blob: e8a39d11040afe4d5c69a56645755926ec9390e0 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson15b39322009-07-13 04:09:18 +000022#include "llvm/LLVMContext.h"
Owen Anderson1636de92007-09-07 04:06:50 +000023#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000024#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000025#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000027#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029#include "llvm/Support/CommandLine.h"
Edwin Török3cb88482009-07-08 18:01:40 +000030#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
Evan Cheng950aac02007-09-25 01:57:46 +000032#include "llvm/Target/TargetOptions.h"
Chris Lattner621c44d2009-08-22 20:48:53 +000033#include "llvm/MC/MCAsmInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000034using namespace llvm;
35
Chris Lattnerd71b0b02009-08-23 03:41:05 +000036static cl::opt<bool>
37NoFusing("disable-spill-fusing",
38 cl::desc("Disable fusing of spill code into instructions"));
39static cl::opt<bool>
40PrintFailedFusing("print-failed-fuse-candidates",
41 cl::desc("Print instructions that the allocator wants to"
42 " fuse, but the X86 backend currently can't"),
43 cl::Hidden);
44static cl::opt<bool>
45ReMatPICStubLoad("remat-pic-stub-load",
46 cl::desc("Re-materialize load from stub in PIC mode"),
47 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000048
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000050 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000052 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
209 };
210
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000215 std::make_pair(MemOp,0))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000216 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000217 // Index 0, folded load and store, no alignment requirement.
218 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000220 std::make_pair(RegOp,
221 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000222 AmbEntries.push_back(MemOp);
223 }
224
225 // If the third value is 1, then it's folding either a load or a store.
Evan Chenga5853792009-07-15 06:10:07 +0000226 static const unsigned OpTbl0[][4] = {
227 { X86::BT16ri8, X86::BT16mi8, 1, 0 },
228 { X86::BT32ri8, X86::BT32mi8, 1, 0 },
229 { X86::BT64ri8, X86::BT64mi8, 1, 0 },
230 { X86::CALL32r, X86::CALL32m, 1, 0 },
231 { X86::CALL64r, X86::CALL64m, 1, 0 },
232 { X86::CMP16ri, X86::CMP16mi, 1, 0 },
233 { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
234 { X86::CMP16rr, X86::CMP16mr, 1, 0 },
235 { X86::CMP32ri, X86::CMP32mi, 1, 0 },
236 { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
237 { X86::CMP32rr, X86::CMP32mr, 1, 0 },
238 { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
239 { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
240 { X86::CMP64rr, X86::CMP64mr, 1, 0 },
241 { X86::CMP8ri, X86::CMP8mi, 1, 0 },
242 { X86::CMP8rr, X86::CMP8mr, 1, 0 },
243 { X86::DIV16r, X86::DIV16m, 1, 0 },
244 { X86::DIV32r, X86::DIV32m, 1, 0 },
245 { X86::DIV64r, X86::DIV64m, 1, 0 },
246 { X86::DIV8r, X86::DIV8m, 1, 0 },
247 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
248 { X86::FsMOVAPDrr, X86::MOVSDmr, 0, 0 },
249 { X86::FsMOVAPSrr, X86::MOVSSmr, 0, 0 },
250 { X86::IDIV16r, X86::IDIV16m, 1, 0 },
251 { X86::IDIV32r, X86::IDIV32m, 1, 0 },
252 { X86::IDIV64r, X86::IDIV64m, 1, 0 },
253 { X86::IDIV8r, X86::IDIV8m, 1, 0 },
254 { X86::IMUL16r, X86::IMUL16m, 1, 0 },
255 { X86::IMUL32r, X86::IMUL32m, 1, 0 },
256 { X86::IMUL64r, X86::IMUL64m, 1, 0 },
257 { X86::IMUL8r, X86::IMUL8m, 1, 0 },
258 { X86::JMP32r, X86::JMP32m, 1, 0 },
259 { X86::JMP64r, X86::JMP64m, 1, 0 },
260 { X86::MOV16ri, X86::MOV16mi, 0, 0 },
261 { X86::MOV16rr, X86::MOV16mr, 0, 0 },
262 { X86::MOV32ri, X86::MOV32mi, 0, 0 },
263 { X86::MOV32rr, X86::MOV32mr, 0, 0 },
264 { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
265 { X86::MOV64rr, X86::MOV64mr, 0, 0 },
266 { X86::MOV8ri, X86::MOV8mi, 0, 0 },
267 { X86::MOV8rr, X86::MOV8mr, 0, 0 },
268 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
269 { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
270 { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
271 { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
272 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
273 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
274 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0, 0 },
275 { X86::MOVSDrr, X86::MOVSDmr, 0, 0 },
276 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
277 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
278 { X86::MOVSSrr, X86::MOVSSmr, 0, 0 },
279 { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
280 { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
281 { X86::MUL16r, X86::MUL16m, 1, 0 },
282 { X86::MUL32r, X86::MUL32m, 1, 0 },
283 { X86::MUL64r, X86::MUL64m, 1, 0 },
284 { X86::MUL8r, X86::MUL8m, 1, 0 },
285 { X86::SETAEr, X86::SETAEm, 0, 0 },
286 { X86::SETAr, X86::SETAm, 0, 0 },
287 { X86::SETBEr, X86::SETBEm, 0, 0 },
288 { X86::SETBr, X86::SETBm, 0, 0 },
289 { X86::SETEr, X86::SETEm, 0, 0 },
290 { X86::SETGEr, X86::SETGEm, 0, 0 },
291 { X86::SETGr, X86::SETGm, 0, 0 },
292 { X86::SETLEr, X86::SETLEm, 0, 0 },
293 { X86::SETLr, X86::SETLm, 0, 0 },
294 { X86::SETNEr, X86::SETNEm, 0, 0 },
295 { X86::SETNOr, X86::SETNOm, 0, 0 },
296 { X86::SETNPr, X86::SETNPm, 0, 0 },
297 { X86::SETNSr, X86::SETNSm, 0, 0 },
298 { X86::SETOr, X86::SETOm, 0, 0 },
299 { X86::SETPr, X86::SETPm, 0, 0 },
300 { X86::SETSr, X86::SETSm, 0, 0 },
301 { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
302 { X86::TEST16ri, X86::TEST16mi, 1, 0 },
303 { X86::TEST32ri, X86::TEST32mi, 1, 0 },
304 { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
305 { X86::TEST8ri, X86::TEST8mi, 1, 0 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000306 };
307
308 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
309 unsigned RegOp = OpTbl0[i][0];
310 unsigned MemOp = OpTbl0[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000311 unsigned Align = OpTbl0[i][3];
Dan Gohman55d19662008-07-07 17:46:23 +0000312 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000313 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000314 assert(false && "Duplicated entries?");
315 unsigned FoldedLoad = OpTbl0[i][2];
316 // Index 0, folded load or store.
317 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
318 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
319 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000320 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000321 AmbEntries.push_back(MemOp);
322 }
323
Evan Chenga5853792009-07-15 06:10:07 +0000324 static const unsigned OpTbl1[][3] = {
325 { X86::CMP16rr, X86::CMP16rm, 0 },
326 { X86::CMP32rr, X86::CMP32rm, 0 },
327 { X86::CMP64rr, X86::CMP64rm, 0 },
328 { X86::CMP8rr, X86::CMP8rm, 0 },
329 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
330 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
331 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
332 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
333 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
334 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
335 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
336 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
337 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
338 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
339 { X86::FsMOVAPDrr, X86::MOVSDrm, 0 },
340 { X86::FsMOVAPSrr, X86::MOVSSrm, 0 },
341 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
342 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
343 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
344 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
345 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
346 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
347 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
348 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
349 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
350 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
351 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
352 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
353 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
354 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
355 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
356 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
357 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
358 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, 0 },
359 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
360 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
361 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
362 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
363 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
364 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
365 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
366 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
367 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
368 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
369 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
370 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
371 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
372 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
373 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
374 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
375 { X86::MOV16rr, X86::MOV16rm, 0 },
376 { X86::MOV32rr, X86::MOV32rm, 0 },
377 { X86::MOV64rr, X86::MOV64rm, 0 },
378 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
379 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
380 { X86::MOV8rr, X86::MOV8rm, 0 },
381 { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
382 { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
383 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
384 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
385 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
386 { X86::MOVDQArr, X86::MOVDQArm, 16 },
387 { X86::MOVSD2PDrr, X86::MOVSD2PDrm, 0 },
388 { X86::MOVSDrr, X86::MOVSDrm, 0 },
389 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
390 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
391 { X86::MOVSS2PSrr, X86::MOVSS2PSrm, 0 },
392 { X86::MOVSSrr, X86::MOVSSrm, 0 },
393 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
394 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
395 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
396 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
397 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
398 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
399 { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
400 { X86::MOVUPSrr, X86::MOVUPSrm, 16 },
401 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
402 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
403 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
404 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
405 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
406 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
407 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
408 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
409 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
410 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
411 { X86::PSHUFDri, X86::PSHUFDmi, 16 },
412 { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
413 { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
414 { X86::RCPPSr, X86::RCPPSm, 16 },
415 { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
416 { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
417 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
418 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
419 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
420 { X86::SQRTPDr, X86::SQRTPDm, 16 },
421 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
422 { X86::SQRTPSr, X86::SQRTPSm, 16 },
423 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
424 { X86::SQRTSDr, X86::SQRTSDm, 0 },
425 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
426 { X86::SQRTSSr, X86::SQRTSSm, 0 },
427 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
428 { X86::TEST16rr, X86::TEST16rm, 0 },
429 { X86::TEST32rr, X86::TEST32rm, 0 },
430 { X86::TEST64rr, X86::TEST64rm, 0 },
431 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000432 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Evan Chenga5853792009-07-15 06:10:07 +0000433 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
434 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000435 };
436
437 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
438 unsigned RegOp = OpTbl1[i][0];
439 unsigned MemOp = OpTbl1[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000440 unsigned Align = OpTbl1[i][2];
Dan Gohman55d19662008-07-07 17:46:23 +0000441 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000442 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000443 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000444 // Index 1, folded load
445 unsigned AuxInfo = 1 | (1 << 4);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000446 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
447 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000448 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000449 AmbEntries.push_back(MemOp);
450 }
451
Evan Chenga5853792009-07-15 06:10:07 +0000452 static const unsigned OpTbl2[][3] = {
453 { X86::ADC32rr, X86::ADC32rm, 0 },
454 { X86::ADC64rr, X86::ADC64rm, 0 },
455 { X86::ADD16rr, X86::ADD16rm, 0 },
456 { X86::ADD32rr, X86::ADD32rm, 0 },
457 { X86::ADD64rr, X86::ADD64rm, 0 },
458 { X86::ADD8rr, X86::ADD8rm, 0 },
459 { X86::ADDPDrr, X86::ADDPDrm, 16 },
460 { X86::ADDPSrr, X86::ADDPSrm, 16 },
461 { X86::ADDSDrr, X86::ADDSDrm, 0 },
462 { X86::ADDSSrr, X86::ADDSSrm, 0 },
463 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
464 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
465 { X86::AND16rr, X86::AND16rm, 0 },
466 { X86::AND32rr, X86::AND32rm, 0 },
467 { X86::AND64rr, X86::AND64rm, 0 },
468 { X86::AND8rr, X86::AND8rm, 0 },
469 { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
470 { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
471 { X86::ANDPDrr, X86::ANDPDrm, 16 },
472 { X86::ANDPSrr, X86::ANDPSrm, 16 },
473 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
474 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
475 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
476 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
477 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
478 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
479 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
480 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
481 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
482 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
483 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
484 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
485 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
486 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
487 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
488 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
489 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
490 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
491 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
492 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
493 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
494 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
495 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
496 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
497 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
498 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
499 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
500 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
501 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
502 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
503 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
504 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
505 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
506 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
507 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
508 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
509 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
510 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
511 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
512 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
513 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
514 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
515 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
516 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
517 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
518 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
519 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
520 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
521 { X86::CMPPDrri, X86::CMPPDrmi, 16 },
522 { X86::CMPPSrri, X86::CMPPSrmi, 16 },
523 { X86::CMPSDrr, X86::CMPSDrm, 0 },
524 { X86::CMPSSrr, X86::CMPSSrm, 0 },
525 { X86::DIVPDrr, X86::DIVPDrm, 16 },
526 { X86::DIVPSrr, X86::DIVPSrm, 16 },
527 { X86::DIVSDrr, X86::DIVSDrm, 0 },
528 { X86::DIVSSrr, X86::DIVSSrm, 0 },
529 { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
530 { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
531 { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
532 { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
533 { X86::FsORPDrr, X86::FsORPDrm, 16 },
534 { X86::FsORPSrr, X86::FsORPSrm, 16 },
535 { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
536 { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
537 { X86::HADDPDrr, X86::HADDPDrm, 16 },
538 { X86::HADDPSrr, X86::HADDPSrm, 16 },
539 { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
540 { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
541 { X86::IMUL16rr, X86::IMUL16rm, 0 },
542 { X86::IMUL32rr, X86::IMUL32rm, 0 },
543 { X86::IMUL64rr, X86::IMUL64rm, 0 },
544 { X86::MAXPDrr, X86::MAXPDrm, 16 },
545 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
546 { X86::MAXPSrr, X86::MAXPSrm, 16 },
547 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
548 { X86::MAXSDrr, X86::MAXSDrm, 0 },
549 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
550 { X86::MAXSSrr, X86::MAXSSrm, 0 },
551 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
552 { X86::MINPDrr, X86::MINPDrm, 16 },
553 { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
554 { X86::MINPSrr, X86::MINPSrm, 16 },
555 { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
556 { X86::MINSDrr, X86::MINSDrm, 0 },
557 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
558 { X86::MINSSrr, X86::MINSSrm, 0 },
559 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
560 { X86::MULPDrr, X86::MULPDrm, 16 },
561 { X86::MULPSrr, X86::MULPSrm, 16 },
562 { X86::MULSDrr, X86::MULSDrm, 0 },
563 { X86::MULSSrr, X86::MULSSrm, 0 },
564 { X86::OR16rr, X86::OR16rm, 0 },
565 { X86::OR32rr, X86::OR32rm, 0 },
566 { X86::OR64rr, X86::OR64rm, 0 },
567 { X86::OR8rr, X86::OR8rm, 0 },
568 { X86::ORPDrr, X86::ORPDrm, 16 },
569 { X86::ORPSrr, X86::ORPSrm, 16 },
570 { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
571 { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
572 { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
573 { X86::PADDBrr, X86::PADDBrm, 16 },
574 { X86::PADDDrr, X86::PADDDrm, 16 },
575 { X86::PADDQrr, X86::PADDQrm, 16 },
576 { X86::PADDSBrr, X86::PADDSBrm, 16 },
577 { X86::PADDSWrr, X86::PADDSWrm, 16 },
578 { X86::PADDWrr, X86::PADDWrm, 16 },
579 { X86::PANDNrr, X86::PANDNrm, 16 },
580 { X86::PANDrr, X86::PANDrm, 16 },
581 { X86::PAVGBrr, X86::PAVGBrm, 16 },
582 { X86::PAVGWrr, X86::PAVGWrm, 16 },
583 { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
584 { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
585 { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
586 { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
587 { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
588 { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
589 { X86::PINSRWrri, X86::PINSRWrmi, 16 },
590 { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
591 { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
592 { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
593 { X86::PMINSWrr, X86::PMINSWrm, 16 },
594 { X86::PMINUBrr, X86::PMINUBrm, 16 },
595 { X86::PMULDQrr, X86::PMULDQrm, 16 },
596 { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
597 { X86::PMULHWrr, X86::PMULHWrm, 16 },
598 { X86::PMULLDrr, X86::PMULLDrm, 16 },
599 { X86::PMULLDrr_int, X86::PMULLDrm_int, 16 },
600 { X86::PMULLWrr, X86::PMULLWrm, 16 },
601 { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
602 { X86::PORrr, X86::PORrm, 16 },
603 { X86::PSADBWrr, X86::PSADBWrm, 16 },
604 { X86::PSLLDrr, X86::PSLLDrm, 16 },
605 { X86::PSLLQrr, X86::PSLLQrm, 16 },
606 { X86::PSLLWrr, X86::PSLLWrm, 16 },
607 { X86::PSRADrr, X86::PSRADrm, 16 },
608 { X86::PSRAWrr, X86::PSRAWrm, 16 },
609 { X86::PSRLDrr, X86::PSRLDrm, 16 },
610 { X86::PSRLQrr, X86::PSRLQrm, 16 },
611 { X86::PSRLWrr, X86::PSRLWrm, 16 },
612 { X86::PSUBBrr, X86::PSUBBrm, 16 },
613 { X86::PSUBDrr, X86::PSUBDrm, 16 },
614 { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
615 { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
616 { X86::PSUBWrr, X86::PSUBWrm, 16 },
617 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
618 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
619 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
620 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
621 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
622 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
623 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
624 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
625 { X86::PXORrr, X86::PXORrm, 16 },
626 { X86::SBB32rr, X86::SBB32rm, 0 },
627 { X86::SBB64rr, X86::SBB64rm, 0 },
628 { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
629 { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
630 { X86::SUB16rr, X86::SUB16rm, 0 },
631 { X86::SUB32rr, X86::SUB32rm, 0 },
632 { X86::SUB64rr, X86::SUB64rm, 0 },
633 { X86::SUB8rr, X86::SUB8rm, 0 },
634 { X86::SUBPDrr, X86::SUBPDrm, 16 },
635 { X86::SUBPSrr, X86::SUBPSrm, 16 },
636 { X86::SUBSDrr, X86::SUBSDrm, 0 },
637 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000638 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Evan Chenga5853792009-07-15 06:10:07 +0000639 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
640 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
641 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
642 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
643 { X86::XOR16rr, X86::XOR16rm, 0 },
644 { X86::XOR32rr, X86::XOR32rm, 0 },
645 { X86::XOR64rr, X86::XOR64rm, 0 },
646 { X86::XOR8rr, X86::XOR8rm, 0 },
647 { X86::XORPDrr, X86::XORPDrm, 16 },
648 { X86::XORPSrr, X86::XORPSrm, 16 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000649 };
650
651 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
652 unsigned RegOp = OpTbl2[i][0];
653 unsigned MemOp = OpTbl2[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000654 unsigned Align = OpTbl2[i][2];
Dan Gohman55d19662008-07-07 17:46:23 +0000655 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000656 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000657 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000658 // Index 2, folded load
659 unsigned AuxInfo = 2 | (1 << 4);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000660 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000661 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000662 AmbEntries.push_back(MemOp);
663 }
664
665 // Remove ambiguous entries.
666 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000667}
668
669bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
Evan Chengf97496a2009-01-20 19:12:24 +0000670 unsigned &SrcReg, unsigned &DstReg,
671 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000672 switch (MI.getOpcode()) {
673 default:
674 return false;
675 case X86::MOV8rr:
Bill Wendling2d1c8222009-04-17 22:40:38 +0000676 case X86::MOV8rr_NOREX:
Chris Lattnerff195282008-03-11 19:28:17 +0000677 case X86::MOV16rr:
678 case X86::MOV32rr:
679 case X86::MOV64rr:
Chris Lattnerff195282008-03-11 19:28:17 +0000680 case X86::MOVSSrr:
681 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000682
683 // FP Stack register class copies
684 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
685 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
686 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
687
Chris Lattnerff195282008-03-11 19:28:17 +0000688 case X86::FsMOVAPSrr:
689 case X86::FsMOVAPDrr:
690 case X86::MOVAPSrr:
691 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000692 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000693 case X86::MOVSS2PSrr:
694 case X86::MOVSD2PDrr:
695 case X86::MOVPS2SSrr:
696 case X86::MOVPD2SDrr:
Chris Lattnerff195282008-03-11 19:28:17 +0000697 case X86::MMX_MOVQ64rr:
698 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000699 MI.getOperand(0).isReg() &&
700 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000701 "invalid register-register move instruction");
Evan Chengf97496a2009-01-20 19:12:24 +0000702 SrcReg = MI.getOperand(1).getReg();
703 DstReg = MI.getOperand(0).getReg();
704 SrcSubIdx = MI.getOperand(1).getSubReg();
705 DstSubIdx = MI.getOperand(0).getSubReg();
Chris Lattnerff195282008-03-11 19:28:17 +0000706 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708}
709
Dan Gohman90feee22008-11-18 19:49:32 +0000710unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 int &FrameIndex) const {
712 switch (MI->getOpcode()) {
713 default: break;
714 case X86::MOV8rm:
715 case X86::MOV16rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000716 case X86::MOV32rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 case X86::MOV64rm:
718 case X86::LD_Fp64m:
719 case X86::MOVSSrm:
720 case X86::MOVSDrm:
721 case X86::MOVAPSrm:
722 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000723 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 case X86::MMX_MOVD64rm:
725 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000726 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
727 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000728 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000730 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000731 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000732 return MI->getOperand(0).getReg();
733 }
734 break;
735 }
736 return 0;
737}
738
Dan Gohman90feee22008-11-18 19:49:32 +0000739unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 int &FrameIndex) const {
741 switch (MI->getOpcode()) {
742 default: break;
743 case X86::MOV8mr:
744 case X86::MOV16mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 case X86::MOV32mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 case X86::MOV64mr:
747 case X86::ST_FpP64m:
748 case X86::MOVSSmr:
749 case X86::MOVSDmr:
750 case X86::MOVAPSmr:
751 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000752 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753 case X86::MMX_MOVD64mr:
754 case X86::MMX_MOVQ64mr:
755 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000756 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
757 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000758 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000759 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000760 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000761 FrameIndex = MI->getOperand(0).getIndex();
Rafael Espindola7f69c042009-03-28 17:03:24 +0000762 return MI->getOperand(X86AddrNumOperands).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763 }
764 break;
765 }
766 return 0;
767}
768
Evan Chengb819a512008-03-27 01:45:11 +0000769/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
770/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000771static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000772 bool isPICBase = false;
773 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
774 E = MRI.def_end(); I != E; ++I) {
775 MachineInstr *DefMI = I.getOperand().getParent();
776 if (DefMI->getOpcode() != X86::MOVPC32r)
777 return false;
778 assert(!isPICBase && "More than one PIC base?");
779 isPICBase = true;
780 }
781 return isPICBase;
782}
Evan Chenge9caab52008-03-31 07:54:19 +0000783
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000784bool
Dan Gohman1ef18852009-10-10 00:34:18 +0000785X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
786 AliasAnalysis *AA) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 switch (MI->getOpcode()) {
788 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000789 case X86::MOV8rm:
790 case X86::MOV16rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000791 case X86::MOV32rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000792 case X86::MOV64rm:
793 case X86::LD_Fp64m:
794 case X86::MOVSSrm:
795 case X86::MOVSDrm:
796 case X86::MOVAPSrm:
797 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000798 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000799 case X86::MMX_MOVD64rm:
800 case X86::MMX_MOVQ64rm: {
801 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000802 if (MI->getOperand(1).isReg() &&
803 MI->getOperand(2).isImm() &&
804 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Dan Gohman1ef18852009-10-10 00:34:18 +0000805 MI->isInvariantLoad(AA)) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000806 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattnerdc6fc472009-06-27 04:16:01 +0000807 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000808 return true;
809 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000810 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000811 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000812 const MachineFunction &MF = *MI->getParent()->getParent();
813 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000814 bool isPICBase = false;
815 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
816 E = MRI.def_end(); I != E; ++I) {
817 MachineInstr *DefMI = I.getOperand().getParent();
818 if (DefMI->getOpcode() != X86::MOVPC32r)
819 return false;
820 assert(!isPICBase && "More than one PIC base?");
821 isPICBase = true;
822 }
823 return isPICBase;
824 }
825 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000826 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000827
828 case X86::LEA32r:
829 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000830 if (MI->getOperand(2).isImm() &&
831 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
832 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000833 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000834 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000835 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000836 unsigned BaseReg = MI->getOperand(1).getReg();
837 if (BaseReg == 0)
838 return true;
839 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000840 const MachineFunction &MF = *MI->getParent()->getParent();
841 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000842 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000843 }
844 return false;
845 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000847
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000848 // All other instructions marked M_REMATERIALIZABLE are always trivially
849 // rematerializable.
850 return true;
851}
852
Evan Chengc564ded2008-06-24 07:10:51 +0000853/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
854/// would clobber the EFLAGS condition register. Note the result may be
855/// conservative. If it cannot definitely determine the safety after visiting
Dan Gohmanf20cb162009-10-14 00:08:59 +0000856/// a few instructions in each direction it assumes it's not safe.
Evan Chengc564ded2008-06-24 07:10:51 +0000857static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
858 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000859 // It's always safe to clobber EFLAGS at the end of a block.
860 if (I == MBB.end())
861 return true;
862
Evan Chengc564ded2008-06-24 07:10:51 +0000863 // For compile time consideration, if we are not able to determine the
Dan Gohmanf20cb162009-10-14 00:08:59 +0000864 // safety after visiting 4 instructions in each direction, we will assume
865 // it's not safe.
866 MachineBasicBlock::iterator Iter = I;
867 for (unsigned i = 0; i < 4; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000868 bool SeenDef = false;
Dan Gohmanf20cb162009-10-14 00:08:59 +0000869 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
870 MachineOperand &MO = Iter->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000871 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000872 continue;
873 if (MO.getReg() == X86::EFLAGS) {
874 if (MO.isUse())
875 return false;
876 SeenDef = true;
877 }
878 }
879
880 if (SeenDef)
881 // This instruction defines EFLAGS, no need to look any further.
882 return true;
Dan Gohmanf20cb162009-10-14 00:08:59 +0000883 ++Iter;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000884
885 // If we make it to the end of the block, it's safe to clobber EFLAGS.
Dan Gohmanf20cb162009-10-14 00:08:59 +0000886 if (Iter == MBB.end())
887 return true;
888 }
889
890 Iter = I;
891 for (unsigned i = 0; i < 4; ++i) {
892 // If we make it to the beginning of the block, it's safe to clobber
893 // EFLAGS iff EFLAGS is not live-in.
894 if (Iter == MBB.begin())
895 return !MBB.isLiveIn(X86::EFLAGS);
896
897 --Iter;
898 bool SawKill = false;
899 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
900 MachineOperand &MO = Iter->getOperand(j);
901 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
902 if (MO.isDef()) return MO.isDead();
903 if (MO.isKill()) SawKill = true;
904 }
905 }
906
907 if (SawKill)
908 // This instruction kills EFLAGS and doesn't redefine it, so
909 // there's no need to look further.
Dan Gohman3588f9d2008-10-21 03:24:31 +0000910 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000911 }
912
913 // Conservative answer.
914 return false;
915}
916
Evan Cheng7d73efc2008-03-31 20:40:39 +0000917void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
918 MachineBasicBlock::iterator I,
Evan Cheng463a3e42009-07-16 09:20:10 +0000919 unsigned DestReg, unsigned SubIdx,
Evan Cheng7d73efc2008-03-31 20:40:39 +0000920 const MachineInstr *Orig) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +0000921 DebugLoc DL = DebugLoc::getUnknownLoc();
922 if (I != MBB.end()) DL = I->getDebugLoc();
923
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000924 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
925 DestReg = RI.getSubReg(DestReg, SubIdx);
926 SubIdx = 0;
927 }
928
Evan Cheng7d73efc2008-03-31 20:40:39 +0000929 // MOV32r0 etc. are implemented with xor which clobbers condition code.
930 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng463a3e42009-07-16 09:20:10 +0000931 bool Clone = true;
932 unsigned Opc = Orig->getOpcode();
933 switch (Opc) {
Evan Chengc564ded2008-06-24 07:10:51 +0000934 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000935 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000936 case X86::MOV16r0:
Chris Lattner17f62252009-07-14 20:19:57 +0000937 case X86::MOV32r0: {
Evan Chengc564ded2008-06-24 07:10:51 +0000938 if (!isSafeToClobberEFLAGS(MBB, I)) {
Evan Cheng463a3e42009-07-16 09:20:10 +0000939 switch (Opc) {
Evan Chengc564ded2008-06-24 07:10:51 +0000940 default: break;
941 case X86::MOV8r0: Opc = X86::MOV8ri; break;
942 case X86::MOV16r0: Opc = X86::MOV16ri; break;
943 case X86::MOV32r0: Opc = X86::MOV32ri; break;
Evan Chengc564ded2008-06-24 07:10:51 +0000944 }
Evan Cheng463a3e42009-07-16 09:20:10 +0000945 Clone = false;
Evan Chengc564ded2008-06-24 07:10:51 +0000946 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000947 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000948 }
949 }
950
Evan Cheng463a3e42009-07-16 09:20:10 +0000951 if (Clone) {
Dan Gohman221a4372008-07-07 23:14:23 +0000952 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000953 MI->getOperand(0).setReg(DestReg);
954 MBB.insert(I, MI);
Evan Cheng463a3e42009-07-16 09:20:10 +0000955 } else {
956 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000957 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000958
Evan Cheng463a3e42009-07-16 09:20:10 +0000959 MachineInstr *NewMI = prior(I);
960 NewMI->getOperand(0).setSubReg(SubIdx);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000961}
962
Evan Chengfa1a4952007-10-05 08:04:01 +0000963/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
964/// is not marked dead.
965static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000966 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
967 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000968 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000969 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
970 return true;
971 }
972 }
973 return false;
974}
975
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000976/// convertToThreeAddress - This method must be implemented by targets that
977/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
978/// may be able to convert a two-address instruction into a true
979/// three-address instruction on demand. This allows the X86 target (for
980/// example) to convert ADD and SHL instructions into LEA instructions if they
981/// would require register copies due to two-addressness.
982///
983/// This method returns a null pointer if the transformation cannot be
984/// performed, otherwise it returns the new instruction.
985///
986MachineInstr *
987X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
988 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000989 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000990 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +0000991 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992 // All instructions input are two-addr instructions. Get the known operands.
993 unsigned Dest = MI->getOperand(0).getReg();
994 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +0000995 bool isDead = MI->getOperand(0).isDead();
996 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997
998 MachineInstr *NewMI = NULL;
999 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1000 // we have better subtarget support, enable the 16-bit LEA generation here.
1001 bool DisableLEA16 = true;
1002
Evan Cheng6b96ed32007-10-05 20:34:26 +00001003 unsigned MIOpc = MI->getOpcode();
1004 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 case X86::SHUFPSrri: {
1006 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1007 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1008
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 unsigned B = MI->getOperand(1).getReg();
1010 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001012 unsigned A = MI->getOperand(0).getReg();
1013 unsigned M = MI->getOperand(3).getImm();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001014 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling2b739762009-05-13 21:33:08 +00001015 .addReg(A, RegState::Define | getDeadRegState(isDead))
1016 .addReg(B, getKillRegState(isKill)).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017 break;
1018 }
1019 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001020 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1022 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023 unsigned ShAmt = MI->getOperand(2).getImm();
1024 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001025
Bill Wendling13ee2e42009-02-11 21:51:19 +00001026 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001027 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1028 .addReg(0).addImm(1 << ShAmt)
1029 .addReg(Src, getKillRegState(isKill))
1030 .addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001031 break;
1032 }
1033 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001034 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1036 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001037 unsigned ShAmt = MI->getOperand(2).getImm();
1038 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001039
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1041 X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001042 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001043 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001044 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001045 .addReg(Src, getKillRegState(isKill)).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001046 break;
1047 }
1048 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001049 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001050 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1051 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001052 unsigned ShAmt = MI->getOperand(2).getImm();
1053 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001054
Christopher Lamb380c6272007-08-10 21:18:25 +00001055 if (DisableLEA16) {
1056 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001057 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001058 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1059 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001060 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1061 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001062
Christopher Lamb8d226a22008-03-11 10:27:36 +00001063 // Build and insert into an implicit UNDEF value. This is OK because
1064 // well be shifting and then extracting the lower 16-bits.
Bill Wendling13ee2e42009-02-11 21:51:19 +00001065 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1066 MachineInstr *InsMI =
1067 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
Bill Wendling2b739762009-05-13 21:33:08 +00001068 .addReg(leaInReg)
1069 .addReg(Src, getKillRegState(isKill))
Evan Chenge52c1912008-07-03 09:09:37 +00001070 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001071
Bill Wendling13ee2e42009-02-11 21:51:19 +00001072 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1073 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001074 .addReg(leaInReg, RegState::Kill)
1075 .addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001076
Bill Wendling13ee2e42009-02-11 21:51:19 +00001077 MachineInstr *ExtMI =
1078 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
Bill Wendling2b739762009-05-13 21:33:08 +00001079 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1080 .addReg(leaOutReg, RegState::Kill)
1081 .addImm(X86::SUBREG_16BIT);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001082
Owen Andersonc6959722008-07-02 23:41:07 +00001083 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001084 // Update live variables
1085 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1086 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1087 if (isKill)
1088 LV->replaceKillInstruction(Src, MI, InsMI);
1089 if (isDead)
1090 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001091 }
Evan Chenge52c1912008-07-03 09:09:37 +00001092 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001093 } else {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001094 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001095 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001096 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001097 .addReg(Src, getKillRegState(isKill))
1098 .addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001099 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001100 break;
1101 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001102 default: {
1103 // The following opcodes also sets the condition code register(s). Only
1104 // convert them to equivalent lea if the condition code register def's
1105 // are dead!
1106 if (hasLiveCondCodeDef(MI))
1107 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108
Evan Chenga28a9562007-10-09 07:14:53 +00001109 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001110 switch (MIOpc) {
1111 default: return 0;
1112 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001113 case X86::INC32r:
1114 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001115 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001116 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1117 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001118 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001119 .addReg(Dest, RegState::Define |
1120 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001121 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001122 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001123 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001124 case X86::INC16r:
1125 case X86::INC64_16r:
1126 if (DisableLEA16) return 0;
1127 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001128 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001129 .addReg(Dest, RegState::Define |
1130 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001131 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001132 break;
1133 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001134 case X86::DEC32r:
1135 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001136 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001137 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1138 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001139 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001140 .addReg(Dest, RegState::Define |
1141 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001142 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001143 break;
1144 }
1145 case X86::DEC16r:
1146 case X86::DEC64_16r:
1147 if (DisableLEA16) return 0;
1148 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001149 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001150 .addReg(Dest, RegState::Define |
1151 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001152 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001153 break;
1154 case X86::ADD64rr:
1155 case X86::ADD32rr: {
1156 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001157 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1158 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001159 unsigned Src2 = MI->getOperand(2).getReg();
1160 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001161 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001162 .addReg(Dest, RegState::Define |
1163 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001164 Src, isKill, Src2, isKill2);
1165 if (LV && isKill2)
1166 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001167 break;
1168 }
Evan Chenge52c1912008-07-03 09:09:37 +00001169 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001170 if (DisableLEA16) return 0;
1171 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001172 unsigned Src2 = MI->getOperand(2).getReg();
1173 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001174 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001175 .addReg(Dest, RegState::Define |
1176 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001177 Src, isKill, Src2, isKill2);
1178 if (LV && isKill2)
1179 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001180 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001181 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001182 case X86::ADD64ri32:
1183 case X86::ADD64ri8:
1184 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001185 if (MI->getOperand(2).isImm())
Rafael Espindolabca99f72009-04-08 21:14:34 +00001186 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001187 .addReg(Dest, RegState::Define |
1188 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001189 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001190 break;
1191 case X86::ADD32ri:
1192 case X86::ADD32ri8:
1193 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001194 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001195 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Rafael Espindolabca99f72009-04-08 21:14:34 +00001196 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001197 .addReg(Dest, RegState::Define |
1198 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001199 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001200 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001201 break;
1202 case X86::ADD16ri:
1203 case X86::ADD16ri8:
1204 if (DisableLEA16) return 0;
1205 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001206 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001207 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001208 .addReg(Dest, RegState::Define |
1209 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001210 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001211 break;
1212 case X86::SHL16ri:
1213 if (DisableLEA16) return 0;
1214 case X86::SHL32ri:
1215 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001216 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001217 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001218 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001219 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1220 X86AddressMode AM;
1221 AM.Scale = 1 << ShAmt;
1222 AM.IndexReg = Src;
1223 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001224 : (MIOpc == X86::SHL32ri
1225 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001226 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001227 .addReg(Dest, RegState::Define |
1228 getDeadRegState(isDead)), AM);
Evan Chenge52c1912008-07-03 09:09:37 +00001229 if (isKill)
1230 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001231 }
1232 break;
1233 }
1234 }
1235 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001236 }
1237
Evan Chengc3cb24d2008-02-07 08:29:53 +00001238 if (!NewMI) return 0;
1239
Evan Chenge52c1912008-07-03 09:09:37 +00001240 if (LV) { // Update live variables
1241 if (isKill)
1242 LV->replaceKillInstruction(Src, MI, NewMI);
1243 if (isDead)
1244 LV->replaceKillInstruction(Dest, MI, NewMI);
1245 }
1246
Evan Cheng6b96ed32007-10-05 20:34:26 +00001247 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 return NewMI;
1249}
1250
1251/// commuteInstruction - We have a few instructions that must be hacked on to
1252/// commute them.
1253///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001254MachineInstr *
1255X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001256 switch (MI->getOpcode()) {
1257 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1258 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1259 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001260 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1261 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1262 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001263 unsigned Opc;
1264 unsigned Size;
1265 switch (MI->getOpcode()) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001266 default: llvm_unreachable("Unreachable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1268 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1269 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1270 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001271 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1272 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001273 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001274 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001275 if (NewMI) {
1276 MachineFunction &MF = *MI->getParent()->getParent();
1277 MI = MF.CloneMachineInstr(MI);
1278 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001279 }
Dan Gohman921581d2008-10-17 01:23:35 +00001280 MI->setDesc(get(Opc));
1281 MI->getOperand(3).setImm(Size-Amt);
1282 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001283 }
Evan Cheng926658c2007-10-05 23:13:21 +00001284 case X86::CMOVB16rr:
1285 case X86::CMOVB32rr:
1286 case X86::CMOVB64rr:
1287 case X86::CMOVAE16rr:
1288 case X86::CMOVAE32rr:
1289 case X86::CMOVAE64rr:
1290 case X86::CMOVE16rr:
1291 case X86::CMOVE32rr:
1292 case X86::CMOVE64rr:
1293 case X86::CMOVNE16rr:
1294 case X86::CMOVNE32rr:
1295 case X86::CMOVNE64rr:
1296 case X86::CMOVBE16rr:
1297 case X86::CMOVBE32rr:
1298 case X86::CMOVBE64rr:
1299 case X86::CMOVA16rr:
1300 case X86::CMOVA32rr:
1301 case X86::CMOVA64rr:
1302 case X86::CMOVL16rr:
1303 case X86::CMOVL32rr:
1304 case X86::CMOVL64rr:
1305 case X86::CMOVGE16rr:
1306 case X86::CMOVGE32rr:
1307 case X86::CMOVGE64rr:
1308 case X86::CMOVLE16rr:
1309 case X86::CMOVLE32rr:
1310 case X86::CMOVLE64rr:
1311 case X86::CMOVG16rr:
1312 case X86::CMOVG32rr:
1313 case X86::CMOVG64rr:
1314 case X86::CMOVS16rr:
1315 case X86::CMOVS32rr:
1316 case X86::CMOVS64rr:
1317 case X86::CMOVNS16rr:
1318 case X86::CMOVNS32rr:
1319 case X86::CMOVNS64rr:
1320 case X86::CMOVP16rr:
1321 case X86::CMOVP32rr:
1322 case X86::CMOVP64rr:
1323 case X86::CMOVNP16rr:
1324 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001325 case X86::CMOVNP64rr:
1326 case X86::CMOVO16rr:
1327 case X86::CMOVO32rr:
1328 case X86::CMOVO64rr:
1329 case X86::CMOVNO16rr:
1330 case X86::CMOVNO32rr:
1331 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001332 unsigned Opc = 0;
1333 switch (MI->getOpcode()) {
1334 default: break;
1335 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1336 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1337 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1338 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1339 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1340 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1341 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1342 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1343 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1344 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1345 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1346 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1347 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1348 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1349 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1350 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1351 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1352 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1353 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1354 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1355 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1356 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1357 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1358 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1359 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1360 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1361 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1362 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1363 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1364 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1365 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1366 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001367 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001368 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1369 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1370 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1371 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1372 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001373 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001374 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1375 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1376 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001377 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1378 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001379 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001380 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1381 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1382 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001383 }
Dan Gohman921581d2008-10-17 01:23:35 +00001384 if (NewMI) {
1385 MachineFunction &MF = *MI->getParent()->getParent();
1386 MI = MF.CloneMachineInstr(MI);
1387 NewMI = false;
1388 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001389 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001390 // Fallthrough intended.
1391 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001392 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001393 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001394 }
1395}
1396
1397static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1398 switch (BrOpc) {
1399 default: return X86::COND_INVALID;
1400 case X86::JE: return X86::COND_E;
1401 case X86::JNE: return X86::COND_NE;
1402 case X86::JL: return X86::COND_L;
1403 case X86::JLE: return X86::COND_LE;
1404 case X86::JG: return X86::COND_G;
1405 case X86::JGE: return X86::COND_GE;
1406 case X86::JB: return X86::COND_B;
1407 case X86::JBE: return X86::COND_BE;
1408 case X86::JA: return X86::COND_A;
1409 case X86::JAE: return X86::COND_AE;
1410 case X86::JS: return X86::COND_S;
1411 case X86::JNS: return X86::COND_NS;
1412 case X86::JP: return X86::COND_P;
1413 case X86::JNP: return X86::COND_NP;
1414 case X86::JO: return X86::COND_O;
1415 case X86::JNO: return X86::COND_NO;
1416 }
1417}
1418
1419unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1420 switch (CC) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001421 default: llvm_unreachable("Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001422 case X86::COND_E: return X86::JE;
1423 case X86::COND_NE: return X86::JNE;
1424 case X86::COND_L: return X86::JL;
1425 case X86::COND_LE: return X86::JLE;
1426 case X86::COND_G: return X86::JG;
1427 case X86::COND_GE: return X86::JGE;
1428 case X86::COND_B: return X86::JB;
1429 case X86::COND_BE: return X86::JBE;
1430 case X86::COND_A: return X86::JA;
1431 case X86::COND_AE: return X86::JAE;
1432 case X86::COND_S: return X86::JS;
1433 case X86::COND_NS: return X86::JNS;
1434 case X86::COND_P: return X86::JP;
1435 case X86::COND_NP: return X86::JNP;
1436 case X86::COND_O: return X86::JO;
1437 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001438 }
1439}
1440
1441/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1442/// e.g. turning COND_E to COND_NE.
1443X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1444 switch (CC) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001445 default: llvm_unreachable("Illegal condition code!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001446 case X86::COND_E: return X86::COND_NE;
1447 case X86::COND_NE: return X86::COND_E;
1448 case X86::COND_L: return X86::COND_GE;
1449 case X86::COND_LE: return X86::COND_G;
1450 case X86::COND_G: return X86::COND_LE;
1451 case X86::COND_GE: return X86::COND_L;
1452 case X86::COND_B: return X86::COND_AE;
1453 case X86::COND_BE: return X86::COND_A;
1454 case X86::COND_A: return X86::COND_BE;
1455 case X86::COND_AE: return X86::COND_B;
1456 case X86::COND_S: return X86::COND_NS;
1457 case X86::COND_NS: return X86::COND_S;
1458 case X86::COND_P: return X86::COND_NP;
1459 case X86::COND_NP: return X86::COND_P;
1460 case X86::COND_O: return X86::COND_NO;
1461 case X86::COND_NO: return X86::COND_O;
1462 }
1463}
1464
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001465bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001466 const TargetInstrDesc &TID = MI->getDesc();
1467 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001468
1469 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001470 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001471 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001472 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001473 return true;
1474 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001475}
1476
Evan Cheng12515792007-07-26 17:32:14 +00001477// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1478static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1479 const X86InstrInfo &TII) {
1480 if (MI->getOpcode() == X86::FP_REG_KILL)
1481 return false;
1482 return TII.isUnpredicatedTerminator(MI);
1483}
1484
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001485bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1486 MachineBasicBlock *&TBB,
1487 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +00001488 SmallVectorImpl<MachineOperand> &Cond,
1489 bool AllowModify) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001490 // Start from the bottom of the block and work up, examining the
1491 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001492 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001493 while (I != MBB.begin()) {
1494 --I;
1495 // Working from the bottom, when we see a non-terminator
1496 // instruction, we're done.
1497 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1498 break;
1499 // A terminator that isn't a branch can't easily be handled
1500 // by this analysis.
1501 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001502 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001503 // Handle unconditional branches.
1504 if (I->getOpcode() == X86::JMP) {
Evan Chengeac31642009-02-09 07:14:22 +00001505 if (!AllowModify) {
1506 TBB = I->getOperand(0).getMBB();
Evan Cheng67bf8e22009-05-08 06:34:09 +00001507 continue;
Evan Chengeac31642009-02-09 07:14:22 +00001508 }
1509
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001510 // If the block has any instructions after a JMP, delete them.
1511 while (next(I) != MBB.end())
1512 next(I)->eraseFromParent();
1513 Cond.clear();
1514 FBB = 0;
1515 // Delete the JMP if it's equivalent to a fall-through.
1516 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1517 TBB = 0;
1518 I->eraseFromParent();
1519 I = MBB.end();
1520 continue;
1521 }
1522 // TBB is used to indicate the unconditinal destination.
1523 TBB = I->getOperand(0).getMBB();
1524 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001525 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001526 // Handle conditional branches.
1527 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001528 if (BranchCode == X86::COND_INVALID)
1529 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001530 // Working from the bottom, handle the first conditional branch.
1531 if (Cond.empty()) {
1532 FBB = TBB;
1533 TBB = I->getOperand(0).getMBB();
1534 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1535 continue;
1536 }
1537 // Handle subsequent conditional branches. Only handle the case
1538 // where all conditional branches branch to the same destination
1539 // and their condition opcodes fit one of the special
1540 // multi-branch idioms.
1541 assert(Cond.size() == 1);
1542 assert(TBB);
1543 // Only handle the case where all conditional branches branch to
1544 // the same destination.
1545 if (TBB != I->getOperand(0).getMBB())
1546 return true;
1547 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1548 // If the conditions are the same, we can leave them alone.
1549 if (OldBranchCode == BranchCode)
1550 continue;
1551 // If they differ, see if they fit one of the known patterns.
1552 // Theoretically we could handle more patterns here, but
1553 // we shouldn't expect to see them if instruction selection
1554 // has done a reasonable job.
1555 if ((OldBranchCode == X86::COND_NP &&
1556 BranchCode == X86::COND_E) ||
1557 (OldBranchCode == X86::COND_E &&
1558 BranchCode == X86::COND_NP))
1559 BranchCode = X86::COND_NP_OR_E;
1560 else if ((OldBranchCode == X86::COND_P &&
1561 BranchCode == X86::COND_NE) ||
1562 (OldBranchCode == X86::COND_NE &&
1563 BranchCode == X86::COND_P))
1564 BranchCode = X86::COND_NE_OR_P;
1565 else
1566 return true;
1567 // Update the MachineOperand.
1568 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001569 }
1570
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001571 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001572}
1573
1574unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1575 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001576 unsigned Count = 0;
1577
1578 while (I != MBB.begin()) {
1579 --I;
1580 if (I->getOpcode() != X86::JMP &&
1581 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1582 break;
1583 // Remove the branch.
1584 I->eraseFromParent();
1585 I = MBB.end();
1586 ++Count;
1587 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001588
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001589 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001590}
1591
1592unsigned
1593X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1594 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001595 const SmallVectorImpl<MachineOperand> &Cond) const {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001596 // FIXME this should probably have a DebugLoc operand
1597 DebugLoc dl = DebugLoc::getUnknownLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001598 // Shouldn't be a fall through.
1599 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1600 assert((Cond.size() == 1 || Cond.size() == 0) &&
1601 "X86 branch conditions have one component!");
1602
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001603 if (Cond.empty()) {
1604 // Unconditional branch?
1605 assert(!FBB && "Unconditional branch with multiple successors!");
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001606 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001607 return 1;
1608 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001609
1610 // Conditional branch.
1611 unsigned Count = 0;
1612 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1613 switch (CC) {
1614 case X86::COND_NP_OR_E:
1615 // Synthesize NP_OR_E with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001616 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001617 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001618 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001619 ++Count;
1620 break;
1621 case X86::COND_NE_OR_P:
1622 // Synthesize NE_OR_P with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001623 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001624 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001625 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001626 ++Count;
1627 break;
1628 default: {
1629 unsigned Opc = GetCondBranchFromCond(CC);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001630 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001631 ++Count;
1632 }
1633 }
1634 if (FBB) {
1635 // Two-way Conditional branch. Insert the second branch.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001636 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001637 ++Count;
1638 }
1639 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001640}
1641
Dan Gohman2da0db32009-04-15 00:04:23 +00001642/// isHReg - Test if the given register is a physical h register.
1643static bool isHReg(unsigned Reg) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001644 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman2da0db32009-04-15 00:04:23 +00001645}
1646
Owen Anderson9fa72d92008-08-26 18:03:31 +00001647bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001648 MachineBasicBlock::iterator MI,
1649 unsigned DestReg, unsigned SrcReg,
1650 const TargetRegisterClass *DestRC,
1651 const TargetRegisterClass *SrcRC) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001652 DebugLoc DL = DebugLoc::getUnknownLoc();
1653 if (MI != MBB.end()) DL = MI->getDebugLoc();
1654
Dan Gohmand4df6252009-04-20 22:54:34 +00001655 // Determine if DstRC and SrcRC have a common superclass in common.
1656 const TargetRegisterClass *CommonRC = DestRC;
1657 if (DestRC == SrcRC)
1658 /* Source and destination have the same register class. */;
1659 else if (CommonRC->hasSuperClass(SrcRC))
1660 CommonRC = SrcRC;
Dan Gohmanfe606822009-07-30 01:56:29 +00001661 else if (!DestRC->hasSubClass(SrcRC)) {
1662 // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
Dan Gohman861ed262009-08-05 22:18:26 +00001663 // but we want to copy then as GR64. Similarly, for GR32_NOREX and
1664 // GR32_NOSP, copy as GR32.
Dan Gohmande9c0562009-08-11 15:59:48 +00001665 if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1666 DestRC->hasSuperClass(&X86::GR64RegClass))
Dan Gohmanfe606822009-07-30 01:56:29 +00001667 CommonRC = &X86::GR64RegClass;
Dan Gohmande9c0562009-08-11 15:59:48 +00001668 else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1669 DestRC->hasSuperClass(&X86::GR32RegClass))
Dan Gohman861ed262009-08-05 22:18:26 +00001670 CommonRC = &X86::GR32RegClass;
Dan Gohmanfe606822009-07-30 01:56:29 +00001671 else
1672 CommonRC = 0;
1673 }
Dan Gohmand4df6252009-04-20 22:54:34 +00001674
1675 if (CommonRC) {
Chris Lattner59707122008-03-09 07:58:04 +00001676 unsigned Opc;
Dan Gohmanfe606822009-07-30 01:56:29 +00001677 if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001678 Opc = X86::MOV64rr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001679 } else if (CommonRC == &X86::GR32RegClass ||
1680 CommonRC == &X86::GR32_NOSPRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001681 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001682 } else if (CommonRC == &X86::GR16RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001683 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001684 } else if (CommonRC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001685 // Copying to or from a physical H register on x86-64 requires a NOREX
Bill Wendling2d1c8222009-04-17 22:40:38 +00001686 // move. Otherwise use a normal move.
1687 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1688 TM.getSubtarget<X86Subtarget>().is64Bit())
Dan Gohman2da0db32009-04-15 00:04:23 +00001689 Opc = X86::MOV8rr_NOREX;
1690 else
1691 Opc = X86::MOV8rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001692 } else if (CommonRC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001693 Opc = X86::MOV64rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001694 } else if (CommonRC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001695 Opc = X86::MOV32rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001696 } else if (CommonRC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001697 Opc = X86::MOV16rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001698 } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001699 Opc = X86::MOV8rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001700 } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1701 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1702 Opc = X86::MOV8rr_NOREX;
1703 else
1704 Opc = X86::MOV8rr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001705 } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1706 CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001707 Opc = X86::MOV64rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001708 } else if (CommonRC == &X86::GR32_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001709 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001710 } else if (CommonRC == &X86::GR16_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001711 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001712 } else if (CommonRC == &X86::GR8_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001713 Opc = X86::MOV8rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001714 } else if (CommonRC == &X86::RFP32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001715 Opc = X86::MOV_Fp3232;
Dan Gohmand4df6252009-04-20 22:54:34 +00001716 } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001717 Opc = X86::MOV_Fp6464;
Dan Gohmand4df6252009-04-20 22:54:34 +00001718 } else if (CommonRC == &X86::RFP80RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001719 Opc = X86::MOV_Fp8080;
Dan Gohmand4df6252009-04-20 22:54:34 +00001720 } else if (CommonRC == &X86::FR32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001721 Opc = X86::FsMOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001722 } else if (CommonRC == &X86::FR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001723 Opc = X86::FsMOVAPDrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001724 } else if (CommonRC == &X86::VR128RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001725 Opc = X86::MOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001726 } else if (CommonRC == &X86::VR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001727 Opc = X86::MMX_MOVQ64rr;
1728 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001729 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001730 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001731 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001732 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001733 }
Dan Gohmanfe606822009-07-30 01:56:29 +00001734
Chris Lattner59707122008-03-09 07:58:04 +00001735 // Moving EFLAGS to / from another register requires a push and a pop.
1736 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001737 if (SrcReg != X86::EFLAGS)
1738 return false;
Dan Gohmanfe606822009-07-30 01:56:29 +00001739 if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001740 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1741 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001742 return true;
Dan Gohmanfe606822009-07-30 01:56:29 +00001743 } else if (DestRC == &X86::GR32RegClass ||
1744 DestRC == &X86::GR32_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001745 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1746 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001747 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001748 }
1749 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001750 if (DestReg != X86::EFLAGS)
1751 return false;
Dan Gohmanfe606822009-07-30 01:56:29 +00001752 if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001753 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1754 BuildMI(MBB, MI, DL, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001755 return true;
Dan Gohmanfe606822009-07-30 01:56:29 +00001756 } else if (SrcRC == &X86::GR32RegClass ||
1757 DestRC == &X86::GR32_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001758 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1759 BuildMI(MBB, MI, DL, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001760 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001761 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001762 }
Dan Gohman744d4622009-04-13 16:09:41 +00001763
Chris Lattner0d128722008-03-09 09:15:31 +00001764 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001765 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001766 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001767 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1768 // Can only copy from ST(0)/ST(1) right now
1769 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001770 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001771 unsigned Opc;
1772 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001773 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001774 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001775 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001776 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001777 if (DestRC != &X86::RFP80RegClass)
1778 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001779 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001780 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001781 BuildMI(MBB, MI, DL, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001782 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001783 }
Chris Lattner0d128722008-03-09 09:15:31 +00001784
1785 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1786 if (DestRC == &X86::RSTRegClass) {
Evan Cheng307a72e2009-02-09 23:32:07 +00001787 // Copying to ST(0) / ST(1).
1788 if (DestReg != X86::ST0 && DestReg != X86::ST1)
Owen Anderson9fa72d92008-08-26 18:03:31 +00001789 // Can only copy to TOS right now
1790 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001791 bool isST0 = DestReg == X86::ST0;
Chris Lattner0d128722008-03-09 09:15:31 +00001792 unsigned Opc;
1793 if (SrcRC == &X86::RFP32RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001794 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
Chris Lattner0d128722008-03-09 09:15:31 +00001795 else if (SrcRC == &X86::RFP64RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001796 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
Chris Lattner0d128722008-03-09 09:15:31 +00001797 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001798 if (SrcRC != &X86::RFP80RegClass)
1799 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001800 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
Chris Lattner0d128722008-03-09 09:15:31 +00001801 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001802 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001803 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001804 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001805
Owen Anderson9fa72d92008-08-26 18:03:31 +00001806 // Not yet supported!
1807 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001808}
1809
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001810static unsigned getStoreRegOpcode(unsigned SrcReg,
1811 const TargetRegisterClass *RC,
1812 bool isStackAligned,
1813 TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001814 unsigned Opc = 0;
Dan Gohmanfe606822009-07-30 01:56:29 +00001815 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001816 Opc = X86::MOV64mr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001817 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001818 Opc = X86::MOV32mr;
1819 } else if (RC == &X86::GR16RegClass) {
1820 Opc = X86::MOV16mr;
1821 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001822 // Copying to or from a physical H register on x86-64 requires a NOREX
1823 // move. Otherwise use a normal move.
1824 if (isHReg(SrcReg) &&
1825 TM.getSubtarget<X86Subtarget>().is64Bit())
1826 Opc = X86::MOV8mr_NOREX;
1827 else
1828 Opc = X86::MOV8mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001829 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001830 Opc = X86::MOV64mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001831 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001832 Opc = X86::MOV32mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001833 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001834 Opc = X86::MOV16mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001835 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001836 Opc = X86::MOV8mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001837 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1838 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1839 Opc = X86::MOV8mr_NOREX;
1840 else
1841 Opc = X86::MOV8mr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001842 } else if (RC == &X86::GR64_NOREXRegClass ||
1843 RC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001844 Opc = X86::MOV64mr;
1845 } else if (RC == &X86::GR32_NOREXRegClass) {
1846 Opc = X86::MOV32mr;
1847 } else if (RC == &X86::GR16_NOREXRegClass) {
1848 Opc = X86::MOV16mr;
1849 } else if (RC == &X86::GR8_NOREXRegClass) {
1850 Opc = X86::MOV8mr;
Owen Anderson81875432008-01-01 21:11:32 +00001851 } else if (RC == &X86::RFP80RegClass) {
1852 Opc = X86::ST_FpP80m; // pops
1853 } else if (RC == &X86::RFP64RegClass) {
1854 Opc = X86::ST_Fp64m;
1855 } else if (RC == &X86::RFP32RegClass) {
1856 Opc = X86::ST_Fp32m;
1857 } else if (RC == &X86::FR32RegClass) {
1858 Opc = X86::MOVSSmr;
1859 } else if (RC == &X86::FR64RegClass) {
1860 Opc = X86::MOVSDmr;
1861 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001862 // If stack is realigned we can use aligned stores.
1863 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001864 } else if (RC == &X86::VR64RegClass) {
1865 Opc = X86::MMX_MOVQ64mr;
1866 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00001867 llvm_unreachable("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00001868 }
1869
1870 return Opc;
1871}
1872
1873void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1874 MachineBasicBlock::iterator MI,
1875 unsigned SrcReg, bool isKill, int FrameIdx,
1876 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001877 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001878 bool isAligned = (RI.getStackAlignment() >= 16) ||
1879 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001880 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001881 DebugLoc DL = DebugLoc::getUnknownLoc();
1882 if (MI != MBB.end()) DL = MI->getDebugLoc();
1883 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling2b739762009-05-13 21:33:08 +00001884 .addReg(SrcReg, getKillRegState(isKill));
Owen Anderson81875432008-01-01 21:11:32 +00001885}
1886
1887void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1888 bool isKill,
1889 SmallVectorImpl<MachineOperand> &Addr,
1890 const TargetRegisterClass *RC,
Dan Gohmanc7973eb2009-10-09 18:10:05 +00001891 MachineInstr::mmo_iterator MMOBegin,
1892 MachineInstr::mmo_iterator MMOEnd,
Owen Anderson81875432008-01-01 21:11:32 +00001893 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001894 bool isAligned = (RI.getStackAlignment() >= 16) ||
1895 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001896 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001897 DebugLoc DL = DebugLoc::getUnknownLoc();
1898 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001899 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001900 MIB.addOperand(Addr[i]);
Bill Wendling2b739762009-05-13 21:33:08 +00001901 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohmanc7973eb2009-10-09 18:10:05 +00001902 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Anderson81875432008-01-01 21:11:32 +00001903 NewMIs.push_back(MIB);
1904}
1905
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001906static unsigned getLoadRegOpcode(unsigned DestReg,
1907 const TargetRegisterClass *RC,
1908 bool isStackAligned,
1909 const TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001910 unsigned Opc = 0;
Dan Gohmanfe606822009-07-30 01:56:29 +00001911 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001912 Opc = X86::MOV64rm;
Dan Gohmanfe606822009-07-30 01:56:29 +00001913 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001914 Opc = X86::MOV32rm;
1915 } else if (RC == &X86::GR16RegClass) {
1916 Opc = X86::MOV16rm;
1917 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001918 // Copying to or from a physical H register on x86-64 requires a NOREX
1919 // move. Otherwise use a normal move.
1920 if (isHReg(DestReg) &&
1921 TM.getSubtarget<X86Subtarget>().is64Bit())
1922 Opc = X86::MOV8rm_NOREX;
1923 else
1924 Opc = X86::MOV8rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001925 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001926 Opc = X86::MOV64rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001927 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001928 Opc = X86::MOV32rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001929 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001930 Opc = X86::MOV16rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001931 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001932 Opc = X86::MOV8rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001933 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1934 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1935 Opc = X86::MOV8rm_NOREX;
1936 else
1937 Opc = X86::MOV8rm;
Dan Gohmanfe606822009-07-30 01:56:29 +00001938 } else if (RC == &X86::GR64_NOREXRegClass ||
1939 RC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001940 Opc = X86::MOV64rm;
1941 } else if (RC == &X86::GR32_NOREXRegClass) {
1942 Opc = X86::MOV32rm;
1943 } else if (RC == &X86::GR16_NOREXRegClass) {
1944 Opc = X86::MOV16rm;
1945 } else if (RC == &X86::GR8_NOREXRegClass) {
1946 Opc = X86::MOV8rm;
Owen Anderson81875432008-01-01 21:11:32 +00001947 } else if (RC == &X86::RFP80RegClass) {
1948 Opc = X86::LD_Fp80m;
1949 } else if (RC == &X86::RFP64RegClass) {
1950 Opc = X86::LD_Fp64m;
1951 } else if (RC == &X86::RFP32RegClass) {
1952 Opc = X86::LD_Fp32m;
1953 } else if (RC == &X86::FR32RegClass) {
1954 Opc = X86::MOVSSrm;
1955 } else if (RC == &X86::FR64RegClass) {
1956 Opc = X86::MOVSDrm;
1957 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001958 // If stack is realigned we can use aligned loads.
1959 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001960 } else if (RC == &X86::VR64RegClass) {
1961 Opc = X86::MMX_MOVQ64rm;
1962 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00001963 llvm_unreachable("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00001964 }
1965
1966 return Opc;
1967}
1968
1969void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001970 MachineBasicBlock::iterator MI,
1971 unsigned DestReg, int FrameIdx,
1972 const TargetRegisterClass *RC) const{
1973 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001974 bool isAligned = (RI.getStackAlignment() >= 16) ||
1975 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001976 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001977 DebugLoc DL = DebugLoc::getUnknownLoc();
1978 if (MI != MBB.end()) DL = MI->getDebugLoc();
1979 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Anderson81875432008-01-01 21:11:32 +00001980}
1981
1982void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001983 SmallVectorImpl<MachineOperand> &Addr,
1984 const TargetRegisterClass *RC,
Dan Gohmanc7973eb2009-10-09 18:10:05 +00001985 MachineInstr::mmo_iterator MMOBegin,
1986 MachineInstr::mmo_iterator MMOEnd,
Owen Anderson81875432008-01-01 21:11:32 +00001987 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001988 bool isAligned = (RI.getStackAlignment() >= 16) ||
1989 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001990 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001991 DebugLoc DL = DebugLoc::getUnknownLoc();
1992 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001993 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001994 MIB.addOperand(Addr[i]);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00001995 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Anderson81875432008-01-01 21:11:32 +00001996 NewMIs.push_back(MIB);
1997}
1998
Owen Anderson6690c7f2008-01-04 23:57:37 +00001999bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002000 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00002001 const std::vector<CalleeSavedInfo> &CSI) const {
2002 if (CSI.empty())
2003 return false;
2004
Bill Wendling13ee2e42009-02-11 21:51:19 +00002005 DebugLoc DL = DebugLoc::getUnknownLoc();
2006 if (MI != MBB.end()) DL = MI->getDebugLoc();
2007
Evan Chengc275cf62008-09-26 19:14:21 +00002008 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002009 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002010 unsigned SlotSize = is64Bit ? 8 : 4;
2011
2012 MachineFunction &MF = *MBB.getParent();
Evan Cheng10b8d222009-07-09 06:53:48 +00002013 unsigned FPReg = RI.getFrameRegister(MF);
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002014 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
Eli Friedman65b88222009-06-04 02:32:04 +00002015 unsigned CalleeFrameSize = 0;
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002016
Owen Anderson6690c7f2008-01-04 23:57:37 +00002017 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2018 for (unsigned i = CSI.size(); i != 0; --i) {
2019 unsigned Reg = CSI[i-1].getReg();
Eli Friedman65b88222009-06-04 02:32:04 +00002020 const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002021 // Add the callee-saved register as live-in. It's killed at the spill.
2022 MBB.addLiveIn(Reg);
Evan Cheng10b8d222009-07-09 06:53:48 +00002023 if (Reg == FPReg)
2024 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2025 continue;
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002026 if (RegClass != &X86::VR128RegClass && !isWin64) {
Eli Friedman65b88222009-06-04 02:32:04 +00002027 CalleeFrameSize += SlotSize;
Evan Cheng10b8d222009-07-09 06:53:48 +00002028 BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
Eli Friedman65b88222009-06-04 02:32:04 +00002029 } else {
2030 storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2031 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002032 }
Eli Friedman65b88222009-06-04 02:32:04 +00002033
2034 X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002035 return true;
2036}
2037
2038bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002039 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00002040 const std::vector<CalleeSavedInfo> &CSI) const {
2041 if (CSI.empty())
2042 return false;
Bill Wendling13ee2e42009-02-11 21:51:19 +00002043
2044 DebugLoc DL = DebugLoc::getUnknownLoc();
2045 if (MI != MBB.end()) DL = MI->getDebugLoc();
2046
Evan Cheng10b8d222009-07-09 06:53:48 +00002047 MachineFunction &MF = *MBB.getParent();
2048 unsigned FPReg = RI.getFrameRegister(MF);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002049 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002050 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002051 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2052 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2053 unsigned Reg = CSI[i].getReg();
Evan Cheng10b8d222009-07-09 06:53:48 +00002054 if (Reg == FPReg)
2055 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2056 continue;
Eli Friedman65b88222009-06-04 02:32:04 +00002057 const TargetRegisterClass *RegClass = CSI[i].getRegClass();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002058 if (RegClass != &X86::VR128RegClass && !isWin64) {
Eli Friedman65b88222009-06-04 02:32:04 +00002059 BuildMI(MBB, MI, DL, get(Opc), Reg);
2060 } else {
2061 loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2062 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002063 }
2064 return true;
2065}
2066
Dan Gohman221a4372008-07-07 23:14:23 +00002067static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002068 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002069 MachineInstr *MI,
2070 const TargetInstrInfo &TII) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002071 // Create the base instruction with the memory operand as the first part.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002072 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2073 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002074 MachineInstrBuilder MIB(NewMI);
2075 unsigned NumAddrOps = MOs.size();
2076 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002077 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002078 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002079 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002080
2081 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00002082 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002083 for (unsigned i = 0; i != NumOps; ++i) {
2084 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002085 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002086 }
2087 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2088 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002089 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002090 }
2091 return MIB;
2092}
2093
Dan Gohman221a4372008-07-07 23:14:23 +00002094static MachineInstr *FuseInst(MachineFunction &MF,
2095 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002096 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002097 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002098 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2099 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002100 MachineInstrBuilder MIB(NewMI);
2101
2102 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2103 MachineOperand &MO = MI->getOperand(i);
2104 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002105 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00002106 unsigned NumAddrOps = MOs.size();
2107 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002108 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002109 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002110 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002111 } else {
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002112 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002113 }
2114 }
2115 return MIB;
2116}
2117
2118static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002119 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002120 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00002121 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling13ee2e42009-02-11 21:51:19 +00002122 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002123
2124 unsigned NumAddrOps = MOs.size();
2125 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002126 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002127 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002128 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002129 return MIB.addImm(0);
2130}
2131
2132MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002133X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2134 MachineInstr *MI, unsigned i,
Evan Chenga5853792009-07-15 06:10:07 +00002135 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng8f0797f2009-09-11 00:39:26 +00002136 unsigned Size, unsigned Align) const {
Evan Chenga5853792009-07-15 06:10:07 +00002137 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002138 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002139 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002140 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002141 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002142
2143 MachineInstr *NewMI = NULL;
2144 // Folding a memory location into the two-address part of a two-address
2145 // instruction is different than folding it other places. It requires
2146 // replacing the *two* registers with the memory location.
2147 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002148 MI->getOperand(0).isReg() &&
2149 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002150 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2151 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2152 isTwoAddrFold = true;
2153 } else if (i == 0) { // If operand 0
2154 if (MI->getOpcode() == X86::MOV16r0)
2155 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2156 else if (MI->getOpcode() == X86::MOV32r0)
2157 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002158 else if (MI->getOpcode() == X86::MOV8r0)
2159 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002160 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002161 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002162
2163 OpcodeTablePtr = &RegOp2MemOpTable0;
2164 } else if (i == 1) {
2165 OpcodeTablePtr = &RegOp2MemOpTable1;
2166 } else if (i == 2) {
2167 OpcodeTablePtr = &RegOp2MemOpTable2;
2168 }
2169
2170 // If table selected...
2171 if (OpcodeTablePtr) {
2172 // Find the Opcode to fuse
Evan Chenga5853792009-07-15 06:10:07 +00002173 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002174 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2175 if (I != OpcodeTablePtr->end()) {
Evan Cheng8f0797f2009-09-11 00:39:26 +00002176 unsigned Opcode = I->second.first;
Evan Chenga5853792009-07-15 06:10:07 +00002177 unsigned MinAlign = I->second.second;
2178 if (Align < MinAlign)
2179 return NULL;
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002180 bool NarrowToMOV32rm = false;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002181 if (Size) {
2182 unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2183 if (Size < RCSize) {
2184 // Check if it's safe to fold the load. If the size of the object is
2185 // narrower than the load width, then it's not.
2186 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2187 return NULL;
2188 // If this is a 64-bit load, but the spill slot is 32, then we can do
2189 // a 32-bit load which is implicitly zero-extended. This likely is due
2190 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002191 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2192 return NULL;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002193 Opcode = X86::MOV32rm;
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002194 NarrowToMOV32rm = true;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002195 }
2196 }
2197
Owen Anderson9a184ef2008-01-07 01:35:02 +00002198 if (isTwoAddrFold)
Evan Cheng8f0797f2009-09-11 00:39:26 +00002199 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002200 else
Evan Cheng8f0797f2009-09-11 00:39:26 +00002201 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002202
2203 if (NarrowToMOV32rm) {
2204 // If this is the special case where we use a MOV32rm to load a 32-bit
2205 // value and zero-extend the top bits. Change the destination register
2206 // to a 32-bit one.
2207 unsigned DstReg = NewMI->getOperand(0).getReg();
2208 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2209 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2210 4/*x86_subreg_32bit*/));
2211 else
2212 NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2213 }
Owen Anderson9a184ef2008-01-07 01:35:02 +00002214 return NewMI;
2215 }
2216 }
2217
2218 // No fusion
2219 if (PrintFailedFusing)
Chris Lattnerd71b0b02009-08-23 03:41:05 +00002220 errs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002221 return NULL;
2222}
2223
2224
Dan Gohmanedc83d62008-12-03 18:43:12 +00002225MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2226 MachineInstr *MI,
Evan Chenga5853792009-07-15 06:10:07 +00002227 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanedc83d62008-12-03 18:43:12 +00002228 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002229 // Check switch flag
2230 if (NoFusing) return NULL;
2231
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002232 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng8f0797f2009-09-11 00:39:26 +00002233 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002234 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002235 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2236 unsigned NewOpc = 0;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002237 unsigned RCSize = 0;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002238 switch (MI->getOpcode()) {
2239 default: return NULL;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002240 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
2241 case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
2242 case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
2243 case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002244 }
Evan Cheng8f0797f2009-09-11 00:39:26 +00002245 // Check if it's safe to fold the load. If the size of the object is
2246 // narrower than the load width, then it's not.
2247 if (Size < RCSize)
2248 return NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002249 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002250 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002251 MI->getOperand(1).ChangeToImmediate(0);
2252 } else if (Ops.size() != 1)
2253 return NULL;
2254
2255 SmallVector<MachineOperand,4> MOs;
2256 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng8f0797f2009-09-11 00:39:26 +00002257 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002258}
2259
Dan Gohmanedc83d62008-12-03 18:43:12 +00002260MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2261 MachineInstr *MI,
Evan Chenga5853792009-07-15 06:10:07 +00002262 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanedc83d62008-12-03 18:43:12 +00002263 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002264 // Check switch flag
2265 if (NoFusing) return NULL;
2266
Dan Gohmand0e8c752008-07-12 00:10:52 +00002267 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002268 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002269 if (LoadMI->hasOneMemOperand())
Dan Gohman4e3bb1b2009-09-25 20:36:54 +00002270 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman51dbce62009-09-21 18:30:38 +00002271 else
2272 switch (LoadMI->getOpcode()) {
2273 case X86::V_SET0:
2274 case X86::V_SETALLONES:
2275 Alignment = 16;
2276 break;
2277 case X86::FsFLD0SD:
2278 Alignment = 8;
2279 break;
2280 case X86::FsFLD0SS:
2281 Alignment = 4;
2282 break;
2283 default:
2284 llvm_unreachable("Don't know how to fold this instruction!");
2285 }
Owen Anderson9a184ef2008-01-07 01:35:02 +00002286 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2287 unsigned NewOpc = 0;
2288 switch (MI->getOpcode()) {
2289 default: return NULL;
2290 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2291 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2292 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2293 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2294 }
2295 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002296 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002297 MI->getOperand(1).ChangeToImmediate(0);
2298 } else if (Ops.size() != 1)
2299 return NULL;
2300
Rafael Espindolabca99f72009-04-08 21:14:34 +00002301 SmallVector<MachineOperand,X86AddrNumOperands> MOs;
Dan Gohman51dbce62009-09-21 18:30:38 +00002302 switch (LoadMI->getOpcode()) {
2303 case X86::V_SET0:
2304 case X86::V_SETALLONES:
2305 case X86::FsFLD0SD:
2306 case X86::FsFLD0SS: {
Dan Gohman37eb6c82008-12-03 05:21:24 +00002307 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2308 // Create a constant-pool entry and operands to load from it.
2309
2310 // x86-32 PIC requires a PIC base register for constant pools.
2311 unsigned PICBase = 0;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002312 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Cheng3b570332009-07-16 18:44:05 +00002313 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2314 PICBase = X86::RIP;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002315 else
Evan Cheng3b570332009-07-16 18:44:05 +00002316 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2317 // This doesn't work for several reasons.
2318 // 1. GlobalBaseReg may have been spilled.
2319 // 2. It may not be live at MI.
Dan Gohman51dbce62009-09-21 18:30:38 +00002320 return NULL;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002321 }
Dan Gohman37eb6c82008-12-03 05:21:24 +00002322
Dan Gohman51dbce62009-09-21 18:30:38 +00002323 // Create a constant-pool entry.
Dan Gohman37eb6c82008-12-03 05:21:24 +00002324 MachineConstantPool &MCP = *MF.getConstantPool();
Dan Gohman51dbce62009-09-21 18:30:38 +00002325 const Type *Ty;
2326 if (LoadMI->getOpcode() == X86::FsFLD0SS)
2327 Ty = Type::getFloatTy(MF.getFunction()->getContext());
2328 else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2329 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2330 else
2331 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2332 Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2333 Constant::getAllOnesValue(Ty) :
2334 Constant::getNullValue(Ty);
2335 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohman37eb6c82008-12-03 05:21:24 +00002336
2337 // Create operands to load from the constant pool entry.
2338 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2339 MOs.push_back(MachineOperand::CreateImm(1));
2340 MOs.push_back(MachineOperand::CreateReg(0, false));
2341 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindolabca99f72009-04-08 21:14:34 +00002342 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman51dbce62009-09-21 18:30:38 +00002343 break;
2344 }
2345 default: {
Dan Gohman37eb6c82008-12-03 05:21:24 +00002346 // Folding a normal load. Just copy the load's address operands.
2347 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002348 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
Dan Gohman37eb6c82008-12-03 05:21:24 +00002349 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman51dbce62009-09-21 18:30:38 +00002350 break;
2351 }
Dan Gohman37eb6c82008-12-03 05:21:24 +00002352 }
Evan Cheng8f0797f2009-09-11 00:39:26 +00002353 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002354}
2355
2356
Dan Gohman46b948e2008-10-16 01:49:15 +00002357bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2358 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002359 // Check switch flag
2360 if (NoFusing) return 0;
2361
2362 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2363 switch (MI->getOpcode()) {
2364 default: return false;
2365 case X86::TEST8rr:
2366 case X86::TEST16rr:
2367 case X86::TEST32rr:
2368 case X86::TEST64rr:
2369 return true;
2370 }
2371 }
2372
2373 if (Ops.size() != 1)
2374 return false;
2375
2376 unsigned OpNum = Ops[0];
2377 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002378 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002379 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002380 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002381
2382 // Folding a memory location into the two-address part of a two-address
2383 // instruction is different than folding it other places. It requires
2384 // replacing the *two* registers with the memory location.
Evan Chenga5853792009-07-15 06:10:07 +00002385 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002386 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2387 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2388 } else if (OpNum == 0) { // If operand 0
2389 switch (Opc) {
Chris Lattner17f62252009-07-14 20:19:57 +00002390 case X86::MOV8r0:
Owen Anderson9a184ef2008-01-07 01:35:02 +00002391 case X86::MOV16r0:
2392 case X86::MOV32r0:
Owen Anderson9a184ef2008-01-07 01:35:02 +00002393 return true;
2394 default: break;
2395 }
2396 OpcodeTablePtr = &RegOp2MemOpTable0;
2397 } else if (OpNum == 1) {
2398 OpcodeTablePtr = &RegOp2MemOpTable1;
2399 } else if (OpNum == 2) {
2400 OpcodeTablePtr = &RegOp2MemOpTable2;
2401 }
2402
2403 if (OpcodeTablePtr) {
2404 // Find the Opcode to fuse
Evan Chenga5853792009-07-15 06:10:07 +00002405 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002406 OpcodeTablePtr->find((unsigned*)Opc);
2407 if (I != OpcodeTablePtr->end())
2408 return true;
2409 }
2410 return false;
2411}
2412
2413bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2414 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002415 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002416 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2417 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2418 if (I == MemOp2RegOpTable.end())
2419 return false;
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002420 DebugLoc dl = MI->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002421 unsigned Opc = I->second.first;
2422 unsigned Index = I->second.second & 0xf;
2423 bool FoldedLoad = I->second.second & (1 << 4);
2424 bool FoldedStore = I->second.second & (1 << 5);
2425 if (UnfoldLoad && !FoldedLoad)
2426 return false;
2427 UnfoldLoad &= FoldedLoad;
2428 if (UnfoldStore && !FoldedStore)
2429 return false;
2430 UnfoldStore &= FoldedStore;
2431
Chris Lattner5b930372008-01-07 07:27:27 +00002432 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002433 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner6a66b292009-07-29 21:10:12 +00002434 const TargetRegisterClass *RC = TOI.getRegClass(&RI);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002435 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002436 SmallVector<MachineOperand,2> BeforeOps;
2437 SmallVector<MachineOperand,2> AfterOps;
2438 SmallVector<MachineOperand,4> ImpOps;
2439 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2440 MachineOperand &Op = MI->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002441 if (i >= Index && i < Index + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002442 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002443 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002444 ImpOps.push_back(Op);
2445 else if (i < Index)
2446 BeforeOps.push_back(Op);
2447 else if (i > Index)
2448 AfterOps.push_back(Op);
2449 }
2450
2451 // Emit the load instruction.
2452 if (UnfoldLoad) {
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002453 std::pair<MachineInstr::mmo_iterator,
2454 MachineInstr::mmo_iterator> MMOs =
2455 MF.extractLoadMemRefs(MI->memoperands_begin(),
2456 MI->memoperands_end());
2457 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002458 if (UnfoldStore) {
2459 // Address operands cannot be marked isKill.
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002460 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002461 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002462 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002463 MO.setIsKill(false);
2464 }
2465 }
2466 }
2467
2468 // Emit the data processing instruction.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002469 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002470 MachineInstrBuilder MIB(DataMI);
2471
2472 if (FoldedStore)
Bill Wendling2b739762009-05-13 21:33:08 +00002473 MIB.addReg(Reg, RegState::Define);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002474 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002475 MIB.addOperand(BeforeOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002476 if (FoldedLoad)
2477 MIB.addReg(Reg);
2478 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002479 MIB.addOperand(AfterOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002480 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2481 MachineOperand &MO = ImpOps[i];
Bill Wendling2b739762009-05-13 21:33:08 +00002482 MIB.addReg(MO.getReg(),
2483 getDefRegState(MO.isDef()) |
2484 RegState::Implicit |
2485 getKillRegState(MO.isKill()) |
Evan Cheng9c73db12009-06-30 08:49:04 +00002486 getDeadRegState(MO.isDead()) |
2487 getUndefRegState(MO.isUndef()));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002488 }
2489 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2490 unsigned NewOpc = 0;
2491 switch (DataMI->getOpcode()) {
2492 default: break;
2493 case X86::CMP64ri32:
2494 case X86::CMP32ri:
2495 case X86::CMP16ri:
2496 case X86::CMP8ri: {
2497 MachineOperand &MO0 = DataMI->getOperand(0);
2498 MachineOperand &MO1 = DataMI->getOperand(1);
2499 if (MO1.getImm() == 0) {
2500 switch (DataMI->getOpcode()) {
2501 default: break;
2502 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2503 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2504 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2505 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2506 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002507 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002508 MO1.ChangeToRegister(MO0.getReg(), false);
2509 }
2510 }
2511 }
2512 NewMIs.push_back(DataMI);
2513
2514 // Emit the store instruction.
2515 if (UnfoldStore) {
Chris Lattner6a66b292009-07-29 21:10:12 +00002516 const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002517 std::pair<MachineInstr::mmo_iterator,
2518 MachineInstr::mmo_iterator> MMOs =
2519 MF.extractStoreMemRefs(MI->memoperands_begin(),
2520 MI->memoperands_end());
2521 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002522 }
2523
2524 return true;
2525}
2526
2527bool
2528X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002529 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002530 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002531 return false;
2532
2533 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002534 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002535 if (I == MemOp2RegOpTable.end())
2536 return false;
2537 unsigned Opc = I->second.first;
2538 unsigned Index = I->second.second & 0xf;
2539 bool FoldedLoad = I->second.second & (1 << 4);
2540 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002541 const TargetInstrDesc &TID = get(Opc);
Chris Lattner6a66b292009-07-29 21:10:12 +00002542 const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
Dan Gohman31b70a62009-03-04 19:23:38 +00002543 unsigned NumDefs = TID.NumDefs;
Dan Gohman8181bd12008-07-27 21:46:04 +00002544 std::vector<SDValue> AddrOps;
2545 std::vector<SDValue> BeforeOps;
2546 std::vector<SDValue> AfterOps;
Dale Johannesen913ba762009-02-06 01:31:28 +00002547 DebugLoc dl = N->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002548 unsigned NumOps = N->getNumOperands();
Dan Gohman4e3bb1b2009-09-25 20:36:54 +00002549 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002550 SDValue Op = N->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002551 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002552 AddrOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002553 else if (i < Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002554 BeforeOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002555 else if (i > Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002556 AfterOps.push_back(Op);
2557 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002558 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002559 AddrOps.push_back(Chain);
2560
2561 // Emit the load instruction.
2562 SDNode *Load = 0;
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002563 MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002564 if (FoldedLoad) {
Owen Andersonac9de032009-08-10 22:56:29 +00002565 EVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002566 bool isAligned = (RI.getStackAlignment() >= 16) ||
2567 RI.needsStackRealignment(MF);
Dan Gohman61fda0d2009-09-25 18:54:59 +00002568 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2569 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002570 NewNodes.push_back(Load);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002571
2572 // Preserve memory reference information.
2573 std::pair<MachineInstr::mmo_iterator,
2574 MachineInstr::mmo_iterator> MMOs =
2575 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2576 cast<MachineSDNode>(N)->memoperands_end());
2577 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002578 }
2579
2580 // Emit the data processing instruction.
Owen Andersonac9de032009-08-10 22:56:29 +00002581 std::vector<EVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002582 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002583 if (TID.getNumDefs() > 0) {
Chris Lattner6a66b292009-07-29 21:10:12 +00002584 DstRC = TID.OpInfo[0].getRegClass(&RI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002585 VTs.push_back(*DstRC->vt_begin());
2586 }
2587 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Andersonac9de032009-08-10 22:56:29 +00002588 EVT VT = N->getValueType(i);
Owen Anderson36e3a6e2009-08-11 20:47:22 +00002589 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002590 VTs.push_back(VT);
2591 }
2592 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002593 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002594 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dan Gohman61fda0d2009-09-25 18:54:59 +00002595 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2596 BeforeOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002597 NewNodes.push_back(NewNode);
2598
2599 // Emit the store instruction.
2600 if (FoldedStore) {
2601 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002602 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002603 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002604 bool isAligned = (RI.getStackAlignment() >= 16) ||
2605 RI.needsStackRealignment(MF);
Dan Gohman61fda0d2009-09-25 18:54:59 +00002606 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2607 isAligned, TM),
2608 dl, MVT::Other,
2609 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002610 NewNodes.push_back(Store);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002611
2612 // Preserve memory reference information.
2613 std::pair<MachineInstr::mmo_iterator,
2614 MachineInstr::mmo_iterator> MMOs =
2615 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2616 cast<MachineSDNode>(N)->memoperands_end());
2617 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002618 }
2619
2620 return true;
2621}
2622
2623unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2624 bool UnfoldLoad, bool UnfoldStore) const {
2625 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2626 MemOp2RegOpTable.find((unsigned*)Opc);
2627 if (I == MemOp2RegOpTable.end())
2628 return 0;
2629 bool FoldedLoad = I->second.second & (1 << 4);
2630 bool FoldedStore = I->second.second & (1 << 5);
2631 if (UnfoldLoad && !FoldedLoad)
2632 return 0;
2633 if (UnfoldStore && !FoldedStore)
2634 return 0;
2635 return I->second.first;
2636}
2637
Dan Gohman46b948e2008-10-16 01:49:15 +00002638bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002639 if (MBB.empty()) return false;
2640
2641 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002642 case X86::TCRETURNri:
2643 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002644 case X86::RET: // Return.
2645 case X86::RETI:
2646 case X86::TAILJMPd:
2647 case X86::TAILJMPr:
2648 case X86::TAILJMPm:
2649 case X86::JMP: // Uncond branch.
2650 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002651 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002652 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002653 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002654 return true;
2655 default: return false;
2656 }
2657}
2658
2659bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002660ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002661 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002662 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002663 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2664 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002665 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002666 return false;
2667}
2668
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002669bool X86InstrInfo::
Evan Chengf5a8a362009-02-06 17:17:30 +00002670isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2671 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002672 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengf5a8a362009-02-06 17:17:30 +00002673 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2674 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002675}
2676
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002677unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2678 switch (Desc->TSFlags & X86II::ImmMask) {
2679 case X86II::Imm8: return 1;
2680 case X86II::Imm16: return 2;
2681 case X86II::Imm32: return 4;
2682 case X86II::Imm64: return 8;
Edwin Törökbd448e32009-07-14 16:55:14 +00002683 default: llvm_unreachable("Immediate size not set!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002684 return 0;
2685 }
2686}
2687
2688/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2689/// e.g. r8, xmm8, etc.
2690bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002691 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002692 switch (MO.getReg()) {
2693 default: break;
2694 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2695 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2696 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2697 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2698 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2699 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2700 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2701 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2702 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2703 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2704 return true;
2705 }
2706 return false;
2707}
2708
2709
2710/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2711/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2712/// size, and 3) use of X86-64 extended registers.
2713unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2714 unsigned REX = 0;
2715 const TargetInstrDesc &Desc = MI.getDesc();
2716
2717 // Pseudo instructions do not need REX prefix byte.
2718 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2719 return 0;
2720 if (Desc.TSFlags & X86II::REX_W)
2721 REX |= 1 << 3;
2722
2723 unsigned NumOps = Desc.getNumOperands();
2724 if (NumOps) {
2725 bool isTwoAddr = NumOps > 1 &&
2726 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2727
2728 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2729 unsigned i = isTwoAddr ? 1 : 0;
2730 for (unsigned e = NumOps; i != e; ++i) {
2731 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002732 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002733 unsigned Reg = MO.getReg();
2734 if (isX86_64NonExtLowByteReg(Reg))
2735 REX |= 0x40;
2736 }
2737 }
2738
2739 switch (Desc.TSFlags & X86II::FormMask) {
2740 case X86II::MRMInitReg:
2741 if (isX86_64ExtendedReg(MI.getOperand(0)))
2742 REX |= (1 << 0) | (1 << 2);
2743 break;
2744 case X86II::MRMSrcReg: {
2745 if (isX86_64ExtendedReg(MI.getOperand(0)))
2746 REX |= 1 << 2;
2747 i = isTwoAddr ? 2 : 1;
2748 for (unsigned e = NumOps; i != e; ++i) {
2749 const MachineOperand& MO = MI.getOperand(i);
2750 if (isX86_64ExtendedReg(MO))
2751 REX |= 1 << 0;
2752 }
2753 break;
2754 }
2755 case X86II::MRMSrcMem: {
2756 if (isX86_64ExtendedReg(MI.getOperand(0)))
2757 REX |= 1 << 2;
2758 unsigned Bit = 0;
2759 i = isTwoAddr ? 2 : 1;
2760 for (; i != NumOps; ++i) {
2761 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002762 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002763 if (isX86_64ExtendedReg(MO))
2764 REX |= 1 << Bit;
2765 Bit++;
2766 }
2767 }
2768 break;
2769 }
2770 case X86II::MRM0m: case X86II::MRM1m:
2771 case X86II::MRM2m: case X86II::MRM3m:
2772 case X86II::MRM4m: case X86II::MRM5m:
2773 case X86II::MRM6m: case X86II::MRM7m:
2774 case X86II::MRMDestMem: {
Dan Gohman2eff7042009-04-13 15:04:25 +00002775 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002776 i = isTwoAddr ? 1 : 0;
2777 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2778 REX |= 1 << 2;
2779 unsigned Bit = 0;
2780 for (; i != e; ++i) {
2781 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002782 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002783 if (isX86_64ExtendedReg(MO))
2784 REX |= 1 << Bit;
2785 Bit++;
2786 }
2787 }
2788 break;
2789 }
2790 default: {
2791 if (isX86_64ExtendedReg(MI.getOperand(0)))
2792 REX |= 1 << 0;
2793 i = isTwoAddr ? 2 : 1;
2794 for (unsigned e = NumOps; i != e; ++i) {
2795 const MachineOperand& MO = MI.getOperand(i);
2796 if (isX86_64ExtendedReg(MO))
2797 REX |= 1 << 2;
2798 }
2799 break;
2800 }
2801 }
2802 }
2803 return REX;
2804}
2805
2806/// sizePCRelativeBlockAddress - This method returns the size of a PC
2807/// relative block address instruction
2808///
2809static unsigned sizePCRelativeBlockAddress() {
2810 return 4;
2811}
2812
2813/// sizeGlobalAddress - Give the size of the emission of this global address
2814///
2815static unsigned sizeGlobalAddress(bool dword) {
2816 return dword ? 8 : 4;
2817}
2818
2819/// sizeConstPoolAddress - Give the size of the emission of this constant
2820/// pool address
2821///
2822static unsigned sizeConstPoolAddress(bool dword) {
2823 return dword ? 8 : 4;
2824}
2825
2826/// sizeExternalSymbolAddress - Give the size of the emission of this external
2827/// symbol
2828///
2829static unsigned sizeExternalSymbolAddress(bool dword) {
2830 return dword ? 8 : 4;
2831}
2832
2833/// sizeJumpTableAddress - Give the size of the emission of this jump
2834/// table address
2835///
2836static unsigned sizeJumpTableAddress(bool dword) {
2837 return dword ? 8 : 4;
2838}
2839
2840static unsigned sizeConstant(unsigned Size) {
2841 return Size;
2842}
2843
2844static unsigned sizeRegModRMByte(){
2845 return 1;
2846}
2847
2848static unsigned sizeSIBByte(){
2849 return 1;
2850}
2851
2852static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2853 unsigned FinalSize = 0;
2854 // If this is a simple integer displacement that doesn't require a relocation.
2855 if (!RelocOp) {
2856 FinalSize += sizeConstant(4);
2857 return FinalSize;
2858 }
2859
2860 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002861 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002862 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002863 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002864 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002865 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002866 FinalSize += sizeJumpTableAddress(false);
2867 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00002868 llvm_unreachable("Unknown value to relocate!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002869 }
2870 return FinalSize;
2871}
2872
2873static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2874 bool IsPIC, bool Is64BitMode) {
2875 const MachineOperand &Op3 = MI.getOperand(Op+3);
2876 int DispVal = 0;
2877 const MachineOperand *DispForReloc = 0;
2878 unsigned FinalSize = 0;
2879
2880 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002881 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002882 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002883 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002884 if (Is64BitMode || IsPIC) {
2885 DispForReloc = &Op3;
2886 } else {
2887 DispVal = 1;
2888 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002889 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002890 if (Is64BitMode || IsPIC) {
2891 DispForReloc = &Op3;
2892 } else {
2893 DispVal = 1;
2894 }
2895 } else {
2896 DispVal = 1;
2897 }
2898
2899 const MachineOperand &Base = MI.getOperand(Op);
2900 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2901
2902 unsigned BaseReg = Base.getReg();
2903
2904 // Is a SIB byte needed?
Evan Cheng92569ce2009-05-12 00:07:35 +00002905 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
2906 IndexReg.getReg() == 0 &&
Evan Cheng099109d2009-05-04 22:49:16 +00002907 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002908 if (BaseReg == 0) { // Just a displacement?
2909 // Emit special case [disp32] encoding
2910 ++FinalSize;
2911 FinalSize += getDisplacementFieldSize(DispForReloc);
2912 } else {
2913 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2914 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2915 // Emit simple indirect register encoding... [EAX] f.e.
2916 ++FinalSize;
2917 // Be pessimistic and assume it's a disp32, not a disp8
2918 } else {
2919 // Emit the most general non-SIB encoding: [REG+disp32]
2920 ++FinalSize;
2921 FinalSize += getDisplacementFieldSize(DispForReloc);
2922 }
2923 }
2924
2925 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2926 assert(IndexReg.getReg() != X86::ESP &&
2927 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2928
2929 bool ForceDisp32 = false;
2930 if (BaseReg == 0 || DispForReloc) {
2931 // Emit the normal disp32 encoding.
2932 ++FinalSize;
2933 ForceDisp32 = true;
2934 } else {
2935 ++FinalSize;
2936 }
2937
2938 FinalSize += sizeSIBByte();
2939
2940 // Do we need to output a displacement?
2941 if (DispVal != 0 || ForceDisp32) {
2942 FinalSize += getDisplacementFieldSize(DispForReloc);
2943 }
2944 }
2945 return FinalSize;
2946}
2947
2948
2949static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2950 const TargetInstrDesc *Desc,
2951 bool IsPIC, bool Is64BitMode) {
2952
2953 unsigned Opcode = Desc->Opcode;
2954 unsigned FinalSize = 0;
2955
2956 // Emit the lock opcode prefix as needed.
2957 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2958
Bill Wendling6ee76552009-05-28 23:40:46 +00002959 // Emit segment override opcode prefix as needed.
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002960 switch (Desc->TSFlags & X86II::SegOvrMask) {
2961 case X86II::FS:
2962 case X86II::GS:
2963 ++FinalSize;
2964 break;
Edwin Törökbd448e32009-07-14 16:55:14 +00002965 default: llvm_unreachable("Invalid segment!");
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002966 case 0: break; // No segment override!
2967 }
2968
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002969 // Emit the repeat opcode prefix as needed.
2970 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2971
2972 // Emit the operand size opcode prefix as needed.
2973 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2974
2975 // Emit the address size opcode prefix as needed.
2976 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2977
2978 bool Need0FPrefix = false;
2979 switch (Desc->TSFlags & X86II::Op0Mask) {
2980 case X86II::TB: // Two-byte opcode prefix
2981 case X86II::T8: // 0F 38
2982 case X86II::TA: // 0F 3A
2983 Need0FPrefix = true;
2984 break;
Eric Christopherb5f948c2009-08-08 21:55:08 +00002985 case X86II::TF: // F2 0F 38
2986 ++FinalSize;
2987 Need0FPrefix = true;
2988 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002989 case X86II::REP: break; // already handled.
2990 case X86II::XS: // F3 0F
2991 ++FinalSize;
2992 Need0FPrefix = true;
2993 break;
2994 case X86II::XD: // F2 0F
2995 ++FinalSize;
2996 Need0FPrefix = true;
2997 break;
2998 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2999 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3000 ++FinalSize;
3001 break; // Two-byte opcode prefix
Edwin Törökbd448e32009-07-14 16:55:14 +00003002 default: llvm_unreachable("Invalid prefix!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003003 case 0: break; // No prefix!
3004 }
3005
3006 if (Is64BitMode) {
3007 // REX prefix
3008 unsigned REX = X86InstrInfo::determineREX(MI);
3009 if (REX)
3010 ++FinalSize;
3011 }
3012
3013 // 0x0F escape code must be emitted just before the opcode.
3014 if (Need0FPrefix)
3015 ++FinalSize;
3016
3017 switch (Desc->TSFlags & X86II::Op0Mask) {
3018 case X86II::T8: // 0F 38
3019 ++FinalSize;
3020 break;
Bill Wendling6ee76552009-05-28 23:40:46 +00003021 case X86II::TA: // 0F 3A
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003022 ++FinalSize;
3023 break;
Eric Christopherb5f948c2009-08-08 21:55:08 +00003024 case X86II::TF: // F2 0F 38
3025 ++FinalSize;
3026 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003027 }
3028
3029 // If this is a two-address instruction, skip one of the register operands.
3030 unsigned NumOps = Desc->getNumOperands();
3031 unsigned CurOp = 0;
3032 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3033 CurOp++;
Evan Cheng099109d2009-05-04 22:49:16 +00003034 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3035 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3036 --NumOps;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003037
3038 switch (Desc->TSFlags & X86II::FormMask) {
Edwin Törökbd448e32009-07-14 16:55:14 +00003039 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003040 case X86II::Pseudo:
3041 // Remember the current PC offset, this is the PIC relocation
3042 // base address.
3043 switch (Opcode) {
3044 default:
3045 break;
3046 case TargetInstrInfo::INLINEASM: {
3047 const MachineFunction *MF = MI.getParent()->getParent();
Chris Lattner5f1fdb32009-08-02 05:20:37 +00003048 const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3049 FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
Chris Lattner621c44d2009-08-22 20:48:53 +00003050 *MF->getTarget().getMCAsmInfo());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003051 break;
3052 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00003053 case TargetInstrInfo::DBG_LABEL:
3054 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003055 break;
3056 case TargetInstrInfo::IMPLICIT_DEF:
Jakob Stoklund Olesen8f12c7c2009-09-28 20:32:26 +00003057 case TargetInstrInfo::KILL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003058 case X86::DWARF_LOC:
3059 case X86::FP_REG_KILL:
3060 break;
3061 case X86::MOVPC32r: {
3062 // This emits the "call" portion of this pseudo instruction.
3063 ++FinalSize;
3064 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3065 break;
3066 }
3067 }
3068 CurOp = NumOps;
3069 break;
3070 case X86II::RawFrm:
3071 ++FinalSize;
3072
3073 if (CurOp != NumOps) {
3074 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003075 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003076 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003077 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003078 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003079 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003080 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003081 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003082 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3083 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00003084 llvm_unreachable("Unknown RawFrm operand!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003085 }
3086 }
3087 break;
3088
3089 case X86II::AddRegFrm:
3090 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003091 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003092
3093 if (CurOp != NumOps) {
3094 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3095 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003096 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003097 FinalSize += sizeConstant(Size);
3098 else {
3099 bool dword = false;
3100 if (Opcode == X86::MOV64ri)
3101 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003102 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003103 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003104 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003105 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003106 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003107 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003108 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003109 FinalSize += sizeJumpTableAddress(dword);
3110 }
3111 }
3112 break;
3113
3114 case X86II::MRMDestReg: {
3115 ++FinalSize;
3116 FinalSize += sizeRegModRMByte();
3117 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003118 if (CurOp != NumOps) {
3119 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003120 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003121 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003122 break;
3123 }
3124 case X86II::MRMDestMem: {
3125 ++FinalSize;
3126 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003127 CurOp += X86AddrNumOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003128 if (CurOp != NumOps) {
3129 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003130 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003131 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003132 break;
3133 }
3134
3135 case X86II::MRMSrcReg:
3136 ++FinalSize;
3137 FinalSize += sizeRegModRMByte();
3138 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003139 if (CurOp != NumOps) {
3140 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003141 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003142 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003143 break;
3144
3145 case X86II::MRMSrcMem: {
Evan Cheng099109d2009-05-04 22:49:16 +00003146 int AddrOperands;
3147 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3148 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3149 AddrOperands = X86AddrNumOperands - 1; // No segment register
3150 else
3151 AddrOperands = X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003152
3153 ++FinalSize;
3154 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003155 CurOp += AddrOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003156 if (CurOp != NumOps) {
3157 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003158 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003159 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003160 break;
3161 }
3162
3163 case X86II::MRM0r: case X86II::MRM1r:
3164 case X86II::MRM2r: case X86II::MRM3r:
3165 case X86II::MRM4r: case X86II::MRM5r:
3166 case X86II::MRM6r: case X86II::MRM7r:
3167 ++FinalSize;
Evan Cheng099109d2009-05-04 22:49:16 +00003168 if (Desc->getOpcode() == X86::LFENCE ||
Bill Wendling6ee76552009-05-28 23:40:46 +00003169 Desc->getOpcode() == X86::MFENCE) {
3170 // Special handling of lfence and mfence;
Evan Cheng099109d2009-05-04 22:49:16 +00003171 FinalSize += sizeRegModRMByte();
Bill Wendling6ee76552009-05-28 23:40:46 +00003172 } else if (Desc->getOpcode() == X86::MONITOR ||
3173 Desc->getOpcode() == X86::MWAIT) {
3174 // Special handling of monitor and mwait.
3175 FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3176 } else {
Evan Cheng099109d2009-05-04 22:49:16 +00003177 ++CurOp;
3178 FinalSize += sizeRegModRMByte();
3179 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003180
3181 if (CurOp != NumOps) {
3182 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3183 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003184 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003185 FinalSize += sizeConstant(Size);
3186 else {
3187 bool dword = false;
3188 if (Opcode == X86::MOV64ri32)
3189 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003190 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003191 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003192 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003193 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003194 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003195 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003196 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003197 FinalSize += sizeJumpTableAddress(dword);
3198 }
3199 }
3200 break;
3201
3202 case X86II::MRM0m: case X86II::MRM1m:
3203 case X86II::MRM2m: case X86II::MRM3m:
3204 case X86II::MRM4m: case X86II::MRM5m:
3205 case X86II::MRM6m: case X86II::MRM7m: {
3206
3207 ++FinalSize;
3208 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003209 CurOp += X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003210
3211 if (CurOp != NumOps) {
3212 const MachineOperand &MO = MI.getOperand(CurOp++);
3213 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003214 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003215 FinalSize += sizeConstant(Size);
3216 else {
3217 bool dword = false;
3218 if (Opcode == X86::MOV64mi32)
3219 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003220 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003221 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003222 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003223 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003224 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003225 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003226 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003227 FinalSize += sizeJumpTableAddress(dword);
3228 }
3229 }
3230 break;
3231 }
3232
3233 case X86II::MRMInitReg:
3234 ++FinalSize;
3235 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3236 FinalSize += sizeRegModRMByte();
3237 ++CurOp;
3238 break;
3239 }
3240
3241 if (!Desc->isVariadic() && CurOp != NumOps) {
Edwin Török3cb88482009-07-08 18:01:40 +00003242 std::string msg;
3243 raw_string_ostream Msg(msg);
3244 Msg << "Cannot determine size: " << MI;
3245 llvm_report_error(Msg.str());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003246 }
3247
3248
3249 return FinalSize;
3250}
3251
3252
3253unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3254 const TargetInstrDesc &Desc = MI->getDesc();
Chris Lattner144e3482009-07-10 20:53:38 +00003255 bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003256 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003257 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
Chris Lattner739b0102009-06-25 17:28:07 +00003258 if (Desc.getOpcode() == X86::MOVPC32r)
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003259 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003260 return Size;
3261}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003262
Dan Gohman882ab732008-09-30 00:58:23 +00003263/// getGlobalBaseReg - Return a virtual register initialized with the
3264/// the global base register value. Output instructions required to
3265/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003266///
Dan Gohman882ab732008-09-30 00:58:23 +00003267unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3268 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3269 "X86-64 PIC uses RIP relative addressing");
3270
3271 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3272 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3273 if (GlobalBaseReg != 0)
3274 return GlobalBaseReg;
3275
Dan Gohmanb60482f2008-09-23 18:22:58 +00003276 // Insert the set of GlobalBaseReg into the first MBB of the function
3277 MachineBasicBlock &FirstMBB = MF->front();
3278 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Bill Wendling13ee2e42009-02-11 21:51:19 +00003279 DebugLoc DL = DebugLoc::getUnknownLoc();
3280 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
Dan Gohmanb60482f2008-09-23 18:22:58 +00003281 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3282 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3283
3284 const TargetInstrInfo *TII = TM.getInstrInfo();
3285 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3286 // only used in JIT code emission as displacement to pc.
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003287 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
Dan Gohmanb60482f2008-09-23 18:22:58 +00003288
3289 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003290 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
Chris Lattner5d1f2572009-07-09 04:39:06 +00003291 if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003292 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3293 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
Bill Wendling13ee2e42009-02-11 21:51:19 +00003294 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
Daniel Dunbar9f086b92009-09-01 22:06:46 +00003295 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003296 X86II::MO_GOT_ABSOLUTE_ADDRESS);
Dan Gohman882ab732008-09-30 00:58:23 +00003297 } else {
3298 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003299 }
3300
Dan Gohman882ab732008-09-30 00:58:23 +00003301 X86FI->setGlobalBaseReg(GlobalBaseReg);
3302 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003303}