blob: bf4ce52833dfd0cbd9bd3b282e2245f21259b734 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Chris Lattner98599d02004-07-11 02:48:28 +000030#include <iostream>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000031using namespace llvm;
32
33namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000034 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
35 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000036 ///
37 enum TypeClass {
38 cByte, cShort, cInt, cFP, cLong
39 };
40}
41
42/// getClass - Turn a primitive type into a "class" number which is based on the
43/// size of the type, and whether or not it is floating point.
44///
45static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000046 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000047 case Type::SByteTyID:
48 case Type::UByteTyID: return cByte; // Byte operands are class #0
49 case Type::ShortTyID:
50 case Type::UShortTyID: return cShort; // Short operands are class #1
51 case Type::IntTyID:
52 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000053 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000054
55 case Type::FloatTyID:
56 case Type::DoubleTyID: return cFP; // Floating Point is #3
57
58 case Type::LongTyID:
59 case Type::ULongTyID: return cLong; // Longs are class #4
60 default:
61 assert(0 && "Invalid type to getClass!");
62 return cByte; // not reached
63 }
64}
65
66// getClassB - Just like getClass, but treat boolean values as ints.
67static inline TypeClass getClassB(const Type *Ty) {
68 if (Ty == Type::BoolTy) return cInt;
69 return getClass(Ty);
70}
71
72namespace {
73 struct ISel : public FunctionPass, InstVisitor<ISel> {
74 TargetMachine &TM;
75 MachineFunction *F; // The function we are compiling into
76 MachineBasicBlock *BB; // The current MBB we are compiling
77 int VarArgsFrameIndex; // FrameIndex for start of varargs area
78 int ReturnAddressIndex; // FrameIndex for the return address
79
Misha Brukman313efcb2004-07-09 15:45:07 +000080 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000081
Misha Brukman2834a4d2004-07-07 20:07:22 +000082 // External functions used in the Module
Misha Brukmanf3f63822004-07-08 19:41:16 +000083 Function *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn, *__udivdi3Fn,
Misha Brukman313efcb2004-07-09 15:45:07 +000084 *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000085
Misha Brukman5dfe3a92004-06-21 16:55:25 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
89 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
93 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
94
Misha Brukman2834a4d2004-07-07 20:07:22 +000095 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000096 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000097 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +000098 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +000099 Type *l = Type::LongTy;
100 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000101 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000102 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000103 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000105 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000107 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000109 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000110 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000111 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000112 // long __fixdfdi(double)
113 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
114 // float __floatdisf(long)
115 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
116 // double __floatdidf(long)
117 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000118 // void* malloc(size_t)
119 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
120 // void free(void*)
121 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000122 return false;
123 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000124
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000125 /// runOnFunction - Top level implementation of instruction selection for
126 /// the entire function.
127 ///
128 bool runOnFunction(Function &Fn) {
129 // First pass over the function, lower any unknown intrinsic functions
130 // with the IntrinsicLowering class.
131 LowerUnknownIntrinsicFunctionCalls(Fn);
132
133 F = &MachineFunction::construct(&Fn, TM);
134
135 // Create all of the machine basic blocks for the function...
136 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
137 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
138
139 BB = &F->front();
140
141 // Set up a frame object for the return address. This is used by the
142 // llvm.returnaddress & llvm.frameaddress intrinisics.
143 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
144
145 // Copy incoming arguments off of the stack...
146 LoadArgumentsToVirtualRegs(Fn);
147
148 // Instruction select everything except PHI nodes
149 visit(Fn);
150
151 // Select the PHI nodes
152 SelectPHINodes();
153
154 RegMap.clear();
155 MBBMap.clear();
156 AllocaMap.clear();
157 F = 0;
158 // We always build a machine code representation for the function
159 return true;
160 }
161
162 virtual const char *getPassName() const {
163 return "PowerPC Simple Instruction Selection";
164 }
165
166 /// visitBasicBlock - This method is called when we are visiting a new basic
167 /// block. This simply creates a new MachineBasicBlock to emit code into
168 /// and adds it to the current MachineFunction. Subsequent visit* for
169 /// instructions will be invoked for all instructions in the basic block.
170 ///
171 void visitBasicBlock(BasicBlock &LLVM_BB) {
172 BB = MBBMap[&LLVM_BB];
173 }
174
175 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
176 /// function, lowering any calls to unknown intrinsic functions into the
177 /// equivalent LLVM code.
178 ///
179 void LowerUnknownIntrinsicFunctionCalls(Function &F);
180
181 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
182 /// from the stack into virtual registers.
183 ///
184 void LoadArgumentsToVirtualRegs(Function &F);
185
186 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
187 /// because we have to generate our sources into the source basic blocks,
188 /// not the current one.
189 ///
190 void SelectPHINodes();
191
192 // Visitation methods for various instructions. These methods simply emit
193 // fixed PowerPC code for each instruction.
194
195 // Control flow operators
196 void visitReturnInst(ReturnInst &RI);
197 void visitBranchInst(BranchInst &BI);
198
199 struct ValueRecord {
200 Value *Val;
201 unsigned Reg;
202 const Type *Ty;
203 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
204 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
205 };
206 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000207 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000208 void visitCallInst(CallInst &I);
209 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
210
211 // Arithmetic operators
212 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
213 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
214 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
215 void visitMul(BinaryOperator &B);
216
217 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
218 void visitRem(BinaryOperator &B) { visitDivRem(B); }
219 void visitDivRem(BinaryOperator &B);
220
221 // Bitwise operators
222 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
223 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
224 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
225
226 // Comparison operators...
227 void visitSetCondInst(SetCondInst &I);
228 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
229 MachineBasicBlock *MBB,
230 MachineBasicBlock::iterator MBBI);
231 void visitSelectInst(SelectInst &SI);
232
233
234 // Memory Instructions
235 void visitLoadInst(LoadInst &I);
236 void visitStoreInst(StoreInst &I);
237 void visitGetElementPtrInst(GetElementPtrInst &I);
238 void visitAllocaInst(AllocaInst &I);
239 void visitMallocInst(MallocInst &I);
240 void visitFreeInst(FreeInst &I);
241
242 // Other operators
243 void visitShiftInst(ShiftInst &I);
244 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
245 void visitCastInst(CastInst &I);
246 void visitVANextInst(VANextInst &I);
247 void visitVAArgInst(VAArgInst &I);
248
249 void visitInstruction(Instruction &I) {
250 std::cerr << "Cannot instruction select: " << I;
251 abort();
252 }
253
254 /// promote32 - Make a value 32-bits wide, and put it somewhere.
255 ///
256 void promote32(unsigned targetReg, const ValueRecord &VR);
257
258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
260 ///
261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
262 Value *Src, User::op_iterator IdxBegin,
263 User::op_iterator IdxEnd, unsigned TargetReg);
264
265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
267 ///
268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
269 Value *Src, const Type *DestTy, unsigned TargetReg);
270
271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
273 ///
274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
275 MachineBasicBlock::iterator IP,
276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
278
279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
285
286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
288
289 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Reg);
292 void doMultiplyConst(MachineBasicBlock *MBB,
293 MachineBasicBlock::iterator MBBI,
294 unsigned DestReg, const Type *DestTy,
295 unsigned Op0Reg, unsigned Op1Val);
296
297 void emitDivRemOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1, bool isDiv,
300 unsigned TargetReg);
301
302 /// emitSetCCOperation - Common code shared between visitSetCondInst and
303 /// constant expression support.
304 ///
305 void emitSetCCOperation(MachineBasicBlock *BB,
306 MachineBasicBlock::iterator IP,
307 Value *Op0, Value *Op1, unsigned Opcode,
308 unsigned TargetReg);
309
310 /// emitShiftOperation - Common code shared between visitShiftInst and
311 /// constant expression support.
312 ///
313 void emitShiftOperation(MachineBasicBlock *MBB,
314 MachineBasicBlock::iterator IP,
315 Value *Op, Value *ShiftAmount, bool isLeftShift,
316 const Type *ResultTy, unsigned DestReg);
317
318 /// emitSelectOperation - Common code shared between visitSelectInst and the
319 /// constant expression support.
320 void emitSelectOperation(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 Value *Cond, Value *TrueVal, Value *FalseVal,
323 unsigned DestReg);
324
325 /// copyConstantToRegister - Output the instructions required to put the
326 /// specified constant into the specified register.
327 ///
328 void copyConstantToRegister(MachineBasicBlock *MBB,
329 MachineBasicBlock::iterator MBBI,
330 Constant *C, unsigned Reg);
331
332 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
333 unsigned LHS, unsigned RHS);
334
335 /// makeAnotherReg - This method returns the next register number we haven't
336 /// yet used.
337 ///
338 /// Long values are handled somewhat specially. They are always allocated
339 /// as pairs of 32 bit integer values. The register number returned is the
340 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
341 /// of the long value.
342 ///
343 unsigned makeAnotherReg(const Type *Ty) {
344 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
345 "Current target doesn't have PPC reg info??");
346 const PowerPCRegisterInfo *MRI =
347 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
348 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
349 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
350 // Create the lower part
351 F->getSSARegMap()->createVirtualRegister(RC);
352 // Create the upper part.
353 return F->getSSARegMap()->createVirtualRegister(RC)-1;
354 }
355
356 // Add the mapping of regnumber => reg class to MachineFunction
357 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
358 return F->getSSARegMap()->createVirtualRegister(RC);
359 }
360
361 /// getReg - This method turns an LLVM value into a register number.
362 ///
363 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
364 unsigned getReg(Value *V) {
365 // Just append to the end of the current bb.
366 MachineBasicBlock::iterator It = BB->end();
367 return getReg(V, BB, It);
368 }
369 unsigned getReg(Value *V, MachineBasicBlock *MBB,
370 MachineBasicBlock::iterator IPt);
371
372 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
373 /// that is to be statically allocated with the initial stack frame
374 /// adjustment.
375 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
376 };
377}
378
379/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
380/// instruction in the entry block, return it. Otherwise, return a null
381/// pointer.
382static AllocaInst *dyn_castFixedAlloca(Value *V) {
383 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
384 BasicBlock *BB = AI->getParent();
385 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
386 return AI;
387 }
388 return 0;
389}
390
391/// getReg - This method turns an LLVM value into a register number.
392///
393unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
394 MachineBasicBlock::iterator IPt) {
395 // If this operand is a constant, emit the code to copy the constant into
396 // the register here...
397 //
398 if (Constant *C = dyn_cast<Constant>(V)) {
399 unsigned Reg = makeAnotherReg(V->getType());
400 copyConstantToRegister(MBB, IPt, C, Reg);
401 return Reg;
402 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000403 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000404 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000405 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000406 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000407 // Move PC to destination reg
408 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000409 // Move value at PC + distance into return reg
410 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000411 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000412 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000413 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000414 return Reg2;
415 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
416 // Do not emit noop casts at all.
417 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
418 return getReg(CI->getOperand(0), MBB, IPt);
419 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
420 unsigned Reg = makeAnotherReg(V->getType());
421 unsigned FI = getFixedSizedAllocaFI(AI);
422 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
423 return Reg;
424 }
425
426 unsigned &Reg = RegMap[V];
427 if (Reg == 0) {
428 Reg = makeAnotherReg(V->getType());
429 RegMap[V] = Reg;
430 }
431
432 return Reg;
433}
434
435/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
436/// that is to be statically allocated with the initial stack frame
437/// adjustment.
438unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
439 // Already computed this?
440 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
441 if (I != AllocaMap.end() && I->first == AI) return I->second;
442
443 const Type *Ty = AI->getAllocatedType();
444 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
445 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
446 TySize *= CUI->getValue(); // Get total allocated size...
447 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
448
449 // Create a new stack object using the frame manager...
450 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
451 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
452 return FrameIdx;
453}
454
455
456/// copyConstantToRegister - Output the instructions required to put the
457/// specified constant into the specified register.
458///
459void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
460 MachineBasicBlock::iterator IP,
461 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000462 if (C->getType()->isIntegral()) {
463 unsigned Class = getClassB(C->getType());
464
465 if (Class == cLong) {
466 // Copy the value into the register pair.
467 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000468 unsigned hiTmp = makeAnotherReg(Type::IntTy);
469 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000470 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
471 .addImm(Val >> 48);
472 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
473 .addImm((Val >> 32) & 0xFFFF);
474 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
475 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000476 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
477 return;
478 }
479
480 assert(Class <= cInt && "Type not handled yet!");
481
482 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000483 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
484 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000485 } else if (Class == cByte || Class == cShort) {
486 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000487 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
488 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000489 } else {
490 ConstantInt *CI = cast<ConstantInt>(C);
491 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
492 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000493 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
494 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000495 } else {
496 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000497 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
498 .addImm(CI->getRawValue() >> 16);
499 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
500 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000501 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000502 }
503 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000504 // We need to spill the constant to memory...
505 MachineConstantPool *CP = F->getConstantPool();
506 unsigned CPI = CP->getConstantPoolIndex(CFP);
507 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000508
Misha Brukmand18a31d2004-07-06 22:51:53 +0000509 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000510
511 // Load addr of constant to reg; constant is located at PC + distance
512 unsigned CurPC = makeAnotherReg(Type::IntTy);
513 unsigned Reg1 = makeAnotherReg(Type::IntTy);
514 unsigned Reg2 = makeAnotherReg(Type::IntTy);
515 // Move PC to destination reg
516 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
517 // Move value at PC + distance into return reg
518 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
519 .addConstantPoolIndex(CPI);
520 BuildMI(*MBB, IP, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
521 .addConstantPoolIndex(CPI);
522
Misha Brukmand18a31d2004-07-06 22:51:53 +0000523 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfc879c32004-07-08 18:02:38 +0000524 BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000525 } else if (isa<ConstantPointerNull>(C)) {
526 // Copy zero (null pointer) to the register.
527 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
528 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000529 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
530 .addGlobalAddress(CPR->getValue());
531 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
532 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000533 } else {
534 std::cerr << "Offending constant: " << C << "\n";
535 assert(0 && "Type not handled yet!");
536 }
537}
538
539/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
540/// the stack into virtual registers.
541///
542/// FIXME: When we can calculate which args are coming in via registers
543/// source them from there instead.
544void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
545 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
546 unsigned GPR_remaining = 8;
547 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000548 unsigned GPR_idx = 0, FPR_idx = 0;
549 static const unsigned GPR[] = {
550 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
551 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
552 };
553 static const unsigned FPR[] = {
554 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000555 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000556 };
Misha Brukman422791f2004-06-21 17:41:12 +0000557
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000558 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000559
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000560 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
561 bool ArgLive = !I->use_empty();
562 unsigned Reg = ArgLive ? getReg(*I) : 0;
563 int FI; // Frame object index
564
565 switch (getClassB(I->getType())) {
566 case cByte:
567 if (ArgLive) {
568 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000569 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000570 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
571 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000572 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000573 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000574 }
575 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000576 break;
577 case cShort:
578 if (ArgLive) {
579 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000580 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000581 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
582 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000583 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000584 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000585 }
586 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000587 break;
588 case cInt:
589 if (ArgLive) {
590 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000591 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000592 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
593 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000594 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000595 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000596 }
597 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000598 break;
599 case cLong:
600 if (ArgLive) {
601 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000602 if (GPR_remaining > 1) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000603 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
604 .addReg(GPR[GPR_idx]);
605 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
606 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000607 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000608 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
609 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000610 }
611 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000612 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000613 if (GPR_remaining > 1) {
614 GPR_remaining--; // uses up 2 GPRs
615 GPR_idx++;
616 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000617 break;
618 case cFP:
619 if (ArgLive) {
620 unsigned Opcode;
621 if (I->getType() == Type::FloatTy) {
622 Opcode = PPC32::LFS;
623 FI = MFI->CreateFixedObject(4, ArgOffset);
624 } else {
625 Opcode = PPC32::LFD;
626 FI = MFI->CreateFixedObject(8, ArgOffset);
627 }
Misha Brukman422791f2004-06-21 17:41:12 +0000628 if (FPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000629 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
630 FPR_remaining--;
631 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000632 } else {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000633 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000634 }
635 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000636 if (I->getType() == Type::DoubleTy) {
637 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000638 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000639 GPR_remaining--; // uses up 2 GPRs
640 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000641 }
642 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000643 break;
644 default:
645 assert(0 && "Unhandled argument type!");
646 }
647 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000648 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000649 GPR_remaining--; // uses up 2 GPRs
650 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000651 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000652 }
653
654 // If the function takes variable number of arguments, add a frame offset for
655 // the start of the first vararg value... this is used to expand
656 // llvm.va_start.
657 if (Fn.getFunctionType()->isVarArg())
658 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
659}
660
661
662/// SelectPHINodes - Insert machine code to generate phis. This is tricky
663/// because we have to generate our sources into the source basic blocks, not
664/// the current one.
665///
666void ISel::SelectPHINodes() {
667 const TargetInstrInfo &TII = *TM.getInstrInfo();
668 const Function &LF = *F->getFunction(); // The LLVM function...
669 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
670 const BasicBlock *BB = I;
671 MachineBasicBlock &MBB = *MBBMap[I];
672
673 // Loop over all of the PHI nodes in the LLVM basic block...
674 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
675 for (BasicBlock::const_iterator I = BB->begin();
676 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
677
678 // Create a new machine instr PHI node, and insert it.
679 unsigned PHIReg = getReg(*PN);
680 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
681 PPC32::PHI, PN->getNumOperands(), PHIReg);
682
683 MachineInstr *LongPhiMI = 0;
684 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
685 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
686 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
687
688 // PHIValues - Map of blocks to incoming virtual registers. We use this
689 // so that we only initialize one incoming value for a particular block,
690 // even if the block has multiple entries in the PHI node.
691 //
692 std::map<MachineBasicBlock*, unsigned> PHIValues;
693
694 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000695 MachineBasicBlock *PredMBB = 0;
696 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
697 PE = MBB.pred_end (); PI != PE; ++PI)
698 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
699 PredMBB = *PI;
700 break;
701 }
702 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
703
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000704 unsigned ValReg;
705 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
706 PHIValues.lower_bound(PredMBB);
707
708 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
709 // We already inserted an initialization of the register for this
710 // predecessor. Recycle it.
711 ValReg = EntryIt->second;
712
713 } else {
714 // Get the incoming value into a virtual register.
715 //
716 Value *Val = PN->getIncomingValue(i);
717
718 // If this is a constant or GlobalValue, we may have to insert code
719 // into the basic block to compute it into a virtual register.
720 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
721 isa<GlobalValue>(Val)) {
722 // Simple constants get emitted at the end of the basic block,
723 // before any terminator instructions. We "know" that the code to
724 // move a constant into a register will never clobber any flags.
725 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
726 } else {
727 // Because we don't want to clobber any values which might be in
728 // physical registers with the computation of this constant (which
729 // might be arbitrarily complex if it is a constant expression),
730 // just insert the computation at the top of the basic block.
731 MachineBasicBlock::iterator PI = PredMBB->begin();
732
733 // Skip over any PHI nodes though!
734 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
735 ++PI;
736
737 ValReg = getReg(Val, PredMBB, PI);
738 }
739
740 // Remember that we inserted a value for this PHI for this predecessor
741 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
742 }
743
744 PhiMI->addRegOperand(ValReg);
745 PhiMI->addMachineBasicBlockOperand(PredMBB);
746 if (LongPhiMI) {
747 LongPhiMI->addRegOperand(ValReg+1);
748 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
749 }
750 }
751
752 // Now that we emitted all of the incoming values for the PHI node, make
753 // sure to reposition the InsertPoint after the PHI that we just added.
754 // This is needed because we might have inserted a constant into this
755 // block, right after the PHI's which is before the old insert point!
756 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
757 ++PHIInsertPoint;
758 }
759 }
760}
761
762
763// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
764// it into the conditional branch or select instruction which is the only user
765// of the cc instruction. This is the case if the conditional branch is the
766// only user of the setcc, and if the setcc is in the same basic block as the
767// conditional branch. We also don't handle long arguments below, so we reject
768// them here as well.
769//
770static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
771 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
772 if (SCI->hasOneUse()) {
773 Instruction *User = cast<Instruction>(SCI->use_back());
774 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
775 SCI->getParent() == User->getParent() &&
776 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
777 SCI->getOpcode() == Instruction::SetEQ ||
778 SCI->getOpcode() == Instruction::SetNE))
779 return SCI;
780 }
781 return 0;
782}
783
784// Return a fixed numbering for setcc instructions which does not depend on the
785// order of the opcodes.
786//
787static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000788 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000789 default: assert(0 && "Unknown setcc instruction!");
790 case Instruction::SetEQ: return 0;
791 case Instruction::SetNE: return 1;
792 case Instruction::SetLT: return 2;
793 case Instruction::SetGE: return 3;
794 case Instruction::SetGT: return 4;
795 case Instruction::SetLE: return 5;
796 }
797}
798
Misha Brukmane9c65512004-07-06 15:32:44 +0000799static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
800 switch (Opcode) {
801 default: assert(0 && "Unknown setcc instruction!");
802 case Instruction::SetEQ: return PPC32::BEQ;
803 case Instruction::SetNE: return PPC32::BNE;
804 case Instruction::SetLT: return PPC32::BLT;
805 case Instruction::SetGE: return PPC32::BGE;
806 case Instruction::SetGT: return PPC32::BGT;
807 case Instruction::SetLE: return PPC32::BLE;
808 }
809}
810
811static unsigned invertPPCBranchOpcode(unsigned Opcode) {
812 switch (Opcode) {
813 default: assert(0 && "Unknown PPC32 branch opcode!");
814 case PPC32::BEQ: return PPC32::BNE;
815 case PPC32::BNE: return PPC32::BEQ;
816 case PPC32::BLT: return PPC32::BGE;
817 case PPC32::BGE: return PPC32::BLT;
818 case PPC32::BGT: return PPC32::BLE;
819 case PPC32::BLE: return PPC32::BGT;
820 }
821}
822
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000823/// emitUCOM - emits an unordered FP compare.
824void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
825 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000826 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000827}
828
829// EmitComparison - This function emits a comparison of the two operands,
830// returning the extended setcc code to use.
831unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
832 MachineBasicBlock *MBB,
833 MachineBasicBlock::iterator IP) {
834 // The arguments are already supposed to be of the same type.
835 const Type *CompTy = Op0->getType();
836 unsigned Class = getClassB(CompTy);
837 unsigned Op0r = getReg(Op0, MBB, IP);
838
839 // Special case handling of: cmp R, i
840 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000841 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000842 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
843 if (Class == cByte || Class == cShort || Class == cInt) {
844 unsigned Op1v = CI->getRawValue();
845
846 // Mask off any upper bits of the constant, if there are any...
847 Op1v &= (1ULL << (8 << Class)) - 1;
848
Misha Brukman422791f2004-06-21 17:41:12 +0000849 // Compare immediate or promote to reg?
850 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000851 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
852 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000853 } else {
854 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000855 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
856 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000857 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000858 return OpNum;
859 } else {
860 assert(Class == cLong && "Unknown integer class!");
861 unsigned LowCst = CI->getRawValue();
862 unsigned HiCst = CI->getRawValue() >> 32;
863 if (OpNum < 2) { // seteq, setne
864 unsigned LoTmp = Op0r;
865 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000866 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000867 unsigned LoTmp = makeAnotherReg(Type::IntTy);
868 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000869 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
870 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000871 }
872 unsigned HiTmp = Op0r+1;
873 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000874 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000875 unsigned HiTmp = makeAnotherReg(Type::IntTy);
876 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000877 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
878 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000879 }
880 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
881 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
882 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
883 return OpNum;
884 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000885 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000886 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
887 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000888 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000889 }
890 }
891 }
892
893 unsigned Op1r = getReg(Op1, MBB, IP);
894 switch (Class) {
895 default: assert(0 && "Unknown type class!");
896 case cByte:
897 case cShort:
898 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000899 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
900 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000901 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000902
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000903 case cFP:
904 emitUCOM(MBB, IP, Op0r, Op1r);
905 break;
906
907 case cLong:
908 if (OpNum < 2) { // seteq, setne
909 unsigned LoTmp = makeAnotherReg(Type::IntTy);
910 unsigned HiTmp = makeAnotherReg(Type::IntTy);
911 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
912 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
913 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
914 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
915 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
916 break; // Allow the sete or setne to be generated from flags set by OR
917 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000918 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000919 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
920 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000921 return OpNum;
922 }
923 }
924 return OpNum;
925}
926
Misha Brukmand18a31d2004-07-06 22:51:53 +0000927/// visitSetCondInst - emit code to calculate the condition via
928/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000929///
930void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000931 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000932 return;
933
Misha Brukman425ff242004-07-01 21:34:10 +0000934 unsigned Op0Reg = getReg(I.getOperand(0));
935 unsigned Op1Reg = getReg(I.getOperand(1));
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000936 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000937 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000938 const Type *Ty = I.getOperand (0)->getType();
939
Misha Brukmand18a31d2004-07-06 22:51:53 +0000940 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
941
942 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000943 MachineBasicBlock *thisMBB = BB;
944 const BasicBlock *LLVM_BB = BB->getBasicBlock();
945 // thisMBB:
946 // ...
947 // cmpTY cr0, r1, r2
948 // bCC copy1MBB
949 // b copy0MBB
950
951 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
952 // if we could insert other, non-terminator instructions after the
953 // bCC. But MBB->getFirstTerminator() can't understand this.
954 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
955 F->getBasicBlockList().push_back(copy1MBB);
956 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
957 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
958 F->getBasicBlockList().push_back(copy0MBB);
959 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
960 // Update machine-CFG edges
961 BB->addSuccessor(copy1MBB);
962 BB->addSuccessor(copy0MBB);
963
964 // copy0MBB:
965 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +0000966 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000967 BB = copy0MBB;
968 unsigned FalseValue = makeAnotherReg(I.getType());
969 BuildMI(BB, PPC32::LI, 1, FalseValue).addZImm(0);
970 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
971 F->getBasicBlockList().push_back(sinkMBB);
972 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
973 // Update machine-CFG edges
974 BB->addSuccessor(sinkMBB);
975
976 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
977 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
978 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
979 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
980
981 // copy1MBB:
982 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +0000983 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000984 BB = copy1MBB;
985 unsigned TrueValue = makeAnotherReg (I.getType ());
986 BuildMI(BB, PPC32::LI, 1, TrueValue).addZImm(1);
987 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
988 // Update machine-CFG edges
989 BB->addSuccessor(sinkMBB);
990
991 // sinkMBB:
992 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
993 // ...
994 BB = sinkMBB;
995 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
996 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000997}
998
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000999void ISel::visitSelectInst(SelectInst &SI) {
1000 unsigned DestReg = getReg(SI);
1001 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001002 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1003 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001004}
1005
1006/// emitSelect - Common code shared between visitSelectInst and the constant
1007/// expression support.
1008/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1009/// no select instruction. FSEL only works for comparisons against zero.
1010void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1011 MachineBasicBlock::iterator IP,
1012 Value *Cond, Value *TrueVal, Value *FalseVal,
1013 unsigned DestReg) {
1014 unsigned SelectClass = getClassB(TrueVal->getType());
1015
1016 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1017 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1018
1019 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +00001020 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001021 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001022 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001023 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001024 }
1025
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001026 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +00001027 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
1028 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001029 return;
1030 }
1031
1032 unsigned CondReg = getReg(Cond, MBB, IP);
1033 unsigned numZeros = makeAnotherReg(Type::IntTy);
1034 unsigned falseHi = makeAnotherReg(Type::IntTy);
1035 unsigned falseAll = makeAnotherReg(Type::IntTy);
1036 unsigned trueAll = makeAnotherReg(Type::IntTy);
1037 unsigned Temp1 = makeAnotherReg(Type::IntTy);
1038 unsigned Temp2 = makeAnotherReg(Type::IntTy);
1039
1040 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001041 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
1042 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001043 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
1044 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
1045 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
1046 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
1047 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
1048
1049 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001050 unsigned Temp3 = makeAnotherReg(Type::IntTy);
1051 unsigned Temp4 = makeAnotherReg(Type::IntTy);
1052 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
1053 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
1054 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001055 }
1056
1057 return;
1058}
1059
1060
1061
1062/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1063/// operand, in the specified target register.
1064///
1065void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1066 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1067
1068 Value *Val = VR.Val;
1069 const Type *Ty = VR.Ty;
1070 if (Val) {
1071 if (Constant *C = dyn_cast<Constant>(Val)) {
1072 Val = ConstantExpr::getCast(C, Type::IntTy);
1073 Ty = Type::IntTy;
1074 }
1075
Misha Brukman2fec9902004-06-21 20:22:03 +00001076 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001077 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1078 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1079
1080 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001081 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1082 } else {
1083 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001084 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1085 .addImm(TheVal >> 16);
1086 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1087 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001088 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001089 return;
1090 }
1091 }
1092
1093 // Make sure we have the register number for this value...
1094 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1095
1096 switch (getClassB(Ty)) {
1097 case cByte:
1098 // Extend value into target register (8->32)
1099 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001100 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1101 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001102 else
1103 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1104 break;
1105 case cShort:
1106 // Extend value into target register (16->32)
1107 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001108 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1109 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001110 else
1111 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1112 break;
1113 case cInt:
1114 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001115 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001116 break;
1117 default:
1118 assert(0 && "Unpromotable operand class in promote32");
1119 }
1120}
1121
Misha Brukman2fec9902004-06-21 20:22:03 +00001122/// visitReturnInst - implemented with BLR
1123///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001124void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001125 // Only do the processing if this is a non-void return
1126 if (I.getNumOperands() > 0) {
1127 Value *RetVal = I.getOperand(0);
1128 switch (getClassB(RetVal->getType())) {
1129 case cByte: // integral return values: extend or move into r3 and return
1130 case cShort:
1131 case cInt:
1132 promote32(PPC32::R3, ValueRecord(RetVal));
1133 break;
1134 case cFP: { // Floats & Doubles: Return in f1
1135 unsigned RetReg = getReg(RetVal);
1136 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1137 break;
1138 }
1139 case cLong: {
1140 unsigned RetReg = getReg(RetVal);
1141 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1142 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1143 break;
1144 }
1145 default:
1146 visitInstruction(I);
1147 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001148 }
1149 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1150}
1151
1152// getBlockAfter - Return the basic block which occurs lexically after the
1153// specified one.
1154static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1155 Function::iterator I = BB; ++I; // Get iterator to next block
1156 return I != BB->getParent()->end() ? &*I : 0;
1157}
1158
1159/// visitBranchInst - Handle conditional and unconditional branches here. Note
1160/// that since code layout is frozen at this point, that if we are trying to
1161/// jump to a block that is the immediate successor of the current block, we can
1162/// just make a fall-through (but we don't currently).
1163///
1164void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001165 // Update machine-CFG edges
1166 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1167 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001168 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001169
1170 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001171
Misha Brukman2fec9902004-06-21 20:22:03 +00001172 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001173 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001174 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1175 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001176 }
1177
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001178 // See if we can fold the setcc into the branch itself...
1179 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1180 if (SCI == 0) {
1181 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1182 // computed some other way...
1183 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001184 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001185 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001186 if (BI.getSuccessor(1) == NextBB) {
1187 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001188 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001189 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001190 } else {
Misha Brukmane9c65512004-07-06 15:32:44 +00001191 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001192 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001193
1194 if (BI.getSuccessor(0) != NextBB)
1195 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1196 }
1197 return;
1198 }
1199
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001200 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001201 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001202 MachineBasicBlock::iterator MII = BB->end();
1203 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001204
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001205 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001206 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001207 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001208 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001209 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001210 } else {
1211 // Change to the inverse condition...
1212 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001213 Opcode = invertPPCBranchOpcode(Opcode);
1214 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001215 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001216 }
1217 }
1218}
1219
Misha Brukmanfc879c32004-07-08 18:02:38 +00001220static Constant* minUConstantForValue(uint64_t val) {
1221 if (val <= 1)
1222 return ConstantBool::get(val);
1223 else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
1224 return ConstantUInt::get(Type::UShortTy, val);
1225 else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
1226 return ConstantUInt::get(Type::UIntTy, val);
1227 else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
1228 return ConstantUInt::get(Type::ULongTy, val);
1229
1230 std::cerr << "Value: " << val << " not accepted for any integral type!\n";
1231 abort();
1232}
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001233
1234/// doCall - This emits an abstract call instruction, setting up the arguments
1235/// and the return value as appropriate. For the actual function call itself,
1236/// it inserts the specified CallMI instruction into the stream.
1237///
1238/// FIXME: See Documentation at the following URL for "correct" behavior
1239/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1240void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001241 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001242 // Count how many bytes are to be pushed on the stack...
1243 unsigned NumBytes = 0;
1244
1245 if (!Args.empty()) {
1246 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1247 switch (getClassB(Args[i].Ty)) {
1248 case cByte: case cShort: case cInt:
1249 NumBytes += 4; break;
1250 case cLong:
1251 NumBytes += 8; break;
1252 case cFP:
1253 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1254 break;
1255 default: assert(0 && "Unknown class!");
1256 }
1257
1258 // Adjust the stack pointer for the new arguments...
1259 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1260
1261 // Arguments go on the stack in reverse order, as specified by the ABI.
1262 unsigned ArgOffset = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001263 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001264 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001265 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001266 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1267 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1268 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001269 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001270 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1271 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1272 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001273 };
Misha Brukman422791f2004-06-21 17:41:12 +00001274
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001275 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1276 unsigned ArgReg;
1277 switch (getClassB(Args[i].Ty)) {
1278 case cByte:
1279 case cShort:
1280 // Promote arg to 32 bits wide into a temporary register...
1281 ArgReg = makeAnotherReg(Type::UIntTy);
1282 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001283
1284 // Reg or stack?
1285 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001286 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001287 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001288 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001289 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1290 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001291 }
1292 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001293 case cInt:
1294 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1295
Misha Brukman422791f2004-06-21 17:41:12 +00001296 // Reg or stack?
1297 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001298 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001299 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001300 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001301 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1302 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001303 }
1304 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001305 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001306 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001307
Misha Brukman422791f2004-06-21 17:41:12 +00001308 // Reg or stack?
1309 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001310 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001311 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001312 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001313 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001314 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001315 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1316 .addReg(PPC32::R1);
1317 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1318 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001319 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001320
1321 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001322 GPR_remaining -= 1; // uses up 2 GPRs
1323 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001324 break;
1325 case cFP:
1326 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1327 if (Args[i].Ty == Type::FloatTy) {
Misha Brukmanfc879c32004-07-08 18:02:38 +00001328 assert(!isVarArg && "Cannot pass floats to vararg functions!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001329 // Reg or stack?
1330 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001331 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001332 FPR_remaining--;
1333 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001334 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001335 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1336 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001337 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001338 } else {
1339 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001340 // Reg or stack?
1341 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001342 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001343 FPR_remaining--;
1344 FPR_idx++;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001345 // For vararg functions, must pass doubles via int regs as well
1346 if (isVarArg) {
Misha Brukman0aa97c62004-07-08 18:27:59 +00001347 Value *Val = Args[i].Val;
1348 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Val)) {
1349 union DU {
1350 double FVal;
1351 struct {
1352 uint32_t hi32;
1353 uint32_t lo32;
1354 } UVal;
1355 } U;
1356 U.FVal = CFP->getValue();
1357 if (GPR_remaining > 0) {
1358 Constant *hi32 = minUConstantForValue(U.UVal.hi32);
1359 copyConstantToRegister(BB, BB->end(), hi32, GPR[GPR_idx]);
1360 }
1361 if (GPR_remaining > 1) {
1362 Constant *lo32 = minUConstantForValue(U.UVal.lo32);
1363 copyConstantToRegister(BB, BB->end(), lo32, GPR[GPR_idx+1]);
1364 }
1365 } else {
1366 // Since this is not a constant, we must load it into int regs
1367 // via memory
1368 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1369 .addReg(PPC32::R1);
1370 if (GPR_remaining > 0)
1371 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1372 .addReg(PPC32::R1);
1373 if (GPR_remaining > 1)
1374 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
1375 .addImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001376 }
1377 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001378 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001379 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1380 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001381 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001382
Misha Brukman1916bf92004-06-24 21:56:15 +00001383 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukmanfc879c32004-07-08 18:02:38 +00001384 GPR_remaining--; // uses up 2 GPRs
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001385 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001386 }
1387 break;
1388
1389 default: assert(0 && "Unknown class!");
1390 }
1391 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001392 GPR_remaining--;
1393 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001394 }
1395 } else {
1396 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1397 }
1398
1399 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001400 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1401
1402 // If there is a return value, scavenge the result from the location the call
1403 // leaves it in...
1404 //
1405 if (Ret.Ty != Type::VoidTy) {
1406 unsigned DestClass = getClassB(Ret.Ty);
1407 switch (DestClass) {
1408 case cByte:
1409 case cShort:
1410 case cInt:
1411 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001412 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001413 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001414 case cFP: // Floating-point return values live in f1
1415 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1416 break;
1417 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001418 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1419 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001420 break;
1421 default: assert(0 && "Unknown class!");
1422 }
1423 }
1424}
1425
1426
1427/// visitCallInst - Push args on stack and do a procedure call instruction.
1428void ISel::visitCallInst(CallInst &CI) {
1429 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001430 Function *F = CI.getCalledFunction();
1431 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001432 // Is it an intrinsic function call?
1433 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1434 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1435 return;
1436 }
1437
1438 // Emit a CALL instruction with PC-relative displacement.
1439 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1440 } else { // Emit an indirect call through the CTR
1441 unsigned Reg = getReg(CI.getCalledValue());
1442 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1443 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1444 }
1445
1446 std::vector<ValueRecord> Args;
1447 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1448 Args.push_back(ValueRecord(CI.getOperand(i)));
1449
1450 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001451 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1452 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001453}
1454
1455
1456/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1457///
1458static Value *dyncastIsNan(Value *V) {
1459 if (CallInst *CI = dyn_cast<CallInst>(V))
1460 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001461 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001462 return CI->getOperand(1);
1463 return 0;
1464}
1465
1466/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1467/// or's whos operands are all calls to the isnan predicate.
1468static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1469 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1470
1471 // Check all uses, which will be or's of isnans if this predicate is true.
1472 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1473 Instruction *I = cast<Instruction>(*UI);
1474 if (I->getOpcode() != Instruction::Or) return false;
1475 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1476 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1477 }
1478
1479 return true;
1480}
1481
1482/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1483/// function, lowering any calls to unknown intrinsic functions into the
1484/// equivalent LLVM code.
1485///
1486void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1487 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1488 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1489 if (CallInst *CI = dyn_cast<CallInst>(I++))
1490 if (Function *F = CI->getCalledFunction())
1491 switch (F->getIntrinsicID()) {
1492 case Intrinsic::not_intrinsic:
1493 case Intrinsic::vastart:
1494 case Intrinsic::vacopy:
1495 case Intrinsic::vaend:
1496 case Intrinsic::returnaddress:
1497 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001498 // FIXME: should lower this ourselves
1499 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001500 // We directly implement these intrinsics
1501 break;
1502 case Intrinsic::readio: {
1503 // On PPC, memory operations are in-order. Lower this intrinsic
1504 // into a volatile load.
1505 Instruction *Before = CI->getPrev();
1506 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1507 CI->replaceAllUsesWith(LI);
1508 BB->getInstList().erase(CI);
1509 break;
1510 }
1511 case Intrinsic::writeio: {
1512 // On PPC, memory operations are in-order. Lower this intrinsic
1513 // into a volatile store.
1514 Instruction *Before = CI->getPrev();
1515 StoreInst *LI = new StoreInst(CI->getOperand(1),
1516 CI->getOperand(2), true, CI);
1517 CI->replaceAllUsesWith(LI);
1518 BB->getInstList().erase(CI);
1519 break;
1520 }
1521 default:
1522 // All other intrinsic calls we must lower.
1523 Instruction *Before = CI->getPrev();
1524 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1525 if (Before) { // Move iterator to instruction after call
1526 I = Before; ++I;
1527 } else {
1528 I = BB->begin();
1529 }
1530 }
1531}
1532
1533void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1534 unsigned TmpReg1, TmpReg2, TmpReg3;
1535 switch (ID) {
1536 case Intrinsic::vastart:
1537 // Get the address of the first vararg value...
1538 TmpReg1 = getReg(CI);
1539 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1540 return;
1541
1542 case Intrinsic::vacopy:
1543 TmpReg1 = getReg(CI);
1544 TmpReg2 = getReg(CI.getOperand(1));
1545 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1546 return;
1547 case Intrinsic::vaend: return;
1548
1549 case Intrinsic::returnaddress:
1550 case Intrinsic::frameaddress:
1551 TmpReg1 = getReg(CI);
1552 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1553 if (ID == Intrinsic::returnaddress) {
1554 // Just load the return address
1555 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1556 ReturnAddressIndex);
1557 } else {
1558 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1559 ReturnAddressIndex, -4, false);
1560 }
1561 } else {
1562 // Values other than zero are not implemented yet.
1563 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1564 }
1565 return;
1566
Misha Brukmana2916ce2004-06-21 17:58:36 +00001567#if 0
1568 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001569 case Intrinsic::isnan:
1570 // If this is only used by 'isunordered' style comparisons, don't emit it.
1571 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1572 TmpReg1 = getReg(CI.getOperand(1));
1573 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001574 TmpReg2 = makeAnotherReg(Type::IntTy);
1575 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001576 TmpReg3 = getReg(CI);
1577 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1578 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001579#endif
1580
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001581 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1582 }
1583}
1584
1585/// visitSimpleBinary - Implement simple binary operators for integral types...
1586/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1587/// Xor.
1588///
1589void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1590 unsigned DestReg = getReg(B);
1591 MachineBasicBlock::iterator MI = BB->end();
1592 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1593 unsigned Class = getClassB(B.getType());
1594
1595 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1596}
1597
1598/// emitBinaryFPOperation - This method handles emission of floating point
1599/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1600void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1601 MachineBasicBlock::iterator IP,
1602 Value *Op0, Value *Op1,
1603 unsigned OperatorClass, unsigned DestReg) {
1604
1605 // Special case: op Reg, <const fp>
1606 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001607 // Create a constant pool entry for this constant.
1608 MachineConstantPool *CP = F->getConstantPool();
1609 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1610 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001611 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001612
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001613 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001614 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1615 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001616 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001617
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001618 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001619 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001620 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001621 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001622 return;
1623 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001624
1625 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001626 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1627 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001628 // -0.0 - X === -X
1629 unsigned op1Reg = getReg(Op1, BB, IP);
1630 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1631 return;
1632 } else {
1633 // R1 = op CST, R2 --> R1 = opr R2, CST
1634
1635 // Create a constant pool entry for this constant.
1636 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001637 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1638 const Type *Ty = Op0C->getType();
1639 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001640
1641 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001642 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1643 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001644 };
1645
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001646 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001647 unsigned Op0Reg = getReg(Op0C, BB, IP);
1648 unsigned Op1Reg = getReg(Op1, BB, IP);
1649 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001650 return;
1651 }
1652
1653 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001654 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001655 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1656 };
1657
1658 unsigned Opcode = OpcodeTab[OperatorClass];
1659 unsigned Op0r = getReg(Op0, BB, IP);
1660 unsigned Op1r = getReg(Op1, BB, IP);
1661 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1662}
1663
1664/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1665/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1666/// Or, 4 for Xor.
1667///
1668/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1669/// and constant expression support.
1670///
1671void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1672 MachineBasicBlock::iterator IP,
1673 Value *Op0, Value *Op1,
1674 unsigned OperatorClass, unsigned DestReg) {
1675 unsigned Class = getClassB(Op0->getType());
1676
Misha Brukman422791f2004-06-21 17:41:12 +00001677 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001678 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001679 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1680 };
1681 // Otherwise, code generate the full operation with a constant.
1682 static const unsigned BottomTab[] = {
1683 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1684 };
1685 static const unsigned TopTab[] = {
1686 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1687 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001688
1689 if (Class == cFP) {
1690 assert(OperatorClass < 2 && "No logical ops for FP!");
1691 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1692 return;
1693 }
1694
1695 if (Op0->getType() == Type::BoolTy) {
1696 if (OperatorClass == 3)
1697 // If this is an or of two isnan's, emit an FP comparison directly instead
1698 // of or'ing two isnan's together.
1699 if (Value *LHS = dyncastIsNan(Op0))
1700 if (Value *RHS = dyncastIsNan(Op1)) {
1701 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001702 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001703 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001704 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001705 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1706 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001707 return;
1708 }
1709 }
1710
1711 // sub 0, X -> neg X
1712 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1713 if (OperatorClass == 1 && CI->isNullValue()) {
1714 unsigned op1Reg = getReg(Op1, MBB, IP);
1715 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1716
1717 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001718 unsigned zeroes = makeAnotherReg(Type::IntTy);
1719 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001720 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001721 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001722 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1723 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001724 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1725 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001726 }
1727 return;
1728 }
1729
1730 // Special case: op Reg, <const int>
1731 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1732 unsigned Op0r = getReg(Op0, MBB, IP);
1733
1734 // xor X, -1 -> not X
1735 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1736 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1737 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001738 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1739 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001740 return;
1741 }
1742
1743 unsigned Opcode = OpcodeTab[OperatorClass];
1744 unsigned Op1r = getReg(Op1, MBB, IP);
1745
1746 if (Class != cLong) {
1747 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1748 return;
1749 }
1750
1751 // If the constant is zero in the low 32-bits, just copy the low part
1752 // across and apply the normal 32-bit operation to the high parts. There
1753 // will be no carry or borrow into the top.
1754 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1755 if (OperatorClass != 2) // All but and...
1756 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1757 else
1758 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001759 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001760 return;
1761 }
1762
1763 // If this is a long value and the high or low bits have a special
1764 // property, emit some special cases.
1765 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1766
1767 // If this is a logical operation and the top 32-bits are zero, just
1768 // operate on the lower 32.
1769 if (Op1h == 0 && OperatorClass > 1) {
1770 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1771 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001772 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001773 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001774 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001775 return;
1776 }
1777
1778 // TODO: We could handle lots of other special cases here, such as AND'ing
1779 // with 0xFFFFFFFF00000000 -> noop, etc.
1780
Misha Brukman2fec9902004-06-21 20:22:03 +00001781 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1782 .addImm(Op1r);
1783 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1784 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001785 return;
1786 }
1787
1788 unsigned Op0r = getReg(Op0, MBB, IP);
1789 unsigned Op1r = getReg(Op1, MBB, IP);
1790
1791 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001792 unsigned Opcode = OpcodeTab[OperatorClass];
1793 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001794 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001795 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1796 .addImm(Op1r);
1797 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1798 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001799 }
1800 return;
1801}
1802
1803/// doMultiply - Emit appropriate instructions to multiply together the
1804/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1805/// result should be given as DestTy.
1806///
1807void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1808 unsigned DestReg, const Type *DestTy,
1809 unsigned op0Reg, unsigned op1Reg) {
1810 unsigned Class = getClass(DestTy);
1811 switch (Class) {
1812 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001813 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1814 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001815 case cInt:
1816 case cShort:
1817 case cByte:
1818 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1819 return;
1820 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001821 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001822 }
1823}
1824
1825// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1826// returns zero when the input is not exactly a power of two.
1827static unsigned ExactLog2(unsigned Val) {
1828 if (Val == 0 || (Val & (Val-1))) return 0;
1829 unsigned Count = 0;
1830 while (Val != 1) {
1831 Val >>= 1;
1832 ++Count;
1833 }
1834 return Count+1;
1835}
1836
1837
1838/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1839/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001840///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001841void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1842 MachineBasicBlock::iterator IP,
1843 unsigned DestReg, const Type *DestTy,
1844 unsigned op0Reg, unsigned ConstRHS) {
1845 unsigned Class = getClass(DestTy);
1846 // Handle special cases here.
1847 switch (ConstRHS) {
1848 case 0:
1849 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1850 return;
1851 case 1:
1852 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1853 return;
1854 case 2:
1855 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1856 return;
1857 }
1858
1859 // If the element size is exactly a power of 2, use a shift to get it.
1860 if (unsigned Shift = ExactLog2(ConstRHS)) {
1861 switch (Class) {
1862 default: assert(0 && "Unknown class for this function!");
1863 case cByte:
1864 case cShort:
1865 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001866 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1867 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001868 return;
1869 }
1870 }
1871
1872 // Most general case, emit a normal multiply...
1873 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1874 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001875 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1876 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001877 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1878
1879 // Emit a MUL to multiply the register holding the index by
1880 // elementSize, putting the result in OffsetReg.
1881 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1882}
1883
1884void ISel::visitMul(BinaryOperator &I) {
1885 unsigned ResultReg = getReg(I);
1886
1887 Value *Op0 = I.getOperand(0);
1888 Value *Op1 = I.getOperand(1);
1889
1890 MachineBasicBlock::iterator IP = BB->end();
1891 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1892}
1893
1894void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1895 Value *Op0, Value *Op1, unsigned DestReg) {
1896 MachineBasicBlock &BB = *MBB;
1897 TypeClass Class = getClass(Op0->getType());
1898
1899 // Simple scalar multiply?
1900 unsigned Op0Reg = getReg(Op0, &BB, IP);
1901 switch (Class) {
1902 case cByte:
1903 case cShort:
1904 case cInt:
1905 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1906 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1907 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1908 } else {
1909 unsigned Op1Reg = getReg(Op1, &BB, IP);
1910 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1911 }
1912 return;
1913 case cFP:
1914 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1915 return;
1916 case cLong:
1917 break;
1918 }
1919
1920 // Long value. We have to do things the hard way...
1921 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1922 unsigned CLow = CI->getRawValue();
1923 unsigned CHi = CI->getRawValue() >> 32;
1924
1925 if (CLow == 0) {
1926 // If the low part of the constant is all zeros, things are simple.
1927 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1928 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1929 return;
1930 }
1931
1932 // Multiply the two low parts
1933 unsigned OverflowReg = 0;
1934 if (CLow == 1) {
1935 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1936 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001937 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001938 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1939 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001940 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1941 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001942 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1943 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001944 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1945 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001946 }
1947
1948 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1949 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1950
1951 unsigned AHBLplusOverflowReg;
1952 if (OverflowReg) {
1953 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001954 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001955 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1956 } else {
1957 AHBLplusOverflowReg = AHBLReg;
1958 }
1959
1960 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001961 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1962 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001963 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001964 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001965 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1966
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001967 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001968 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1969 }
1970 return;
1971 }
1972
1973 // General 64x64 multiply
1974
1975 unsigned Op1Reg = getReg(Op1, &BB, IP);
1976
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001977 // Multiply the two low parts...
1978 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001979
1980 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001981 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001982
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001983 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001984 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1985
1986 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001987 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
1988 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001989
1990 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1991 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1992
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001993 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001994 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1995}
1996
1997
1998/// visitDivRem - Handle division and remainder instructions... these
1999/// instruction both require the same instructions to be generated, they just
2000/// select the result from a different register. Note that both of these
2001/// instructions work differently for signed and unsigned operands.
2002///
2003void ISel::visitDivRem(BinaryOperator &I) {
2004 unsigned ResultReg = getReg(I);
2005 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2006
2007 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002008 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2009 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002010}
2011
2012void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2013 MachineBasicBlock::iterator IP,
2014 Value *Op0, Value *Op1, bool isDiv,
2015 unsigned ResultReg) {
2016 const Type *Ty = Op0->getType();
2017 unsigned Class = getClass(Ty);
2018 switch (Class) {
2019 case cFP: // Floating point divide
2020 if (isDiv) {
2021 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2022 return;
2023 } else { // Floating point remainder...
2024 unsigned Op0Reg = getReg(Op0, BB, IP);
2025 unsigned Op1Reg = getReg(Op1, BB, IP);
2026 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002027 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002028 std::vector<ValueRecord> Args;
2029 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2030 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002031 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002032 }
2033 return;
2034 case cLong: {
Misha Brukman0aa97c62004-07-08 18:27:59 +00002035 static Function* const Funcs[] =
2036 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002037 unsigned Op0Reg = getReg(Op0, BB, IP);
2038 unsigned Op1Reg = getReg(Op1, BB, IP);
2039 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2040 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002041 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002042
2043 std::vector<ValueRecord> Args;
2044 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2045 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002046 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002047 return;
2048 }
2049 case cByte: case cShort: case cInt:
2050 break; // Small integrals, handled below...
2051 default: assert(0 && "Unknown class!");
2052 }
2053
2054 // Special case signed division by power of 2.
2055 if (isDiv)
2056 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2057 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2058 int V = CI->getValue();
2059
2060 if (V == 1) { // X /s 1 => X
2061 unsigned Op0Reg = getReg(Op0, BB, IP);
2062 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2063 return;
2064 }
2065
2066 if (V == -1) { // X /s -1 => -X
2067 unsigned Op0Reg = getReg(Op0, BB, IP);
2068 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2069 return;
2070 }
2071
2072 bool isNeg = false;
2073 if (V < 0) { // Not a positive power of 2?
2074 V = -V;
2075 isNeg = true; // Maybe it's a negative power of 2.
2076 }
2077 if (unsigned Log = ExactLog2(V)) {
2078 --Log;
2079 unsigned Op0Reg = getReg(Op0, BB, IP);
2080 unsigned TmpReg = makeAnotherReg(Op0->getType());
2081 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002082 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002083 else
2084 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
2085
2086 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00002087 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2088 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002089
2090 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2091 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2092
2093 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2094 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2095
2096 if (isNeg)
2097 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2098 return;
2099 }
2100 }
2101
2102 unsigned Op0Reg = getReg(Op0, BB, IP);
2103 unsigned Op1Reg = getReg(Op1, BB, IP);
2104
2105 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002106 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002107 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002108 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002109 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002110 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002111 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002112 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2113 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2114
2115 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002116 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002117 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002118 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002119 }
2120 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2121 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002122 }
2123}
2124
2125
2126/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2127/// for constant immediate shift values, and for constant immediate
2128/// shift values equal to 1. Even the general case is sort of special,
2129/// because the shift amount has to be in CL, not just any old register.
2130///
2131void ISel::visitShiftInst(ShiftInst &I) {
2132 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002133 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2134 I.getOpcode () == Instruction::Shl, I.getType (),
2135 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002136}
2137
2138/// emitShiftOperation - Common code shared between visitShiftInst and
2139/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002140///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002141void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2142 MachineBasicBlock::iterator IP,
2143 Value *Op, Value *ShiftAmount, bool isLeftShift,
2144 const Type *ResultTy, unsigned DestReg) {
2145 unsigned SrcReg = getReg (Op, MBB, IP);
2146 bool isSigned = ResultTy->isSigned ();
2147 unsigned Class = getClass (ResultTy);
2148
2149 // Longs, as usual, are handled specially...
2150 if (Class == cLong) {
2151 // If we have a constant shift, we can generate much more efficient code
2152 // than otherwise...
2153 //
2154 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2155 unsigned Amount = CUI->getValue();
2156 if (Amount < 32) {
2157 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002158 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002159 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2160 .addImm(Amount).addImm(0).addImm(31-Amount);
2161 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2162 .addImm(Amount).addImm(32-Amount).addImm(31);
2163 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2164 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002165 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002166 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002167 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2168 .addImm(32-Amount).addImm(Amount).addImm(31);
2169 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2170 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2171 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2172 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002173 }
2174 } else { // Shifting more than 32 bits
2175 Amount -= 32;
2176 if (isLeftShift) {
2177 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002178 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2179 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002180 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002181 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2182 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002183 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002184 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002185 } else {
2186 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002187 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002188 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2189 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002190 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002191 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2192 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002193 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002194 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2195 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002196 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002197 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002198 }
2199 }
2200 } else {
2201 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2202 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002203 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2204 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2205 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2206 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2207 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2208
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002209 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002210 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2211 .addImm(32);
2212 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2213 .addReg(ShiftAmountReg);
2214 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2215 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2216 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2217 .addImm(-32);
2218 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2219 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2220 .addReg(TmpReg6);
2221 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2222 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002223 } else {
2224 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002225 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002226 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002227 std::cerr << "Unimplemented: signed right shift\n";
2228 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002229 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002230 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2231 .addImm(32);
2232 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2233 .addReg(ShiftAmountReg);
2234 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2235 .addReg(TmpReg1);
2236 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2237 .addReg(TmpReg3);
2238 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2239 .addImm(-32);
2240 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2241 .addReg(TmpReg5);
2242 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2243 .addReg(TmpReg6);
2244 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2245 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002246 }
2247 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002248 }
2249 return;
2250 }
2251
2252 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2253 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2254 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2255 unsigned Amount = CUI->getValue();
2256
Misha Brukman422791f2004-06-21 17:41:12 +00002257 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002258 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2259 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002260 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002261 if (isSigned) {
2262 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2263 } else {
2264 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2265 .addImm(32-Amount).addImm(Amount).addImm(31);
2266 }
Misha Brukman422791f2004-06-21 17:41:12 +00002267 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002268 } else { // The shift amount is non-constant.
2269 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2270
Misha Brukman422791f2004-06-21 17:41:12 +00002271 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002272 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2273 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002274 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002275 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2276 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002277 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002278 }
2279}
2280
2281
2282/// visitLoadInst - Implement LLVM load instructions
2283///
2284void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002285 static const unsigned Opcodes[] = {
2286 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2287 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002288 unsigned Class = getClassB(I.getType());
2289 unsigned Opcode = Opcodes[Class];
2290 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2291
2292 unsigned DestReg = getReg(I);
2293
2294 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002295 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002296 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002297 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2298 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002299 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002300 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002301 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002302 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002303 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002304
2305 if (Class == cLong) {
2306 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2307 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2308 } else {
2309 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2310 }
2311 }
2312}
2313
2314/// visitStoreInst - Implement LLVM store instructions
2315///
2316void ISel::visitStoreInst(StoreInst &I) {
2317 unsigned ValReg = getReg(I.getOperand(0));
2318 unsigned AddressReg = getReg(I.getOperand(1));
2319
2320 const Type *ValTy = I.getOperand(0)->getType();
2321 unsigned Class = getClassB(ValTy);
2322
2323 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002324 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002325 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002326 return;
2327 }
2328
2329 static const unsigned Opcodes[] = {
2330 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2331 };
2332 unsigned Opcode = Opcodes[Class];
2333 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2334 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2335}
2336
2337
2338/// visitCastInst - Here we have various kinds of copying with or without sign
2339/// extension going on.
2340///
2341void ISel::visitCastInst(CastInst &CI) {
2342 Value *Op = CI.getOperand(0);
2343
2344 unsigned SrcClass = getClassB(Op->getType());
2345 unsigned DestClass = getClassB(CI.getType());
2346 // Noop casts are not emitted: getReg will return the source operand as the
2347 // register to use for any uses of the noop cast.
2348 if (DestClass == SrcClass)
2349 return;
2350
2351 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2352 // of the case are GEP instructions, then the cast does not need to be
2353 // generated explicitly, it will be folded into the GEP.
2354 if (DestClass == cLong && SrcClass == cInt) {
2355 bool AllUsesAreGEPs = true;
2356 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2357 if (!isa<GetElementPtrInst>(*I)) {
2358 AllUsesAreGEPs = false;
2359 break;
2360 }
2361
2362 // No need to codegen this cast if all users are getelementptr instrs...
2363 if (AllUsesAreGEPs) return;
2364 }
2365
2366 unsigned DestReg = getReg(CI);
2367 MachineBasicBlock::iterator MI = BB->end();
2368 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2369}
2370
2371/// emitCastOperation - Common code shared between visitCastInst and constant
2372/// expression cast support.
2373///
2374void ISel::emitCastOperation(MachineBasicBlock *BB,
2375 MachineBasicBlock::iterator IP,
2376 Value *Src, const Type *DestTy,
2377 unsigned DestReg) {
2378 const Type *SrcTy = Src->getType();
2379 unsigned SrcClass = getClassB(SrcTy);
2380 unsigned DestClass = getClassB(DestTy);
2381 unsigned SrcReg = getReg(Src, BB, IP);
2382
2383 // Implement casts to bool by using compare on the operand followed by set if
2384 // not zero on the result.
2385 if (DestTy == Type::BoolTy) {
2386 switch (SrcClass) {
2387 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002388 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002389 case cInt: {
2390 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002391 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2392 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002393 break;
2394 }
2395 case cLong: {
2396 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2397 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2398 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002399 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2400 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002401 break;
2402 }
2403 case cFP:
2404 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002405 // Load -0.0
2406 // Compare
2407 // move to CR1
2408 // Negate -0.0
2409 // Compare
2410 // CROR
2411 // MFCR
2412 // Left-align
2413 // SRA ?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002414 std::cerr << "Cast fp-to-bool not implemented!";
2415 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002416 }
2417 return;
2418 }
2419
2420 // Implement casts between values of the same type class (as determined by
2421 // getClass) by using a register-to-register move.
2422 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002423 if (SrcClass <= cInt) {
2424 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2425 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002426 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2427 } else if (SrcClass == cFP) {
2428 if (SrcTy == Type::FloatTy) { // float -> double
2429 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2430 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2431 } else { // double -> float
2432 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2433 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002434 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002435 }
2436 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002437 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002438 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2439 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002440 } else {
2441 assert(0 && "Cannot handle this type of cast instruction!");
2442 abort();
2443 }
2444 return;
2445 }
2446
2447 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2448 // or zero extension, depending on whether the source type was signed.
2449 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2450 SrcClass < DestClass) {
2451 bool isLong = DestClass == cLong;
2452 if (isLong) DestClass = cInt;
2453
2454 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2455 if (SrcClass < cInt) {
2456 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002457 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002458 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2459 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002460 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002461 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2462 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002463 }
2464 } else {
2465 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2466 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002467
2468 if (isLong) { // Handle upper 32 bits as appropriate...
2469 if (isUnsigned) // Zero out top bits...
2470 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2471 else // Sign extend bottom half...
2472 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2473 }
2474 return;
2475 }
2476
2477 // Special case long -> int ...
2478 if (SrcClass == cLong && DestClass == cInt) {
2479 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2480 return;
2481 }
2482
2483 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2484 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2485 && SrcClass > DestClass) {
2486 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002487 if (isUnsigned) {
2488 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002489 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2490 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002491 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002492 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2493 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002494 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002495 return;
2496 }
2497
2498 // Handle casts from integer to floating point now...
2499 if (DestClass == cFP) {
2500
Misha Brukman422791f2004-06-21 17:41:12 +00002501 // Emit a library call for long to float conversion
2502 if (SrcClass == cLong) {
2503 std::vector<ValueRecord> Args;
2504 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman313efcb2004-07-09 15:45:07 +00002505 Function *floatFn = (SrcTy==Type::FloatTy) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002506 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002507 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002508 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002509 return;
2510 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002511
2512 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002513 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002514 case Type::BoolTyID:
2515 case Type::SByteTyID:
2516 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2517 break;
2518 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002519 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2520 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002521 break;
2522 case Type::ShortTyID:
2523 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2524 break;
2525 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002526 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2527 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002528 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002529 case Type::IntTyID:
2530 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2531 break;
2532 case Type::UIntTyID:
2533 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2534 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002535 default: // No promotion needed...
2536 break;
2537 }
2538
2539 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002540
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002541 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002542 // Also spill room for a special conversion constant
2543 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002544 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2545 int ValueFrameIdx =
2546 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2547
Misha Brukman422791f2004-06-21 17:41:12 +00002548 unsigned constantHi = makeAnotherReg(Type::IntTy);
2549 unsigned constantLo = makeAnotherReg(Type::IntTy);
2550 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2551 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2552
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002553 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002554 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2555 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002556 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002557 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2558 ConstantFrameIndex);
2559 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2560 ConstantFrameIndex, 4);
2561 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2562 ValueFrameIdx);
2563 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2564 ValueFrameIdx, 4);
2565 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2566 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002567 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2568 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2569 } else {
2570 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002571 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2572 .addImm(0x4330);
2573 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2574 .addImm(0x8000);
2575 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2576 ConstantFrameIndex);
2577 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2578 ConstantFrameIndex, 4);
2579 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2580 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002581 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002582 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2583 ValueFrameIdx, 4);
2584 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2585 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002586 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002587 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002588 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002589 return;
2590 }
2591
2592 // Handle casts from floating point to integer now...
2593 if (SrcClass == cFP) {
2594
Misha Brukman422791f2004-06-21 17:41:12 +00002595 // emit library call
2596 if (DestClass == cLong) {
2597 std::vector<ValueRecord> Args;
2598 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002599 MachineInstr *TheCall =
Misha Brukmanf3f63822004-07-08 19:41:16 +00002600 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(__fixdfdiFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002601 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002602 return;
2603 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002604
2605 int ValueFrameIdx =
2606 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2607
Misha Brukman422791f2004-06-21 17:41:12 +00002608 // load into 32 bit value, and then truncate as necessary
2609 // FIXME: This is wrong for unsigned dest types
2610 //if (DestTy->isSigned()) {
2611 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2612 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002613 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2614 .addReg(TempReg), ValueFrameIdx);
2615 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2616 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002617 //} else {
2618 //}
2619
2620 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002621 return;
2622 }
2623
2624 // Anything we haven't handled already, we can't (yet) handle at all.
2625 assert(0 && "Unhandled cast instruction!");
2626 abort();
2627}
2628
2629/// visitVANextInst - Implement the va_next instruction...
2630///
2631void ISel::visitVANextInst(VANextInst &I) {
2632 unsigned VAList = getReg(I.getOperand(0));
2633 unsigned DestReg = getReg(I);
2634
2635 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002636 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002637 default:
2638 std::cerr << I;
2639 assert(0 && "Error: bad type for va_next instruction!");
2640 return;
2641 case Type::PointerTyID:
2642 case Type::UIntTyID:
2643 case Type::IntTyID:
2644 Size = 4;
2645 break;
2646 case Type::ULongTyID:
2647 case Type::LongTyID:
2648 case Type::DoubleTyID:
2649 Size = 8;
2650 break;
2651 }
2652
2653 // Increment the VAList pointer...
2654 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2655}
2656
2657void ISel::visitVAArgInst(VAArgInst &I) {
2658 unsigned VAList = getReg(I.getOperand(0));
2659 unsigned DestReg = getReg(I);
2660
Misha Brukman358829f2004-06-21 17:25:55 +00002661 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002662 default:
2663 std::cerr << I;
2664 assert(0 && "Error: bad type for va_next instruction!");
2665 return;
2666 case Type::PointerTyID:
2667 case Type::UIntTyID:
2668 case Type::IntTyID:
2669 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2670 break;
2671 case Type::ULongTyID:
2672 case Type::LongTyID:
2673 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2674 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2675 break;
2676 case Type::DoubleTyID:
2677 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2678 break;
2679 }
2680}
2681
2682/// visitGetElementPtrInst - instruction-select GEP instructions
2683///
2684void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2685 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002686 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2687 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002688}
2689
2690void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2691 MachineBasicBlock::iterator IP,
2692 Value *Src, User::op_iterator IdxBegin,
2693 User::op_iterator IdxEnd, unsigned TargetReg) {
2694 const TargetData &TD = TM.getTargetData();
2695 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2696 Src = CPR->getValue();
2697
2698 std::vector<Value*> GEPOps;
2699 GEPOps.resize(IdxEnd-IdxBegin+1);
2700 GEPOps[0] = Src;
2701 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2702
2703 std::vector<const Type*> GEPTypes;
2704 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2705 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2706
2707 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002708 while (!GEPOps.empty()) {
2709 if (GEPTypes.empty()) {
2710 // Load the base pointer into a register.
2711 unsigned Reg = getReg(Src, MBB, IP);
2712 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2713 break; // we are now done
2714 }
Misha Brukman313efcb2004-07-09 15:45:07 +00002715 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
2716 // It's a struct access. CUI is the index into the structure,
2717 // which names the field. This index must have unsigned type.
2718 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002719
Misha Brukman313efcb2004-07-09 15:45:07 +00002720 // Use the TargetData structure to pick out what the layout of the
2721 // structure is in memory. Since the structure index must be constant, we
2722 // can get its value and use it to find the right byte offset from the
2723 // StructLayout class's list of structure member offsets.
2724 unsigned Disp = TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
2725 GEPOps.pop_back(); // Consume a GEP operand
2726 GEPTypes.pop_back();
Misha Brukman2fec9902004-06-21 20:22:03 +00002727 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman313efcb2004-07-09 15:45:07 +00002728 unsigned DispReg = makeAnotherReg(Type::UIntTy);
2729 BuildMI(*MBB, IP, PPC32::LI, 2, DispReg).addImm(Disp);
2730 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(DispReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002731 --IP; // Insert the next instruction before this one.
2732 TargetReg = Reg; // Codegen the rest of the GEP into this
2733 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +00002734 // It's an array or pointer access: [ArraySize x ElementType].
2735 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2736 Value *idx = GEPOps.back();
2737 GEPOps.pop_back(); // Consume a GEP operand
2738 GEPTypes.pop_back();
2739
2740 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2741 // operand. Handle this case directly now...
2742 if (CastInst *CI = dyn_cast<CastInst>(idx))
2743 if (CI->getOperand(0)->getType() == Type::IntTy ||
2744 CI->getOperand(0)->getType() == Type::UIntTy)
2745 idx = CI->getOperand(0);
2746
2747 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2748 // must find the size of the pointed-to type (Not coincidentally, the next
2749 // type is the type of the elements in the array).
2750 const Type *ElTy = SqTy->getElementType();
2751 unsigned elementSize = TD.getTypeSize(ElTy);
2752
2753 if (idx == Constant::getNullValue(idx->getType())) {
2754 // GEP with idx 0 is a no-op
2755 } else if (elementSize == 1) {
2756 // If the element size is 1, we don't have to multiply, just add
2757 unsigned idxReg = getReg(idx, MBB, IP);
2758 unsigned Reg = makeAnotherReg(Type::UIntTy);
2759 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2760 --IP; // Insert the next instruction before this one.
2761 TargetReg = Reg; // Codegen the rest of the GEP into this
2762 } else {
2763 unsigned idxReg = getReg(idx, MBB, IP);
2764 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2765
2766 // Make sure we can back the iterator up to point to the first
2767 // instruction emitted.
2768 MachineBasicBlock::iterator BeforeIt = IP;
2769 if (IP == MBB->begin())
2770 BeforeIt = MBB->end();
2771 else
2772 --BeforeIt;
2773 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2774
2775 // Emit an ADD to add OffsetReg to the basePtr.
2776 unsigned Reg = makeAnotherReg(Type::UIntTy);
2777 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
2778
2779 // Step to the first instruction of the multiply.
2780 if (BeforeIt == MBB->end())
2781 IP = MBB->begin();
2782 else
2783 IP = ++BeforeIt;
2784
2785 TargetReg = Reg; // Codegen the rest of the GEP into this
2786 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002787 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002788 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002789}
2790
2791/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2792/// frame manager, otherwise do it the hard way.
2793///
2794void ISel::visitAllocaInst(AllocaInst &I) {
2795 // If this is a fixed size alloca in the entry block for the function, we
2796 // statically stack allocate the space, so we don't need to do anything here.
2797 //
2798 if (dyn_castFixedAlloca(&I)) return;
2799
2800 // Find the data size of the alloca inst's getAllocatedType.
2801 const Type *Ty = I.getAllocatedType();
2802 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2803
2804 // Create a register to hold the temporary result of multiplying the type size
2805 // constant by the variable amount.
2806 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2807 unsigned SrcReg1 = getReg(I.getArraySize());
2808
2809 // TotalSizeReg = mul <numelements>, <TypeSize>
2810 MachineBasicBlock::iterator MBBI = BB->end();
2811 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2812
2813 // AddedSize = add <TotalSizeReg>, 15
2814 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2815 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2816
2817 // AlignedSize = and <AddedSize>, ~15
2818 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002819 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2820 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002821
2822 // Subtract size from stack pointer, thereby allocating some space.
2823 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2824
2825 // Put a pointer to the space into the result register, by copying
2826 // the stack pointer.
2827 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2828
2829 // Inform the Frame Information that we have just allocated a variable-sized
2830 // object.
2831 F->getFrameInfo()->CreateVariableSizedObject();
2832}
2833
2834/// visitMallocInst - Malloc instructions are code generated into direct calls
2835/// to the library malloc.
2836///
2837void ISel::visitMallocInst(MallocInst &I) {
2838 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2839 unsigned Arg;
2840
2841 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2842 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2843 } else {
2844 Arg = makeAnotherReg(Type::UIntTy);
2845 unsigned Op0Reg = getReg(I.getOperand(0));
2846 MachineBasicBlock::iterator MBBI = BB->end();
2847 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2848 }
2849
2850 std::vector<ValueRecord> Args;
2851 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002852 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002853 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002854 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002855}
2856
2857
2858/// visitFreeInst - Free instructions are code gen'd to call the free libc
2859/// function.
2860///
2861void ISel::visitFreeInst(FreeInst &I) {
2862 std::vector<ValueRecord> Args;
2863 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002864 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002865 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002866 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002867}
2868
2869/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2870/// into a machine code representation is a very simple peep-hole fashion. The
2871/// generated code sucks but the implementation is nice and simple.
2872///
2873FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2874 return new ISel(TM);
2875}