blob: f7914f864fb88080a743298cdd469ebae6e61a0c [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvaf722b002012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
275The next two types of linkage are targeted for Microsoft Windows
276platform only. They are designed to support importing (exporting)
277symbols from (to) DLLs (Dynamic Link Libraries).
278
279``dllimport``
280 "``dllimport``" linkage causes the compiler to reference a function
281 or variable via a global pointer to a pointer that is set up by the
282 DLL exporting the symbol. On Microsoft Windows targets, the pointer
283 name is formed by combining ``__imp_`` and the function or variable
284 name.
285``dllexport``
286 "``dllexport``" linkage causes the compiler to provide a global
287 pointer to a pointer in a DLL, so that it can be referenced with the
288 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291
292For example, since the "``.LC0``" variable is defined to be internal, if
293another module defined a "``.LC0``" variable and was linked with this
294one, one of the two would be renamed, preventing a collision. Since
295"``main``" and "``puts``" are external (i.e., lacking any linkage
296declarations), they are accessible outside of the current module.
297
298It is illegal for a function *declaration* to have any linkage type
299other than ``external``, ``dllimport`` or ``extern_weak``.
300
Sean Silvaf722b002012-12-07 10:36:55 +0000301.. _callingconv:
302
303Calling Conventions
304-------------------
305
306LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
307:ref:`invokes <i_invoke>` can all have an optional calling convention
308specified for the call. The calling convention of any pair of dynamic
309caller/callee must match, or the behavior of the program is undefined.
310The following calling conventions are supported by LLVM, and more may be
311added in the future:
312
313"``ccc``" - The C calling convention
314 This calling convention (the default if no other calling convention
315 is specified) matches the target C calling conventions. This calling
316 convention supports varargs function calls and tolerates some
317 mismatch in the declared prototype and implemented declaration of
318 the function (as does normal C).
319"``fastcc``" - The fast calling convention
320 This calling convention attempts to make calls as fast as possible
321 (e.g. by passing things in registers). This calling convention
322 allows the target to use whatever tricks it wants to produce fast
323 code for the target, without having to conform to an externally
324 specified ABI (Application Binary Interface). `Tail calls can only
325 be optimized when this, the GHC or the HiPE convention is
326 used. <CodeGenerator.html#id80>`_ This calling convention does not
327 support varargs and requires the prototype of all callees to exactly
328 match the prototype of the function definition.
329"``coldcc``" - The cold calling convention
330 This calling convention attempts to make code in the caller as
331 efficient as possible under the assumption that the call is not
332 commonly executed. As such, these calls often preserve all registers
333 so that the call does not break any live ranges in the caller side.
334 This calling convention does not support varargs and requires the
335 prototype of all callees to exactly match the prototype of the
336 function definition.
337"``cc 10``" - GHC convention
338 This calling convention has been implemented specifically for use by
339 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
340 It passes everything in registers, going to extremes to achieve this
341 by disabling callee save registers. This calling convention should
342 not be used lightly but only for specific situations such as an
343 alternative to the *register pinning* performance technique often
344 used when implementing functional programming languages. At the
345 moment only X86 supports this convention and it has the following
346 limitations:
347
348 - On *X86-32* only supports up to 4 bit type parameters. No
349 floating point types are supported.
350 - On *X86-64* only supports up to 10 bit type parameters and 6
351 floating point parameters.
352
353 This calling convention supports `tail call
354 optimization <CodeGenerator.html#id80>`_ but requires both the
355 caller and callee are using it.
356"``cc 11``" - The HiPE calling convention
357 This calling convention has been implemented specifically for use by
358 the `High-Performance Erlang
359 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
360 native code compiler of the `Ericsson's Open Source Erlang/OTP
361 system <http://www.erlang.org/download.shtml>`_. It uses more
362 registers for argument passing than the ordinary C calling
363 convention and defines no callee-saved registers. The calling
364 convention properly supports `tail call
365 optimization <CodeGenerator.html#id80>`_ but requires that both the
366 caller and the callee use it. It uses a *register pinning*
367 mechanism, similar to GHC's convention, for keeping frequently
368 accessed runtime components pinned to specific hardware registers.
369 At the moment only X86 supports this convention (both 32 and 64
370 bit).
371"``cc <n>``" - Numbered convention
372 Any calling convention may be specified by number, allowing
373 target-specific calling conventions to be used. Target specific
374 calling conventions start at 64.
375
376More calling conventions can be added/defined on an as-needed basis, to
377support Pascal conventions or any other well-known target-independent
378convention.
379
Eli Bendersky1de14102013-06-07 19:40:08 +0000380.. _visibilitystyles:
381
Sean Silvaf722b002012-12-07 10:36:55 +0000382Visibility Styles
383-----------------
384
385All Global Variables and Functions have one of the following visibility
386styles:
387
388"``default``" - Default style
389 On targets that use the ELF object file format, default visibility
390 means that the declaration is visible to other modules and, in
391 shared libraries, means that the declared entity may be overridden.
392 On Darwin, default visibility means that the declaration is visible
393 to other modules. Default visibility corresponds to "external
394 linkage" in the language.
395"``hidden``" - Hidden style
396 Two declarations of an object with hidden visibility refer to the
397 same object if they are in the same shared object. Usually, hidden
398 visibility indicates that the symbol will not be placed into the
399 dynamic symbol table, so no other module (executable or shared
400 library) can reference it directly.
401"``protected``" - Protected style
402 On ELF, protected visibility indicates that the symbol will be
403 placed in the dynamic symbol table, but that references within the
404 defining module will bind to the local symbol. That is, the symbol
405 cannot be overridden by another module.
406
Eli Bendersky1de14102013-06-07 19:40:08 +0000407.. _namedtypes:
408
Sean Silvaf722b002012-12-07 10:36:55 +0000409Named Types
410-----------
411
412LLVM IR allows you to specify name aliases for certain types. This can
413make it easier to read the IR and make the IR more condensed
414(particularly when recursive types are involved). An example of a name
415specification is:
416
417.. code-block:: llvm
418
419 %mytype = type { %mytype*, i32 }
420
421You may give a name to any :ref:`type <typesystem>` except
422":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
423expected with the syntax "%mytype".
424
425Note that type names are aliases for the structural type that they
426indicate, and that you can therefore specify multiple names for the same
427type. This often leads to confusing behavior when dumping out a .ll
428file. Since LLVM IR uses structural typing, the name is not part of the
429type. When printing out LLVM IR, the printer will pick *one name* to
430render all types of a particular shape. This means that if you have code
431where two different source types end up having the same LLVM type, that
432the dumper will sometimes print the "wrong" or unexpected type. This is
433an important design point and isn't going to change.
434
435.. _globalvars:
436
437Global Variables
438----------------
439
440Global variables define regions of memory allocated at compilation time
Rafael Espindola1313a222013-10-29 13:44:11 +0000441instead of run-time.
442
443Global variables definitions must be initialized, may have an explicit section
444to be placed in, and may have an optional explicit alignment specified.
445
446Global variables in other translation units can also be declared, in which
447case they don't have an initializer.
Sean Silvaf722b002012-12-07 10:36:55 +0000448
449A variable may be defined as ``thread_local``, which means that it will
450not be shared by threads (each thread will have a separated copy of the
451variable). Not all targets support thread-local variables. Optionally, a
452TLS model may be specified:
453
454``localdynamic``
455 For variables that are only used within the current shared library.
456``initialexec``
457 For variables in modules that will not be loaded dynamically.
458``localexec``
459 For variables defined in the executable and only used within it.
460
461The models correspond to the ELF TLS models; see `ELF Handling For
462Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
463more information on under which circumstances the different models may
464be used. The target may choose a different TLS model if the specified
465model is not supported, or if a better choice of model can be made.
466
Michael Gottesmanf5735882013-01-31 05:48:48 +0000467A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000468the contents of the variable will **never** be modified (enabling better
469optimization, allowing the global data to be placed in the read-only
470section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000471initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000472variable.
473
474LLVM explicitly allows *declarations* of global variables to be marked
475constant, even if the final definition of the global is not. This
476capability can be used to enable slightly better optimization of the
477program, but requires the language definition to guarantee that
478optimizations based on the 'constantness' are valid for the translation
479units that do not include the definition.
480
481As SSA values, global variables define pointer values that are in scope
482(i.e. they dominate) all basic blocks in the program. Global variables
483always define a pointer to their "content" type because they describe a
484region of memory, and all memory objects in LLVM are accessed through
485pointers.
486
487Global variables can be marked with ``unnamed_addr`` which indicates
488that the address is not significant, only the content. Constants marked
489like this can be merged with other constants if they have the same
490initializer. Note that a constant with significant address *can* be
491merged with a ``unnamed_addr`` constant, the result being a constant
492whose address is significant.
493
494A global variable may be declared to reside in a target-specific
495numbered address space. For targets that support them, address spaces
496may affect how optimizations are performed and/or what target
497instructions are used to access the variable. The default address space
498is zero. The address space qualifier must precede any other attributes.
499
500LLVM allows an explicit section to be specified for globals. If the
501target supports it, it will emit globals to the section specified.
502
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000503By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000504variables defined within the module are not modified from their
505initial values before the start of the global initializer. This is
506true even for variables potentially accessible from outside the
507module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000508``@llvm.used``. This assumption may be suppressed by marking the
509variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000510
Sean Silvaf722b002012-12-07 10:36:55 +0000511An explicit alignment may be specified for a global, which must be a
512power of 2. If not present, or if the alignment is set to zero, the
513alignment of the global is set by the target to whatever it feels
514convenient. If an explicit alignment is specified, the global is forced
515to have exactly that alignment. Targets and optimizers are not allowed
516to over-align the global if the global has an assigned section. In this
517case, the extra alignment could be observable: for example, code could
518assume that the globals are densely packed in their section and try to
519iterate over them as an array, alignment padding would break this
520iteration.
521
522For example, the following defines a global in a numbered address space
523with an initializer, section, and alignment:
524
525.. code-block:: llvm
526
527 @G = addrspace(5) constant float 1.0, section "foo", align 4
528
Rafael Espindola1313a222013-10-29 13:44:11 +0000529The following example just declares a global variable
530
531.. code-block:: llvm
532
533 @G = external global i32
534
Sean Silvaf722b002012-12-07 10:36:55 +0000535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000555collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
556curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000563name, a possibly empty list of arguments, an optional alignment, an optional
564:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000565
Bill Wendlingcba7d7d2013-10-27 05:09:12 +0000566A function definition contains a list of basic blocks, forming the CFG (Control
567Flow Graph) for the function. Each basic block may optionally start with a label
568(giving the basic block a symbol table entry), contains a list of instructions,
569and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
570function return). If an explicit label is not provided, a block is assigned an
571implicit numbered label, using the next value from the same counter as used for
572unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
573entry block does not have an explicit label, it will be assigned label "%0",
574then the first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000575
576The first basic block in a function is special in two ways: it is
577immediately executed on entrance to the function, and it is not allowed
578to have predecessor basic blocks (i.e. there can not be any branches to
579the entry block of a function). Because the block can have no
580predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
581
582LLVM allows an explicit section to be specified for functions. If the
583target supports it, it will emit functions to the section specified.
584
585An explicit alignment may be specified for a function. If not present,
586or if the alignment is set to zero, the alignment of the function is set
587by the target to whatever it feels convenient. If an explicit alignment
588is specified, the function is forced to have at least that much
589alignment. All alignments must be a power of 2.
590
591If the ``unnamed_addr`` attribute is given, the address is know to not
592be significant and two identical functions can be merged.
593
594Syntax::
595
596 define [linkage] [visibility]
597 [cconv] [ret attrs]
598 <ResultType> @<FunctionName> ([argument list])
599 [fn Attrs] [section "name"] [align N]
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000600 [gc] [prefix Constant] { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000601
Eli Bendersky1de14102013-06-07 19:40:08 +0000602.. _langref_aliases:
603
Sean Silvaf722b002012-12-07 10:36:55 +0000604Aliases
605-------
606
607Aliases act as "second name" for the aliasee value (which can be either
608function, global variable, another alias or bitcast of global value).
609Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
610:ref:`visibility style <visibility>`.
611
612Syntax::
613
614 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
615
Rafael Espindolacfa7d812013-10-07 13:57:59 +0000616The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola2def1792013-10-06 15:10:43 +0000617``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola19794da2013-11-01 17:09:14 +0000618``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
619might not correctly handle dropping a weak symbol that is aliased by a non weak
620alias.
Rafael Espindola2def1792013-10-06 15:10:43 +0000621
Sean Silvaf722b002012-12-07 10:36:55 +0000622.. _namedmetadatastructure:
623
624Named Metadata
625--------------
626
627Named metadata is a collection of metadata. :ref:`Metadata
628nodes <metadata>` (but not metadata strings) are the only valid
629operands for a named metadata.
630
631Syntax::
632
633 ; Some unnamed metadata nodes, which are referenced by the named metadata.
634 !0 = metadata !{metadata !"zero"}
635 !1 = metadata !{metadata !"one"}
636 !2 = metadata !{metadata !"two"}
637 ; A named metadata.
638 !name = !{!0, !1, !2}
639
640.. _paramattrs:
641
642Parameter Attributes
643--------------------
644
645The return type and each parameter of a function type may have a set of
646*parameter attributes* associated with them. Parameter attributes are
647used to communicate additional information about the result or
648parameters of a function. Parameter attributes are considered to be part
649of the function, not of the function type, so functions with different
650parameter attributes can have the same function type.
651
652Parameter attributes are simple keywords that follow the type specified.
653If multiple parameter attributes are needed, they are space separated.
654For example:
655
656.. code-block:: llvm
657
658 declare i32 @printf(i8* noalias nocapture, ...)
659 declare i32 @atoi(i8 zeroext)
660 declare signext i8 @returns_signed_char()
661
662Note that any attributes for the function result (``nounwind``,
663``readonly``) come immediately after the argument list.
664
665Currently, only the following parameter attributes are defined:
666
667``zeroext``
668 This indicates to the code generator that the parameter or return
669 value should be zero-extended to the extent required by the target's
670 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
671 the caller (for a parameter) or the callee (for a return value).
672``signext``
673 This indicates to the code generator that the parameter or return
674 value should be sign-extended to the extent required by the target's
675 ABI (which is usually 32-bits) by the caller (for a parameter) or
676 the callee (for a return value).
677``inreg``
678 This indicates that this parameter or return value should be treated
679 in a special target-dependent fashion during while emitting code for
680 a function call or return (usually, by putting it in a register as
681 opposed to memory, though some targets use it to distinguish between
682 two different kinds of registers). Use of this attribute is
683 target-specific.
684``byval``
685 This indicates that the pointer parameter should really be passed by
686 value to the function. The attribute implies that a hidden copy of
687 the pointee is made between the caller and the callee, so the callee
688 is unable to modify the value in the caller. This attribute is only
689 valid on LLVM pointer arguments. It is generally used to pass
690 structs and arrays by value, but is also valid on pointers to
691 scalars. The copy is considered to belong to the caller not the
692 callee (for example, ``readonly`` functions should not write to
693 ``byval`` parameters). This is not a valid attribute for return
694 values.
695
696 The byval attribute also supports specifying an alignment with the
697 align attribute. It indicates the alignment of the stack slot to
698 form and the known alignment of the pointer specified to the call
699 site. If the alignment is not specified, then the code generator
700 makes a target-specific assumption.
701
702``sret``
703 This indicates that the pointer parameter specifies the address of a
704 structure that is the return value of the function in the source
705 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000706 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000707 not to trap and to be properly aligned. This may only be applied to
708 the first parameter. This is not a valid attribute for return
709 values.
710``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000711 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000712 the argument or return value do not alias pointer values which are
713 not *based* on it, ignoring certain "irrelevant" dependencies. For a
714 call to the parent function, dependencies between memory references
715 from before or after the call and from those during the call are
716 "irrelevant" to the ``noalias`` keyword for the arguments and return
717 value used in that call. The caller shares the responsibility with
718 the callee for ensuring that these requirements are met. For further
719 details, please see the discussion of the NoAlias response in `alias
720 analysis <AliasAnalysis.html#MustMayNo>`_.
721
722 Note that this definition of ``noalias`` is intentionally similar
723 to the definition of ``restrict`` in C99 for function arguments,
724 though it is slightly weaker.
725
726 For function return values, C99's ``restrict`` is not meaningful,
727 while LLVM's ``noalias`` is.
728``nocapture``
729 This indicates that the callee does not make any copies of the
730 pointer that outlive the callee itself. This is not a valid
731 attribute for return values.
732
733.. _nest:
734
735``nest``
736 This indicates that the pointer parameter can be excised using the
737 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000738 attribute for return values and can only be applied to one parameter.
739
740``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000741 This indicates that the function always returns the argument as its return
742 value. This is an optimization hint to the code generator when generating
743 the caller, allowing tail call optimization and omission of register saves
744 and restores in some cases; it is not checked or enforced when generating
745 the callee. The parameter and the function return type must be valid
746 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
747 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000748
749.. _gc:
750
751Garbage Collector Names
752-----------------------
753
754Each function may specify a garbage collector name, which is simply a
755string:
756
757.. code-block:: llvm
758
759 define void @f() gc "name" { ... }
760
761The compiler declares the supported values of *name*. Specifying a
762collector which will cause the compiler to alter its output in order to
763support the named garbage collection algorithm.
764
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000765.. _prefixdata:
766
767Prefix Data
768-----------
769
770Prefix data is data associated with a function which the code generator
771will emit immediately before the function body. The purpose of this feature
772is to allow frontends to associate language-specific runtime metadata with
773specific functions and make it available through the function pointer while
774still allowing the function pointer to be called. To access the data for a
775given function, a program may bitcast the function pointer to a pointer to
776the constant's type. This implies that the IR symbol points to the start
777of the prefix data.
778
779To maintain the semantics of ordinary function calls, the prefix data must
780have a particular format. Specifically, it must begin with a sequence of
781bytes which decode to a sequence of machine instructions, valid for the
782module's target, which transfer control to the point immediately succeeding
783the prefix data, without performing any other visible action. This allows
784the inliner and other passes to reason about the semantics of the function
785definition without needing to reason about the prefix data. Obviously this
786makes the format of the prefix data highly target dependent.
787
Peter Collingbournea4ae4052013-09-23 20:14:21 +0000788Prefix data is laid out as if it were an initializer for a global variable
789of the prefix data's type. No padding is automatically placed between the
790prefix data and the function body. If padding is required, it must be part
791of the prefix data.
792
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000793A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
794which encodes the ``nop`` instruction:
795
796.. code-block:: llvm
797
798 define void @f() prefix i8 144 { ... }
799
800Generally prefix data can be formed by encoding a relative branch instruction
801which skips the metadata, as in this example of valid prefix data for the
802x86_64 architecture, where the first two bytes encode ``jmp .+10``:
803
804.. code-block:: llvm
805
806 %0 = type <{ i8, i8, i8* }>
807
808 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
809
810A function may have prefix data but no body. This has similar semantics
811to the ``available_externally`` linkage in that the data may be used by the
812optimizers but will not be emitted in the object file.
813
Bill Wendling95ce4c22013-02-06 06:52:58 +0000814.. _attrgrp:
815
816Attribute Groups
817----------------
818
819Attribute groups are groups of attributes that are referenced by objects within
820the IR. They are important for keeping ``.ll`` files readable, because a lot of
821functions will use the same set of attributes. In the degenerative case of a
822``.ll`` file that corresponds to a single ``.c`` file, the single attribute
823group will capture the important command line flags used to build that file.
824
825An attribute group is a module-level object. To use an attribute group, an
826object references the attribute group's ID (e.g. ``#37``). An object may refer
827to more than one attribute group. In that situation, the attributes from the
828different groups are merged.
829
830Here is an example of attribute groups for a function that should always be
831inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
832
833.. code-block:: llvm
834
835 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000836 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000837
838 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000839 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000840
841 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
842 define void @f() #0 #1 { ... }
843
Sean Silvaf722b002012-12-07 10:36:55 +0000844.. _fnattrs:
845
846Function Attributes
847-------------------
848
849Function attributes are set to communicate additional information about
850a function. Function attributes are considered to be part of the
851function, not of the function type, so functions with different function
852attributes can have the same function type.
853
854Function attributes are simple keywords that follow the type specified.
855If multiple attributes are needed, they are space separated. For
856example:
857
858.. code-block:: llvm
859
860 define void @f() noinline { ... }
861 define void @f() alwaysinline { ... }
862 define void @f() alwaysinline optsize { ... }
863 define void @f() optsize { ... }
864
Sean Silvaf722b002012-12-07 10:36:55 +0000865``alignstack(<n>)``
866 This attribute indicates that, when emitting the prologue and
867 epilogue, the backend should forcibly align the stack pointer.
868 Specify the desired alignment, which must be a power of two, in
869 parentheses.
870``alwaysinline``
871 This attribute indicates that the inliner should attempt to inline
872 this function into callers whenever possible, ignoring any active
873 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000874``builtin``
875 This indicates that the callee function at a call site should be
876 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000877 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000878 direct calls to functions which are declared with the ``nobuiltin``
879 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000880``cold``
881 This attribute indicates that this function is rarely called. When
882 computing edge weights, basic blocks post-dominated by a cold
883 function call are also considered to be cold; and, thus, given low
884 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000885``inlinehint``
886 This attribute indicates that the source code contained a hint that
887 inlining this function is desirable (such as the "inline" keyword in
888 C/C++). It is just a hint; it imposes no requirements on the
889 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000890``minsize``
891 This attribute suggests that optimization passes and code generator
892 passes make choices that keep the code size of this function as small
Andrew Trickcf940ce2013-10-31 17:18:07 +0000893 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000894 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000895``naked``
896 This attribute disables prologue / epilogue emission for the
897 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000898``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000899 This indicates that the callee function at a call site is not recognized as
900 a built-in function. LLVM will retain the original call and not replace it
901 with equivalent code based on the semantics of the built-in function, unless
902 the call site uses the ``builtin`` attribute. This is valid at call sites
903 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000904``noduplicate``
905 This attribute indicates that calls to the function cannot be
906 duplicated. A call to a ``noduplicate`` function may be moved
907 within its parent function, but may not be duplicated within
908 its parent function.
909
910 A function containing a ``noduplicate`` call may still
911 be an inlining candidate, provided that the call is not
912 duplicated by inlining. That implies that the function has
913 internal linkage and only has one call site, so the original
914 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000915``noimplicitfloat``
916 This attributes disables implicit floating point instructions.
917``noinline``
918 This attribute indicates that the inliner should never inline this
919 function in any situation. This attribute may not be used together
920 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000921``nonlazybind``
922 This attribute suppresses lazy symbol binding for the function. This
923 may make calls to the function faster, at the cost of extra program
924 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000925``noredzone``
926 This attribute indicates that the code generator should not use a
927 red zone, even if the target-specific ABI normally permits it.
928``noreturn``
929 This function attribute indicates that the function never returns
930 normally. This produces undefined behavior at runtime if the
931 function ever does dynamically return.
932``nounwind``
933 This function attribute indicates that the function never returns
934 with an unwind or exceptional control flow. If the function does
935 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000936``optnone``
937 This function attribute indicates that the function is not optimized
Andrew Trickcf940ce2013-10-31 17:18:07 +0000938 by any optimization or code generator passes with the
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000939 exception of interprocedural optimization passes.
940 This attribute cannot be used together with the ``alwaysinline``
941 attribute; this attribute is also incompatible
942 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000943
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000944 The inliner should never inline this function in any situation.
945 Only functions with the ``alwaysinline`` attribute are valid
946 candidates for inlining inside the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000947``optsize``
948 This attribute suggests that optimization passes and code generator
949 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000950 and otherwise do optimizations specifically to reduce code size as
951 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000952``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000953 On a function, this attribute indicates that the function computes its
954 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000955 without dereferencing any pointer arguments or otherwise accessing
956 any mutable state (e.g. memory, control registers, etc) visible to
957 caller functions. It does not write through any pointer arguments
958 (including ``byval`` arguments) and never changes any state visible
959 to callers. This means that it cannot unwind exceptions by calling
960 the ``C++`` exception throwing methods.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000961
Nick Lewyckydc897372013-07-06 00:29:58 +0000962 On an argument, this attribute indicates that the function does not
963 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000964 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000965``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000966 On a function, this attribute indicates that the function does not write
967 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000968 modify any state (e.g. memory, control registers, etc) visible to
969 caller functions. It may dereference pointer arguments and read
970 state that may be set in the caller. A readonly function always
971 returns the same value (or unwinds an exception identically) when
972 called with the same set of arguments and global state. It cannot
973 unwind an exception by calling the ``C++`` exception throwing
974 methods.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000975
Nick Lewyckydc897372013-07-06 00:29:58 +0000976 On an argument, this attribute indicates that the function does not write
977 through this pointer argument, even though it may write to the memory that
978 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000979``returns_twice``
980 This attribute indicates that this function can return twice. The C
981 ``setjmp`` is an example of such a function. The compiler disables
982 some optimizations (like tail calls) in the caller of these
983 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000984``sanitize_address``
985 This attribute indicates that AddressSanitizer checks
986 (dynamic address safety analysis) are enabled for this function.
987``sanitize_memory``
988 This attribute indicates that MemorySanitizer checks (dynamic detection
989 of accesses to uninitialized memory) are enabled for this function.
990``sanitize_thread``
991 This attribute indicates that ThreadSanitizer checks
992 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000993``ssp``
994 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000995 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000996 placed on the stack before the local variables that's checked upon
997 return from the function to see if it has been overwritten. A
998 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000999 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001000
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001001 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1002 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1003 - Calls to alloca() with variable sizes or constant sizes greater than
1004 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +00001005
1006 If a function that has an ``ssp`` attribute is inlined into a
1007 function that doesn't have an ``ssp`` attribute, then the resulting
1008 function will have an ``ssp`` attribute.
1009``sspreq``
1010 This attribute indicates that the function should *always* emit a
1011 stack smashing protector. This overrides the ``ssp`` function
1012 attribute.
1013
1014 If a function that has an ``sspreq`` attribute is inlined into a
1015 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001016 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1017 an ``sspreq`` attribute.
1018``sspstrong``
1019 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001020 protector. This attribute causes a strong heuristic to be used when
1021 determining if a function needs stack protectors. The strong heuristic
1022 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001023
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001024 - Arrays of any size and type
1025 - Aggregates containing an array of any size and type.
1026 - Calls to alloca().
1027 - Local variables that have had their address taken.
1028
1029 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001030
1031 If a function that has an ``sspstrong`` attribute is inlined into a
1032 function that doesn't have an ``sspstrong`` attribute, then the
1033 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00001034``uwtable``
1035 This attribute indicates that the ABI being targeted requires that
1036 an unwind table entry be produce for this function even if we can
1037 show that no exceptions passes by it. This is normally the case for
1038 the ELF x86-64 abi, but it can be disabled for some compilation
1039 units.
Sean Silvaf722b002012-12-07 10:36:55 +00001040
1041.. _moduleasm:
1042
1043Module-Level Inline Assembly
1044----------------------------
1045
1046Modules may contain "module-level inline asm" blocks, which corresponds
1047to the GCC "file scope inline asm" blocks. These blocks are internally
1048concatenated by LLVM and treated as a single unit, but may be separated
1049in the ``.ll`` file if desired. The syntax is very simple:
1050
1051.. code-block:: llvm
1052
1053 module asm "inline asm code goes here"
1054 module asm "more can go here"
1055
1056The strings can contain any character by escaping non-printable
1057characters. The escape sequence used is simply "\\xx" where "xx" is the
1058two digit hex code for the number.
1059
1060The inline asm code is simply printed to the machine code .s file when
1061assembly code is generated.
1062
Eli Bendersky1de14102013-06-07 19:40:08 +00001063.. _langref_datalayout:
1064
Sean Silvaf722b002012-12-07 10:36:55 +00001065Data Layout
1066-----------
1067
1068A module may specify a target specific data layout string that specifies
1069how data is to be laid out in memory. The syntax for the data layout is
1070simply:
1071
1072.. code-block:: llvm
1073
1074 target datalayout = "layout specification"
1075
1076The *layout specification* consists of a list of specifications
1077separated by the minus sign character ('-'). Each specification starts
1078with a letter and may include other information after the letter to
1079define some aspect of the data layout. The specifications accepted are
1080as follows:
1081
1082``E``
1083 Specifies that the target lays out data in big-endian form. That is,
1084 the bits with the most significance have the lowest address
1085 location.
1086``e``
1087 Specifies that the target lays out data in little-endian form. That
1088 is, the bits with the least significance have the lowest address
1089 location.
1090``S<size>``
1091 Specifies the natural alignment of the stack in bits. Alignment
1092 promotion of stack variables is limited to the natural stack
1093 alignment to avoid dynamic stack realignment. The stack alignment
1094 must be a multiple of 8-bits. If omitted, the natural stack
1095 alignment defaults to "unspecified", which does not prevent any
1096 alignment promotions.
1097``p[n]:<size>:<abi>:<pref>``
1098 This specifies the *size* of a pointer and its ``<abi>`` and
1099 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1100 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1101 preceding ``:`` should be omitted too. The address space, ``n`` is
1102 optional, and if not specified, denotes the default address space 0.
1103 The value of ``n`` must be in the range [1,2^23).
1104``i<size>:<abi>:<pref>``
1105 This specifies the alignment for an integer type of a given bit
1106 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1107``v<size>:<abi>:<pref>``
1108 This specifies the alignment for a vector type of a given bit
1109 ``<size>``.
1110``f<size>:<abi>:<pref>``
1111 This specifies the alignment for a floating point type of a given bit
1112 ``<size>``. Only values of ``<size>`` that are supported by the target
1113 will work. 32 (float) and 64 (double) are supported on all targets; 80
1114 or 128 (different flavors of long double) are also supported on some
1115 targets.
1116``a<size>:<abi>:<pref>``
1117 This specifies the alignment for an aggregate type of a given bit
1118 ``<size>``.
1119``s<size>:<abi>:<pref>``
1120 This specifies the alignment for a stack object of a given bit
1121 ``<size>``.
1122``n<size1>:<size2>:<size3>...``
1123 This specifies a set of native integer widths for the target CPU in
1124 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1125 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1126 this set are considered to support most general arithmetic operations
1127 efficiently.
1128
1129When constructing the data layout for a given target, LLVM starts with a
1130default set of specifications which are then (possibly) overridden by
1131the specifications in the ``datalayout`` keyword. The default
1132specifications are given in this list:
1133
1134- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001135- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1136- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1137 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001138- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001139- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1140- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1141- ``i16:16:16`` - i16 is 16-bit aligned
1142- ``i32:32:32`` - i32 is 32-bit aligned
1143- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1144 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001145- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001146- ``f32:32:32`` - float is 32-bit aligned
1147- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001148- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001149- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1150- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001151- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001152
1153When LLVM is determining the alignment for a given type, it uses the
1154following rules:
1155
1156#. If the type sought is an exact match for one of the specifications,
1157 that specification is used.
1158#. If no match is found, and the type sought is an integer type, then
1159 the smallest integer type that is larger than the bitwidth of the
1160 sought type is used. If none of the specifications are larger than
1161 the bitwidth then the largest integer type is used. For example,
1162 given the default specifications above, the i7 type will use the
1163 alignment of i8 (next largest) while both i65 and i256 will use the
1164 alignment of i64 (largest specified).
1165#. If no match is found, and the type sought is a vector type, then the
1166 largest vector type that is smaller than the sought vector type will
1167 be used as a fall back. This happens because <128 x double> can be
1168 implemented in terms of 64 <2 x double>, for example.
1169
1170The function of the data layout string may not be what you expect.
1171Notably, this is not a specification from the frontend of what alignment
1172the code generator should use.
1173
1174Instead, if specified, the target data layout is required to match what
1175the ultimate *code generator* expects. This string is used by the
1176mid-level optimizers to improve code, and this only works if it matches
1177what the ultimate code generator uses. If you would like to generate IR
1178that does not embed this target-specific detail into the IR, then you
1179don't have to specify the string. This will disable some optimizations
1180that require precise layout information, but this also prevents those
1181optimizations from introducing target specificity into the IR.
1182
Bill Wendling4216b992013-10-18 23:41:25 +00001183.. _langref_triple:
1184
1185Target Triple
1186-------------
1187
1188A module may specify a target triple string that describes the target
1189host. The syntax for the target triple is simply:
1190
1191.. code-block:: llvm
1192
1193 target triple = "x86_64-apple-macosx10.7.0"
1194
1195The *target triple* string consists of a series of identifiers delimited
1196by the minus sign character ('-'). The canonical forms are:
1197
1198::
1199
1200 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1201 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1202
1203This information is passed along to the backend so that it generates
1204code for the proper architecture. It's possible to override this on the
1205command line with the ``-mtriple`` command line option.
1206
Sean Silvaf722b002012-12-07 10:36:55 +00001207.. _pointeraliasing:
1208
1209Pointer Aliasing Rules
1210----------------------
1211
1212Any memory access must be done through a pointer value associated with
1213an address range of the memory access, otherwise the behavior is
1214undefined. Pointer values are associated with address ranges according
1215to the following rules:
1216
1217- A pointer value is associated with the addresses associated with any
1218 value it is *based* on.
1219- An address of a global variable is associated with the address range
1220 of the variable's storage.
1221- The result value of an allocation instruction is associated with the
1222 address range of the allocated storage.
1223- A null pointer in the default address-space is associated with no
1224 address.
1225- An integer constant other than zero or a pointer value returned from
1226 a function not defined within LLVM may be associated with address
1227 ranges allocated through mechanisms other than those provided by
1228 LLVM. Such ranges shall not overlap with any ranges of addresses
1229 allocated by mechanisms provided by LLVM.
1230
1231A pointer value is *based* on another pointer value according to the
1232following rules:
1233
1234- A pointer value formed from a ``getelementptr`` operation is *based*
1235 on the first operand of the ``getelementptr``.
1236- The result value of a ``bitcast`` is *based* on the operand of the
1237 ``bitcast``.
1238- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1239 values that contribute (directly or indirectly) to the computation of
1240 the pointer's value.
1241- The "*based* on" relationship is transitive.
1242
1243Note that this definition of *"based"* is intentionally similar to the
1244definition of *"based"* in C99, though it is slightly weaker.
1245
1246LLVM IR does not associate types with memory. The result type of a
1247``load`` merely indicates the size and alignment of the memory from
1248which to load, as well as the interpretation of the value. The first
1249operand type of a ``store`` similarly only indicates the size and
1250alignment of the store.
1251
1252Consequently, type-based alias analysis, aka TBAA, aka
1253``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1254:ref:`Metadata <metadata>` may be used to encode additional information
1255which specialized optimization passes may use to implement type-based
1256alias analysis.
1257
1258.. _volatile:
1259
1260Volatile Memory Accesses
1261------------------------
1262
1263Certain memory accesses, such as :ref:`load <i_load>`'s,
1264:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1265marked ``volatile``. The optimizers must not change the number of
1266volatile operations or change their order of execution relative to other
1267volatile operations. The optimizers *may* change the order of volatile
1268operations relative to non-volatile operations. This is not Java's
1269"volatile" and has no cross-thread synchronization behavior.
1270
Andrew Trick9a6dd022013-01-30 21:19:35 +00001271IR-level volatile loads and stores cannot safely be optimized into
1272llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1273flagged volatile. Likewise, the backend should never split or merge
1274target-legal volatile load/store instructions.
1275
Andrew Trick946317d2013-01-31 00:49:39 +00001276.. admonition:: Rationale
1277
1278 Platforms may rely on volatile loads and stores of natively supported
1279 data width to be executed as single instruction. For example, in C
1280 this holds for an l-value of volatile primitive type with native
1281 hardware support, but not necessarily for aggregate types. The
1282 frontend upholds these expectations, which are intentionally
1283 unspecified in the IR. The rules above ensure that IR transformation
1284 do not violate the frontend's contract with the language.
1285
Sean Silvaf722b002012-12-07 10:36:55 +00001286.. _memmodel:
1287
1288Memory Model for Concurrent Operations
1289--------------------------------------
1290
1291The LLVM IR does not define any way to start parallel threads of
1292execution or to register signal handlers. Nonetheless, there are
1293platform-specific ways to create them, and we define LLVM IR's behavior
1294in their presence. This model is inspired by the C++0x memory model.
1295
1296For a more informal introduction to this model, see the :doc:`Atomics`.
1297
1298We define a *happens-before* partial order as the least partial order
1299that
1300
1301- Is a superset of single-thread program order, and
1302- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1303 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1304 techniques, like pthread locks, thread creation, thread joining,
1305 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1306 Constraints <ordering>`).
1307
1308Note that program order does not introduce *happens-before* edges
1309between a thread and signals executing inside that thread.
1310
1311Every (defined) read operation (load instructions, memcpy, atomic
1312loads/read-modify-writes, etc.) R reads a series of bytes written by
1313(defined) write operations (store instructions, atomic
1314stores/read-modify-writes, memcpy, etc.). For the purposes of this
1315section, initialized globals are considered to have a write of the
1316initializer which is atomic and happens before any other read or write
1317of the memory in question. For each byte of a read R, R\ :sub:`byte`
1318may see any write to the same byte, except:
1319
1320- If write\ :sub:`1` happens before write\ :sub:`2`, and
1321 write\ :sub:`2` happens before R\ :sub:`byte`, then
1322 R\ :sub:`byte` does not see write\ :sub:`1`.
1323- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1324 R\ :sub:`byte` does not see write\ :sub:`3`.
1325
1326Given that definition, R\ :sub:`byte` is defined as follows:
1327
1328- If R is volatile, the result is target-dependent. (Volatile is
1329 supposed to give guarantees which can support ``sig_atomic_t`` in
1330 C/C++, and may be used for accesses to addresses which do not behave
1331 like normal memory. It does not generally provide cross-thread
1332 synchronization.)
1333- Otherwise, if there is no write to the same byte that happens before
1334 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1335- Otherwise, if R\ :sub:`byte` may see exactly one write,
1336 R\ :sub:`byte` returns the value written by that write.
1337- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1338 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1339 Memory Ordering Constraints <ordering>` section for additional
1340 constraints on how the choice is made.
1341- Otherwise R\ :sub:`byte` returns ``undef``.
1342
1343R returns the value composed of the series of bytes it read. This
1344implies that some bytes within the value may be ``undef`` **without**
1345the entire value being ``undef``. Note that this only defines the
1346semantics of the operation; it doesn't mean that targets will emit more
1347than one instruction to read the series of bytes.
1348
1349Note that in cases where none of the atomic intrinsics are used, this
1350model places only one restriction on IR transformations on top of what
1351is required for single-threaded execution: introducing a store to a byte
1352which might not otherwise be stored is not allowed in general.
1353(Specifically, in the case where another thread might write to and read
1354from an address, introducing a store can change a load that may see
1355exactly one write into a load that may see multiple writes.)
1356
1357.. _ordering:
1358
1359Atomic Memory Ordering Constraints
1360----------------------------------
1361
1362Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1363:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1364:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1365an ordering parameter that determines which other atomic instructions on
1366the same address they *synchronize with*. These semantics are borrowed
1367from Java and C++0x, but are somewhat more colloquial. If these
1368descriptions aren't precise enough, check those specs (see spec
1369references in the :doc:`atomics guide <Atomics>`).
1370:ref:`fence <i_fence>` instructions treat these orderings somewhat
1371differently since they don't take an address. See that instruction's
1372documentation for details.
1373
1374For a simpler introduction to the ordering constraints, see the
1375:doc:`Atomics`.
1376
1377``unordered``
1378 The set of values that can be read is governed by the happens-before
1379 partial order. A value cannot be read unless some operation wrote
1380 it. This is intended to provide a guarantee strong enough to model
1381 Java's non-volatile shared variables. This ordering cannot be
1382 specified for read-modify-write operations; it is not strong enough
1383 to make them atomic in any interesting way.
1384``monotonic``
1385 In addition to the guarantees of ``unordered``, there is a single
1386 total order for modifications by ``monotonic`` operations on each
1387 address. All modification orders must be compatible with the
1388 happens-before order. There is no guarantee that the modification
1389 orders can be combined to a global total order for the whole program
1390 (and this often will not be possible). The read in an atomic
1391 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1392 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1393 order immediately before the value it writes. If one atomic read
1394 happens before another atomic read of the same address, the later
1395 read must see the same value or a later value in the address's
1396 modification order. This disallows reordering of ``monotonic`` (or
1397 stronger) operations on the same address. If an address is written
1398 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1399 read that address repeatedly, the other threads must eventually see
1400 the write. This corresponds to the C++0x/C1x
1401 ``memory_order_relaxed``.
1402``acquire``
1403 In addition to the guarantees of ``monotonic``, a
1404 *synchronizes-with* edge may be formed with a ``release`` operation.
1405 This is intended to model C++'s ``memory_order_acquire``.
1406``release``
1407 In addition to the guarantees of ``monotonic``, if this operation
1408 writes a value which is subsequently read by an ``acquire``
1409 operation, it *synchronizes-with* that operation. (This isn't a
1410 complete description; see the C++0x definition of a release
1411 sequence.) This corresponds to the C++0x/C1x
1412 ``memory_order_release``.
1413``acq_rel`` (acquire+release)
1414 Acts as both an ``acquire`` and ``release`` operation on its
1415 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1416``seq_cst`` (sequentially consistent)
1417 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1418 operation which only reads, ``release`` for an operation which only
1419 writes), there is a global total order on all
1420 sequentially-consistent operations on all addresses, which is
1421 consistent with the *happens-before* partial order and with the
1422 modification orders of all the affected addresses. Each
1423 sequentially-consistent read sees the last preceding write to the
1424 same address in this global order. This corresponds to the C++0x/C1x
1425 ``memory_order_seq_cst`` and Java volatile.
1426
1427.. _singlethread:
1428
1429If an atomic operation is marked ``singlethread``, it only *synchronizes
1430with* or participates in modification and seq\_cst total orderings with
1431other operations running in the same thread (for example, in signal
1432handlers).
1433
1434.. _fastmath:
1435
1436Fast-Math Flags
1437---------------
1438
1439LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1440:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1441:ref:`frem <i_frem>`) have the following flags that can set to enable
1442otherwise unsafe floating point operations
1443
1444``nnan``
1445 No NaNs - Allow optimizations to assume the arguments and result are not
1446 NaN. Such optimizations are required to retain defined behavior over
1447 NaNs, but the value of the result is undefined.
1448
1449``ninf``
1450 No Infs - Allow optimizations to assume the arguments and result are not
1451 +/-Inf. Such optimizations are required to retain defined behavior over
1452 +/-Inf, but the value of the result is undefined.
1453
1454``nsz``
1455 No Signed Zeros - Allow optimizations to treat the sign of a zero
1456 argument or result as insignificant.
1457
1458``arcp``
1459 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1460 argument rather than perform division.
1461
1462``fast``
1463 Fast - Allow algebraically equivalent transformations that may
1464 dramatically change results in floating point (e.g. reassociate). This
1465 flag implies all the others.
1466
1467.. _typesystem:
1468
1469Type System
1470===========
1471
1472The LLVM type system is one of the most important features of the
1473intermediate representation. Being typed enables a number of
1474optimizations to be performed on the intermediate representation
1475directly, without having to do extra analyses on the side before the
1476transformation. A strong type system makes it easier to read the
1477generated code and enables novel analyses and transformations that are
1478not feasible to perform on normal three address code representations.
1479
Eli Bendersky88fe6822013-06-07 20:24:43 +00001480.. _typeclassifications:
1481
Sean Silvaf722b002012-12-07 10:36:55 +00001482Type Classifications
1483--------------------
1484
1485The types fall into a few useful classifications:
1486
1487
1488.. list-table::
1489 :header-rows: 1
1490
1491 * - Classification
1492 - Types
1493
1494 * - :ref:`integer <t_integer>`
1495 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1496 ``i64``, ...
1497
1498 * - :ref:`floating point <t_floating>`
1499 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1500 ``ppc_fp128``
1501
1502
1503 * - first class
1504
1505 .. _t_firstclass:
1506
1507 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1508 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1509 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1510 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1511
1512 * - :ref:`primitive <t_primitive>`
1513 - :ref:`label <t_label>`,
1514 :ref:`void <t_void>`,
1515 :ref:`integer <t_integer>`,
1516 :ref:`floating point <t_floating>`,
1517 :ref:`x86mmx <t_x86mmx>`,
1518 :ref:`metadata <t_metadata>`.
1519
1520 * - :ref:`derived <t_derived>`
1521 - :ref:`array <t_array>`,
1522 :ref:`function <t_function>`,
1523 :ref:`pointer <t_pointer>`,
1524 :ref:`structure <t_struct>`,
1525 :ref:`vector <t_vector>`,
1526 :ref:`opaque <t_opaque>`.
1527
1528The :ref:`first class <t_firstclass>` types are perhaps the most important.
1529Values of these types are the only ones which can be produced by
1530instructions.
1531
1532.. _t_primitive:
1533
1534Primitive Types
1535---------------
1536
1537The primitive types are the fundamental building blocks of the LLVM
1538system.
1539
1540.. _t_integer:
1541
1542Integer Type
1543^^^^^^^^^^^^
1544
1545Overview:
1546"""""""""
1547
1548The integer type is a very simple type that simply specifies an
1549arbitrary bit width for the integer type desired. Any bit width from 1
1550bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1551
1552Syntax:
1553"""""""
1554
1555::
1556
1557 iN
1558
1559The number of bits the integer will occupy is specified by the ``N``
1560value.
1561
1562Examples:
1563"""""""""
1564
1565+----------------+------------------------------------------------+
1566| ``i1`` | a single-bit integer. |
1567+----------------+------------------------------------------------+
1568| ``i32`` | a 32-bit integer. |
1569+----------------+------------------------------------------------+
1570| ``i1942652`` | a really big integer of over 1 million bits. |
1571+----------------+------------------------------------------------+
1572
1573.. _t_floating:
1574
1575Floating Point Types
1576^^^^^^^^^^^^^^^^^^^^
1577
1578.. list-table::
1579 :header-rows: 1
1580
1581 * - Type
1582 - Description
1583
1584 * - ``half``
1585 - 16-bit floating point value
1586
1587 * - ``float``
1588 - 32-bit floating point value
1589
1590 * - ``double``
1591 - 64-bit floating point value
1592
1593 * - ``fp128``
1594 - 128-bit floating point value (112-bit mantissa)
1595
1596 * - ``x86_fp80``
1597 - 80-bit floating point value (X87)
1598
1599 * - ``ppc_fp128``
1600 - 128-bit floating point value (two 64-bits)
1601
1602.. _t_x86mmx:
1603
1604X86mmx Type
1605^^^^^^^^^^^
1606
1607Overview:
1608"""""""""
1609
1610The x86mmx type represents a value held in an MMX register on an x86
1611machine. The operations allowed on it are quite limited: parameters and
1612return values, load and store, and bitcast. User-specified MMX
1613instructions are represented as intrinsic or asm calls with arguments
1614and/or results of this type. There are no arrays, vectors or constants
1615of this type.
1616
1617Syntax:
1618"""""""
1619
1620::
1621
1622 x86mmx
1623
1624.. _t_void:
1625
1626Void Type
1627^^^^^^^^^
1628
1629Overview:
1630"""""""""
1631
1632The void type does not represent any value and has no size.
1633
1634Syntax:
1635"""""""
1636
1637::
1638
1639 void
1640
1641.. _t_label:
1642
1643Label Type
1644^^^^^^^^^^
1645
1646Overview:
1647"""""""""
1648
1649The label type represents code labels.
1650
1651Syntax:
1652"""""""
1653
1654::
1655
1656 label
1657
1658.. _t_metadata:
1659
1660Metadata Type
1661^^^^^^^^^^^^^
1662
1663Overview:
1664"""""""""
1665
1666The metadata type represents embedded metadata. No derived types may be
1667created from metadata except for :ref:`function <t_function>` arguments.
1668
1669Syntax:
1670"""""""
1671
1672::
1673
1674 metadata
1675
1676.. _t_derived:
1677
1678Derived Types
1679-------------
1680
1681The real power in LLVM comes from the derived types in the system. This
1682is what allows a programmer to represent arrays, functions, pointers,
1683and other useful types. Each of these types contain one or more element
1684types which may be a primitive type, or another derived type. For
1685example, it is possible to have a two dimensional array, using an array
1686as the element type of another array.
1687
1688.. _t_aggregate:
1689
1690Aggregate Types
1691^^^^^^^^^^^^^^^
1692
1693Aggregate Types are a subset of derived types that can contain multiple
1694member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1695aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1696aggregate types.
1697
1698.. _t_array:
1699
1700Array Type
1701^^^^^^^^^^
1702
1703Overview:
1704"""""""""
1705
1706The array type is a very simple derived type that arranges elements
1707sequentially in memory. The array type requires a size (number of
1708elements) and an underlying data type.
1709
1710Syntax:
1711"""""""
1712
1713::
1714
1715 [<# elements> x <elementtype>]
1716
1717The number of elements is a constant integer value; ``elementtype`` may
1718be any type with a size.
1719
1720Examples:
1721"""""""""
1722
1723+------------------+--------------------------------------+
1724| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1725+------------------+--------------------------------------+
1726| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1727+------------------+--------------------------------------+
1728| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1729+------------------+--------------------------------------+
1730
1731Here are some examples of multidimensional arrays:
1732
1733+-----------------------------+----------------------------------------------------------+
1734| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1735+-----------------------------+----------------------------------------------------------+
1736| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1737+-----------------------------+----------------------------------------------------------+
1738| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1739+-----------------------------+----------------------------------------------------------+
1740
1741There is no restriction on indexing beyond the end of the array implied
1742by a static type (though there are restrictions on indexing beyond the
1743bounds of an allocated object in some cases). This means that
1744single-dimension 'variable sized array' addressing can be implemented in
1745LLVM with a zero length array type. An implementation of 'pascal style
1746arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1747example.
1748
1749.. _t_function:
1750
1751Function Type
1752^^^^^^^^^^^^^
1753
1754Overview:
1755"""""""""
1756
Bill Wendling09f8e132013-10-27 04:19:29 +00001757The function type can be thought of as a function signature. It consists of a
1758return type and a list of formal parameter types. The return type of a function
1759type is a void type or first class type --- except for :ref:`label <t_label>`
1760and :ref:`metadata <t_metadata>` types.
Sean Silvaf722b002012-12-07 10:36:55 +00001761
1762Syntax:
1763"""""""
1764
1765::
1766
1767 <returntype> (<parameter list>)
1768
1769...where '``<parameter list>``' is a comma-separated list of type
Bill Wendling09f8e132013-10-27 04:19:29 +00001770specifiers. Optionally, the parameter list may include a type ``...``, which
1771indicates that the function takes a variable number of arguments. Variable
1772argument functions can access their arguments with the :ref:`variable argument
1773handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1774except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvaf722b002012-12-07 10:36:55 +00001775
1776Examples:
1777"""""""""
1778
1779+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1780| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1781+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001782| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001783+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1784| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1785+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1786| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1787+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1788
1789.. _t_struct:
1790
1791Structure Type
1792^^^^^^^^^^^^^^
1793
1794Overview:
1795"""""""""
1796
1797The structure type is used to represent a collection of data members
1798together in memory. The elements of a structure may be any type that has
1799a size.
1800
1801Structures in memory are accessed using '``load``' and '``store``' by
1802getting a pointer to a field with the '``getelementptr``' instruction.
1803Structures in registers are accessed using the '``extractvalue``' and
1804'``insertvalue``' instructions.
1805
1806Structures may optionally be "packed" structures, which indicate that
1807the alignment of the struct is one byte, and that there is no padding
1808between the elements. In non-packed structs, padding between field types
1809is inserted as defined by the DataLayout string in the module, which is
1810required to match what the underlying code generator expects.
1811
1812Structures can either be "literal" or "identified". A literal structure
1813is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1814identified types are always defined at the top level with a name.
1815Literal types are uniqued by their contents and can never be recursive
1816or opaque since there is no way to write one. Identified types can be
1817recursive, can be opaqued, and are never uniqued.
1818
1819Syntax:
1820"""""""
1821
1822::
1823
1824 %T1 = type { <type list> } ; Identified normal struct type
1825 %T2 = type <{ <type list> }> ; Identified packed struct type
1826
1827Examples:
1828"""""""""
1829
1830+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1831| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1832+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001833| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001834+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1835| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1836+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1837
1838.. _t_opaque:
1839
1840Opaque Structure Types
1841^^^^^^^^^^^^^^^^^^^^^^
1842
1843Overview:
1844"""""""""
1845
1846Opaque structure types are used to represent named structure types that
1847do not have a body specified. This corresponds (for example) to the C
1848notion of a forward declared structure.
1849
1850Syntax:
1851"""""""
1852
1853::
1854
1855 %X = type opaque
1856 %52 = type opaque
1857
1858Examples:
1859"""""""""
1860
1861+--------------+-------------------+
1862| ``opaque`` | An opaque type. |
1863+--------------+-------------------+
1864
1865.. _t_pointer:
1866
1867Pointer Type
1868^^^^^^^^^^^^
1869
1870Overview:
1871"""""""""
1872
1873The pointer type is used to specify memory locations. Pointers are
1874commonly used to reference objects in memory.
1875
1876Pointer types may have an optional address space attribute defining the
1877numbered address space where the pointed-to object resides. The default
1878address space is number zero. The semantics of non-zero address spaces
1879are target-specific.
1880
1881Note that LLVM does not permit pointers to void (``void*``) nor does it
1882permit pointers to labels (``label*``). Use ``i8*`` instead.
1883
1884Syntax:
1885"""""""
1886
1887::
1888
1889 <type> *
1890
1891Examples:
1892"""""""""
1893
1894+-------------------------+--------------------------------------------------------------------------------------------------------------+
1895| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1896+-------------------------+--------------------------------------------------------------------------------------------------------------+
1897| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1898+-------------------------+--------------------------------------------------------------------------------------------------------------+
1899| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1900+-------------------------+--------------------------------------------------------------------------------------------------------------+
1901
1902.. _t_vector:
1903
1904Vector Type
1905^^^^^^^^^^^
1906
1907Overview:
1908"""""""""
1909
1910A vector type is a simple derived type that represents a vector of
1911elements. Vector types are used when multiple primitive data are
1912operated in parallel using a single instruction (SIMD). A vector type
1913requires a size (number of elements) and an underlying primitive data
1914type. Vector types are considered :ref:`first class <t_firstclass>`.
1915
1916Syntax:
1917"""""""
1918
1919::
1920
1921 < <# elements> x <elementtype> >
1922
1923The number of elements is a constant integer value larger than 0;
1924elementtype may be any integer or floating point type, or a pointer to
1925these types. Vectors of size zero are not allowed.
1926
1927Examples:
1928"""""""""
1929
1930+-------------------+--------------------------------------------------+
1931| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1932+-------------------+--------------------------------------------------+
1933| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1934+-------------------+--------------------------------------------------+
1935| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1936+-------------------+--------------------------------------------------+
1937| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1938+-------------------+--------------------------------------------------+
1939
1940Constants
1941=========
1942
1943LLVM has several different basic types of constants. This section
1944describes them all and their syntax.
1945
1946Simple Constants
1947----------------
1948
1949**Boolean constants**
1950 The two strings '``true``' and '``false``' are both valid constants
1951 of the ``i1`` type.
1952**Integer constants**
1953 Standard integers (such as '4') are constants of the
1954 :ref:`integer <t_integer>` type. Negative numbers may be used with
1955 integer types.
1956**Floating point constants**
1957 Floating point constants use standard decimal notation (e.g.
1958 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1959 hexadecimal notation (see below). The assembler requires the exact
1960 decimal value of a floating-point constant. For example, the
1961 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1962 decimal in binary. Floating point constants must have a :ref:`floating
1963 point <t_floating>` type.
1964**Null pointer constants**
1965 The identifier '``null``' is recognized as a null pointer constant
1966 and must be of :ref:`pointer type <t_pointer>`.
1967
1968The one non-intuitive notation for constants is the hexadecimal form of
1969floating point constants. For example, the form
1970'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1971than) '``double 4.5e+15``'. The only time hexadecimal floating point
1972constants are required (and the only time that they are generated by the
1973disassembler) is when a floating point constant must be emitted but it
1974cannot be represented as a decimal floating point number in a reasonable
1975number of digits. For example, NaN's, infinities, and other special
1976values are represented in their IEEE hexadecimal format so that assembly
1977and disassembly do not cause any bits to change in the constants.
1978
1979When using the hexadecimal form, constants of types half, float, and
1980double are represented using the 16-digit form shown above (which
1981matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001982must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001983precision, respectively. Hexadecimal format is always used for long
1984double, and there are three forms of long double. The 80-bit format used
1985by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1986128-bit format used by PowerPC (two adjacent doubles) is represented by
1987``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001988represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1989will only work if they match the long double format on your target.
1990The IEEE 16-bit format (half precision) is represented by ``0xH``
1991followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1992(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001993
1994There are no constants of type x86mmx.
1995
Eli Bendersky88fe6822013-06-07 20:24:43 +00001996.. _complexconstants:
1997
Sean Silvaf722b002012-12-07 10:36:55 +00001998Complex Constants
1999-----------------
2000
2001Complex constants are a (potentially recursive) combination of simple
2002constants and smaller complex constants.
2003
2004**Structure constants**
2005 Structure constants are represented with notation similar to
2006 structure type definitions (a comma separated list of elements,
2007 surrounded by braces (``{}``)). For example:
2008 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2009 "``@G = external global i32``". Structure constants must have
2010 :ref:`structure type <t_struct>`, and the number and types of elements
2011 must match those specified by the type.
2012**Array constants**
2013 Array constants are represented with notation similar to array type
2014 definitions (a comma separated list of elements, surrounded by
2015 square brackets (``[]``)). For example:
2016 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2017 :ref:`array type <t_array>`, and the number and types of elements must
2018 match those specified by the type.
2019**Vector constants**
2020 Vector constants are represented with notation similar to vector
2021 type definitions (a comma separated list of elements, surrounded by
2022 less-than/greater-than's (``<>``)). For example:
2023 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2024 must have :ref:`vector type <t_vector>`, and the number and types of
2025 elements must match those specified by the type.
2026**Zero initialization**
2027 The string '``zeroinitializer``' can be used to zero initialize a
2028 value to zero of *any* type, including scalar and
2029 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2030 having to print large zero initializers (e.g. for large arrays) and
2031 is always exactly equivalent to using explicit zero initializers.
2032**Metadata node**
2033 A metadata node is a structure-like constant with :ref:`metadata
2034 type <t_metadata>`. For example:
2035 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2036 constants that are meant to be interpreted as part of the
2037 instruction stream, metadata is a place to attach additional
2038 information such as debug info.
2039
2040Global Variable and Function Addresses
2041--------------------------------------
2042
2043The addresses of :ref:`global variables <globalvars>` and
2044:ref:`functions <functionstructure>` are always implicitly valid
2045(link-time) constants. These constants are explicitly referenced when
2046the :ref:`identifier for the global <identifiers>` is used and always have
2047:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2048file:
2049
2050.. code-block:: llvm
2051
2052 @X = global i32 17
2053 @Y = global i32 42
2054 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2055
2056.. _undefvalues:
2057
2058Undefined Values
2059----------------
2060
2061The string '``undef``' can be used anywhere a constant is expected, and
2062indicates that the user of the value may receive an unspecified
2063bit-pattern. Undefined values may be of any type (other than '``label``'
2064or '``void``') and be used anywhere a constant is permitted.
2065
2066Undefined values are useful because they indicate to the compiler that
2067the program is well defined no matter what value is used. This gives the
2068compiler more freedom to optimize. Here are some examples of
2069(potentially surprising) transformations that are valid (in pseudo IR):
2070
2071.. code-block:: llvm
2072
2073 %A = add %X, undef
2074 %B = sub %X, undef
2075 %C = xor %X, undef
2076 Safe:
2077 %A = undef
2078 %B = undef
2079 %C = undef
2080
2081This is safe because all of the output bits are affected by the undef
2082bits. Any output bit can have a zero or one depending on the input bits.
2083
2084.. code-block:: llvm
2085
2086 %A = or %X, undef
2087 %B = and %X, undef
2088 Safe:
2089 %A = -1
2090 %B = 0
2091 Unsafe:
2092 %A = undef
2093 %B = undef
2094
2095These logical operations have bits that are not always affected by the
2096input. For example, if ``%X`` has a zero bit, then the output of the
2097'``and``' operation will always be a zero for that bit, no matter what
2098the corresponding bit from the '``undef``' is. As such, it is unsafe to
2099optimize or assume that the result of the '``and``' is '``undef``'.
2100However, it is safe to assume that all bits of the '``undef``' could be
21010, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2102all the bits of the '``undef``' operand to the '``or``' could be set,
2103allowing the '``or``' to be folded to -1.
2104
2105.. code-block:: llvm
2106
2107 %A = select undef, %X, %Y
2108 %B = select undef, 42, %Y
2109 %C = select %X, %Y, undef
2110 Safe:
2111 %A = %X (or %Y)
2112 %B = 42 (or %Y)
2113 %C = %Y
2114 Unsafe:
2115 %A = undef
2116 %B = undef
2117 %C = undef
2118
2119This set of examples shows that undefined '``select``' (and conditional
2120branch) conditions can go *either way*, but they have to come from one
2121of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2122both known to have a clear low bit, then ``%A`` would have to have a
2123cleared low bit. However, in the ``%C`` example, the optimizer is
2124allowed to assume that the '``undef``' operand could be the same as
2125``%Y``, allowing the whole '``select``' to be eliminated.
2126
2127.. code-block:: llvm
2128
2129 %A = xor undef, undef
2130
2131 %B = undef
2132 %C = xor %B, %B
2133
2134 %D = undef
2135 %E = icmp lt %D, 4
2136 %F = icmp gte %D, 4
2137
2138 Safe:
2139 %A = undef
2140 %B = undef
2141 %C = undef
2142 %D = undef
2143 %E = undef
2144 %F = undef
2145
2146This example points out that two '``undef``' operands are not
2147necessarily the same. This can be surprising to people (and also matches
2148C semantics) where they assume that "``X^X``" is always zero, even if
2149``X`` is undefined. This isn't true for a number of reasons, but the
2150short answer is that an '``undef``' "variable" can arbitrarily change
2151its value over its "live range". This is true because the variable
2152doesn't actually *have a live range*. Instead, the value is logically
2153read from arbitrary registers that happen to be around when needed, so
2154the value is not necessarily consistent over time. In fact, ``%A`` and
2155``%C`` need to have the same semantics or the core LLVM "replace all
2156uses with" concept would not hold.
2157
2158.. code-block:: llvm
2159
2160 %A = fdiv undef, %X
2161 %B = fdiv %X, undef
2162 Safe:
2163 %A = undef
2164 b: unreachable
2165
2166These examples show the crucial difference between an *undefined value*
2167and *undefined behavior*. An undefined value (like '``undef``') is
2168allowed to have an arbitrary bit-pattern. This means that the ``%A``
2169operation can be constant folded to '``undef``', because the '``undef``'
2170could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2171However, in the second example, we can make a more aggressive
2172assumption: because the ``undef`` is allowed to be an arbitrary value,
2173we are allowed to assume that it could be zero. Since a divide by zero
2174has *undefined behavior*, we are allowed to assume that the operation
2175does not execute at all. This allows us to delete the divide and all
2176code after it. Because the undefined operation "can't happen", the
2177optimizer can assume that it occurs in dead code.
2178
2179.. code-block:: llvm
2180
2181 a: store undef -> %X
2182 b: store %X -> undef
2183 Safe:
2184 a: <deleted>
2185 b: unreachable
2186
2187These examples reiterate the ``fdiv`` example: a store *of* an undefined
2188value can be assumed to not have any effect; we can assume that the
2189value is overwritten with bits that happen to match what was already
2190there. However, a store *to* an undefined location could clobber
2191arbitrary memory, therefore, it has undefined behavior.
2192
2193.. _poisonvalues:
2194
2195Poison Values
2196-------------
2197
2198Poison values are similar to :ref:`undef values <undefvalues>`, however
2199they also represent the fact that an instruction or constant expression
2200which cannot evoke side effects has nevertheless detected a condition
2201which results in undefined behavior.
2202
2203There is currently no way of representing a poison value in the IR; they
2204only exist when produced by operations such as :ref:`add <i_add>` with
2205the ``nsw`` flag.
2206
2207Poison value behavior is defined in terms of value *dependence*:
2208
2209- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2210- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2211 their dynamic predecessor basic block.
2212- Function arguments depend on the corresponding actual argument values
2213 in the dynamic callers of their functions.
2214- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2215 instructions that dynamically transfer control back to them.
2216- :ref:`Invoke <i_invoke>` instructions depend on the
2217 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2218 call instructions that dynamically transfer control back to them.
2219- Non-volatile loads and stores depend on the most recent stores to all
2220 of the referenced memory addresses, following the order in the IR
2221 (including loads and stores implied by intrinsics such as
2222 :ref:`@llvm.memcpy <int_memcpy>`.)
2223- An instruction with externally visible side effects depends on the
2224 most recent preceding instruction with externally visible side
2225 effects, following the order in the IR. (This includes :ref:`volatile
2226 operations <volatile>`.)
2227- An instruction *control-depends* on a :ref:`terminator
2228 instruction <terminators>` if the terminator instruction has
2229 multiple successors and the instruction is always executed when
2230 control transfers to one of the successors, and may not be executed
2231 when control is transferred to another.
2232- Additionally, an instruction also *control-depends* on a terminator
2233 instruction if the set of instructions it otherwise depends on would
2234 be different if the terminator had transferred control to a different
2235 successor.
2236- Dependence is transitive.
2237
2238Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2239with the additional affect that any instruction which has a *dependence*
2240on a poison value has undefined behavior.
2241
2242Here are some examples:
2243
2244.. code-block:: llvm
2245
2246 entry:
2247 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2248 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2249 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2250 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2251
2252 store i32 %poison, i32* @g ; Poison value stored to memory.
2253 %poison2 = load i32* @g ; Poison value loaded back from memory.
2254
2255 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2256
2257 %narrowaddr = bitcast i32* @g to i16*
2258 %wideaddr = bitcast i32* @g to i64*
2259 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2260 %poison4 = load i64* %wideaddr ; Returns a poison value.
2261
2262 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2263 br i1 %cmp, label %true, label %end ; Branch to either destination.
2264
2265 true:
2266 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2267 ; it has undefined behavior.
2268 br label %end
2269
2270 end:
2271 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2272 ; Both edges into this PHI are
2273 ; control-dependent on %cmp, so this
2274 ; always results in a poison value.
2275
2276 store volatile i32 0, i32* @g ; This would depend on the store in %true
2277 ; if %cmp is true, or the store in %entry
2278 ; otherwise, so this is undefined behavior.
2279
2280 br i1 %cmp, label %second_true, label %second_end
2281 ; The same branch again, but this time the
2282 ; true block doesn't have side effects.
2283
2284 second_true:
2285 ; No side effects!
2286 ret void
2287
2288 second_end:
2289 store volatile i32 0, i32* @g ; This time, the instruction always depends
2290 ; on the store in %end. Also, it is
2291 ; control-equivalent to %end, so this is
2292 ; well-defined (ignoring earlier undefined
2293 ; behavior in this example).
2294
2295.. _blockaddress:
2296
2297Addresses of Basic Blocks
2298-------------------------
2299
2300``blockaddress(@function, %block)``
2301
2302The '``blockaddress``' constant computes the address of the specified
2303basic block in the specified function, and always has an ``i8*`` type.
2304Taking the address of the entry block is illegal.
2305
2306This value only has defined behavior when used as an operand to the
2307':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2308against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002309undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002310no label is equal to the null pointer. This may be passed around as an
2311opaque pointer sized value as long as the bits are not inspected. This
2312allows ``ptrtoint`` and arithmetic to be performed on these values so
2313long as the original value is reconstituted before the ``indirectbr``
2314instruction.
2315
2316Finally, some targets may provide defined semantics when using the value
2317as the operand to an inline assembly, but that is target specific.
2318
Eli Bendersky88fe6822013-06-07 20:24:43 +00002319.. _constantexprs:
2320
Sean Silvaf722b002012-12-07 10:36:55 +00002321Constant Expressions
2322--------------------
2323
2324Constant expressions are used to allow expressions involving other
2325constants to be used as constants. Constant expressions may be of any
2326:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2327that does not have side effects (e.g. load and call are not supported).
2328The following is the syntax for constant expressions:
2329
2330``trunc (CST to TYPE)``
2331 Truncate a constant to another type. The bit size of CST must be
2332 larger than the bit size of TYPE. Both types must be integers.
2333``zext (CST to TYPE)``
2334 Zero extend a constant to another type. The bit size of CST must be
2335 smaller than the bit size of TYPE. Both types must be integers.
2336``sext (CST to TYPE)``
2337 Sign extend a constant to another type. The bit size of CST must be
2338 smaller than the bit size of TYPE. Both types must be integers.
2339``fptrunc (CST to TYPE)``
2340 Truncate a floating point constant to another floating point type.
2341 The size of CST must be larger than the size of TYPE. Both types
2342 must be floating point.
2343``fpext (CST to TYPE)``
2344 Floating point extend a constant to another type. The size of CST
2345 must be smaller or equal to the size of TYPE. Both types must be
2346 floating point.
2347``fptoui (CST to TYPE)``
2348 Convert a floating point constant to the corresponding unsigned
2349 integer constant. TYPE must be a scalar or vector integer type. CST
2350 must be of scalar or vector floating point type. Both CST and TYPE
2351 must be scalars, or vectors of the same number of elements. If the
2352 value won't fit in the integer type, the results are undefined.
2353``fptosi (CST to TYPE)``
2354 Convert a floating point constant to the corresponding signed
2355 integer constant. TYPE must be a scalar or vector integer type. CST
2356 must be of scalar or vector floating point type. Both CST and TYPE
2357 must be scalars, or vectors of the same number of elements. If the
2358 value won't fit in the integer type, the results are undefined.
2359``uitofp (CST to TYPE)``
2360 Convert an unsigned integer constant to the corresponding floating
2361 point constant. TYPE must be a scalar or vector floating point type.
2362 CST must be of scalar or vector integer type. Both CST and TYPE must
2363 be scalars, or vectors of the same number of elements. If the value
2364 won't fit in the floating point type, the results are undefined.
2365``sitofp (CST to TYPE)``
2366 Convert a signed integer constant to the corresponding floating
2367 point constant. TYPE must be a scalar or vector floating point type.
2368 CST must be of scalar or vector integer type. Both CST and TYPE must
2369 be scalars, or vectors of the same number of elements. If the value
2370 won't fit in the floating point type, the results are undefined.
2371``ptrtoint (CST to TYPE)``
2372 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002373 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002374 pointer type. The ``CST`` value is zero extended, truncated, or
2375 unchanged to make it fit in ``TYPE``.
2376``inttoptr (CST to TYPE)``
2377 Convert an integer constant to a pointer constant. TYPE must be a
2378 pointer type. CST must be of integer type. The CST value is zero
2379 extended, truncated, or unchanged to make it fit in a pointer size.
2380 This one is *really* dangerous!
2381``bitcast (CST to TYPE)``
2382 Convert a constant, CST, to another TYPE. The constraints of the
2383 operands are the same as those for the :ref:`bitcast
2384 instruction <i_bitcast>`.
Matt Arsenault59d3ae62013-11-15 01:34:59 +00002385``addrspacecast (CST to TYPE)``
2386 Convert a constant pointer or constant vector of pointer, CST, to another
2387 TYPE in a different address space. The constraints of the operands are the
2388 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvaf722b002012-12-07 10:36:55 +00002389``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2390 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2391 constants. As with the :ref:`getelementptr <i_getelementptr>`
2392 instruction, the index list may have zero or more indexes, which are
2393 required to make sense for the type of "CSTPTR".
2394``select (COND, VAL1, VAL2)``
2395 Perform the :ref:`select operation <i_select>` on constants.
2396``icmp COND (VAL1, VAL2)``
2397 Performs the :ref:`icmp operation <i_icmp>` on constants.
2398``fcmp COND (VAL1, VAL2)``
2399 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2400``extractelement (VAL, IDX)``
2401 Perform the :ref:`extractelement operation <i_extractelement>` on
2402 constants.
2403``insertelement (VAL, ELT, IDX)``
2404 Perform the :ref:`insertelement operation <i_insertelement>` on
2405 constants.
2406``shufflevector (VEC1, VEC2, IDXMASK)``
2407 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2408 constants.
2409``extractvalue (VAL, IDX0, IDX1, ...)``
2410 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2411 constants. The index list is interpreted in a similar manner as
2412 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2413 least one index value must be specified.
2414``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2415 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2416 The index list is interpreted in a similar manner as indices in a
2417 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2418 value must be specified.
2419``OPCODE (LHS, RHS)``
2420 Perform the specified operation of the LHS and RHS constants. OPCODE
2421 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2422 binary <bitwiseops>` operations. The constraints on operands are
2423 the same as those for the corresponding instruction (e.g. no bitwise
2424 operations on floating point values are allowed).
2425
2426Other Values
2427============
2428
Eli Bendersky88fe6822013-06-07 20:24:43 +00002429.. _inlineasmexprs:
2430
Sean Silvaf722b002012-12-07 10:36:55 +00002431Inline Assembler Expressions
2432----------------------------
2433
2434LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2435Inline Assembly <moduleasm>`) through the use of a special value. This
2436value represents the inline assembler as a string (containing the
2437instructions to emit), a list of operand constraints (stored as a
2438string), a flag that indicates whether or not the inline asm expression
2439has side effects, and a flag indicating whether the function containing
2440the asm needs to align its stack conservatively. An example inline
2441assembler expression is:
2442
2443.. code-block:: llvm
2444
2445 i32 (i32) asm "bswap $0", "=r,r"
2446
2447Inline assembler expressions may **only** be used as the callee operand
2448of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2449Thus, typically we have:
2450
2451.. code-block:: llvm
2452
2453 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2454
2455Inline asms with side effects not visible in the constraint list must be
2456marked as having side effects. This is done through the use of the
2457'``sideeffect``' keyword, like so:
2458
2459.. code-block:: llvm
2460
2461 call void asm sideeffect "eieio", ""()
2462
2463In some cases inline asms will contain code that will not work unless
2464the stack is aligned in some way, such as calls or SSE instructions on
2465x86, yet will not contain code that does that alignment within the asm.
2466The compiler should make conservative assumptions about what the asm
2467might contain and should generate its usual stack alignment code in the
2468prologue if the '``alignstack``' keyword is present:
2469
2470.. code-block:: llvm
2471
2472 call void asm alignstack "eieio", ""()
2473
2474Inline asms also support using non-standard assembly dialects. The
2475assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2476the inline asm is using the Intel dialect. Currently, ATT and Intel are
2477the only supported dialects. An example is:
2478
2479.. code-block:: llvm
2480
2481 call void asm inteldialect "eieio", ""()
2482
2483If multiple keywords appear the '``sideeffect``' keyword must come
2484first, the '``alignstack``' keyword second and the '``inteldialect``'
2485keyword last.
2486
2487Inline Asm Metadata
2488^^^^^^^^^^^^^^^^^^^
2489
2490The call instructions that wrap inline asm nodes may have a
2491"``!srcloc``" MDNode attached to it that contains a list of constant
2492integers. If present, the code generator will use the integer as the
2493location cookie value when report errors through the ``LLVMContext``
2494error reporting mechanisms. This allows a front-end to correlate backend
2495errors that occur with inline asm back to the source code that produced
2496it. For example:
2497
2498.. code-block:: llvm
2499
2500 call void asm sideeffect "something bad", ""(), !srcloc !42
2501 ...
2502 !42 = !{ i32 1234567 }
2503
2504It is up to the front-end to make sense of the magic numbers it places
2505in the IR. If the MDNode contains multiple constants, the code generator
2506will use the one that corresponds to the line of the asm that the error
2507occurs on.
2508
2509.. _metadata:
2510
2511Metadata Nodes and Metadata Strings
2512-----------------------------------
2513
2514LLVM IR allows metadata to be attached to instructions in the program
2515that can convey extra information about the code to the optimizers and
2516code generator. One example application of metadata is source-level
2517debug information. There are two metadata primitives: strings and nodes.
2518All metadata has the ``metadata`` type and is identified in syntax by a
2519preceding exclamation point ('``!``').
2520
2521A metadata string is a string surrounded by double quotes. It can
2522contain any character by escaping non-printable characters with
2523"``\xx``" where "``xx``" is the two digit hex code. For example:
2524"``!"test\00"``".
2525
2526Metadata nodes are represented with notation similar to structure
2527constants (a comma separated list of elements, surrounded by braces and
2528preceded by an exclamation point). Metadata nodes can have any values as
2529their operand. For example:
2530
2531.. code-block:: llvm
2532
2533 !{ metadata !"test\00", i32 10}
2534
2535A :ref:`named metadata <namedmetadatastructure>` is a collection of
2536metadata nodes, which can be looked up in the module symbol table. For
2537example:
2538
2539.. code-block:: llvm
2540
2541 !foo = metadata !{!4, !3}
2542
2543Metadata can be used as function arguments. Here ``llvm.dbg.value``
2544function is using two metadata arguments:
2545
2546.. code-block:: llvm
2547
2548 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2549
2550Metadata can be attached with an instruction. Here metadata ``!21`` is
2551attached to the ``add`` instruction using the ``!dbg`` identifier:
2552
2553.. code-block:: llvm
2554
2555 %indvar.next = add i64 %indvar, 1, !dbg !21
2556
2557More information about specific metadata nodes recognized by the
2558optimizers and code generator is found below.
2559
2560'``tbaa``' Metadata
2561^^^^^^^^^^^^^^^^^^^
2562
2563In LLVM IR, memory does not have types, so LLVM's own type system is not
2564suitable for doing TBAA. Instead, metadata is added to the IR to
2565describe a type system of a higher level language. This can be used to
2566implement typical C/C++ TBAA, but it can also be used to implement
2567custom alias analysis behavior for other languages.
2568
2569The current metadata format is very simple. TBAA metadata nodes have up
2570to three fields, e.g.:
2571
2572.. code-block:: llvm
2573
2574 !0 = metadata !{ metadata !"an example type tree" }
2575 !1 = metadata !{ metadata !"int", metadata !0 }
2576 !2 = metadata !{ metadata !"float", metadata !0 }
2577 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2578
2579The first field is an identity field. It can be any value, usually a
2580metadata string, which uniquely identifies the type. The most important
2581name in the tree is the name of the root node. Two trees with different
2582root node names are entirely disjoint, even if they have leaves with
2583common names.
2584
2585The second field identifies the type's parent node in the tree, or is
2586null or omitted for a root node. A type is considered to alias all of
2587its descendants and all of its ancestors in the tree. Also, a type is
2588considered to alias all types in other trees, so that bitcode produced
2589from multiple front-ends is handled conservatively.
2590
2591If the third field is present, it's an integer which if equal to 1
2592indicates that the type is "constant" (meaning
2593``pointsToConstantMemory`` should return true; see `other useful
2594AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2595
2596'``tbaa.struct``' Metadata
2597^^^^^^^^^^^^^^^^^^^^^^^^^^
2598
2599The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2600aggregate assignment operations in C and similar languages, however it
2601is defined to copy a contiguous region of memory, which is more than
2602strictly necessary for aggregate types which contain holes due to
2603padding. Also, it doesn't contain any TBAA information about the fields
2604of the aggregate.
2605
2606``!tbaa.struct`` metadata can describe which memory subregions in a
2607memcpy are padding and what the TBAA tags of the struct are.
2608
2609The current metadata format is very simple. ``!tbaa.struct`` metadata
2610nodes are a list of operands which are in conceptual groups of three.
2611For each group of three, the first operand gives the byte offset of a
2612field in bytes, the second gives its size in bytes, and the third gives
2613its tbaa tag. e.g.:
2614
2615.. code-block:: llvm
2616
2617 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2618
2619This describes a struct with two fields. The first is at offset 0 bytes
2620with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2621and has size 4 bytes and has tbaa tag !2.
2622
2623Note that the fields need not be contiguous. In this example, there is a
26244 byte gap between the two fields. This gap represents padding which
2625does not carry useful data and need not be preserved.
2626
2627'``fpmath``' Metadata
2628^^^^^^^^^^^^^^^^^^^^^
2629
2630``fpmath`` metadata may be attached to any instruction of floating point
2631type. It can be used to express the maximum acceptable error in the
2632result of that instruction, in ULPs, thus potentially allowing the
2633compiler to use a more efficient but less accurate method of computing
2634it. ULP is defined as follows:
2635
2636 If ``x`` is a real number that lies between two finite consecutive
2637 floating-point numbers ``a`` and ``b``, without being equal to one
2638 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2639 distance between the two non-equal finite floating-point numbers
2640 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2641
2642The metadata node shall consist of a single positive floating point
2643number representing the maximum relative error, for example:
2644
2645.. code-block:: llvm
2646
2647 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2648
2649'``range``' Metadata
2650^^^^^^^^^^^^^^^^^^^^
2651
2652``range`` metadata may be attached only to loads of integer types. It
2653expresses the possible ranges the loaded value is in. The ranges are
2654represented with a flattened list of integers. The loaded value is known
2655to be in the union of the ranges defined by each consecutive pair. Each
2656pair has the following properties:
2657
2658- The type must match the type loaded by the instruction.
2659- The pair ``a,b`` represents the range ``[a,b)``.
2660- Both ``a`` and ``b`` are constants.
2661- The range is allowed to wrap.
2662- The range should not represent the full or empty set. That is,
2663 ``a!=b``.
2664
2665In addition, the pairs must be in signed order of the lower bound and
2666they must be non-contiguous.
2667
2668Examples:
2669
2670.. code-block:: llvm
2671
2672 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2673 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2674 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2675 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2676 ...
2677 !0 = metadata !{ i8 0, i8 2 }
2678 !1 = metadata !{ i8 255, i8 2 }
2679 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2680 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2681
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002682'``llvm.loop``'
2683^^^^^^^^^^^^^^^
2684
2685It is sometimes useful to attach information to loop constructs. Currently,
2686loop metadata is implemented as metadata attached to the branch instruction
2687in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002688guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002689specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002690
2691The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002692itself to avoid merging it with any other identifier metadata, e.g.,
2693during module linkage or function inlining. That is, each loop should refer
2694to their own identification metadata even if they reside in separate functions.
2695The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002696constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002697
2698.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002699
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002700 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002701 !1 = metadata !{ metadata !1 }
2702
Paul Redmondee21b6f2013-05-28 20:00:34 +00002703The loop identifier metadata can be used to specify additional per-loop
2704metadata. Any operands after the first operand can be treated as user-defined
2705metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2706by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002707
Paul Redmondee21b6f2013-05-28 20:00:34 +00002708.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002709
Paul Redmondee21b6f2013-05-28 20:00:34 +00002710 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2711 ...
2712 !0 = metadata !{ metadata !0, metadata !1 }
2713 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002714
2715'``llvm.mem``'
2716^^^^^^^^^^^^^^^
2717
2718Metadata types used to annotate memory accesses with information helpful
2719for optimizations are prefixed with ``llvm.mem``.
2720
2721'``llvm.mem.parallel_loop_access``' Metadata
2722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2723
2724For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002725the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002726also all of the memory accessing instructions in the loop body need to be
2727marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2728is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002729the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002730converted to sequential loops due to optimization passes that are unaware of
2731the parallel semantics and that insert new memory instructions to the loop
2732body.
2733
2734Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002735both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002736metadata types that refer to the same loop identifier metadata.
2737
2738.. code-block:: llvm
2739
2740 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002741 ...
2742 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2743 ...
2744 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2745 ...
2746 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002747
2748 for.end:
2749 ...
2750 !0 = metadata !{ metadata !0 }
2751
2752It is also possible to have nested parallel loops. In that case the
2753memory accesses refer to a list of loop identifier metadata nodes instead of
2754the loop identifier metadata node directly:
2755
2756.. code-block:: llvm
2757
2758 outer.for.body:
2759 ...
2760
2761 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002762 ...
2763 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2764 ...
2765 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2766 ...
2767 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002768
2769 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002770 ...
2771 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2772 ...
2773 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2774 ...
2775 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002776
2777 outer.for.end: ; preds = %for.body
2778 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002779 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2780 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2781 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002782
Paul Redmondee21b6f2013-05-28 20:00:34 +00002783'``llvm.vectorizer``'
2784^^^^^^^^^^^^^^^^^^^^^
2785
2786Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2787vectorization parameters such as vectorization factor and unroll factor.
2788
2789``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2790loop identification metadata.
2791
2792'``llvm.vectorizer.unroll``' Metadata
2793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2794
2795This metadata instructs the loop vectorizer to unroll the specified
2796loop exactly ``N`` times.
2797
2798The first operand is the string ``llvm.vectorizer.unroll`` and the second
2799operand is an integer specifying the unroll factor. For example:
2800
2801.. code-block:: llvm
2802
2803 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2804
2805Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2806loop.
2807
2808If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2809determined automatically.
2810
2811'``llvm.vectorizer.width``' Metadata
2812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2813
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002814This metadata sets the target width of the vectorizer to ``N``. Without
2815this metadata, the vectorizer will choose a width automatically.
2816Regardless of this metadata, the vectorizer will only vectorize loops if
2817it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002818
2819The first operand is the string ``llvm.vectorizer.width`` and the second
2820operand is an integer specifying the width. For example:
2821
2822.. code-block:: llvm
2823
2824 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2825
2826Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2827loop.
2828
2829If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2830automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002831
Sean Silvaf722b002012-12-07 10:36:55 +00002832Module Flags Metadata
2833=====================
2834
2835Information about the module as a whole is difficult to convey to LLVM's
2836subsystems. The LLVM IR isn't sufficient to transmit this information.
2837The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002838this. These flags are in the form of key / value pairs --- much like a
2839dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002840look it up.
2841
2842The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2843Each triplet has the following form:
2844
2845- The first element is a *behavior* flag, which specifies the behavior
2846 when two (or more) modules are merged together, and it encounters two
2847 (or more) metadata with the same ID. The supported behaviors are
2848 described below.
2849- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002850 metadata. Each module may only have one flag entry for each unique ID (not
2851 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002852- The third element is the value of the flag.
2853
2854When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002855``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2856each unique metadata ID string, there will be exactly one entry in the merged
2857modules ``llvm.module.flags`` metadata table, and the value for that entry will
2858be determined by the merge behavior flag, as described below. The only exception
2859is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002860
2861The following behaviors are supported:
2862
2863.. list-table::
2864 :header-rows: 1
2865 :widths: 10 90
2866
2867 * - Value
2868 - Behavior
2869
2870 * - 1
2871 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002872 Emits an error if two values disagree, otherwise the resulting value
2873 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002874
2875 * - 2
2876 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002877 Emits a warning if two values disagree. The result value will be the
2878 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002879
2880 * - 3
2881 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002882 Adds a requirement that another module flag be present and have a
2883 specified value after linking is performed. The value must be a
2884 metadata pair, where the first element of the pair is the ID of the
2885 module flag to be restricted, and the second element of the pair is
2886 the value the module flag should be restricted to. This behavior can
2887 be used to restrict the allowable results (via triggering of an
2888 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002889
2890 * - 4
2891 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002892 Uses the specified value, regardless of the behavior or value of the
2893 other module. If both modules specify **Override**, but the values
2894 differ, an error will be emitted.
2895
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002896 * - 5
2897 - **Append**
2898 Appends the two values, which are required to be metadata nodes.
2899
2900 * - 6
2901 - **AppendUnique**
2902 Appends the two values, which are required to be metadata
2903 nodes. However, duplicate entries in the second list are dropped
2904 during the append operation.
2905
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002906It is an error for a particular unique flag ID to have multiple behaviors,
2907except in the case of **Require** (which adds restrictions on another metadata
2908value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002909
2910An example of module flags:
2911
2912.. code-block:: llvm
2913
2914 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2915 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2916 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2917 !3 = metadata !{ i32 3, metadata !"qux",
2918 metadata !{
2919 metadata !"foo", i32 1
2920 }
2921 }
2922 !llvm.module.flags = !{ !0, !1, !2, !3 }
2923
2924- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2925 if two or more ``!"foo"`` flags are seen is to emit an error if their
2926 values are not equal.
2927
2928- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2929 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002930 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002931
2932- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2933 behavior if two or more ``!"qux"`` flags are seen is to emit a
2934 warning if their values are not equal.
2935
2936- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2937
2938 ::
2939
2940 metadata !{ metadata !"foo", i32 1 }
2941
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002942 The behavior is to emit an error if the ``llvm.module.flags`` does not
2943 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2944 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002945
2946Objective-C Garbage Collection Module Flags Metadata
2947----------------------------------------------------
2948
2949On the Mach-O platform, Objective-C stores metadata about garbage
2950collection in a special section called "image info". The metadata
2951consists of a version number and a bitmask specifying what types of
2952garbage collection are supported (if any) by the file. If two or more
2953modules are linked together their garbage collection metadata needs to
2954be merged rather than appended together.
2955
2956The Objective-C garbage collection module flags metadata consists of the
2957following key-value pairs:
2958
2959.. list-table::
2960 :header-rows: 1
2961 :widths: 30 70
2962
2963 * - Key
2964 - Value
2965
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002966 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002967 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002968
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002969 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002970 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002971 always 0.
2972
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002973 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002974 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002975 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2976 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2977 Objective-C ABI version 2.
2978
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002979 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002980 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002981 not. Valid values are 0, for no garbage collection, and 2, for garbage
2982 collection supported.
2983
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002984 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002985 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002986 If present, its value must be 6. This flag requires that the
2987 ``Objective-C Garbage Collection`` flag have the value 2.
2988
2989Some important flag interactions:
2990
2991- If a module with ``Objective-C Garbage Collection`` set to 0 is
2992 merged with a module with ``Objective-C Garbage Collection`` set to
2993 2, then the resulting module has the
2994 ``Objective-C Garbage Collection`` flag set to 0.
2995- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2996 merged with a module with ``Objective-C GC Only`` set to 6.
2997
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002998Automatic Linker Flags Module Flags Metadata
2999--------------------------------------------
3000
3001Some targets support embedding flags to the linker inside individual object
3002files. Typically this is used in conjunction with language extensions which
3003allow source files to explicitly declare the libraries they depend on, and have
3004these automatically be transmitted to the linker via object files.
3005
3006These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003007using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003008to be ``AppendUnique``, and the value for the key is expected to be a metadata
3009node which should be a list of other metadata nodes, each of which should be a
3010list of metadata strings defining linker options.
3011
3012For example, the following metadata section specifies two separate sets of
3013linker options, presumably to link against ``libz`` and the ``Cocoa``
3014framework::
3015
Michael Liao2faa0f32013-03-06 18:24:34 +00003016 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003017 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00003018 metadata !{ metadata !"-lz" },
3019 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003020 !llvm.module.flags = !{ !0 }
3021
3022The metadata encoding as lists of lists of options, as opposed to a collapsed
3023list of options, is chosen so that the IR encoding can use multiple option
3024strings to specify e.g., a single library, while still having that specifier be
3025preserved as an atomic element that can be recognized by a target specific
3026assembly writer or object file emitter.
3027
3028Each individual option is required to be either a valid option for the target's
3029linker, or an option that is reserved by the target specific assembly writer or
3030object file emitter. No other aspect of these options is defined by the IR.
3031
Eli Bendersky88fe6822013-06-07 20:24:43 +00003032.. _intrinsicglobalvariables:
3033
Sean Silvaf722b002012-12-07 10:36:55 +00003034Intrinsic Global Variables
3035==========================
3036
3037LLVM has a number of "magic" global variables that contain data that
3038affect code generation or other IR semantics. These are documented here.
3039All globals of this sort should have a section specified as
3040"``llvm.metadata``". This section and all globals that start with
3041"``llvm.``" are reserved for use by LLVM.
3042
Eli Bendersky88fe6822013-06-07 20:24:43 +00003043.. _gv_llvmused:
3044
Sean Silvaf722b002012-12-07 10:36:55 +00003045The '``llvm.used``' Global Variable
3046-----------------------------------
3047
Rafael Espindolacde25b42013-04-22 14:58:02 +00003048The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00003049:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003050pointers to named global variables, functions and aliases which may optionally
3051have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00003052use of it is:
3053
3054.. code-block:: llvm
3055
3056 @X = global i8 4
3057 @Y = global i32 123
3058
3059 @llvm.used = appending global [2 x i8*] [
3060 i8* @X,
3061 i8* bitcast (i32* @Y to i8*)
3062 ], section "llvm.metadata"
3063
Rafael Espindolacde25b42013-04-22 14:58:02 +00003064If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3065and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003066symbol that it cannot see (which is why they have to be named). For example, if
3067a variable has internal linkage and no references other than that from the
3068``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3069references from inline asms and other things the compiler cannot "see", and
3070corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00003071
3072On some targets, the code generator must emit a directive to the
3073assembler or object file to prevent the assembler and linker from
3074molesting the symbol.
3075
Eli Bendersky88fe6822013-06-07 20:24:43 +00003076.. _gv_llvmcompilerused:
3077
Sean Silvaf722b002012-12-07 10:36:55 +00003078The '``llvm.compiler.used``' Global Variable
3079--------------------------------------------
3080
3081The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3082directive, except that it only prevents the compiler from touching the
3083symbol. On targets that support it, this allows an intelligent linker to
3084optimize references to the symbol without being impeded as it would be
3085by ``@llvm.used``.
3086
3087This is a rare construct that should only be used in rare circumstances,
3088and should not be exposed to source languages.
3089
Eli Bendersky88fe6822013-06-07 20:24:43 +00003090.. _gv_llvmglobalctors:
3091
Sean Silvaf722b002012-12-07 10:36:55 +00003092The '``llvm.global_ctors``' Global Variable
3093-------------------------------------------
3094
3095.. code-block:: llvm
3096
3097 %0 = type { i32, void ()* }
3098 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3099
3100The ``@llvm.global_ctors`` array contains a list of constructor
3101functions and associated priorities. The functions referenced by this
3102array will be called in ascending order of priority (i.e. lowest first)
3103when the module is loaded. The order of functions with the same priority
3104is not defined.
3105
Eli Bendersky88fe6822013-06-07 20:24:43 +00003106.. _llvmglobaldtors:
3107
Sean Silvaf722b002012-12-07 10:36:55 +00003108The '``llvm.global_dtors``' Global Variable
3109-------------------------------------------
3110
3111.. code-block:: llvm
3112
3113 %0 = type { i32, void ()* }
3114 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3115
3116The ``@llvm.global_dtors`` array contains a list of destructor functions
3117and associated priorities. The functions referenced by this array will
3118be called in descending order of priority (i.e. highest first) when the
3119module is loaded. The order of functions with the same priority is not
3120defined.
3121
3122Instruction Reference
3123=====================
3124
3125The LLVM instruction set consists of several different classifications
3126of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3127instructions <binaryops>`, :ref:`bitwise binary
3128instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3129:ref:`other instructions <otherops>`.
3130
3131.. _terminators:
3132
3133Terminator Instructions
3134-----------------------
3135
3136As mentioned :ref:`previously <functionstructure>`, every basic block in a
3137program ends with a "Terminator" instruction, which indicates which
3138block should be executed after the current block is finished. These
3139terminator instructions typically yield a '``void``' value: they produce
3140control flow, not values (the one exception being the
3141':ref:`invoke <i_invoke>`' instruction).
3142
3143The terminator instructions are: ':ref:`ret <i_ret>`',
3144':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3145':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3146':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3147
3148.. _i_ret:
3149
3150'``ret``' Instruction
3151^^^^^^^^^^^^^^^^^^^^^
3152
3153Syntax:
3154"""""""
3155
3156::
3157
3158 ret <type> <value> ; Return a value from a non-void function
3159 ret void ; Return from void function
3160
3161Overview:
3162"""""""""
3163
3164The '``ret``' instruction is used to return control flow (and optionally
3165a value) from a function back to the caller.
3166
3167There are two forms of the '``ret``' instruction: one that returns a
3168value and then causes control flow, and one that just causes control
3169flow to occur.
3170
3171Arguments:
3172""""""""""
3173
3174The '``ret``' instruction optionally accepts a single argument, the
3175return value. The type of the return value must be a ':ref:`first
3176class <t_firstclass>`' type.
3177
3178A function is not :ref:`well formed <wellformed>` if it it has a non-void
3179return type and contains a '``ret``' instruction with no return value or
3180a return value with a type that does not match its type, or if it has a
3181void return type and contains a '``ret``' instruction with a return
3182value.
3183
3184Semantics:
3185""""""""""
3186
3187When the '``ret``' instruction is executed, control flow returns back to
3188the calling function's context. If the caller is a
3189":ref:`call <i_call>`" instruction, execution continues at the
3190instruction after the call. If the caller was an
3191":ref:`invoke <i_invoke>`" instruction, execution continues at the
3192beginning of the "normal" destination block. If the instruction returns
3193a value, that value shall set the call or invoke instruction's return
3194value.
3195
3196Example:
3197""""""""
3198
3199.. code-block:: llvm
3200
3201 ret i32 5 ; Return an integer value of 5
3202 ret void ; Return from a void function
3203 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3204
3205.. _i_br:
3206
3207'``br``' Instruction
3208^^^^^^^^^^^^^^^^^^^^
3209
3210Syntax:
3211"""""""
3212
3213::
3214
3215 br i1 <cond>, label <iftrue>, label <iffalse>
3216 br label <dest> ; Unconditional branch
3217
3218Overview:
3219"""""""""
3220
3221The '``br``' instruction is used to cause control flow to transfer to a
3222different basic block in the current function. There are two forms of
3223this instruction, corresponding to a conditional branch and an
3224unconditional branch.
3225
3226Arguments:
3227""""""""""
3228
3229The conditional branch form of the '``br``' instruction takes a single
3230'``i1``' value and two '``label``' values. The unconditional form of the
3231'``br``' instruction takes a single '``label``' value as a target.
3232
3233Semantics:
3234""""""""""
3235
3236Upon execution of a conditional '``br``' instruction, the '``i1``'
3237argument is evaluated. If the value is ``true``, control flows to the
3238'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3239to the '``iffalse``' ``label`` argument.
3240
3241Example:
3242""""""""
3243
3244.. code-block:: llvm
3245
3246 Test:
3247 %cond = icmp eq i32 %a, %b
3248 br i1 %cond, label %IfEqual, label %IfUnequal
3249 IfEqual:
3250 ret i32 1
3251 IfUnequal:
3252 ret i32 0
3253
3254.. _i_switch:
3255
3256'``switch``' Instruction
3257^^^^^^^^^^^^^^^^^^^^^^^^
3258
3259Syntax:
3260"""""""
3261
3262::
3263
3264 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3265
3266Overview:
3267"""""""""
3268
3269The '``switch``' instruction is used to transfer control flow to one of
3270several different places. It is a generalization of the '``br``'
3271instruction, allowing a branch to occur to one of many possible
3272destinations.
3273
3274Arguments:
3275""""""""""
3276
3277The '``switch``' instruction uses three parameters: an integer
3278comparison value '``value``', a default '``label``' destination, and an
3279array of pairs of comparison value constants and '``label``'s. The table
3280is not allowed to contain duplicate constant entries.
3281
3282Semantics:
3283""""""""""
3284
3285The ``switch`` instruction specifies a table of values and destinations.
3286When the '``switch``' instruction is executed, this table is searched
3287for the given value. If the value is found, control flow is transferred
3288to the corresponding destination; otherwise, control flow is transferred
3289to the default destination.
3290
3291Implementation:
3292"""""""""""""""
3293
3294Depending on properties of the target machine and the particular
3295``switch`` instruction, this instruction may be code generated in
3296different ways. For example, it could be generated as a series of
3297chained conditional branches or with a lookup table.
3298
3299Example:
3300""""""""
3301
3302.. code-block:: llvm
3303
3304 ; Emulate a conditional br instruction
3305 %Val = zext i1 %value to i32
3306 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3307
3308 ; Emulate an unconditional br instruction
3309 switch i32 0, label %dest [ ]
3310
3311 ; Implement a jump table:
3312 switch i32 %val, label %otherwise [ i32 0, label %onzero
3313 i32 1, label %onone
3314 i32 2, label %ontwo ]
3315
3316.. _i_indirectbr:
3317
3318'``indirectbr``' Instruction
3319^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3320
3321Syntax:
3322"""""""
3323
3324::
3325
3326 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3327
3328Overview:
3329"""""""""
3330
3331The '``indirectbr``' instruction implements an indirect branch to a
3332label within the current function, whose address is specified by
3333"``address``". Address must be derived from a
3334:ref:`blockaddress <blockaddress>` constant.
3335
3336Arguments:
3337""""""""""
3338
3339The '``address``' argument is the address of the label to jump to. The
3340rest of the arguments indicate the full set of possible destinations
3341that the address may point to. Blocks are allowed to occur multiple
3342times in the destination list, though this isn't particularly useful.
3343
3344This destination list is required so that dataflow analysis has an
3345accurate understanding of the CFG.
3346
3347Semantics:
3348""""""""""
3349
3350Control transfers to the block specified in the address argument. All
3351possible destination blocks must be listed in the label list, otherwise
3352this instruction has undefined behavior. This implies that jumps to
3353labels defined in other functions have undefined behavior as well.
3354
3355Implementation:
3356"""""""""""""""
3357
3358This is typically implemented with a jump through a register.
3359
3360Example:
3361""""""""
3362
3363.. code-block:: llvm
3364
3365 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3366
3367.. _i_invoke:
3368
3369'``invoke``' Instruction
3370^^^^^^^^^^^^^^^^^^^^^^^^
3371
3372Syntax:
3373"""""""
3374
3375::
3376
3377 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3378 to label <normal label> unwind label <exception label>
3379
3380Overview:
3381"""""""""
3382
3383The '``invoke``' instruction causes control to transfer to a specified
3384function, with the possibility of control flow transfer to either the
3385'``normal``' label or the '``exception``' label. If the callee function
3386returns with the "``ret``" instruction, control flow will return to the
3387"normal" label. If the callee (or any indirect callees) returns via the
3388":ref:`resume <i_resume>`" instruction or other exception handling
3389mechanism, control is interrupted and continued at the dynamically
3390nearest "exception" label.
3391
3392The '``exception``' label is a `landing
3393pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3394'``exception``' label is required to have the
3395":ref:`landingpad <i_landingpad>`" instruction, which contains the
3396information about the behavior of the program after unwinding happens,
3397as its first non-PHI instruction. The restrictions on the
3398"``landingpad``" instruction's tightly couples it to the "``invoke``"
3399instruction, so that the important information contained within the
3400"``landingpad``" instruction can't be lost through normal code motion.
3401
3402Arguments:
3403""""""""""
3404
3405This instruction requires several arguments:
3406
3407#. The optional "cconv" marker indicates which :ref:`calling
3408 convention <callingconv>` the call should use. If none is
3409 specified, the call defaults to using C calling conventions.
3410#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3411 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3412 are valid here.
3413#. '``ptr to function ty``': shall be the signature of the pointer to
3414 function value being invoked. In most cases, this is a direct
3415 function invocation, but indirect ``invoke``'s are just as possible,
3416 branching off an arbitrary pointer to function value.
3417#. '``function ptr val``': An LLVM value containing a pointer to a
3418 function to be invoked.
3419#. '``function args``': argument list whose types match the function
3420 signature argument types and parameter attributes. All arguments must
3421 be of :ref:`first class <t_firstclass>` type. If the function signature
3422 indicates the function accepts a variable number of arguments, the
3423 extra arguments can be specified.
3424#. '``normal label``': the label reached when the called function
3425 executes a '``ret``' instruction.
3426#. '``exception label``': the label reached when a callee returns via
3427 the :ref:`resume <i_resume>` instruction or other exception handling
3428 mechanism.
3429#. The optional :ref:`function attributes <fnattrs>` list. Only
3430 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3431 attributes are valid here.
3432
3433Semantics:
3434""""""""""
3435
3436This instruction is designed to operate as a standard '``call``'
3437instruction in most regards. The primary difference is that it
3438establishes an association with a label, which is used by the runtime
3439library to unwind the stack.
3440
3441This instruction is used in languages with destructors to ensure that
3442proper cleanup is performed in the case of either a ``longjmp`` or a
3443thrown exception. Additionally, this is important for implementation of
3444'``catch``' clauses in high-level languages that support them.
3445
3446For the purposes of the SSA form, the definition of the value returned
3447by the '``invoke``' instruction is deemed to occur on the edge from the
3448current block to the "normal" label. If the callee unwinds then no
3449return value is available.
3450
3451Example:
3452""""""""
3453
3454.. code-block:: llvm
3455
3456 %retval = invoke i32 @Test(i32 15) to label %Continue
3457 unwind label %TestCleanup ; {i32}:retval set
3458 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3459 unwind label %TestCleanup ; {i32}:retval set
3460
3461.. _i_resume:
3462
3463'``resume``' Instruction
3464^^^^^^^^^^^^^^^^^^^^^^^^
3465
3466Syntax:
3467"""""""
3468
3469::
3470
3471 resume <type> <value>
3472
3473Overview:
3474"""""""""
3475
3476The '``resume``' instruction is a terminator instruction that has no
3477successors.
3478
3479Arguments:
3480""""""""""
3481
3482The '``resume``' instruction requires one argument, which must have the
3483same type as the result of any '``landingpad``' instruction in the same
3484function.
3485
3486Semantics:
3487""""""""""
3488
3489The '``resume``' instruction resumes propagation of an existing
3490(in-flight) exception whose unwinding was interrupted with a
3491:ref:`landingpad <i_landingpad>` instruction.
3492
3493Example:
3494""""""""
3495
3496.. code-block:: llvm
3497
3498 resume { i8*, i32 } %exn
3499
3500.. _i_unreachable:
3501
3502'``unreachable``' Instruction
3503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3504
3505Syntax:
3506"""""""
3507
3508::
3509
3510 unreachable
3511
3512Overview:
3513"""""""""
3514
3515The '``unreachable``' instruction has no defined semantics. This
3516instruction is used to inform the optimizer that a particular portion of
3517the code is not reachable. This can be used to indicate that the code
3518after a no-return function cannot be reached, and other facts.
3519
3520Semantics:
3521""""""""""
3522
3523The '``unreachable``' instruction has no defined semantics.
3524
3525.. _binaryops:
3526
3527Binary Operations
3528-----------------
3529
3530Binary operators are used to do most of the computation in a program.
3531They require two operands of the same type, execute an operation on
3532them, and produce a single value. The operands might represent multiple
3533data, as is the case with the :ref:`vector <t_vector>` data type. The
3534result value has the same type as its operands.
3535
3536There are several different binary operators:
3537
3538.. _i_add:
3539
3540'``add``' Instruction
3541^^^^^^^^^^^^^^^^^^^^^
3542
3543Syntax:
3544"""""""
3545
3546::
3547
3548 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3549 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3550 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3551 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3552
3553Overview:
3554"""""""""
3555
3556The '``add``' instruction returns the sum of its two operands.
3557
3558Arguments:
3559""""""""""
3560
3561The two arguments to the '``add``' instruction must be
3562:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3563arguments must have identical types.
3564
3565Semantics:
3566""""""""""
3567
3568The value produced is the integer sum of the two operands.
3569
3570If the sum has unsigned overflow, the result returned is the
3571mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3572the result.
3573
3574Because LLVM integers use a two's complement representation, this
3575instruction is appropriate for both signed and unsigned integers.
3576
3577``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3578respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3579result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3580unsigned and/or signed overflow, respectively, occurs.
3581
3582Example:
3583""""""""
3584
3585.. code-block:: llvm
3586
3587 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3588
3589.. _i_fadd:
3590
3591'``fadd``' Instruction
3592^^^^^^^^^^^^^^^^^^^^^^
3593
3594Syntax:
3595"""""""
3596
3597::
3598
3599 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3600
3601Overview:
3602"""""""""
3603
3604The '``fadd``' instruction returns the sum of its two operands.
3605
3606Arguments:
3607""""""""""
3608
3609The two arguments to the '``fadd``' instruction must be :ref:`floating
3610point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3611Both arguments must have identical types.
3612
3613Semantics:
3614""""""""""
3615
3616The value produced is the floating point sum of the two operands. This
3617instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3618which are optimization hints to enable otherwise unsafe floating point
3619optimizations:
3620
3621Example:
3622""""""""
3623
3624.. code-block:: llvm
3625
3626 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3627
3628'``sub``' Instruction
3629^^^^^^^^^^^^^^^^^^^^^
3630
3631Syntax:
3632"""""""
3633
3634::
3635
3636 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3637 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3638 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3639 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3640
3641Overview:
3642"""""""""
3643
3644The '``sub``' instruction returns the difference of its two operands.
3645
3646Note that the '``sub``' instruction is used to represent the '``neg``'
3647instruction present in most other intermediate representations.
3648
3649Arguments:
3650""""""""""
3651
3652The two arguments to the '``sub``' instruction must be
3653:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3654arguments must have identical types.
3655
3656Semantics:
3657""""""""""
3658
3659The value produced is the integer difference of the two operands.
3660
3661If the difference has unsigned overflow, the result returned is the
3662mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3663the result.
3664
3665Because LLVM integers use a two's complement representation, this
3666instruction is appropriate for both signed and unsigned integers.
3667
3668``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3669respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3670result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3671unsigned and/or signed overflow, respectively, occurs.
3672
3673Example:
3674""""""""
3675
3676.. code-block:: llvm
3677
3678 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3679 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3680
3681.. _i_fsub:
3682
3683'``fsub``' Instruction
3684^^^^^^^^^^^^^^^^^^^^^^
3685
3686Syntax:
3687"""""""
3688
3689::
3690
3691 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3692
3693Overview:
3694"""""""""
3695
3696The '``fsub``' instruction returns the difference of its two operands.
3697
3698Note that the '``fsub``' instruction is used to represent the '``fneg``'
3699instruction present in most other intermediate representations.
3700
3701Arguments:
3702""""""""""
3703
3704The two arguments to the '``fsub``' instruction must be :ref:`floating
3705point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3706Both arguments must have identical types.
3707
3708Semantics:
3709""""""""""
3710
3711The value produced is the floating point difference of the two operands.
3712This instruction can also take any number of :ref:`fast-math
3713flags <fastmath>`, which are optimization hints to enable otherwise
3714unsafe floating point optimizations:
3715
3716Example:
3717""""""""
3718
3719.. code-block:: llvm
3720
3721 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3722 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3723
3724'``mul``' Instruction
3725^^^^^^^^^^^^^^^^^^^^^
3726
3727Syntax:
3728"""""""
3729
3730::
3731
3732 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3733 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3734 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3735 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3736
3737Overview:
3738"""""""""
3739
3740The '``mul``' instruction returns the product of its two operands.
3741
3742Arguments:
3743""""""""""
3744
3745The two arguments to the '``mul``' instruction must be
3746:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3747arguments must have identical types.
3748
3749Semantics:
3750""""""""""
3751
3752The value produced is the integer product of the two operands.
3753
3754If the result of the multiplication has unsigned overflow, the result
3755returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3756bit width of the result.
3757
3758Because LLVM integers use a two's complement representation, and the
3759result is the same width as the operands, this instruction returns the
3760correct result for both signed and unsigned integers. If a full product
3761(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3762sign-extended or zero-extended as appropriate to the width of the full
3763product.
3764
3765``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3766respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3767result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3768unsigned and/or signed overflow, respectively, occurs.
3769
3770Example:
3771""""""""
3772
3773.. code-block:: llvm
3774
3775 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3776
3777.. _i_fmul:
3778
3779'``fmul``' Instruction
3780^^^^^^^^^^^^^^^^^^^^^^
3781
3782Syntax:
3783"""""""
3784
3785::
3786
3787 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3788
3789Overview:
3790"""""""""
3791
3792The '``fmul``' instruction returns the product of its two operands.
3793
3794Arguments:
3795""""""""""
3796
3797The two arguments to the '``fmul``' instruction must be :ref:`floating
3798point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3799Both arguments must have identical types.
3800
3801Semantics:
3802""""""""""
3803
3804The value produced is the floating point product of the two operands.
3805This instruction can also take any number of :ref:`fast-math
3806flags <fastmath>`, which are optimization hints to enable otherwise
3807unsafe floating point optimizations:
3808
3809Example:
3810""""""""
3811
3812.. code-block:: llvm
3813
3814 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3815
3816'``udiv``' Instruction
3817^^^^^^^^^^^^^^^^^^^^^^
3818
3819Syntax:
3820"""""""
3821
3822::
3823
3824 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3825 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3826
3827Overview:
3828"""""""""
3829
3830The '``udiv``' instruction returns the quotient of its two operands.
3831
3832Arguments:
3833""""""""""
3834
3835The two arguments to the '``udiv``' instruction must be
3836:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3837arguments must have identical types.
3838
3839Semantics:
3840""""""""""
3841
3842The value produced is the unsigned integer quotient of the two operands.
3843
3844Note that unsigned integer division and signed integer division are
3845distinct operations; for signed integer division, use '``sdiv``'.
3846
3847Division by zero leads to undefined behavior.
3848
3849If the ``exact`` keyword is present, the result value of the ``udiv`` is
3850a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3851such, "((a udiv exact b) mul b) == a").
3852
3853Example:
3854""""""""
3855
3856.. code-block:: llvm
3857
3858 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3859
3860'``sdiv``' Instruction
3861^^^^^^^^^^^^^^^^^^^^^^
3862
3863Syntax:
3864"""""""
3865
3866::
3867
3868 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3869 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3870
3871Overview:
3872"""""""""
3873
3874The '``sdiv``' instruction returns the quotient of its two operands.
3875
3876Arguments:
3877""""""""""
3878
3879The two arguments to the '``sdiv``' instruction must be
3880:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3881arguments must have identical types.
3882
3883Semantics:
3884""""""""""
3885
3886The value produced is the signed integer quotient of the two operands
3887rounded towards zero.
3888
3889Note that signed integer division and unsigned integer division are
3890distinct operations; for unsigned integer division, use '``udiv``'.
3891
3892Division by zero leads to undefined behavior. Overflow also leads to
3893undefined behavior; this is a rare case, but can occur, for example, by
3894doing a 32-bit division of -2147483648 by -1.
3895
3896If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3897a :ref:`poison value <poisonvalues>` if the result would be rounded.
3898
3899Example:
3900""""""""
3901
3902.. code-block:: llvm
3903
3904 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3905
3906.. _i_fdiv:
3907
3908'``fdiv``' Instruction
3909^^^^^^^^^^^^^^^^^^^^^^
3910
3911Syntax:
3912"""""""
3913
3914::
3915
3916 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3917
3918Overview:
3919"""""""""
3920
3921The '``fdiv``' instruction returns the quotient of its two operands.
3922
3923Arguments:
3924""""""""""
3925
3926The two arguments to the '``fdiv``' instruction must be :ref:`floating
3927point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3928Both arguments must have identical types.
3929
3930Semantics:
3931""""""""""
3932
3933The value produced is the floating point quotient of the two operands.
3934This instruction can also take any number of :ref:`fast-math
3935flags <fastmath>`, which are optimization hints to enable otherwise
3936unsafe floating point optimizations:
3937
3938Example:
3939""""""""
3940
3941.. code-block:: llvm
3942
3943 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3944
3945'``urem``' Instruction
3946^^^^^^^^^^^^^^^^^^^^^^
3947
3948Syntax:
3949"""""""
3950
3951::
3952
3953 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3954
3955Overview:
3956"""""""""
3957
3958The '``urem``' instruction returns the remainder from the unsigned
3959division of its two arguments.
3960
3961Arguments:
3962""""""""""
3963
3964The two arguments to the '``urem``' instruction must be
3965:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3966arguments must have identical types.
3967
3968Semantics:
3969""""""""""
3970
3971This instruction returns the unsigned integer *remainder* of a division.
3972This instruction always performs an unsigned division to get the
3973remainder.
3974
3975Note that unsigned integer remainder and signed integer remainder are
3976distinct operations; for signed integer remainder, use '``srem``'.
3977
3978Taking the remainder of a division by zero leads to undefined behavior.
3979
3980Example:
3981""""""""
3982
3983.. code-block:: llvm
3984
3985 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3986
3987'``srem``' Instruction
3988^^^^^^^^^^^^^^^^^^^^^^
3989
3990Syntax:
3991"""""""
3992
3993::
3994
3995 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3996
3997Overview:
3998"""""""""
3999
4000The '``srem``' instruction returns the remainder from the signed
4001division of its two operands. This instruction can also take
4002:ref:`vector <t_vector>` versions of the values in which case the elements
4003must be integers.
4004
4005Arguments:
4006""""""""""
4007
4008The two arguments to the '``srem``' instruction must be
4009:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4010arguments must have identical types.
4011
4012Semantics:
4013""""""""""
4014
4015This instruction returns the *remainder* of a division (where the result
4016is either zero or has the same sign as the dividend, ``op1``), not the
4017*modulo* operator (where the result is either zero or has the same sign
4018as the divisor, ``op2``) of a value. For more information about the
4019difference, see `The Math
4020Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4021table of how this is implemented in various languages, please see
4022`Wikipedia: modulo
4023operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4024
4025Note that signed integer remainder and unsigned integer remainder are
4026distinct operations; for unsigned integer remainder, use '``urem``'.
4027
4028Taking the remainder of a division by zero leads to undefined behavior.
4029Overflow also leads to undefined behavior; this is a rare case, but can
4030occur, for example, by taking the remainder of a 32-bit division of
4031-2147483648 by -1. (The remainder doesn't actually overflow, but this
4032rule lets srem be implemented using instructions that return both the
4033result of the division and the remainder.)
4034
4035Example:
4036""""""""
4037
4038.. code-block:: llvm
4039
4040 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4041
4042.. _i_frem:
4043
4044'``frem``' Instruction
4045^^^^^^^^^^^^^^^^^^^^^^
4046
4047Syntax:
4048"""""""
4049
4050::
4051
4052 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4053
4054Overview:
4055"""""""""
4056
4057The '``frem``' instruction returns the remainder from the division of
4058its two operands.
4059
4060Arguments:
4061""""""""""
4062
4063The two arguments to the '``frem``' instruction must be :ref:`floating
4064point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4065Both arguments must have identical types.
4066
4067Semantics:
4068""""""""""
4069
4070This instruction returns the *remainder* of a division. The remainder
4071has the same sign as the dividend. This instruction can also take any
4072number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4073to enable otherwise unsafe floating point optimizations:
4074
4075Example:
4076""""""""
4077
4078.. code-block:: llvm
4079
4080 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4081
4082.. _bitwiseops:
4083
4084Bitwise Binary Operations
4085-------------------------
4086
4087Bitwise binary operators are used to do various forms of bit-twiddling
4088in a program. They are generally very efficient instructions and can
4089commonly be strength reduced from other instructions. They require two
4090operands of the same type, execute an operation on them, and produce a
4091single value. The resulting value is the same type as its operands.
4092
4093'``shl``' Instruction
4094^^^^^^^^^^^^^^^^^^^^^
4095
4096Syntax:
4097"""""""
4098
4099::
4100
4101 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4102 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4103 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4104 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4105
4106Overview:
4107"""""""""
4108
4109The '``shl``' instruction returns the first operand shifted to the left
4110a specified number of bits.
4111
4112Arguments:
4113""""""""""
4114
4115Both arguments to the '``shl``' instruction must be the same
4116:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4117'``op2``' is treated as an unsigned value.
4118
4119Semantics:
4120""""""""""
4121
4122The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4123where ``n`` is the width of the result. If ``op2`` is (statically or
4124dynamically) negative or equal to or larger than the number of bits in
4125``op1``, the result is undefined. If the arguments are vectors, each
4126vector element of ``op1`` is shifted by the corresponding shift amount
4127in ``op2``.
4128
4129If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4130value <poisonvalues>` if it shifts out any non-zero bits. If the
4131``nsw`` keyword is present, then the shift produces a :ref:`poison
4132value <poisonvalues>` if it shifts out any bits that disagree with the
4133resultant sign bit. As such, NUW/NSW have the same semantics as they
4134would if the shift were expressed as a mul instruction with the same
4135nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4136
4137Example:
4138""""""""
4139
4140.. code-block:: llvm
4141
4142 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4143 <result> = shl i32 4, 2 ; yields {i32}: 16
4144 <result> = shl i32 1, 10 ; yields {i32}: 1024
4145 <result> = shl i32 1, 32 ; undefined
4146 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4147
4148'``lshr``' Instruction
4149^^^^^^^^^^^^^^^^^^^^^^
4150
4151Syntax:
4152"""""""
4153
4154::
4155
4156 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4157 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4158
4159Overview:
4160"""""""""
4161
4162The '``lshr``' instruction (logical shift right) returns the first
4163operand shifted to the right a specified number of bits with zero fill.
4164
4165Arguments:
4166""""""""""
4167
4168Both arguments to the '``lshr``' instruction must be the same
4169:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4170'``op2``' is treated as an unsigned value.
4171
4172Semantics:
4173""""""""""
4174
4175This instruction always performs a logical shift right operation. The
4176most significant bits of the result will be filled with zero bits after
4177the shift. If ``op2`` is (statically or dynamically) equal to or larger
4178than the number of bits in ``op1``, the result is undefined. If the
4179arguments are vectors, each vector element of ``op1`` is shifted by the
4180corresponding shift amount in ``op2``.
4181
4182If the ``exact`` keyword is present, the result value of the ``lshr`` is
4183a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4184non-zero.
4185
4186Example:
4187""""""""
4188
4189.. code-block:: llvm
4190
4191 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4192 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4193 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004194 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004195 <result> = lshr i32 1, 32 ; undefined
4196 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4197
4198'``ashr``' Instruction
4199^^^^^^^^^^^^^^^^^^^^^^
4200
4201Syntax:
4202"""""""
4203
4204::
4205
4206 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4207 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4208
4209Overview:
4210"""""""""
4211
4212The '``ashr``' instruction (arithmetic shift right) returns the first
4213operand shifted to the right a specified number of bits with sign
4214extension.
4215
4216Arguments:
4217""""""""""
4218
4219Both arguments to the '``ashr``' instruction must be the same
4220:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4221'``op2``' is treated as an unsigned value.
4222
4223Semantics:
4224""""""""""
4225
4226This instruction always performs an arithmetic shift right operation,
4227The most significant bits of the result will be filled with the sign bit
4228of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4229than the number of bits in ``op1``, the result is undefined. If the
4230arguments are vectors, each vector element of ``op1`` is shifted by the
4231corresponding shift amount in ``op2``.
4232
4233If the ``exact`` keyword is present, the result value of the ``ashr`` is
4234a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4235non-zero.
4236
4237Example:
4238""""""""
4239
4240.. code-block:: llvm
4241
4242 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4243 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4244 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4245 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4246 <result> = ashr i32 1, 32 ; undefined
4247 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4248
4249'``and``' Instruction
4250^^^^^^^^^^^^^^^^^^^^^
4251
4252Syntax:
4253"""""""
4254
4255::
4256
4257 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4258
4259Overview:
4260"""""""""
4261
4262The '``and``' instruction returns the bitwise logical and of its two
4263operands.
4264
4265Arguments:
4266""""""""""
4267
4268The two arguments to the '``and``' instruction must be
4269:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4270arguments must have identical types.
4271
4272Semantics:
4273""""""""""
4274
4275The truth table used for the '``and``' instruction is:
4276
4277+-----+-----+-----+
4278| In0 | In1 | Out |
4279+-----+-----+-----+
4280| 0 | 0 | 0 |
4281+-----+-----+-----+
4282| 0 | 1 | 0 |
4283+-----+-----+-----+
4284| 1 | 0 | 0 |
4285+-----+-----+-----+
4286| 1 | 1 | 1 |
4287+-----+-----+-----+
4288
4289Example:
4290""""""""
4291
4292.. code-block:: llvm
4293
4294 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4295 <result> = and i32 15, 40 ; yields {i32}:result = 8
4296 <result> = and i32 4, 8 ; yields {i32}:result = 0
4297
4298'``or``' Instruction
4299^^^^^^^^^^^^^^^^^^^^
4300
4301Syntax:
4302"""""""
4303
4304::
4305
4306 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4307
4308Overview:
4309"""""""""
4310
4311The '``or``' instruction returns the bitwise logical inclusive or of its
4312two operands.
4313
4314Arguments:
4315""""""""""
4316
4317The two arguments to the '``or``' instruction must be
4318:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4319arguments must have identical types.
4320
4321Semantics:
4322""""""""""
4323
4324The truth table used for the '``or``' instruction is:
4325
4326+-----+-----+-----+
4327| In0 | In1 | Out |
4328+-----+-----+-----+
4329| 0 | 0 | 0 |
4330+-----+-----+-----+
4331| 0 | 1 | 1 |
4332+-----+-----+-----+
4333| 1 | 0 | 1 |
4334+-----+-----+-----+
4335| 1 | 1 | 1 |
4336+-----+-----+-----+
4337
4338Example:
4339""""""""
4340
4341::
4342
4343 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4344 <result> = or i32 15, 40 ; yields {i32}:result = 47
4345 <result> = or i32 4, 8 ; yields {i32}:result = 12
4346
4347'``xor``' Instruction
4348^^^^^^^^^^^^^^^^^^^^^
4349
4350Syntax:
4351"""""""
4352
4353::
4354
4355 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4356
4357Overview:
4358"""""""""
4359
4360The '``xor``' instruction returns the bitwise logical exclusive or of
4361its two operands. The ``xor`` is used to implement the "one's
4362complement" operation, which is the "~" operator in C.
4363
4364Arguments:
4365""""""""""
4366
4367The two arguments to the '``xor``' instruction must be
4368:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4369arguments must have identical types.
4370
4371Semantics:
4372""""""""""
4373
4374The truth table used for the '``xor``' instruction is:
4375
4376+-----+-----+-----+
4377| In0 | In1 | Out |
4378+-----+-----+-----+
4379| 0 | 0 | 0 |
4380+-----+-----+-----+
4381| 0 | 1 | 1 |
4382+-----+-----+-----+
4383| 1 | 0 | 1 |
4384+-----+-----+-----+
4385| 1 | 1 | 0 |
4386+-----+-----+-----+
4387
4388Example:
4389""""""""
4390
4391.. code-block:: llvm
4392
4393 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4394 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4395 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4396 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4397
4398Vector Operations
4399-----------------
4400
4401LLVM supports several instructions to represent vector operations in a
4402target-independent manner. These instructions cover the element-access
4403and vector-specific operations needed to process vectors effectively.
4404While LLVM does directly support these vector operations, many
4405sophisticated algorithms will want to use target-specific intrinsics to
4406take full advantage of a specific target.
4407
4408.. _i_extractelement:
4409
4410'``extractelement``' Instruction
4411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4412
4413Syntax:
4414"""""""
4415
4416::
4417
4418 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4419
4420Overview:
4421"""""""""
4422
4423The '``extractelement``' instruction extracts a single scalar element
4424from a vector at a specified index.
4425
4426Arguments:
4427""""""""""
4428
4429The first operand of an '``extractelement``' instruction is a value of
4430:ref:`vector <t_vector>` type. The second operand is an index indicating
4431the position from which to extract the element. The index may be a
4432variable.
4433
4434Semantics:
4435""""""""""
4436
4437The result is a scalar of the same type as the element type of ``val``.
4438Its value is the value at position ``idx`` of ``val``. If ``idx``
4439exceeds the length of ``val``, the results are undefined.
4440
4441Example:
4442""""""""
4443
4444.. code-block:: llvm
4445
4446 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4447
4448.. _i_insertelement:
4449
4450'``insertelement``' Instruction
4451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4452
4453Syntax:
4454"""""""
4455
4456::
4457
4458 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4459
4460Overview:
4461"""""""""
4462
4463The '``insertelement``' instruction inserts a scalar element into a
4464vector at a specified index.
4465
4466Arguments:
4467""""""""""
4468
4469The first operand of an '``insertelement``' instruction is a value of
4470:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4471type must equal the element type of the first operand. The third operand
4472is an index indicating the position at which to insert the value. The
4473index may be a variable.
4474
4475Semantics:
4476""""""""""
4477
4478The result is a vector of the same type as ``val``. Its element values
4479are those of ``val`` except at position ``idx``, where it gets the value
4480``elt``. If ``idx`` exceeds the length of ``val``, the results are
4481undefined.
4482
4483Example:
4484""""""""
4485
4486.. code-block:: llvm
4487
4488 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4489
4490.. _i_shufflevector:
4491
4492'``shufflevector``' Instruction
4493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4494
4495Syntax:
4496"""""""
4497
4498::
4499
4500 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4501
4502Overview:
4503"""""""""
4504
4505The '``shufflevector``' instruction constructs a permutation of elements
4506from two input vectors, returning a vector with the same element type as
4507the input and length that is the same as the shuffle mask.
4508
4509Arguments:
4510""""""""""
4511
4512The first two operands of a '``shufflevector``' instruction are vectors
4513with the same type. The third argument is a shuffle mask whose element
4514type is always 'i32'. The result of the instruction is a vector whose
4515length is the same as the shuffle mask and whose element type is the
4516same as the element type of the first two operands.
4517
4518The shuffle mask operand is required to be a constant vector with either
4519constant integer or undef values.
4520
4521Semantics:
4522""""""""""
4523
4524The elements of the two input vectors are numbered from left to right
4525across both of the vectors. The shuffle mask operand specifies, for each
4526element of the result vector, which element of the two input vectors the
4527result element gets. The element selector may be undef (meaning "don't
4528care") and the second operand may be undef if performing a shuffle from
4529only one vector.
4530
4531Example:
4532""""""""
4533
4534.. code-block:: llvm
4535
4536 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4537 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4538 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4539 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4540 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4541 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4542 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4543 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4544
4545Aggregate Operations
4546--------------------
4547
4548LLVM supports several instructions for working with
4549:ref:`aggregate <t_aggregate>` values.
4550
4551.. _i_extractvalue:
4552
4553'``extractvalue``' Instruction
4554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4555
4556Syntax:
4557"""""""
4558
4559::
4560
4561 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4562
4563Overview:
4564"""""""""
4565
4566The '``extractvalue``' instruction extracts the value of a member field
4567from an :ref:`aggregate <t_aggregate>` value.
4568
4569Arguments:
4570""""""""""
4571
4572The first operand of an '``extractvalue``' instruction is a value of
4573:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4574constant indices to specify which value to extract in a similar manner
4575as indices in a '``getelementptr``' instruction.
4576
4577The major differences to ``getelementptr`` indexing are:
4578
4579- Since the value being indexed is not a pointer, the first index is
4580 omitted and assumed to be zero.
4581- At least one index must be specified.
4582- Not only struct indices but also array indices must be in bounds.
4583
4584Semantics:
4585""""""""""
4586
4587The result is the value at the position in the aggregate specified by
4588the index operands.
4589
4590Example:
4591""""""""
4592
4593.. code-block:: llvm
4594
4595 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4596
4597.. _i_insertvalue:
4598
4599'``insertvalue``' Instruction
4600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4601
4602Syntax:
4603"""""""
4604
4605::
4606
4607 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4608
4609Overview:
4610"""""""""
4611
4612The '``insertvalue``' instruction inserts a value into a member field in
4613an :ref:`aggregate <t_aggregate>` value.
4614
4615Arguments:
4616""""""""""
4617
4618The first operand of an '``insertvalue``' instruction is a value of
4619:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4620a first-class value to insert. The following operands are constant
4621indices indicating the position at which to insert the value in a
4622similar manner as indices in a '``extractvalue``' instruction. The value
4623to insert must have the same type as the value identified by the
4624indices.
4625
4626Semantics:
4627""""""""""
4628
4629The result is an aggregate of the same type as ``val``. Its value is
4630that of ``val`` except that the value at the position specified by the
4631indices is that of ``elt``.
4632
4633Example:
4634""""""""
4635
4636.. code-block:: llvm
4637
4638 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4639 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4640 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4641
4642.. _memoryops:
4643
4644Memory Access and Addressing Operations
4645---------------------------------------
4646
4647A key design point of an SSA-based representation is how it represents
4648memory. In LLVM, no memory locations are in SSA form, which makes things
4649very simple. This section describes how to read, write, and allocate
4650memory in LLVM.
4651
4652.. _i_alloca:
4653
4654'``alloca``' Instruction
4655^^^^^^^^^^^^^^^^^^^^^^^^
4656
4657Syntax:
4658"""""""
4659
4660::
4661
4662 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4663
4664Overview:
4665"""""""""
4666
4667The '``alloca``' instruction allocates memory on the stack frame of the
4668currently executing function, to be automatically released when this
4669function returns to its caller. The object is always allocated in the
4670generic address space (address space zero).
4671
4672Arguments:
4673""""""""""
4674
4675The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4676bytes of memory on the runtime stack, returning a pointer of the
4677appropriate type to the program. If "NumElements" is specified, it is
4678the number of elements allocated, otherwise "NumElements" is defaulted
4679to be one. If a constant alignment is specified, the value result of the
4680allocation is guaranteed to be aligned to at least that boundary. If not
4681specified, or if zero, the target can choose to align the allocation on
4682any convenient boundary compatible with the type.
4683
4684'``type``' may be any sized type.
4685
4686Semantics:
4687""""""""""
4688
4689Memory is allocated; a pointer is returned. The operation is undefined
4690if there is insufficient stack space for the allocation. '``alloca``'d
4691memory is automatically released when the function returns. The
4692'``alloca``' instruction is commonly used to represent automatic
4693variables that must have an address available. When the function returns
4694(either with the ``ret`` or ``resume`` instructions), the memory is
4695reclaimed. Allocating zero bytes is legal, but the result is undefined.
4696The order in which memory is allocated (ie., which way the stack grows)
4697is not specified.
4698
4699Example:
4700""""""""
4701
4702.. code-block:: llvm
4703
4704 %ptr = alloca i32 ; yields {i32*}:ptr
4705 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4706 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4707 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4708
4709.. _i_load:
4710
4711'``load``' Instruction
4712^^^^^^^^^^^^^^^^^^^^^^
4713
4714Syntax:
4715"""""""
4716
4717::
4718
4719 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4720 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4721 !<index> = !{ i32 1 }
4722
4723Overview:
4724"""""""""
4725
4726The '``load``' instruction is used to read from memory.
4727
4728Arguments:
4729""""""""""
4730
Eli Bendersky8c493382013-04-17 20:17:08 +00004731The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004732from which to load. The pointer must point to a :ref:`first
4733class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4734then the optimizer is not allowed to modify the number or order of
4735execution of this ``load`` with other :ref:`volatile
4736operations <volatile>`.
4737
4738If the ``load`` is marked as ``atomic``, it takes an extra
4739:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4740``release`` and ``acq_rel`` orderings are not valid on ``load``
4741instructions. Atomic loads produce :ref:`defined <memmodel>` results
4742when they may see multiple atomic stores. The type of the pointee must
4743be an integer type whose bit width is a power of two greater than or
4744equal to eight and less than or equal to a target-specific size limit.
4745``align`` must be explicitly specified on atomic loads, and the load has
4746undefined behavior if the alignment is not set to a value which is at
4747least the size in bytes of the pointee. ``!nontemporal`` does not have
4748any defined semantics for atomic loads.
4749
4750The optional constant ``align`` argument specifies the alignment of the
4751operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004752or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004753alignment for the target. It is the responsibility of the code emitter
4754to ensure that the alignment information is correct. Overestimating the
4755alignment results in undefined behavior. Underestimating the alignment
4756may produce less efficient code. An alignment of 1 is always safe.
4757
4758The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004759metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004760``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004761metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004762that this load is not expected to be reused in the cache. The code
4763generator may select special instructions to save cache bandwidth, such
4764as the ``MOVNT`` instruction on x86.
4765
4766The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004767metadata name ``<index>`` corresponding to a metadata node with no
4768entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004769instruction tells the optimizer and code generator that this load
4770address points to memory which does not change value during program
4771execution. The optimizer may then move this load around, for example, by
4772hoisting it out of loops using loop invariant code motion.
4773
4774Semantics:
4775""""""""""
4776
4777The location of memory pointed to is loaded. If the value being loaded
4778is of scalar type then the number of bytes read does not exceed the
4779minimum number of bytes needed to hold all bits of the type. For
4780example, loading an ``i24`` reads at most three bytes. When loading a
4781value of a type like ``i20`` with a size that is not an integral number
4782of bytes, the result is undefined if the value was not originally
4783written using a store of the same type.
4784
4785Examples:
4786"""""""""
4787
4788.. code-block:: llvm
4789
4790 %ptr = alloca i32 ; yields {i32*}:ptr
4791 store i32 3, i32* %ptr ; yields {void}
4792 %val = load i32* %ptr ; yields {i32}:val = i32 3
4793
4794.. _i_store:
4795
4796'``store``' Instruction
4797^^^^^^^^^^^^^^^^^^^^^^^
4798
4799Syntax:
4800"""""""
4801
4802::
4803
4804 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4805 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4806
4807Overview:
4808"""""""""
4809
4810The '``store``' instruction is used to write to memory.
4811
4812Arguments:
4813""""""""""
4814
Eli Bendersky8952d902013-04-17 17:17:20 +00004815There are two arguments to the ``store`` instruction: a value to store
4816and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004817operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004818the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004819then the optimizer is not allowed to modify the number or order of
4820execution of this ``store`` with other :ref:`volatile
4821operations <volatile>`.
4822
4823If the ``store`` is marked as ``atomic``, it takes an extra
4824:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4825``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4826instructions. Atomic loads produce :ref:`defined <memmodel>` results
4827when they may see multiple atomic stores. The type of the pointee must
4828be an integer type whose bit width is a power of two greater than or
4829equal to eight and less than or equal to a target-specific size limit.
4830``align`` must be explicitly specified on atomic stores, and the store
4831has undefined behavior if the alignment is not set to a value which is
4832at least the size in bytes of the pointee. ``!nontemporal`` does not
4833have any defined semantics for atomic stores.
4834
Eli Bendersky8952d902013-04-17 17:17:20 +00004835The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004836operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004837or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004838alignment for the target. It is the responsibility of the code emitter
4839to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004840alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004841alignment may produce less efficient code. An alignment of 1 is always
4842safe.
4843
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004844The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004845name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004846value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004847tells the optimizer and code generator that this load is not expected to
4848be reused in the cache. The code generator may select special
4849instructions to save cache bandwidth, such as the MOVNT instruction on
4850x86.
4851
4852Semantics:
4853""""""""""
4854
Eli Bendersky8952d902013-04-17 17:17:20 +00004855The contents of memory are updated to contain ``<value>`` at the
4856location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004857of scalar type then the number of bytes written does not exceed the
4858minimum number of bytes needed to hold all bits of the type. For
4859example, storing an ``i24`` writes at most three bytes. When writing a
4860value of a type like ``i20`` with a size that is not an integral number
4861of bytes, it is unspecified what happens to the extra bits that do not
4862belong to the type, but they will typically be overwritten.
4863
4864Example:
4865""""""""
4866
4867.. code-block:: llvm
4868
4869 %ptr = alloca i32 ; yields {i32*}:ptr
4870 store i32 3, i32* %ptr ; yields {void}
4871 %val = load i32* %ptr ; yields {i32}:val = i32 3
4872
4873.. _i_fence:
4874
4875'``fence``' Instruction
4876^^^^^^^^^^^^^^^^^^^^^^^
4877
4878Syntax:
4879"""""""
4880
4881::
4882
4883 fence [singlethread] <ordering> ; yields {void}
4884
4885Overview:
4886"""""""""
4887
4888The '``fence``' instruction is used to introduce happens-before edges
4889between operations.
4890
4891Arguments:
4892""""""""""
4893
4894'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4895defines what *synchronizes-with* edges they add. They can only be given
4896``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4897
4898Semantics:
4899""""""""""
4900
4901A fence A which has (at least) ``release`` ordering semantics
4902*synchronizes with* a fence B with (at least) ``acquire`` ordering
4903semantics if and only if there exist atomic operations X and Y, both
4904operating on some atomic object M, such that A is sequenced before X, X
4905modifies M (either directly or through some side effect of a sequence
4906headed by X), Y is sequenced before B, and Y observes M. This provides a
4907*happens-before* dependency between A and B. Rather than an explicit
4908``fence``, one (but not both) of the atomic operations X or Y might
4909provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4910still *synchronize-with* the explicit ``fence`` and establish the
4911*happens-before* edge.
4912
4913A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4914``acquire`` and ``release`` semantics specified above, participates in
4915the global program order of other ``seq_cst`` operations and/or fences.
4916
4917The optional ":ref:`singlethread <singlethread>`" argument specifies
4918that the fence only synchronizes with other fences in the same thread.
4919(This is useful for interacting with signal handlers.)
4920
4921Example:
4922""""""""
4923
4924.. code-block:: llvm
4925
4926 fence acquire ; yields {void}
4927 fence singlethread seq_cst ; yields {void}
4928
4929.. _i_cmpxchg:
4930
4931'``cmpxchg``' Instruction
4932^^^^^^^^^^^^^^^^^^^^^^^^^
4933
4934Syntax:
4935"""""""
4936
4937::
4938
4939 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4940
4941Overview:
4942"""""""""
4943
4944The '``cmpxchg``' instruction is used to atomically modify memory. It
4945loads a value in memory and compares it to a given value. If they are
4946equal, it stores a new value into the memory.
4947
4948Arguments:
4949""""""""""
4950
4951There are three arguments to the '``cmpxchg``' instruction: an address
4952to operate on, a value to compare to the value currently be at that
4953address, and a new value to place at that address if the compared values
4954are equal. The type of '<cmp>' must be an integer type whose bit width
4955is a power of two greater than or equal to eight and less than or equal
4956to a target-specific size limit. '<cmp>' and '<new>' must have the same
4957type, and the type of '<pointer>' must be a pointer to that type. If the
4958``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4959to modify the number or order of execution of this ``cmpxchg`` with
4960other :ref:`volatile operations <volatile>`.
4961
4962The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4963synchronizes with other atomic operations.
4964
4965The optional "``singlethread``" argument declares that the ``cmpxchg``
4966is only atomic with respect to code (usually signal handlers) running in
4967the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4968respect to all other code in the system.
4969
4970The pointer passed into cmpxchg must have alignment greater than or
4971equal to the size in memory of the operand.
4972
4973Semantics:
4974""""""""""
4975
4976The contents of memory at the location specified by the '``<pointer>``'
4977operand is read and compared to '``<cmp>``'; if the read value is the
4978equal, '``<new>``' is written. The original value at the location is
4979returned.
4980
4981A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4982of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4983atomic load with an ordering parameter determined by dropping any
4984``release`` part of the ``cmpxchg``'s ordering.
4985
4986Example:
4987""""""""
4988
4989.. code-block:: llvm
4990
4991 entry:
4992 %orig = atomic load i32* %ptr unordered ; yields {i32}
4993 br label %loop
4994
4995 loop:
4996 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4997 %squared = mul i32 %cmp, %cmp
4998 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4999 %success = icmp eq i32 %cmp, %old
5000 br i1 %success, label %done, label %loop
5001
5002 done:
5003 ...
5004
5005.. _i_atomicrmw:
5006
5007'``atomicrmw``' Instruction
5008^^^^^^^^^^^^^^^^^^^^^^^^^^^
5009
5010Syntax:
5011"""""""
5012
5013::
5014
5015 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5016
5017Overview:
5018"""""""""
5019
5020The '``atomicrmw``' instruction is used to atomically modify memory.
5021
5022Arguments:
5023""""""""""
5024
5025There are three arguments to the '``atomicrmw``' instruction: an
5026operation to apply, an address whose value to modify, an argument to the
5027operation. The operation must be one of the following keywords:
5028
5029- xchg
5030- add
5031- sub
5032- and
5033- nand
5034- or
5035- xor
5036- max
5037- min
5038- umax
5039- umin
5040
5041The type of '<value>' must be an integer type whose bit width is a power
5042of two greater than or equal to eight and less than or equal to a
5043target-specific size limit. The type of the '``<pointer>``' operand must
5044be a pointer to that type. If the ``atomicrmw`` is marked as
5045``volatile``, then the optimizer is not allowed to modify the number or
5046order of execution of this ``atomicrmw`` with other :ref:`volatile
5047operations <volatile>`.
5048
5049Semantics:
5050""""""""""
5051
5052The contents of memory at the location specified by the '``<pointer>``'
5053operand are atomically read, modified, and written back. The original
5054value at the location is returned. The modification is specified by the
5055operation argument:
5056
5057- xchg: ``*ptr = val``
5058- add: ``*ptr = *ptr + val``
5059- sub: ``*ptr = *ptr - val``
5060- and: ``*ptr = *ptr & val``
5061- nand: ``*ptr = ~(*ptr & val)``
5062- or: ``*ptr = *ptr | val``
5063- xor: ``*ptr = *ptr ^ val``
5064- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5065- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5066- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5067 comparison)
5068- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5069 comparison)
5070
5071Example:
5072""""""""
5073
5074.. code-block:: llvm
5075
5076 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5077
5078.. _i_getelementptr:
5079
5080'``getelementptr``' Instruction
5081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5082
5083Syntax:
5084"""""""
5085
5086::
5087
5088 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5089 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5090 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5091
5092Overview:
5093"""""""""
5094
5095The '``getelementptr``' instruction is used to get the address of a
5096subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5097address calculation only and does not access memory.
5098
5099Arguments:
5100""""""""""
5101
5102The first argument is always a pointer or a vector of pointers, and
5103forms the basis of the calculation. The remaining arguments are indices
5104that indicate which of the elements of the aggregate object are indexed.
5105The interpretation of each index is dependent on the type being indexed
5106into. The first index always indexes the pointer value given as the
5107first argument, the second index indexes a value of the type pointed to
5108(not necessarily the value directly pointed to, since the first index
5109can be non-zero), etc. The first type indexed into must be a pointer
5110value, subsequent types can be arrays, vectors, and structs. Note that
5111subsequent types being indexed into can never be pointers, since that
5112would require loading the pointer before continuing calculation.
5113
5114The type of each index argument depends on the type it is indexing into.
5115When indexing into a (optionally packed) structure, only ``i32`` integer
5116**constants** are allowed (when using a vector of indices they must all
5117be the **same** ``i32`` integer constant). When indexing into an array,
5118pointer or vector, integers of any width are allowed, and they are not
5119required to be constant. These integers are treated as signed values
5120where relevant.
5121
5122For example, let's consider a C code fragment and how it gets compiled
5123to LLVM:
5124
5125.. code-block:: c
5126
5127 struct RT {
5128 char A;
5129 int B[10][20];
5130 char C;
5131 };
5132 struct ST {
5133 int X;
5134 double Y;
5135 struct RT Z;
5136 };
5137
5138 int *foo(struct ST *s) {
5139 return &s[1].Z.B[5][13];
5140 }
5141
5142The LLVM code generated by Clang is:
5143
5144.. code-block:: llvm
5145
5146 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5147 %struct.ST = type { i32, double, %struct.RT }
5148
5149 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5150 entry:
5151 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5152 ret i32* %arrayidx
5153 }
5154
5155Semantics:
5156""""""""""
5157
5158In the example above, the first index is indexing into the
5159'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5160= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5161indexes into the third element of the structure, yielding a
5162'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5163structure. The third index indexes into the second element of the
5164structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5165dimensions of the array are subscripted into, yielding an '``i32``'
5166type. The '``getelementptr``' instruction returns a pointer to this
5167element, thus computing a value of '``i32*``' type.
5168
5169Note that it is perfectly legal to index partially through a structure,
5170returning a pointer to an inner element. Because of this, the LLVM code
5171for the given testcase is equivalent to:
5172
5173.. code-block:: llvm
5174
5175 define i32* @foo(%struct.ST* %s) {
5176 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5177 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5178 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5179 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5180 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5181 ret i32* %t5
5182 }
5183
5184If the ``inbounds`` keyword is present, the result value of the
5185``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5186pointer is not an *in bounds* address of an allocated object, or if any
5187of the addresses that would be formed by successive addition of the
5188offsets implied by the indices to the base address with infinitely
5189precise signed arithmetic are not an *in bounds* address of that
5190allocated object. The *in bounds* addresses for an allocated object are
5191all the addresses that point into the object, plus the address one byte
5192past the end. In cases where the base is a vector of pointers the
5193``inbounds`` keyword applies to each of the computations element-wise.
5194
5195If the ``inbounds`` keyword is not present, the offsets are added to the
5196base address with silently-wrapping two's complement arithmetic. If the
5197offsets have a different width from the pointer, they are sign-extended
5198or truncated to the width of the pointer. The result value of the
5199``getelementptr`` may be outside the object pointed to by the base
5200pointer. The result value may not necessarily be used to access memory
5201though, even if it happens to point into allocated storage. See the
5202:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5203information.
5204
5205The getelementptr instruction is often confusing. For some more insight
5206into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5207
5208Example:
5209""""""""
5210
5211.. code-block:: llvm
5212
5213 ; yields [12 x i8]*:aptr
5214 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5215 ; yields i8*:vptr
5216 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5217 ; yields i8*:eptr
5218 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5219 ; yields i32*:iptr
5220 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5221
5222In cases where the pointer argument is a vector of pointers, each index
5223must be a vector with the same number of elements. For example:
5224
5225.. code-block:: llvm
5226
5227 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5228
5229Conversion Operations
5230---------------------
5231
5232The instructions in this category are the conversion instructions
5233(casting) which all take a single operand and a type. They perform
5234various bit conversions on the operand.
5235
5236'``trunc .. to``' Instruction
5237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5238
5239Syntax:
5240"""""""
5241
5242::
5243
5244 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5245
5246Overview:
5247"""""""""
5248
5249The '``trunc``' instruction truncates its operand to the type ``ty2``.
5250
5251Arguments:
5252""""""""""
5253
5254The '``trunc``' instruction takes a value to trunc, and a type to trunc
5255it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5256of the same number of integers. The bit size of the ``value`` must be
5257larger than the bit size of the destination type, ``ty2``. Equal sized
5258types are not allowed.
5259
5260Semantics:
5261""""""""""
5262
5263The '``trunc``' instruction truncates the high order bits in ``value``
5264and converts the remaining bits to ``ty2``. Since the source size must
5265be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5266It will always truncate bits.
5267
5268Example:
5269""""""""
5270
5271.. code-block:: llvm
5272
5273 %X = trunc i32 257 to i8 ; yields i8:1
5274 %Y = trunc i32 123 to i1 ; yields i1:true
5275 %Z = trunc i32 122 to i1 ; yields i1:false
5276 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5277
5278'``zext .. to``' Instruction
5279^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5280
5281Syntax:
5282"""""""
5283
5284::
5285
5286 <result> = zext <ty> <value> to <ty2> ; yields ty2
5287
5288Overview:
5289"""""""""
5290
5291The '``zext``' instruction zero extends its operand to type ``ty2``.
5292
5293Arguments:
5294""""""""""
5295
5296The '``zext``' instruction takes a value to cast, and a type to cast it
5297to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5298the same number of integers. The bit size of the ``value`` must be
5299smaller than the bit size of the destination type, ``ty2``.
5300
5301Semantics:
5302""""""""""
5303
5304The ``zext`` fills the high order bits of the ``value`` with zero bits
5305until it reaches the size of the destination type, ``ty2``.
5306
5307When zero extending from i1, the result will always be either 0 or 1.
5308
5309Example:
5310""""""""
5311
5312.. code-block:: llvm
5313
5314 %X = zext i32 257 to i64 ; yields i64:257
5315 %Y = zext i1 true to i32 ; yields i32:1
5316 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5317
5318'``sext .. to``' Instruction
5319^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5320
5321Syntax:
5322"""""""
5323
5324::
5325
5326 <result> = sext <ty> <value> to <ty2> ; yields ty2
5327
5328Overview:
5329"""""""""
5330
5331The '``sext``' sign extends ``value`` to the type ``ty2``.
5332
5333Arguments:
5334""""""""""
5335
5336The '``sext``' instruction takes a value to cast, and a type to cast it
5337to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5338the same number of integers. The bit size of the ``value`` must be
5339smaller than the bit size of the destination type, ``ty2``.
5340
5341Semantics:
5342""""""""""
5343
5344The '``sext``' instruction performs a sign extension by copying the sign
5345bit (highest order bit) of the ``value`` until it reaches the bit size
5346of the type ``ty2``.
5347
5348When sign extending from i1, the extension always results in -1 or 0.
5349
5350Example:
5351""""""""
5352
5353.. code-block:: llvm
5354
5355 %X = sext i8 -1 to i16 ; yields i16 :65535
5356 %Y = sext i1 true to i32 ; yields i32:-1
5357 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5358
5359'``fptrunc .. to``' Instruction
5360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5361
5362Syntax:
5363"""""""
5364
5365::
5366
5367 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5368
5369Overview:
5370"""""""""
5371
5372The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5373
5374Arguments:
5375""""""""""
5376
5377The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5378value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5379The size of ``value`` must be larger than the size of ``ty2``. This
5380implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5381
5382Semantics:
5383""""""""""
5384
5385The '``fptrunc``' instruction truncates a ``value`` from a larger
5386:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5387point <t_floating>` type. If the value cannot fit within the
5388destination type, ``ty2``, then the results are undefined.
5389
5390Example:
5391""""""""
5392
5393.. code-block:: llvm
5394
5395 %X = fptrunc double 123.0 to float ; yields float:123.0
5396 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5397
5398'``fpext .. to``' Instruction
5399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5400
5401Syntax:
5402"""""""
5403
5404::
5405
5406 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5407
5408Overview:
5409"""""""""
5410
5411The '``fpext``' extends a floating point ``value`` to a larger floating
5412point value.
5413
5414Arguments:
5415""""""""""
5416
5417The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5418``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5419to. The source type must be smaller than the destination type.
5420
5421Semantics:
5422""""""""""
5423
5424The '``fpext``' instruction extends the ``value`` from a smaller
5425:ref:`floating point <t_floating>` type to a larger :ref:`floating
5426point <t_floating>` type. The ``fpext`` cannot be used to make a
5427*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5428*no-op cast* for a floating point cast.
5429
5430Example:
5431""""""""
5432
5433.. code-block:: llvm
5434
5435 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5436 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5437
5438'``fptoui .. to``' Instruction
5439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5440
5441Syntax:
5442"""""""
5443
5444::
5445
5446 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5447
5448Overview:
5449"""""""""
5450
5451The '``fptoui``' converts a floating point ``value`` to its unsigned
5452integer equivalent of type ``ty2``.
5453
5454Arguments:
5455""""""""""
5456
5457The '``fptoui``' instruction takes a value to cast, which must be a
5458scalar or vector :ref:`floating point <t_floating>` value, and a type to
5459cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5460``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5461type with the same number of elements as ``ty``
5462
5463Semantics:
5464""""""""""
5465
5466The '``fptoui``' instruction converts its :ref:`floating
5467point <t_floating>` operand into the nearest (rounding towards zero)
5468unsigned integer value. If the value cannot fit in ``ty2``, the results
5469are undefined.
5470
5471Example:
5472""""""""
5473
5474.. code-block:: llvm
5475
5476 %X = fptoui double 123.0 to i32 ; yields i32:123
5477 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5478 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5479
5480'``fptosi .. to``' Instruction
5481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5482
5483Syntax:
5484"""""""
5485
5486::
5487
5488 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5489
5490Overview:
5491"""""""""
5492
5493The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5494``value`` to type ``ty2``.
5495
5496Arguments:
5497""""""""""
5498
5499The '``fptosi``' instruction takes a value to cast, which must be a
5500scalar or vector :ref:`floating point <t_floating>` value, and a type to
5501cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5502``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5503type with the same number of elements as ``ty``
5504
5505Semantics:
5506""""""""""
5507
5508The '``fptosi``' instruction converts its :ref:`floating
5509point <t_floating>` operand into the nearest (rounding towards zero)
5510signed integer value. If the value cannot fit in ``ty2``, the results
5511are undefined.
5512
5513Example:
5514""""""""
5515
5516.. code-block:: llvm
5517
5518 %X = fptosi double -123.0 to i32 ; yields i32:-123
5519 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5520 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5521
5522'``uitofp .. to``' Instruction
5523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5524
5525Syntax:
5526"""""""
5527
5528::
5529
5530 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5531
5532Overview:
5533"""""""""
5534
5535The '``uitofp``' instruction regards ``value`` as an unsigned integer
5536and converts that value to the ``ty2`` type.
5537
5538Arguments:
5539""""""""""
5540
5541The '``uitofp``' instruction takes a value to cast, which must be a
5542scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5543``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5544``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5545type with the same number of elements as ``ty``
5546
5547Semantics:
5548""""""""""
5549
5550The '``uitofp``' instruction interprets its operand as an unsigned
5551integer quantity and converts it to the corresponding floating point
5552value. If the value cannot fit in the floating point value, the results
5553are undefined.
5554
5555Example:
5556""""""""
5557
5558.. code-block:: llvm
5559
5560 %X = uitofp i32 257 to float ; yields float:257.0
5561 %Y = uitofp i8 -1 to double ; yields double:255.0
5562
5563'``sitofp .. to``' Instruction
5564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5565
5566Syntax:
5567"""""""
5568
5569::
5570
5571 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5572
5573Overview:
5574"""""""""
5575
5576The '``sitofp``' instruction regards ``value`` as a signed integer and
5577converts that value to the ``ty2`` type.
5578
5579Arguments:
5580""""""""""
5581
5582The '``sitofp``' instruction takes a value to cast, which must be a
5583scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5584``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5585``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5586type with the same number of elements as ``ty``
5587
5588Semantics:
5589""""""""""
5590
5591The '``sitofp``' instruction interprets its operand as a signed integer
5592quantity and converts it to the corresponding floating point value. If
5593the value cannot fit in the floating point value, the results are
5594undefined.
5595
5596Example:
5597""""""""
5598
5599.. code-block:: llvm
5600
5601 %X = sitofp i32 257 to float ; yields float:257.0
5602 %Y = sitofp i8 -1 to double ; yields double:-1.0
5603
5604.. _i_ptrtoint:
5605
5606'``ptrtoint .. to``' Instruction
5607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5608
5609Syntax:
5610"""""""
5611
5612::
5613
5614 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5615
5616Overview:
5617"""""""""
5618
5619The '``ptrtoint``' instruction converts the pointer or a vector of
5620pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5621
5622Arguments:
5623""""""""""
5624
5625The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5626a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5627type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5628a vector of integers type.
5629
5630Semantics:
5631""""""""""
5632
5633The '``ptrtoint``' instruction converts ``value`` to integer type
5634``ty2`` by interpreting the pointer value as an integer and either
5635truncating or zero extending that value to the size of the integer type.
5636If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5637``value`` is larger than ``ty2`` then a truncation is done. If they are
5638the same size, then nothing is done (*no-op cast*) other than a type
5639change.
5640
5641Example:
5642""""""""
5643
5644.. code-block:: llvm
5645
5646 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5647 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5648 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5649
5650.. _i_inttoptr:
5651
5652'``inttoptr .. to``' Instruction
5653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5654
5655Syntax:
5656"""""""
5657
5658::
5659
5660 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5661
5662Overview:
5663"""""""""
5664
5665The '``inttoptr``' instruction converts an integer ``value`` to a
5666pointer type, ``ty2``.
5667
5668Arguments:
5669""""""""""
5670
5671The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5672cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5673type.
5674
5675Semantics:
5676""""""""""
5677
5678The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5679applying either a zero extension or a truncation depending on the size
5680of the integer ``value``. If ``value`` is larger than the size of a
5681pointer then a truncation is done. If ``value`` is smaller than the size
5682of a pointer then a zero extension is done. If they are the same size,
5683nothing is done (*no-op cast*).
5684
5685Example:
5686""""""""
5687
5688.. code-block:: llvm
5689
5690 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5691 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5692 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5693 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5694
5695.. _i_bitcast:
5696
5697'``bitcast .. to``' Instruction
5698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5699
5700Syntax:
5701"""""""
5702
5703::
5704
5705 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5706
5707Overview:
5708"""""""""
5709
5710The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5711changing any bits.
5712
5713Arguments:
5714""""""""""
5715
5716The '``bitcast``' instruction takes a value to cast, which must be a
5717non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005718also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5719bit sizes of ``value`` and the destination type, ``ty2``, must be
5720identical. If the source type is a pointer, the destination type must
5721also be a pointer of the same size. This instruction supports bitwise
5722conversion of vectors to integers and to vectors of other types (as
5723long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005724
5725Semantics:
5726""""""""""
5727
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005728The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5729is always a *no-op cast* because no bits change with this
5730conversion. The conversion is done as if the ``value`` had been stored
5731to memory and read back as type ``ty2``. Pointer (or vector of
5732pointers) types may only be converted to other pointer (or vector of
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005733pointers) types with the same address space through this instruction.
5734To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5735or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005736
5737Example:
5738""""""""
5739
5740.. code-block:: llvm
5741
5742 %X = bitcast i8 255 to i8 ; yields i8 :-1
5743 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5744 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5745 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5746
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005747.. _i_addrspacecast:
5748
5749'``addrspacecast .. to``' Instruction
5750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5751
5752Syntax:
5753"""""""
5754
5755::
5756
5757 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5758
5759Overview:
5760"""""""""
5761
5762The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5763address space ``n`` to type ``pty2`` in address space ``m``.
5764
5765Arguments:
5766""""""""""
5767
5768The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5769to cast and a pointer type to cast it to, which must have a different
5770address space.
5771
5772Semantics:
5773""""""""""
5774
5775The '``addrspacecast``' instruction converts the pointer value
5776``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault01ad8c32013-11-15 05:44:56 +00005777value modification, depending on the target and the address space
5778pair. Pointer conversions within the same address space must be
5779performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005780conversion is legal then both result and operand refer to the same memory
5781location.
5782
5783Example:
5784""""""""
5785
5786.. code-block:: llvm
5787
Matt Arsenaultef1b87a2013-11-15 22:43:50 +00005788 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5789 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5790 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005791
Sean Silvaf722b002012-12-07 10:36:55 +00005792.. _otherops:
5793
5794Other Operations
5795----------------
5796
5797The instructions in this category are the "miscellaneous" instructions,
5798which defy better classification.
5799
5800.. _i_icmp:
5801
5802'``icmp``' Instruction
5803^^^^^^^^^^^^^^^^^^^^^^
5804
5805Syntax:
5806"""""""
5807
5808::
5809
5810 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5811
5812Overview:
5813"""""""""
5814
5815The '``icmp``' instruction returns a boolean value or a vector of
5816boolean values based on comparison of its two integer, integer vector,
5817pointer, or pointer vector operands.
5818
5819Arguments:
5820""""""""""
5821
5822The '``icmp``' instruction takes three operands. The first operand is
5823the condition code indicating the kind of comparison to perform. It is
5824not a value, just a keyword. The possible condition code are:
5825
5826#. ``eq``: equal
5827#. ``ne``: not equal
5828#. ``ugt``: unsigned greater than
5829#. ``uge``: unsigned greater or equal
5830#. ``ult``: unsigned less than
5831#. ``ule``: unsigned less or equal
5832#. ``sgt``: signed greater than
5833#. ``sge``: signed greater or equal
5834#. ``slt``: signed less than
5835#. ``sle``: signed less or equal
5836
5837The remaining two arguments must be :ref:`integer <t_integer>` or
5838:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5839must also be identical types.
5840
5841Semantics:
5842""""""""""
5843
5844The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5845code given as ``cond``. The comparison performed always yields either an
5846:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5847
5848#. ``eq``: yields ``true`` if the operands are equal, ``false``
5849 otherwise. No sign interpretation is necessary or performed.
5850#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5851 otherwise. No sign interpretation is necessary or performed.
5852#. ``ugt``: interprets the operands as unsigned values and yields
5853 ``true`` if ``op1`` is greater than ``op2``.
5854#. ``uge``: interprets the operands as unsigned values and yields
5855 ``true`` if ``op1`` is greater than or equal to ``op2``.
5856#. ``ult``: interprets the operands as unsigned values and yields
5857 ``true`` if ``op1`` is less than ``op2``.
5858#. ``ule``: interprets the operands as unsigned values and yields
5859 ``true`` if ``op1`` is less than or equal to ``op2``.
5860#. ``sgt``: interprets the operands as signed values and yields ``true``
5861 if ``op1`` is greater than ``op2``.
5862#. ``sge``: interprets the operands as signed values and yields ``true``
5863 if ``op1`` is greater than or equal to ``op2``.
5864#. ``slt``: interprets the operands as signed values and yields ``true``
5865 if ``op1`` is less than ``op2``.
5866#. ``sle``: interprets the operands as signed values and yields ``true``
5867 if ``op1`` is less than or equal to ``op2``.
5868
5869If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5870are compared as if they were integers.
5871
5872If the operands are integer vectors, then they are compared element by
5873element. The result is an ``i1`` vector with the same number of elements
5874as the values being compared. Otherwise, the result is an ``i1``.
5875
5876Example:
5877""""""""
5878
5879.. code-block:: llvm
5880
5881 <result> = icmp eq i32 4, 5 ; yields: result=false
5882 <result> = icmp ne float* %X, %X ; yields: result=false
5883 <result> = icmp ult i16 4, 5 ; yields: result=true
5884 <result> = icmp sgt i16 4, 5 ; yields: result=false
5885 <result> = icmp ule i16 -4, 5 ; yields: result=false
5886 <result> = icmp sge i16 4, 5 ; yields: result=false
5887
5888Note that the code generator does not yet support vector types with the
5889``icmp`` instruction.
5890
5891.. _i_fcmp:
5892
5893'``fcmp``' Instruction
5894^^^^^^^^^^^^^^^^^^^^^^
5895
5896Syntax:
5897"""""""
5898
5899::
5900
5901 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5902
5903Overview:
5904"""""""""
5905
5906The '``fcmp``' instruction returns a boolean value or vector of boolean
5907values based on comparison of its operands.
5908
5909If the operands are floating point scalars, then the result type is a
5910boolean (:ref:`i1 <t_integer>`).
5911
5912If the operands are floating point vectors, then the result type is a
5913vector of boolean with the same number of elements as the operands being
5914compared.
5915
5916Arguments:
5917""""""""""
5918
5919The '``fcmp``' instruction takes three operands. The first operand is
5920the condition code indicating the kind of comparison to perform. It is
5921not a value, just a keyword. The possible condition code are:
5922
5923#. ``false``: no comparison, always returns false
5924#. ``oeq``: ordered and equal
5925#. ``ogt``: ordered and greater than
5926#. ``oge``: ordered and greater than or equal
5927#. ``olt``: ordered and less than
5928#. ``ole``: ordered and less than or equal
5929#. ``one``: ordered and not equal
5930#. ``ord``: ordered (no nans)
5931#. ``ueq``: unordered or equal
5932#. ``ugt``: unordered or greater than
5933#. ``uge``: unordered or greater than or equal
5934#. ``ult``: unordered or less than
5935#. ``ule``: unordered or less than or equal
5936#. ``une``: unordered or not equal
5937#. ``uno``: unordered (either nans)
5938#. ``true``: no comparison, always returns true
5939
5940*Ordered* means that neither operand is a QNAN while *unordered* means
5941that either operand may be a QNAN.
5942
5943Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5944point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5945type. They must have identical types.
5946
5947Semantics:
5948""""""""""
5949
5950The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5951condition code given as ``cond``. If the operands are vectors, then the
5952vectors are compared element by element. Each comparison performed
5953always yields an :ref:`i1 <t_integer>` result, as follows:
5954
5955#. ``false``: always yields ``false``, regardless of operands.
5956#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5957 is equal to ``op2``.
5958#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5959 is greater than ``op2``.
5960#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5961 is greater than or equal to ``op2``.
5962#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5963 is less than ``op2``.
5964#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5965 is less than or equal to ``op2``.
5966#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5967 is not equal to ``op2``.
5968#. ``ord``: yields ``true`` if both operands are not a QNAN.
5969#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5970 equal to ``op2``.
5971#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5972 greater than ``op2``.
5973#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5974 greater than or equal to ``op2``.
5975#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5976 less than ``op2``.
5977#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5978 less than or equal to ``op2``.
5979#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5980 not equal to ``op2``.
5981#. ``uno``: yields ``true`` if either operand is a QNAN.
5982#. ``true``: always yields ``true``, regardless of operands.
5983
5984Example:
5985""""""""
5986
5987.. code-block:: llvm
5988
5989 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5990 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5991 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5992 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5993
5994Note that the code generator does not yet support vector types with the
5995``fcmp`` instruction.
5996
5997.. _i_phi:
5998
5999'``phi``' Instruction
6000^^^^^^^^^^^^^^^^^^^^^
6001
6002Syntax:
6003"""""""
6004
6005::
6006
6007 <result> = phi <ty> [ <val0>, <label0>], ...
6008
6009Overview:
6010"""""""""
6011
6012The '``phi``' instruction is used to implement the φ node in the SSA
6013graph representing the function.
6014
6015Arguments:
6016""""""""""
6017
6018The type of the incoming values is specified with the first type field.
6019After this, the '``phi``' instruction takes a list of pairs as
6020arguments, with one pair for each predecessor basic block of the current
6021block. Only values of :ref:`first class <t_firstclass>` type may be used as
6022the value arguments to the PHI node. Only labels may be used as the
6023label arguments.
6024
6025There must be no non-phi instructions between the start of a basic block
6026and the PHI instructions: i.e. PHI instructions must be first in a basic
6027block.
6028
6029For the purposes of the SSA form, the use of each incoming value is
6030deemed to occur on the edge from the corresponding predecessor block to
6031the current block (but after any definition of an '``invoke``'
6032instruction's return value on the same edge).
6033
6034Semantics:
6035""""""""""
6036
6037At runtime, the '``phi``' instruction logically takes on the value
6038specified by the pair corresponding to the predecessor basic block that
6039executed just prior to the current block.
6040
6041Example:
6042""""""""
6043
6044.. code-block:: llvm
6045
6046 Loop: ; Infinite loop that counts from 0 on up...
6047 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6048 %nextindvar = add i32 %indvar, 1
6049 br label %Loop
6050
6051.. _i_select:
6052
6053'``select``' Instruction
6054^^^^^^^^^^^^^^^^^^^^^^^^
6055
6056Syntax:
6057"""""""
6058
6059::
6060
6061 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6062
6063 selty is either i1 or {<N x i1>}
6064
6065Overview:
6066"""""""""
6067
6068The '``select``' instruction is used to choose one value based on a
6069condition, without branching.
6070
6071Arguments:
6072""""""""""
6073
6074The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6075values indicating the condition, and two values of the same :ref:`first
6076class <t_firstclass>` type. If the val1/val2 are vectors and the
6077condition is a scalar, then entire vectors are selected, not individual
6078elements.
6079
6080Semantics:
6081""""""""""
6082
6083If the condition is an i1 and it evaluates to 1, the instruction returns
6084the first value argument; otherwise, it returns the second value
6085argument.
6086
6087If the condition is a vector of i1, then the value arguments must be
6088vectors of the same size, and the selection is done element by element.
6089
6090Example:
6091""""""""
6092
6093.. code-block:: llvm
6094
6095 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6096
6097.. _i_call:
6098
6099'``call``' Instruction
6100^^^^^^^^^^^^^^^^^^^^^^
6101
6102Syntax:
6103"""""""
6104
6105::
6106
6107 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6108
6109Overview:
6110"""""""""
6111
6112The '``call``' instruction represents a simple function call.
6113
6114Arguments:
6115""""""""""
6116
6117This instruction requires several arguments:
6118
6119#. The optional "tail" marker indicates that the callee function does
6120 not access any allocas or varargs in the caller. Note that calls may
6121 be marked "tail" even if they do not occur before a
6122 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6123 function call is eligible for tail call optimization, but `might not
6124 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6125 The code generator may optimize calls marked "tail" with either 1)
6126 automatic `sibling call
6127 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6128 callee have matching signatures, or 2) forced tail call optimization
6129 when the following extra requirements are met:
6130
6131 - Caller and callee both have the calling convention ``fastcc``.
6132 - The call is in tail position (ret immediately follows call and ret
6133 uses value of call or is void).
6134 - Option ``-tailcallopt`` is enabled, or
6135 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6136 - `Platform specific constraints are
6137 met. <CodeGenerator.html#tailcallopt>`_
6138
6139#. The optional "cconv" marker indicates which :ref:`calling
6140 convention <callingconv>` the call should use. If none is
6141 specified, the call defaults to using C calling conventions. The
6142 calling convention of the call must match the calling convention of
6143 the target function, or else the behavior is undefined.
6144#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6145 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6146 are valid here.
6147#. '``ty``': the type of the call instruction itself which is also the
6148 type of the return value. Functions that return no value are marked
6149 ``void``.
6150#. '``fnty``': shall be the signature of the pointer to function value
6151 being invoked. The argument types must match the types implied by
6152 this signature. This type can be omitted if the function is not
6153 varargs and if the function type does not return a pointer to a
6154 function.
6155#. '``fnptrval``': An LLVM value containing a pointer to a function to
6156 be invoked. In most cases, this is a direct function invocation, but
6157 indirect ``call``'s are just as possible, calling an arbitrary pointer
6158 to function value.
6159#. '``function args``': argument list whose types match the function
6160 signature argument types and parameter attributes. All arguments must
6161 be of :ref:`first class <t_firstclass>` type. If the function signature
6162 indicates the function accepts a variable number of arguments, the
6163 extra arguments can be specified.
6164#. The optional :ref:`function attributes <fnattrs>` list. Only
6165 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6166 attributes are valid here.
6167
6168Semantics:
6169""""""""""
6170
6171The '``call``' instruction is used to cause control flow to transfer to
6172a specified function, with its incoming arguments bound to the specified
6173values. Upon a '``ret``' instruction in the called function, control
6174flow continues with the instruction after the function call, and the
6175return value of the function is bound to the result argument.
6176
6177Example:
6178""""""""
6179
6180.. code-block:: llvm
6181
6182 %retval = call i32 @test(i32 %argc)
6183 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6184 %X = tail call i32 @foo() ; yields i32
6185 %Y = tail call fastcc i32 @foo() ; yields i32
6186 call void %foo(i8 97 signext)
6187
6188 %struct.A = type { i32, i8 }
6189 %r = call %struct.A @foo() ; yields { 32, i8 }
6190 %gr = extractvalue %struct.A %r, 0 ; yields i32
6191 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6192 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6193 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6194
6195llvm treats calls to some functions with names and arguments that match
6196the standard C99 library as being the C99 library functions, and may
6197perform optimizations or generate code for them under that assumption.
6198This is something we'd like to change in the future to provide better
6199support for freestanding environments and non-C-based languages.
6200
6201.. _i_va_arg:
6202
6203'``va_arg``' Instruction
6204^^^^^^^^^^^^^^^^^^^^^^^^
6205
6206Syntax:
6207"""""""
6208
6209::
6210
6211 <resultval> = va_arg <va_list*> <arglist>, <argty>
6212
6213Overview:
6214"""""""""
6215
6216The '``va_arg``' instruction is used to access arguments passed through
6217the "variable argument" area of a function call. It is used to implement
6218the ``va_arg`` macro in C.
6219
6220Arguments:
6221""""""""""
6222
6223This instruction takes a ``va_list*`` value and the type of the
6224argument. It returns a value of the specified argument type and
6225increments the ``va_list`` to point to the next argument. The actual
6226type of ``va_list`` is target specific.
6227
6228Semantics:
6229""""""""""
6230
6231The '``va_arg``' instruction loads an argument of the specified type
6232from the specified ``va_list`` and causes the ``va_list`` to point to
6233the next argument. For more information, see the variable argument
6234handling :ref:`Intrinsic Functions <int_varargs>`.
6235
6236It is legal for this instruction to be called in a function which does
6237not take a variable number of arguments, for example, the ``vfprintf``
6238function.
6239
6240``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6241function <intrinsics>` because it takes a type as an argument.
6242
6243Example:
6244""""""""
6245
6246See the :ref:`variable argument processing <int_varargs>` section.
6247
6248Note that the code generator does not yet fully support va\_arg on many
6249targets. Also, it does not currently support va\_arg with aggregate
6250types on any target.
6251
6252.. _i_landingpad:
6253
6254'``landingpad``' Instruction
6255^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6256
6257Syntax:
6258"""""""
6259
6260::
6261
6262 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6263 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6264
6265 <clause> := catch <type> <value>
6266 <clause> := filter <array constant type> <array constant>
6267
6268Overview:
6269"""""""""
6270
6271The '``landingpad``' instruction is used by `LLVM's exception handling
6272system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006273is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006274code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6275defines values supplied by the personality function (``pers_fn``) upon
6276re-entry to the function. The ``resultval`` has the type ``resultty``.
6277
6278Arguments:
6279""""""""""
6280
6281This instruction takes a ``pers_fn`` value. This is the personality
6282function associated with the unwinding mechanism. The optional
6283``cleanup`` flag indicates that the landing pad block is a cleanup.
6284
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006285A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006286contains the global variable representing the "type" that may be caught
6287or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6288clause takes an array constant as its argument. Use
6289"``[0 x i8**] undef``" for a filter which cannot throw. The
6290'``landingpad``' instruction must contain *at least* one ``clause`` or
6291the ``cleanup`` flag.
6292
6293Semantics:
6294""""""""""
6295
6296The '``landingpad``' instruction defines the values which are set by the
6297personality function (``pers_fn``) upon re-entry to the function, and
6298therefore the "result type" of the ``landingpad`` instruction. As with
6299calling conventions, how the personality function results are
6300represented in LLVM IR is target specific.
6301
6302The clauses are applied in order from top to bottom. If two
6303``landingpad`` instructions are merged together through inlining, the
6304clauses from the calling function are appended to the list of clauses.
6305When the call stack is being unwound due to an exception being thrown,
6306the exception is compared against each ``clause`` in turn. If it doesn't
6307match any of the clauses, and the ``cleanup`` flag is not set, then
6308unwinding continues further up the call stack.
6309
6310The ``landingpad`` instruction has several restrictions:
6311
6312- A landing pad block is a basic block which is the unwind destination
6313 of an '``invoke``' instruction.
6314- A landing pad block must have a '``landingpad``' instruction as its
6315 first non-PHI instruction.
6316- There can be only one '``landingpad``' instruction within the landing
6317 pad block.
6318- A basic block that is not a landing pad block may not include a
6319 '``landingpad``' instruction.
6320- All '``landingpad``' instructions in a function must have the same
6321 personality function.
6322
6323Example:
6324""""""""
6325
6326.. code-block:: llvm
6327
6328 ;; A landing pad which can catch an integer.
6329 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6330 catch i8** @_ZTIi
6331 ;; A landing pad that is a cleanup.
6332 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6333 cleanup
6334 ;; A landing pad which can catch an integer and can only throw a double.
6335 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6336 catch i8** @_ZTIi
6337 filter [1 x i8**] [@_ZTId]
6338
6339.. _intrinsics:
6340
6341Intrinsic Functions
6342===================
6343
6344LLVM supports the notion of an "intrinsic function". These functions
6345have well known names and semantics and are required to follow certain
6346restrictions. Overall, these intrinsics represent an extension mechanism
6347for the LLVM language that does not require changing all of the
6348transformations in LLVM when adding to the language (or the bitcode
6349reader/writer, the parser, etc...).
6350
6351Intrinsic function names must all start with an "``llvm.``" prefix. This
6352prefix is reserved in LLVM for intrinsic names; thus, function names may
6353not begin with this prefix. Intrinsic functions must always be external
6354functions: you cannot define the body of intrinsic functions. Intrinsic
6355functions may only be used in call or invoke instructions: it is illegal
6356to take the address of an intrinsic function. Additionally, because
6357intrinsic functions are part of the LLVM language, it is required if any
6358are added that they be documented here.
6359
6360Some intrinsic functions can be overloaded, i.e., the intrinsic
6361represents a family of functions that perform the same operation but on
6362different data types. Because LLVM can represent over 8 million
6363different integer types, overloading is used commonly to allow an
6364intrinsic function to operate on any integer type. One or more of the
6365argument types or the result type can be overloaded to accept any
6366integer type. Argument types may also be defined as exactly matching a
6367previous argument's type or the result type. This allows an intrinsic
6368function which accepts multiple arguments, but needs all of them to be
6369of the same type, to only be overloaded with respect to a single
6370argument or the result.
6371
6372Overloaded intrinsics will have the names of its overloaded argument
6373types encoded into its function name, each preceded by a period. Only
6374those types which are overloaded result in a name suffix. Arguments
6375whose type is matched against another type do not. For example, the
6376``llvm.ctpop`` function can take an integer of any width and returns an
6377integer of exactly the same integer width. This leads to a family of
6378functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6379``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6380overloaded, and only one type suffix is required. Because the argument's
6381type is matched against the return type, it does not require its own
6382name suffix.
6383
6384To learn how to add an intrinsic function, please see the `Extending
6385LLVM Guide <ExtendingLLVM.html>`_.
6386
6387.. _int_varargs:
6388
6389Variable Argument Handling Intrinsics
6390-------------------------------------
6391
6392Variable argument support is defined in LLVM with the
6393:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6394functions. These functions are related to the similarly named macros
6395defined in the ``<stdarg.h>`` header file.
6396
6397All of these functions operate on arguments that use a target-specific
6398value type "``va_list``". The LLVM assembly language reference manual
6399does not define what this type is, so all transformations should be
6400prepared to handle these functions regardless of the type used.
6401
6402This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6403variable argument handling intrinsic functions are used.
6404
6405.. code-block:: llvm
6406
6407 define i32 @test(i32 %X, ...) {
6408 ; Initialize variable argument processing
6409 %ap = alloca i8*
6410 %ap2 = bitcast i8** %ap to i8*
6411 call void @llvm.va_start(i8* %ap2)
6412
6413 ; Read a single integer argument
6414 %tmp = va_arg i8** %ap, i32
6415
6416 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6417 %aq = alloca i8*
6418 %aq2 = bitcast i8** %aq to i8*
6419 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6420 call void @llvm.va_end(i8* %aq2)
6421
6422 ; Stop processing of arguments.
6423 call void @llvm.va_end(i8* %ap2)
6424 ret i32 %tmp
6425 }
6426
6427 declare void @llvm.va_start(i8*)
6428 declare void @llvm.va_copy(i8*, i8*)
6429 declare void @llvm.va_end(i8*)
6430
6431.. _int_va_start:
6432
6433'``llvm.va_start``' Intrinsic
6434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6435
6436Syntax:
6437"""""""
6438
6439::
6440
Nick Lewyckyf7e61562013-09-11 22:04:52 +00006441 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +00006442
6443Overview:
6444"""""""""
6445
6446The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6447subsequent use by ``va_arg``.
6448
6449Arguments:
6450""""""""""
6451
6452The argument is a pointer to a ``va_list`` element to initialize.
6453
6454Semantics:
6455""""""""""
6456
6457The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6458available in C. In a target-dependent way, it initializes the
6459``va_list`` element to which the argument points, so that the next call
6460to ``va_arg`` will produce the first variable argument passed to the
6461function. Unlike the C ``va_start`` macro, this intrinsic does not need
6462to know the last argument of the function as the compiler can figure
6463that out.
6464
6465'``llvm.va_end``' Intrinsic
6466^^^^^^^^^^^^^^^^^^^^^^^^^^^
6467
6468Syntax:
6469"""""""
6470
6471::
6472
6473 declare void @llvm.va_end(i8* <arglist>)
6474
6475Overview:
6476"""""""""
6477
6478The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6479initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6480
6481Arguments:
6482""""""""""
6483
6484The argument is a pointer to a ``va_list`` to destroy.
6485
6486Semantics:
6487""""""""""
6488
6489The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6490available in C. In a target-dependent way, it destroys the ``va_list``
6491element to which the argument points. Calls to
6492:ref:`llvm.va_start <int_va_start>` and
6493:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6494``llvm.va_end``.
6495
6496.. _int_va_copy:
6497
6498'``llvm.va_copy``' Intrinsic
6499^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6500
6501Syntax:
6502"""""""
6503
6504::
6505
6506 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6507
6508Overview:
6509"""""""""
6510
6511The '``llvm.va_copy``' intrinsic copies the current argument position
6512from the source argument list to the destination argument list.
6513
6514Arguments:
6515""""""""""
6516
6517The first argument is a pointer to a ``va_list`` element to initialize.
6518The second argument is a pointer to a ``va_list`` element to copy from.
6519
6520Semantics:
6521""""""""""
6522
6523The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6524available in C. In a target-dependent way, it copies the source
6525``va_list`` element into the destination ``va_list`` element. This
6526intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6527arbitrarily complex and require, for example, memory allocation.
6528
6529Accurate Garbage Collection Intrinsics
6530--------------------------------------
6531
6532LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6533(GC) requires the implementation and generation of these intrinsics.
6534These intrinsics allow identification of :ref:`GC roots on the
6535stack <int_gcroot>`, as well as garbage collector implementations that
6536require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6537Front-ends for type-safe garbage collected languages should generate
6538these intrinsics to make use of the LLVM garbage collectors. For more
6539details, see `Accurate Garbage Collection with
6540LLVM <GarbageCollection.html>`_.
6541
6542The garbage collection intrinsics only operate on objects in the generic
6543address space (address space zero).
6544
6545.. _int_gcroot:
6546
6547'``llvm.gcroot``' Intrinsic
6548^^^^^^^^^^^^^^^^^^^^^^^^^^^
6549
6550Syntax:
6551"""""""
6552
6553::
6554
6555 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6556
6557Overview:
6558"""""""""
6559
6560The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6561the code generator, and allows some metadata to be associated with it.
6562
6563Arguments:
6564""""""""""
6565
6566The first argument specifies the address of a stack object that contains
6567the root pointer. The second pointer (which must be either a constant or
6568a global value address) contains the meta-data to be associated with the
6569root.
6570
6571Semantics:
6572""""""""""
6573
6574At runtime, a call to this intrinsic stores a null pointer into the
6575"ptrloc" location. At compile-time, the code generator generates
6576information to allow the runtime to find the pointer at GC safe points.
6577The '``llvm.gcroot``' intrinsic may only be used in a function which
6578:ref:`specifies a GC algorithm <gc>`.
6579
6580.. _int_gcread:
6581
6582'``llvm.gcread``' Intrinsic
6583^^^^^^^^^^^^^^^^^^^^^^^^^^^
6584
6585Syntax:
6586"""""""
6587
6588::
6589
6590 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6591
6592Overview:
6593"""""""""
6594
6595The '``llvm.gcread``' intrinsic identifies reads of references from heap
6596locations, allowing garbage collector implementations that require read
6597barriers.
6598
6599Arguments:
6600""""""""""
6601
6602The second argument is the address to read from, which should be an
6603address allocated from the garbage collector. The first object is a
6604pointer to the start of the referenced object, if needed by the language
6605runtime (otherwise null).
6606
6607Semantics:
6608""""""""""
6609
6610The '``llvm.gcread``' intrinsic has the same semantics as a load
6611instruction, but may be replaced with substantially more complex code by
6612the garbage collector runtime, as needed. The '``llvm.gcread``'
6613intrinsic may only be used in a function which :ref:`specifies a GC
6614algorithm <gc>`.
6615
6616.. _int_gcwrite:
6617
6618'``llvm.gcwrite``' Intrinsic
6619^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6620
6621Syntax:
6622"""""""
6623
6624::
6625
6626 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6627
6628Overview:
6629"""""""""
6630
6631The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6632locations, allowing garbage collector implementations that require write
6633barriers (such as generational or reference counting collectors).
6634
6635Arguments:
6636""""""""""
6637
6638The first argument is the reference to store, the second is the start of
6639the object to store it to, and the third is the address of the field of
6640Obj to store to. If the runtime does not require a pointer to the
6641object, Obj may be null.
6642
6643Semantics:
6644""""""""""
6645
6646The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6647instruction, but may be replaced with substantially more complex code by
6648the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6649intrinsic may only be used in a function which :ref:`specifies a GC
6650algorithm <gc>`.
6651
6652Code Generator Intrinsics
6653-------------------------
6654
6655These intrinsics are provided by LLVM to expose special features that
6656may only be implemented with code generator support.
6657
6658'``llvm.returnaddress``' Intrinsic
6659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6660
6661Syntax:
6662"""""""
6663
6664::
6665
6666 declare i8 *@llvm.returnaddress(i32 <level>)
6667
6668Overview:
6669"""""""""
6670
6671The '``llvm.returnaddress``' intrinsic attempts to compute a
6672target-specific value indicating the return address of the current
6673function or one of its callers.
6674
6675Arguments:
6676""""""""""
6677
6678The argument to this intrinsic indicates which function to return the
6679address for. Zero indicates the calling function, one indicates its
6680caller, etc. The argument is **required** to be a constant integer
6681value.
6682
6683Semantics:
6684""""""""""
6685
6686The '``llvm.returnaddress``' intrinsic either returns a pointer
6687indicating the return address of the specified call frame, or zero if it
6688cannot be identified. The value returned by this intrinsic is likely to
6689be incorrect or 0 for arguments other than zero, so it should only be
6690used for debugging purposes.
6691
6692Note that calling this intrinsic does not prevent function inlining or
6693other aggressive transformations, so the value returned may not be that
6694of the obvious source-language caller.
6695
6696'``llvm.frameaddress``' Intrinsic
6697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6698
6699Syntax:
6700"""""""
6701
6702::
6703
6704 declare i8* @llvm.frameaddress(i32 <level>)
6705
6706Overview:
6707"""""""""
6708
6709The '``llvm.frameaddress``' intrinsic attempts to return the
6710target-specific frame pointer value for the specified stack frame.
6711
6712Arguments:
6713""""""""""
6714
6715The argument to this intrinsic indicates which function to return the
6716frame pointer for. Zero indicates the calling function, one indicates
6717its caller, etc. The argument is **required** to be a constant integer
6718value.
6719
6720Semantics:
6721""""""""""
6722
6723The '``llvm.frameaddress``' intrinsic either returns a pointer
6724indicating the frame address of the specified call frame, or zero if it
6725cannot be identified. The value returned by this intrinsic is likely to
6726be incorrect or 0 for arguments other than zero, so it should only be
6727used for debugging purposes.
6728
6729Note that calling this intrinsic does not prevent function inlining or
6730other aggressive transformations, so the value returned may not be that
6731of the obvious source-language caller.
6732
6733.. _int_stacksave:
6734
6735'``llvm.stacksave``' Intrinsic
6736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6737
6738Syntax:
6739"""""""
6740
6741::
6742
6743 declare i8* @llvm.stacksave()
6744
6745Overview:
6746"""""""""
6747
6748The '``llvm.stacksave``' intrinsic is used to remember the current state
6749of the function stack, for use with
6750:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6751implementing language features like scoped automatic variable sized
6752arrays in C99.
6753
6754Semantics:
6755""""""""""
6756
6757This intrinsic returns a opaque pointer value that can be passed to
6758:ref:`llvm.stackrestore <int_stackrestore>`. When an
6759``llvm.stackrestore`` intrinsic is executed with a value saved from
6760``llvm.stacksave``, it effectively restores the state of the stack to
6761the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6762practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6763were allocated after the ``llvm.stacksave`` was executed.
6764
6765.. _int_stackrestore:
6766
6767'``llvm.stackrestore``' Intrinsic
6768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6769
6770Syntax:
6771"""""""
6772
6773::
6774
6775 declare void @llvm.stackrestore(i8* %ptr)
6776
6777Overview:
6778"""""""""
6779
6780The '``llvm.stackrestore``' intrinsic is used to restore the state of
6781the function stack to the state it was in when the corresponding
6782:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6783useful for implementing language features like scoped automatic variable
6784sized arrays in C99.
6785
6786Semantics:
6787""""""""""
6788
6789See the description for :ref:`llvm.stacksave <int_stacksave>`.
6790
6791'``llvm.prefetch``' Intrinsic
6792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6793
6794Syntax:
6795"""""""
6796
6797::
6798
6799 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6800
6801Overview:
6802"""""""""
6803
6804The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6805insert a prefetch instruction if supported; otherwise, it is a noop.
6806Prefetches have no effect on the behavior of the program but can change
6807its performance characteristics.
6808
6809Arguments:
6810""""""""""
6811
6812``address`` is the address to be prefetched, ``rw`` is the specifier
6813determining if the fetch should be for a read (0) or write (1), and
6814``locality`` is a temporal locality specifier ranging from (0) - no
6815locality, to (3) - extremely local keep in cache. The ``cache type``
6816specifies whether the prefetch is performed on the data (1) or
6817instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6818arguments must be constant integers.
6819
6820Semantics:
6821""""""""""
6822
6823This intrinsic does not modify the behavior of the program. In
6824particular, prefetches cannot trap and do not produce a value. On
6825targets that support this intrinsic, the prefetch can provide hints to
6826the processor cache for better performance.
6827
6828'``llvm.pcmarker``' Intrinsic
6829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6830
6831Syntax:
6832"""""""
6833
6834::
6835
6836 declare void @llvm.pcmarker(i32 <id>)
6837
6838Overview:
6839"""""""""
6840
6841The '``llvm.pcmarker``' intrinsic is a method to export a Program
6842Counter (PC) in a region of code to simulators and other tools. The
6843method is target specific, but it is expected that the marker will use
6844exported symbols to transmit the PC of the marker. The marker makes no
6845guarantees that it will remain with any specific instruction after
6846optimizations. It is possible that the presence of a marker will inhibit
6847optimizations. The intended use is to be inserted after optimizations to
6848allow correlations of simulation runs.
6849
6850Arguments:
6851""""""""""
6852
6853``id`` is a numerical id identifying the marker.
6854
6855Semantics:
6856""""""""""
6857
6858This intrinsic does not modify the behavior of the program. Backends
6859that do not support this intrinsic may ignore it.
6860
6861'``llvm.readcyclecounter``' Intrinsic
6862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6863
6864Syntax:
6865"""""""
6866
6867::
6868
6869 declare i64 @llvm.readcyclecounter()
6870
6871Overview:
6872"""""""""
6873
6874The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6875counter register (or similar low latency, high accuracy clocks) on those
6876targets that support it. On X86, it should map to RDTSC. On Alpha, it
6877should map to RPCC. As the backing counters overflow quickly (on the
6878order of 9 seconds on alpha), this should only be used for small
6879timings.
6880
6881Semantics:
6882""""""""""
6883
6884When directly supported, reading the cycle counter should not modify any
6885memory. Implementations are allowed to either return a application
6886specific value or a system wide value. On backends without support, this
6887is lowered to a constant 0.
6888
Tim Northover5a02fc42013-05-23 19:11:20 +00006889Note that runtime support may be conditional on the privilege-level code is
6890running at and the host platform.
6891
Sean Silvaf722b002012-12-07 10:36:55 +00006892Standard C Library Intrinsics
6893-----------------------------
6894
6895LLVM provides intrinsics for a few important standard C library
6896functions. These intrinsics allow source-language front-ends to pass
6897information about the alignment of the pointer arguments to the code
6898generator, providing opportunity for more efficient code generation.
6899
6900.. _int_memcpy:
6901
6902'``llvm.memcpy``' Intrinsic
6903^^^^^^^^^^^^^^^^^^^^^^^^^^^
6904
6905Syntax:
6906"""""""
6907
6908This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6909integer bit width and for different address spaces. Not all targets
6910support all bit widths however.
6911
6912::
6913
6914 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6915 i32 <len>, i32 <align>, i1 <isvolatile>)
6916 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6917 i64 <len>, i32 <align>, i1 <isvolatile>)
6918
6919Overview:
6920"""""""""
6921
6922The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6923source location to the destination location.
6924
6925Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6926intrinsics do not return a value, takes extra alignment/isvolatile
6927arguments and the pointers can be in specified address spaces.
6928
6929Arguments:
6930""""""""""
6931
6932The first argument is a pointer to the destination, the second is a
6933pointer to the source. The third argument is an integer argument
6934specifying the number of bytes to copy, the fourth argument is the
6935alignment of the source and destination locations, and the fifth is a
6936boolean indicating a volatile access.
6937
6938If the call to this intrinsic has an alignment value that is not 0 or 1,
6939then the caller guarantees that both the source and destination pointers
6940are aligned to that boundary.
6941
6942If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6943a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6944very cleanly specified and it is unwise to depend on it.
6945
6946Semantics:
6947""""""""""
6948
6949The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6950source location to the destination location, which are not allowed to
6951overlap. It copies "len" bytes of memory over. If the argument is known
6952to be aligned to some boundary, this can be specified as the fourth
Bill Wendlingf47ffe02013-10-18 23:26:55 +00006953argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00006954
6955'``llvm.memmove``' Intrinsic
6956^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6957
6958Syntax:
6959"""""""
6960
6961This is an overloaded intrinsic. You can use llvm.memmove on any integer
6962bit width and for different address space. Not all targets support all
6963bit widths however.
6964
6965::
6966
6967 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6968 i32 <len>, i32 <align>, i1 <isvolatile>)
6969 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6970 i64 <len>, i32 <align>, i1 <isvolatile>)
6971
6972Overview:
6973"""""""""
6974
6975The '``llvm.memmove.*``' intrinsics move a block of memory from the
6976source location to the destination location. It is similar to the
6977'``llvm.memcpy``' intrinsic but allows the two memory locations to
6978overlap.
6979
6980Note that, unlike the standard libc function, the ``llvm.memmove.*``
6981intrinsics do not return a value, takes extra alignment/isvolatile
6982arguments and the pointers can be in specified address spaces.
6983
6984Arguments:
6985""""""""""
6986
6987The first argument is a pointer to the destination, the second is a
6988pointer to the source. The third argument is an integer argument
6989specifying the number of bytes to copy, the fourth argument is the
6990alignment of the source and destination locations, and the fifth is a
6991boolean indicating a volatile access.
6992
6993If the call to this intrinsic has an alignment value that is not 0 or 1,
6994then the caller guarantees that the source and destination pointers are
6995aligned to that boundary.
6996
6997If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6998is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6999not very cleanly specified and it is unwise to depend on it.
7000
7001Semantics:
7002""""""""""
7003
7004The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7005source location to the destination location, which may overlap. It
7006copies "len" bytes of memory over. If the argument is known to be
7007aligned to some boundary, this can be specified as the fourth argument,
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007008otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007009
7010'``llvm.memset.*``' Intrinsics
7011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7012
7013Syntax:
7014"""""""
7015
7016This is an overloaded intrinsic. You can use llvm.memset on any integer
7017bit width and for different address spaces. However, not all targets
7018support all bit widths.
7019
7020::
7021
7022 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7023 i32 <len>, i32 <align>, i1 <isvolatile>)
7024 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7025 i64 <len>, i32 <align>, i1 <isvolatile>)
7026
7027Overview:
7028"""""""""
7029
7030The '``llvm.memset.*``' intrinsics fill a block of memory with a
7031particular byte value.
7032
7033Note that, unlike the standard libc function, the ``llvm.memset``
7034intrinsic does not return a value and takes extra alignment/volatile
7035arguments. Also, the destination can be in an arbitrary address space.
7036
7037Arguments:
7038""""""""""
7039
7040The first argument is a pointer to the destination to fill, the second
7041is the byte value with which to fill it, the third argument is an
7042integer argument specifying the number of bytes to fill, and the fourth
7043argument is the known alignment of the destination location.
7044
7045If the call to this intrinsic has an alignment value that is not 0 or 1,
7046then the caller guarantees that the destination pointer is aligned to
7047that boundary.
7048
7049If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7050a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7051very cleanly specified and it is unwise to depend on it.
7052
7053Semantics:
7054""""""""""
7055
7056The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7057at the destination location. If the argument is known to be aligned to
7058some boundary, this can be specified as the fourth argument, otherwise
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007059it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007060
7061'``llvm.sqrt.*``' Intrinsic
7062^^^^^^^^^^^^^^^^^^^^^^^^^^^
7063
7064Syntax:
7065"""""""
7066
7067This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7068floating point or vector of floating point type. Not all targets support
7069all types however.
7070
7071::
7072
7073 declare float @llvm.sqrt.f32(float %Val)
7074 declare double @llvm.sqrt.f64(double %Val)
7075 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7076 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7077 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7078
7079Overview:
7080"""""""""
7081
7082The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7083returning the same value as the libm '``sqrt``' functions would. Unlike
7084``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7085negative numbers other than -0.0 (which allows for better optimization,
7086because there is no need to worry about errno being set).
7087``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7088
7089Arguments:
7090""""""""""
7091
7092The argument and return value are floating point numbers of the same
7093type.
7094
7095Semantics:
7096""""""""""
7097
7098This function returns the sqrt of the specified operand if it is a
7099nonnegative floating point number.
7100
7101'``llvm.powi.*``' Intrinsic
7102^^^^^^^^^^^^^^^^^^^^^^^^^^^
7103
7104Syntax:
7105"""""""
7106
7107This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7108floating point or vector of floating point type. Not all targets support
7109all types however.
7110
7111::
7112
7113 declare float @llvm.powi.f32(float %Val, i32 %power)
7114 declare double @llvm.powi.f64(double %Val, i32 %power)
7115 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7116 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7117 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7118
7119Overview:
7120"""""""""
7121
7122The '``llvm.powi.*``' intrinsics return the first operand raised to the
7123specified (positive or negative) power. The order of evaluation of
7124multiplications is not defined. When a vector of floating point type is
7125used, the second argument remains a scalar integer value.
7126
7127Arguments:
7128""""""""""
7129
7130The second argument is an integer power, and the first is a value to
7131raise to that power.
7132
7133Semantics:
7134""""""""""
7135
7136This function returns the first value raised to the second power with an
7137unspecified sequence of rounding operations.
7138
7139'``llvm.sin.*``' Intrinsic
7140^^^^^^^^^^^^^^^^^^^^^^^^^^
7141
7142Syntax:
7143"""""""
7144
7145This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7146floating point or vector of floating point type. Not all targets support
7147all types however.
7148
7149::
7150
7151 declare float @llvm.sin.f32(float %Val)
7152 declare double @llvm.sin.f64(double %Val)
7153 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7154 declare fp128 @llvm.sin.f128(fp128 %Val)
7155 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7156
7157Overview:
7158"""""""""
7159
7160The '``llvm.sin.*``' intrinsics return the sine of the operand.
7161
7162Arguments:
7163""""""""""
7164
7165The argument and return value are floating point numbers of the same
7166type.
7167
7168Semantics:
7169""""""""""
7170
7171This function returns the sine of the specified operand, returning the
7172same values as the libm ``sin`` functions would, and handles error
7173conditions in the same way.
7174
7175'``llvm.cos.*``' Intrinsic
7176^^^^^^^^^^^^^^^^^^^^^^^^^^
7177
7178Syntax:
7179"""""""
7180
7181This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7182floating point or vector of floating point type. Not all targets support
7183all types however.
7184
7185::
7186
7187 declare float @llvm.cos.f32(float %Val)
7188 declare double @llvm.cos.f64(double %Val)
7189 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7190 declare fp128 @llvm.cos.f128(fp128 %Val)
7191 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7192
7193Overview:
7194"""""""""
7195
7196The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7197
7198Arguments:
7199""""""""""
7200
7201The argument and return value are floating point numbers of the same
7202type.
7203
7204Semantics:
7205""""""""""
7206
7207This function returns the cosine of the specified operand, returning the
7208same values as the libm ``cos`` functions would, and handles error
7209conditions in the same way.
7210
7211'``llvm.pow.*``' Intrinsic
7212^^^^^^^^^^^^^^^^^^^^^^^^^^
7213
7214Syntax:
7215"""""""
7216
7217This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7218floating point or vector of floating point type. Not all targets support
7219all types however.
7220
7221::
7222
7223 declare float @llvm.pow.f32(float %Val, float %Power)
7224 declare double @llvm.pow.f64(double %Val, double %Power)
7225 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7226 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7227 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7228
7229Overview:
7230"""""""""
7231
7232The '``llvm.pow.*``' intrinsics return the first operand raised to the
7233specified (positive or negative) power.
7234
7235Arguments:
7236""""""""""
7237
7238The second argument is a floating point power, and the first is a value
7239to raise to that power.
7240
7241Semantics:
7242""""""""""
7243
7244This function returns the first value raised to the second power,
7245returning the same values as the libm ``pow`` functions would, and
7246handles error conditions in the same way.
7247
7248'``llvm.exp.*``' Intrinsic
7249^^^^^^^^^^^^^^^^^^^^^^^^^^
7250
7251Syntax:
7252"""""""
7253
7254This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7255floating point or vector of floating point type. Not all targets support
7256all types however.
7257
7258::
7259
7260 declare float @llvm.exp.f32(float %Val)
7261 declare double @llvm.exp.f64(double %Val)
7262 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7263 declare fp128 @llvm.exp.f128(fp128 %Val)
7264 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7265
7266Overview:
7267"""""""""
7268
7269The '``llvm.exp.*``' intrinsics perform the exp function.
7270
7271Arguments:
7272""""""""""
7273
7274The argument and return value are floating point numbers of the same
7275type.
7276
7277Semantics:
7278""""""""""
7279
7280This function returns the same values as the libm ``exp`` functions
7281would, and handles error conditions in the same way.
7282
7283'``llvm.exp2.*``' Intrinsic
7284^^^^^^^^^^^^^^^^^^^^^^^^^^^
7285
7286Syntax:
7287"""""""
7288
7289This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7290floating point or vector of floating point type. Not all targets support
7291all types however.
7292
7293::
7294
7295 declare float @llvm.exp2.f32(float %Val)
7296 declare double @llvm.exp2.f64(double %Val)
7297 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7298 declare fp128 @llvm.exp2.f128(fp128 %Val)
7299 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7300
7301Overview:
7302"""""""""
7303
7304The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7305
7306Arguments:
7307""""""""""
7308
7309The argument and return value are floating point numbers of the same
7310type.
7311
7312Semantics:
7313""""""""""
7314
7315This function returns the same values as the libm ``exp2`` functions
7316would, and handles error conditions in the same way.
7317
7318'``llvm.log.*``' Intrinsic
7319^^^^^^^^^^^^^^^^^^^^^^^^^^
7320
7321Syntax:
7322"""""""
7323
7324This is an overloaded intrinsic. You can use ``llvm.log`` on any
7325floating point or vector of floating point type. Not all targets support
7326all types however.
7327
7328::
7329
7330 declare float @llvm.log.f32(float %Val)
7331 declare double @llvm.log.f64(double %Val)
7332 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7333 declare fp128 @llvm.log.f128(fp128 %Val)
7334 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7335
7336Overview:
7337"""""""""
7338
7339The '``llvm.log.*``' intrinsics perform the log function.
7340
7341Arguments:
7342""""""""""
7343
7344The argument and return value are floating point numbers of the same
7345type.
7346
7347Semantics:
7348""""""""""
7349
7350This function returns the same values as the libm ``log`` functions
7351would, and handles error conditions in the same way.
7352
7353'``llvm.log10.*``' Intrinsic
7354^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7355
7356Syntax:
7357"""""""
7358
7359This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7360floating point or vector of floating point type. Not all targets support
7361all types however.
7362
7363::
7364
7365 declare float @llvm.log10.f32(float %Val)
7366 declare double @llvm.log10.f64(double %Val)
7367 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7368 declare fp128 @llvm.log10.f128(fp128 %Val)
7369 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7370
7371Overview:
7372"""""""""
7373
7374The '``llvm.log10.*``' intrinsics perform the log10 function.
7375
7376Arguments:
7377""""""""""
7378
7379The argument and return value are floating point numbers of the same
7380type.
7381
7382Semantics:
7383""""""""""
7384
7385This function returns the same values as the libm ``log10`` functions
7386would, and handles error conditions in the same way.
7387
7388'``llvm.log2.*``' Intrinsic
7389^^^^^^^^^^^^^^^^^^^^^^^^^^^
7390
7391Syntax:
7392"""""""
7393
7394This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7395floating point or vector of floating point type. Not all targets support
7396all types however.
7397
7398::
7399
7400 declare float @llvm.log2.f32(float %Val)
7401 declare double @llvm.log2.f64(double %Val)
7402 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7403 declare fp128 @llvm.log2.f128(fp128 %Val)
7404 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7405
7406Overview:
7407"""""""""
7408
7409The '``llvm.log2.*``' intrinsics perform the log2 function.
7410
7411Arguments:
7412""""""""""
7413
7414The argument and return value are floating point numbers of the same
7415type.
7416
7417Semantics:
7418""""""""""
7419
7420This function returns the same values as the libm ``log2`` functions
7421would, and handles error conditions in the same way.
7422
7423'``llvm.fma.*``' Intrinsic
7424^^^^^^^^^^^^^^^^^^^^^^^^^^
7425
7426Syntax:
7427"""""""
7428
7429This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7430floating point or vector of floating point type. Not all targets support
7431all types however.
7432
7433::
7434
7435 declare float @llvm.fma.f32(float %a, float %b, float %c)
7436 declare double @llvm.fma.f64(double %a, double %b, double %c)
7437 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7438 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7439 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7440
7441Overview:
7442"""""""""
7443
7444The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7445operation.
7446
7447Arguments:
7448""""""""""
7449
7450The argument and return value are floating point numbers of the same
7451type.
7452
7453Semantics:
7454""""""""""
7455
7456This function returns the same values as the libm ``fma`` functions
7457would.
7458
7459'``llvm.fabs.*``' Intrinsic
7460^^^^^^^^^^^^^^^^^^^^^^^^^^^
7461
7462Syntax:
7463"""""""
7464
7465This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7466floating point or vector of floating point type. Not all targets support
7467all types however.
7468
7469::
7470
7471 declare float @llvm.fabs.f32(float %Val)
7472 declare double @llvm.fabs.f64(double %Val)
7473 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7474 declare fp128 @llvm.fabs.f128(fp128 %Val)
7475 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7476
7477Overview:
7478"""""""""
7479
7480The '``llvm.fabs.*``' intrinsics return the absolute value of the
7481operand.
7482
7483Arguments:
7484""""""""""
7485
7486The argument and return value are floating point numbers of the same
7487type.
7488
7489Semantics:
7490""""""""""
7491
7492This function returns the same values as the libm ``fabs`` functions
7493would, and handles error conditions in the same way.
7494
Hal Finkel66d1fa62013-08-19 23:35:46 +00007495'``llvm.copysign.*``' Intrinsic
7496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7497
7498Syntax:
7499"""""""
7500
7501This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7502floating point or vector of floating point type. Not all targets support
7503all types however.
7504
7505::
7506
7507 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7508 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7509 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7510 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7511 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7512
7513Overview:
7514"""""""""
7515
7516The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7517first operand and the sign of the second operand.
7518
7519Arguments:
7520""""""""""
7521
7522The arguments and return value are floating point numbers of the same
7523type.
7524
7525Semantics:
7526""""""""""
7527
7528This function returns the same values as the libm ``copysign``
7529functions would, and handles error conditions in the same way.
7530
Sean Silvaf722b002012-12-07 10:36:55 +00007531'``llvm.floor.*``' Intrinsic
7532^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7533
7534Syntax:
7535"""""""
7536
7537This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7538floating point or vector of floating point type. Not all targets support
7539all types however.
7540
7541::
7542
7543 declare float @llvm.floor.f32(float %Val)
7544 declare double @llvm.floor.f64(double %Val)
7545 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7546 declare fp128 @llvm.floor.f128(fp128 %Val)
7547 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7548
7549Overview:
7550"""""""""
7551
7552The '``llvm.floor.*``' intrinsics return the floor of the operand.
7553
7554Arguments:
7555""""""""""
7556
7557The argument and return value are floating point numbers of the same
7558type.
7559
7560Semantics:
7561""""""""""
7562
7563This function returns the same values as the libm ``floor`` functions
7564would, and handles error conditions in the same way.
7565
7566'``llvm.ceil.*``' Intrinsic
7567^^^^^^^^^^^^^^^^^^^^^^^^^^^
7568
7569Syntax:
7570"""""""
7571
7572This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7573floating point or vector of floating point type. Not all targets support
7574all types however.
7575
7576::
7577
7578 declare float @llvm.ceil.f32(float %Val)
7579 declare double @llvm.ceil.f64(double %Val)
7580 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7581 declare fp128 @llvm.ceil.f128(fp128 %Val)
7582 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7583
7584Overview:
7585"""""""""
7586
7587The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7588
7589Arguments:
7590""""""""""
7591
7592The argument and return value are floating point numbers of the same
7593type.
7594
7595Semantics:
7596""""""""""
7597
7598This function returns the same values as the libm ``ceil`` functions
7599would, and handles error conditions in the same way.
7600
7601'``llvm.trunc.*``' Intrinsic
7602^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7603
7604Syntax:
7605"""""""
7606
7607This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7608floating point or vector of floating point type. Not all targets support
7609all types however.
7610
7611::
7612
7613 declare float @llvm.trunc.f32(float %Val)
7614 declare double @llvm.trunc.f64(double %Val)
7615 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7616 declare fp128 @llvm.trunc.f128(fp128 %Val)
7617 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7618
7619Overview:
7620"""""""""
7621
7622The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7623nearest integer not larger in magnitude than the operand.
7624
7625Arguments:
7626""""""""""
7627
7628The argument and return value are floating point numbers of the same
7629type.
7630
7631Semantics:
7632""""""""""
7633
7634This function returns the same values as the libm ``trunc`` functions
7635would, and handles error conditions in the same way.
7636
7637'``llvm.rint.*``' Intrinsic
7638^^^^^^^^^^^^^^^^^^^^^^^^^^^
7639
7640Syntax:
7641"""""""
7642
7643This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7644floating point or vector of floating point type. Not all targets support
7645all types however.
7646
7647::
7648
7649 declare float @llvm.rint.f32(float %Val)
7650 declare double @llvm.rint.f64(double %Val)
7651 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7652 declare fp128 @llvm.rint.f128(fp128 %Val)
7653 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7654
7655Overview:
7656"""""""""
7657
7658The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7659nearest integer. It may raise an inexact floating-point exception if the
7660operand isn't an integer.
7661
7662Arguments:
7663""""""""""
7664
7665The argument and return value are floating point numbers of the same
7666type.
7667
7668Semantics:
7669""""""""""
7670
7671This function returns the same values as the libm ``rint`` functions
7672would, and handles error conditions in the same way.
7673
7674'``llvm.nearbyint.*``' Intrinsic
7675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7676
7677Syntax:
7678"""""""
7679
7680This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7681floating point or vector of floating point type. Not all targets support
7682all types however.
7683
7684::
7685
7686 declare float @llvm.nearbyint.f32(float %Val)
7687 declare double @llvm.nearbyint.f64(double %Val)
7688 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7689 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7690 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7691
7692Overview:
7693"""""""""
7694
7695The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7696nearest integer.
7697
7698Arguments:
7699""""""""""
7700
7701The argument and return value are floating point numbers of the same
7702type.
7703
7704Semantics:
7705""""""""""
7706
7707This function returns the same values as the libm ``nearbyint``
7708functions would, and handles error conditions in the same way.
7709
Hal Finkel41418d12013-08-07 22:49:12 +00007710'``llvm.round.*``' Intrinsic
7711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7712
7713Syntax:
7714"""""""
7715
7716This is an overloaded intrinsic. You can use ``llvm.round`` on any
7717floating point or vector of floating point type. Not all targets support
7718all types however.
7719
7720::
7721
7722 declare float @llvm.round.f32(float %Val)
7723 declare double @llvm.round.f64(double %Val)
7724 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7725 declare fp128 @llvm.round.f128(fp128 %Val)
7726 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7727
7728Overview:
7729"""""""""
7730
7731The '``llvm.round.*``' intrinsics returns the operand rounded to the
7732nearest integer.
7733
7734Arguments:
7735""""""""""
7736
7737The argument and return value are floating point numbers of the same
7738type.
7739
7740Semantics:
7741""""""""""
7742
7743This function returns the same values as the libm ``round``
7744functions would, and handles error conditions in the same way.
7745
Sean Silvaf722b002012-12-07 10:36:55 +00007746Bit Manipulation Intrinsics
7747---------------------------
7748
7749LLVM provides intrinsics for a few important bit manipulation
7750operations. These allow efficient code generation for some algorithms.
7751
7752'``llvm.bswap.*``' Intrinsics
7753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7754
7755Syntax:
7756"""""""
7757
7758This is an overloaded intrinsic function. You can use bswap on any
7759integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7760
7761::
7762
7763 declare i16 @llvm.bswap.i16(i16 <id>)
7764 declare i32 @llvm.bswap.i32(i32 <id>)
7765 declare i64 @llvm.bswap.i64(i64 <id>)
7766
7767Overview:
7768"""""""""
7769
7770The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7771values with an even number of bytes (positive multiple of 16 bits).
7772These are useful for performing operations on data that is not in the
7773target's native byte order.
7774
7775Semantics:
7776""""""""""
7777
7778The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7779and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7780intrinsic returns an i32 value that has the four bytes of the input i32
7781swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7782returned i32 will have its bytes in 3, 2, 1, 0 order. The
7783``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7784concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7785respectively).
7786
7787'``llvm.ctpop.*``' Intrinsic
7788^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7789
7790Syntax:
7791"""""""
7792
7793This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7794bit width, or on any vector with integer elements. Not all targets
7795support all bit widths or vector types, however.
7796
7797::
7798
7799 declare i8 @llvm.ctpop.i8(i8 <src>)
7800 declare i16 @llvm.ctpop.i16(i16 <src>)
7801 declare i32 @llvm.ctpop.i32(i32 <src>)
7802 declare i64 @llvm.ctpop.i64(i64 <src>)
7803 declare i256 @llvm.ctpop.i256(i256 <src>)
7804 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7805
7806Overview:
7807"""""""""
7808
7809The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7810in a value.
7811
7812Arguments:
7813""""""""""
7814
7815The only argument is the value to be counted. The argument may be of any
7816integer type, or a vector with integer elements. The return type must
7817match the argument type.
7818
7819Semantics:
7820""""""""""
7821
7822The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7823each element of a vector.
7824
7825'``llvm.ctlz.*``' Intrinsic
7826^^^^^^^^^^^^^^^^^^^^^^^^^^^
7827
7828Syntax:
7829"""""""
7830
7831This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7832integer bit width, or any vector whose elements are integers. Not all
7833targets support all bit widths or vector types, however.
7834
7835::
7836
7837 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7838 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7839 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7840 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7841 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7842 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7843
7844Overview:
7845"""""""""
7846
7847The '``llvm.ctlz``' family of intrinsic functions counts the number of
7848leading zeros in a variable.
7849
7850Arguments:
7851""""""""""
7852
7853The first argument is the value to be counted. This argument may be of
7854any integer type, or a vectory with integer element type. The return
7855type must match the first argument type.
7856
7857The second argument must be a constant and is a flag to indicate whether
7858the intrinsic should ensure that a zero as the first argument produces a
7859defined result. Historically some architectures did not provide a
7860defined result for zero values as efficiently, and many algorithms are
7861now predicated on avoiding zero-value inputs.
7862
7863Semantics:
7864""""""""""
7865
7866The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7867zeros in a variable, or within each element of the vector. If
7868``src == 0`` then the result is the size in bits of the type of ``src``
7869if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7870``llvm.ctlz(i32 2) = 30``.
7871
7872'``llvm.cttz.*``' Intrinsic
7873^^^^^^^^^^^^^^^^^^^^^^^^^^^
7874
7875Syntax:
7876"""""""
7877
7878This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7879integer bit width, or any vector of integer elements. Not all targets
7880support all bit widths or vector types, however.
7881
7882::
7883
7884 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7885 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7886 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7887 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7888 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7889 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7890
7891Overview:
7892"""""""""
7893
7894The '``llvm.cttz``' family of intrinsic functions counts the number of
7895trailing zeros.
7896
7897Arguments:
7898""""""""""
7899
7900The first argument is the value to be counted. This argument may be of
7901any integer type, or a vectory with integer element type. The return
7902type must match the first argument type.
7903
7904The second argument must be a constant and is a flag to indicate whether
7905the intrinsic should ensure that a zero as the first argument produces a
7906defined result. Historically some architectures did not provide a
7907defined result for zero values as efficiently, and many algorithms are
7908now predicated on avoiding zero-value inputs.
7909
7910Semantics:
7911""""""""""
7912
7913The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7914zeros in a variable, or within each element of a vector. If ``src == 0``
7915then the result is the size in bits of the type of ``src`` if
7916``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7917``llvm.cttz(2) = 1``.
7918
7919Arithmetic with Overflow Intrinsics
7920-----------------------------------
7921
7922LLVM provides intrinsics for some arithmetic with overflow operations.
7923
7924'``llvm.sadd.with.overflow.*``' Intrinsics
7925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7926
7927Syntax:
7928"""""""
7929
7930This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7931on any integer bit width.
7932
7933::
7934
7935 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7936 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7937 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7938
7939Overview:
7940"""""""""
7941
7942The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7943a signed addition of the two arguments, and indicate whether an overflow
7944occurred during the signed summation.
7945
7946Arguments:
7947""""""""""
7948
7949The arguments (%a and %b) and the first element of the result structure
7950may be of integer types of any bit width, but they must have the same
7951bit width. The second element of the result structure must be of type
7952``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7953addition.
7954
7955Semantics:
7956""""""""""
7957
7958The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007959a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007960first element of which is the signed summation, and the second element
7961of which is a bit specifying if the signed summation resulted in an
7962overflow.
7963
7964Examples:
7965"""""""""
7966
7967.. code-block:: llvm
7968
7969 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7970 %sum = extractvalue {i32, i1} %res, 0
7971 %obit = extractvalue {i32, i1} %res, 1
7972 br i1 %obit, label %overflow, label %normal
7973
7974'``llvm.uadd.with.overflow.*``' Intrinsics
7975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7976
7977Syntax:
7978"""""""
7979
7980This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7981on any integer bit width.
7982
7983::
7984
7985 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7986 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7987 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7988
7989Overview:
7990"""""""""
7991
7992The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7993an unsigned addition of the two arguments, and indicate whether a carry
7994occurred during the unsigned summation.
7995
7996Arguments:
7997""""""""""
7998
7999The arguments (%a and %b) and the first element of the result structure
8000may be of integer types of any bit width, but they must have the same
8001bit width. The second element of the result structure must be of type
8002``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8003addition.
8004
8005Semantics:
8006""""""""""
8007
8008The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008009an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008010first element of which is the sum, and the second element of which is a
8011bit specifying if the unsigned summation resulted in a carry.
8012
8013Examples:
8014"""""""""
8015
8016.. code-block:: llvm
8017
8018 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8019 %sum = extractvalue {i32, i1} %res, 0
8020 %obit = extractvalue {i32, i1} %res, 1
8021 br i1 %obit, label %carry, label %normal
8022
8023'``llvm.ssub.with.overflow.*``' Intrinsics
8024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8025
8026Syntax:
8027"""""""
8028
8029This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8030on any integer bit width.
8031
8032::
8033
8034 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8035 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8036 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8037
8038Overview:
8039"""""""""
8040
8041The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8042a signed subtraction of the two arguments, and indicate whether an
8043overflow occurred during the signed subtraction.
8044
8045Arguments:
8046""""""""""
8047
8048The arguments (%a and %b) and the first element of the result structure
8049may be of integer types of any bit width, but they must have the same
8050bit width. The second element of the result structure must be of type
8051``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8052subtraction.
8053
8054Semantics:
8055""""""""""
8056
8057The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008058a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008059first element of which is the subtraction, and the second element of
8060which is a bit specifying if the signed subtraction resulted in an
8061overflow.
8062
8063Examples:
8064"""""""""
8065
8066.. code-block:: llvm
8067
8068 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8069 %sum = extractvalue {i32, i1} %res, 0
8070 %obit = extractvalue {i32, i1} %res, 1
8071 br i1 %obit, label %overflow, label %normal
8072
8073'``llvm.usub.with.overflow.*``' Intrinsics
8074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8075
8076Syntax:
8077"""""""
8078
8079This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8080on any integer bit width.
8081
8082::
8083
8084 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8085 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8086 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8087
8088Overview:
8089"""""""""
8090
8091The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8092an unsigned subtraction of the two arguments, and indicate whether an
8093overflow occurred during the unsigned subtraction.
8094
8095Arguments:
8096""""""""""
8097
8098The arguments (%a and %b) and the first element of the result structure
8099may be of integer types of any bit width, but they must have the same
8100bit width. The second element of the result structure must be of type
8101``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8102subtraction.
8103
8104Semantics:
8105""""""""""
8106
8107The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008108an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008109the first element of which is the subtraction, and the second element of
8110which is a bit specifying if the unsigned subtraction resulted in an
8111overflow.
8112
8113Examples:
8114"""""""""
8115
8116.. code-block:: llvm
8117
8118 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8119 %sum = extractvalue {i32, i1} %res, 0
8120 %obit = extractvalue {i32, i1} %res, 1
8121 br i1 %obit, label %overflow, label %normal
8122
8123'``llvm.smul.with.overflow.*``' Intrinsics
8124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8125
8126Syntax:
8127"""""""
8128
8129This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8130on any integer bit width.
8131
8132::
8133
8134 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8135 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8136 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8137
8138Overview:
8139"""""""""
8140
8141The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8142a signed multiplication of the two arguments, and indicate whether an
8143overflow occurred during the signed multiplication.
8144
8145Arguments:
8146""""""""""
8147
8148The arguments (%a and %b) and the first element of the result structure
8149may be of integer types of any bit width, but they must have the same
8150bit width. The second element of the result structure must be of type
8151``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8152multiplication.
8153
8154Semantics:
8155""""""""""
8156
8157The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008158a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008159the first element of which is the multiplication, and the second element
8160of which is a bit specifying if the signed multiplication resulted in an
8161overflow.
8162
8163Examples:
8164"""""""""
8165
8166.. code-block:: llvm
8167
8168 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8169 %sum = extractvalue {i32, i1} %res, 0
8170 %obit = extractvalue {i32, i1} %res, 1
8171 br i1 %obit, label %overflow, label %normal
8172
8173'``llvm.umul.with.overflow.*``' Intrinsics
8174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8175
8176Syntax:
8177"""""""
8178
8179This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8180on any integer bit width.
8181
8182::
8183
8184 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8185 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8186 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8187
8188Overview:
8189"""""""""
8190
8191The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8192a unsigned multiplication of the two arguments, and indicate whether an
8193overflow occurred during the unsigned multiplication.
8194
8195Arguments:
8196""""""""""
8197
8198The arguments (%a and %b) and the first element of the result structure
8199may be of integer types of any bit width, but they must have the same
8200bit width. The second element of the result structure must be of type
8201``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8202multiplication.
8203
8204Semantics:
8205""""""""""
8206
8207The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008208an unsigned multiplication of the two arguments. They return a structure ---
8209the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008210element of which is a bit specifying if the unsigned multiplication
8211resulted in an overflow.
8212
8213Examples:
8214"""""""""
8215
8216.. code-block:: llvm
8217
8218 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8219 %sum = extractvalue {i32, i1} %res, 0
8220 %obit = extractvalue {i32, i1} %res, 1
8221 br i1 %obit, label %overflow, label %normal
8222
8223Specialised Arithmetic Intrinsics
8224---------------------------------
8225
8226'``llvm.fmuladd.*``' Intrinsic
8227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8228
8229Syntax:
8230"""""""
8231
8232::
8233
8234 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8235 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8236
8237Overview:
8238"""""""""
8239
8240The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008241expressions that can be fused if the code generator determines that (a) the
8242target instruction set has support for a fused operation, and (b) that the
8243fused operation is more efficient than the equivalent, separate pair of mul
8244and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008245
8246Arguments:
8247""""""""""
8248
8249The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8250multiplicands, a and b, and an addend c.
8251
8252Semantics:
8253""""""""""
8254
8255The expression:
8256
8257::
8258
8259 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8260
8261is equivalent to the expression a \* b + c, except that rounding will
8262not be performed between the multiplication and addition steps if the
8263code generator fuses the operations. Fusion is not guaranteed, even if
8264the target platform supports it. If a fused multiply-add is required the
8265corresponding llvm.fma.\* intrinsic function should be used instead.
8266
8267Examples:
8268"""""""""
8269
8270.. code-block:: llvm
8271
8272 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8273
8274Half Precision Floating Point Intrinsics
8275----------------------------------------
8276
8277For most target platforms, half precision floating point is a
8278storage-only format. This means that it is a dense encoding (in memory)
8279but does not support computation in the format.
8280
8281This means that code must first load the half-precision floating point
8282value as an i16, then convert it to float with
8283:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8284then be performed on the float value (including extending to double
8285etc). To store the value back to memory, it is first converted to float
8286if needed, then converted to i16 with
8287:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8288i16 value.
8289
8290.. _int_convert_to_fp16:
8291
8292'``llvm.convert.to.fp16``' Intrinsic
8293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8294
8295Syntax:
8296"""""""
8297
8298::
8299
8300 declare i16 @llvm.convert.to.fp16(f32 %a)
8301
8302Overview:
8303"""""""""
8304
8305The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8306from single precision floating point format to half precision floating
8307point format.
8308
8309Arguments:
8310""""""""""
8311
8312The intrinsic function contains single argument - the value to be
8313converted.
8314
8315Semantics:
8316""""""""""
8317
8318The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8319from single precision floating point format to half precision floating
8320point format. The return value is an ``i16`` which contains the
8321converted number.
8322
8323Examples:
8324"""""""""
8325
8326.. code-block:: llvm
8327
8328 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8329 store i16 %res, i16* @x, align 2
8330
8331.. _int_convert_from_fp16:
8332
8333'``llvm.convert.from.fp16``' Intrinsic
8334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8335
8336Syntax:
8337"""""""
8338
8339::
8340
8341 declare f32 @llvm.convert.from.fp16(i16 %a)
8342
8343Overview:
8344"""""""""
8345
8346The '``llvm.convert.from.fp16``' intrinsic function performs a
8347conversion from half precision floating point format to single precision
8348floating point format.
8349
8350Arguments:
8351""""""""""
8352
8353The intrinsic function contains single argument - the value to be
8354converted.
8355
8356Semantics:
8357""""""""""
8358
8359The '``llvm.convert.from.fp16``' intrinsic function performs a
8360conversion from half single precision floating point format to single
8361precision floating point format. The input half-float value is
8362represented by an ``i16`` value.
8363
8364Examples:
8365"""""""""
8366
8367.. code-block:: llvm
8368
8369 %a = load i16* @x, align 2
8370 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8371
8372Debugger Intrinsics
8373-------------------
8374
8375The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8376prefix), are described in the `LLVM Source Level
8377Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8378document.
8379
8380Exception Handling Intrinsics
8381-----------------------------
8382
8383The LLVM exception handling intrinsics (which all start with
8384``llvm.eh.`` prefix), are described in the `LLVM Exception
8385Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8386
8387.. _int_trampoline:
8388
8389Trampoline Intrinsics
8390---------------------
8391
8392These intrinsics make it possible to excise one parameter, marked with
8393the :ref:`nest <nest>` attribute, from a function. The result is a
8394callable function pointer lacking the nest parameter - the caller does
8395not need to provide a value for it. Instead, the value to use is stored
8396in advance in a "trampoline", a block of memory usually allocated on the
8397stack, which also contains code to splice the nest value into the
8398argument list. This is used to implement the GCC nested function address
8399extension.
8400
8401For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8402then the resulting function pointer has signature ``i32 (i32, i32)*``.
8403It can be created as follows:
8404
8405.. code-block:: llvm
8406
8407 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8408 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8409 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8410 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8411 %fp = bitcast i8* %p to i32 (i32, i32)*
8412
8413The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8414``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8415
8416.. _int_it:
8417
8418'``llvm.init.trampoline``' Intrinsic
8419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8420
8421Syntax:
8422"""""""
8423
8424::
8425
8426 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8427
8428Overview:
8429"""""""""
8430
8431This fills the memory pointed to by ``tramp`` with executable code,
8432turning it into a trampoline.
8433
8434Arguments:
8435""""""""""
8436
8437The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8438pointers. The ``tramp`` argument must point to a sufficiently large and
8439sufficiently aligned block of memory; this memory is written to by the
8440intrinsic. Note that the size and the alignment are target-specific -
8441LLVM currently provides no portable way of determining them, so a
8442front-end that generates this intrinsic needs to have some
8443target-specific knowledge. The ``func`` argument must hold a function
8444bitcast to an ``i8*``.
8445
8446Semantics:
8447""""""""""
8448
8449The block of memory pointed to by ``tramp`` is filled with target
8450dependent code, turning it into a function. Then ``tramp`` needs to be
8451passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8452be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8453function's signature is the same as that of ``func`` with any arguments
8454marked with the ``nest`` attribute removed. At most one such ``nest``
8455argument is allowed, and it must be of pointer type. Calling the new
8456function is equivalent to calling ``func`` with the same argument list,
8457but with ``nval`` used for the missing ``nest`` argument. If, after
8458calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8459modified, then the effect of any later call to the returned function
8460pointer is undefined.
8461
8462.. _int_at:
8463
8464'``llvm.adjust.trampoline``' Intrinsic
8465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8466
8467Syntax:
8468"""""""
8469
8470::
8471
8472 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8473
8474Overview:
8475"""""""""
8476
8477This performs any required machine-specific adjustment to the address of
8478a trampoline (passed as ``tramp``).
8479
8480Arguments:
8481""""""""""
8482
8483``tramp`` must point to a block of memory which already has trampoline
8484code filled in by a previous call to
8485:ref:`llvm.init.trampoline <int_it>`.
8486
8487Semantics:
8488""""""""""
8489
8490On some architectures the address of the code to be executed needs to be
8491different to the address where the trampoline is actually stored. This
8492intrinsic returns the executable address corresponding to ``tramp``
8493after performing the required machine specific adjustments. The pointer
8494returned can then be :ref:`bitcast and executed <int_trampoline>`.
8495
8496Memory Use Markers
8497------------------
8498
8499This class of intrinsics exists to information about the lifetime of
8500memory objects and ranges where variables are immutable.
8501
8502'``llvm.lifetime.start``' Intrinsic
8503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8504
8505Syntax:
8506"""""""
8507
8508::
8509
8510 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8511
8512Overview:
8513"""""""""
8514
8515The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8516object's lifetime.
8517
8518Arguments:
8519""""""""""
8520
8521The first argument is a constant integer representing the size of the
8522object, or -1 if it is variable sized. The second argument is a pointer
8523to the object.
8524
8525Semantics:
8526""""""""""
8527
8528This intrinsic indicates that before this point in the code, the value
8529of the memory pointed to by ``ptr`` is dead. This means that it is known
8530to never be used and has an undefined value. A load from the pointer
8531that precedes this intrinsic can be replaced with ``'undef'``.
8532
8533'``llvm.lifetime.end``' Intrinsic
8534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8535
8536Syntax:
8537"""""""
8538
8539::
8540
8541 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8542
8543Overview:
8544"""""""""
8545
8546The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8547object's lifetime.
8548
8549Arguments:
8550""""""""""
8551
8552The first argument is a constant integer representing the size of the
8553object, or -1 if it is variable sized. The second argument is a pointer
8554to the object.
8555
8556Semantics:
8557""""""""""
8558
8559This intrinsic indicates that after this point in the code, the value of
8560the memory pointed to by ``ptr`` is dead. This means that it is known to
8561never be used and has an undefined value. Any stores into the memory
8562object following this intrinsic may be removed as dead.
8563
8564'``llvm.invariant.start``' Intrinsic
8565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8566
8567Syntax:
8568"""""""
8569
8570::
8571
8572 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8573
8574Overview:
8575"""""""""
8576
8577The '``llvm.invariant.start``' intrinsic specifies that the contents of
8578a memory object will not change.
8579
8580Arguments:
8581""""""""""
8582
8583The first argument is a constant integer representing the size of the
8584object, or -1 if it is variable sized. The second argument is a pointer
8585to the object.
8586
8587Semantics:
8588""""""""""
8589
8590This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8591the return value, the referenced memory location is constant and
8592unchanging.
8593
8594'``llvm.invariant.end``' Intrinsic
8595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8596
8597Syntax:
8598"""""""
8599
8600::
8601
8602 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8603
8604Overview:
8605"""""""""
8606
8607The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8608memory object are mutable.
8609
8610Arguments:
8611""""""""""
8612
8613The first argument is the matching ``llvm.invariant.start`` intrinsic.
8614The second argument is a constant integer representing the size of the
8615object, or -1 if it is variable sized and the third argument is a
8616pointer to the object.
8617
8618Semantics:
8619""""""""""
8620
8621This intrinsic indicates that the memory is mutable again.
8622
8623General Intrinsics
8624------------------
8625
8626This class of intrinsics is designed to be generic and has no specific
8627purpose.
8628
8629'``llvm.var.annotation``' Intrinsic
8630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8631
8632Syntax:
8633"""""""
8634
8635::
8636
8637 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8638
8639Overview:
8640"""""""""
8641
8642The '``llvm.var.annotation``' intrinsic.
8643
8644Arguments:
8645""""""""""
8646
8647The first argument is a pointer to a value, the second is a pointer to a
8648global string, the third is a pointer to a global string which is the
8649source file name, and the last argument is the line number.
8650
8651Semantics:
8652""""""""""
8653
8654This intrinsic allows annotation of local variables with arbitrary
8655strings. This can be useful for special purpose optimizations that want
8656to look for these annotations. These have no other defined use; they are
8657ignored by code generation and optimization.
8658
Michael Gottesman872b4e52013-03-26 00:34:27 +00008659'``llvm.ptr.annotation.*``' Intrinsic
8660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8661
8662Syntax:
8663"""""""
8664
8665This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8666pointer to an integer of any width. *NOTE* you must specify an address space for
8667the pointer. The identifier for the default address space is the integer
8668'``0``'.
8669
8670::
8671
8672 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8673 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8674 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8675 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8676 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8677
8678Overview:
8679"""""""""
8680
8681The '``llvm.ptr.annotation``' intrinsic.
8682
8683Arguments:
8684""""""""""
8685
8686The first argument is a pointer to an integer value of arbitrary bitwidth
8687(result of some expression), the second is a pointer to a global string, the
8688third is a pointer to a global string which is the source file name, and the
8689last argument is the line number. It returns the value of the first argument.
8690
8691Semantics:
8692""""""""""
8693
8694This intrinsic allows annotation of a pointer to an integer with arbitrary
8695strings. This can be useful for special purpose optimizations that want to look
8696for these annotations. These have no other defined use; they are ignored by code
8697generation and optimization.
8698
Sean Silvaf722b002012-12-07 10:36:55 +00008699'``llvm.annotation.*``' Intrinsic
8700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8701
8702Syntax:
8703"""""""
8704
8705This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8706any integer bit width.
8707
8708::
8709
8710 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8711 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8712 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8713 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8714 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8715
8716Overview:
8717"""""""""
8718
8719The '``llvm.annotation``' intrinsic.
8720
8721Arguments:
8722""""""""""
8723
8724The first argument is an integer value (result of some expression), the
8725second is a pointer to a global string, the third is a pointer to a
8726global string which is the source file name, and the last argument is
8727the line number. It returns the value of the first argument.
8728
8729Semantics:
8730""""""""""
8731
8732This intrinsic allows annotations to be put on arbitrary expressions
8733with arbitrary strings. This can be useful for special purpose
8734optimizations that want to look for these annotations. These have no
8735other defined use; they are ignored by code generation and optimization.
8736
8737'``llvm.trap``' Intrinsic
8738^^^^^^^^^^^^^^^^^^^^^^^^^
8739
8740Syntax:
8741"""""""
8742
8743::
8744
8745 declare void @llvm.trap() noreturn nounwind
8746
8747Overview:
8748"""""""""
8749
8750The '``llvm.trap``' intrinsic.
8751
8752Arguments:
8753""""""""""
8754
8755None.
8756
8757Semantics:
8758""""""""""
8759
8760This intrinsic is lowered to the target dependent trap instruction. If
8761the target does not have a trap instruction, this intrinsic will be
8762lowered to a call of the ``abort()`` function.
8763
8764'``llvm.debugtrap``' Intrinsic
8765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8766
8767Syntax:
8768"""""""
8769
8770::
8771
8772 declare void @llvm.debugtrap() nounwind
8773
8774Overview:
8775"""""""""
8776
8777The '``llvm.debugtrap``' intrinsic.
8778
8779Arguments:
8780""""""""""
8781
8782None.
8783
8784Semantics:
8785""""""""""
8786
8787This intrinsic is lowered to code which is intended to cause an
8788execution trap with the intention of requesting the attention of a
8789debugger.
8790
8791'``llvm.stackprotector``' Intrinsic
8792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8793
8794Syntax:
8795"""""""
8796
8797::
8798
8799 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8800
8801Overview:
8802"""""""""
8803
8804The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8805onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8806is placed on the stack before local variables.
8807
8808Arguments:
8809""""""""""
8810
8811The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8812The first argument is the value loaded from the stack guard
8813``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8814enough space to hold the value of the guard.
8815
8816Semantics:
8817""""""""""
8818
Michael Gottesman2a64a632013-08-12 18:35:32 +00008819This intrinsic causes the prologue/epilogue inserter to force the position of
8820the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8821to ensure that if a local variable on the stack is overwritten, it will destroy
8822the value of the guard. When the function exits, the guard on the stack is
8823checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8824different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8825calling the ``__stack_chk_fail()`` function.
8826
8827'``llvm.stackprotectorcheck``' Intrinsic
Sean Silvacce63992013-09-09 19:13:28 +00008828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesman2a64a632013-08-12 18:35:32 +00008829
8830Syntax:
8831"""""""
8832
8833::
8834
8835 declare void @llvm.stackprotectorcheck(i8** <guard>)
8836
8837Overview:
8838"""""""""
8839
8840The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008841created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008842``__stack_chk_fail()`` function.
8843
Michael Gottesman2a64a632013-08-12 18:35:32 +00008844Arguments:
8845""""""""""
8846
8847The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8848the variable ``@__stack_chk_guard``.
8849
8850Semantics:
8851""""""""""
8852
8853This intrinsic is provided to perform the stack protector check by comparing
8854``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8855values do not match call the ``__stack_chk_fail()`` function.
8856
8857The reason to provide this as an IR level intrinsic instead of implementing it
8858via other IR operations is that in order to perform this operation at the IR
8859level without an intrinsic, one would need to create additional basic blocks to
8860handle the success/failure cases. This makes it difficult to stop the stack
8861protector check from disrupting sibling tail calls in Codegen. With this
8862intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramerd5976142013-10-29 17:53:27 +00008863codegen after the tail call decision has occurred.
Michael Gottesman2a64a632013-08-12 18:35:32 +00008864
Sean Silvaf722b002012-12-07 10:36:55 +00008865'``llvm.objectsize``' Intrinsic
8866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8867
8868Syntax:
8869"""""""
8870
8871::
8872
8873 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8874 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8875
8876Overview:
8877"""""""""
8878
8879The ``llvm.objectsize`` intrinsic is designed to provide information to
8880the optimizers to determine at compile time whether a) an operation
8881(like memcpy) will overflow a buffer that corresponds to an object, or
8882b) that a runtime check for overflow isn't necessary. An object in this
8883context means an allocation of a specific class, structure, array, or
8884other object.
8885
8886Arguments:
8887""""""""""
8888
8889The ``llvm.objectsize`` intrinsic takes two arguments. The first
8890argument is a pointer to or into the ``object``. The second argument is
8891a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8892or -1 (if false) when the object size is unknown. The second argument
8893only accepts constants.
8894
8895Semantics:
8896""""""""""
8897
8898The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8899the size of the object concerned. If the size cannot be determined at
8900compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8901on the ``min`` argument).
8902
8903'``llvm.expect``' Intrinsic
8904^^^^^^^^^^^^^^^^^^^^^^^^^^^
8905
8906Syntax:
8907"""""""
8908
8909::
8910
8911 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8912 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8913
8914Overview:
8915"""""""""
8916
8917The ``llvm.expect`` intrinsic provides information about expected (the
8918most probable) value of ``val``, which can be used by optimizers.
8919
8920Arguments:
8921""""""""""
8922
8923The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8924a value. The second argument is an expected value, this needs to be a
8925constant value, variables are not allowed.
8926
8927Semantics:
8928""""""""""
8929
8930This intrinsic is lowered to the ``val``.
8931
8932'``llvm.donothing``' Intrinsic
8933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8934
8935Syntax:
8936"""""""
8937
8938::
8939
8940 declare void @llvm.donothing() nounwind readnone
8941
8942Overview:
8943"""""""""
8944
8945The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8946only intrinsic that can be called with an invoke instruction.
8947
8948Arguments:
8949""""""""""
8950
8951None.
8952
8953Semantics:
8954""""""""""
8955
8956This intrinsic does nothing, and it's removed by optimizers and ignored
8957by codegen.