blob: 1562c8483d807a785f319c7c590cf32e1e7eafbf [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000011#include "llvm/Instructions.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000012#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000013#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000014#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000015#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000017#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000018#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000020#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/Target/TargetMachine.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/Target/MRegisterInfo.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000023#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000024
Chris Lattner333b2fa2002-12-13 10:09:43 +000025/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000026/// instruction at as well as a basic block. This is the version for when you
27/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000028inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000029 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000030 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000031 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000032 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000033 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000034 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
36}
37
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000038/// BMI - A special BuildMI variant that takes an iterator to insert the
39/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000041 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046 return MachineInstrBuilder(MI);
47}
48
Chris Lattner333b2fa2002-12-13 10:09:43 +000049
Chris Lattner72614082002-10-25 22:55:53 +000050namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000051 struct ISel : public FunctionPass, InstVisitor<ISel> {
52 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000053 MachineFunction *F; // The function we are compiling into
54 MachineBasicBlock *BB; // The current MBB we are compiling
55 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059 // MBBMap - Mapping between LLVM BB -> Machine BB
60 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
61
Chris Lattner3e130a22003-01-13 00:32:26 +000062 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000063
64 /// runOnFunction - Top level implementation of instruction selection for
65 /// the entire function.
66 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000067 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000068 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
Chris Lattner065faeb2002-12-28 20:24:02 +000070 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000071 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
73
Chris Lattner14aa7fe2002-12-16 22:54:46 +000074 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000075
Chris Lattnerdbd73722003-05-06 21:32:22 +000076 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000077 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000078
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000080 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
82 // Select the PHI nodes
83 SelectPHINodes();
84
Chris Lattner72614082002-10-25 22:55:53 +000085 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000088 return false; // We never modify the LLVM itself.
89 }
90
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000091 virtual const char *getPassName() const {
92 return "X86 Simple Instruction Selection";
93 }
94
Chris Lattner72614082002-10-25 22:55:53 +000095 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000096 /// block. This simply creates a new MachineBasicBlock to emit code into
97 /// and adds it to the current MachineFunction. Subsequent visit* for
98 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000099 ///
100 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000101 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000102 }
103
Chris Lattner065faeb2002-12-28 20:24:02 +0000104 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
105 /// from the stack into virtual registers.
106 ///
107 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000108
109 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
110 /// because we have to generate our sources into the source basic blocks,
111 /// not the current one.
112 ///
113 void SelectPHINodes();
114
Chris Lattner72614082002-10-25 22:55:53 +0000115 // Visitation methods for various instructions. These methods simply emit
116 // fixed X86 code for each instruction.
117 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000118
119 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000120 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000121 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000122
123 struct ValueRecord {
124 unsigned Reg;
125 const Type *Ty;
126 ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
127 };
128 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
129 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000130 void visitCallInst(CallInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000131 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000132
133 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000134 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000135 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
136 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000137 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000138 unsigned DestReg, const Type *DestTy,
139 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000140 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000141
Chris Lattnerf01729e2002-11-02 20:54:46 +0000142 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
143 void visitRem(BinaryOperator &B) { visitDivRem(B); }
144 void visitDivRem(BinaryOperator &B);
145
Chris Lattnere2954c82002-11-02 20:04:26 +0000146 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000147 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
148 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
149 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000150
Chris Lattner6d40c192003-01-16 16:43:00 +0000151 // Comparison operators...
152 void visitSetCondInst(SetCondInst &I);
153 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000154
155 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000156 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
157 MachineBasicBlock::iterator &MBBI,
158 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000159 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000160 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000161 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000162 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000163 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000164 void visitMallocInst(MallocInst &I);
165 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000166
Chris Lattnere2954c82002-11-02 20:04:26 +0000167 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000168 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000169 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000170 void visitCastInst(CastInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000171 void visitVarArgInst(VarArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000172
173 void visitInstruction(Instruction &I) {
174 std::cerr << "Cannot instruction select: " << I;
175 abort();
176 }
177
Brian Gaeke95780cc2002-12-13 07:56:18 +0000178 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000179 ///
180 void promote32(unsigned targetReg, const ValueRecord &VR);
181
182 /// EmitByteSwap - Byteswap SrcReg into DestReg.
183 ///
184 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000185
Chris Lattner3e130a22003-01-13 00:32:26 +0000186 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
187 /// constant expression GEP support.
188 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000189 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000190 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000191 User::op_iterator IdxEnd, unsigned TargetReg);
192
Chris Lattner548f61d2003-04-23 17:22:12 +0000193 /// emitCastOperation - Common code shared between visitCastInst and
194 /// constant expression cast support.
195 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
196 Value *Src, const Type *DestTy, unsigned TargetReg);
197
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000198 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
199 /// and constant expression support.
200 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
201 MachineBasicBlock::iterator &IP,
202 Value *Op0, Value *Op1,
203 unsigned OperatorClass, unsigned TargetReg);
204
Chris Lattnerc5291f52002-10-27 21:16:59 +0000205 /// copyConstantToRegister - Output the instructions required to put the
206 /// specified constant into the specified register.
207 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000208 void copyConstantToRegister(MachineBasicBlock *MBB,
209 MachineBasicBlock::iterator &MBBI,
210 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000211
Chris Lattner3e130a22003-01-13 00:32:26 +0000212 /// makeAnotherReg - This method returns the next register number we haven't
213 /// yet used.
214 ///
215 /// Long values are handled somewhat specially. They are always allocated
216 /// as pairs of 32 bit integer values. The register number returned is the
217 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
218 /// of the long value.
219 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000220 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000221 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
222 const TargetRegisterClass *RC =
223 TM.getRegisterInfo()->getRegClassForType(Type::IntTy);
224 // Create the lower part
225 F->getSSARegMap()->createVirtualRegister(RC);
226 // Create the upper part.
227 return F->getSSARegMap()->createVirtualRegister(RC)-1;
228 }
229
Chris Lattnerc0812d82002-12-13 06:56:29 +0000230 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner94af4142002-12-25 05:13:53 +0000231 const TargetRegisterClass *RC =
232 TM.getRegisterInfo()->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000233 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000234 }
235
Chris Lattner72614082002-10-25 22:55:53 +0000236 /// getReg - This method turns an LLVM value into a register number. This
237 /// is guaranteed to produce the same register number for a particular value
238 /// every time it is queried.
239 ///
240 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000241 unsigned getReg(Value *V) {
242 // Just append to the end of the current bb.
243 MachineBasicBlock::iterator It = BB->end();
244 return getReg(V, BB, It);
245 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000246 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000247 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000248 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000249 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000250 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000251 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000252 }
Chris Lattner72614082002-10-25 22:55:53 +0000253
Chris Lattner6f8fd252002-10-27 21:23:43 +0000254 // If this operand is a constant, emit the code to copy the constant into
255 // the register here...
256 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000257 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000258 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000259 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000260 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
261 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000262 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000263 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000264 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000265
Chris Lattner72614082002-10-25 22:55:53 +0000266 return Reg;
267 }
Chris Lattner72614082002-10-25 22:55:53 +0000268 };
269}
270
Chris Lattner43189d12002-11-17 20:07:45 +0000271/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
272/// Representation.
273///
274enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000275 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000276};
277
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000278/// getClass - Turn a primitive type into a "class" number which is based on the
279/// size of the type, and whether or not it is floating point.
280///
Chris Lattner43189d12002-11-17 20:07:45 +0000281static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000282 switch (Ty->getPrimitiveID()) {
283 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000284 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000285 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000286 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000287 case Type::IntTyID:
288 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000289 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000290
Chris Lattner94af4142002-12-25 05:13:53 +0000291 case Type::FloatTyID:
292 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000293
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000294 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000295 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000296 default:
297 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000298 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000299 }
300}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000301
Chris Lattner6b993cc2002-12-15 08:02:15 +0000302// getClassB - Just like getClass, but treat boolean values as bytes.
303static inline TypeClass getClassB(const Type *Ty) {
304 if (Ty == Type::BoolTy) return cByte;
305 return getClass(Ty);
306}
307
Chris Lattner06925362002-11-17 21:56:38 +0000308
Chris Lattnerc5291f52002-10-27 21:16:59 +0000309/// copyConstantToRegister - Output the instructions required to put the
310/// specified constant into the specified register.
311///
Chris Lattner8a307e82002-12-16 19:32:50 +0000312void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator &IP,
314 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000315 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000316 unsigned Class = 0;
317 switch (CE->getOpcode()) {
318 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000319 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000320 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000321 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000322 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000323 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000324 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000325
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000326 case Instruction::Xor: ++Class; // FALL THROUGH
327 case Instruction::Or: ++Class; // FALL THROUGH
328 case Instruction::And: ++Class; // FALL THROUGH
329 case Instruction::Sub: ++Class; // FALL THROUGH
330 case Instruction::Add:
331 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
332 Class, R);
333 return;
334
335 default:
336 std::cerr << "Offending expr: " << C << "\n";
337 assert(0 && "Constant expressions not yet handled!\n");
338 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000339 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000340
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000341 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000342 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000343
344 if (Class == cLong) {
345 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000346 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000347 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
348 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
349 return;
350 }
351
Chris Lattner94af4142002-12-25 05:13:53 +0000352 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000353
354 static const unsigned IntegralOpcodeTab[] = {
355 X86::MOVir8, X86::MOVir16, X86::MOVir32
356 };
357
Chris Lattner6b993cc2002-12-15 08:02:15 +0000358 if (C->getType() == Type::BoolTy) {
359 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000360 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000361 ConstantInt *CI = cast<ConstantInt>(C);
362 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000363 }
Chris Lattner94af4142002-12-25 05:13:53 +0000364 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
365 double Value = CFP->getValue();
366 if (Value == +0.0)
367 BMI(MBB, IP, X86::FLD0, 0, R);
368 else if (Value == +1.0)
369 BMI(MBB, IP, X86::FLD1, 0, R);
370 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000371 // Otherwise we need to spill the constant to memory...
372 MachineConstantPool *CP = F->getConstantPool();
373 unsigned CPI = CP->getConstantPoolIndex(CFP);
374 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000375 }
376
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000377 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000378 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000379 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000380 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000381 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000382 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000383 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000384 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000385 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000386 }
387}
388
Chris Lattner065faeb2002-12-28 20:24:02 +0000389/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
390/// the stack into virtual registers.
391///
392void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
393 // Emit instructions to load the arguments... On entry to a function on the
394 // X86, the stack frame looks like this:
395 //
396 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000397 // [ESP + 4] -- first argument (leftmost lexically)
398 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000399 // ...
400 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000401 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000402 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000403
404 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
405 unsigned Reg = getReg(*I);
406
Chris Lattner065faeb2002-12-28 20:24:02 +0000407 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000408 switch (getClassB(I->getType())) {
409 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000410 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000411 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
412 break;
413 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000414 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000415 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
416 break;
417 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000418 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000419 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
420 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000421 case cLong:
422 FI = MFI->CreateFixedObject(8, ArgOffset);
423 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
424 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
425 ArgOffset += 4; // longs require 4 additional bytes
426 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000427 case cFP:
428 unsigned Opcode;
429 if (I->getType() == Type::FloatTy) {
430 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000431 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000432 } else {
433 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000434 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000435 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000436 }
437 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
438 break;
439 default:
440 assert(0 && "Unhandled argument type!");
441 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000442 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000443 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000444
445 // If the function takes variable number of arguments, add a frame offset for
446 // the start of the first vararg value... this is used to expand
447 // llvm.va_start.
448 if (Fn.getFunctionType()->isVarArg())
449 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000450}
451
452
Chris Lattner333b2fa2002-12-13 10:09:43 +0000453/// SelectPHINodes - Insert machine code to generate phis. This is tricky
454/// because we have to generate our sources into the source basic blocks, not
455/// the current one.
456///
457void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000458 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000459 const Function &LF = *F->getFunction(); // The LLVM function...
460 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
461 const BasicBlock *BB = I;
462 MachineBasicBlock *MBB = MBBMap[I];
463
464 // Loop over all of the PHI nodes in the LLVM basic block...
465 unsigned NumPHIs = 0;
466 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000467 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000468
Chris Lattner333b2fa2002-12-13 10:09:43 +0000469 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000470 unsigned PHIReg = getReg(*PN);
471 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
472 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
473
474 MachineInstr *LongPhiMI = 0;
475 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
476 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
477 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
478 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000479
Chris Lattnera6e73f12003-05-12 14:22:21 +0000480 // PHIValues - Map of blocks to incoming virtual registers. We use this
481 // so that we only initialize one incoming value for a particular block,
482 // even if the block has multiple entries in the PHI node.
483 //
484 std::map<MachineBasicBlock*, unsigned> PHIValues;
485
Chris Lattner333b2fa2002-12-13 10:09:43 +0000486 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
487 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000488 unsigned ValReg;
489 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
490 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000491
Chris Lattnera6e73f12003-05-12 14:22:21 +0000492 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
493 // We already inserted an initialization of the register for this
494 // predecessor. Recycle it.
495 ValReg = EntryIt->second;
496
497 } else {
498 // Get the incoming value into a virtual register. If it is not
499 // already available in a virtual register, insert the computation
500 // code into PredMBB
501 //
502 MachineBasicBlock::iterator PI = PredMBB->end();
503 while (PI != PredMBB->begin() &&
504 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
505 --PI;
506 ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
507
508 // Remember that we inserted a value for this PHI for this predecessor
509 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
510 }
511
Chris Lattner3e130a22003-01-13 00:32:26 +0000512 PhiMI->addRegOperand(ValReg);
513 PhiMI->addMachineBasicBlockOperand(PredMBB);
514 if (LongPhiMI) {
515 LongPhiMI->addRegOperand(ValReg+1);
516 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
517 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000518 }
519 }
520 }
521}
522
Chris Lattner6d40c192003-01-16 16:43:00 +0000523// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
524// the conditional branch instruction which is the only user of the cc
525// instruction. This is the case if the conditional branch is the only user of
526// the setcc, and if the setcc is in the same basic block as the conditional
527// branch. We also don't handle long arguments below, so we reject them here as
528// well.
529//
530static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
531 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
532 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
533 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
534 const Type *Ty = SCI->getOperand(0)->getType();
535 if (Ty != Type::LongTy && Ty != Type::ULongTy)
536 return SCI;
537 }
538 return 0;
539}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000540
Chris Lattner6d40c192003-01-16 16:43:00 +0000541// Return a fixed numbering for setcc instructions which does not depend on the
542// order of the opcodes.
543//
544static unsigned getSetCCNumber(unsigned Opcode) {
545 switch(Opcode) {
546 default: assert(0 && "Unknown setcc instruction!");
547 case Instruction::SetEQ: return 0;
548 case Instruction::SetNE: return 1;
549 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000550 case Instruction::SetGE: return 3;
551 case Instruction::SetGT: return 4;
552 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000553 }
554}
Chris Lattner06925362002-11-17 21:56:38 +0000555
Chris Lattner6d40c192003-01-16 16:43:00 +0000556// LLVM -> X86 signed X86 unsigned
557// ----- ---------- ------------
558// seteq -> sete sete
559// setne -> setne setne
560// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000561// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000562// setgt -> setg seta
563// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000564static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000565 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
566 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000567};
568
569bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
570
Brian Gaeke1749d632002-11-07 17:59:21 +0000571 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000572 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000573 bool isSigned = CompTy->isSigned();
Chris Lattner3e130a22003-01-13 00:32:26 +0000574 unsigned Class = getClassB(CompTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000575 unsigned Op0r = getReg(Op0);
576
577 // Special case handling of: cmp R, i
578 if (Class == cByte || Class == cShort || Class == cInt)
579 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000580 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
581
Chris Lattner333864d2003-06-05 19:30:30 +0000582 // Mask off any upper bits of the constant, if there are any...
583 Op1v &= (1ULL << (8 << Class)) - 1;
584
585 switch (Class) {
586 case cByte: BuildMI(BB, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
587 case cShort: BuildMI(BB, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
588 case cInt: BuildMI(BB, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
589 default:
590 assert(0 && "Invalid class!");
591 }
592 return isSigned;
593 }
594
595 unsigned Op1r = getReg(Op1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000596 switch (Class) {
597 default: assert(0 && "Unknown type class!");
598 // Emit: cmp <var1>, <var2> (do the comparison). We can
599 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
600 // 32-bit.
601 case cByte:
Chris Lattner333864d2003-06-05 19:30:30 +0000602 BuildMI(BB, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000603 break;
604 case cShort:
Chris Lattner333864d2003-06-05 19:30:30 +0000605 BuildMI(BB, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000606 break;
607 case cInt:
Chris Lattner333864d2003-06-05 19:30:30 +0000608 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000609 break;
610 case cFP:
Chris Lattner333864d2003-06-05 19:30:30 +0000611 BuildMI(BB, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000612 BuildMI(BB, X86::FNSTSWr8, 0);
613 BuildMI(BB, X86::SAHF, 1);
614 isSigned = false; // Compare with unsigned operators
615 break;
616
617 case cLong:
618 if (OpNum < 2) { // seteq, setne
619 unsigned LoTmp = makeAnotherReg(Type::IntTy);
620 unsigned HiTmp = makeAnotherReg(Type::IntTy);
621 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000622 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
623 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000624 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
625 break; // Allow the sete or setne to be generated from flags set by OR
626 } else {
627 // Emit a sequence of code which compares the high and low parts once
628 // each, then uses a conditional move to handle the overflow case. For
629 // example, a setlt for long would generate code like this:
630 //
631 // AL = lo(op1) < lo(op2) // Signedness depends on operands
632 // BL = hi(op1) < hi(op2) // Always unsigned comparison
633 // dest = hi(op1) == hi(op2) ? AL : BL;
634 //
635
Chris Lattner6d40c192003-01-16 16:43:00 +0000636 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000637 // classes! Until then, hardcode registers so that we can deal with their
638 // aliases (because we don't have conditional byte moves).
639 //
Chris Lattner333864d2003-06-05 19:30:30 +0000640 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner6d40c192003-01-16 16:43:00 +0000641 BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Chris Lattner333864d2003-06-05 19:30:30 +0000642 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner6d40c192003-01-16 16:43:00 +0000643 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000644 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000645 // NOTE: visitSetCondInst knows that the value is dumped into the BL
646 // register at this point for long values...
647 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000648 }
649 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000650 return isSigned;
651}
Chris Lattner3e130a22003-01-13 00:32:26 +0000652
Chris Lattner6d40c192003-01-16 16:43:00 +0000653
654/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
655/// register, then move it to wherever the result should be.
656///
657void ISel::visitSetCondInst(SetCondInst &I) {
658 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
659
660 unsigned OpNum = getSetCCNumber(I.getOpcode());
661 unsigned DestReg = getReg(I);
662 bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
663 I.getOperand(1));
664
665 if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
666 // Handle normal comparisons with a setcc instruction...
667 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
668 } else {
669 // Handle long comparisons by copying the value which is already in BL into
670 // the register we want...
671 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
672 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000673}
Chris Lattner51b49a92002-11-02 19:45:49 +0000674
Brian Gaekec2505982002-11-30 11:57:28 +0000675/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
676/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000677void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
678 bool isUnsigned = VR.Ty->isUnsigned();
679 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000680 case cByte:
681 // Extend value into target register (8->32)
682 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000683 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000684 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000685 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000686 break;
687 case cShort:
688 // Extend value into target register (16->32)
689 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000690 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000691 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000692 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000693 break;
694 case cInt:
695 // Move value into target register (32->32)
Chris Lattner3e130a22003-01-13 00:32:26 +0000696 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000697 break;
698 default:
699 assert(0 && "Unpromotable operand class in promote32");
700 }
Brian Gaekec2505982002-11-30 11:57:28 +0000701}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000702
Chris Lattner72614082002-10-25 22:55:53 +0000703/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
704/// we have the following possibilities:
705///
706/// ret void: No return value, simply emit a 'ret' instruction
707/// ret sbyte, ubyte : Extend value into EAX and return
708/// ret short, ushort: Extend value into EAX and return
709/// ret int, uint : Move value into EAX and return
710/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000711/// ret long, ulong : Move value into EAX/EDX and return
712/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000713///
Chris Lattner3e130a22003-01-13 00:32:26 +0000714void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000715 if (I.getNumOperands() == 0) {
716 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
717 return;
718 }
719
720 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000721 unsigned RetReg = getReg(RetVal);
722 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000723 case cByte: // integral return values: extend or move into EAX and return
724 case cShort:
725 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000726 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000727 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000728 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000729 break;
730 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000731 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000732 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000733 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000734 break;
735 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000736 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
737 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000738 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000739 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000740 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000741 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000742 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000743 }
Chris Lattner43189d12002-11-17 20:07:45 +0000744 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000745 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000746}
747
Chris Lattner55f6fab2003-01-16 18:07:23 +0000748// getBlockAfter - Return the basic block which occurs lexically after the
749// specified one.
750static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
751 Function::iterator I = BB; ++I; // Get iterator to next block
752 return I != BB->getParent()->end() ? &*I : 0;
753}
754
Chris Lattner51b49a92002-11-02 19:45:49 +0000755/// visitBranchInst - Handle conditional and unconditional branches here. Note
756/// that since code layout is frozen at this point, that if we are trying to
757/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000758/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000759///
Chris Lattner94af4142002-12-25 05:13:53 +0000760void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000761 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
762
763 if (!BI.isConditional()) { // Unconditional branch?
764 if (BI.getSuccessor(0) != NextBB)
765 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000766 return;
767 }
768
769 // See if we can fold the setcc into the branch itself...
770 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
771 if (SCI == 0) {
772 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
773 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000774 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000775 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000776 if (BI.getSuccessor(1) == NextBB) {
777 if (BI.getSuccessor(0) != NextBB)
778 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
779 } else {
780 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
781
782 if (BI.getSuccessor(0) != NextBB)
783 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
784 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000785 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000786 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000787
788 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
789 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
790 SCI->getOperand(1));
791
792 // LLVM -> X86 signed X86 unsigned
793 // ----- ---------- ------------
794 // seteq -> je je
795 // setne -> jne jne
796 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000797 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000798 // setgt -> jg ja
799 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000800 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000801 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
802 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000803 };
804
Chris Lattner55f6fab2003-01-16 18:07:23 +0000805 if (BI.getSuccessor(0) != NextBB) {
806 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
807 if (BI.getSuccessor(1) != NextBB)
808 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
809 } else {
810 // Change to the inverse condition...
811 if (BI.getSuccessor(1) != NextBB) {
812 OpNum ^= 1;
813 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
814 }
815 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000816}
817
Chris Lattner3e130a22003-01-13 00:32:26 +0000818
819/// doCall - This emits an abstract call instruction, setting up the arguments
820/// and the return value as appropriate. For the actual function call itself,
821/// it inserts the specified CallMI instruction into the stream.
822///
823void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
824 const std::vector<ValueRecord> &Args) {
825
Chris Lattner065faeb2002-12-28 20:24:02 +0000826 // Count how many bytes are to be pushed on the stack...
827 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000828
Chris Lattner3e130a22003-01-13 00:32:26 +0000829 if (!Args.empty()) {
830 for (unsigned i = 0, e = Args.size(); i != e; ++i)
831 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000832 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000833 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000834 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000835 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000836 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000837 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000838 break;
839 default: assert(0 && "Unknown class!");
840 }
841
842 // Adjust the stack pointer for the new arguments...
843 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
844
845 // Arguments go on the stack in reverse order, as specified by the ABI.
846 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000847 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
848 unsigned ArgReg = Args[i].Reg;
849 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000850 case cByte:
851 case cShort: {
852 // Promote arg to 32 bits wide into a temporary register...
853 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000854 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000855 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
856 X86::ESP, ArgOffset).addReg(R);
857 break;
858 }
859 case cInt:
860 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000861 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000862 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000863 case cLong:
864 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
865 X86::ESP, ArgOffset).addReg(ArgReg);
866 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
867 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
868 ArgOffset += 4; // 8 byte entry, not 4.
869 break;
870
Chris Lattner065faeb2002-12-28 20:24:02 +0000871 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000872 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000873 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000874 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000875 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000876 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
877 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
878 X86::ESP, ArgOffset).addReg(ArgReg);
879 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000880 }
881 break;
882
Chris Lattner3e130a22003-01-13 00:32:26 +0000883 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000884 }
885 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000886 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000887 } else {
888 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000889 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000890
Chris Lattner3e130a22003-01-13 00:32:26 +0000891 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000892
Chris Lattner065faeb2002-12-28 20:24:02 +0000893 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000894
895 // If there is a return value, scavenge the result from the location the call
896 // leaves it in...
897 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000898 if (Ret.Ty != Type::VoidTy) {
899 unsigned DestClass = getClassB(Ret.Ty);
900 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000901 case cByte:
902 case cShort:
903 case cInt: {
904 // Integral results are in %eax, or the appropriate portion
905 // thereof.
906 static const unsigned regRegMove[] = {
907 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
908 };
909 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000910 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000911 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000912 }
Chris Lattner94af4142002-12-25 05:13:53 +0000913 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000914 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000915 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000916 case cLong: // Long values are left in EDX:EAX
917 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
918 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
919 break;
920 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000921 }
Chris Lattnera3243642002-12-04 23:45:28 +0000922 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000923}
Chris Lattner2df035b2002-11-02 19:27:56 +0000924
Chris Lattner3e130a22003-01-13 00:32:26 +0000925
926/// visitCallInst - Push args on stack and do a procedure call instruction.
927void ISel::visitCallInst(CallInst &CI) {
928 MachineInstr *TheCall;
929 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +0000930 // Is it an intrinsic function call?
931 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
932 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
933 return;
934 }
935
Chris Lattner3e130a22003-01-13 00:32:26 +0000936 // Emit a CALL instruction with PC-relative displacement.
937 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
938 } else { // Emit an indirect call...
939 unsigned Reg = getReg(CI.getCalledValue());
940 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
941 }
942
943 std::vector<ValueRecord> Args;
944 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
945 Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
946 CI.getOperand(i)->getType()));
947
948 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
949 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
950}
951
Chris Lattnereca195e2003-05-08 19:44:13 +0000952void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
953 unsigned TmpReg1, TmpReg2;
954 switch (ID) {
955 case LLVMIntrinsic::va_start:
956 // Get the address of the first vararg value...
957 TmpReg1 = makeAnotherReg(Type::UIntTy);
958 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
959 TmpReg2 = getReg(CI.getOperand(1));
960 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
961 return;
962
963 case LLVMIntrinsic::va_end: return; // Noop on X86
964 case LLVMIntrinsic::va_copy:
965 TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
966 TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
967 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
968 return;
969
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000970 case LLVMIntrinsic::longjmp:
971 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
Brian Gaeked4615052003-07-18 20:23:43 +0000972 return;
973
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000974 case LLVMIntrinsic::setjmp:
Chris Lattnereb093fb2003-06-30 19:35:54 +0000975 // Setjmp always returns zero...
976 BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000977 return;
Chris Lattnereca195e2003-05-08 19:44:13 +0000978 default: assert(0 && "Unknown intrinsic for X86!");
979 }
980}
981
982
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000983/// visitSimpleBinary - Implement simple binary operators for integral types...
984/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
985/// Xor.
986void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
987 unsigned DestReg = getReg(B);
988 MachineBasicBlock::iterator MI = BB->end();
989 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
990 OperatorClass, DestReg);
991}
Chris Lattner3e130a22003-01-13 00:32:26 +0000992
Chris Lattner68aad932002-11-02 20:13:22 +0000993/// visitSimpleBinary - Implement simple binary operators for integral types...
994/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
995/// 4 for Xor.
996///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000997/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
998/// and constant expression support.
999void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
1000 MachineBasicBlock::iterator &IP,
1001 Value *Op0, Value *Op1,
1002 unsigned OperatorClass,unsigned TargetReg){
1003 unsigned Class = getClassB(Op0->getType());
Chris Lattner35333e12003-06-05 18:28:55 +00001004 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1005 static const unsigned OpcodeTab[][4] = {
1006 // Arithmetic operators
1007 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1008 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1009
1010 // Bitwise operators
1011 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1012 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1013 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001014 };
Chris Lattner35333e12003-06-05 18:28:55 +00001015
1016 bool isLong = false;
1017 if (Class == cLong) {
1018 isLong = true;
1019 Class = cInt; // Bottom 32 bits are handled just like ints
1020 }
1021
1022 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1023 assert(Opcode && "Floating point arguments to logical inst?");
1024 unsigned Op0r = getReg(Op0, BB, IP);
1025 unsigned Op1r = getReg(Op1, BB, IP);
1026 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
1027
1028 if (isLong) { // Handle the upper 32 bits of long values...
1029 static const unsigned TopTab[] = {
1030 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1031 };
1032 BMI(BB, IP, TopTab[OperatorClass], 2,
1033 TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
1034 }
1035 } else {
1036 // Special case: op Reg, <const>
1037 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1038
1039 static const unsigned OpcodeTab[][3] = {
1040 // Arithmetic operators
1041 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1042 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1043
1044 // Bitwise operators
1045 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1046 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1047 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1048 };
1049
1050 assert(Class < 3 && "General code handles 64-bit integer types!");
1051 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1052 unsigned Op0r = getReg(Op0, BB, IP);
Chris Lattnerc07736a2003-07-23 15:22:26 +00001053 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner35333e12003-06-05 18:28:55 +00001054
1055 // Mask off any upper bits of the constant, if there are any...
1056 Op1v &= (1ULL << (8 << Class)) - 1;
1057 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
Chris Lattner3e130a22003-01-13 00:32:26 +00001058 }
Chris Lattnere2954c82002-11-02 20:04:26 +00001059}
1060
Chris Lattner3e130a22003-01-13 00:32:26 +00001061/// doMultiply - Emit appropriate instructions to multiply together the
1062/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1063/// result should be given as DestTy.
1064///
Chris Lattner8a307e82002-12-16 19:32:50 +00001065void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001066 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001067 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001068 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001069 switch (Class) {
1070 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001071 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001072 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001073 case cInt:
1074 case cShort:
1075 BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
1076 .addReg(op0Reg).addReg(op1Reg);
1077 return;
1078 case cByte:
1079 // Must use the MUL instruction, which forces use of AL...
1080 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1081 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1082 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1083 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001084 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001085 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001086 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001087}
1088
Chris Lattnerca9671d2002-11-02 20:28:58 +00001089/// visitMul - Multiplies are not simple binary operators because they must deal
1090/// with the EAX register explicitly.
1091///
1092void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001093 unsigned Op0Reg = getReg(I.getOperand(0));
1094 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +00001095 unsigned DestReg = getReg(I);
1096
1097 // Simple scalar multiply?
1098 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
1099 MachineBasicBlock::iterator MBBI = BB->end();
1100 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1101 } else {
1102 // Long value. We have to do things the hard way...
1103 // Multiply the two low parts... capturing carry into EDX
1104 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1105 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1106
1107 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1108 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1109 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1110
1111 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001112 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1113 BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001114
1115 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1116 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1117 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1118
1119 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001120 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1121 BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001122
1123 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1124 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1125 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001126}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001127
Chris Lattner06925362002-11-17 21:56:38 +00001128
Chris Lattnerf01729e2002-11-02 20:54:46 +00001129/// visitDivRem - Handle division and remainder instructions... these
1130/// instruction both require the same instructions to be generated, they just
1131/// select the result from a different register. Note that both of these
1132/// instructions work differently for signed and unsigned operands.
1133///
1134void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001135 unsigned Class = getClass(I.getType());
1136 unsigned Op0Reg = getReg(I.getOperand(0));
1137 unsigned Op1Reg = getReg(I.getOperand(1));
1138 unsigned ResultReg = getReg(I);
1139
1140 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001141 case cFP: // Floating point divide
Chris Lattner94af4142002-12-25 05:13:53 +00001142 if (I.getOpcode() == Instruction::Div)
1143 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001144 else { // Floating point remainder...
1145 MachineInstr *TheCall =
1146 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1147 std::vector<ValueRecord> Args;
1148 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1149 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1150 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1151 }
Chris Lattner94af4142002-12-25 05:13:53 +00001152 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001153 case cLong: {
1154 static const char *FnName[] =
1155 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1156
1157 unsigned NameIdx = I.getType()->isUnsigned()*2;
1158 NameIdx += I.getOpcode() == Instruction::Div;
1159 MachineInstr *TheCall =
1160 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1161
1162 std::vector<ValueRecord> Args;
1163 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1164 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1165 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1166 return;
1167 }
1168 case cByte: case cShort: case cInt:
1169 break; // Small integerals, handled below...
1170 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001171 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001172
1173 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1174 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001175 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001176 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1177 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1178
1179 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001180 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1181 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001182 };
1183
1184 bool isSigned = I.getType()->isSigned();
1185 unsigned Reg = Regs[Class];
1186 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001187
1188 // Put the first operand into one of the A registers...
1189 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1190
1191 if (isSigned) {
1192 // Emit a sign extension instruction...
Chris Lattner7b52c032003-06-22 03:31:18 +00001193 unsigned ShiftResult = makeAnotherReg(I.getType());
1194 BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1195 BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001196 } else {
1197 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1198 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1199 }
1200
Chris Lattner06925362002-11-17 21:56:38 +00001201 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +00001202 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001203
Chris Lattnerf01729e2002-11-02 20:54:46 +00001204 // Figure out which register we want to pick the result out of...
1205 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1206
Chris Lattnerf01729e2002-11-02 20:54:46 +00001207 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001208 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001209}
Chris Lattnere2954c82002-11-02 20:04:26 +00001210
Chris Lattner06925362002-11-17 21:56:38 +00001211
Brian Gaekea1719c92002-10-31 23:03:59 +00001212/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1213/// for constant immediate shift values, and for constant immediate
1214/// shift values equal to 1. Even the general case is sort of special,
1215/// because the shift amount has to be in CL, not just any old register.
1216///
Chris Lattner3e130a22003-01-13 00:32:26 +00001217void ISel::visitShiftInst(ShiftInst &I) {
1218 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001219 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001220 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001221 bool isSigned = I.getType()->isSigned();
1222 unsigned Class = getClass(I.getType());
1223
1224 static const unsigned ConstantOperand[][4] = {
1225 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1226 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1227 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1228 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1229 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001230
Chris Lattner3e130a22003-01-13 00:32:26 +00001231 static const unsigned NonConstantOperand[][4] = {
1232 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1233 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1234 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1235 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1236 };
Chris Lattner796df732002-11-02 00:44:25 +00001237
Chris Lattner3e130a22003-01-13 00:32:26 +00001238 // Longs, as usual, are handled specially...
1239 if (Class == cLong) {
1240 // If we have a constant shift, we can generate much more efficient code
1241 // than otherwise...
1242 //
1243 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1244 unsigned Amount = CUI->getValue();
1245 if (Amount < 32) {
1246 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1247 if (isLeftShift) {
1248 BuildMI(BB, Opc[3], 3,
1249 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1250 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1251 } else {
1252 BuildMI(BB, Opc[3], 3,
1253 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1254 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1255 }
1256 } else { // Shifting more than 32 bits
1257 Amount -= 32;
1258 if (isLeftShift) {
1259 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1260 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1261 } else {
1262 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1263 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1264 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1265 }
1266 }
1267 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001268 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1269
1270 if (!isLeftShift && isSigned) {
1271 // If this is a SHR of a Long, then we need to do funny sign extension
1272 // stuff. TmpReg gets the value to use as the high-part if we are
1273 // shifting more than 32 bits.
1274 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1275 } else {
1276 // Other shifts use a fixed zero value if the shift is more than 32
1277 // bits.
1278 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1279 }
1280
1281 // Initialize CL with the shift amount...
1282 unsigned ShiftAmount = getReg(I.getOperand(1));
1283 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1284
1285 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1286 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1287 if (isLeftShift) {
1288 // TmpReg2 = shld inHi, inLo
1289 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1290 // TmpReg3 = shl inLo, CL
1291 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1292
1293 // Set the flags to indicate whether the shift was by more than 32 bits.
1294 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1295
1296 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1297 BuildMI(BB, X86::CMOVNErr32, 2,
1298 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1299 // DestLo = (>32) ? TmpReg : TmpReg3;
1300 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1301 } else {
1302 // TmpReg2 = shrd inLo, inHi
1303 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1304 // TmpReg3 = s[ah]r inHi, CL
1305 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1306 .addReg(SrcReg+1);
1307
1308 // Set the flags to indicate whether the shift was by more than 32 bits.
1309 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1310
1311 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1312 BuildMI(BB, X86::CMOVNErr32, 2,
1313 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1314
1315 // DestHi = (>32) ? TmpReg : TmpReg3;
1316 BuildMI(BB, X86::CMOVNErr32, 2,
1317 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1318 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001319 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001320 return;
1321 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001322
Chris Lattner3e130a22003-01-13 00:32:26 +00001323 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1324 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1325 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001326
Chris Lattner3e130a22003-01-13 00:32:26 +00001327 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1328 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1329 } else { // The shift amount is non-constant.
1330 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001331
Chris Lattner3e130a22003-01-13 00:32:26 +00001332 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1333 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1334 }
1335}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001336
Chris Lattner3e130a22003-01-13 00:32:26 +00001337
1338/// doFPLoad - This method is used to load an FP value from memory using the
1339/// current endianness. NOTE: This method returns a partially constructed load
1340/// instruction which needs to have the memory source filled in still.
1341///
1342MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1343 MachineBasicBlock::iterator &MBBI,
1344 const Type *Ty, unsigned DestReg) {
1345 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1346 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1347
1348 if (TM.getTargetData().isLittleEndian()) // fast path...
1349 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1350
1351 // If we are big-endian, start by creating an LEA instruction to represent the
1352 // address of the memory location to load from...
1353 //
1354 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1355 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1356
1357 // Allocate a temporary stack slot to transform the value into...
1358 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1359
1360 // Perform the bswaps 32 bits at a time...
1361 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1362 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1363 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1364 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1365 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1366 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1367 FrameIdx, Offset).addReg(TmpReg2);
1368
1369 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1370 TmpReg1 = makeAnotherReg(Type::UIntTy);
1371 TmpReg2 = makeAnotherReg(Type::UIntTy);
1372
1373 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1374 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1375 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1376 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1377 }
1378
1379 // Now we can reload the final byteswapped result into the final destination.
1380 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1381 return Result;
1382}
1383
1384/// EmitByteSwap - Byteswap SrcReg into DestReg.
1385///
1386void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1387 // Emit the byte swap instruction...
1388 switch (Class) {
1389 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001390 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001391 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1392 break;
1393 case cInt:
1394 // Use the 32 bit bswap instruction to do a 32 bit swap...
1395 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1396 break;
1397
1398 case cShort:
1399 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001400 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001401 // into AX to do the xchg.
1402 //
1403 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1404 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1405 .addReg(X86::AH, MOTy::UseAndDef);
1406 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1407 break;
1408 default: assert(0 && "Cannot byteswap this class!");
1409 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001410}
1411
Chris Lattner06925362002-11-17 21:56:38 +00001412
Chris Lattner6fc3c522002-11-17 21:11:55 +00001413/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001414/// instruction. The load and store instructions are the only place where we
1415/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001416///
1417void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001418 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1419 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001420 unsigned SrcAddrReg = getReg(I.getOperand(0));
1421 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001422
Brian Gaekebfedb912003-07-17 21:30:06 +00001423 unsigned Class = getClassB(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001424 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001425 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001426 MachineBasicBlock::iterator MBBI = BB->end();
1427 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001428 return;
1429 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001430 case cLong: case cInt: case cShort: case cByte:
1431 break; // Integers of various sizes handled below
1432 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001433 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001434
Chris Lattnere8f0d922002-12-24 00:03:11 +00001435 // We need to adjust the input pointer if we are emulating a big-endian
1436 // long-pointer target. On these systems, the pointer that we are interested
1437 // in is in the upper part of the eight byte memory image of the pointer. It
1438 // also happens to be byte-swapped, but this will be handled later.
1439 //
1440 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1441 unsigned R = makeAnotherReg(Type::UIntTy);
1442 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1443 SrcAddrReg = R;
1444 }
Chris Lattner94af4142002-12-25 05:13:53 +00001445
Chris Lattnere8f0d922002-12-24 00:03:11 +00001446 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001447 if (!isLittleEndian) // If big endian we need an intermediate stage
1448 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001449
Chris Lattner3e130a22003-01-13 00:32:26 +00001450 static const unsigned Opcode[] = {
1451 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1452 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001453 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1454
Chris Lattner3e130a22003-01-13 00:32:26 +00001455 // Handle long values now...
1456 if (Class == cLong) {
1457 if (isLittleEndian) {
1458 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1459 } else {
1460 EmitByteSwap(IReg+1, DestReg, cInt);
1461 unsigned TempReg = makeAnotherReg(Type::IntTy);
1462 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1463 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001464 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001465 return;
1466 }
1467
1468 if (!isLittleEndian)
1469 EmitByteSwap(IReg, DestReg, Class);
1470}
1471
1472
1473/// doFPStore - This method is used to store an FP value to memory using the
1474/// current endianness.
1475///
1476void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1477 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1478 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1479
1480 if (TM.getTargetData().isLittleEndian()) { // fast path...
1481 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1482 return;
1483 }
1484
1485 // Allocate a temporary stack slot to transform the value into...
1486 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1487 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1488 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1489
1490 // Store the value into a temporary stack slot...
1491 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1492
1493 // Perform the bswaps 32 bits at a time...
1494 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1495 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1496 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1497 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1498 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1499 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1500 DestAddrReg, Offset).addReg(TmpReg2);
1501
1502 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1503 TmpReg1 = makeAnotherReg(Type::UIntTy);
1504 TmpReg2 = makeAnotherReg(Type::UIntTy);
1505
1506 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1507 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1508 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1509 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001510 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001511}
1512
Chris Lattner06925362002-11-17 21:56:38 +00001513
Chris Lattner6fc3c522002-11-17 21:11:55 +00001514/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1515/// instruction.
1516///
1517void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001518 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1519 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001520 unsigned ValReg = getReg(I.getOperand(0));
1521 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001522
Brian Gaekebfedb912003-07-17 21:30:06 +00001523 unsigned Class = getClassB(I.getOperand(0)->getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001524 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001525 case cLong:
1526 if (isLittleEndian) {
1527 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1528 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1529 AddressReg, 4).addReg(ValReg+1);
1530 } else {
1531 unsigned T1 = makeAnotherReg(Type::IntTy);
1532 unsigned T2 = makeAnotherReg(Type::IntTy);
1533 EmitByteSwap(T1, ValReg , cInt);
1534 EmitByteSwap(T2, ValReg+1, cInt);
1535 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1536 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1537 }
Chris Lattner94af4142002-12-25 05:13:53 +00001538 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001539 case cFP:
1540 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1541 return;
1542 case cInt: case cShort: case cByte:
1543 break; // Integers of various sizes handled below
1544 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001545 }
1546
1547 if (!isLittleEndian && hasLongPointers &&
1548 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001549 unsigned R = makeAnotherReg(Type::UIntTy);
1550 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1551 AddressReg = R;
1552 }
1553
Chris Lattner94af4142002-12-25 05:13:53 +00001554 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001555 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1556 EmitByteSwap(R, ValReg, Class);
1557 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001558 }
1559
Chris Lattner94af4142002-12-25 05:13:53 +00001560 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001561 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1562}
1563
1564
Brian Gaekec11232a2002-11-26 10:43:30 +00001565/// visitCastInst - Here we have various kinds of copying with or without
1566/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001567void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001568 Value *Op = CI.getOperand(0);
1569 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1570 // of the case are GEP instructions, then the cast does not need to be
1571 // generated explicitly, it will be folded into the GEP.
1572 if (CI.getType() == Type::LongTy &&
1573 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1574 bool AllUsesAreGEPs = true;
1575 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1576 if (!isa<GetElementPtrInst>(*I)) {
1577 AllUsesAreGEPs = false;
1578 break;
1579 }
1580
1581 // No need to codegen this cast if all users are getelementptr instrs...
1582 if (AllUsesAreGEPs) return;
1583 }
1584
Chris Lattner548f61d2003-04-23 17:22:12 +00001585 unsigned DestReg = getReg(CI);
1586 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001587 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001588}
1589
1590/// emitCastOperation - Common code shared between visitCastInst and
1591/// constant expression cast support.
1592void ISel::emitCastOperation(MachineBasicBlock *BB,
1593 MachineBasicBlock::iterator &IP,
1594 Value *Src, const Type *DestTy,
1595 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001596 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001597 const Type *SrcTy = Src->getType();
1598 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001599 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001600
Chris Lattner3e130a22003-01-13 00:32:26 +00001601 // Implement casts to bool by using compare on the operand followed by set if
1602 // not zero on the result.
1603 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001604 switch (SrcClass) {
1605 case cByte:
1606 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1607 break;
1608 case cShort:
1609 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1610 break;
1611 case cInt:
1612 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1613 break;
1614 case cLong: {
1615 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1616 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1617 break;
1618 }
1619 case cFP:
1620 assert(0 && "FIXME: implement cast FP to bool");
1621 abort();
1622 }
1623
1624 // If the zero flag is not set, then the value is true, set the byte to
1625 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001626 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001627 return;
1628 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001629
1630 static const unsigned RegRegMove[] = {
1631 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1632 };
1633
1634 // Implement casts between values of the same type class (as determined by
1635 // getClass) by using a register-to-register move.
1636 if (SrcClass == DestClass) {
1637 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001638 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001639 } else if (SrcClass == cFP) {
1640 if (SrcTy == Type::FloatTy) { // double -> float
1641 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001642 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001643 } else { // float -> double
1644 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1645 "Unknown cFP member!");
1646 // Truncate from double to float by storing to memory as short, then
1647 // reading it back.
1648 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1649 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001650 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1651 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001652 }
1653 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001654 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1655 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001656 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001657 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001658 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001659 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001660 return;
1661 }
1662
1663 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1664 // or zero extension, depending on whether the source type was signed.
1665 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1666 SrcClass < DestClass) {
1667 bool isLong = DestClass == cLong;
1668 if (isLong) DestClass = cInt;
1669
1670 static const unsigned Opc[][4] = {
1671 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1672 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1673 };
1674
1675 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001676 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1677 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001678
1679 if (isLong) { // Handle upper 32 bits as appropriate...
1680 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001681 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001682 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001683 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001684 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001685 return;
1686 }
1687
1688 // Special case long -> int ...
1689 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001690 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001691 return;
1692 }
1693
1694 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1695 // move out of AX or AL.
1696 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1697 && SrcClass > DestClass) {
1698 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001699 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1700 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001701 return;
1702 }
1703
1704 // Handle casts from integer to floating point now...
1705 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001706 // Promote the integer to a type supported by FLD. We do this because there
1707 // are no unsigned FLD instructions, so we must promote an unsigned value to
1708 // a larger signed value, then use FLD on the larger value.
1709 //
1710 const Type *PromoteType = 0;
1711 unsigned PromoteOpcode;
1712 switch (SrcTy->getPrimitiveID()) {
1713 case Type::BoolTyID:
1714 case Type::SByteTyID:
1715 // We don't have the facilities for directly loading byte sized data from
1716 // memory (even signed). Promote it to 16 bits.
1717 PromoteType = Type::ShortTy;
1718 PromoteOpcode = X86::MOVSXr16r8;
1719 break;
1720 case Type::UByteTyID:
1721 PromoteType = Type::ShortTy;
1722 PromoteOpcode = X86::MOVZXr16r8;
1723 break;
1724 case Type::UShortTyID:
1725 PromoteType = Type::IntTy;
1726 PromoteOpcode = X86::MOVZXr32r16;
1727 break;
1728 case Type::UIntTyID: {
1729 // Make a 64 bit temporary... and zero out the top of it...
1730 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1731 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1732 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1733 SrcTy = Type::LongTy;
1734 SrcClass = cLong;
1735 SrcReg = TmpReg;
1736 break;
1737 }
1738 case Type::ULongTyID:
1739 assert("FIXME: not implemented: cast ulong X to fp type!");
1740 default: // No promotion needed...
1741 break;
1742 }
1743
1744 if (PromoteType) {
1745 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001746 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1747 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001748 SrcTy = PromoteType;
1749 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001750 SrcReg = TmpReg;
1751 }
1752
1753 // Spill the integer to memory and reload it from there...
1754 int FrameIdx =
1755 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1756
1757 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001758 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1759 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001760 FrameIdx, 4).addReg(SrcReg+1);
1761 } else {
1762 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001763 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001764 }
1765
1766 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001767 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001768 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001769 return;
1770 }
1771
1772 // Handle casts from floating point to integer now...
1773 if (SrcClass == cFP) {
1774 // Change the floating point control register to use "round towards zero"
1775 // mode when truncating to an integer value.
1776 //
1777 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001778 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001779
1780 // Load the old value of the high byte of the control word...
1781 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001782 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001783
1784 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001785 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001786
1787 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001788 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001789
1790 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001791 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001792 CWFrameIdx, 1).addReg(HighPartOfCW);
1793
1794 // We don't have the facilities for directly storing byte sized data to
1795 // memory. Promote it to 16 bits. We also must promote unsigned values to
1796 // larger classes because we only have signed FP stores.
1797 unsigned StoreClass = DestClass;
1798 const Type *StoreTy = DestTy;
1799 if (StoreClass == cByte || DestTy->isUnsigned())
1800 switch (StoreClass) {
1801 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1802 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1803 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001804 // The following treatment of cLong may not be perfectly right,
1805 // but it survives chains of casts of the form
1806 // double->ulong->double.
1807 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001808 default: assert(0 && "Unknown store class!");
1809 }
1810
1811 // Spill the integer to memory and reload it from there...
1812 int FrameIdx =
1813 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1814
1815 static const unsigned Op1[] =
1816 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001817 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001818
1819 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001820 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1821 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001822 } else {
1823 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001824 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001825 }
1826
1827 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001828 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001829 return;
1830 }
1831
Brian Gaeked474e9c2002-12-06 10:49:33 +00001832 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001833 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001834 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001835}
Brian Gaekea1719c92002-10-31 23:03:59 +00001836
Chris Lattnereca195e2003-05-08 19:44:13 +00001837/// visitVarArgInst - Implement the va_arg instruction...
1838///
1839void ISel::visitVarArgInst(VarArgInst &I) {
1840 unsigned SrcReg = getReg(I.getOperand(0));
1841 unsigned DestReg = getReg(I);
1842
1843 // Load the va_list into a register...
1844 unsigned VAList = makeAnotherReg(Type::UIntTy);
1845 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
1846
1847 unsigned Size;
1848 switch (I.getType()->getPrimitiveID()) {
1849 default:
1850 std::cerr << I;
1851 assert(0 && "Error: bad type for va_arg instruction!");
1852 return;
1853 case Type::PointerTyID:
1854 case Type::UIntTyID:
1855 case Type::IntTyID:
1856 Size = 4;
1857 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1858 break;
1859 case Type::ULongTyID:
1860 case Type::LongTyID:
1861 Size = 8;
1862 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1863 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1864 break;
1865 case Type::DoubleTyID:
1866 Size = 8;
1867 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1868 break;
1869 }
1870
1871 // Increment the VAList pointer...
1872 unsigned NextVAList = makeAnotherReg(Type::UIntTy);
1873 BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
1874
1875 // Update the VAList in memory...
1876 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
1877}
1878
1879
Chris Lattner8a307e82002-12-16 19:32:50 +00001880// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1881// returns zero when the input is not exactly a power of two.
1882static unsigned ExactLog2(unsigned Val) {
1883 if (Val == 0) return 0;
1884 unsigned Count = 0;
1885 while (Val != 1) {
1886 if (Val & 1) return 0;
1887 Val >>= 1;
1888 ++Count;
1889 }
1890 return Count+1;
1891}
1892
Chris Lattner3e130a22003-01-13 00:32:26 +00001893void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1894 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001895 MachineBasicBlock::iterator MI = BB->end();
1896 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001897 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001898}
1899
Brian Gaeke71794c02002-12-13 11:22:48 +00001900void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001901 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001902 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001903 User::op_iterator IdxEnd, unsigned TargetReg) {
1904 const TargetData &TD = TM.getTargetData();
1905 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001906 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001907
Brian Gaeke20244b72002-12-12 15:33:40 +00001908 // GEPs have zero or more indices; we must perform a struct access
1909 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001910 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1911 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001912 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001913 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001914 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001915 // It's a struct access. idx is the index into the structure,
1916 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001917 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1918 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001919 && "Funny-looking structure index in GEP");
1920 // Use the TargetData structure to pick out what the layout of
1921 // the structure is in memory. Since the structure index must
1922 // be constant, we can get its value and use it to find the
1923 // right byte offset from the StructLayout class's list of
1924 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001925 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001926 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1927 if (FieldOff) {
1928 NextReg = makeAnotherReg(Type::UIntTy);
1929 // Emit an ADD to add FieldOff to the basePtr.
1930 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1931 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001932 // The next type is the member of the structure selected by the
1933 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001934 Ty = StTy->getElementTypes()[idxValue];
1935 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001936 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001937
Brian Gaeke20244b72002-12-12 15:33:40 +00001938 // idx is the index into the array. Unlike with structure
1939 // indices, we may not know its actual value at code-generation
1940 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001941 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1942
Chris Lattnerf5854472003-06-21 16:01:24 +00001943 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
1944 // operand on X86. Handle this case directly now...
1945 if (CastInst *CI = dyn_cast<CastInst>(idx))
1946 if (CI->getOperand(0)->getType() == Type::IntTy ||
1947 CI->getOperand(0)->getType() == Type::UIntTy)
1948 idx = CI->getOperand(0);
1949
Chris Lattner3e130a22003-01-13 00:32:26 +00001950 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001951 // must find the size of the pointed-to type (Not coincidentally, the next
1952 // type is the type of the elements in the array).
1953 Ty = SqTy->getElementType();
1954 unsigned elementSize = TD.getTypeSize(Ty);
1955
1956 // If idxReg is a constant, we don't need to perform the multiply!
1957 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001958 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001959 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001960 NextReg = makeAnotherReg(Type::UIntTy);
1961 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001962 }
1963 } else if (elementSize == 1) {
1964 // If the element size is 1, we don't have to multiply, just add
1965 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001966 NextReg = makeAnotherReg(Type::UIntTy);
1967 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001968 } else {
1969 unsigned idxReg = getReg(idx, MBB, IP);
1970 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1971 if (unsigned Shift = ExactLog2(elementSize)) {
1972 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001973 BMI(MBB, IP, X86::SHLir32, 2,
1974 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1975 } else {
1976 // Most general case, emit a multiply...
1977 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1978 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1979
1980 // Emit a MUL to multiply the register holding the index by
1981 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001982 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001983 }
1984 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001985 NextReg = makeAnotherReg(Type::UIntTy);
1986 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001987 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001988 }
1989 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00001990 // one, so we don't need to worry about BaseReg itself, anymore.
1991 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00001992 }
1993 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00001994 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00001995 // put the answer. A 32-bit move should do it, because we are in
1996 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00001997 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001998}
1999
2000
Chris Lattner065faeb2002-12-28 20:24:02 +00002001/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2002/// frame manager, otherwise do it the hard way.
2003///
2004void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002005 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002006 const Type *Ty = I.getAllocatedType();
2007 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2008
2009 // If this is a fixed size alloca in the entry block for the function,
2010 // statically stack allocate the space.
2011 //
2012 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2013 if (I.getParent() == I.getParent()->getParent()->begin()) {
2014 TySize *= CUI->getValue(); // Get total allocated size...
2015 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2016
2017 // Create a new stack object using the frame manager...
2018 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2019 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2020 return;
2021 }
2022 }
2023
2024 // Create a register to hold the temporary result of multiplying the type size
2025 // constant by the variable amount.
2026 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2027 unsigned SrcReg1 = getReg(I.getArraySize());
2028 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
2029 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
2030
2031 // TotalSizeReg = mul <numelements>, <TypeSize>
2032 MachineBasicBlock::iterator MBBI = BB->end();
2033 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
2034
2035 // AddedSize = add <TotalSizeReg>, 15
2036 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2037 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2038
2039 // AlignedSize = and <AddedSize>, ~15
2040 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2041 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2042
Brian Gaekee48ec012002-12-13 06:46:31 +00002043 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002044 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002045
Brian Gaekee48ec012002-12-13 06:46:31 +00002046 // Put a pointer to the space into the result register, by copying
2047 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002048 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2049
Misha Brukman48196b32003-05-03 02:18:17 +00002050 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002051 // object.
2052 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002053}
Chris Lattner3e130a22003-01-13 00:32:26 +00002054
2055/// visitMallocInst - Malloc instructions are code generated into direct calls
2056/// to the library malloc.
2057///
2058void ISel::visitMallocInst(MallocInst &I) {
2059 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2060 unsigned Arg;
2061
2062 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2063 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2064 } else {
2065 Arg = makeAnotherReg(Type::UIntTy);
2066 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
2067 unsigned Op1Reg = getReg(I.getOperand(0));
2068 MachineBasicBlock::iterator MBBI = BB->end();
2069 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002070 }
2071
2072 std::vector<ValueRecord> Args;
2073 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2074 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2075 1).addExternalSymbol("malloc", true);
2076 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2077}
2078
2079
2080/// visitFreeInst - Free instructions are code gen'd to call the free libc
2081/// function.
2082///
2083void ISel::visitFreeInst(FreeInst &I) {
2084 std::vector<ValueRecord> Args;
2085 Args.push_back(ValueRecord(getReg(I.getOperand(0)),
2086 I.getOperand(0)->getType()));
2087 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2088 1).addExternalSymbol("free", true);
2089 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2090}
2091
Brian Gaeke20244b72002-12-12 15:33:40 +00002092
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002093/// createSimpleX86InstructionSelector - This pass converts an LLVM function
2094/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002095/// generated code sucks but the implementation is nice and simple.
2096///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002097Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
2098 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002099}