blob: e4505b29e6cb3d5fb9d070364c1da954c593d84a [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000045#include "llvm/CodeGen/CostTable.h"
46#include "llvm/CodeGen/TargetLowering.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000047#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000048#include "llvm/Support/Debug.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Tobias Grosserd7eb6192017-08-24 09:46:25 +000069llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
70 TargetTransformInfo::CacheLevel Level) const {
71 switch (Level) {
72 case TargetTransformInfo::CacheLevel::L1D:
73 // - Penry
74 // - Nehalem
75 // - Westmere
76 // - Sandy Bridge
77 // - Ivy Bridge
78 // - Haswell
79 // - Broadwell
80 // - Skylake
81 // - Kabylake
82 return 32 * 1024; // 32 KByte
83 case TargetTransformInfo::CacheLevel::L2D:
84 // - Penry
85 // - Nehalem
86 // - Westmere
87 // - Sandy Bridge
88 // - Ivy Bridge
89 // - Haswell
90 // - Broadwell
91 // - Skylake
92 // - Kabylake
93 return 256 * 1024; // 256 KByte
94 }
95
96 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
97}
98
99llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
100 TargetTransformInfo::CacheLevel Level) const {
101 // - Penry
102 // - Nehalem
103 // - Westmere
104 // - Sandy Bridge
105 // - Ivy Bridge
106 // - Haswell
107 // - Broadwell
108 // - Skylake
109 // - Kabylake
110 switch (Level) {
111 case TargetTransformInfo::CacheLevel::L1D:
112 LLVM_FALLTHROUGH;
113 case TargetTransformInfo::CacheLevel::L2D:
114 return 8;
115 }
116
117 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
118}
119
Chandler Carruth705b1852015-01-31 03:43:40 +0000120unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000121 if (Vector && !ST->hasSSE1())
122 return 0;
123
Adam Nemet2820a5b2014-07-09 18:22:33 +0000124 if (ST->is64Bit()) {
125 if (Vector && ST->hasAVX512())
126 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +0000127 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +0000128 }
Chandler Carruth664e3542013-01-07 01:37:14 +0000129 return 8;
130}
131
Keno Fischer1ec5dd82017-04-05 20:51:38 +0000132unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000133 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +0000134 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +0000135 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +0000136 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +0000137 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +0000138 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +0000139 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +0000140 return 0;
141 }
142
143 if (ST->is64Bit())
144 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +0000145
Hans Wennborg083ca9b2015-10-06 23:24:35 +0000146 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +0000147}
148
Keno Fischer1ec5dd82017-04-05 20:51:38 +0000149unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
150 return getRegisterBitWidth(true);
151}
152
Wei Mi062c7442015-05-06 17:12:25 +0000153unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
154 // If the loop will not be vectorized, don't interleave the loop.
155 // Let regular unroll to unroll the loop, which saves the overflow
156 // check and memory check cost.
157 if (VF == 1)
158 return 1;
159
Nadav Rotemb696c362013-01-09 01:15:42 +0000160 if (ST->isAtom())
161 return 1;
162
163 // Sandybridge and Haswell have multiple execution ports and pipelined
164 // vector units.
165 if (ST->hasAVX())
166 return 4;
167
168 return 2;
169}
170
Chandler Carruth93205eb2015-08-05 18:08:10 +0000171int X86TTIImpl::getArithmeticInstrCost(
Simon Pilgrim3e5b5252017-01-20 15:15:59 +0000172 unsigned Opcode, Type *Ty,
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000173 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
174 TTI::OperandValueProperties Opd1PropInfo,
175 TTI::OperandValueProperties Opd2PropInfo,
176 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000177 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000178 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000179
180 int ISD = TLI->InstructionOpcodeToISD(Opcode);
181 assert(ISD && "Invalid opcode");
182
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000183 static const CostTblEntry SLMCostTable[] = {
184 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
185 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
186 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
187 { ISD::FMUL, MVT::f64, 2 }, // mulsd
188 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
189 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
190 { ISD::FDIV, MVT::f32, 17 }, // divss
191 { ISD::FDIV, MVT::v4f32, 39 }, // divps
192 { ISD::FDIV, MVT::f64, 32 }, // divsd
193 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
194 { ISD::FADD, MVT::v2f64, 2 }, // addpd
195 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000196 // v2i64/v4i64 mul is custom lowered as a series of long:
197 // multiplies(3), shifts(3) and adds(2)
Simon Pilgrim7b89ab52017-07-31 17:09:27 +0000198 // slm muldq version throughput is 2 and addq throughput 4
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000199 // thus: 3X2 (muldq throughput) + 3X1 (shift throuput) +
Simon Pilgrim7b89ab52017-07-31 17:09:27 +0000200 // 3X4 (addq throughput) = 17
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000201 { ISD::MUL, MVT::v2i64, 17 },
202 // slm addq\subq throughput is 4
203 { ISD::ADD, MVT::v2i64, 4 },
204 { ISD::SUB, MVT::v2i64, 4 },
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000205 };
206
207 if (ST->isSLM()) {
208 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
209 // Check if the operands can be shrinked into a smaller datatype.
210 bool Op1Signed = false;
211 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
212 bool Op2Signed = false;
213 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
214
215 bool signedMode = Op1Signed | Op2Signed;
216 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
217
218 if (OpMinSize <= 7)
219 return LT.first * 3; // pmullw/sext
220 if (!signedMode && OpMinSize <= 8)
221 return LT.first * 3; // pmullw/zext
222 if (OpMinSize <= 15)
223 return LT.first * 5; // pmullw/pmulhw/pshuf
224 if (!signedMode && OpMinSize <= 16)
225 return LT.first * 5; // pmullw/pmulhw/pshuf
226 }
227 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
228 LT.second)) {
229 return LT.first * Entry->Cost;
230 }
231 }
232
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000233 if (ISD == ISD::SDIV &&
234 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
235 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
236 // On X86, vector signed division by constants power-of-two are
237 // normally expanded to the sequence SRA + SRL + ADD + SRA.
238 // The OperandValue properties many not be same as that of previous
239 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000240 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
241 Op2Info, TargetTransformInfo::OP_None,
242 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000243 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
244 TargetTransformInfo::OP_None,
245 TargetTransformInfo::OP_None);
246 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
247 TargetTransformInfo::OP_None,
248 TargetTransformInfo::OP_None);
249
250 return Cost;
251 }
252
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000253 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000254 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
255 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
256 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
257
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000258 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
259 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
260 };
261
262 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
263 ST->hasBWI()) {
264 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
265 LT.second))
266 return LT.first * Entry->Cost;
267 }
268
269 static const CostTblEntry AVX512UniformConstCostTable[] = {
Simon Pilgrimd419b732017-01-14 19:24:23 +0000270 { ISD::SRA, MVT::v2i64, 1 },
271 { ISD::SRA, MVT::v4i64, 1 },
272 { ISD::SRA, MVT::v8i64, 1 },
273
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000274 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
275 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
276 };
277
278 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
279 ST->hasAVX512()) {
280 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
281 LT.second))
282 return LT.first * Entry->Cost;
283 }
284
Craig Topper4b275762015-10-28 04:02:12 +0000285 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000286 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
287 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
288 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
289
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000290 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
291
Benjamin Kramer7c372272014-04-26 14:53:05 +0000292 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
293 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
294 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
295 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
296 };
297
298 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
299 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000300 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
301 LT.second))
302 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000303 }
304
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000305 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000306 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
307 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
308 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000309
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000310 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
311 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
312 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000313
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000314 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
315 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
316 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
317 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
318 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
319 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
320 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
321 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000322 };
323
324 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
325 ST->hasSSE2()) {
326 // pmuldq sequence.
327 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000328 return LT.first * 32;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000329 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
330 return LT.first * 15;
331
Simon Pilgrim5bef9c62017-05-14 17:59:46 +0000332 // XOP has faster vXi8 shifts.
333 if ((ISD != ISD::SHL && ISD != ISD::SRL && ISD != ISD::SRA) ||
334 !ST->hasXOP())
335 if (const auto *Entry =
336 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
337 return LT.first * Entry->Cost;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000338 }
339
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000340 static const CostTblEntry AVX2UniformCostTable[] = {
341 // Uniform splats are cheaper for the following instructions.
342 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
343 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
344 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
345 };
346
347 if (ST->hasAVX2() &&
348 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
349 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
350 if (const auto *Entry =
351 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
352 return LT.first * Entry->Cost;
353 }
354
355 static const CostTblEntry SSE2UniformCostTable[] = {
356 // Uniform splats are cheaper for the following instructions.
357 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
358 { ISD::SHL, MVT::v4i32, 1 }, // pslld
359 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
360
361 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
362 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
363 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
364
365 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
366 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
367 };
368
369 if (ST->hasSSE2() &&
370 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
371 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
372 if (const auto *Entry =
373 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
374 return LT.first * Entry->Cost;
375 }
376
Simon Pilgrim820e1322016-10-27 15:27:00 +0000377 static const CostTblEntry AVX512DQCostTable[] = {
378 { ISD::MUL, MVT::v2i64, 1 },
379 { ISD::MUL, MVT::v4i64, 1 },
380 { ISD::MUL, MVT::v8i64, 1 }
381 };
382
383 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000384 if (ST->hasDQI())
385 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000386 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000387
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000388 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim6ed996c2017-01-15 20:44:00 +0000389 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
390 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
391 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
392
393 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
394 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
395 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
396
Simon Pilgrima4109d62017-01-07 17:54:10 +0000397 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
398 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
399 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
400
Simon Pilgrim5a81fef2017-01-11 10:36:51 +0000401 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
402 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
403 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
404
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000405 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
406 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
407 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
408
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000409 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
410 { ISD::SDIV, MVT::v64i8, 64*20 },
411 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000412 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000413 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000414 };
415
416 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000417 if (ST->hasBWI())
418 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000419 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000420
Craig Topper4b275762015-10-28 04:02:12 +0000421 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000422 { ISD::SHL, MVT::v16i32, 1 },
423 { ISD::SRL, MVT::v16i32, 1 },
424 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000425
Simon Pilgrimd8333372017-01-06 11:12:53 +0000426 { ISD::SHL, MVT::v8i64, 1 },
427 { ISD::SRL, MVT::v8i64, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000428
429 { ISD::SRA, MVT::v2i64, 1 },
430 { ISD::SRA, MVT::v4i64, 1 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000431 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000432
Simon Pilgrimd8333372017-01-06 11:12:53 +0000433 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
434 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
435 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
436 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
437
438 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
439 { ISD::SDIV, MVT::v16i32, 16*20 },
440 { ISD::SDIV, MVT::v8i64, 8*20 },
441 { ISD::UDIV, MVT::v16i32, 16*20 },
442 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000443 };
444
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000445 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000446 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
447 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000448
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000449 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000450 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
451 // customize them to detect the cases where shift amount is a scalar one.
452 { ISD::SHL, MVT::v4i32, 1 },
453 { ISD::SRL, MVT::v4i32, 1 },
454 { ISD::SRA, MVT::v4i32, 1 },
455 { ISD::SHL, MVT::v8i32, 1 },
456 { ISD::SRL, MVT::v8i32, 1 },
457 { ISD::SRA, MVT::v8i32, 1 },
458 { ISD::SHL, MVT::v2i64, 1 },
459 { ISD::SRL, MVT::v2i64, 1 },
460 { ISD::SHL, MVT::v4i64, 1 },
461 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000462 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000463
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000464 // Look for AVX2 lowering tricks.
465 if (ST->hasAVX2()) {
466 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
467 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
468 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
469 // On AVX2, a packed v16i16 shift left by a constant build_vector
470 // is lowered into a vector multiply (vpmullw).
471 return LT.first;
472
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000473 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000474 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000475 }
476
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000477 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000478 // 128bit shifts take 1cy, but right shifts require negation beforehand.
479 { ISD::SHL, MVT::v16i8, 1 },
480 { ISD::SRL, MVT::v16i8, 2 },
481 { ISD::SRA, MVT::v16i8, 2 },
482 { ISD::SHL, MVT::v8i16, 1 },
483 { ISD::SRL, MVT::v8i16, 2 },
484 { ISD::SRA, MVT::v8i16, 2 },
485 { ISD::SHL, MVT::v4i32, 1 },
486 { ISD::SRL, MVT::v4i32, 2 },
487 { ISD::SRA, MVT::v4i32, 2 },
488 { ISD::SHL, MVT::v2i64, 1 },
489 { ISD::SRL, MVT::v2i64, 2 },
490 { ISD::SRA, MVT::v2i64, 2 },
491 // 256bit shifts require splitting if AVX2 didn't catch them above.
Simon Pilgrim4599eaa2017-05-14 13:38:53 +0000492 { ISD::SHL, MVT::v32i8, 2+2 },
493 { ISD::SRL, MVT::v32i8, 4+2 },
494 { ISD::SRA, MVT::v32i8, 4+2 },
495 { ISD::SHL, MVT::v16i16, 2+2 },
496 { ISD::SRL, MVT::v16i16, 4+2 },
497 { ISD::SRA, MVT::v16i16, 4+2 },
498 { ISD::SHL, MVT::v8i32, 2+2 },
499 { ISD::SRL, MVT::v8i32, 4+2 },
500 { ISD::SRA, MVT::v8i32, 4+2 },
501 { ISD::SHL, MVT::v4i64, 2+2 },
502 { ISD::SRL, MVT::v4i64, 4+2 },
503 { ISD::SRA, MVT::v4i64, 4+2 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000504 };
505
506 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000507 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000508 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000509 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000510
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000511 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000512 // Uniform splats are cheaper for the following instructions.
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000513 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split.
514 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split.
515 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000516
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000517 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split.
518 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split.
519 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000520
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000521 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split.
522 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split.
523 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle.
524 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000525 };
526
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000527 if (ST->hasSSE2() &&
528 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
529 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Simon Pilgrimf96b4ab2017-05-14 20:25:42 +0000530
531 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
532 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
533 return LT.first * 4; // 2*psrad + shuffle.
534
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000535 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000536 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000537 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000538 }
539
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000540 if (ISD == ISD::SHL &&
541 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000542 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000543 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000544 // into vector multiply.
545 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
546 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000547 ISD = ISD::MUL;
548 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000549
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000550 static const CostTblEntry AVX2CostTable[] = {
551 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
552 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
553
554 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
555 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
556
557 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
558 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
559 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
560 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
561
562 { ISD::SUB, MVT::v32i8, 1 }, // psubb
563 { ISD::ADD, MVT::v32i8, 1 }, // paddb
564 { ISD::SUB, MVT::v16i16, 1 }, // psubw
565 { ISD::ADD, MVT::v16i16, 1 }, // paddw
566 { ISD::SUB, MVT::v8i32, 1 }, // psubd
567 { ISD::ADD, MVT::v8i32, 1 }, // paddd
568 { ISD::SUB, MVT::v4i64, 1 }, // psubq
569 { ISD::ADD, MVT::v4i64, 1 }, // paddq
570
571 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
572 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
573 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
574 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
575 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
576
577 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
578 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
579 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
580 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
581 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
582 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
583 };
584
585 // Look for AVX2 lowering tricks for custom cases.
586 if (ST->hasAVX2())
587 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
588 return LT.first * Entry->Cost;
589
Simon Pilgrim100eae12017-01-07 17:03:51 +0000590 static const CostTblEntry AVX1CostTable[] = {
591 // We don't have to scalarize unsupported ops. We can issue two half-sized
592 // operations and we only need to extract the upper YMM half.
593 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000594 { ISD::MUL, MVT::v16i16, 4 },
595 { ISD::MUL, MVT::v8i32, 4 },
596 { ISD::SUB, MVT::v32i8, 4 },
597 { ISD::ADD, MVT::v32i8, 4 },
598 { ISD::SUB, MVT::v16i16, 4 },
599 { ISD::ADD, MVT::v16i16, 4 },
600 { ISD::SUB, MVT::v8i32, 4 },
601 { ISD::ADD, MVT::v8i32, 4 },
602 { ISD::SUB, MVT::v4i64, 4 },
603 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000604
605 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
606 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
607 // Because we believe v4i64 to be a legal type, we must also include the
608 // extract+insert in the cost table. Therefore, the cost here is 18
609 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000610 { ISD::MUL, MVT::v4i64, 18 },
611
612 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
613
614 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
615 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
616 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
617 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
618 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
619 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
620
621 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
622 { ISD::SDIV, MVT::v32i8, 32*20 },
623 { ISD::SDIV, MVT::v16i16, 16*20 },
624 { ISD::SDIV, MVT::v8i32, 8*20 },
625 { ISD::SDIV, MVT::v4i64, 4*20 },
626 { ISD::UDIV, MVT::v32i8, 32*20 },
627 { ISD::UDIV, MVT::v16i16, 16*20 },
628 { ISD::UDIV, MVT::v8i32, 8*20 },
629 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000630 };
631
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000632 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000633 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
634 return LT.first * Entry->Cost;
635
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000636 static const CostTblEntry SSE42CostTable[] = {
637 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
638 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
639 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
640 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
641 };
642
643 if (ST->hasSSE42())
644 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
645 return LT.first * Entry->Cost;
646
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000647 static const CostTblEntry SSE41CostTable[] = {
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000648 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
649 { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split.
650 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
651 { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
652 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
653 { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000654
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000655 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
656 { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split.
657 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
658 { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
659 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
660 { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split.
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000661
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000662 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
663 { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split.
664 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
665 { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
666 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
667 { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000668
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000669 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000670 };
671
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000672 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000673 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
674 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000675
Craig Topper4b275762015-10-28 04:02:12 +0000676 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000677 // We don't correctly identify costs of casts because they are marked as
678 // custom.
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000679 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
680 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
681 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
682 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
683 { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000684
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000685 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
686 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
687 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
688 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
689 { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000690
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000691 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
692 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
693 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
694 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
695 { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000696
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000697 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
698 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
699 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
700 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000701
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000702 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
703 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
704 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
705 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
Alexey Bataevd07c7312016-10-31 12:10:53 +0000706
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000707 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000708 // in the process we will often end up having to spilling regular
709 // registers. The overhead of division is going to dominate most kernels
710 // anyways so try hard to prevent vectorization of division - it is
711 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
712 // to hide "20 cycles" for each lane.
713 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000714 { ISD::SDIV, MVT::v8i16, 8*20 },
715 { ISD::SDIV, MVT::v4i32, 4*20 },
716 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000717 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000718 { ISD::UDIV, MVT::v8i16, 8*20 },
719 { ISD::UDIV, MVT::v4i32, 4*20 },
720 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000721 };
722
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000723 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000724 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
725 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000726
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000727 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000728 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
729 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
730 };
731
732 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000733 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000734 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000735
Chandler Carruth664e3542013-01-07 01:37:14 +0000736 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000737 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000738}
739
Chandler Carruth93205eb2015-08-05 18:08:10 +0000740int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
741 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000742 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
743 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
744 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000745
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000746 // For Broadcasts we are splatting the first element from the first input
747 // register, so only need to reference that input and all the output
748 // registers are the same.
749 if (Kind == TTI::SK_Broadcast)
750 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000751
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000752 // We are going to permute multiple sources and the result will be in multiple
753 // destinations. Providing an accurate cost only for splits where the element
754 // type remains the same.
755 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
756 MVT LegalVT = LT.second;
757 if (LegalVT.getVectorElementType().getSizeInBits() ==
758 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
759 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000760
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000761 unsigned VecTySize = DL.getTypeStoreSize(Tp);
762 unsigned LegalVTSize = LegalVT.getStoreSize();
763 // Number of source vectors after legalization:
764 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
765 // Number of destination vectors after legalization:
766 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000767
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000768 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
769 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000770
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000771 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
772 return NumOfShuffles *
773 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
774 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000775
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000776 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
777 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000778
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000779 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
780 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000781 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000782 int NumOfDests = LT.first;
783 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000784 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000785 }
786
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000787 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
788 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
789 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
790
791 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
792 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
793
794 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
795 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
796 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
797 };
798
799 if (ST->hasVBMI())
800 if (const auto *Entry =
801 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
802 return LT.first * Entry->Cost;
803
804 static const CostTblEntry AVX512BWShuffleTbl[] = {
805 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
806 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
807
808 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
809 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000810 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000811
812 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
813 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
814 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
815 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
816 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
817
818 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
819 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
820 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
821 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
822 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
823 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
824 };
825
826 if (ST->hasBWI())
827 if (const auto *Entry =
828 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
829 return LT.first * Entry->Cost;
830
831 static const CostTblEntry AVX512ShuffleTbl[] = {
832 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
833 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
834 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
835 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
836
837 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
838 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
839 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
840 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
841
842 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
843 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
844 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
845 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
846 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
847 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
848 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
849 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
850 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
851 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
852 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
853 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
854 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
855
856 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
857 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
858 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
859 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
860 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
861 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
862 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
863 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
864 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
865 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
866 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
867 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
868 };
869
870 if (ST->hasAVX512())
871 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
872 return LT.first * Entry->Cost;
873
874 static const CostTblEntry AVX2ShuffleTbl[] = {
875 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
876 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
877 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
878 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
879 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
880 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
881
882 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
883 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
884 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
885 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
886 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
887 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
888
889 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000890 { TTI::SK_Alternate, MVT::v32i8, 1 }, // vpblendvb
891
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000892 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
893 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000894 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
895 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
Simon Pilgrimac2e50a2017-08-10 18:29:34 +0000896 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vperm2i128 + 2*vpshufb
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000897 // + vpblendvb
Simon Pilgrimac2e50a2017-08-10 18:29:34 +0000898 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 }, // vperm2i128 + 2*vpshufb
899 // + vpblendvb
900
901 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 3 }, // 2*vpermpd + vblendpd
902 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 3 }, // 2*vpermps + vblendps
903 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 3 }, // 2*vpermq + vpblendd
904 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 3 }, // 2*vpermd + vpblendd
905 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 7 }, // 2*vperm2i128 + 4*vpshufb
906 // + vpblendvb
907 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 7 }, // 2*vperm2i128 + 4*vpshufb
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000908 // + vpblendvb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000909 };
910
911 if (ST->hasAVX2())
912 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
913 return LT.first * Entry->Cost;
914
Simon Pilgrimc63f93a2017-08-16 13:50:20 +0000915 static const CostTblEntry XOPShuffleTbl[] = {
916 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 2 }, // vperm2f128 + vpermil2pd
917 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 2 }, // vperm2f128 + vpermil2ps
918 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 2 }, // vperm2f128 + vpermil2pd
919 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 2 }, // vperm2f128 + vpermil2ps
920 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vextractf128 + 2*vpperm
921 // + vinsertf128
922 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 }, // vextractf128 + 2*vpperm
923 // + vinsertf128
924
925 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 9 }, // 2*vextractf128 + 6*vpperm
926 // + vinsertf128
927 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpperm
928 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 9 }, // 2*vextractf128 + 6*vpperm
929 // + vinsertf128
930 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 }, // vpperm
931 };
932
933 if (ST->hasXOP())
934 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
935 return LT.first * Entry->Cost;
936
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000937 static const CostTblEntry AVX1ShuffleTbl[] = {
938 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
939 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
940 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
941 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
942 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
943 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
944
945 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
946 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
947 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
948 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
949 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
950 // + vinsertf128
951 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
952 // + vinsertf128
953
954 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
955 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
956 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
957 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
958 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000959 { TTI::SK_Alternate, MVT::v32i8, 3 }, // vpand + vpandn + vpor
960
961 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 3 }, // 2*vperm2f128 + vshufpd
962 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 3 }, // 2*vperm2f128 + vshufpd
963 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 4 }, // 2*vperm2f128 + 2*vshufps
964 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 4 }, // 2*vperm2f128 + 2*vshufps
965 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 8 }, // vextractf128 + 4*pshufb
966 // + 2*por + vinsertf128
967 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 8 }, // vextractf128 + 4*pshufb
968 // + 2*por + vinsertf128
Simon Pilgrim73545312017-08-10 19:02:51 +0000969
970 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 4 }, // 2*vperm2f128 + 2*vshufpd
971 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 4 }, // 2*vperm2f128 + 2*vshufps
972 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 4 }, // 2*vperm2f128 + 2*vshufpd
973 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 4 }, // 2*vperm2f128 + 2*vshufps
974 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 15 }, // 2*vextractf128 + 8*pshufb
975 // + 4*por + vinsertf128
976 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 15 }, // 2*vextractf128 + 8*pshufb
977 // + 4*por + vinsertf128
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000978 };
979
980 if (ST->hasAVX())
981 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
982 return LT.first * Entry->Cost;
983
984 static const CostTblEntry SSE41ShuffleTbl[] = {
985 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
986 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
987 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
988 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
989 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
990 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
991 };
992
993 if (ST->hasSSE41())
994 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
995 return LT.first * Entry->Cost;
996
997 static const CostTblEntry SSSE3ShuffleTbl[] = {
998 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
999 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
1000
1001 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
1002 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
1003
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001004 { TTI::SK_Alternate, MVT::v8i16, 3 }, // 2*pshufb + por
1005 { TTI::SK_Alternate, MVT::v16i8, 3 }, // 2*pshufb + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +00001006
1007 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // pshufb
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001008 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
1009
1010 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 3 }, // 2*pshufb + por
1011 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 }, // 2*pshufb + por
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001012 };
1013
1014 if (ST->hasSSSE3())
1015 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1016 return LT.first * Entry->Cost;
1017
1018 static const CostTblEntry SSE2ShuffleTbl[] = {
1019 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
1020 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
1021 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001022 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001023 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
1024
1025 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
1026 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
1027 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001028 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001029 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
1030 // + 2*pshufd + 2*unpck + packus
1031
1032 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
1033 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
1034 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
1035 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +00001036 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pand + pandn + por
1037
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001038 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // shufpd
1039 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // pshufd
1040 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // pshufd
1041 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 5 }, // 2*pshuflw + 2*pshufhw
1042 // + pshufd/unpck
1043 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1044 // + 2*pshufd + 2*unpck + 2*packus
1045
1046 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
1047 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
1048 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
Simon Pilgrimb59c2d92017-08-10 19:32:35 +00001049 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
1050 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001051 };
1052
1053 if (ST->hasSSE2())
1054 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1055 return LT.first * Entry->Cost;
1056
1057 static const CostTblEntry SSE1ShuffleTbl[] = {
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001058 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
1059 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
1060 { TTI::SK_Alternate, MVT::v4f32, 2 }, // 2*shufps
1061 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1062 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001063 };
1064
1065 if (ST->hasSSE1())
1066 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1067 return LT.first * Entry->Cost;
1068
Chandler Carruth705b1852015-01-31 03:43:40 +00001069 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +00001070}
1071
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001072int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1073 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001074 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1075 assert(ISD && "Invalid opcode");
1076
Cong Hou59898d82015-12-11 00:31:39 +00001077 // FIXME: Need a better design of the cost table to handle non-simple types of
1078 // potential massive combinations (elem_num x src_type x dst_type).
1079
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001080 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001081 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1082 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001083 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1084 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001085 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1086 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1087
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001088 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001089 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001090 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001091 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001092 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001093 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001094
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001095 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001096 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001097 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001098 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001099 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001100 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
1101
1102 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
1103 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
1104 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
1105 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1106 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
1107 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001108 };
1109
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001110 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1111 // 256-bit wide vectors.
1112
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001113 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001114 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
1115 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
1116 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001117
1118 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
1119 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
1120 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
1121 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001122
1123 // v16i1 -> v16i32 - load + broadcast
1124 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
1125 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001126 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1127 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1128 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1129 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001130 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1131 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001132 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1133 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001134
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001135 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001136 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001137 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001138 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001139 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001140 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1141 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001142 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001143 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1144 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001145
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001146 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001147 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001148 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001149 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1150 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1151 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1152 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001153 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001154 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1155 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1156 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1157 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001158 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001159 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001160 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1161 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1162 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1163 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1164 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001165 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001166 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1167 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1168 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1169
1170 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1171 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1172 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
Zvi Rackover25799d92017-09-07 07:40:34 +00001173 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 2 },
1174 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001175 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Zvi Rackover25799d92017-09-07 07:40:34 +00001176 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 2 },
1177 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001178 };
1179
Craig Topper4b275762015-10-28 04:02:12 +00001180 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001181 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1182 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001183 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1184 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001185 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1186 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001187 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1188 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1189 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1190 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001191 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1192 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001193 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1194 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001195 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1196 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1197
1198 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1199 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1200 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1201 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1202 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1203 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001204
1205 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1206 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001207
1208 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001209 };
1210
Craig Topper4b275762015-10-28 04:02:12 +00001211 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001212 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1213 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001214 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1215 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001216 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1217 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001218 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1219 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1220 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1221 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001222 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1223 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001224 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1225 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001226 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1227 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1228
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001229 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1230 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1231 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001232 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1233 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1234 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001235 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001236
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001237 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001238 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001239 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1240 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001241 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001242 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1243 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001244 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001245 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1246 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001247 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001248 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001249
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001250 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001251 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001252 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1253 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001254 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001255 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1256 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001257 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001258 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001259 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001260 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001261 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001262 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001263 // The generic code to compute the scalar overhead is currently broken.
1264 // Workaround this limitation by estimating the scalarization overhead
1265 // here. We have roughly 10 instructions per scalar element.
1266 // Multiply that by the vector width.
1267 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001268 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1269 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1270 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1271 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001272
Renato Goline1fb0592013-01-20 20:57:20 +00001273 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001274 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001275 // This node is expanded into scalarized operations but BasicTTI is overly
1276 // optimistic estimating its cost. It computes 3 per element (one
1277 // vector-extract, one scalar conversion and one vector-insert). The
1278 // problem is that the inserts form a read-modify-write chain so latency
1279 // should be factored in too. Inflating the cost per element by 1.
1280 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001281 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001282
1283 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1284 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001285 };
1286
Cong Hou59898d82015-12-11 00:31:39 +00001287 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001288 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1289 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001290 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1291 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1292 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1293 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001294
Cong Hou59898d82015-12-11 00:31:39 +00001295 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1296 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001297 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1298 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1299 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1300 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1301 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1302 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1303 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1304 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1305 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1306 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1307 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1308 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1309 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1310 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1311 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1312 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001313
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001314 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1315 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1316 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001317 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001318 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001319 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001320 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1321
Cong Hou59898d82015-12-11 00:31:39 +00001322 };
1323
1324 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001325 // These are somewhat magic numbers justified by looking at the output of
1326 // Intel's IACA, running some kernels and making sure when we take
1327 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001328 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001329 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1330 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1331 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001332 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001333 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1334 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1335 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001336
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001337 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1338 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1339 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1340 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1341 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1342 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1343 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1344 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001345
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001346 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1347
Cong Hou59898d82015-12-11 00:31:39 +00001348 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1349 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001350 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1351 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1352 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1353 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1354 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1355 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1356 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1357 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1358 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1359 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1360 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1361 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1362 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1363 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1364 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1365 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1366 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1367 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1368 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001369 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001370 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1371 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001372
Cong Hou59898d82015-12-11 00:31:39 +00001373 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001374 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1375 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1376 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1377 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1378 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1379 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1380 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1381 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001382 };
1383
Chandler Carruth93205eb2015-08-05 18:08:10 +00001384 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1385 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001386
1387 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001388 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001389 LTDest.second, LTSrc.second))
1390 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001391 }
1392
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001393 EVT SrcTy = TLI->getValueType(DL, Src);
1394 EVT DstTy = TLI->getValueType(DL, Dst);
1395
1396 // The function getSimpleVT only handles simple value types.
1397 if (!SrcTy.isSimple() || !DstTy.isSimple())
1398 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1399
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001400 if (ST->hasDQI())
1401 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1402 DstTy.getSimpleVT(),
1403 SrcTy.getSimpleVT()))
1404 return Entry->Cost;
1405
1406 if (ST->hasAVX512())
1407 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1408 DstTy.getSimpleVT(),
1409 SrcTy.getSimpleVT()))
1410 return Entry->Cost;
1411
Tim Northoverf0e21612014-02-06 18:18:36 +00001412 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001413 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1414 DstTy.getSimpleVT(),
1415 SrcTy.getSimpleVT()))
1416 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001417 }
1418
Chandler Carruth664e3542013-01-07 01:37:14 +00001419 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001420 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1421 DstTy.getSimpleVT(),
1422 SrcTy.getSimpleVT()))
1423 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001424 }
1425
Cong Hou59898d82015-12-11 00:31:39 +00001426 if (ST->hasSSE41()) {
1427 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1428 DstTy.getSimpleVT(),
1429 SrcTy.getSimpleVT()))
1430 return Entry->Cost;
1431 }
1432
1433 if (ST->hasSSE2()) {
1434 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1435 DstTy.getSimpleVT(),
1436 SrcTy.getSimpleVT()))
1437 return Entry->Cost;
1438 }
1439
Alexey Bataeve25a6fd2017-11-07 14:23:44 +00001440 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
Chandler Carruth664e3542013-01-07 01:37:14 +00001441}
1442
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001443int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1444 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001445 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001446 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001447
1448 MVT MTy = LT.second;
1449
1450 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1451 assert(ISD && "Invalid opcode");
1452
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001453 static const CostTblEntry SSE2CostTbl[] = {
1454 { ISD::SETCC, MVT::v2i64, 8 },
1455 { ISD::SETCC, MVT::v4i32, 1 },
1456 { ISD::SETCC, MVT::v8i16, 1 },
1457 { ISD::SETCC, MVT::v16i8, 1 },
1458 };
1459
Craig Topper4b275762015-10-28 04:02:12 +00001460 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001461 { ISD::SETCC, MVT::v2f64, 1 },
1462 { ISD::SETCC, MVT::v4f32, 1 },
1463 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001464 };
1465
Craig Topper4b275762015-10-28 04:02:12 +00001466 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001467 { ISD::SETCC, MVT::v4f64, 1 },
1468 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001469 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001470 { ISD::SETCC, MVT::v4i64, 4 },
1471 { ISD::SETCC, MVT::v8i32, 4 },
1472 { ISD::SETCC, MVT::v16i16, 4 },
1473 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001474 };
1475
Craig Topper4b275762015-10-28 04:02:12 +00001476 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001477 { ISD::SETCC, MVT::v4i64, 1 },
1478 { ISD::SETCC, MVT::v8i32, 1 },
1479 { ISD::SETCC, MVT::v16i16, 1 },
1480 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001481 };
1482
Craig Topper4b275762015-10-28 04:02:12 +00001483 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001484 { ISD::SETCC, MVT::v8i64, 1 },
1485 { ISD::SETCC, MVT::v16i32, 1 },
1486 { ISD::SETCC, MVT::v8f64, 1 },
1487 { ISD::SETCC, MVT::v16f32, 1 },
1488 };
1489
Craig Topperee0c8592015-10-27 04:14:24 +00001490 if (ST->hasAVX512())
1491 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1492 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001493
Craig Topperee0c8592015-10-27 04:14:24 +00001494 if (ST->hasAVX2())
1495 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1496 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001497
Craig Topperee0c8592015-10-27 04:14:24 +00001498 if (ST->hasAVX())
1499 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1500 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001501
Craig Topperee0c8592015-10-27 04:14:24 +00001502 if (ST->hasSSE42())
1503 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1504 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001505
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001506 if (ST->hasSSE2())
1507 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1508 return LT.first * Entry->Cost;
1509
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001510 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
Chandler Carruth664e3542013-01-07 01:37:14 +00001511}
1512
Anna Thomasb2a212c2017-06-06 16:45:25 +00001513unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1514
Simon Pilgrim14000b32016-05-24 08:17:50 +00001515int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001516 ArrayRef<Type *> Tys, FastMathFlags FMF,
1517 unsigned ScalarizationCostPassed) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001518 // Costs should match the codegen from:
1519 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1520 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001521 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001522 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001523 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001524 static const CostTblEntry AVX512CDCostTbl[] = {
1525 { ISD::CTLZ, MVT::v8i64, 1 },
1526 { ISD::CTLZ, MVT::v16i32, 1 },
1527 { ISD::CTLZ, MVT::v32i16, 8 },
1528 { ISD::CTLZ, MVT::v64i8, 20 },
1529 { ISD::CTLZ, MVT::v4i64, 1 },
1530 { ISD::CTLZ, MVT::v8i32, 1 },
1531 { ISD::CTLZ, MVT::v16i16, 4 },
1532 { ISD::CTLZ, MVT::v32i8, 10 },
1533 { ISD::CTLZ, MVT::v2i64, 1 },
1534 { ISD::CTLZ, MVT::v4i32, 1 },
1535 { ISD::CTLZ, MVT::v8i16, 4 },
1536 { ISD::CTLZ, MVT::v16i8, 4 },
1537 };
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001538 static const CostTblEntry AVX512BWCostTbl[] = {
1539 { ISD::BITREVERSE, MVT::v8i64, 5 },
1540 { ISD::BITREVERSE, MVT::v16i32, 5 },
1541 { ISD::BITREVERSE, MVT::v32i16, 5 },
1542 { ISD::BITREVERSE, MVT::v64i8, 5 },
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001543 { ISD::CTLZ, MVT::v8i64, 23 },
1544 { ISD::CTLZ, MVT::v16i32, 22 },
1545 { ISD::CTLZ, MVT::v32i16, 18 },
1546 { ISD::CTLZ, MVT::v64i8, 17 },
Simon Pilgrim6bba6062017-05-18 10:42:34 +00001547 { ISD::CTPOP, MVT::v8i64, 7 },
1548 { ISD::CTPOP, MVT::v16i32, 11 },
1549 { ISD::CTPOP, MVT::v32i16, 9 },
1550 { ISD::CTPOP, MVT::v64i8, 6 },
Simon Pilgrimd0365962017-05-17 20:22:54 +00001551 { ISD::CTTZ, MVT::v8i64, 10 },
1552 { ISD::CTTZ, MVT::v16i32, 14 },
1553 { ISD::CTTZ, MVT::v32i16, 12 },
1554 { ISD::CTTZ, MVT::v64i8, 9 },
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001555 };
1556 static const CostTblEntry AVX512CostTbl[] = {
1557 { ISD::BITREVERSE, MVT::v8i64, 36 },
1558 { ISD::BITREVERSE, MVT::v16i32, 24 },
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001559 { ISD::CTLZ, MVT::v8i64, 29 },
1560 { ISD::CTLZ, MVT::v16i32, 35 },
Simon Pilgrim6bba6062017-05-18 10:42:34 +00001561 { ISD::CTPOP, MVT::v8i64, 16 },
1562 { ISD::CTPOP, MVT::v16i32, 24 },
Simon Pilgrimd0365962017-05-17 20:22:54 +00001563 { ISD::CTTZ, MVT::v8i64, 20 },
1564 { ISD::CTTZ, MVT::v16i32, 28 },
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001565 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001566 static const CostTblEntry XOPCostTbl[] = {
1567 { ISD::BITREVERSE, MVT::v4i64, 4 },
1568 { ISD::BITREVERSE, MVT::v8i32, 4 },
1569 { ISD::BITREVERSE, MVT::v16i16, 4 },
1570 { ISD::BITREVERSE, MVT::v32i8, 4 },
1571 { ISD::BITREVERSE, MVT::v2i64, 1 },
1572 { ISD::BITREVERSE, MVT::v4i32, 1 },
1573 { ISD::BITREVERSE, MVT::v8i16, 1 },
1574 { ISD::BITREVERSE, MVT::v16i8, 1 },
1575 { ISD::BITREVERSE, MVT::i64, 3 },
1576 { ISD::BITREVERSE, MVT::i32, 3 },
1577 { ISD::BITREVERSE, MVT::i16, 3 },
1578 { ISD::BITREVERSE, MVT::i8, 3 }
1579 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001580 static const CostTblEntry AVX2CostTbl[] = {
1581 { ISD::BITREVERSE, MVT::v4i64, 5 },
1582 { ISD::BITREVERSE, MVT::v8i32, 5 },
1583 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001584 { ISD::BITREVERSE, MVT::v32i8, 5 },
1585 { ISD::BSWAP, MVT::v4i64, 1 },
1586 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001587 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001588 { ISD::CTLZ, MVT::v4i64, 23 },
1589 { ISD::CTLZ, MVT::v8i32, 18 },
1590 { ISD::CTLZ, MVT::v16i16, 14 },
1591 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001592 { ISD::CTPOP, MVT::v4i64, 7 },
1593 { ISD::CTPOP, MVT::v8i32, 11 },
1594 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001595 { ISD::CTPOP, MVT::v32i8, 6 },
1596 { ISD::CTTZ, MVT::v4i64, 10 },
1597 { ISD::CTTZ, MVT::v8i32, 14 },
1598 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001599 { ISD::CTTZ, MVT::v32i8, 9 },
1600 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1601 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1602 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1603 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1604 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1605 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001606 };
1607 static const CostTblEntry AVX1CostTbl[] = {
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001608 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
1609 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
1610 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1611 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
Simon Pilgrim356e8232016-06-20 23:08:21 +00001612 { ISD::BSWAP, MVT::v4i64, 4 },
1613 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001614 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001615 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
1616 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
1617 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
1618 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
1619 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
1620 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
1621 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
1622 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
1623 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
1624 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
1625 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
1626 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
Alexey Bataevd07c7312016-10-31 12:10:53 +00001627 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1628 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1629 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1630 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1631 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1632 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1633 };
1634 static const CostTblEntry SSE42CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001635 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1636 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001637 };
1638 static const CostTblEntry SSSE3CostTbl[] = {
1639 { ISD::BITREVERSE, MVT::v2i64, 5 },
1640 { ISD::BITREVERSE, MVT::v4i32, 5 },
1641 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001642 { ISD::BITREVERSE, MVT::v16i8, 5 },
1643 { ISD::BSWAP, MVT::v2i64, 1 },
1644 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001645 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001646 { ISD::CTLZ, MVT::v2i64, 23 },
1647 { ISD::CTLZ, MVT::v4i32, 18 },
1648 { ISD::CTLZ, MVT::v8i16, 14 },
1649 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001650 { ISD::CTPOP, MVT::v2i64, 7 },
1651 { ISD::CTPOP, MVT::v4i32, 11 },
1652 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001653 { ISD::CTPOP, MVT::v16i8, 6 },
1654 { ISD::CTTZ, MVT::v2i64, 10 },
1655 { ISD::CTTZ, MVT::v4i32, 14 },
1656 { ISD::CTTZ, MVT::v8i16, 12 },
1657 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001658 };
1659 static const CostTblEntry SSE2CostTbl[] = {
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001660 { ISD::BITREVERSE, MVT::v2i64, 29 },
1661 { ISD::BITREVERSE, MVT::v4i32, 27 },
1662 { ISD::BITREVERSE, MVT::v8i16, 27 },
1663 { ISD::BITREVERSE, MVT::v16i8, 20 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001664 { ISD::BSWAP, MVT::v2i64, 7 },
1665 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001666 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001667 { ISD::CTLZ, MVT::v2i64, 25 },
1668 { ISD::CTLZ, MVT::v4i32, 26 },
1669 { ISD::CTLZ, MVT::v8i16, 20 },
1670 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001671 { ISD::CTPOP, MVT::v2i64, 12 },
1672 { ISD::CTPOP, MVT::v4i32, 15 },
1673 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001674 { ISD::CTPOP, MVT::v16i8, 10 },
1675 { ISD::CTTZ, MVT::v2i64, 14 },
1676 { ISD::CTTZ, MVT::v4i32, 18 },
1677 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001678 { ISD::CTTZ, MVT::v16i8, 13 },
1679 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1680 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1681 };
1682 static const CostTblEntry SSE1CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001683 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1684 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001685 };
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001686 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1687 { ISD::BITREVERSE, MVT::i64, 14 }
1688 };
1689 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1690 { ISD::BITREVERSE, MVT::i32, 14 },
1691 { ISD::BITREVERSE, MVT::i16, 14 },
1692 { ISD::BITREVERSE, MVT::i8, 11 }
1693 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001694
1695 unsigned ISD = ISD::DELETED_NODE;
1696 switch (IID) {
1697 default:
1698 break;
1699 case Intrinsic::bitreverse:
1700 ISD = ISD::BITREVERSE;
1701 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001702 case Intrinsic::bswap:
1703 ISD = ISD::BSWAP;
1704 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001705 case Intrinsic::ctlz:
1706 ISD = ISD::CTLZ;
1707 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001708 case Intrinsic::ctpop:
1709 ISD = ISD::CTPOP;
1710 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001711 case Intrinsic::cttz:
1712 ISD = ISD::CTTZ;
1713 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001714 case Intrinsic::sqrt:
1715 ISD = ISD::FSQRT;
1716 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001717 }
1718
1719 // Legalize the type.
1720 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1721 MVT MTy = LT.second;
1722
1723 // Attempt to lookup cost.
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001724 if (ST->hasCDI())
1725 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
1726 return LT.first * Entry->Cost;
1727
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001728 if (ST->hasBWI())
1729 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1730 return LT.first * Entry->Cost;
1731
1732 if (ST->hasAVX512())
1733 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1734 return LT.first * Entry->Cost;
1735
Simon Pilgrim14000b32016-05-24 08:17:50 +00001736 if (ST->hasXOP())
1737 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1738 return LT.first * Entry->Cost;
1739
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001740 if (ST->hasAVX2())
1741 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1742 return LT.first * Entry->Cost;
1743
1744 if (ST->hasAVX())
1745 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1746 return LT.first * Entry->Cost;
1747
Alexey Bataevd07c7312016-10-31 12:10:53 +00001748 if (ST->hasSSE42())
1749 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1750 return LT.first * Entry->Cost;
1751
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001752 if (ST->hasSSSE3())
1753 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1754 return LT.first * Entry->Cost;
1755
Simon Pilgrim356e8232016-06-20 23:08:21 +00001756 if (ST->hasSSE2())
1757 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1758 return LT.first * Entry->Cost;
1759
Alexey Bataevd07c7312016-10-31 12:10:53 +00001760 if (ST->hasSSE1())
1761 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1762 return LT.first * Entry->Cost;
1763
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001764 if (ST->is64Bit())
1765 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
1766 return LT.first * Entry->Cost;
1767
1768 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
1769 return LT.first * Entry->Cost;
1770
Jonas Paulssona48ea232017-03-14 06:35:36 +00001771 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001772}
1773
1774int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001775 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
1776 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001777}
1778
Chandler Carruth93205eb2015-08-05 18:08:10 +00001779int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001780 assert(Val->isVectorTy() && "This must be a vector type");
1781
Sanjay Patelaedc3472016-05-25 17:27:54 +00001782 Type *ScalarType = Val->getScalarType();
1783
Chandler Carruth664e3542013-01-07 01:37:14 +00001784 if (Index != -1U) {
1785 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001786 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001787
1788 // This type is legalized to a scalar type.
1789 if (!LT.second.isVector())
1790 return 0;
1791
1792 // The type may be split. Normalize the index to the new type.
1793 unsigned Width = LT.second.getVectorNumElements();
1794 Index = Index % Width;
1795
1796 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001797 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001798 return 0;
1799 }
1800
Sanjay Patelaedc3472016-05-25 17:27:54 +00001801 // Add to the base cost if we know that the extracted element of a vector is
1802 // destined to be moved to and used in the integer register file.
1803 int RegisterFileMoveCost = 0;
1804 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1805 RegisterFileMoveCost = 1;
1806
1807 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001808}
1809
Chandler Carruth93205eb2015-08-05 18:08:10 +00001810int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001811 unsigned AddressSpace, const Instruction *I) {
Alp Tokerf907b892013-12-05 05:44:44 +00001812 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001813 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1814 unsigned NumElem = VTy->getVectorNumElements();
1815
1816 // Handle a few common cases:
1817 // <3 x float>
1818 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1819 // Cost = 64 bit store + extract + 32 bit store.
1820 return 3;
1821
1822 // <3 x double>
1823 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1824 // Cost = 128 bit store + unpack + 64 bit store.
1825 return 3;
1826
Alp Tokerf907b892013-12-05 05:44:44 +00001827 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001828 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001829 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1830 AddressSpace);
1831 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1832 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001833 return NumElem * Cost + SplitCost;
1834 }
1835 }
1836
Chandler Carruth664e3542013-01-07 01:37:14 +00001837 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001838 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001839 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1840 "Invalid Opcode");
1841
1842 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001843 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001844
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001845 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1846 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1847 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1848 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001849
1850 return Cost;
1851}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001852
Chandler Carruth93205eb2015-08-05 18:08:10 +00001853int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1854 unsigned Alignment,
1855 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001856 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1857 if (!SrcVTy)
1858 // To calculate scalar take the regular cost, without mask
1859 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1860
1861 unsigned NumElem = SrcVTy->getVectorNumElements();
1862 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001863 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001864 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1865 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001866 !isPowerOf2_32(NumElem)) {
1867 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001868 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1869 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001870 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001871 int BranchCost = getCFInstrCost(Instruction::Br);
1872 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001873
Chandler Carruth93205eb2015-08-05 18:08:10 +00001874 int ValueSplitCost = getScalarizationOverhead(
1875 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1876 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001877 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1878 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001879 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1880 }
1881
1882 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001883 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001884 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001885 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001886 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001887 LT.second.getVectorNumElements() == NumElem)
1888 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001889 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1890 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001891
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001892 else if (LT.second.getVectorNumElements() > NumElem) {
1893 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1894 LT.second.getVectorNumElements());
1895 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001896 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001897 }
1898 if (!ST->hasAVX512())
1899 return Cost + LT.first*4; // Each maskmov costs 4
1900
1901 // AVX-512 masked load/store is cheapper
1902 return Cost+LT.first;
1903}
1904
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001905int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1906 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001907 // Address computations in vectorized code with non-consecutive addresses will
1908 // likely result in more instructions compared to scalar code where the
1909 // computation can more often be merged into the index mode. The resulting
1910 // extra micro-ops can significantly decrease throughput.
1911 unsigned NumVectorInstToHideOverhead = 10;
1912
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001913 // Cost modeling of Strided Access Computation is hidden by the indexing
1914 // modes of X86 regardless of the stride value. We dont believe that there
1915 // is a difference between constant strided access in gerenal and constant
1916 // strided value which is less than or equal to 64.
1917 // Even in the case of (loop invariant) stride whose value is not known at
1918 // compile time, the address computation will not incur more than one extra
1919 // ADD instruction.
1920 if (Ty->isVectorTy() && SE) {
1921 if (!BaseT::isStridedAccess(Ptr))
1922 return NumVectorInstToHideOverhead;
1923 if (!BaseT::getConstantStrideStep(SE, Ptr))
1924 return 1;
1925 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001926
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001927 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001928}
Yi Jiang5c343de2013-09-19 17:48:48 +00001929
Alexey Bataev3e9b3eb2017-07-31 14:19:32 +00001930int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
1931 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001932
Chandler Carruth93205eb2015-08-05 18:08:10 +00001933 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001934
Yi Jiang5c343de2013-09-19 17:48:48 +00001935 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001936
Yi Jiang5c343de2013-09-19 17:48:48 +00001937 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1938 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001939
1940 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1941 // and make it as the cost.
1942
Craig Topper4b275762015-10-28 04:02:12 +00001943 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001944 { ISD::FADD, MVT::v2f64, 2 },
1945 { ISD::FADD, MVT::v4f32, 4 },
1946 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1947 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1948 { ISD::ADD, MVT::v8i16, 5 },
1949 };
Michael Liao5bf95782014-12-04 05:20:33 +00001950
Craig Topper4b275762015-10-28 04:02:12 +00001951 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001952 { ISD::FADD, MVT::v4f32, 4 },
1953 { ISD::FADD, MVT::v4f64, 5 },
1954 { ISD::FADD, MVT::v8f32, 7 },
1955 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1956 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1957 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1958 { ISD::ADD, MVT::v8i16, 5 },
1959 { ISD::ADD, MVT::v8i32, 5 },
1960 };
1961
Craig Topper4b275762015-10-28 04:02:12 +00001962 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001963 { ISD::FADD, MVT::v2f64, 2 },
1964 { ISD::FADD, MVT::v4f32, 4 },
1965 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1966 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1967 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1968 };
Michael Liao5bf95782014-12-04 05:20:33 +00001969
Craig Topper4b275762015-10-28 04:02:12 +00001970 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001971 { ISD::FADD, MVT::v4f32, 3 },
1972 { ISD::FADD, MVT::v4f64, 3 },
1973 { ISD::FADD, MVT::v8f32, 4 },
1974 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1975 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1976 { ISD::ADD, MVT::v4i64, 3 },
1977 { ISD::ADD, MVT::v8i16, 4 },
1978 { ISD::ADD, MVT::v8i32, 5 },
1979 };
Michael Liao5bf95782014-12-04 05:20:33 +00001980
Yi Jiang5c343de2013-09-19 17:48:48 +00001981 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001982 if (ST->hasAVX())
1983 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1984 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001985
Craig Topperee0c8592015-10-27 04:14:24 +00001986 if (ST->hasSSE42())
1987 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1988 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001989 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001990 if (ST->hasAVX())
1991 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1992 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001993
Craig Topperee0c8592015-10-27 04:14:24 +00001994 if (ST->hasSSE42())
1995 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1996 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001997 }
1998
Alexey Bataev3e9b3eb2017-07-31 14:19:32 +00001999 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00002000}
2001
Alexey Bataev6dd29fc2017-09-08 13:49:36 +00002002int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2003 bool IsPairwise, bool IsUnsigned) {
2004 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2005
2006 MVT MTy = LT.second;
2007
2008 int ISD;
2009 if (ValTy->isIntOrIntVectorTy()) {
2010 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2011 } else {
2012 assert(ValTy->isFPOrFPVectorTy() &&
2013 "Expected float point or integer vector type.");
2014 ISD = ISD::FMINNUM;
2015 }
2016
2017 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2018 // and make it as the cost.
2019
2020 static const CostTblEntry SSE42CostTblPairWise[] = {
2021 {ISD::FMINNUM, MVT::v2f64, 3},
2022 {ISD::FMINNUM, MVT::v4f32, 2},
2023 {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2024 {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2025 {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2026 {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2027 {ISD::SMIN, MVT::v8i16, 2},
2028 {ISD::UMIN, MVT::v8i16, 2},
2029 };
2030
2031 static const CostTblEntry AVX1CostTblPairWise[] = {
2032 {ISD::FMINNUM, MVT::v4f32, 1},
2033 {ISD::FMINNUM, MVT::v4f64, 1},
2034 {ISD::FMINNUM, MVT::v8f32, 2},
2035 {ISD::SMIN, MVT::v2i64, 3},
2036 {ISD::UMIN, MVT::v2i64, 3},
2037 {ISD::SMIN, MVT::v4i32, 1},
2038 {ISD::UMIN, MVT::v4i32, 1},
2039 {ISD::SMIN, MVT::v8i16, 1},
2040 {ISD::UMIN, MVT::v8i16, 1},
2041 {ISD::SMIN, MVT::v8i32, 3},
2042 {ISD::UMIN, MVT::v8i32, 3},
2043 };
2044
2045 static const CostTblEntry AVX2CostTblPairWise[] = {
2046 {ISD::SMIN, MVT::v4i64, 2},
2047 {ISD::UMIN, MVT::v4i64, 2},
2048 {ISD::SMIN, MVT::v8i32, 1},
2049 {ISD::UMIN, MVT::v8i32, 1},
2050 {ISD::SMIN, MVT::v16i16, 1},
2051 {ISD::UMIN, MVT::v16i16, 1},
2052 {ISD::SMIN, MVT::v32i8, 2},
2053 {ISD::UMIN, MVT::v32i8, 2},
2054 };
2055
2056 static const CostTblEntry AVX512CostTblPairWise[] = {
2057 {ISD::FMINNUM, MVT::v8f64, 1},
2058 {ISD::FMINNUM, MVT::v16f32, 2},
2059 {ISD::SMIN, MVT::v8i64, 2},
2060 {ISD::UMIN, MVT::v8i64, 2},
2061 {ISD::SMIN, MVT::v16i32, 1},
2062 {ISD::UMIN, MVT::v16i32, 1},
2063 };
2064
2065 static const CostTblEntry SSE42CostTblNoPairWise[] = {
2066 {ISD::FMINNUM, MVT::v2f64, 3},
2067 {ISD::FMINNUM, MVT::v4f32, 3},
2068 {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2069 {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
2070 {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2071 {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2072 {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2073 {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2074 };
2075
2076 static const CostTblEntry AVX1CostTblNoPairWise[] = {
2077 {ISD::FMINNUM, MVT::v4f32, 1},
2078 {ISD::FMINNUM, MVT::v4f64, 1},
2079 {ISD::FMINNUM, MVT::v8f32, 1},
2080 {ISD::SMIN, MVT::v2i64, 3},
2081 {ISD::UMIN, MVT::v2i64, 3},
2082 {ISD::SMIN, MVT::v4i32, 1},
2083 {ISD::UMIN, MVT::v4i32, 1},
2084 {ISD::SMIN, MVT::v8i16, 1},
2085 {ISD::UMIN, MVT::v8i16, 1},
2086 {ISD::SMIN, MVT::v8i32, 2},
2087 {ISD::UMIN, MVT::v8i32, 2},
2088 };
2089
2090 static const CostTblEntry AVX2CostTblNoPairWise[] = {
2091 {ISD::SMIN, MVT::v4i64, 1},
2092 {ISD::UMIN, MVT::v4i64, 1},
2093 {ISD::SMIN, MVT::v8i32, 1},
2094 {ISD::UMIN, MVT::v8i32, 1},
2095 {ISD::SMIN, MVT::v16i16, 1},
2096 {ISD::UMIN, MVT::v16i16, 1},
2097 {ISD::SMIN, MVT::v32i8, 1},
2098 {ISD::UMIN, MVT::v32i8, 1},
2099 };
2100
2101 static const CostTblEntry AVX512CostTblNoPairWise[] = {
2102 {ISD::FMINNUM, MVT::v8f64, 1},
2103 {ISD::FMINNUM, MVT::v16f32, 2},
2104 {ISD::SMIN, MVT::v8i64, 1},
2105 {ISD::UMIN, MVT::v8i64, 1},
2106 {ISD::SMIN, MVT::v16i32, 1},
2107 {ISD::UMIN, MVT::v16i32, 1},
2108 };
2109
2110 if (IsPairwise) {
2111 if (ST->hasAVX512())
2112 if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
2113 return LT.first * Entry->Cost;
2114
2115 if (ST->hasAVX2())
2116 if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
2117 return LT.first * Entry->Cost;
2118
2119 if (ST->hasAVX())
2120 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2121 return LT.first * Entry->Cost;
2122
2123 if (ST->hasSSE42())
2124 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2125 return LT.first * Entry->Cost;
2126 } else {
2127 if (ST->hasAVX512())
2128 if (const auto *Entry =
2129 CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
2130 return LT.first * Entry->Cost;
2131
2132 if (ST->hasAVX2())
2133 if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
2134 return LT.first * Entry->Cost;
2135
2136 if (ST->hasAVX())
2137 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2138 return LT.first * Entry->Cost;
2139
2140 if (ST->hasSSE42())
2141 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2142 return LT.first * Entry->Cost;
2143 }
2144
2145 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
2146}
2147
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002148/// \brief Calculate the cost of materializing a 64-bit value. This helper
2149/// method might only calculate a fraction of a larger immediate. Therefore it
2150/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00002151int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002152 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002153 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002154
2155 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00002156 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002157
Chandler Carruth705b1852015-01-31 03:43:40 +00002158 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002159}
2160
Chandler Carruth93205eb2015-08-05 18:08:10 +00002161int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002162 assert(Ty->isIntegerTy());
2163
2164 unsigned BitSize = Ty->getPrimitiveSizeInBits();
2165 if (BitSize == 0)
2166 return ~0U;
2167
Juergen Ributzka43176172014-05-19 21:00:53 +00002168 // Never hoist constants larger than 128bit, because this might lead to
2169 // incorrect code generation or assertions in codegen.
2170 // Fixme: Create a cost model for types larger than i128 once the codegen
2171 // issues have been fixed.
2172 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00002173 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00002174
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002175 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002176 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002177
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002178 // Sign-extend all constants to a multiple of 64-bit.
2179 APInt ImmVal = Imm;
2180 if (BitSize & 0x3f)
2181 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
2182
2183 // Split the constant into 64-bit chunks and calculate the cost for each
2184 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00002185 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002186 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
2187 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
2188 int64_t Val = Tmp.getSExtValue();
2189 Cost += getIntImmCost(Val);
2190 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00002191 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00002192 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002193}
2194
Chandler Carruth93205eb2015-08-05 18:08:10 +00002195int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
2196 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002197 assert(Ty->isIntegerTy());
2198
2199 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00002200 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2201 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002202 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002203 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002204
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002205 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002206 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00002207 default:
2208 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002209 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00002210 // Always hoist the base address of a GetElementPtr. This prevents the
2211 // creation of new constants for every base constant that gets constant
2212 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00002213 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002214 return 2 * TTI::TCC_Basic;
2215 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002216 case Instruction::Store:
2217 ImmIdx = 0;
2218 break;
Craig Topper074e8452015-12-20 18:41:54 +00002219 case Instruction::ICmp:
2220 // This is an imperfect hack to prevent constant hoisting of
2221 // compares that might be trying to check if a 64-bit value fits in
2222 // 32-bits. The backend can optimize these cases using a right shift by 32.
2223 // Ideally we would check the compare predicate here. There also other
2224 // similar immediates the backend can use shifts for.
2225 if (Idx == 1 && Imm.getBitWidth() == 64) {
2226 uint64_t ImmVal = Imm.getZExtValue();
2227 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
2228 return TTI::TCC_Free;
2229 }
2230 ImmIdx = 1;
2231 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00002232 case Instruction::And:
2233 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2234 // by using a 32-bit operation with implicit zero extension. Detect such
2235 // immediates here as the normal path expects bit 31 to be sign extended.
2236 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
2237 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00002238 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002239 case Instruction::Add:
2240 case Instruction::Sub:
2241 case Instruction::Mul:
2242 case Instruction::UDiv:
2243 case Instruction::SDiv:
2244 case Instruction::URem:
2245 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002246 case Instruction::Or:
2247 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002248 ImmIdx = 1;
2249 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00002250 // Always return TCC_Free for the shift value of a shift instruction.
2251 case Instruction::Shl:
2252 case Instruction::LShr:
2253 case Instruction::AShr:
2254 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00002255 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00002256 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002257 case Instruction::Trunc:
2258 case Instruction::ZExt:
2259 case Instruction::SExt:
2260 case Instruction::IntToPtr:
2261 case Instruction::PtrToInt:
2262 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002263 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002264 case Instruction::Call:
2265 case Instruction::Select:
2266 case Instruction::Ret:
2267 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002268 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002269 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002270
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002271 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00002272 int NumConstants = (BitSize + 63) / 64;
2273 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00002274 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00002275 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00002276 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002277 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002278
Chandler Carruth705b1852015-01-31 03:43:40 +00002279 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002280}
2281
Chandler Carruth93205eb2015-08-05 18:08:10 +00002282int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
2283 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002284 assert(Ty->isIntegerTy());
2285
2286 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00002287 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2288 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002289 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002290 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002291
2292 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00002293 default:
2294 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002295 case Intrinsic::sadd_with_overflow:
2296 case Intrinsic::uadd_with_overflow:
2297 case Intrinsic::ssub_with_overflow:
2298 case Intrinsic::usub_with_overflow:
2299 case Intrinsic::smul_with_overflow:
2300 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002301 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00002302 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002303 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002304 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002305 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00002306 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002307 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002308 case Intrinsic::experimental_patchpoint_void:
2309 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002310 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00002311 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002312 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002313 }
Chandler Carruth705b1852015-01-31 03:43:40 +00002314 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002315}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002316
Elena Demikhovskyf58f8382017-08-20 12:34:29 +00002317unsigned X86TTIImpl::getUserCost(const User *U,
2318 ArrayRef<const Value *> Operands) {
2319 if (isa<StoreInst>(U)) {
2320 Value *Ptr = U->getOperand(1);
2321 // Store instruction with index and scale costs 2 Uops.
2322 // Check the preceding GEP to identify non-const indices.
2323 if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
2324 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
2325 return TTI::TCC_Basic * 2;
2326 }
2327 return TTI::TCC_Basic;
2328 }
2329 return BaseT::getUserCost(U, Operands);
2330}
2331
Elena Demikhovsky54946982015-12-28 20:10:59 +00002332// Return an average cost of Gather / Scatter instruction, maybe improved later
2333int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
2334 unsigned Alignment, unsigned AddressSpace) {
2335
2336 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
2337 unsigned VF = SrcVTy->getVectorNumElements();
2338
2339 // Try to reduce index size from 64 bit (default for GEP)
2340 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
2341 // operation will use 16 x 64 indices which do not fit in a zmm and needs
2342 // to split. Also check that the base pointer is the same for all lanes,
2343 // and that there's at most one variable index.
2344 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
2345 unsigned IndexSize = DL.getPointerSizeInBits();
2346 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2347 if (IndexSize < 64 || !GEP)
2348 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00002349
Elena Demikhovsky54946982015-12-28 20:10:59 +00002350 unsigned NumOfVarIndices = 0;
2351 Value *Ptrs = GEP->getPointerOperand();
2352 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
2353 return IndexSize;
2354 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
2355 if (isa<Constant>(GEP->getOperand(i)))
2356 continue;
2357 Type *IndxTy = GEP->getOperand(i)->getType();
2358 if (IndxTy->isVectorTy())
2359 IndxTy = IndxTy->getVectorElementType();
2360 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2361 !isa<SExtInst>(GEP->getOperand(i))) ||
2362 ++NumOfVarIndices > 1)
2363 return IndexSize; // 64
2364 }
2365 return (unsigned)32;
2366 };
2367
2368
2369 // Trying to reduce IndexSize to 32 bits for vector 16.
2370 // By default the IndexSize is equal to pointer size.
2371 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
2372 DL.getPointerSizeInBits();
2373
Mehdi Amini867e9142016-04-14 04:36:40 +00002374 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002375 IndexSize), VF);
2376 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
2377 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2378 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2379 if (SplitFactor > 1) {
2380 // Handle splitting of vector of pointers
2381 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2382 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2383 AddressSpace);
2384 }
2385
2386 // The gather / scatter cost is given by Intel architects. It is a rough
2387 // number since we are looking at one instruction in a time.
2388 const int GSOverhead = 2;
2389 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2390 Alignment, AddressSpace);
2391}
2392
2393/// Return the cost of full scalarization of gather / scatter operation.
2394///
2395/// Opcode - Load or Store instruction.
2396/// SrcVTy - The type of the data vector that should be gathered or scattered.
2397/// VariableMask - The mask is non-constant at compile time.
2398/// Alignment - Alignment for one element.
2399/// AddressSpace - pointer[s] address space.
2400///
2401int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2402 bool VariableMask, unsigned Alignment,
2403 unsigned AddressSpace) {
2404 unsigned VF = SrcVTy->getVectorNumElements();
2405
2406 int MaskUnpackCost = 0;
2407 if (VariableMask) {
2408 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002409 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002410 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2411 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002412 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002413 nullptr);
2414 int BranchCost = getCFInstrCost(Instruction::Br);
2415 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2416 }
2417
2418 // The cost of the scalar loads/stores.
2419 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2420 Alignment, AddressSpace);
2421
2422 int InsertExtractCost = 0;
2423 if (Opcode == Instruction::Load)
2424 for (unsigned i = 0; i < VF; ++i)
2425 // Add the cost of inserting each scalar load into the vector
2426 InsertExtractCost +=
2427 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2428 else
2429 for (unsigned i = 0; i < VF; ++i)
2430 // Add the cost of extracting each element out of the data vector
2431 InsertExtractCost +=
2432 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2433
2434 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2435}
2436
2437/// Calculate the cost of Gather / Scatter operation
2438int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2439 Value *Ptr, bool VariableMask,
2440 unsigned Alignment) {
2441 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2442 unsigned VF = SrcVTy->getVectorNumElements();
2443 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2444 if (!PtrTy && Ptr->getType()->isVectorTy())
2445 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2446 assert(PtrTy && "Unexpected type for Ptr argument");
2447 unsigned AddressSpace = PtrTy->getAddressSpace();
2448
2449 bool Scalarize = false;
2450 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2451 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2452 Scalarize = true;
2453 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2454 // Vector-4 of gather/scatter instruction does not exist on KNL.
2455 // We can extend it to 8 elements, but zeroing upper bits of
2456 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002457 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2458 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002459 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2460 Scalarize = true;
2461
2462 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002463 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2464 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002465
2466 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2467}
2468
Evgeny Stupachenkoc6752902017-08-07 19:56:34 +00002469bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
2470 TargetTransformInfo::LSRCost &C2) {
2471 // X86 specific here are "instruction number 1st priority".
2472 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
2473 C1.NumIVMuls, C1.NumBaseAdds,
2474 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
2475 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
2476 C2.NumIVMuls, C2.NumBaseAdds,
2477 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
2478}
2479
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002480bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
Craig Topper46a5d582017-11-16 06:02:05 +00002481 // The backend can't handle a single element vector.
2482 if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
2483 return false;
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002484 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002485 int DataWidth = isa<PointerType>(ScalarTy) ?
2486 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002487
Igor Bregerf44b79d2016-08-02 09:15:28 +00002488 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2489 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002490}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002491
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002492bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2493 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002494}
2495
Elena Demikhovsky09285852015-10-25 15:37:55 +00002496bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2497 // This function is called now in two cases: from the Loop Vectorizer
2498 // and from the Scalarizer.
2499 // When the Loop Vectorizer asks about legality of the feature,
2500 // the vectorization factor is not calculated yet. The Loop Vectorizer
2501 // sends a scalar type and the decision is based on the width of the
2502 // scalar element.
2503 // Later on, the cost model will estimate usage this intrinsic based on
2504 // the vector type.
2505 // The Scalarizer asks again about legality. It sends a vector type.
2506 // In this case we can reject non-power-of-2 vectors.
Craig Topper46a5d582017-11-16 06:02:05 +00002507 // We also reject single element vectors as the type legalizer can't
2508 // scalarize it.
2509 if (isa<VectorType>(DataTy)) {
2510 unsigned NumElts = DataTy->getVectorNumElements();
2511 if (NumElts == 1 || !isPowerOf2_32(NumElts))
2512 return false;
2513 }
Elena Demikhovsky09285852015-10-25 15:37:55 +00002514 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002515 int DataWidth = isa<PointerType>(ScalarTy) ?
2516 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002517
2518 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002519 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002520}
2521
2522bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2523 return isLegalMaskedGather(DataType);
2524}
2525
Sanjay Patel6fd43912017-09-09 13:38:18 +00002526bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
2527 EVT VT = TLI->getValueType(DL, DataType);
2528 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
2529}
2530
Eric Christopherd566fb12015-07-29 22:09:48 +00002531bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2532 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002533 const TargetMachine &TM = getTLI()->getTargetMachine();
2534
2535 // Work this as a subsetting of subtarget features.
2536 const FeatureBitset &CallerBits =
2537 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2538 const FeatureBitset &CalleeBits =
2539 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2540
2541 // FIXME: This is likely too limiting as it will include subtarget features
2542 // that we might not care about for inlining, but it is conservatively
2543 // correct.
2544 return (CallerBits & CalleeBits) == CalleeBits;
2545}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002546
Clement Courbetb2c3eb82017-10-30 14:19:33 +00002547const X86TTIImpl::TTI::MemCmpExpansionOptions *
2548X86TTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const {
2549 // Only enable vector loads for equality comparison.
2550 // Right now the vector version is not as fast, see #33329.
2551 static const auto ThreeWayOptions = [this]() {
2552 TTI::MemCmpExpansionOptions Options;
2553 if (ST->is64Bit()) {
2554 Options.LoadSizes.push_back(8);
2555 }
2556 Options.LoadSizes.push_back(4);
2557 Options.LoadSizes.push_back(2);
2558 Options.LoadSizes.push_back(1);
2559 return Options;
2560 }();
2561 static const auto EqZeroOptions = [this]() {
2562 TTI::MemCmpExpansionOptions Options;
2563 // TODO: enable AVX512 when the DAG is ready.
2564 // if (ST->hasAVX512()) Options.LoadSizes.push_back(64);
2565 if (ST->hasAVX2()) Options.LoadSizes.push_back(32);
2566 if (ST->hasSSE2()) Options.LoadSizes.push_back(16);
2567 if (ST->is64Bit()) {
2568 Options.LoadSizes.push_back(8);
2569 }
2570 Options.LoadSizes.push_back(4);
2571 Options.LoadSizes.push_back(2);
2572 Options.LoadSizes.push_back(1);
2573 return Options;
2574 }();
2575 return IsZeroCmp ? &EqZeroOptions : &ThreeWayOptions;
Sanjay Patel06566292017-06-20 15:58:30 +00002576}
2577
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002578bool X86TTIImpl::enableInterleavedAccessVectorization() {
2579 // TODO: We expect this to be beneficial regardless of arch,
2580 // but there are currently some unexplained performance artifacts on Atom.
2581 // As a temporary solution, disable on Atom.
Mohammed Agabaria20caee92017-01-25 09:14:48 +00002582 return !(ST->isAtom());
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002583}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002584
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002585// Get estimation for interleaved load/store operations for AVX2.
2586// \p Factor is the interleaved-access factor (stride) - number of
2587// (interleaved) elements in the group.
2588// \p Indices contains the indices for a strided load: when the
2589// interleaved load has gaps they indicate which elements are used.
2590// If Indices is empty (or if the number of indices is equal to the size
2591// of the interleaved-access as given in \p Factor) the access has no gaps.
2592//
2593// As opposed to AVX-512, AVX2 does not have generic shuffles that allow
2594// computing the cost using a generic formula as a function of generic
2595// shuffles. We therefore use a lookup table instead, filled according to
2596// the instruction sequences that codegen currently generates.
2597int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
2598 unsigned Factor,
2599 ArrayRef<unsigned> Indices,
2600 unsigned Alignment,
2601 unsigned AddressSpace) {
2602
2603 // We currently Support only fully-interleaved groups, with no gaps.
2604 // TODO: Support also strided loads (interleaved-groups with gaps).
2605 if (Indices.size() && Indices.size() != Factor)
2606 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2607 Alignment, AddressSpace);
2608
2609 // VecTy for interleave memop is <VF*Factor x Elt>.
2610 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2611 // VecTy = <12 x i32>.
2612 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2613
2614 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
2615 // the VF=2, while v2i128 is an unsupported MVT vector type
2616 // (see MachineValueType.h::getVectorVT()).
2617 if (!LegalVT.isVector())
2618 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2619 Alignment, AddressSpace);
2620
2621 unsigned VF = VecTy->getVectorNumElements() / Factor;
2622 Type *ScalarTy = VecTy->getVectorElementType();
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002623
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002624 // Calculate the number of memory operations (NumOfMemOps), required
2625 // for load/store the VecTy.
2626 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2627 unsigned LegalVTSize = LegalVT.getStoreSize();
2628 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2629
2630 // Get the cost of one memory operation.
2631 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2632 LegalVT.getVectorNumElements());
2633 unsigned MemOpCost =
2634 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002635
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002636 VectorType *VT = VectorType::get(ScalarTy, VF);
2637 EVT ETy = TLI->getValueType(DL, VT);
2638 if (!ETy.isSimple())
2639 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2640 Alignment, AddressSpace);
2641
2642 // TODO: Complete for other data-types and strides.
2643 // Each combination of Stride, ElementTy and VF results in a different
2644 // sequence; The cost tables are therefore accessed with:
2645 // Factor (stride) and VectorType=VFxElemType.
2646 // The Cost accounts only for the shuffle sequence;
2647 // The cost of the loads/stores is accounted for separately.
2648 //
2649 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
Mohammed Agabaria6e6d5322017-11-16 09:38:32 +00002650 { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
2651 { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
2652
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002653 { 3, MVT::v2i8, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8
2654 { 3, MVT::v4i8, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8
2655 { 3, MVT::v8i8, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8
Michael Zuckerman49293262017-10-18 11:41:55 +00002656 { 3, MVT::v16i8, 11}, //(load 48i8 and) deinterleave into 3 x 16i8
2657 { 3, MVT::v32i8, 13}, //(load 96i8 and) deinterleave into 3 x 32i8
Mohammed Agabaria66917582017-11-06 10:56:20 +00002658 { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002659
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002660 { 4, MVT::v2i8, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8
2661 { 4, MVT::v4i8, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8
2662 { 4, MVT::v8i8, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8
2663 { 4, MVT::v16i8, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8
Mohammed Agabaria66917582017-11-06 10:56:20 +00002664 { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
2665
2666 { 8, MVT::v8f32, 40 } //(load 64f32 and)deinterleave into 8 x 8f32
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002667 };
2668
2669 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
Mohammed Agabaria6e6d5322017-11-16 09:38:32 +00002670 { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
2671 { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
2672
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002673 { 3, MVT::v2i8, 7 }, //interleave 3 x 2i8 into 6i8 (and store)
2674 { 3, MVT::v4i8, 8 }, //interleave 3 x 4i8 into 12i8 (and store)
2675 { 3, MVT::v8i8, 11 }, //interleave 3 x 8i8 into 24i8 (and store)
Michael Zuckerman49293262017-10-18 11:41:55 +00002676 { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
2677 { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002678
2679 { 4, MVT::v2i8, 12 }, //interleave 4 x 2i8 into 8i8 (and store)
2680 { 4, MVT::v4i8, 9 }, //interleave 4 x 4i8 into 16i8 (and store)
Michael Zuckerman49293262017-10-18 11:41:55 +00002681 { 4, MVT::v8i8, 10 }, //interleave 4 x 8i8 into 32i8 (and store)
2682 { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
2683 { 4, MVT::v32i8, 12 } //interleave 4 x 32i8 into 128i8 (and store)
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002684 };
2685
2686 if (Opcode == Instruction::Load) {
2687 if (const auto *Entry =
2688 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
2689 return NumOfMemOps * MemOpCost + Entry->Cost;
2690 } else {
2691 assert(Opcode == Instruction::Store &&
2692 "Expected Store Instruction at this point");
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002693 if (const auto *Entry =
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002694 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
2695 return NumOfMemOps * MemOpCost + Entry->Cost;
2696 }
2697
2698 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2699 Alignment, AddressSpace);
2700}
2701
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002702// Get estimation for interleaved load/store operations and strided load.
2703// \p Indices contains indices for strided load.
2704// \p Factor - the factor of interleaving.
2705// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2706int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2707 unsigned Factor,
2708 ArrayRef<unsigned> Indices,
2709 unsigned Alignment,
2710 unsigned AddressSpace) {
2711
2712 // VecTy for interleave memop is <VF*Factor x Elt>.
2713 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2714 // VecTy = <12 x i32>.
2715
2716 // Calculate the number of memory operations (NumOfMemOps), required
2717 // for load/store the VecTy.
2718 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2719 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2720 unsigned LegalVTSize = LegalVT.getStoreSize();
2721 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2722
2723 // Get the cost of one memory operation.
2724 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2725 LegalVT.getVectorNumElements());
2726 unsigned MemOpCost =
2727 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2728
Michael Zuckerman49293262017-10-18 11:41:55 +00002729 unsigned VF = VecTy->getVectorNumElements() / Factor;
2730 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
2731
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002732 if (Opcode == Instruction::Load) {
Michael Zuckerman49293262017-10-18 11:41:55 +00002733 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
2734 // contain the cost of the optimized shuffle sequence that the
2735 // X86InterleavedAccess pass will generate.
2736 // The cost of loads and stores are computed separately from the table.
2737
2738 // X86InterleavedAccess support only the following interleaved-access group.
2739 static const CostTblEntry AVX512InterleavedLoadTbl[] = {
2740 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
2741 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
2742 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
2743 };
2744
2745 if (const auto *Entry =
2746 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
2747 return NumOfMemOps * MemOpCost + Entry->Cost;
2748 //If an entry does not exist, fallback to the default implementation.
2749
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002750 // Kind of shuffle depends on number of loaded values.
2751 // If we load the entire data in one register, we can use a 1-src shuffle.
2752 // Otherwise, we'll merge 2 sources in each operation.
2753 TTI::ShuffleKind ShuffleKind =
2754 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2755
2756 unsigned ShuffleCost =
2757 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2758
2759 unsigned NumOfLoadsInInterleaveGrp =
2760 Indices.size() ? Indices.size() : Factor;
2761 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2762 VecTy->getVectorNumElements() / Factor);
2763 unsigned NumOfResults =
2764 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2765 NumOfLoadsInInterleaveGrp;
2766
2767 // About a half of the loads may be folded in shuffles when we have only
2768 // one result. If we have more than one result, we do not fold loads at all.
2769 unsigned NumOfUnfoldedLoads =
2770 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2771
2772 // Get a number of shuffle operations per result.
2773 unsigned NumOfShufflesPerResult =
2774 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2775
2776 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2777 // When we have more than one destination, we need additional instructions
2778 // to keep sources.
2779 unsigned NumOfMoves = 0;
2780 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2781 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2782
2783 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2784 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2785
2786 return Cost;
2787 }
2788
2789 // Store.
2790 assert(Opcode == Instruction::Store &&
2791 "Expected Store Instruction at this point");
Michael Zuckerman49293262017-10-18 11:41:55 +00002792 // X86InterleavedAccess support only the following interleaved-access group.
2793 static const CostTblEntry AVX512InterleavedStoreTbl[] = {
2794 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
2795 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
2796 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
2797
2798 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
2799 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
2800 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
2801 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
2802 };
2803
2804 if (const auto *Entry =
2805 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
2806 return NumOfMemOps * MemOpCost + Entry->Cost;
2807 //If an entry does not exist, fallback to the default implementation.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002808
2809 // There is no strided stores meanwhile. And store can't be folded in
2810 // shuffle.
2811 unsigned NumOfSources = Factor; // The number of values to be merged.
2812 unsigned ShuffleCost =
2813 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2814 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2815
2816 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2817 // We need additional instructions to keep sources.
2818 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2819 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2820 NumOfMoves;
2821 return Cost;
2822}
2823
2824int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2825 unsigned Factor,
2826 ArrayRef<unsigned> Indices,
2827 unsigned Alignment,
2828 unsigned AddressSpace) {
2829 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2830 RequiresBW = false;
2831 Type *EltTy = VecTy->getVectorElementType();
2832 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2833 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2834 return true;
2835 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2836 RequiresBW = true;
2837 return true;
2838 }
2839 return false;
2840 };
2841 bool RequiresBW;
2842 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2843 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2844 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2845 Alignment, AddressSpace);
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002846 if (ST->hasAVX2())
2847 return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
2848 Alignment, AddressSpace);
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002849
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002850 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2851 Alignment, AddressSpace);
2852}