, <const fp>
1686 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001687 // Create a constant pool entry for this constant.
1688 MachineConstantPool *CP = F->getConstantPool();
1689 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1690 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001691 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001692
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001693 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001694 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1695 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001696 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001697
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001698 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001699 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001700 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001701 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001702 return;
1703 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001704
1705 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001706 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1707 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001708 // -0.0 - X === -X
1709 unsigned op1Reg = getReg(Op1, BB, IP);
1710 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1711 return;
1712 } else {
1713 // R1 = op CST, R2 --> R1 = opr R2, CST
1714
1715 // Create a constant pool entry for this constant.
1716 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001717 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1718 const Type *Ty = Op0C->getType();
1719 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001720
1721 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001722 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1723 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001724 };
1725
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001726 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001727 unsigned Op0Reg = getReg(Op0C, BB, IP);
1728 unsigned Op1Reg = getReg(Op1, BB, IP);
1729 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001730 return;
1731 }
1732
1733 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001734 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001735 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1736 };
1737
1738 unsigned Opcode = OpcodeTab[OperatorClass];
1739 unsigned Op0r = getReg(Op0, BB, IP);
1740 unsigned Op1r = getReg(Op1, BB, IP);
1741 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1742}
1743
1744/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1745/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1746/// Or, 4 for Xor.
1747///
1748/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1749/// and constant expression support.
1750///
1751void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1752 MachineBasicBlock::iterator IP,
1753 Value *Op0, Value *Op1,
1754 unsigned OperatorClass, unsigned DestReg) {
1755 unsigned Class = getClassB(Op0->getType());
1756
Misha Brukman422791f2004-06-21 17:41:12 +00001757 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001758 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001759 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1760 };
1761 // Otherwise, code generate the full operation with a constant.
1762 static const unsigned BottomTab[] = {
1763 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1764 };
1765 static const unsigned TopTab[] = {
1766 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1767 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001768
1769 if (Class == cFP) {
1770 assert(OperatorClass < 2 && "No logical ops for FP!");
1771 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1772 return;
1773 }
1774
1775 if (Op0->getType() == Type::BoolTy) {
1776 if (OperatorClass == 3)
1777 // If this is an or of two isnan's, emit an FP comparison directly instead
1778 // of or'ing two isnan's together.
1779 if (Value *LHS = dyncastIsNan(Op0))
1780 if (Value *RHS = dyncastIsNan(Op1)) {
1781 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001782 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001783 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001784 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001785 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1786 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001787 return;
1788 }
1789 }
1790
1791 // sub 0, X -> neg X
1792 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1793 if (OperatorClass == 1 && CI->isNullValue()) {
1794 unsigned op1Reg = getReg(Op1, MBB, IP);
1795 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1796
1797 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001798 unsigned zeroes = makeAnotherReg(Type::IntTy);
1799 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001800 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001801 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001802 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1803 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001804 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1805 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001806 }
1807 return;
1808 }
1809
1810 // Special case: op Reg, <const int>
1811 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1812 unsigned Op0r = getReg(Op0, MBB, IP);
1813
1814 // xor X, -1 -> not X
1815 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1816 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1817 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001818 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1819 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001820 return;
1821 }
1822
1823 unsigned Opcode = OpcodeTab[OperatorClass];
1824 unsigned Op1r = getReg(Op1, MBB, IP);
1825
1826 if (Class != cLong) {
1827 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1828 return;
1829 }
1830
1831 // If the constant is zero in the low 32-bits, just copy the low part
1832 // across and apply the normal 32-bit operation to the high parts. There
1833 // will be no carry or borrow into the top.
1834 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1835 if (OperatorClass != 2) // All but and...
1836 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1837 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001838 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001839 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001840 return;
1841 }
1842
1843 // If this is a long value and the high or low bits have a special
1844 // property, emit some special cases.
1845 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1846
1847 // If this is a logical operation and the top 32-bits are zero, just
1848 // operate on the lower 32.
1849 if (Op1h == 0 && OperatorClass > 1) {
1850 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1851 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001852 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001853 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001854 BuildMI(*MBB, IP, PPC32::LI, 1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001855 return;
1856 }
1857
1858 // TODO: We could handle lots of other special cases here, such as AND'ing
1859 // with 0xFFFFFFFF00000000 -> noop, etc.
1860
Misha Brukman2fec9902004-06-21 20:22:03 +00001861 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1862 .addImm(Op1r);
1863 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1864 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001865 return;
1866 }
1867
1868 unsigned Op0r = getReg(Op0, MBB, IP);
1869 unsigned Op1r = getReg(Op1, MBB, IP);
1870
1871 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001872 unsigned Opcode = OpcodeTab[OperatorClass];
1873 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001874 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001875 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1876 .addImm(Op1r);
1877 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1878 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001879 }
1880 return;
1881}
1882
1883/// doMultiply - Emit appropriate instructions to multiply together the
1884/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1885/// result should be given as DestTy.
1886///
1887void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1888 unsigned DestReg, const Type *DestTy,
1889 unsigned op0Reg, unsigned op1Reg) {
1890 unsigned Class = getClass(DestTy);
1891 switch (Class) {
1892 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001893 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1894 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001895 case cInt:
1896 case cShort:
1897 case cByte:
1898 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1899 return;
1900 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001901 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001902 }
1903}
1904
1905// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1906// returns zero when the input is not exactly a power of two.
1907static unsigned ExactLog2(unsigned Val) {
1908 if (Val == 0 || (Val & (Val-1))) return 0;
1909 unsigned Count = 0;
1910 while (Val != 1) {
1911 Val >>= 1;
1912 ++Count;
1913 }
1914 return Count+1;
1915}
1916
1917
1918/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1919/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001920///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001921void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1922 MachineBasicBlock::iterator IP,
1923 unsigned DestReg, const Type *DestTy,
1924 unsigned op0Reg, unsigned ConstRHS) {
1925 unsigned Class = getClass(DestTy);
1926 // Handle special cases here.
1927 switch (ConstRHS) {
1928 case 0:
Misha Brukmanbebde752004-07-16 21:06:24 +00001929 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001930 return;
1931 case 1:
1932 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1933 return;
1934 case 2:
1935 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1936 return;
1937 }
1938
1939 // If the element size is exactly a power of 2, use a shift to get it.
1940 if (unsigned Shift = ExactLog2(ConstRHS)) {
1941 switch (Class) {
1942 default: assert(0 && "Unknown class for this function!");
1943 case cByte:
1944 case cShort:
1945 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001946 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
Misha Brukman8d442c22004-07-14 15:29:51 +00001947 .addImm(Shift-1).addImm(0).addImm(31-Shift+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001948 return;
1949 }
1950 }
1951
1952 // Most general case, emit a normal multiply...
1953 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1954 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman8d442c22004-07-14 15:29:51 +00001955 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001956 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg1).addImm(ConstRHS >> 16);
Misha Brukman8d442c22004-07-14 15:29:51 +00001957 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg1)
1958 .addImm(16).addImm(0).addImm(15);
1959 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg3).addReg(TmpReg2)
1960 .addImm(ConstRHS & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001961
1962 // Emit a MUL to multiply the register holding the index by
1963 // elementSize, putting the result in OffsetReg.
Misha Brukman8d442c22004-07-14 15:29:51 +00001964 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg3);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001965}
1966
1967void ISel::visitMul(BinaryOperator &I) {
1968 unsigned ResultReg = getReg(I);
1969
1970 Value *Op0 = I.getOperand(0);
1971 Value *Op1 = I.getOperand(1);
1972
1973 MachineBasicBlock::iterator IP = BB->end();
1974 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1975}
1976
1977void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1978 Value *Op0, Value *Op1, unsigned DestReg) {
1979 MachineBasicBlock &BB = *MBB;
1980 TypeClass Class = getClass(Op0->getType());
1981
1982 // Simple scalar multiply?
1983 unsigned Op0Reg = getReg(Op0, &BB, IP);
1984 switch (Class) {
1985 case cByte:
1986 case cShort:
1987 case cInt:
1988 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1989 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1990 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1991 } else {
1992 unsigned Op1Reg = getReg(Op1, &BB, IP);
1993 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1994 }
1995 return;
1996 case cFP:
1997 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1998 return;
1999 case cLong:
2000 break;
2001 }
2002
2003 // Long value. We have to do things the hard way...
2004 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2005 unsigned CLow = CI->getRawValue();
2006 unsigned CHi = CI->getRawValue() >> 32;
2007
2008 if (CLow == 0) {
2009 // If the low part of the constant is all zeros, things are simple.
Misha Brukmanbebde752004-07-16 21:06:24 +00002010 BuildMI(BB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002011 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2012 return;
2013 }
2014
2015 // Multiply the two low parts
2016 unsigned OverflowReg = 0;
2017 if (CLow == 1) {
2018 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2019 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002020 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002021 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2022 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002023 BuildMI(BB, IP, PPC32::LIS, 1, TmpRegL).addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00002024 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
2025 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00002026 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
2027 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002028 }
2029
2030 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
2031 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2032
2033 unsigned AHBLplusOverflowReg;
2034 if (OverflowReg) {
2035 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002036 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002037 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2038 } else {
2039 AHBLplusOverflowReg = AHBLReg;
2040 }
2041
2042 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002043 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
2044 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002045 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002046 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002047 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
2048
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002049 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002050 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2051 }
2052 return;
2053 }
2054
2055 // General 64x64 multiply
2056
2057 unsigned Op1Reg = getReg(Op1, &BB, IP);
2058
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002059 // Multiply the two low parts...
2060 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002061
2062 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002063 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002064
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002065 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002066 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2067
2068 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002069 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
2070 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002071
2072 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2073 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2074
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002075 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002076 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2077}
2078
2079
2080/// visitDivRem - Handle division and remainder instructions... these
2081/// instruction both require the same instructions to be generated, they just
2082/// select the result from a different register. Note that both of these
2083/// instructions work differently for signed and unsigned operands.
2084///
2085void ISel::visitDivRem(BinaryOperator &I) {
2086 unsigned ResultReg = getReg(I);
2087 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2088
2089 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002090 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2091 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002092}
2093
2094void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2095 MachineBasicBlock::iterator IP,
2096 Value *Op0, Value *Op1, bool isDiv,
2097 unsigned ResultReg) {
2098 const Type *Ty = Op0->getType();
2099 unsigned Class = getClass(Ty);
2100 switch (Class) {
2101 case cFP: // Floating point divide
2102 if (isDiv) {
2103 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2104 return;
2105 } else { // Floating point remainder...
2106 unsigned Op0Reg = getReg(Op0, BB, IP);
2107 unsigned Op1Reg = getReg(Op1, BB, IP);
2108 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002109 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002110 std::vector<ValueRecord> Args;
2111 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2112 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002113 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002114 }
2115 return;
2116 case cLong: {
Misha Brukman0aa97c62004-07-08 18:27:59 +00002117 static Function* const Funcs[] =
2118 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002119 unsigned Op0Reg = getReg(Op0, BB, IP);
2120 unsigned Op1Reg = getReg(Op1, BB, IP);
2121 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2122 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002123 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002124
2125 std::vector<ValueRecord> Args;
2126 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2127 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002128 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002129 return;
2130 }
2131 case cByte: case cShort: case cInt:
2132 break; // Small integrals, handled below...
2133 default: assert(0 && "Unknown class!");
2134 }
2135
2136 // Special case signed division by power of 2.
2137 if (isDiv)
2138 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2139 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2140 int V = CI->getValue();
2141
2142 if (V == 1) { // X /s 1 => X
2143 unsigned Op0Reg = getReg(Op0, BB, IP);
2144 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2145 return;
2146 }
2147
2148 if (V == -1) { // X /s -1 => -X
2149 unsigned Op0Reg = getReg(Op0, BB, IP);
2150 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2151 return;
2152 }
2153
2154 bool isNeg = false;
2155 if (V < 0) { // Not a positive power of 2?
2156 V = -V;
2157 isNeg = true; // Maybe it's a negative power of 2.
2158 }
2159 if (unsigned Log = ExactLog2(V)) {
2160 --Log;
2161 unsigned Op0Reg = getReg(Op0, BB, IP);
2162 unsigned TmpReg = makeAnotherReg(Op0->getType());
2163 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002164 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002165 else
2166 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
2167
2168 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00002169 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2170 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002171
2172 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2173 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2174
2175 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2176 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2177
2178 if (isNeg)
2179 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2180 return;
2181 }
2182 }
2183
2184 unsigned Op0Reg = getReg(Op0, BB, IP);
2185 unsigned Op1Reg = getReg(Op1, BB, IP);
2186
2187 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002188 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002189 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002190 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002191 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002192 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002193 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002194 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2195 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2196
2197 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002198 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002199 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002200 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002201 }
2202 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2203 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002204 }
2205}
2206
2207
2208/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2209/// for constant immediate shift values, and for constant immediate
2210/// shift values equal to 1. Even the general case is sort of special,
2211/// because the shift amount has to be in CL, not just any old register.
2212///
2213void ISel::visitShiftInst(ShiftInst &I) {
2214 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002215 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2216 I.getOpcode () == Instruction::Shl, I.getType (),
2217 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002218}
2219
2220/// emitShiftOperation - Common code shared between visitShiftInst and
2221/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002222///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002223void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2224 MachineBasicBlock::iterator IP,
2225 Value *Op, Value *ShiftAmount, bool isLeftShift,
2226 const Type *ResultTy, unsigned DestReg) {
2227 unsigned SrcReg = getReg (Op, MBB, IP);
2228 bool isSigned = ResultTy->isSigned ();
2229 unsigned Class = getClass (ResultTy);
2230
2231 // Longs, as usual, are handled specially...
2232 if (Class == cLong) {
2233 // If we have a constant shift, we can generate much more efficient code
2234 // than otherwise...
2235 //
2236 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2237 unsigned Amount = CUI->getValue();
2238 if (Amount < 32) {
2239 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002240 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002241 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2242 .addImm(Amount).addImm(0).addImm(31-Amount);
2243 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2244 .addImm(Amount).addImm(32-Amount).addImm(31);
2245 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2246 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002247 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002248 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002249 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2250 .addImm(32-Amount).addImm(Amount).addImm(31);
2251 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2252 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2253 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2254 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002255 }
2256 } else { // Shifting more than 32 bits
2257 Amount -= 32;
2258 if (isLeftShift) {
2259 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002260 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2261 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002262 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002263 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2264 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002265 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002266 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002267 } else {
2268 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002269 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002270 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2271 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002272 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002273 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2274 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002275 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002276 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2277 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002278 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002279 BuildMI(*MBB, IP,PPC32::LI,1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002280 }
2281 }
2282 } else {
2283 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2284 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002285 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2286 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2287 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2288 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2289 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2290
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002291 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002292 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2293 .addImm(32);
2294 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2295 .addReg(ShiftAmountReg);
2296 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2297 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2298 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2299 .addImm(-32);
2300 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2301 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2302 .addReg(TmpReg6);
2303 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2304 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002305 } else {
2306 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002307 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002308 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002309 std::cerr << "Unimplemented: signed right shift\n";
2310 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002311 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002312 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2313 .addImm(32);
2314 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2315 .addReg(ShiftAmountReg);
2316 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2317 .addReg(TmpReg1);
2318 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2319 .addReg(TmpReg3);
2320 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2321 .addImm(-32);
2322 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2323 .addReg(TmpReg5);
2324 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2325 .addReg(TmpReg6);
2326 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2327 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002328 }
2329 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002330 }
2331 return;
2332 }
2333
2334 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2335 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2336 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2337 unsigned Amount = CUI->getValue();
2338
Misha Brukman422791f2004-06-21 17:41:12 +00002339 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002340 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2341 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002342 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002343 if (isSigned) {
2344 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2345 } else {
2346 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2347 .addImm(32-Amount).addImm(Amount).addImm(31);
2348 }
Misha Brukman422791f2004-06-21 17:41:12 +00002349 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002350 } else { // The shift amount is non-constant.
2351 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2352
Misha Brukman422791f2004-06-21 17:41:12 +00002353 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002354 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2355 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002356 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002357 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2358 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002359 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002360 }
2361}
2362
2363
2364/// visitLoadInst - Implement LLVM load instructions
2365///
2366void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002367 static const unsigned Opcodes[] = {
2368 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2369 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002370 unsigned Class = getClassB(I.getType());
2371 unsigned Opcode = Opcodes[Class];
2372 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2373
2374 unsigned DestReg = getReg(I);
2375
2376 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002377 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002378 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002379 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2380 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002381 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002382 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002383 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002384 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002385 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002386
2387 if (Class == cLong) {
2388 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2389 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2390 } else {
2391 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2392 }
2393 }
2394}
2395
2396/// visitStoreInst - Implement LLVM store instructions
2397///
2398void ISel::visitStoreInst(StoreInst &I) {
2399 unsigned ValReg = getReg(I.getOperand(0));
2400 unsigned AddressReg = getReg(I.getOperand(1));
2401
2402 const Type *ValTy = I.getOperand(0)->getType();
2403 unsigned Class = getClassB(ValTy);
2404
2405 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002406 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002407 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002408 return;
2409 }
2410
2411 static const unsigned Opcodes[] = {
2412 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2413 };
2414 unsigned Opcode = Opcodes[Class];
2415 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2416 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2417}
2418
2419
2420/// visitCastInst - Here we have various kinds of copying with or without sign
2421/// extension going on.
2422///
2423void ISel::visitCastInst(CastInst &CI) {
2424 Value *Op = CI.getOperand(0);
2425
2426 unsigned SrcClass = getClassB(Op->getType());
2427 unsigned DestClass = getClassB(CI.getType());
2428 // Noop casts are not emitted: getReg will return the source operand as the
2429 // register to use for any uses of the noop cast.
2430 if (DestClass == SrcClass)
2431 return;
2432
2433 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2434 // of the case are GEP instructions, then the cast does not need to be
2435 // generated explicitly, it will be folded into the GEP.
2436 if (DestClass == cLong && SrcClass == cInt) {
2437 bool AllUsesAreGEPs = true;
2438 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2439 if (!isa<GetElementPtrInst>(*I)) {
2440 AllUsesAreGEPs = false;
2441 break;
2442 }
2443
2444 // No need to codegen this cast if all users are getelementptr instrs...
2445 if (AllUsesAreGEPs) return;
2446 }
2447
2448 unsigned DestReg = getReg(CI);
2449 MachineBasicBlock::iterator MI = BB->end();
2450 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2451}
2452
2453/// emitCastOperation - Common code shared between visitCastInst and constant
2454/// expression cast support.
2455///
2456void ISel::emitCastOperation(MachineBasicBlock *BB,
2457 MachineBasicBlock::iterator IP,
2458 Value *Src, const Type *DestTy,
2459 unsigned DestReg) {
2460 const Type *SrcTy = Src->getType();
2461 unsigned SrcClass = getClassB(SrcTy);
2462 unsigned DestClass = getClassB(DestTy);
2463 unsigned SrcReg = getReg(Src, BB, IP);
2464
2465 // Implement casts to bool by using compare on the operand followed by set if
2466 // not zero on the result.
2467 if (DestTy == Type::BoolTy) {
2468 switch (SrcClass) {
2469 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002470 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002471 case cInt: {
2472 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002473 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2474 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002475 break;
2476 }
2477 case cLong: {
2478 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2479 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2480 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002481 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2482 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002483 break;
2484 }
2485 case cFP:
2486 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002487 // Load -0.0
2488 // Compare
2489 // move to CR1
2490 // Negate -0.0
2491 // Compare
2492 // CROR
2493 // MFCR
2494 // Left-align
2495 // SRA ?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002496 std::cerr << "Cast fp-to-bool not implemented!";
2497 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002498 }
2499 return;
2500 }
2501
2502 // Implement casts between values of the same type class (as determined by
2503 // getClass) by using a register-to-register move.
2504 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002505 if (SrcClass <= cInt) {
2506 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2507 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002508 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2509 } else if (SrcClass == cFP) {
2510 if (SrcTy == Type::FloatTy) { // float -> double
2511 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2512 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2513 } else { // double -> float
2514 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2515 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002516 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002517 }
2518 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002519 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002520 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2521 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002522 } else {
2523 assert(0 && "Cannot handle this type of cast instruction!");
2524 abort();
2525 }
2526 return;
2527 }
2528
2529 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2530 // or zero extension, depending on whether the source type was signed.
2531 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2532 SrcClass < DestClass) {
2533 bool isLong = DestClass == cLong;
2534 if (isLong) DestClass = cInt;
2535
2536 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2537 if (SrcClass < cInt) {
2538 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002539 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002540 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2541 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002542 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002543 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2544 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002545 }
2546 } else {
2547 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2548 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002549
2550 if (isLong) { // Handle upper 32 bits as appropriate...
2551 if (isUnsigned) // Zero out top bits...
Misha Brukmanbebde752004-07-16 21:06:24 +00002552 BuildMI(*BB, IP, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002553 else // Sign extend bottom half...
2554 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2555 }
2556 return;
2557 }
2558
2559 // Special case long -> int ...
2560 if (SrcClass == cLong && DestClass == cInt) {
2561 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2562 return;
2563 }
2564
2565 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2566 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2567 && SrcClass > DestClass) {
2568 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002569 if (isUnsigned) {
2570 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002571 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2572 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002573 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002574 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2575 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002576 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002577 return;
2578 }
2579
2580 // Handle casts from integer to floating point now...
2581 if (DestClass == cFP) {
2582
Misha Brukman422791f2004-06-21 17:41:12 +00002583 // Emit a library call for long to float conversion
2584 if (SrcClass == cLong) {
2585 std::vector<ValueRecord> Args;
2586 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman313efcb2004-07-09 15:45:07 +00002587 Function *floatFn = (SrcTy==Type::FloatTy) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002588 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002589 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002590 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002591 return;
2592 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002593
2594 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002595 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002596 case Type::BoolTyID:
2597 case Type::SByteTyID:
2598 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2599 break;
2600 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002601 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2602 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002603 break;
2604 case Type::ShortTyID:
2605 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2606 break;
2607 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002608 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2609 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002610 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002611 case Type::IntTyID:
2612 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2613 break;
2614 case Type::UIntTyID:
2615 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2616 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002617 default: // No promotion needed...
2618 break;
2619 }
2620
2621 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002622
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002623 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002624 // Also spill room for a special conversion constant
2625 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002626 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2627 int ValueFrameIdx =
2628 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2629
Misha Brukman422791f2004-06-21 17:41:12 +00002630 unsigned constantHi = makeAnotherReg(Type::IntTy);
2631 unsigned constantLo = makeAnotherReg(Type::IntTy);
2632 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2633 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2634
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002635 if (!SrcTy->isSigned()) {
Misha Brukmanbebde752004-07-16 21:06:24 +00002636 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2637 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002638 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2639 ConstantFrameIndex);
2640 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2641 ConstantFrameIndex, 4);
2642 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2643 ValueFrameIdx);
2644 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2645 ValueFrameIdx, 4);
2646 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2647 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002648 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2649 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2650 } else {
2651 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002652 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2653 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002654 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2655 ConstantFrameIndex);
2656 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2657 ConstantFrameIndex, 4);
2658 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2659 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002660 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002661 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2662 ValueFrameIdx, 4);
2663 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2664 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002665 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002666 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002667 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002668 return;
2669 }
2670
2671 // Handle casts from floating point to integer now...
2672 if (SrcClass == cFP) {
2673
Misha Brukman422791f2004-06-21 17:41:12 +00002674 // emit library call
2675 if (DestClass == cLong) {
2676 std::vector<ValueRecord> Args;
2677 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002678 MachineInstr *TheCall =
Misha Brukmanf3f63822004-07-08 19:41:16 +00002679 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(__fixdfdiFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002680 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002681 return;
2682 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002683
2684 int ValueFrameIdx =
2685 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2686
Misha Brukman422791f2004-06-21 17:41:12 +00002687 // load into 32 bit value, and then truncate as necessary
2688 // FIXME: This is wrong for unsigned dest types
2689 //if (DestTy->isSigned()) {
2690 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2691 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002692 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2693 .addReg(TempReg), ValueFrameIdx);
2694 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2695 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002696 //} else {
2697 //}
2698
2699 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002700 return;
2701 }
2702
2703 // Anything we haven't handled already, we can't (yet) handle at all.
2704 assert(0 && "Unhandled cast instruction!");
2705 abort();
2706}
2707
2708/// visitVANextInst - Implement the va_next instruction...
2709///
2710void ISel::visitVANextInst(VANextInst &I) {
2711 unsigned VAList = getReg(I.getOperand(0));
2712 unsigned DestReg = getReg(I);
2713
2714 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002715 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002716 default:
2717 std::cerr << I;
2718 assert(0 && "Error: bad type for va_next instruction!");
2719 return;
2720 case Type::PointerTyID:
2721 case Type::UIntTyID:
2722 case Type::IntTyID:
2723 Size = 4;
2724 break;
2725 case Type::ULongTyID:
2726 case Type::LongTyID:
2727 case Type::DoubleTyID:
2728 Size = 8;
2729 break;
2730 }
2731
2732 // Increment the VAList pointer...
2733 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2734}
2735
2736void ISel::visitVAArgInst(VAArgInst &I) {
2737 unsigned VAList = getReg(I.getOperand(0));
2738 unsigned DestReg = getReg(I);
2739
Misha Brukman358829f2004-06-21 17:25:55 +00002740 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002741 default:
2742 std::cerr << I;
2743 assert(0 && "Error: bad type for va_next instruction!");
2744 return;
2745 case Type::PointerTyID:
2746 case Type::UIntTyID:
2747 case Type::IntTyID:
2748 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2749 break;
2750 case Type::ULongTyID:
2751 case Type::LongTyID:
2752 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2753 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2754 break;
2755 case Type::DoubleTyID:
2756 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2757 break;
2758 }
2759}
2760
2761/// visitGetElementPtrInst - instruction-select GEP instructions
2762///
2763void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2764 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002765 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2766 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002767}
2768
2769void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2770 MachineBasicBlock::iterator IP,
2771 Value *Src, User::op_iterator IdxBegin,
2772 User::op_iterator IdxEnd, unsigned TargetReg) {
2773 const TargetData &TD = TM.getTargetData();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002774
2775 std::vector<Value*> GEPOps;
2776 GEPOps.resize(IdxEnd-IdxBegin+1);
2777 GEPOps[0] = Src;
2778 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2779
2780 std::vector<const Type*> GEPTypes;
2781 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2782 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2783
2784 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002785 while (!GEPOps.empty()) {
2786 if (GEPTypes.empty()) {
2787 // Load the base pointer into a register.
2788 unsigned Reg = getReg(Src, MBB, IP);
2789 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2790 break; // we are now done
2791 }
Misha Brukman313efcb2004-07-09 15:45:07 +00002792 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
2793 // It's a struct access. CUI is the index into the structure,
2794 // which names the field. This index must have unsigned type.
2795 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002796
Misha Brukman313efcb2004-07-09 15:45:07 +00002797 // Use the TargetData structure to pick out what the layout of the
2798 // structure is in memory. Since the structure index must be constant, we
2799 // can get its value and use it to find the right byte offset from the
2800 // StructLayout class's list of structure member offsets.
2801 unsigned Disp = TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
2802 GEPOps.pop_back(); // Consume a GEP operand
2803 GEPTypes.pop_back();
Misha Brukman2fec9902004-06-21 20:22:03 +00002804 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman313efcb2004-07-09 15:45:07 +00002805 unsigned DispReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002806 BuildMI(*MBB, IP, PPC32::LI, 1, DispReg).addImm(Disp);
Misha Brukman313efcb2004-07-09 15:45:07 +00002807 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(DispReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002808 --IP; // Insert the next instruction before this one.
2809 TargetReg = Reg; // Codegen the rest of the GEP into this
2810 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +00002811 // It's an array or pointer access: [ArraySize x ElementType].
2812 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2813 Value *idx = GEPOps.back();
2814 GEPOps.pop_back(); // Consume a GEP operand
2815 GEPTypes.pop_back();
2816
2817 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2818 // operand. Handle this case directly now...
2819 if (CastInst *CI = dyn_cast<CastInst>(idx))
2820 if (CI->getOperand(0)->getType() == Type::IntTy ||
2821 CI->getOperand(0)->getType() == Type::UIntTy)
2822 idx = CI->getOperand(0);
2823
2824 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2825 // must find the size of the pointed-to type (Not coincidentally, the next
2826 // type is the type of the elements in the array).
2827 const Type *ElTy = SqTy->getElementType();
2828 unsigned elementSize = TD.getTypeSize(ElTy);
2829
2830 if (idx == Constant::getNullValue(idx->getType())) {
2831 // GEP with idx 0 is a no-op
2832 } else if (elementSize == 1) {
2833 // If the element size is 1, we don't have to multiply, just add
2834 unsigned idxReg = getReg(idx, MBB, IP);
2835 unsigned Reg = makeAnotherReg(Type::UIntTy);
2836 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2837 --IP; // Insert the next instruction before this one.
2838 TargetReg = Reg; // Codegen the rest of the GEP into this
2839 } else {
2840 unsigned idxReg = getReg(idx, MBB, IP);
2841 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2842
2843 // Make sure we can back the iterator up to point to the first
2844 // instruction emitted.
2845 MachineBasicBlock::iterator BeforeIt = IP;
2846 if (IP == MBB->begin())
2847 BeforeIt = MBB->end();
2848 else
2849 --BeforeIt;
2850 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2851
2852 // Emit an ADD to add OffsetReg to the basePtr.
2853 unsigned Reg = makeAnotherReg(Type::UIntTy);
2854 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
2855
2856 // Step to the first instruction of the multiply.
2857 if (BeforeIt == MBB->end())
2858 IP = MBB->begin();
2859 else
2860 IP = ++BeforeIt;
2861
2862 TargetReg = Reg; // Codegen the rest of the GEP into this
2863 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002864 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002865 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002866}
2867
2868/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2869/// frame manager, otherwise do it the hard way.
2870///
2871void ISel::visitAllocaInst(AllocaInst &I) {
2872 // If this is a fixed size alloca in the entry block for the function, we
2873 // statically stack allocate the space, so we don't need to do anything here.
2874 //
2875 if (dyn_castFixedAlloca(&I)) return;
2876
2877 // Find the data size of the alloca inst's getAllocatedType.
2878 const Type *Ty = I.getAllocatedType();
2879 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2880
2881 // Create a register to hold the temporary result of multiplying the type size
2882 // constant by the variable amount.
2883 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2884 unsigned SrcReg1 = getReg(I.getArraySize());
2885
2886 // TotalSizeReg = mul <numelements>, <TypeSize>
2887 MachineBasicBlock::iterator MBBI = BB->end();
2888 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2889
2890 // AddedSize = add <TotalSizeReg>, 15
2891 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2892 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2893
2894 // AlignedSize = and <AddedSize>, ~15
2895 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002896 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2897 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002898
2899 // Subtract size from stack pointer, thereby allocating some space.
2900 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2901
2902 // Put a pointer to the space into the result register, by copying
2903 // the stack pointer.
2904 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2905
2906 // Inform the Frame Information that we have just allocated a variable-sized
2907 // object.
2908 F->getFrameInfo()->CreateVariableSizedObject();
2909}
2910
2911/// visitMallocInst - Malloc instructions are code generated into direct calls
2912/// to the library malloc.
2913///
2914void ISel::visitMallocInst(MallocInst &I) {
2915 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2916 unsigned Arg;
2917
2918 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2919 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2920 } else {
2921 Arg = makeAnotherReg(Type::UIntTy);
2922 unsigned Op0Reg = getReg(I.getOperand(0));
2923 MachineBasicBlock::iterator MBBI = BB->end();
2924 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2925 }
2926
2927 std::vector<ValueRecord> Args;
2928 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002929 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002930 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002931 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002932}
2933
2934
2935/// visitFreeInst - Free instructions are code gen'd to call the free libc
2936/// function.
2937///
2938void ISel::visitFreeInst(FreeInst &I) {
2939 std::vector<ValueRecord> Args;
2940 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002941 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002942 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002943 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002944}
2945
2946/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2947/// into a machine code representation is a very simple peep-hole fashion. The
2948/// generated code sucks but the implementation is nice and simple.
2949///
2950FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2951 return new ISel(TM);
2952}