blob: 71a0a7d6c63c61fe9149900b0d0a58b86f080cfc [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
Bill Wendlingb4d076e2011-10-11 06:41:28 +000038 <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000039 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Eli Friedman35b54aa2011-07-20 21:35:53 +000056 <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
Eli Friedmanc9a551e2011-07-28 21:48:00 +000057 <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000058 </ol>
59 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000060 <li><a href="#typesystem">Type System</a>
61 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000062 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000063 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000065 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000067 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000068 <li><a href="#t_void">Void Type</a></li>
69 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000070 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#t_derived">Derived Types</a>
74 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000075 <li><a href="#t_aggregate">Aggregate Types</a>
76 <ol>
77 <li><a href="#t_array">Array Type</a></li>
78 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattner2a843822011-07-23 19:59:08 +000079 <li><a href="#t_opaque">Opaque Structure Types</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000080 <li><a href="#t_vector">Vector Type</a></li>
81 </ol>
82 </li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#t_function">Function Type</a></li>
84 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 </ol>
86 </li>
87 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104 <ol>
105 <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +0000106 <li><a href="#fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000107 </ol>
108 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000109 </ol>
110 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000111 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
112 <ol>
113 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000114 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
115 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000116 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
117 Global Variable</a></li>
118 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
119 Global Variable</a></li>
120 </ol>
121 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000122 <li><a href="#instref">Instruction Reference</a>
123 <ol>
124 <li><a href="#terminators">Terminator Instructions</a>
125 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
127 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000128 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000129 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000130 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000131 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Bill Wendlingf891bf82011-07-31 06:30:59 +0000132 <li><a href="#i_resume">'<tt>resume</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000133 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000134 </ol>
135 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000136 <li><a href="#binaryops">Binary Operations</a>
137 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000138 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000139 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000140 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000141 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000142 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000143 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000144 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
145 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
146 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000147 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
148 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
149 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000150 </ol>
151 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000152 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
153 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000154 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
155 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
156 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000157 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000158 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000159 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000160 </ol>
161 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000162 <li><a href="#vectorops">Vector Operations</a>
163 <ol>
164 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
165 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
166 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000167 </ol>
168 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000169 <li><a href="#aggregateops">Aggregate Operations</a>
170 <ol>
171 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
172 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
173 </ol>
174 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000175 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000176 <ol>
Eli Friedmanc9a551e2011-07-28 21:48:00 +0000177 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
178 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
179 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
180 <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
181 <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
182 <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000183 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000184 </ol>
185 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000186 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000187 <ol>
188 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
189 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
190 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
191 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
192 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000193 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
194 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
195 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
196 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000197 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
198 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000199 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000200 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000201 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000202 <li><a href="#otherops">Other Operations</a>
203 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000204 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
205 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000206 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000207 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000208 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000209 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +0000210 <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000211 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000212 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000213 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000214 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000215 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000216 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000217 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
218 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000219 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
220 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
221 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000222 </ol>
223 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000224 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
225 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000226 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
227 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
228 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000229 </ol>
230 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000231 <li><a href="#int_codegen">Code Generator Intrinsics</a>
232 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000233 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
234 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
235 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
236 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
237 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
238 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000239 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000240 </ol>
241 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000242 <li><a href="#int_libc">Standard C Library Intrinsics</a>
243 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000244 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
245 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
246 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
247 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
248 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000249 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
250 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
251 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmane635c522011-05-27 00:36:31 +0000252 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
253 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
Cameron Zwarichf03fa182011-07-08 21:39:21 +0000254 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000255 </ol>
256 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000257 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000258 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000259 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000260 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
261 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
262 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000263 </ol>
264 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000265 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
266 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000267 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
268 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
269 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
270 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
271 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000272 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000273 </ol>
274 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000275 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
276 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000277 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
278 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000279 </ol>
280 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000281 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000282 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000283 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000284 <ol>
285 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000286 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000287 </ol>
288 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000289 <li><a href="#int_memorymarkers">Memory Use Markers</a>
290 <ol>
291 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
292 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
293 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
294 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
295 </ol>
296 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000297 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000298 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000299 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000300 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000301 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000302 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000303 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000304 '<tt>llvm.trap</tt>' Intrinsic</a></li>
305 <li><a href="#int_stackprotector">
306 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000307 <li><a href="#int_objectsize">
308 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000309 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000310 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000311 </ol>
312 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000313</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000314
315<div class="doc_author">
316 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
317 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000318</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000319
Chris Lattner2f7c9632001-06-06 20:29:01 +0000320<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000321<h2><a name="abstract">Abstract</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000322<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000323
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000324<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000325
326<p>This document is a reference manual for the LLVM assembly language. LLVM is
327 a Static Single Assignment (SSA) based representation that provides type
328 safety, low-level operations, flexibility, and the capability of representing
329 'all' high-level languages cleanly. It is the common code representation
330 used throughout all phases of the LLVM compilation strategy.</p>
331
Misha Brukman76307852003-11-08 01:05:38 +0000332</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000333
Chris Lattner2f7c9632001-06-06 20:29:01 +0000334<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000335<h2><a name="introduction">Introduction</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000336<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000337
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000338<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000339
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000340<p>The LLVM code representation is designed to be used in three different forms:
341 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
342 for fast loading by a Just-In-Time compiler), and as a human readable
343 assembly language representation. This allows LLVM to provide a powerful
344 intermediate representation for efficient compiler transformations and
345 analysis, while providing a natural means to debug and visualize the
346 transformations. The three different forms of LLVM are all equivalent. This
347 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000348
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000349<p>The LLVM representation aims to be light-weight and low-level while being
350 expressive, typed, and extensible at the same time. It aims to be a
351 "universal IR" of sorts, by being at a low enough level that high-level ideas
352 may be cleanly mapped to it (similar to how microprocessors are "universal
353 IR's", allowing many source languages to be mapped to them). By providing
354 type information, LLVM can be used as the target of optimizations: for
355 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000356 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000357 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000358
Chris Lattner2f7c9632001-06-06 20:29:01 +0000359<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000360<h4>
361 <a name="wellformed">Well-Formedness</a>
362</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000363
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000364<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000365
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000366<p>It is important to note that this document describes 'well formed' LLVM
367 assembly language. There is a difference between what the parser accepts and
368 what is considered 'well formed'. For example, the following instruction is
369 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000370
Benjamin Kramer79698be2010-07-13 12:26:09 +0000371<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000372%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000373</pre>
374
Bill Wendling7f4a3362009-11-02 00:24:16 +0000375<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
376 LLVM infrastructure provides a verification pass that may be used to verify
377 that an LLVM module is well formed. This pass is automatically run by the
378 parser after parsing input assembly and by the optimizer before it outputs
379 bitcode. The violations pointed out by the verifier pass indicate bugs in
380 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000381
Bill Wendling3716c5d2007-05-29 09:04:49 +0000382</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000383
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000384</div>
385
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000386<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000387
Chris Lattner2f7c9632001-06-06 20:29:01 +0000388<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000389<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000390<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000391
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000392<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000393
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000394<p>LLVM identifiers come in two basic types: global and local. Global
395 identifiers (functions, global variables) begin with the <tt>'@'</tt>
396 character. Local identifiers (register names, types) begin with
397 the <tt>'%'</tt> character. Additionally, there are three different formats
398 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000399
Chris Lattner2f7c9632001-06-06 20:29:01 +0000400<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000401 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000402 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
403 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
404 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
405 other characters in their names can be surrounded with quotes. Special
406 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
407 ASCII code for the character in hexadecimal. In this way, any character
408 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000409
Reid Spencerb23b65f2007-08-07 14:34:28 +0000410 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000411 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000412
Reid Spencer8f08d802004-12-09 18:02:53 +0000413 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000414 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000415</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000416
Reid Spencerb23b65f2007-08-07 14:34:28 +0000417<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000418 don't need to worry about name clashes with reserved words, and the set of
419 reserved words may be expanded in the future without penalty. Additionally,
420 unnamed identifiers allow a compiler to quickly come up with a temporary
421 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
Chris Lattner48b383b02003-11-25 01:02:51 +0000423<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000424 languages. There are keywords for different opcodes
425 ('<tt><a href="#i_add">add</a></tt>',
426 '<tt><a href="#i_bitcast">bitcast</a></tt>',
427 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
428 ('<tt><a href="#t_void">void</a></tt>',
429 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
430 reserved words cannot conflict with variable names, because none of them
431 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000432
433<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000434 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000435
Misha Brukman76307852003-11-08 01:05:38 +0000436<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000437
Benjamin Kramer79698be2010-07-13 12:26:09 +0000438<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000439%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440</pre>
441
Misha Brukman76307852003-11-08 01:05:38 +0000442<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000443
Benjamin Kramer79698be2010-07-13 12:26:09 +0000444<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000445%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000446</pre>
447
Misha Brukman76307852003-11-08 01:05:38 +0000448<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000449
Benjamin Kramer79698be2010-07-13 12:26:09 +0000450<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000451%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
452%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000453%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000454</pre>
455
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000456<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
457 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000458
Chris Lattner2f7c9632001-06-06 20:29:01 +0000459<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000460 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000461 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000462
463 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000464 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000465
Misha Brukman76307852003-11-08 01:05:38 +0000466 <li>Unnamed temporaries are numbered sequentially</li>
467</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000468
Bill Wendling7f4a3362009-11-02 00:24:16 +0000469<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000470 demonstrating instructions, we will follow an instruction with a comment that
471 defines the type and name of value produced. Comments are shown in italic
472 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000473
Misha Brukman76307852003-11-08 01:05:38 +0000474</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000475
476<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000477<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattner6af02f32004-12-09 16:11:40 +0000478<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000479<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000480<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000481<h3>
482 <a name="modulestructure">Module Structure</a>
483</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000484
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000485<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000486
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000487<p>LLVM programs are composed of "Module"s, each of which is a translation unit
488 of the input programs. Each module consists of functions, global variables,
489 and symbol table entries. Modules may be combined together with the LLVM
490 linker, which merges function (and global variable) definitions, resolves
491 forward declarations, and merges symbol table entries. Here is an example of
492 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493
Benjamin Kramer79698be2010-07-13 12:26:09 +0000494<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000495<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckyfea7ddc2011-01-29 01:09:53 +0000496<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000497
Chris Lattner54a7be72010-08-17 17:13:42 +0000498<i>; External declaration of the puts function</i>&nbsp;
499<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000500
501<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000502define i32 @main() { <i>; i32()* </i>&nbsp;
503 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
504 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000505
Chris Lattner54a7be72010-08-17 17:13:42 +0000506 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
507 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
508 <a href="#i_ret">ret</a> i32 0&nbsp;
509}
Devang Pateld1a89692010-01-11 19:35:55 +0000510
511<i>; Named metadata</i>
512!1 = metadata !{i32 41}
513!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000514</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000515
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000516<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000517 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000518 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000519 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
520 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000521
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000522<p>In general, a module is made up of a list of global values, where both
523 functions and global variables are global values. Global values are
524 represented by a pointer to a memory location (in this case, a pointer to an
525 array of char, and a pointer to a function), and have one of the
526 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000527
Chris Lattnerd79749a2004-12-09 16:36:40 +0000528</div>
529
530<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000531<h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000532 <a name="linkage">Linkage Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000533</h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000534
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000535<div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000536
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000537<p>All Global Variables and Functions have one of the following types of
538 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000539
540<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000541 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000542 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
543 by objects in the current module. In particular, linking code into a
544 module with an private global value may cause the private to be renamed as
545 necessary to avoid collisions. Because the symbol is private to the
546 module, all references can be updated. This doesn't show up in any symbol
547 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000548
Bill Wendling7f4a3362009-11-02 00:24:16 +0000549 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000550 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
551 assembler and evaluated by the linker. Unlike normal strong symbols, they
552 are removed by the linker from the final linked image (executable or
553 dynamic library).</dd>
554
555 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
556 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
557 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
558 linker. The symbols are removed by the linker from the final linked image
559 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000560
Bill Wendling578ee402010-08-20 22:05:50 +0000561 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
562 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
563 of the object is not taken. For instance, functions that had an inline
564 definition, but the compiler decided not to inline it. Note,
565 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
566 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
567 visibility. The symbols are removed by the linker from the final linked
568 image (executable or dynamic library).</dd>
569
Bill Wendling7f4a3362009-11-02 00:24:16 +0000570 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000571 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000572 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
573 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000574
Bill Wendling7f4a3362009-11-02 00:24:16 +0000575 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000576 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000577 into the object file corresponding to the LLVM module. They exist to
578 allow inlining and other optimizations to take place given knowledge of
579 the definition of the global, which is known to be somewhere outside the
580 module. Globals with <tt>available_externally</tt> linkage are allowed to
581 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
582 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000583
Bill Wendling7f4a3362009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000585 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000586 the same name when linkage occurs. This can be used to implement
587 some forms of inline functions, templates, or other code which must be
588 generated in each translation unit that uses it, but where the body may
589 be overridden with a more definitive definition later. Unreferenced
590 <tt>linkonce</tt> globals are allowed to be discarded. Note that
591 <tt>linkonce</tt> linkage does not actually allow the optimizer to
592 inline the body of this function into callers because it doesn't know if
593 this definition of the function is the definitive definition within the
594 program or whether it will be overridden by a stronger definition.
595 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
596 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000597
Bill Wendling7f4a3362009-11-02 00:24:16 +0000598 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000599 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
600 <tt>linkonce</tt> linkage, except that unreferenced globals with
601 <tt>weak</tt> linkage may not be discarded. This is used for globals that
602 are declared "weak" in C source code.</dd>
603
Bill Wendling7f4a3362009-11-02 00:24:16 +0000604 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000605 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
606 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
607 global scope.
608 Symbols with "<tt>common</tt>" linkage are merged in the same way as
609 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000610 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000611 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000612 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
613 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000614
Chris Lattnerd79749a2004-12-09 16:36:40 +0000615
Bill Wendling7f4a3362009-11-02 00:24:16 +0000616 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000617 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000618 pointer to array type. When two global variables with appending linkage
619 are linked together, the two global arrays are appended together. This is
620 the LLVM, typesafe, equivalent of having the system linker append together
621 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000622
Bill Wendling7f4a3362009-11-02 00:24:16 +0000623 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000624 <dd>The semantics of this linkage follow the ELF object file model: the symbol
625 is weak until linked, if not linked, the symbol becomes null instead of
626 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000627
Bill Wendling7f4a3362009-11-02 00:24:16 +0000628 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
629 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000630 <dd>Some languages allow differing globals to be merged, such as two functions
631 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000632 that only equivalent globals are ever merged (the "one definition rule"
633 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000634 and <tt>weak_odr</tt> linkage types to indicate that the global will only
635 be merged with equivalent globals. These linkage types are otherwise the
636 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000637
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000638 <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000639 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000640 visible, meaning that it participates in linkage and can be used to
641 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000642</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000643
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000644<p>The next two types of linkage are targeted for Microsoft Windows platform
645 only. They are designed to support importing (exporting) symbols from (to)
646 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000647
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000648<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000649 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000650 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000651 or variable via a global pointer to a pointer that is set up by the DLL
652 exporting the symbol. On Microsoft Windows targets, the pointer name is
653 formed by combining <code>__imp_</code> and the function or variable
654 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000655
Bill Wendling7f4a3362009-11-02 00:24:16 +0000656 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000657 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000658 pointer to a pointer in a DLL, so that it can be referenced with the
659 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
660 name is formed by combining <code>__imp_</code> and the function or
661 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000662</dl>
663
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000664<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
665 another module defined a "<tt>.LC0</tt>" variable and was linked with this
666 one, one of the two would be renamed, preventing a collision. Since
667 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
668 declarations), they are accessible outside of the current module.</p>
669
670<p>It is illegal for a function <i>declaration</i> to have any linkage type
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000671 other than <tt>external</tt>, <tt>dllimport</tt>
672 or <tt>extern_weak</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000673
Duncan Sands12da8ce2009-03-07 15:45:40 +0000674<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000675 or <tt>weak_odr</tt> linkages.</p>
676
Chris Lattner6af02f32004-12-09 16:11:40 +0000677</div>
678
679<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000680<h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000681 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000682</h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000683
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000684<div>
Chris Lattner0132aff2005-05-06 22:57:40 +0000685
686<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000687 and <a href="#i_invoke">invokes</a> can all have an optional calling
688 convention specified for the call. The calling convention of any pair of
689 dynamic caller/callee must match, or the behavior of the program is
690 undefined. The following calling conventions are supported by LLVM, and more
691 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000692
693<dl>
694 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000695 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000696 specified) matches the target C calling conventions. This calling
697 convention supports varargs function calls and tolerates some mismatch in
698 the declared prototype and implemented declaration of the function (as
699 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000700
701 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000702 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000703 (e.g. by passing things in registers). This calling convention allows the
704 target to use whatever tricks it wants to produce fast code for the
705 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000706 (Application Binary Interface).
707 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000708 when this or the GHC convention is used.</a> This calling convention
709 does not support varargs and requires the prototype of all callees to
710 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000711
712 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000713 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000714 as possible under the assumption that the call is not commonly executed.
715 As such, these calls often preserve all registers so that the call does
716 not break any live ranges in the caller side. This calling convention
717 does not support varargs and requires the prototype of all callees to
718 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000719
Chris Lattnera179e4d2010-03-11 00:22:57 +0000720 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
721 <dd>This calling convention has been implemented specifically for use by the
722 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
723 It passes everything in registers, going to extremes to achieve this by
724 disabling callee save registers. This calling convention should not be
725 used lightly but only for specific situations such as an alternative to
726 the <em>register pinning</em> performance technique often used when
727 implementing functional programming languages.At the moment only X86
728 supports this convention and it has the following limitations:
729 <ul>
730 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
731 floating point types are supported.</li>
732 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
733 6 floating point parameters.</li>
734 </ul>
735 This calling convention supports
736 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
737 requires both the caller and callee are using it.
738 </dd>
739
Chris Lattner573f64e2005-05-07 01:46:40 +0000740 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000741 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000742 target-specific calling conventions to be used. Target specific calling
743 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000744</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000745
746<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000747 support Pascal conventions or any other well-known target-independent
748 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000749
750</div>
751
752<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000753<h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000754 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000755</h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000757<div>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000758
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000759<p>All Global Variables and Functions have one of the following visibility
760 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000761
762<dl>
763 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000764 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000765 that the declaration is visible to other modules and, in shared libraries,
766 means that the declared entity may be overridden. On Darwin, default
767 visibility means that the declaration is visible to other modules. Default
768 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000769
770 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000771 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000772 object if they are in the same shared object. Usually, hidden visibility
773 indicates that the symbol will not be placed into the dynamic symbol
774 table, so no other module (executable or shared library) can reference it
775 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000776
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000777 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000778 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000779 the dynamic symbol table, but that references within the defining module
780 will bind to the local symbol. That is, the symbol cannot be overridden by
781 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000782</dl>
783
784</div>
785
786<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000787<h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000788 <a name="namedtypes">Named Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000789</h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000790
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000791<div>
Chris Lattnerbc088212009-01-11 20:53:49 +0000792
793<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000794 it easier to read the IR and make the IR more condensed (particularly when
795 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000796
Benjamin Kramer79698be2010-07-13 12:26:09 +0000797<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000798%mytype = type { %mytype*, i32 }
799</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000800
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000801<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000802 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000803 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000804
805<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000806 and that you can therefore specify multiple names for the same type. This
807 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
808 uses structural typing, the name is not part of the type. When printing out
809 LLVM IR, the printer will pick <em>one name</em> to render all types of a
810 particular shape. This means that if you have code where two different
811 source types end up having the same LLVM type, that the dumper will sometimes
812 print the "wrong" or unexpected type. This is an important design point and
813 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000814
815</div>
816
Chris Lattnerbc088212009-01-11 20:53:49 +0000817<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000818<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000819 <a name="globalvars">Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000820</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000821
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000822<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000823
Chris Lattner5d5aede2005-02-12 19:30:21 +0000824<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000825 instead of run-time. Global variables may optionally be initialized, may
826 have an explicit section to be placed in, and may have an optional explicit
827 alignment specified. A variable may be defined as "thread_local", which
828 means that it will not be shared by threads (each thread will have a
829 separated copy of the variable). A variable may be defined as a global
830 "constant," which indicates that the contents of the variable
831 will <b>never</b> be modified (enabling better optimization, allowing the
832 global data to be placed in the read-only section of an executable, etc).
833 Note that variables that need runtime initialization cannot be marked
834 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000835
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000836<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
837 constant, even if the final definition of the global is not. This capability
838 can be used to enable slightly better optimization of the program, but
839 requires the language definition to guarantee that optimizations based on the
840 'constantness' are valid for the translation units that do not include the
841 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000842
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000843<p>As SSA values, global variables define pointer values that are in scope
844 (i.e. they dominate) all basic blocks in the program. Global variables
845 always define a pointer to their "content" type because they describe a
846 region of memory, and all memory objects in LLVM are accessed through
847 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000848
Rafael Espindola45e6c192011-01-08 16:42:36 +0000849<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
850 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000851 like this can be merged with other constants if they have the same
852 initializer. Note that a constant with significant address <em>can</em>
853 be merged with a <tt>unnamed_addr</tt> constant, the result being a
854 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000855
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000856<p>A global variable may be declared to reside in a target-specific numbered
857 address space. For targets that support them, address spaces may affect how
858 optimizations are performed and/or what target instructions are used to
859 access the variable. The default address space is zero. The address space
860 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000861
Chris Lattner662c8722005-11-12 00:45:07 +0000862<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000863 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000864
Chris Lattner78e00bc2010-04-28 00:13:42 +0000865<p>An explicit alignment may be specified for a global, which must be a power
866 of 2. If not present, or if the alignment is set to zero, the alignment of
867 the global is set by the target to whatever it feels convenient. If an
868 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000869 alignment. Targets and optimizers are not allowed to over-align the global
870 if the global has an assigned section. In this case, the extra alignment
871 could be observable: for example, code could assume that the globals are
872 densely packed in their section and try to iterate over them as an array,
873 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000874
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000875<p>For example, the following defines a global in a numbered address space with
876 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000877
Benjamin Kramer79698be2010-07-13 12:26:09 +0000878<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000879@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000880</pre>
881
Chris Lattner6af02f32004-12-09 16:11:40 +0000882</div>
883
884
885<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000886<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000887 <a name="functionstructure">Functions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000888</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000890<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000891
Dan Gohmana269a0a2010-03-01 17:41:39 +0000892<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000893 optional <a href="#linkage">linkage type</a>, an optional
894 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000895 <a href="#callingconv">calling convention</a>,
896 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000897 <a href="#paramattrs">parameter attribute</a> for the return type, a function
898 name, a (possibly empty) argument list (each with optional
899 <a href="#paramattrs">parameter attributes</a>), optional
900 <a href="#fnattrs">function attributes</a>, an optional section, an optional
901 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
902 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000903
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000904<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
905 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000906 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000907 <a href="#callingconv">calling convention</a>,
908 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000909 <a href="#paramattrs">parameter attribute</a> for the return type, a function
910 name, a possibly empty list of arguments, an optional alignment, and an
911 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000912
Chris Lattner67c37d12008-08-05 18:29:16 +0000913<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000914 (Control Flow Graph) for the function. Each basic block may optionally start
915 with a label (giving the basic block a symbol table entry), contains a list
916 of instructions, and ends with a <a href="#terminators">terminator</a>
917 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000918
Chris Lattnera59fb102007-06-08 16:52:14 +0000919<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000920 executed on entrance to the function, and it is not allowed to have
921 predecessor basic blocks (i.e. there can not be any branches to the entry
922 block of a function). Because the block can have no predecessors, it also
923 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000924
Chris Lattner662c8722005-11-12 00:45:07 +0000925<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000926 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000927
Chris Lattner54611b42005-11-06 08:02:57 +0000928<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000929 the alignment is set to zero, the alignment of the function is set by the
930 target to whatever it feels convenient. If an explicit alignment is
931 specified, the function is forced to have at least that much alignment. All
932 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000933
Rafael Espindola45e6c192011-01-08 16:42:36 +0000934<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000935 be significant and two identical functions can be merged.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000936
Bill Wendling30235112009-07-20 02:39:26 +0000937<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000938<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000939define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000940 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
941 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
942 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
943 [<a href="#gc">gc</a>] { ... }
944</pre>
Devang Patel02256232008-10-07 17:48:33 +0000945
Chris Lattner6af02f32004-12-09 16:11:40 +0000946</div>
947
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000948<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000949<h3>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000950 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000951</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000952
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000953<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000954
955<p>Aliases act as "second name" for the aliasee value (which can be either
956 function, global variable, another alias or bitcast of global value). Aliases
957 may have an optional <a href="#linkage">linkage type</a>, and an
958 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000959
Bill Wendling30235112009-07-20 02:39:26 +0000960<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000961<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000962@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000963</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000964
965</div>
966
Chris Lattner91c15c42006-01-23 23:23:47 +0000967<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000968<h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000969 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000970</h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000971
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000972<div>
Devang Pateld1a89692010-01-11 19:35:55 +0000973
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000974<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000975 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000976 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000977
978<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000979<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000980; Some unnamed metadata nodes, which are referenced by the named metadata.
981!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000982!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000983!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000984; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000985!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000986</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000987
988</div>
989
990<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000991<h3>
992 <a name="paramattrs">Parameter Attributes</a>
993</h3>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000994
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000995<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000996
997<p>The return type and each parameter of a function type may have a set of
998 <i>parameter attributes</i> associated with them. Parameter attributes are
999 used to communicate additional information about the result or parameters of
1000 a function. Parameter attributes are considered to be part of the function,
1001 not of the function type, so functions with different parameter attributes
1002 can have the same function type.</p>
1003
1004<p>Parameter attributes are simple keywords that follow the type specified. If
1005 multiple parameter attributes are needed, they are space separated. For
1006 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001007
Benjamin Kramer79698be2010-07-13 12:26:09 +00001008<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001009declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001010declare i32 @atoi(i8 zeroext)
1011declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001012</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001013
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001014<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1015 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001016
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001018
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001019<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001020 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001021 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichac106272011-03-16 22:20:18 +00001022 should be zero-extended to the extent required by the target's ABI (which
1023 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1024 parameter) or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001025
Bill Wendling7f4a3362009-11-02 00:24:16 +00001026 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001027 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich341c36d2011-03-17 14:21:58 +00001028 should be sign-extended to the extent required by the target's ABI (which
1029 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1030 return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001031
Bill Wendling7f4a3362009-11-02 00:24:16 +00001032 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001033 <dd>This indicates that this parameter or return value should be treated in a
1034 special target-dependent fashion during while emitting code for a function
1035 call or return (usually, by putting it in a register as opposed to memory,
1036 though some targets use it to distinguish between two different kinds of
1037 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001038
Bill Wendling7f4a3362009-11-02 00:24:16 +00001039 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001040 <dd><p>This indicates that the pointer parameter should really be passed by
1041 value to the function. The attribute implies that a hidden copy of the
1042 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001043 is made between the caller and the callee, so the callee is unable to
1044 modify the value in the callee. This attribute is only valid on LLVM
1045 pointer arguments. It is generally used to pass structs and arrays by
1046 value, but is also valid on pointers to scalars. The copy is considered
1047 to belong to the caller not the callee (for example,
1048 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1049 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001050 values.</p>
1051
1052 <p>The byval attribute also supports specifying an alignment with
1053 the align attribute. It indicates the alignment of the stack slot to
1054 form and the known alignment of the pointer specified to the call site. If
1055 the alignment is not specified, then the code generator makes a
1056 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001057
Dan Gohman3770af52010-07-02 23:18:08 +00001058 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001059 <dd>This indicates that the pointer parameter specifies the address of a
1060 structure that is the return value of the function in the source program.
1061 This pointer must be guaranteed by the caller to be valid: loads and
1062 stores to the structure may be assumed by the callee to not to trap. This
1063 may only be applied to the first parameter. This is not a valid attribute
1064 for return values. </dd>
1065
Dan Gohman3770af52010-07-02 23:18:08 +00001066 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001067 <dd>This indicates that pointer values
1068 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001069 value do not alias pointer values which are not <i>based</i> on it,
1070 ignoring certain "irrelevant" dependencies.
1071 For a call to the parent function, dependencies between memory
1072 references from before or after the call and from those during the call
1073 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1074 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001075 The caller shares the responsibility with the callee for ensuring that
1076 these requirements are met.
1077 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001078 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1079<br>
John McCall72ed8902010-07-06 21:07:14 +00001080 Note that this definition of <tt>noalias</tt> is intentionally
1081 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001082 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001083<br>
1084 For function return values, C99's <tt>restrict</tt> is not meaningful,
1085 while LLVM's <tt>noalias</tt> is.
1086 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001087
Dan Gohman3770af52010-07-02 23:18:08 +00001088 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001089 <dd>This indicates that the callee does not make any copies of the pointer
1090 that outlive the callee itself. This is not a valid attribute for return
1091 values.</dd>
1092
Dan Gohman3770af52010-07-02 23:18:08 +00001093 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001094 <dd>This indicates that the pointer parameter can be excised using the
1095 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1096 attribute for return values.</dd>
1097</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001098
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001099</div>
1100
1101<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001102<h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001103 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001104</h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001105
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001106<div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001107
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001108<p>Each function may specify a garbage collector name, which is simply a
1109 string:</p>
1110
Benjamin Kramer79698be2010-07-13 12:26:09 +00001111<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001112define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001113</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001114
1115<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001116 collector which will cause the compiler to alter its output in order to
1117 support the named garbage collection algorithm.</p>
1118
Gordon Henriksen71183b62007-12-10 03:18:06 +00001119</div>
1120
1121<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001122<h3>
Devang Patel9eb525d2008-09-26 23:51:19 +00001123 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001124</h3>
Devang Patelcaacdba2008-09-04 23:05:13 +00001125
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001126<div>
Devang Patel9eb525d2008-09-26 23:51:19 +00001127
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001128<p>Function attributes are set to communicate additional information about a
1129 function. Function attributes are considered to be part of the function, not
1130 of the function type, so functions with different parameter attributes can
1131 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001132
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001133<p>Function attributes are simple keywords that follow the type specified. If
1134 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001135
Benjamin Kramer79698be2010-07-13 12:26:09 +00001136<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001137define void @f() noinline { ... }
1138define void @f() alwaysinline { ... }
1139define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001140define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001141</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001142
Bill Wendlingb175fa42008-09-07 10:26:33 +00001143<dl>
Charles Davisbe5557e2010-02-12 00:31:15 +00001144 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1145 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1146 the backend should forcibly align the stack pointer. Specify the
1147 desired alignment, which must be a power of two, in parentheses.
1148
Bill Wendling7f4a3362009-11-02 00:24:16 +00001149 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001150 <dd>This attribute indicates that the inliner should attempt to inline this
1151 function into callers whenever possible, ignoring any active inlining size
1152 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001153
Dan Gohman8bd11f12011-06-16 16:03:13 +00001154 <dt><tt><b>nonlazybind</b></tt></dt>
1155 <dd>This attribute suppresses lazy symbol binding for the function. This
1156 may make calls to the function faster, at the cost of extra program
1157 startup time if the function is not called during program startup.</dd>
1158
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001159 <dt><tt><b>inlinehint</b></tt></dt>
1160 <dd>This attribute indicates that the source code contained a hint that inlining
1161 this function is desirable (such as the "inline" keyword in C/C++). It
1162 is just a hint; it imposes no requirements on the inliner.</dd>
1163
Nick Lewycky14b58da2010-07-06 18:24:09 +00001164 <dt><tt><b>naked</b></tt></dt>
1165 <dd>This attribute disables prologue / epilogue emission for the function.
1166 This can have very system-specific consequences.</dd>
1167
1168 <dt><tt><b>noimplicitfloat</b></tt></dt>
1169 <dd>This attributes disables implicit floating point instructions.</dd>
1170
Bill Wendling7f4a3362009-11-02 00:24:16 +00001171 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001172 <dd>This attribute indicates that the inliner should never inline this
1173 function in any situation. This attribute may not be used together with
1174 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001175
Nick Lewycky14b58da2010-07-06 18:24:09 +00001176 <dt><tt><b>noredzone</b></tt></dt>
1177 <dd>This attribute indicates that the code generator should not use a red
1178 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001179
Bill Wendling7f4a3362009-11-02 00:24:16 +00001180 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001181 <dd>This function attribute indicates that the function never returns
1182 normally. This produces undefined behavior at runtime if the function
1183 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001184
Bill Wendling7f4a3362009-11-02 00:24:16 +00001185 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001186 <dd>This function attribute indicates that the function never returns with an
1187 unwind or exceptional control flow. If the function does unwind, its
1188 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001189
Nick Lewycky14b58da2010-07-06 18:24:09 +00001190 <dt><tt><b>optsize</b></tt></dt>
1191 <dd>This attribute suggests that optimization passes and code generator passes
1192 make choices that keep the code size of this function low, and otherwise
1193 do optimizations specifically to reduce code size.</dd>
1194
Bill Wendling7f4a3362009-11-02 00:24:16 +00001195 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001196 <dd>This attribute indicates that the function computes its result (or decides
1197 to unwind an exception) based strictly on its arguments, without
1198 dereferencing any pointer arguments or otherwise accessing any mutable
1199 state (e.g. memory, control registers, etc) visible to caller functions.
1200 It does not write through any pointer arguments
1201 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1202 changes any state visible to callers. This means that it cannot unwind
1203 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1204 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001205
Bill Wendling7f4a3362009-11-02 00:24:16 +00001206 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001207 <dd>This attribute indicates that the function does not write through any
1208 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1209 arguments) or otherwise modify any state (e.g. memory, control registers,
1210 etc) visible to caller functions. It may dereference pointer arguments
1211 and read state that may be set in the caller. A readonly function always
1212 returns the same value (or unwinds an exception identically) when called
1213 with the same set of arguments and global state. It cannot unwind an
1214 exception by calling the <tt>C++</tt> exception throwing methods, but may
1215 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001216
Bill Wendling7f4a3362009-11-02 00:24:16 +00001217 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001218 <dd>This attribute indicates that the function should emit a stack smashing
1219 protector. It is in the form of a "canary"&mdash;a random value placed on
1220 the stack before the local variables that's checked upon return from the
1221 function to see if it has been overwritten. A heuristic is used to
1222 determine if a function needs stack protectors or not.<br>
1223<br>
1224 If a function that has an <tt>ssp</tt> attribute is inlined into a
1225 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1226 function will have an <tt>ssp</tt> attribute.</dd>
1227
Bill Wendling7f4a3362009-11-02 00:24:16 +00001228 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001229 <dd>This attribute indicates that the function should <em>always</em> emit a
1230 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001231 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1232<br>
1233 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1234 function that doesn't have an <tt>sspreq</tt> attribute or which has
1235 an <tt>ssp</tt> attribute, then the resulting function will have
1236 an <tt>sspreq</tt> attribute.</dd>
Rafael Espindola163d6752011-07-25 15:27:59 +00001237
1238 <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1239 <dd>This attribute indicates that the ABI being targeted requires that
1240 an unwind table entry be produce for this function even if we can
1241 show that no exceptions passes by it. This is normally the case for
1242 the ELF x86-64 abi, but it can be disabled for some compilation
1243 units.</dd>
1244
Rafael Espindolacc349c82011-10-03 14:45:37 +00001245 <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1246 <dd>This attribute indicates that this function can return
1247 twice. The C <code>setjmp</code> is an example of such a function.
1248 The compiler disables some optimizations (like tail calls) in the caller of
1249 these functions.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001250</dl>
1251
Devang Patelcaacdba2008-09-04 23:05:13 +00001252</div>
1253
1254<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001255<h3>
Chris Lattner93564892006-04-08 04:40:53 +00001256 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001257</h3>
Chris Lattner91c15c42006-01-23 23:23:47 +00001258
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001259<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001260
1261<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1262 the GCC "file scope inline asm" blocks. These blocks are internally
1263 concatenated by LLVM and treated as a single unit, but may be separated in
1264 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001265
Benjamin Kramer79698be2010-07-13 12:26:09 +00001266<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001267module asm "inline asm code goes here"
1268module asm "more can go here"
1269</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001270
1271<p>The strings can contain any character by escaping non-printable characters.
1272 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001273 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001274
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001275<p>The inline asm code is simply printed to the machine code .s file when
1276 assembly code is generated.</p>
1277
Chris Lattner91c15c42006-01-23 23:23:47 +00001278</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001279
Reid Spencer50c723a2007-02-19 23:54:10 +00001280<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001281<h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001282 <a name="datalayout">Data Layout</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001283</h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001284
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001285<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001286
Reid Spencer50c723a2007-02-19 23:54:10 +00001287<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001288 data is to be laid out in memory. The syntax for the data layout is
1289 simply:</p>
1290
Benjamin Kramer79698be2010-07-13 12:26:09 +00001291<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001292target datalayout = "<i>layout specification</i>"
1293</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001294
1295<p>The <i>layout specification</i> consists of a list of specifications
1296 separated by the minus sign character ('-'). Each specification starts with
1297 a letter and may include other information after the letter to define some
1298 aspect of the data layout. The specifications accepted are as follows:</p>
1299
Reid Spencer50c723a2007-02-19 23:54:10 +00001300<dl>
1301 <dt><tt>E</tt></dt>
1302 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001303 bits with the most significance have the lowest address location.</dd>
1304
Reid Spencer50c723a2007-02-19 23:54:10 +00001305 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001306 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001307 the bits with the least significance have the lowest address
1308 location.</dd>
1309
Lang Hamesde7ab802011-10-10 23:42:08 +00001310 <dt><tt>S<i>size</i></tt></dt>
1311 <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1312 of stack variables is limited to the natural stack alignment to avoid
1313 dynamic stack realignment. The stack alignment must be a multiple of
Lang Hamesff2c52c2011-10-11 17:50:14 +00001314 8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1315 which does not prevent any alignment promotions.</dd>
Lang Hamesde7ab802011-10-10 23:42:08 +00001316
Reid Spencer50c723a2007-02-19 23:54:10 +00001317 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001318 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001319 <i>preferred</i> alignments. All sizes are in bits. Specifying
1320 the <i>pref</i> alignment is optional. If omitted, the
1321 preceding <tt>:</tt> should be omitted too.</dd>
1322
Reid Spencer50c723a2007-02-19 23:54:10 +00001323 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1324 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001325 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1326
Reid Spencer50c723a2007-02-19 23:54:10 +00001327 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001328 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001329 <i>size</i>.</dd>
1330
Reid Spencer50c723a2007-02-19 23:54:10 +00001331 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001332 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001333 <i>size</i>. Only values of <i>size</i> that are supported by the target
1334 will work. 32 (float) and 64 (double) are supported on all targets;
1335 80 or 128 (different flavors of long double) are also supported on some
1336 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001337
Reid Spencer50c723a2007-02-19 23:54:10 +00001338 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1339 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001340 <i>size</i>.</dd>
1341
Daniel Dunbar7921a592009-06-08 22:17:53 +00001342 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1343 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001344 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001345
1346 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1347 <dd>This specifies a set of native integer widths for the target CPU
1348 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1349 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001350 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001351 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001352</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001353
Reid Spencer50c723a2007-02-19 23:54:10 +00001354<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001355 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001356 specifications in the <tt>datalayout</tt> keyword. The default specifications
1357 are given in this list:</p>
1358
Reid Spencer50c723a2007-02-19 23:54:10 +00001359<ul>
1360 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001361 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001362 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1363 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1364 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1365 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001366 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001367 alignment of 64-bits</li>
1368 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1369 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1370 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1371 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1372 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001373 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001374</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001375
1376<p>When LLVM is determining the alignment for a given type, it uses the
1377 following rules:</p>
1378
Reid Spencer50c723a2007-02-19 23:54:10 +00001379<ol>
1380 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001381 specification is used.</li>
1382
Reid Spencer50c723a2007-02-19 23:54:10 +00001383 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001384 smallest integer type that is larger than the bitwidth of the sought type
1385 is used. If none of the specifications are larger than the bitwidth then
1386 the the largest integer type is used. For example, given the default
1387 specifications above, the i7 type will use the alignment of i8 (next
1388 largest) while both i65 and i256 will use the alignment of i64 (largest
1389 specified).</li>
1390
Reid Spencer50c723a2007-02-19 23:54:10 +00001391 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001392 largest vector type that is smaller than the sought vector type will be
1393 used as a fall back. This happens because &lt;128 x double&gt; can be
1394 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001395</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001396
Chris Lattner48797402011-10-11 23:01:39 +00001397<p>The function of the data layout string may not be what you expect. Notably,
1398 this is not a specification from the frontend of what alignment the code
1399 generator should use.</p>
1400
1401<p>Instead, if specified, the target data layout is required to match what the
1402 ultimate <em>code generator</em> expects. This string is used by the
1403 mid-level optimizers to
1404 improve code, and this only works if it matches what the ultimate code
1405 generator uses. If you would like to generate IR that does not embed this
1406 target-specific detail into the IR, then you don't have to specify the
1407 string. This will disable some optimizations that require precise layout
1408 information, but this also prevents those optimizations from introducing
1409 target specificity into the IR.</p>
1410
1411
1412
Reid Spencer50c723a2007-02-19 23:54:10 +00001413</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001414
Dan Gohman6154a012009-07-27 18:07:55 +00001415<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001416<h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001417 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001418</h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001419
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001420<div>
Dan Gohman6154a012009-07-27 18:07:55 +00001421
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001422<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001423with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001424is undefined. Pointer values are associated with address ranges
1425according to the following rules:</p>
1426
1427<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001428 <li>A pointer value is associated with the addresses associated with
1429 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001430 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001431 range of the variable's storage.</li>
1432 <li>The result value of an allocation instruction is associated with
1433 the address range of the allocated storage.</li>
1434 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001435 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001436 <li>An integer constant other than zero or a pointer value returned
1437 from a function not defined within LLVM may be associated with address
1438 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001439 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001440 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001441</ul>
1442
1443<p>A pointer value is <i>based</i> on another pointer value according
1444 to the following rules:</p>
1445
1446<ul>
1447 <li>A pointer value formed from a
1448 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1449 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1450 <li>The result value of a
1451 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1452 of the <tt>bitcast</tt>.</li>
1453 <li>A pointer value formed by an
1454 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1455 pointer values that contribute (directly or indirectly) to the
1456 computation of the pointer's value.</li>
1457 <li>The "<i>based</i> on" relationship is transitive.</li>
1458</ul>
1459
1460<p>Note that this definition of <i>"based"</i> is intentionally
1461 similar to the definition of <i>"based"</i> in C99, though it is
1462 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001463
1464<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001465<tt><a href="#i_load">load</a></tt> merely indicates the size and
1466alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001467interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001468<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1469and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001470
1471<p>Consequently, type-based alias analysis, aka TBAA, aka
1472<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1473LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1474additional information which specialized optimization passes may use
1475to implement type-based alias analysis.</p>
1476
1477</div>
1478
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001479<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001480<h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001481 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001482</h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001483
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001484<div>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001485
1486<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1487href="#i_store"><tt>store</tt></a>s, and <a
1488href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1489The optimizers must not change the number of volatile operations or change their
1490order of execution relative to other volatile operations. The optimizers
1491<i>may</i> change the order of volatile operations relative to non-volatile
1492operations. This is not Java's "volatile" and has no cross-thread
1493synchronization behavior.</p>
1494
1495</div>
1496
Eli Friedman35b54aa2011-07-20 21:35:53 +00001497<!-- ======================================================================= -->
1498<h3>
1499 <a name="memmodel">Memory Model for Concurrent Operations</a>
1500</h3>
1501
1502<div>
1503
1504<p>The LLVM IR does not define any way to start parallel threads of execution
1505or to register signal handlers. Nonetheless, there are platform-specific
1506ways to create them, and we define LLVM IR's behavior in their presence. This
1507model is inspired by the C++0x memory model.</p>
1508
Eli Friedman95f69a42011-08-22 21:35:27 +00001509<p>For a more informal introduction to this model, see the
1510<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1511
Eli Friedman35b54aa2011-07-20 21:35:53 +00001512<p>We define a <i>happens-before</i> partial order as the least partial order
1513that</p>
1514<ul>
1515 <li>Is a superset of single-thread program order, and</li>
1516 <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1517 <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1518 by platform-specific techniques, like pthread locks, thread
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001519 creation, thread joining, etc., and by atomic instructions.
1520 (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1521 </li>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001522</ul>
1523
1524<p>Note that program order does not introduce <i>happens-before</i> edges
1525between a thread and signals executing inside that thread.</p>
1526
1527<p>Every (defined) read operation (load instructions, memcpy, atomic
1528loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1529(defined) write operations (store instructions, atomic
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001530stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1531initialized globals are considered to have a write of the initializer which is
1532atomic and happens before any other read or write of the memory in question.
1533For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1534any write to the same byte, except:</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001535
1536<ul>
1537 <li>If <var>write<sub>1</sub></var> happens before
1538 <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1539 before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001540 does not see <var>write<sub>1</sub></var>.
Bill Wendling537603b2011-07-31 06:45:03 +00001541 <li>If <var>R<sub>byte</sub></var> happens before
1542 <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1543 see <var>write<sub>3</sub></var>.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001544</ul>
1545
1546<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1547<ul>
Eli Friedman95f69a42011-08-22 21:35:27 +00001548 <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1549 is supposed to give guarantees which can support
1550 <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1551 addresses which do not behave like normal memory. It does not generally
1552 provide cross-thread synchronization.)
1553 <li>Otherwise, if there is no write to the same byte that happens before
Eli Friedman35b54aa2011-07-20 21:35:53 +00001554 <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1555 <tt>undef</tt> for that byte.
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001556 <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
Eli Friedman35b54aa2011-07-20 21:35:53 +00001557 <var>R<sub>byte</sub></var> returns the value written by that
1558 write.</li>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001559 <li>Otherwise, if <var>R</var> is atomic, and all the writes
1560 <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001561 values written. See the <a href="#ordering">Atomic Memory Ordering
1562 Constraints</a> section for additional constraints on how the choice
1563 is made.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001564 <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1565</ul>
1566
1567<p><var>R</var> returns the value composed of the series of bytes it read.
1568This implies that some bytes within the value may be <tt>undef</tt>
1569<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1570defines the semantics of the operation; it doesn't mean that targets will
1571emit more than one instruction to read the series of bytes.</p>
1572
1573<p>Note that in cases where none of the atomic intrinsics are used, this model
1574places only one restriction on IR transformations on top of what is required
1575for single-threaded execution: introducing a store to a byte which might not
Eli Friedman4bc9f3c2011-08-02 01:15:34 +00001576otherwise be stored is not allowed in general. (Specifically, in the case
1577where another thread might write to and read from an address, introducing a
1578store can change a load that may see exactly one write into a load that may
1579see multiple writes.)</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001580
1581<!-- FIXME: This model assumes all targets where concurrency is relevant have
1582a byte-size store which doesn't affect adjacent bytes. As far as I can tell,
1583none of the backends currently in the tree fall into this category; however,
1584there might be targets which care. If there are, we want a paragraph
1585like the following:
1586
1587Targets may specify that stores narrower than a certain width are not
1588available; on such a target, for the purposes of this model, treat any
1589non-atomic write with an alignment or width less than the minimum width
1590as if it writes to the relevant surrounding bytes.
1591-->
1592
1593</div>
1594
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001595<!-- ======================================================================= -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001596<h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001597 <a name="ordering">Atomic Memory Ordering Constraints</a>
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001598</h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001599
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001600<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001601
1602<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
Eli Friedman59b66882011-08-09 23:02:53 +00001603<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1604<a href="#i_fence"><code>fence</code></a>,
1605<a href="#i_load"><code>atomic load</code></a>, and
Eli Friedman75362532011-08-09 23:26:12 +00001606<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001607that determines which other atomic instructions on the same address they
1608<i>synchronize with</i>. These semantics are borrowed from Java and C++0x,
1609but are somewhat more colloquial. If these descriptions aren't precise enough,
Eli Friedman95f69a42011-08-22 21:35:27 +00001610check those specs (see spec references in the
1611<a href="Atomic.html#introduction">atomics guide</a>).
1612<a href="#i_fence"><code>fence</code></a> instructions
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001613treat these orderings somewhat differently since they don't take an address.
1614See that instruction's documentation for details.</p>
1615
Eli Friedman95f69a42011-08-22 21:35:27 +00001616<p>For a simpler introduction to the ordering constraints, see the
1617<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1618
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001619<dl>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001620<dt><code>unordered</code></dt>
1621<dd>The set of values that can be read is governed by the happens-before
1622partial order. A value cannot be read unless some operation wrote it.
1623This is intended to provide a guarantee strong enough to model Java's
1624non-volatile shared variables. This ordering cannot be specified for
1625read-modify-write operations; it is not strong enough to make them atomic
1626in any interesting way.</dd>
1627<dt><code>monotonic</code></dt>
1628<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1629total order for modifications by <code>monotonic</code> operations on each
1630address. All modification orders must be compatible with the happens-before
1631order. There is no guarantee that the modification orders can be combined to
1632a global total order for the whole program (and this often will not be
1633possible). The read in an atomic read-modify-write operation
1634(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1635<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1636reads the value in the modification order immediately before the value it
1637writes. If one atomic read happens before another atomic read of the same
1638address, the later read must see the same value or a later value in the
1639address's modification order. This disallows reordering of
1640<code>monotonic</code> (or stronger) operations on the same address. If an
1641address is written <code>monotonic</code>ally by one thread, and other threads
1642<code>monotonic</code>ally read that address repeatedly, the other threads must
Eli Friedman95f69a42011-08-22 21:35:27 +00001643eventually see the write. This corresponds to the C++0x/C1x
1644<code>memory_order_relaxed</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001645<dt><code>acquire</code></dt>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001646<dd>In addition to the guarantees of <code>monotonic</code>,
Eli Friedman0cb3b562011-08-24 20:28:39 +00001647a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1648operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1649<dt><code>release</code></dt>
1650<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1651writes a value which is subsequently read by an <code>acquire</code> operation,
1652it <i>synchronizes-with</i> that operation. (This isn't a complete
1653description; see the C++0x definition of a release sequence.) This corresponds
1654to the C++0x/C1x <code>memory_order_release</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001655<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
Eli Friedman95f69a42011-08-22 21:35:27 +00001656<code>acquire</code> and <code>release</code> operation on its address.
1657This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001658<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1659<dd>In addition to the guarantees of <code>acq_rel</code>
1660(<code>acquire</code> for an operation which only reads, <code>release</code>
1661for an operation which only writes), there is a global total order on all
1662sequentially-consistent operations on all addresses, which is consistent with
1663the <i>happens-before</i> partial order and with the modification orders of
1664all the affected addresses. Each sequentially-consistent read sees the last
Eli Friedman95f69a42011-08-22 21:35:27 +00001665preceding write to the same address in this global order. This corresponds
1666to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001667</dl>
1668
1669<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1670it only <i>synchronizes with</i> or participates in modification and seq_cst
1671total orderings with other operations running in the same thread (for example,
1672in signal handlers).</p>
1673
1674</div>
1675
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001676</div>
1677
Chris Lattner2f7c9632001-06-06 20:29:01 +00001678<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001679<h2><a name="typesystem">Type System</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00001680<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001681
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001682<div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001683
Misha Brukman76307852003-11-08 01:05:38 +00001684<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001685 intermediate representation. Being typed enables a number of optimizations
1686 to be performed on the intermediate representation directly, without having
1687 to do extra analyses on the side before the transformation. A strong type
1688 system makes it easier to read the generated code and enables novel analyses
1689 and transformations that are not feasible to perform on normal three address
1690 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001691
Chris Lattner2f7c9632001-06-06 20:29:01 +00001692<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001693<h3>
1694 <a name="t_classifications">Type Classifications</a>
1695</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001696
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001697<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001698
1699<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001700
1701<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001702 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001703 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001704 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001705 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001706 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001707 </tr>
1708 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001709 <td><a href="#t_floating">floating point</a></td>
1710 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001711 </tr>
1712 <tr>
1713 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001714 <td><a href="#t_integer">integer</a>,
1715 <a href="#t_floating">floating point</a>,
1716 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001717 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001718 <a href="#t_struct">structure</a>,
1719 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001720 <a href="#t_label">label</a>,
1721 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001722 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001723 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001724 <tr>
1725 <td><a href="#t_primitive">primitive</a></td>
1726 <td><a href="#t_label">label</a>,
1727 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001728 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001729 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001730 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001731 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001732 </tr>
1733 <tr>
1734 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001735 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001736 <a href="#t_function">function</a>,
1737 <a href="#t_pointer">pointer</a>,
1738 <a href="#t_struct">structure</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001739 <a href="#t_vector">vector</a>,
1740 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001741 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001742 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001743 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001744</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001745
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001746<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1747 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001748 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001749
Misha Brukman76307852003-11-08 01:05:38 +00001750</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001751
Chris Lattner2f7c9632001-06-06 20:29:01 +00001752<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001753<h3>
1754 <a name="t_primitive">Primitive Types</a>
1755</h3>
Chris Lattner43542b32008-01-04 04:34:14 +00001756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001757<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001758
Chris Lattner7824d182008-01-04 04:32:38 +00001759<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001760 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001761
1762<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001763<h4>
1764 <a name="t_integer">Integer Type</a>
1765</h4>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001766
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001767<div>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001768
1769<h5>Overview:</h5>
1770<p>The integer type is a very simple type that simply specifies an arbitrary
1771 bit width for the integer type desired. Any bit width from 1 bit to
1772 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1773
1774<h5>Syntax:</h5>
1775<pre>
1776 iN
1777</pre>
1778
1779<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1780 value.</p>
1781
1782<h5>Examples:</h5>
1783<table class="layout">
1784 <tr class="layout">
1785 <td class="left"><tt>i1</tt></td>
1786 <td class="left">a single-bit integer.</td>
1787 </tr>
1788 <tr class="layout">
1789 <td class="left"><tt>i32</tt></td>
1790 <td class="left">a 32-bit integer.</td>
1791 </tr>
1792 <tr class="layout">
1793 <td class="left"><tt>i1942652</tt></td>
1794 <td class="left">a really big integer of over 1 million bits.</td>
1795 </tr>
1796</table>
1797
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001798</div>
1799
1800<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001801<h4>
1802 <a name="t_floating">Floating Point Types</a>
1803</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001804
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001805<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001806
1807<table>
1808 <tbody>
1809 <tr><th>Type</th><th>Description</th></tr>
1810 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1811 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1812 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1813 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1814 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1815 </tbody>
1816</table>
1817
Chris Lattner7824d182008-01-04 04:32:38 +00001818</div>
1819
1820<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001821<h4>
1822 <a name="t_x86mmx">X86mmx Type</a>
1823</h4>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001824
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001825<div>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001826
1827<h5>Overview:</h5>
1828<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1829
1830<h5>Syntax:</h5>
1831<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001832 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001833</pre>
1834
1835</div>
1836
1837<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001838<h4>
1839 <a name="t_void">Void Type</a>
1840</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001841
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001842<div>
Bill Wendling30235112009-07-20 02:39:26 +00001843
Chris Lattner7824d182008-01-04 04:32:38 +00001844<h5>Overview:</h5>
1845<p>The void type does not represent any value and has no size.</p>
1846
1847<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001848<pre>
1849 void
1850</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001851
Chris Lattner7824d182008-01-04 04:32:38 +00001852</div>
1853
1854<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001855<h4>
1856 <a name="t_label">Label Type</a>
1857</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001858
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001859<div>
Bill Wendling30235112009-07-20 02:39:26 +00001860
Chris Lattner7824d182008-01-04 04:32:38 +00001861<h5>Overview:</h5>
1862<p>The label type represents code labels.</p>
1863
1864<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001865<pre>
1866 label
1867</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001868
Chris Lattner7824d182008-01-04 04:32:38 +00001869</div>
1870
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001871<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001872<h4>
1873 <a name="t_metadata">Metadata Type</a>
1874</h4>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001875
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001876<div>
Bill Wendling30235112009-07-20 02:39:26 +00001877
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001878<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001879<p>The metadata type represents embedded metadata. No derived types may be
1880 created from metadata except for <a href="#t_function">function</a>
1881 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001882
1883<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001884<pre>
1885 metadata
1886</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001887
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001888</div>
1889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001890</div>
Chris Lattner7824d182008-01-04 04:32:38 +00001891
1892<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001893<h3>
1894 <a name="t_derived">Derived Types</a>
1895</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00001896
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001897<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001898
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001899<p>The real power in LLVM comes from the derived types in the system. This is
1900 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001901 useful types. Each of these types contain one or more element types which
1902 may be a primitive type, or another derived type. For example, it is
1903 possible to have a two dimensional array, using an array as the element type
1904 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001905
Chris Lattner392be582010-02-12 20:49:41 +00001906<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001907<h4>
1908 <a name="t_aggregate">Aggregate Types</a>
1909</h4>
Chris Lattner392be582010-02-12 20:49:41 +00001910
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001911<div>
Chris Lattner392be582010-02-12 20:49:41 +00001912
1913<p>Aggregate Types are a subset of derived types that can contain multiple
1914 member types. <a href="#t_array">Arrays</a>,
Chris Lattner13ee7952010-08-28 04:09:24 +00001915 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1916 aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001917
1918</div>
1919
Reid Spencer138249b2007-05-16 18:44:01 +00001920<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001921<h4>
1922 <a name="t_array">Array Type</a>
1923</h4>
Chris Lattner74d3f822004-12-09 17:30:23 +00001924
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001925<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001926
Chris Lattner2f7c9632001-06-06 20:29:01 +00001927<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001928<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001929 sequentially in memory. The array type requires a size (number of elements)
1930 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001931
Chris Lattner590645f2002-04-14 06:13:44 +00001932<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001933<pre>
1934 [&lt;# elements&gt; x &lt;elementtype&gt;]
1935</pre>
1936
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001937<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1938 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001939
Chris Lattner590645f2002-04-14 06:13:44 +00001940<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001941<table class="layout">
1942 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001943 <td class="left"><tt>[40 x i32]</tt></td>
1944 <td class="left">Array of 40 32-bit integer values.</td>
1945 </tr>
1946 <tr class="layout">
1947 <td class="left"><tt>[41 x i32]</tt></td>
1948 <td class="left">Array of 41 32-bit integer values.</td>
1949 </tr>
1950 <tr class="layout">
1951 <td class="left"><tt>[4 x i8]</tt></td>
1952 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001953 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001954</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001955<p>Here are some examples of multidimensional arrays:</p>
1956<table class="layout">
1957 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001958 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1959 <td class="left">3x4 array of 32-bit integer values.</td>
1960 </tr>
1961 <tr class="layout">
1962 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1963 <td class="left">12x10 array of single precision floating point values.</td>
1964 </tr>
1965 <tr class="layout">
1966 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1967 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001968 </tr>
1969</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001970
Dan Gohmanc74bc282009-11-09 19:01:53 +00001971<p>There is no restriction on indexing beyond the end of the array implied by
1972 a static type (though there are restrictions on indexing beyond the bounds
1973 of an allocated object in some cases). This means that single-dimension
1974 'variable sized array' addressing can be implemented in LLVM with a zero
1975 length array type. An implementation of 'pascal style arrays' in LLVM could
1976 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001977
Misha Brukman76307852003-11-08 01:05:38 +00001978</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001979
Chris Lattner2f7c9632001-06-06 20:29:01 +00001980<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001981<h4>
1982 <a name="t_function">Function Type</a>
1983</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001984
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001985<div>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001986
Chris Lattner2f7c9632001-06-06 20:29:01 +00001987<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001988<p>The function type can be thought of as a function signature. It consists of
1989 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00001990 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001991
Chris Lattner2f7c9632001-06-06 20:29:01 +00001992<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001993<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001994 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001995</pre>
1996
John Criswell4c0cf7f2005-10-24 16:17:18 +00001997<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001998 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1999 which indicates that the function takes a variable number of arguments.
2000 Variable argument functions can access their arguments with
2001 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00002002 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00002003 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002004
Chris Lattner2f7c9632001-06-06 20:29:01 +00002005<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002006<table class="layout">
2007 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00002008 <td class="left"><tt>i32 (i32)</tt></td>
2009 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002010 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00002011 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00002012 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00002013 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002014 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00002015 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2016 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00002017 </td>
2018 </tr><tr class="layout">
2019 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002020 <td class="left">A vararg function that takes at least one
2021 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2022 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00002023 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002024 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00002025 </tr><tr class="layout">
2026 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002027 <td class="left">A function taking an <tt>i32</tt>, returning a
2028 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00002029 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002030 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002031</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002032
Misha Brukman76307852003-11-08 01:05:38 +00002033</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002034
Chris Lattner2f7c9632001-06-06 20:29:01 +00002035<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002036<h4>
2037 <a name="t_struct">Structure Type</a>
2038</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002039
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002040<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002041
Chris Lattner2f7c9632001-06-06 20:29:01 +00002042<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002043<p>The structure type is used to represent a collection of data members together
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002044 in memory. The elements of a structure may be any type that has a size.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002045
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00002046<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2047 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2048 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2049 Structures in registers are accessed using the
2050 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2051 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002052
2053<p>Structures may optionally be "packed" structures, which indicate that the
2054 alignment of the struct is one byte, and that there is no padding between
Chris Lattner190552d2011-08-12 17:31:02 +00002055 the elements. In non-packed structs, padding between field types is inserted
2056 as defined by the TargetData string in the module, which is required to match
Chris Lattner7bd0ea32011-10-11 23:02:17 +00002057 what the underlying code generator expects.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002058
Chris Lattner190552d2011-08-12 17:31:02 +00002059<p>Structures can either be "literal" or "identified". A literal structure is
2060 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2061 types are always defined at the top level with a name. Literal types are
2062 uniqued by their contents and can never be recursive or opaque since there is
Chris Lattner32531732011-08-12 18:12:40 +00002063 no way to write one. Identified types can be recursive, can be opaqued, and are
Chris Lattner190552d2011-08-12 17:31:02 +00002064 never uniqued.
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002065</p>
2066
Chris Lattner2f7c9632001-06-06 20:29:01 +00002067<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002068<pre>
Chris Lattner190552d2011-08-12 17:31:02 +00002069 %T1 = type { &lt;type list&gt; } <i>; Identified normal struct type</i>
2070 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Identified packed struct type</i>
Bill Wendling30235112009-07-20 02:39:26 +00002071</pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002072
Chris Lattner2f7c9632001-06-06 20:29:01 +00002073<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002074<table class="layout">
2075 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002076 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2077 <td class="left">A triple of three <tt>i32</tt> values</td>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002078 </tr>
2079 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002080 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2081 <td class="left">A pair, where the first element is a <tt>float</tt> and the
2082 second element is a <a href="#t_pointer">pointer</a> to a
2083 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2084 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002085 </tr>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002086 <tr class="layout">
2087 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2088 <td class="left">A packed struct known to be 5 bytes in size.</td>
2089 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002090</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002091
Misha Brukman76307852003-11-08 01:05:38 +00002092</div>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002093
Chris Lattner2f7c9632001-06-06 20:29:01 +00002094<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002095<h4>
Chris Lattner2a843822011-07-23 19:59:08 +00002096 <a name="t_opaque">Opaque Structure Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002097</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002098
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002099<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002100
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002101<h5>Overview:</h5>
Chris Lattner2a843822011-07-23 19:59:08 +00002102<p>Opaque structure types are used to represent named structure types that do
2103 not have a body specified. This corresponds (for example) to the C notion of
2104 a forward declared structure.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002105
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002106<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002107<pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002108 %X = type opaque
2109 %52 = type opaque
Bill Wendling30235112009-07-20 02:39:26 +00002110</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002111
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002112<h5>Examples:</h5>
2113<table class="layout">
2114 <tr class="layout">
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002115 <td class="left"><tt>opaque</tt></td>
2116 <td class="left">An opaque type.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002117 </tr>
2118</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002119
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002120</div>
2121
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002122
2123
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002124<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002125<h4>
2126 <a name="t_pointer">Pointer Type</a>
2127</h4>
Chris Lattner4a67c912009-02-08 19:53:29 +00002128
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002129<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002130
2131<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00002132<p>The pointer type is used to specify memory locations.
2133 Pointers are commonly used to reference objects in memory.</p>
2134
2135<p>Pointer types may have an optional address space attribute defining the
2136 numbered address space where the pointed-to object resides. The default
2137 address space is number zero. The semantics of non-zero address
2138 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002139
2140<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2141 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00002142
Chris Lattner590645f2002-04-14 06:13:44 +00002143<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002144<pre>
2145 &lt;type&gt; *
2146</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002147
Chris Lattner590645f2002-04-14 06:13:44 +00002148<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002149<table class="layout">
2150 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00002151 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002152 <td class="left">A <a href="#t_pointer">pointer</a> to <a
2153 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2154 </tr>
2155 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00002156 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002157 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002158 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00002159 <tt>i32</tt>.</td>
2160 </tr>
2161 <tr class="layout">
2162 <td class="left"><tt>i32 addrspace(5)*</tt></td>
2163 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2164 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002165 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00002166</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002167
Misha Brukman76307852003-11-08 01:05:38 +00002168</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002169
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002170<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002171<h4>
2172 <a name="t_vector">Vector Type</a>
2173</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002174
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002175<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002176
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002177<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002178<p>A vector type is a simple derived type that represents a vector of elements.
2179 Vector types are used when multiple primitive data are operated in parallel
2180 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00002181 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002182 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002183
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002184<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002185<pre>
2186 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2187</pre>
2188
Chris Lattnerf11031a2010-10-10 18:20:35 +00002189<p>The number of elements is a constant integer value larger than 0; elementtype
2190 may be any integer or floating point type. Vectors of size zero are not
2191 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002192
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002193<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002194<table class="layout">
2195 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002196 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2197 <td class="left">Vector of 4 32-bit integer values.</td>
2198 </tr>
2199 <tr class="layout">
2200 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2201 <td class="left">Vector of 8 32-bit floating-point values.</td>
2202 </tr>
2203 <tr class="layout">
2204 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2205 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002206 </tr>
2207</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002208
Misha Brukman76307852003-11-08 01:05:38 +00002209</div>
2210
Bill Wendlingae8b5ea2011-07-31 06:47:33 +00002211</div>
2212
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00002213</div>
2214
Chris Lattner74d3f822004-12-09 17:30:23 +00002215<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002216<h2><a name="constants">Constants</a></h2>
Chris Lattner74d3f822004-12-09 17:30:23 +00002217<!-- *********************************************************************** -->
2218
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002219<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002220
2221<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002222 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002223
Chris Lattner74d3f822004-12-09 17:30:23 +00002224<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002225<h3>
2226 <a name="simpleconstants">Simple Constants</a>
2227</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002228
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002229<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002230
2231<dl>
2232 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002233 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002234 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002235
2236 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002237 <dd>Standard integers (such as '4') are constants of
2238 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2239 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002240
2241 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002242 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002243 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2244 notation (see below). The assembler requires the exact decimal value of a
2245 floating-point constant. For example, the assembler accepts 1.25 but
2246 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2247 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002248
2249 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002250 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002251 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002252</dl>
2253
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002254<p>The one non-intuitive notation for constants is the hexadecimal form of
2255 floating point constants. For example, the form '<tt>double
2256 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2257 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2258 constants are required (and the only time that they are generated by the
2259 disassembler) is when a floating point constant must be emitted but it cannot
2260 be represented as a decimal floating point number in a reasonable number of
2261 digits. For example, NaN's, infinities, and other special values are
2262 represented in their IEEE hexadecimal format so that assembly and disassembly
2263 do not cause any bits to change in the constants.</p>
2264
Dale Johannesencd4a3012009-02-11 22:14:51 +00002265<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002266 represented using the 16-digit form shown above (which matches the IEEE754
2267 representation for double); float values must, however, be exactly
2268 representable as IEE754 single precision. Hexadecimal format is always used
2269 for long double, and there are three forms of long double. The 80-bit format
2270 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2271 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2272 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2273 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2274 currently supported target uses this format. Long doubles will only work if
2275 they match the long double format on your target. All hexadecimal formats
2276 are big-endian (sign bit at the left).</p>
2277
Dale Johannesen33e5c352010-10-01 00:48:59 +00002278<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002279</div>
2280
2281<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002282<h3>
Bill Wendling972b7202009-07-20 02:32:41 +00002283<a name="aggregateconstants"></a> <!-- old anchor -->
2284<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002285</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002286
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002287<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002288
Chris Lattner361bfcd2009-02-28 18:32:25 +00002289<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002290 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002291
2292<dl>
2293 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002294 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002295 type definitions (a comma separated list of elements, surrounded by braces
2296 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2297 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2298 Structure constants must have <a href="#t_struct">structure type</a>, and
2299 the number and types of elements must match those specified by the
2300 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002301
2302 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002303 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002304 definitions (a comma separated list of elements, surrounded by square
2305 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2306 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2307 the number and types of elements must match those specified by the
2308 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002309
Reid Spencer404a3252007-02-15 03:07:05 +00002310 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002311 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002312 definitions (a comma separated list of elements, surrounded by
2313 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2314 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2315 have <a href="#t_vector">vector type</a>, and the number and types of
2316 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002317
2318 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002319 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002320 value to zero of <em>any</em> type, including scalar and
2321 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002322 This is often used to avoid having to print large zero initializers
2323 (e.g. for large arrays) and is always exactly equivalent to using explicit
2324 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002325
2326 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002327 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002328 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2329 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2330 be interpreted as part of the instruction stream, metadata is a place to
2331 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002332</dl>
2333
2334</div>
2335
2336<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002337<h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002338 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002339</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002341<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002342
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002343<p>The addresses of <a href="#globalvars">global variables</a>
2344 and <a href="#functionstructure">functions</a> are always implicitly valid
2345 (link-time) constants. These constants are explicitly referenced when
2346 the <a href="#identifiers">identifier for the global</a> is used and always
2347 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2348 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002349
Benjamin Kramer79698be2010-07-13 12:26:09 +00002350<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002351@X = global i32 17
2352@Y = global i32 42
2353@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002354</pre>
2355
2356</div>
2357
2358<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002359<h3>
2360 <a name="undefvalues">Undefined Values</a>
2361</h3>
2362
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002363<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002364
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002365<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002366 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002367 Undefined values may be of any type (other than '<tt>label</tt>'
2368 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002369
Chris Lattner92ada5d2009-09-11 01:49:31 +00002370<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002371 program is well defined no matter what value is used. This gives the
2372 compiler more freedom to optimize. Here are some examples of (potentially
2373 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002374
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002375
Benjamin Kramer79698be2010-07-13 12:26:09 +00002376<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002377 %A = add %X, undef
2378 %B = sub %X, undef
2379 %C = xor %X, undef
2380Safe:
2381 %A = undef
2382 %B = undef
2383 %C = undef
2384</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002385
2386<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002387 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002388
Benjamin Kramer79698be2010-07-13 12:26:09 +00002389<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002390 %A = or %X, undef
2391 %B = and %X, undef
2392Safe:
2393 %A = -1
2394 %B = 0
2395Unsafe:
2396 %A = undef
2397 %B = undef
2398</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002399
2400<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002401 For example, if <tt>%X</tt> has a zero bit, then the output of the
2402 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2403 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2404 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2405 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2406 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2407 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2408 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002409
Benjamin Kramer79698be2010-07-13 12:26:09 +00002410<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002411 %A = select undef, %X, %Y
2412 %B = select undef, 42, %Y
2413 %C = select %X, %Y, undef
2414Safe:
2415 %A = %X (or %Y)
2416 %B = 42 (or %Y)
2417 %C = %Y
2418Unsafe:
2419 %A = undef
2420 %B = undef
2421 %C = undef
2422</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002423
Bill Wendling6bbe0912010-10-27 01:07:41 +00002424<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2425 branch) conditions can go <em>either way</em>, but they have to come from one
2426 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2427 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2428 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2429 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2430 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2431 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002432
Benjamin Kramer79698be2010-07-13 12:26:09 +00002433<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002434 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002435
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002436 %B = undef
2437 %C = xor %B, %B
2438
2439 %D = undef
2440 %E = icmp lt %D, 4
2441 %F = icmp gte %D, 4
2442
2443Safe:
2444 %A = undef
2445 %B = undef
2446 %C = undef
2447 %D = undef
2448 %E = undef
2449 %F = undef
2450</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002451
Bill Wendling6bbe0912010-10-27 01:07:41 +00002452<p>This example points out that two '<tt>undef</tt>' operands are not
2453 necessarily the same. This can be surprising to people (and also matches C
2454 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2455 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2456 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2457 its value over its "live range". This is true because the variable doesn't
2458 actually <em>have a live range</em>. Instead, the value is logically read
2459 from arbitrary registers that happen to be around when needed, so the value
2460 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2461 need to have the same semantics or the core LLVM "replace all uses with"
2462 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002463
Benjamin Kramer79698be2010-07-13 12:26:09 +00002464<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002465 %A = fdiv undef, %X
2466 %B = fdiv %X, undef
2467Safe:
2468 %A = undef
2469b: unreachable
2470</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002471
2472<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002473 value</em> and <em>undefined behavior</em>. An undefined value (like
2474 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2475 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2476 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2477 defined on SNaN's. However, in the second example, we can make a more
2478 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2479 arbitrary value, we are allowed to assume that it could be zero. Since a
2480 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2481 the operation does not execute at all. This allows us to delete the divide and
2482 all code after it. Because the undefined operation "can't happen", the
2483 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002484
Benjamin Kramer79698be2010-07-13 12:26:09 +00002485<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002486a: store undef -> %X
2487b: store %X -> undef
2488Safe:
2489a: &lt;deleted&gt;
2490b: unreachable
2491</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002492
Bill Wendling6bbe0912010-10-27 01:07:41 +00002493<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2494 undefined value can be assumed to not have any effect; we can assume that the
2495 value is overwritten with bits that happen to match what was already there.
2496 However, a store <em>to</em> an undefined location could clobber arbitrary
2497 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002498
Chris Lattner74d3f822004-12-09 17:30:23 +00002499</div>
2500
2501<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002502<h3>
2503 <a name="trapvalues">Trap Values</a>
2504</h3>
2505
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002506<div>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002507
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002508<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002509 instead of representing an unspecified bit pattern, they represent the
2510 fact that an instruction or constant expression which cannot evoke side
2511 effects has nevertheless detected a condition which results in undefined
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002512 behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002513
Dan Gohman2f1ae062010-04-28 00:49:41 +00002514<p>There is currently no way of representing a trap value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002515 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002516 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002517
Dan Gohman2f1ae062010-04-28 00:49:41 +00002518<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002519
Dan Gohman2f1ae062010-04-28 00:49:41 +00002520<ul>
2521<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2522 their operands.</li>
2523
2524<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2525 to their dynamic predecessor basic block.</li>
2526
2527<li>Function arguments depend on the corresponding actual argument values in
2528 the dynamic callers of their functions.</li>
2529
2530<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2531 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2532 control back to them.</li>
2533
Dan Gohman7292a752010-05-03 14:55:22 +00002534<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2535 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2536 or exception-throwing call instructions that dynamically transfer control
2537 back to them.</li>
2538
Dan Gohman2f1ae062010-04-28 00:49:41 +00002539<li>Non-volatile loads and stores depend on the most recent stores to all of the
2540 referenced memory addresses, following the order in the IR
2541 (including loads and stores implied by intrinsics such as
2542 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2543
Dan Gohman3513ea52010-05-03 14:59:34 +00002544<!-- TODO: In the case of multiple threads, this only applies if the store
2545 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002546
Dan Gohman2f1ae062010-04-28 00:49:41 +00002547<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002548
Dan Gohman2f1ae062010-04-28 00:49:41 +00002549<li>An instruction with externally visible side effects depends on the most
2550 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002551 the order in the IR. (This includes
2552 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002553
Dan Gohman7292a752010-05-03 14:55:22 +00002554<li>An instruction <i>control-depends</i> on a
2555 <a href="#terminators">terminator instruction</a>
2556 if the terminator instruction has multiple successors and the instruction
2557 is always executed when control transfers to one of the successors, and
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002558 may not be executed when control is transferred to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002559
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002560<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2561 instruction if the set of instructions it otherwise depends on would be
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002562 different if the terminator had transferred control to a different
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002563 successor.</li>
2564
Dan Gohman2f1ae062010-04-28 00:49:41 +00002565<li>Dependence is transitive.</li>
2566
2567</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002568
2569<p>Whenever a trap value is generated, all values which depend on it evaluate
Lang Hames91fc0902011-10-13 23:04:49 +00002570 to trap. If they have side effects, they evoke their side effects as if each
Dan Gohman2f1ae062010-04-28 00:49:41 +00002571 operand with a trap value were undef. If they have externally-visible side
2572 effects, the behavior is undefined.</p>
2573
2574<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002575
Benjamin Kramer79698be2010-07-13 12:26:09 +00002576<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002577entry:
2578 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002579 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2580 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2581 store i32 0, i32* %trap_yet_again ; undefined behavior
2582
2583 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2584 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2585
2586 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2587
2588 %narrowaddr = bitcast i32* @g to i16*
2589 %wideaddr = bitcast i32* @g to i64*
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002590 %trap3 = load i16* %narrowaddr ; Returns a trap value.
2591 %trap4 = load i64* %wideaddr ; Returns a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002592
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002593 %cmp = icmp slt i32 %trap, 0 ; Returns a trap value.
2594 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002595
2596true:
Dan Gohman2f1ae062010-04-28 00:49:41 +00002597 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2598 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002599 br label %end
2600
2601end:
2602 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2603 ; Both edges into this PHI are
2604 ; control-dependent on %cmp, so this
Dan Gohman2f1ae062010-04-28 00:49:41 +00002605 ; always results in a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002606
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002607 volatile store i32 0, i32* @g ; This would depend on the store in %true
2608 ; if %cmp is true, or the store in %entry
2609 ; otherwise, so this is undefined behavior.
2610
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002611 br i1 %cmp, label %second_true, label %second_end
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002612 ; The same branch again, but this time the
2613 ; true block doesn't have side effects.
2614
2615second_true:
2616 ; No side effects!
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002617 ret void
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002618
2619second_end:
2620 volatile store i32 0, i32* @g ; This time, the instruction always depends
2621 ; on the store in %end. Also, it is
2622 ; control-equivalent to %end, so this is
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002623 ; well-defined (again, ignoring earlier
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002624 ; undefined behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002625</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002626
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002627</div>
2628
2629<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002630<h3>
2631 <a name="blockaddress">Addresses of Basic Blocks</a>
2632</h3>
2633
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002634<div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002635
Chris Lattneraa99c942009-11-01 01:27:45 +00002636<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002637
2638<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002639 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002640 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002641
Chris Lattnere4801f72009-10-27 21:01:34 +00002642<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002643 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2644 comparisons against null. Pointer equality tests between labels addresses
2645 results in undefined behavior &mdash; though, again, comparison against null
2646 is ok, and no label is equal to the null pointer. This may be passed around
2647 as an opaque pointer sized value as long as the bits are not inspected. This
2648 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2649 long as the original value is reconstituted before the <tt>indirectbr</tt>
2650 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002651
Bill Wendling6bbe0912010-10-27 01:07:41 +00002652<p>Finally, some targets may provide defined semantics when using the value as
2653 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002654
2655</div>
2656
2657
2658<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002659<h3>
2660 <a name="constantexprs">Constant Expressions</a>
2661</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002662
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002663<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002664
2665<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002666 to be used as constants. Constant expressions may be of
2667 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2668 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002669 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002670
2671<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002672 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002673 <dd>Truncate a constant to another type. The bit size of CST must be larger
2674 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002675
Dan Gohmand6a6f612010-05-28 17:07:41 +00002676 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002677 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002678 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002679
Dan Gohmand6a6f612010-05-28 17:07:41 +00002680 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002681 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002682 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002683
Dan Gohmand6a6f612010-05-28 17:07:41 +00002684 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002685 <dd>Truncate a floating point constant to another floating point type. The
2686 size of CST must be larger than the size of TYPE. Both types must be
2687 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002688
Dan Gohmand6a6f612010-05-28 17:07:41 +00002689 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002690 <dd>Floating point extend a constant to another type. The size of CST must be
2691 smaller or equal to the size of TYPE. Both types must be floating
2692 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002693
Dan Gohmand6a6f612010-05-28 17:07:41 +00002694 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002695 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002696 constant. TYPE must be a scalar or vector integer type. CST must be of
2697 scalar or vector floating point type. Both CST and TYPE must be scalars,
2698 or vectors of the same number of elements. If the value won't fit in the
2699 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002700
Dan Gohmand6a6f612010-05-28 17:07:41 +00002701 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002702 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002703 constant. TYPE must be a scalar or vector integer type. CST must be of
2704 scalar or vector floating point type. Both CST and TYPE must be scalars,
2705 or vectors of the same number of elements. If the value won't fit in the
2706 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002707
Dan Gohmand6a6f612010-05-28 17:07:41 +00002708 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002709 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002710 constant. TYPE must be a scalar or vector floating point type. CST must be
2711 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2712 vectors of the same number of elements. If the value won't fit in the
2713 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002714
Dan Gohmand6a6f612010-05-28 17:07:41 +00002715 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002716 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002717 constant. TYPE must be a scalar or vector floating point type. CST must be
2718 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2719 vectors of the same number of elements. If the value won't fit in the
2720 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002721
Dan Gohmand6a6f612010-05-28 17:07:41 +00002722 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002723 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002724 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2725 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2726 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002727
Dan Gohmand6a6f612010-05-28 17:07:41 +00002728 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002729 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2730 type. CST must be of integer type. The CST value is zero extended,
2731 truncated, or unchanged to make it fit in a pointer size. This one is
2732 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002733
Dan Gohmand6a6f612010-05-28 17:07:41 +00002734 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002735 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2736 are the same as those for the <a href="#i_bitcast">bitcast
2737 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002738
Dan Gohmand6a6f612010-05-28 17:07:41 +00002739 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2740 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002741 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002742 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2743 instruction, the index list may have zero or more indexes, which are
2744 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002745
Dan Gohmand6a6f612010-05-28 17:07:41 +00002746 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002747 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002748
Dan Gohmand6a6f612010-05-28 17:07:41 +00002749 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002750 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2751
Dan Gohmand6a6f612010-05-28 17:07:41 +00002752 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002753 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002754
Dan Gohmand6a6f612010-05-28 17:07:41 +00002755 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002756 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2757 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002758
Dan Gohmand6a6f612010-05-28 17:07:41 +00002759 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002760 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2761 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002762
Dan Gohmand6a6f612010-05-28 17:07:41 +00002763 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002764 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2765 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002766
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002767 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2768 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2769 constants. The index list is interpreted in a similar manner as indices in
2770 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2771 index value must be specified.</dd>
2772
2773 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2774 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2775 constants. The index list is interpreted in a similar manner as indices in
2776 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2777 index value must be specified.</dd>
2778
Dan Gohmand6a6f612010-05-28 17:07:41 +00002779 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002780 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2781 be any of the <a href="#binaryops">binary</a>
2782 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2783 on operands are the same as those for the corresponding instruction
2784 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002785</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002786
Chris Lattner74d3f822004-12-09 17:30:23 +00002787</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002788
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002789</div>
2790
Chris Lattner2f7c9632001-06-06 20:29:01 +00002791<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002792<h2><a name="othervalues">Other Values</a></h2>
Chris Lattner98f013c2006-01-25 23:47:57 +00002793<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002794<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002795<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002796<h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002797<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002798</h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002799
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002800<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002801
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002802<p>LLVM supports inline assembler expressions (as opposed
2803 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2804 a special value. This value represents the inline assembler as a string
2805 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002806 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002807 expression has side effects, and a flag indicating whether the function
2808 containing the asm needs to align its stack conservatively. An example
2809 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002810
Benjamin Kramer79698be2010-07-13 12:26:09 +00002811<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002812i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002813</pre>
2814
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002815<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2816 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2817 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002818
Benjamin Kramer79698be2010-07-13 12:26:09 +00002819<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002820%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002821</pre>
2822
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002823<p>Inline asms with side effects not visible in the constraint list must be
2824 marked as having side effects. This is done through the use of the
2825 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002826
Benjamin Kramer79698be2010-07-13 12:26:09 +00002827<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002828call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002829</pre>
2830
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002831<p>In some cases inline asms will contain code that will not work unless the
2832 stack is aligned in some way, such as calls or SSE instructions on x86,
2833 yet will not contain code that does that alignment within the asm.
2834 The compiler should make conservative assumptions about what the asm might
2835 contain and should generate its usual stack alignment code in the prologue
2836 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002837
Benjamin Kramer79698be2010-07-13 12:26:09 +00002838<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002839call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002840</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002841
2842<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2843 first.</p>
2844
Chris Lattner98f013c2006-01-25 23:47:57 +00002845<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002846 documented here. Constraints on what can be done (e.g. duplication, moving,
2847 etc need to be documented). This is probably best done by reference to
2848 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner51065562010-04-07 05:38:05 +00002849
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002850<h4>
Chris Lattner51065562010-04-07 05:38:05 +00002851<a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002852</h4>
Chris Lattner51065562010-04-07 05:38:05 +00002853
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002854<div>
Chris Lattner51065562010-04-07 05:38:05 +00002855
2856<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattner79ffdc72010-11-17 08:20:42 +00002857 attached to it that contains a list of constant integers. If present, the
2858 code generator will use the integer as the location cookie value when report
Chris Lattner51065562010-04-07 05:38:05 +00002859 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman61110ae2010-04-28 00:36:01 +00002860 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattner51065562010-04-07 05:38:05 +00002861 source code that produced it. For example:</p>
2862
Benjamin Kramer79698be2010-07-13 12:26:09 +00002863<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002864call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2865...
2866!42 = !{ i32 1234567 }
2867</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002868
2869<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattner79ffdc72010-11-17 08:20:42 +00002870 IR. If the MDNode contains multiple constants, the code generator will use
2871 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002872
2873</div>
2874
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002875</div>
2876
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002877<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002878<h3>
2879 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2880</h3>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002881
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002882<div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002883
2884<p>LLVM IR allows metadata to be attached to instructions in the program that
2885 can convey extra information about the code to the optimizers and code
2886 generator. One example application of metadata is source-level debug
2887 information. There are two metadata primitives: strings and nodes. All
2888 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2889 preceding exclamation point ('<tt>!</tt>').</p>
2890
2891<p>A metadata string is a string surrounded by double quotes. It can contain
2892 any character by escaping non-printable characters with "\xx" where "xx" is
2893 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2894
2895<p>Metadata nodes are represented with notation similar to structure constants
2896 (a comma separated list of elements, surrounded by braces and preceded by an
2897 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2898 10}</tt>". Metadata nodes can have any values as their operand.</p>
2899
2900<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2901 metadata nodes, which can be looked up in the module symbol table. For
2902 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2903
Devang Patel9984bd62010-03-04 23:44:48 +00002904<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer79698be2010-07-13 12:26:09 +00002905 function is using two metadata arguments.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002906
Bill Wendlingc0e10672011-03-02 02:17:11 +00002907<div class="doc_code">
2908<pre>
2909call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2910</pre>
2911</div>
Devang Patel9984bd62010-03-04 23:44:48 +00002912
2913<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer79698be2010-07-13 12:26:09 +00002914 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002915
Bill Wendlingc0e10672011-03-02 02:17:11 +00002916<div class="doc_code">
2917<pre>
2918%indvar.next = add i64 %indvar, 1, !dbg !21
2919</pre>
2920</div>
2921
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002922<p>More information about specific metadata nodes recognized by the optimizers
2923 and code generator is found below.</p>
2924
2925<h4>
2926 <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
2927</h4>
2928
2929<div>
2930
2931<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
2932 suitable for doing TBAA. Instead, metadata is added to the IR to describe
2933 a type system of a higher level language. This can be used to implement
2934 typical C/C++ TBAA, but it can also be used to implement custom alias
2935 analysis behavior for other languages.</p>
2936
2937<p>The current metadata format is very simple. TBAA metadata nodes have up to
2938 three fields, e.g.:</p>
2939
2940<div class="doc_code">
2941<pre>
2942!0 = metadata !{ metadata !"an example type tree" }
2943!1 = metadata !{ metadata !"int", metadata !0 }
2944!2 = metadata !{ metadata !"float", metadata !0 }
2945!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2946</pre>
2947</div>
2948
2949<p>The first field is an identity field. It can be any value, usually
2950 a metadata string, which uniquely identifies the type. The most important
2951 name in the tree is the name of the root node. Two trees with
2952 different root node names are entirely disjoint, even if they
2953 have leaves with common names.</p>
2954
2955<p>The second field identifies the type's parent node in the tree, or
2956 is null or omitted for a root node. A type is considered to alias
2957 all of its descendants and all of its ancestors in the tree. Also,
2958 a type is considered to alias all types in other trees, so that
2959 bitcode produced from multiple front-ends is handled conservatively.</p>
2960
2961<p>If the third field is present, it's an integer which if equal to 1
2962 indicates that the type is "constant" (meaning
2963 <tt>pointsToConstantMemory</tt> should return true; see
2964 <a href="AliasAnalysis.html#OtherItfs">other useful
2965 <tt>AliasAnalysis</tt> methods</a>).</p>
2966
2967</div>
2968
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00002969<h4>
2970 <a name="fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a>
2971</h4>
2972
2973<div>
2974
2975<p><tt>fpaccuracy</tt> metadata may be attached to any instruction of floating
2976 point type. It expresses the maximum relative error of the result of
2977 that instruction, in ULPs. ULP is defined as follows:</p>
2978
2979<blockquote><p>
2980If x is a real number that lies between two finite consecutive floating-point
2981numbers a and b, without being equal to one of them, then ulp(x) = |b - a|,
2982otherwise ulp(x) is the distance between the two non-equal finite
2983floating-point numbers nearest x. Moreover, ulp(NaN) is NaN.
2984</p></blockquote>
2985
2986<p>The maximum relative error may be any rational number. The metadata node
2987 shall consist of a pair of unsigned integers respectively representing
2988 the numerator and denominator. For example, 2.5 ULP:</p>
2989
2990<div class="doc_code">
2991<pre>
2992!0 = metadata !{ i32 5, i32 2 }
2993</pre>
2994</div>
2995
2996</div>
2997
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002998</div>
2999
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003000</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003001
3002<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003003<h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003004 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003005</h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003006<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003007<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003008<p>LLVM has a number of "magic" global variables that contain data that affect
3009code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00003010of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
3011section and all globals that start with "<tt>llvm.</tt>" are reserved for use
3012by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003013
3014<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003015<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003016<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003017</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003018
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003019<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003020
3021<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
3022href="#linkage_appending">appending linkage</a>. This array contains a list of
3023pointers to global variables and functions which may optionally have a pointer
3024cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
3025
Bill Wendling1654bb22011-11-08 00:32:45 +00003026<div class="doc_code">
Chris Lattnerae76db52009-07-20 05:55:19 +00003027<pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003028@X = global i8 4
3029@Y = global i32 123
Chris Lattnerae76db52009-07-20 05:55:19 +00003030
Bill Wendling1654bb22011-11-08 00:32:45 +00003031@llvm.used = appending global [2 x i8*] [
3032 i8* @X,
3033 i8* bitcast (i32* @Y to i8*)
3034], section "llvm.metadata"
Chris Lattnerae76db52009-07-20 05:55:19 +00003035</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003036</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003037
3038<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
Bill Wendling1654bb22011-11-08 00:32:45 +00003039 compiler, assembler, and linker are required to treat the symbol as if there
3040 is a reference to the global that it cannot see. For example, if a variable
3041 has internal linkage and no references other than that from
3042 the <tt>@llvm.used</tt> list, it cannot be deleted. This is commonly used to
3043 represent references from inline asms and other things the compiler cannot
3044 "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003045
3046<p>On some targets, the code generator must emit a directive to the assembler or
Bill Wendling1654bb22011-11-08 00:32:45 +00003047 object file to prevent the assembler and linker from molesting the
3048 symbol.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003049
3050</div>
3051
3052<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003053<h3>
3054 <a name="intg_compiler_used">
3055 The '<tt>llvm.compiler.used</tt>' Global Variable
3056 </a>
3057</h3>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003058
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003059<div>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003060
3061<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
Bill Wendling1654bb22011-11-08 00:32:45 +00003062 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3063 touching the symbol. On targets that support it, this allows an intelligent
3064 linker to optimize references to the symbol without being impeded as it would
3065 be by <tt>@llvm.used</tt>.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003066
3067<p>This is a rare construct that should only be used in rare circumstances, and
Bill Wendling1654bb22011-11-08 00:32:45 +00003068 should not be exposed to source languages.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003069
3070</div>
3071
3072<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003073<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003074<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003075</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003076
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003077<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003078
3079<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003080<pre>
3081%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003082@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003083</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003084</div>
3085
3086<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
3087 functions and associated priorities. The functions referenced by this array
3088 will be called in ascending order of priority (i.e. lowest first) when the
3089 module is loaded. The order of functions with the same priority is not
3090 defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003091
3092</div>
3093
3094<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003095<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003096<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003097</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003098
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003099<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003100
3101<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003102<pre>
3103%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003104@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003105</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003106</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003107
Bill Wendling1654bb22011-11-08 00:32:45 +00003108<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
3109 and associated priorities. The functions referenced by this array will be
3110 called in descending order of priority (i.e. highest first) when the module
3111 is loaded. The order of functions with the same priority is not defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003112
3113</div>
3114
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003115</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003116
Chris Lattner98f013c2006-01-25 23:47:57 +00003117<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003118<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00003119<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00003120
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003121<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003122
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003123<p>The LLVM instruction set consists of several different classifications of
3124 instructions: <a href="#terminators">terminator
3125 instructions</a>, <a href="#binaryops">binary instructions</a>,
3126 <a href="#bitwiseops">bitwise binary instructions</a>,
3127 <a href="#memoryops">memory instructions</a>, and
3128 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003129
Chris Lattner2f7c9632001-06-06 20:29:01 +00003130<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003131<h3>
3132 <a name="terminators">Terminator Instructions</a>
3133</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00003134
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003135<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003136
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003137<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3138 in a program ends with a "Terminator" instruction, which indicates which
3139 block should be executed after the current block is finished. These
3140 terminator instructions typically yield a '<tt>void</tt>' value: they produce
3141 control flow, not values (the one exception being the
3142 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3143
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003144<p>The terminator instructions are:
3145 '<a href="#i_ret"><tt>ret</tt></a>',
3146 '<a href="#i_br"><tt>br</tt></a>',
3147 '<a href="#i_switch"><tt>switch</tt></a>',
3148 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3149 '<a href="#i_invoke"><tt>invoke</tt></a>',
3150 '<a href="#i_unwind"><tt>unwind</tt></a>',
3151 '<a href="#i_resume"><tt>resume</tt></a>', and
3152 '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003153
Chris Lattner2f7c9632001-06-06 20:29:01 +00003154<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003155<h4>
3156 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3157</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003158
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003159<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003160
Chris Lattner2f7c9632001-06-06 20:29:01 +00003161<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003162<pre>
3163 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003164 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003165</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003166
Chris Lattner2f7c9632001-06-06 20:29:01 +00003167<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003168<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3169 a value) from a function back to the caller.</p>
3170
3171<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3172 value and then causes control flow, and one that just causes control flow to
3173 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003174
Chris Lattner2f7c9632001-06-06 20:29:01 +00003175<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003176<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3177 return value. The type of the return value must be a
3178 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003179
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003180<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3181 non-void return type and contains a '<tt>ret</tt>' instruction with no return
3182 value or a return value with a type that does not match its type, or if it
3183 has a void return type and contains a '<tt>ret</tt>' instruction with a
3184 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003185
Chris Lattner2f7c9632001-06-06 20:29:01 +00003186<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003187<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3188 the calling function's context. If the caller is a
3189 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3190 instruction after the call. If the caller was an
3191 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3192 the beginning of the "normal" destination block. If the instruction returns
3193 a value, that value shall set the call or invoke instruction's return
3194 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003195
Chris Lattner2f7c9632001-06-06 20:29:01 +00003196<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003197<pre>
3198 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003199 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00003200 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003201</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003202
Misha Brukman76307852003-11-08 01:05:38 +00003203</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003204<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003205<h4>
3206 <a name="i_br">'<tt>br</tt>' Instruction</a>
3207</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003208
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003209<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003210
Chris Lattner2f7c9632001-06-06 20:29:01 +00003211<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003212<pre>
Bill Wendling16b86742011-07-26 10:41:15 +00003213 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3214 br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003215</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003216
Chris Lattner2f7c9632001-06-06 20:29:01 +00003217<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003218<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3219 different basic block in the current function. There are two forms of this
3220 instruction, corresponding to a conditional branch and an unconditional
3221 branch.</p>
3222
Chris Lattner2f7c9632001-06-06 20:29:01 +00003223<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003224<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3225 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
3226 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3227 target.</p>
3228
Chris Lattner2f7c9632001-06-06 20:29:01 +00003229<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003230<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003231 argument is evaluated. If the value is <tt>true</tt>, control flows to the
3232 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
3233 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3234
Chris Lattner2f7c9632001-06-06 20:29:01 +00003235<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00003236<pre>
3237Test:
3238 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3239 br i1 %cond, label %IfEqual, label %IfUnequal
3240IfEqual:
3241 <a href="#i_ret">ret</a> i32 1
3242IfUnequal:
3243 <a href="#i_ret">ret</a> i32 0
3244</pre>
3245
Misha Brukman76307852003-11-08 01:05:38 +00003246</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003247
Chris Lattner2f7c9632001-06-06 20:29:01 +00003248<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003249<h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003250 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003251</h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003252
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003253<div>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003254
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003255<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003256<pre>
3257 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3258</pre>
3259
Chris Lattner2f7c9632001-06-06 20:29:01 +00003260<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003261<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003262 several different places. It is a generalization of the '<tt>br</tt>'
3263 instruction, allowing a branch to occur to one of many possible
3264 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003265
Chris Lattner2f7c9632001-06-06 20:29:01 +00003266<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003267<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003268 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3269 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3270 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003271
Chris Lattner2f7c9632001-06-06 20:29:01 +00003272<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003273<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003274 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3275 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00003276 transferred to the corresponding destination; otherwise, control flow is
3277 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003278
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003279<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003280<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003281 <tt>switch</tt> instruction, this instruction may be code generated in
3282 different ways. For example, it could be generated as a series of chained
3283 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003284
3285<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003286<pre>
3287 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003288 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00003289 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003290
3291 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003292 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003293
3294 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00003295 switch i32 %val, label %otherwise [ i32 0, label %onzero
3296 i32 1, label %onone
3297 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00003298</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003299
Misha Brukman76307852003-11-08 01:05:38 +00003300</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003301
Chris Lattner3ed871f2009-10-27 19:13:16 +00003302
3303<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003304<h4>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003305 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003306</h4>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003307
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003308<div>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003309
3310<h5>Syntax:</h5>
3311<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003312 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003313</pre>
3314
3315<h5>Overview:</h5>
3316
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003317<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003318 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003319 "<tt>address</tt>". Address must be derived from a <a
3320 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003321
3322<h5>Arguments:</h5>
3323
3324<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3325 rest of the arguments indicate the full set of possible destinations that the
3326 address may point to. Blocks are allowed to occur multiple times in the
3327 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003328
Chris Lattner3ed871f2009-10-27 19:13:16 +00003329<p>This destination list is required so that dataflow analysis has an accurate
3330 understanding of the CFG.</p>
3331
3332<h5>Semantics:</h5>
3333
3334<p>Control transfers to the block specified in the address argument. All
3335 possible destination blocks must be listed in the label list, otherwise this
3336 instruction has undefined behavior. This implies that jumps to labels
3337 defined in other functions have undefined behavior as well.</p>
3338
3339<h5>Implementation:</h5>
3340
3341<p>This is typically implemented with a jump through a register.</p>
3342
3343<h5>Example:</h5>
3344<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003345 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003346</pre>
3347
3348</div>
3349
3350
Chris Lattner2f7c9632001-06-06 20:29:01 +00003351<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003352<h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003353 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003354</h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003355
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003356<div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003357
Chris Lattner2f7c9632001-06-06 20:29:01 +00003358<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003359<pre>
Devang Patel02256232008-10-07 17:48:33 +00003360 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003361 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003362</pre>
3363
Chris Lattnera8292f32002-05-06 22:08:29 +00003364<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003365<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003366 function, with the possibility of control flow transfer to either the
3367 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3368 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3369 control flow will return to the "normal" label. If the callee (or any
3370 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3371 instruction, control is interrupted and continued at the dynamically nearest
3372 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003373
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003374<p>The '<tt>exception</tt>' label is a
3375 <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3376 exception. As such, '<tt>exception</tt>' label is required to have the
3377 "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
3378 the information about about the behavior of the program after unwinding
3379 happens, as its first non-PHI instruction. The restrictions on the
3380 "<tt>landingpad</tt>" instruction's tightly couples it to the
3381 "<tt>invoke</tt>" instruction, so that the important information contained
3382 within the "<tt>landingpad</tt>" instruction can't be lost through normal
3383 code motion.</p>
3384
Chris Lattner2f7c9632001-06-06 20:29:01 +00003385<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003386<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003387
Chris Lattner2f7c9632001-06-06 20:29:01 +00003388<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003389 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3390 convention</a> the call should use. If none is specified, the call
3391 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003392
3393 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003394 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3395 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003396
Chris Lattner0132aff2005-05-06 22:57:40 +00003397 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003398 function value being invoked. In most cases, this is a direct function
3399 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3400 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003401
3402 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003403 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003404
3405 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003406 signature argument types and parameter attributes. All arguments must be
3407 of <a href="#t_firstclass">first class</a> type. If the function
3408 signature indicates the function accepts a variable number of arguments,
3409 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003410
3411 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003412 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003413
3414 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003415 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003416
Devang Patel02256232008-10-07 17:48:33 +00003417 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003418 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3419 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003420</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003421
Chris Lattner2f7c9632001-06-06 20:29:01 +00003422<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003423<p>This instruction is designed to operate as a standard
3424 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3425 primary difference is that it establishes an association with a label, which
3426 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003427
3428<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003429 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3430 exception. Additionally, this is important for implementation of
3431 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003432
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003433<p>For the purposes of the SSA form, the definition of the value returned by the
3434 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3435 block to the "normal" label. If the callee unwinds then no return value is
3436 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003437
Chris Lattner97257f82010-01-15 18:08:37 +00003438<p>Note that the code generator does not yet completely support unwind, and
3439that the invoke/unwind semantics are likely to change in future versions.</p>
3440
Chris Lattner2f7c9632001-06-06 20:29:01 +00003441<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003442<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003443 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003444 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003445 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003446 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003447</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003448
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003449</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003450
Chris Lattner5ed60612003-09-03 00:41:47 +00003451<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003452
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003453<h4>
3454 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3455</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003456
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003457<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003458
Chris Lattner5ed60612003-09-03 00:41:47 +00003459<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003460<pre>
3461 unwind
3462</pre>
3463
Chris Lattner5ed60612003-09-03 00:41:47 +00003464<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003465<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003466 at the first callee in the dynamic call stack which used
3467 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3468 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003469
Chris Lattner5ed60612003-09-03 00:41:47 +00003470<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003471<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003472 immediately halt. The dynamic call stack is then searched for the
3473 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3474 Once found, execution continues at the "exceptional" destination block
3475 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3476 instruction in the dynamic call chain, undefined behavior results.</p>
3477
Chris Lattner97257f82010-01-15 18:08:37 +00003478<p>Note that the code generator does not yet completely support unwind, and
3479that the invoke/unwind semantics are likely to change in future versions.</p>
3480
Misha Brukman76307852003-11-08 01:05:38 +00003481</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003482
Bill Wendlingf891bf82011-07-31 06:30:59 +00003483 <!-- _______________________________________________________________________ -->
3484
3485<h4>
3486 <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3487</h4>
3488
3489<div>
3490
3491<h5>Syntax:</h5>
3492<pre>
3493 resume &lt;type&gt; &lt;value&gt;
3494</pre>
3495
3496<h5>Overview:</h5>
3497<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3498 successors.</p>
3499
3500<h5>Arguments:</h5>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003501<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
Bill Wendlingc5a13612011-08-03 18:37:32 +00003502 same type as the result of any '<tt>landingpad</tt>' instruction in the same
3503 function.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003504
3505<h5>Semantics:</h5>
3506<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3507 (in-flight) exception whose unwinding was interrupted with
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003508 a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003509
3510<h5>Example:</h5>
3511<pre>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003512 resume { i8*, i32 } %exn
Bill Wendlingf891bf82011-07-31 06:30:59 +00003513</pre>
3514
3515</div>
3516
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003517<!-- _______________________________________________________________________ -->
3518
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003519<h4>
3520 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3521</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003522
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003523<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003524
3525<h5>Syntax:</h5>
3526<pre>
3527 unreachable
3528</pre>
3529
3530<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003531<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003532 instruction is used to inform the optimizer that a particular portion of the
3533 code is not reachable. This can be used to indicate that the code after a
3534 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003535
3536<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003537<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003538
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003539</div>
3540
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003541</div>
3542
Chris Lattner2f7c9632001-06-06 20:29:01 +00003543<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003544<h3>
3545 <a name="binaryops">Binary Operations</a>
3546</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003547
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003548<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003549
3550<p>Binary operators are used to do most of the computation in a program. They
3551 require two operands of the same type, execute an operation on them, and
3552 produce a single value. The operands might represent multiple data, as is
3553 the case with the <a href="#t_vector">vector</a> data type. The result value
3554 has the same type as its operands.</p>
3555
Misha Brukman76307852003-11-08 01:05:38 +00003556<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003557
Chris Lattner2f7c9632001-06-06 20:29:01 +00003558<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003559<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003560 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003561</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003562
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003563<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003564
Chris Lattner2f7c9632001-06-06 20:29:01 +00003565<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003566<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003567 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003568 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3569 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3570 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003571</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003572
Chris Lattner2f7c9632001-06-06 20:29:01 +00003573<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003574<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003575
Chris Lattner2f7c9632001-06-06 20:29:01 +00003576<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003577<p>The two arguments to the '<tt>add</tt>' instruction must
3578 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3579 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003580
Chris Lattner2f7c9632001-06-06 20:29:01 +00003581<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003582<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003583
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003584<p>If the sum has unsigned overflow, the result returned is the mathematical
3585 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003586
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003587<p>Because LLVM integers use a two's complement representation, this instruction
3588 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003589
Dan Gohman902dfff2009-07-22 22:44:56 +00003590<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3591 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3592 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003593 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3594 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003595
Chris Lattner2f7c9632001-06-06 20:29:01 +00003596<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003597<pre>
3598 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003599</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003600
Misha Brukman76307852003-11-08 01:05:38 +00003601</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003602
Chris Lattner2f7c9632001-06-06 20:29:01 +00003603<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003604<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003605 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003606</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003607
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003608<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003609
3610<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003611<pre>
3612 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3613</pre>
3614
3615<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003616<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3617
3618<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003619<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003620 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3621 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003622
3623<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003624<p>The value produced is the floating point sum of the two operands.</p>
3625
3626<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003627<pre>
3628 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3629</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003630
Dan Gohmana5b96452009-06-04 22:49:04 +00003631</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003632
Dan Gohmana5b96452009-06-04 22:49:04 +00003633<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003634<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003635 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003636</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003637
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003638<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003639
Chris Lattner2f7c9632001-06-06 20:29:01 +00003640<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003641<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003642 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003643 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3644 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3645 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003646</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003647
Chris Lattner2f7c9632001-06-06 20:29:01 +00003648<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003649<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003650 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003651
3652<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003653 '<tt>neg</tt>' instruction present in most other intermediate
3654 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003655
Chris Lattner2f7c9632001-06-06 20:29:01 +00003656<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003657<p>The two arguments to the '<tt>sub</tt>' instruction must
3658 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3659 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003660
Chris Lattner2f7c9632001-06-06 20:29:01 +00003661<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003662<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003663
Dan Gohmana5b96452009-06-04 22:49:04 +00003664<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003665 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3666 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003667
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003668<p>Because LLVM integers use a two's complement representation, this instruction
3669 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003670
Dan Gohman902dfff2009-07-22 22:44:56 +00003671<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3672 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3673 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003674 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3675 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003676
Chris Lattner2f7c9632001-06-06 20:29:01 +00003677<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003678<pre>
3679 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003680 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003681</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003682
Misha Brukman76307852003-11-08 01:05:38 +00003683</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003684
Chris Lattner2f7c9632001-06-06 20:29:01 +00003685<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003686<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003687 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003688</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003689
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003690<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003691
3692<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003693<pre>
3694 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3695</pre>
3696
3697<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003698<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003699 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003700
3701<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003702 '<tt>fneg</tt>' instruction present in most other intermediate
3703 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003704
3705<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003706<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003707 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3708 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003709
3710<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003711<p>The value produced is the floating point difference of the two operands.</p>
3712
3713<h5>Example:</h5>
3714<pre>
3715 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3716 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3717</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003718
Dan Gohmana5b96452009-06-04 22:49:04 +00003719</div>
3720
3721<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003722<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003723 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003724</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003725
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003726<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003727
Chris Lattner2f7c9632001-06-06 20:29:01 +00003728<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003729<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003730 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003731 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3732 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3733 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003734</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003735
Chris Lattner2f7c9632001-06-06 20:29:01 +00003736<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003737<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003738
Chris Lattner2f7c9632001-06-06 20:29:01 +00003739<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003740<p>The two arguments to the '<tt>mul</tt>' instruction must
3741 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3742 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003743
Chris Lattner2f7c9632001-06-06 20:29:01 +00003744<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003745<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003746
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003747<p>If the result of the multiplication has unsigned overflow, the result
3748 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3749 width of the result.</p>
3750
3751<p>Because LLVM integers use a two's complement representation, and the result
3752 is the same width as the operands, this instruction returns the correct
3753 result for both signed and unsigned integers. If a full product
3754 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3755 be sign-extended or zero-extended as appropriate to the width of the full
3756 product.</p>
3757
Dan Gohman902dfff2009-07-22 22:44:56 +00003758<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3759 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3760 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003761 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3762 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003763
Chris Lattner2f7c9632001-06-06 20:29:01 +00003764<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003765<pre>
3766 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003767</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003768
Misha Brukman76307852003-11-08 01:05:38 +00003769</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003770
Chris Lattner2f7c9632001-06-06 20:29:01 +00003771<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003772<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003773 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003774</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003775
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003776<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003777
3778<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003779<pre>
3780 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003781</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003782
Dan Gohmana5b96452009-06-04 22:49:04 +00003783<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003784<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003785
3786<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003787<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003788 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3789 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003790
3791<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003792<p>The value produced is the floating point product of the two operands.</p>
3793
3794<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003795<pre>
3796 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003797</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003798
Dan Gohmana5b96452009-06-04 22:49:04 +00003799</div>
3800
3801<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003802<h4>
3803 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3804</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003805
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003806<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003807
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003808<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003809<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00003810 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3811 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003812</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003813
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003814<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003815<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003816
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003817<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003818<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003819 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3820 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003821
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003822<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003823<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003824
Chris Lattner2f2427e2008-01-28 00:36:27 +00003825<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003826 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3827
Chris Lattner2f2427e2008-01-28 00:36:27 +00003828<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003829
Chris Lattner35315d02011-02-06 21:44:57 +00003830<p>If the <tt>exact</tt> keyword is present, the result value of the
3831 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3832 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3833
3834
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003835<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003836<pre>
3837 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003838</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003839
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003840</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003841
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003842<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003843<h4>
3844 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3845</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003846
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003847<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003848
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003849<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003850<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003851 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003852 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003853</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003854
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003855<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003856<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003857
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003858<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003859<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003860 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3861 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003862
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003863<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003864<p>The value produced is the signed integer quotient of the two operands rounded
3865 towards zero.</p>
3866
Chris Lattner2f2427e2008-01-28 00:36:27 +00003867<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003868 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3869
Chris Lattner2f2427e2008-01-28 00:36:27 +00003870<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003871 undefined behavior; this is a rare case, but can occur, for example, by doing
3872 a 32-bit division of -2147483648 by -1.</p>
3873
Dan Gohman71dfd782009-07-22 00:04:19 +00003874<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00003875 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00003876 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003877
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003878<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003879<pre>
3880 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003881</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003882
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003883</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003884
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003885<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003886<h4>
3887 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3888</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003890<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003891
Chris Lattner2f7c9632001-06-06 20:29:01 +00003892<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003893<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003894 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003895</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003896
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003897<h5>Overview:</h5>
3898<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003899
Chris Lattner48b383b02003-11-25 01:02:51 +00003900<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003901<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003902 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3903 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003904
Chris Lattner48b383b02003-11-25 01:02:51 +00003905<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003906<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003907
Chris Lattner48b383b02003-11-25 01:02:51 +00003908<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003909<pre>
3910 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003911</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003912
Chris Lattner48b383b02003-11-25 01:02:51 +00003913</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003914
Chris Lattner48b383b02003-11-25 01:02:51 +00003915<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003916<h4>
3917 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3918</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003919
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003920<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003921
Reid Spencer7eb55b32006-11-02 01:53:59 +00003922<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003923<pre>
3924 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003925</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003926
Reid Spencer7eb55b32006-11-02 01:53:59 +00003927<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003928<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3929 division of its two arguments.</p>
3930
Reid Spencer7eb55b32006-11-02 01:53:59 +00003931<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003932<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003933 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3934 values. Both arguments must have identical types.</p>
3935
Reid Spencer7eb55b32006-11-02 01:53:59 +00003936<h5>Semantics:</h5>
3937<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003938 This instruction always performs an unsigned division to get the
3939 remainder.</p>
3940
Chris Lattner2f2427e2008-01-28 00:36:27 +00003941<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003942 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3943
Chris Lattner2f2427e2008-01-28 00:36:27 +00003944<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003945
Reid Spencer7eb55b32006-11-02 01:53:59 +00003946<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003947<pre>
3948 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003949</pre>
3950
3951</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003952
Reid Spencer7eb55b32006-11-02 01:53:59 +00003953<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003954<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003955 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003956</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003957
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003958<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003959
Chris Lattner48b383b02003-11-25 01:02:51 +00003960<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003961<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003962 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003963</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003964
Chris Lattner48b383b02003-11-25 01:02:51 +00003965<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003966<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3967 division of its two operands. This instruction can also take
3968 <a href="#t_vector">vector</a> versions of the values in which case the
3969 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003970
Chris Lattner48b383b02003-11-25 01:02:51 +00003971<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003972<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003973 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3974 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003975
Chris Lattner48b383b02003-11-25 01:02:51 +00003976<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003977<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sands2769c6e2011-03-07 09:12:24 +00003978 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3979 <i>modulo</i> operator (where the result is either zero or has the same sign
3980 as the divisor, <tt>op2</tt>) of a value.
3981 For more information about the difference,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003982 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3983 Math Forum</a>. For a table of how this is implemented in various languages,
3984 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3985 Wikipedia: modulo operation</a>.</p>
3986
Chris Lattner2f2427e2008-01-28 00:36:27 +00003987<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003988 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3989
Chris Lattner2f2427e2008-01-28 00:36:27 +00003990<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003991 Overflow also leads to undefined behavior; this is a rare case, but can
3992 occur, for example, by taking the remainder of a 32-bit division of
3993 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3994 lets srem be implemented using instructions that return both the result of
3995 the division and the remainder.)</p>
3996
Chris Lattner48b383b02003-11-25 01:02:51 +00003997<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003998<pre>
3999 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004000</pre>
4001
4002</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004003
Reid Spencer7eb55b32006-11-02 01:53:59 +00004004<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004005<h4>
4006 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
4007</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004008
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004009<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004010
Reid Spencer7eb55b32006-11-02 01:53:59 +00004011<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004012<pre>
4013 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004014</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004015
Reid Spencer7eb55b32006-11-02 01:53:59 +00004016<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004017<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
4018 its two operands.</p>
4019
Reid Spencer7eb55b32006-11-02 01:53:59 +00004020<h5>Arguments:</h5>
4021<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004022 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4023 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004024
Reid Spencer7eb55b32006-11-02 01:53:59 +00004025<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004026<p>This instruction returns the <i>remainder</i> of a division. The remainder
4027 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004028
Reid Spencer7eb55b32006-11-02 01:53:59 +00004029<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004030<pre>
4031 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004032</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004033
Misha Brukman76307852003-11-08 01:05:38 +00004034</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00004035
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004036</div>
4037
Reid Spencer2ab01932007-02-02 13:57:07 +00004038<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004039<h3>
4040 <a name="bitwiseops">Bitwise Binary Operations</a>
4041</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004042
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004043<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004044
4045<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4046 program. They are generally very efficient instructions and can commonly be
4047 strength reduced from other instructions. They require two operands of the
4048 same type, execute an operation on them, and produce a single value. The
4049 resulting value is the same type as its operands.</p>
4050
Reid Spencer04e259b2007-01-31 21:39:12 +00004051<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004052<h4>
4053 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4054</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004055
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004056<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004057
Reid Spencer04e259b2007-01-31 21:39:12 +00004058<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004059<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004060 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4061 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4062 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4063 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004064</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004065
Reid Spencer04e259b2007-01-31 21:39:12 +00004066<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004067<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4068 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004069
Reid Spencer04e259b2007-01-31 21:39:12 +00004070<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004071<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4072 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4073 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00004074
Reid Spencer04e259b2007-01-31 21:39:12 +00004075<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004076<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4077 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
4078 is (statically or dynamically) negative or equal to or larger than the number
4079 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4080 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4081 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004082
Chris Lattnera676c0f2011-02-07 16:40:21 +00004083<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
4084 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00004085 the <tt>nsw</tt> keyword is present, then the shift produces a
Chris Lattnera676c0f2011-02-07 16:40:21 +00004086 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
4087 with the resultant sign bit. As such, NUW/NSW have the same semantics as
4088 they would if the shift were expressed as a mul instruction with the same
4089 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4090
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004091<h5>Example:</h5>
4092<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00004093 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
4094 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
4095 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004096 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004097 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004098</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004099
Reid Spencer04e259b2007-01-31 21:39:12 +00004100</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004101
Reid Spencer04e259b2007-01-31 21:39:12 +00004102<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004103<h4>
4104 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4105</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004106
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004107<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004108
Reid Spencer04e259b2007-01-31 21:39:12 +00004109<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004110<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004111 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4112 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004113</pre>
4114
4115<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004116<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4117 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004118
4119<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004120<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004121 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4122 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004123
4124<h5>Semantics:</h5>
4125<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004126 significant bits of the result will be filled with zero bits after the shift.
4127 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4128 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4129 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4130 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004131
Chris Lattnera676c0f2011-02-07 16:40:21 +00004132<p>If the <tt>exact</tt> keyword is present, the result value of the
4133 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4134 shifted out are non-zero.</p>
4135
4136
Reid Spencer04e259b2007-01-31 21:39:12 +00004137<h5>Example:</h5>
4138<pre>
4139 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
4140 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
4141 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
4142 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004143 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004144 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004145</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004146
Reid Spencer04e259b2007-01-31 21:39:12 +00004147</div>
4148
Reid Spencer2ab01932007-02-02 13:57:07 +00004149<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004150<h4>
4151 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4152</h4>
4153
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004154<div>
Reid Spencer04e259b2007-01-31 21:39:12 +00004155
4156<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004157<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004158 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4159 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004160</pre>
4161
4162<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004163<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4164 operand shifted to the right a specified number of bits with sign
4165 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004166
4167<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004168<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004169 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4170 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004171
4172<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004173<p>This instruction always performs an arithmetic shift right operation, The
4174 most significant bits of the result will be filled with the sign bit
4175 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
4176 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4177 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4178 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004179
Chris Lattnera676c0f2011-02-07 16:40:21 +00004180<p>If the <tt>exact</tt> keyword is present, the result value of the
4181 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4182 shifted out are non-zero.</p>
4183
Reid Spencer04e259b2007-01-31 21:39:12 +00004184<h5>Example:</h5>
4185<pre>
4186 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
4187 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
4188 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
4189 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004190 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004191 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004192</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004193
Reid Spencer04e259b2007-01-31 21:39:12 +00004194</div>
4195
Chris Lattner2f7c9632001-06-06 20:29:01 +00004196<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004197<h4>
4198 <a name="i_and">'<tt>and</tt>' Instruction</a>
4199</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004200
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004201<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004202
Chris Lattner2f7c9632001-06-06 20:29:01 +00004203<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004204<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004205 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004206</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004207
Chris Lattner2f7c9632001-06-06 20:29:01 +00004208<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004209<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4210 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004211
Chris Lattner2f7c9632001-06-06 20:29:01 +00004212<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004213<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004214 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4215 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004216
Chris Lattner2f7c9632001-06-06 20:29:01 +00004217<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004218<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004219
Misha Brukman76307852003-11-08 01:05:38 +00004220<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00004221 <tbody>
4222 <tr>
4223 <td>In0</td>
4224 <td>In1</td>
4225 <td>Out</td>
4226 </tr>
4227 <tr>
4228 <td>0</td>
4229 <td>0</td>
4230 <td>0</td>
4231 </tr>
4232 <tr>
4233 <td>0</td>
4234 <td>1</td>
4235 <td>0</td>
4236 </tr>
4237 <tr>
4238 <td>1</td>
4239 <td>0</td>
4240 <td>0</td>
4241 </tr>
4242 <tr>
4243 <td>1</td>
4244 <td>1</td>
4245 <td>1</td>
4246 </tr>
4247 </tbody>
4248</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004249
Chris Lattner2f7c9632001-06-06 20:29:01 +00004250<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004251<pre>
4252 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004253 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
4254 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004255</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004256</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004257<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004258<h4>
4259 <a name="i_or">'<tt>or</tt>' Instruction</a>
4260</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004261
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004262<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004263
4264<h5>Syntax:</h5>
4265<pre>
4266 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4267</pre>
4268
4269<h5>Overview:</h5>
4270<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4271 two operands.</p>
4272
4273<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004274<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004275 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4276 values. Both arguments must have identical types.</p>
4277
Chris Lattner2f7c9632001-06-06 20:29:01 +00004278<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004279<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004280
Chris Lattner48b383b02003-11-25 01:02:51 +00004281<table border="1" cellspacing="0" cellpadding="4">
4282 <tbody>
4283 <tr>
4284 <td>In0</td>
4285 <td>In1</td>
4286 <td>Out</td>
4287 </tr>
4288 <tr>
4289 <td>0</td>
4290 <td>0</td>
4291 <td>0</td>
4292 </tr>
4293 <tr>
4294 <td>0</td>
4295 <td>1</td>
4296 <td>1</td>
4297 </tr>
4298 <tr>
4299 <td>1</td>
4300 <td>0</td>
4301 <td>1</td>
4302 </tr>
4303 <tr>
4304 <td>1</td>
4305 <td>1</td>
4306 <td>1</td>
4307 </tr>
4308 </tbody>
4309</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004310
Chris Lattner2f7c9632001-06-06 20:29:01 +00004311<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004312<pre>
4313 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004314 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4315 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004316</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004317
Misha Brukman76307852003-11-08 01:05:38 +00004318</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004319
Chris Lattner2f7c9632001-06-06 20:29:01 +00004320<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004321<h4>
4322 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4323</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004324
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004325<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004326
Chris Lattner2f7c9632001-06-06 20:29:01 +00004327<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004328<pre>
4329 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004330</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004331
Chris Lattner2f7c9632001-06-06 20:29:01 +00004332<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004333<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4334 its two operands. The <tt>xor</tt> is used to implement the "one's
4335 complement" operation, which is the "~" operator in C.</p>
4336
Chris Lattner2f7c9632001-06-06 20:29:01 +00004337<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004338<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004339 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4340 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004341
Chris Lattner2f7c9632001-06-06 20:29:01 +00004342<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004343<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004344
Chris Lattner48b383b02003-11-25 01:02:51 +00004345<table border="1" cellspacing="0" cellpadding="4">
4346 <tbody>
4347 <tr>
4348 <td>In0</td>
4349 <td>In1</td>
4350 <td>Out</td>
4351 </tr>
4352 <tr>
4353 <td>0</td>
4354 <td>0</td>
4355 <td>0</td>
4356 </tr>
4357 <tr>
4358 <td>0</td>
4359 <td>1</td>
4360 <td>1</td>
4361 </tr>
4362 <tr>
4363 <td>1</td>
4364 <td>0</td>
4365 <td>1</td>
4366 </tr>
4367 <tr>
4368 <td>1</td>
4369 <td>1</td>
4370 <td>0</td>
4371 </tr>
4372 </tbody>
4373</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004374
Chris Lattner2f7c9632001-06-06 20:29:01 +00004375<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004376<pre>
4377 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004378 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4379 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4380 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004381</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004382
Misha Brukman76307852003-11-08 01:05:38 +00004383</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004384
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004385</div>
4386
Chris Lattner2f7c9632001-06-06 20:29:01 +00004387<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004388<h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004389 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004390</h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004391
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004392<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004393
4394<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004395 target-independent manner. These instructions cover the element-access and
4396 vector-specific operations needed to process vectors effectively. While LLVM
4397 does directly support these vector operations, many sophisticated algorithms
4398 will want to use target-specific intrinsics to take full advantage of a
4399 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004400
Chris Lattnerce83bff2006-04-08 23:07:04 +00004401<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004402<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004403 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004404</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004405
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004406<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004407
4408<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004409<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004410 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004411</pre>
4412
4413<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004414<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4415 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004416
4417
4418<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004419<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4420 of <a href="#t_vector">vector</a> type. The second operand is an index
4421 indicating the position from which to extract the element. The index may be
4422 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004423
4424<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004425<p>The result is a scalar of the same type as the element type of
4426 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4427 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4428 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004429
4430<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004431<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004432 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004433</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004434
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004435</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004436
4437<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004438<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004439 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004440</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004441
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004442<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004443
4444<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004445<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004446 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004447</pre>
4448
4449<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004450<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4451 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004452
4453<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004454<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4455 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4456 whose type must equal the element type of the first operand. The third
4457 operand is an index indicating the position at which to insert the value.
4458 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004459
4460<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004461<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4462 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4463 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4464 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004465
4466<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004467<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004468 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004469</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004470
Chris Lattnerce83bff2006-04-08 23:07:04 +00004471</div>
4472
4473<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004474<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004475 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004476</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004477
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004478<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004479
4480<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004481<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004482 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004483</pre>
4484
4485<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004486<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4487 from two input vectors, returning a vector with the same element type as the
4488 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004489
4490<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004491<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4492 with types that match each other. The third argument is a shuffle mask whose
4493 element type is always 'i32'. The result of the instruction is a vector
4494 whose length is the same as the shuffle mask and whose element type is the
4495 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004496
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004497<p>The shuffle mask operand is required to be a constant vector with either
4498 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004499
4500<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004501<p>The elements of the two input vectors are numbered from left to right across
4502 both of the vectors. The shuffle mask operand specifies, for each element of
4503 the result vector, which element of the two input vectors the result element
4504 gets. The element selector may be undef (meaning "don't care") and the
4505 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004506
4507<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004508<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004509 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004510 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004511 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004512 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004513 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004514 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004515 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004516 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004517</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004518
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004519</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004520
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004521</div>
4522
Chris Lattnerce83bff2006-04-08 23:07:04 +00004523<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004524<h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004525 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004526</h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004527
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004528<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004529
Chris Lattner392be582010-02-12 20:49:41 +00004530<p>LLVM supports several instructions for working with
4531 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004532
Dan Gohmanb9d66602008-05-12 23:51:09 +00004533<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004534<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004535 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004536</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004537
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004538<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004539
4540<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004541<pre>
4542 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4543</pre>
4544
4545<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004546<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4547 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004548
4549<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004550<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004551 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004552 <a href="#t_array">array</a> type. The operands are constant indices to
4553 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004554 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004555 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4556 <ul>
4557 <li>Since the value being indexed is not a pointer, the first index is
4558 omitted and assumed to be zero.</li>
4559 <li>At least one index must be specified.</li>
4560 <li>Not only struct indices but also array indices must be in
4561 bounds.</li>
4562 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004563
4564<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004565<p>The result is the value at the position in the aggregate specified by the
4566 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004567
4568<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004569<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004570 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004571</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004572
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004573</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004574
4575<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004576<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004577 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004578</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004579
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004580<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004581
4582<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004583<pre>
Bill Wendlingf6a91cf2011-07-26 20:42:28 +00004584 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}* <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004585</pre>
4586
4587<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004588<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4589 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004590
4591<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004592<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004593 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004594 <a href="#t_array">array</a> type. The second operand is a first-class
4595 value to insert. The following operands are constant indices indicating
4596 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004597 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004598 value to insert must have the same type as the value identified by the
4599 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004600
4601<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004602<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4603 that of <tt>val</tt> except that the value at the position specified by the
4604 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004605
4606<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004607<pre>
Chris Lattnerc2e85402011-05-22 07:18:08 +00004608 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4609 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4610 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004611</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004612
Dan Gohmanb9d66602008-05-12 23:51:09 +00004613</div>
4614
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004615</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004616
4617<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004618<h3>
Chris Lattner6ab66722006-08-15 00:45:58 +00004619 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004620</h3>
Chris Lattner54611b42005-11-06 08:02:57 +00004621
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004622<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004623
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004624<p>A key design point of an SSA-based representation is how it represents
4625 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004626 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004627 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004628
Chris Lattner2f7c9632001-06-06 20:29:01 +00004629<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004630<h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004631 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004632</h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004633
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004634<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004635
Chris Lattner2f7c9632001-06-06 20:29:01 +00004636<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004637<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004638 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004639</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004640
Chris Lattner2f7c9632001-06-06 20:29:01 +00004641<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004642<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004643 currently executing function, to be automatically released when this function
4644 returns to its caller. The object is always allocated in the generic address
4645 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004646
Chris Lattner2f7c9632001-06-06 20:29:01 +00004647<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004648<p>The '<tt>alloca</tt>' instruction
4649 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4650 runtime stack, returning a pointer of the appropriate type to the program.
4651 If "NumElements" is specified, it is the number of elements allocated,
4652 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4653 specified, the value result of the allocation is guaranteed to be aligned to
4654 at least that boundary. If not specified, or if zero, the target can choose
4655 to align the allocation on any convenient boundary compatible with the
4656 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004657
Misha Brukman76307852003-11-08 01:05:38 +00004658<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004659
Chris Lattner2f7c9632001-06-06 20:29:01 +00004660<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004661<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004662 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4663 memory is automatically released when the function returns. The
4664 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4665 variables that must have an address available. When the function returns
4666 (either with the <tt><a href="#i_ret">ret</a></tt>
4667 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4668 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004669
Chris Lattner2f7c9632001-06-06 20:29:01 +00004670<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004671<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004672 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4673 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4674 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4675 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004676</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004677
Misha Brukman76307852003-11-08 01:05:38 +00004678</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004679
Chris Lattner2f7c9632001-06-06 20:29:01 +00004680<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004681<h4>
4682 <a name="i_load">'<tt>load</tt>' Instruction</a>
4683</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004684
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004685<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004686
Chris Lattner095735d2002-05-06 03:03:22 +00004687<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004688<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004689 &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4690 &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004691 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004692</pre>
4693
Chris Lattner095735d2002-05-06 03:03:22 +00004694<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004695<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004696
Chris Lattner095735d2002-05-06 03:03:22 +00004697<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004698<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4699 from which to load. The pointer must point to
4700 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4701 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004702 number or order of execution of this <tt>load</tt> with other <a
4703 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004704
Eli Friedman59b66882011-08-09 23:02:53 +00004705<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4706 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4707 argument. The <code>release</code> and <code>acq_rel</code> orderings are
4708 not valid on <code>load</code> instructions. Atomic loads produce <a
4709 href="#memorymodel">defined</a> results when they may see multiple atomic
4710 stores. The type of the pointee must be an integer type whose bit width
4711 is a power of two greater than or equal to eight and less than or equal
4712 to a target-specific size limit. <code>align</code> must be explicitly
4713 specified on atomic loads, and the load has undefined behavior if the
4714 alignment is not set to a value which is at least the size in bytes of
4715 the pointee. <code>!nontemporal</code> does not have any defined semantics
4716 for atomic loads.</p>
4717
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004718<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004719 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004720 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004721 alignment for the target. It is the responsibility of the code emitter to
4722 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004723 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004724 produce less efficient code. An alignment of 1 is always safe.</p>
4725
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004726<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4727 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004728 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004729 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4730 and code generator that this load is not expected to be reused in the cache.
4731 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004732 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004733
Chris Lattner095735d2002-05-06 03:03:22 +00004734<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004735<p>The location of memory pointed to is loaded. If the value being loaded is of
4736 scalar type then the number of bytes read does not exceed the minimum number
4737 of bytes needed to hold all bits of the type. For example, loading an
4738 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4739 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4740 is undefined if the value was not originally written using a store of the
4741 same type.</p>
4742
Chris Lattner095735d2002-05-06 03:03:22 +00004743<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004744<pre>
4745 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4746 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004747 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004748</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004749
Misha Brukman76307852003-11-08 01:05:38 +00004750</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004751
Chris Lattner095735d2002-05-06 03:03:22 +00004752<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004753<h4>
4754 <a name="i_store">'<tt>store</tt>' Instruction</a>
4755</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004757<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004758
Chris Lattner095735d2002-05-06 03:03:22 +00004759<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004760<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004761 store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4762 store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt; <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004763</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004764
Chris Lattner095735d2002-05-06 03:03:22 +00004765<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004766<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004767
Chris Lattner095735d2002-05-06 03:03:22 +00004768<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004769<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4770 and an address at which to store it. The type of the
4771 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4772 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004773 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4774 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4775 order of execution of this <tt>store</tt> with other <a
4776 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004777
Eli Friedman59b66882011-08-09 23:02:53 +00004778<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
4779 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4780 argument. The <code>acquire</code> and <code>acq_rel</code> orderings aren't
4781 valid on <code>store</code> instructions. Atomic loads produce <a
4782 href="#memorymodel">defined</a> results when they may see multiple atomic
4783 stores. The type of the pointee must be an integer type whose bit width
4784 is a power of two greater than or equal to eight and less than or equal
4785 to a target-specific size limit. <code>align</code> must be explicitly
4786 specified on atomic stores, and the store has undefined behavior if the
4787 alignment is not set to a value which is at least the size in bytes of
4788 the pointee. <code>!nontemporal</code> does not have any defined semantics
4789 for atomic stores.</p>
4790
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004791<p>The optional constant "align" argument specifies the alignment of the
4792 operation (that is, the alignment of the memory address). A value of 0 or an
4793 omitted "align" argument means that the operation has the preferential
4794 alignment for the target. It is the responsibility of the code emitter to
4795 ensure that the alignment information is correct. Overestimating the
4796 alignment results in an undefined behavior. Underestimating the alignment may
4797 produce less efficient code. An alignment of 1 is always safe.</p>
4798
David Greene9641d062010-02-16 20:50:18 +00004799<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00004800 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00004801 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00004802 instruction tells the optimizer and code generator that this load is
4803 not expected to be reused in the cache. The code generator may
4804 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00004805 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004806
4807
Chris Lattner48b383b02003-11-25 01:02:51 +00004808<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004809<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4810 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4811 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4812 does not exceed the minimum number of bytes needed to hold all bits of the
4813 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4814 writing a value of a type like <tt>i20</tt> with a size that is not an
4815 integral number of bytes, it is unspecified what happens to the extra bits
4816 that do not belong to the type, but they will typically be overwritten.</p>
4817
Chris Lattner095735d2002-05-06 03:03:22 +00004818<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004819<pre>
4820 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004821 store i32 3, i32* %ptr <i>; yields {void}</i>
4822 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004823</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004824
Reid Spencer443460a2006-11-09 21:15:49 +00004825</div>
4826
Chris Lattner095735d2002-05-06 03:03:22 +00004827<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004828<h4>
4829<a name="i_fence">'<tt>fence</tt>' Instruction</a>
4830</h4>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004831
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004832<div>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004833
4834<h5>Syntax:</h5>
4835<pre>
4836 fence [singlethread] &lt;ordering&gt; <i>; yields {void}</i>
4837</pre>
4838
4839<h5>Overview:</h5>
4840<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
4841between operations.</p>
4842
4843<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
4844href="#ordering">ordering</a> argument which defines what
4845<i>synchronizes-with</i> edges they add. They can only be given
4846<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
4847<code>seq_cst</code> orderings.</p>
4848
4849<h5>Semantics:</h5>
4850<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
4851semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
4852<code>acquire</code> ordering semantics if and only if there exist atomic
4853operations <var>X</var> and <var>Y</var>, both operating on some atomic object
4854<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
4855<var>X</var> modifies <var>M</var> (either directly or through some side effect
4856of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
4857<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
4858<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
4859than an explicit <code>fence</code>, one (but not both) of the atomic operations
4860<var>X</var> or <var>Y</var> might provide a <code>release</code> or
4861<code>acquire</code> (resp.) ordering constraint and still
4862<i>synchronize-with</i> the explicit <code>fence</code> and establish the
4863<i>happens-before</i> edge.</p>
4864
4865<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
4866having both <code>acquire</code> and <code>release</code> semantics specified
4867above, participates in the global program order of other <code>seq_cst</code>
4868operations and/or fences.</p>
4869
4870<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
4871specifies that the fence only synchronizes with other fences in the same
4872thread. (This is useful for interacting with signal handlers.)</p>
4873
Eli Friedmanfee02c62011-07-25 23:16:38 +00004874<h5>Example:</h5>
4875<pre>
4876 fence acquire <i>; yields {void}</i>
4877 fence singlethread seq_cst <i>; yields {void}</i>
4878</pre>
4879
4880</div>
4881
4882<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004883<h4>
4884<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
4885</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004886
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004887<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004888
4889<h5>Syntax:</h5>
4890<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004891 cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004892</pre>
4893
4894<h5>Overview:</h5>
4895<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
4896It loads a value in memory and compares it to a given value. If they are
4897equal, it stores a new value into the memory.</p>
4898
4899<h5>Arguments:</h5>
4900<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
4901address to operate on, a value to compare to the value currently be at that
4902address, and a new value to place at that address if the compared values are
4903equal. The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
4904bit width is a power of two greater than or equal to eight and less than
4905or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
4906'<var>&lt;new&gt;</var>' must have the same type, and the type of
4907'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
4908<code>cmpxchg</code> is marked as <code>volatile</code>, then the
4909optimizer is not allowed to modify the number or order of execution
4910of this <code>cmpxchg</code> with other <a href="#volatile">volatile
4911operations</a>.</p>
4912
4913<!-- FIXME: Extend allowed types. -->
4914
4915<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
4916<code>cmpxchg</code> synchronizes with other atomic operations.</p>
4917
4918<p>The optional "<code>singlethread</code>" argument declares that the
4919<code>cmpxchg</code> is only atomic with respect to code (usually signal
4920handlers) running in the same thread as the <code>cmpxchg</code>. Otherwise the
4921cmpxchg is atomic with respect to all other code in the system.</p>
4922
4923<p>The pointer passed into cmpxchg must have alignment greater than or equal to
4924the size in memory of the operand.
4925
4926<h5>Semantics:</h5>
4927<p>The contents of memory at the location specified by the
4928'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
4929'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
4930'<tt>&lt;new&gt;</tt>' is written. The original value at the location
4931is returned.
4932
4933<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
4934purpose of identifying <a href="#release_sequence">release sequences</a>. A
4935failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
4936parameter determined by dropping any <code>release</code> part of the
4937<code>cmpxchg</code>'s ordering.</p>
4938
4939<!--
4940FIXME: Is compare_exchange_weak() necessary? (Consider after we've done
4941optimization work on ARM.)
4942
4943FIXME: Is a weaker ordering constraint on failure helpful in practice?
4944-->
4945
4946<h5>Example:</h5>
4947<pre>
4948entry:
4949 %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered <i>; yields {i32}</i>
4950 <a href="#i_br">br</a> label %loop
4951
4952loop:
4953 %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
4954 %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
4955 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared <i>; yields {i32}</i>
4956 %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
4957 <a href="#i_br">br</a> i1 %success, label %done, label %loop
4958
4959done:
4960 ...
4961</pre>
4962
4963</div>
4964
4965<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004966<h4>
4967<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
4968</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004969
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004970<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004971
4972<h5>Syntax:</h5>
4973<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004974 atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004975</pre>
4976
4977<h5>Overview:</h5>
4978<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
4979
4980<h5>Arguments:</h5>
4981<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
4982operation to apply, an address whose value to modify, an argument to the
4983operation. The operation must be one of the following keywords:</p>
4984<ul>
4985 <li>xchg</li>
4986 <li>add</li>
4987 <li>sub</li>
4988 <li>and</li>
4989 <li>nand</li>
4990 <li>or</li>
4991 <li>xor</li>
4992 <li>max</li>
4993 <li>min</li>
4994 <li>umax</li>
4995 <li>umin</li>
4996</ul>
4997
4998<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
4999bit width is a power of two greater than or equal to eight and less than
5000or equal to a target-specific size limit. The type of the
5001'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
5002If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
5003optimizer is not allowed to modify the number or order of execution of this
5004<code>atomicrmw</code> with other <a href="#volatile">volatile
5005 operations</a>.</p>
5006
5007<!-- FIXME: Extend allowed types. -->
5008
5009<h5>Semantics:</h5>
5010<p>The contents of memory at the location specified by the
5011'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
5012back. The original value at the location is returned. The modification is
5013specified by the <var>operation</var> argument:</p>
5014
5015<ul>
5016 <li>xchg: <code>*ptr = val</code></li>
5017 <li>add: <code>*ptr = *ptr + val</code></li>
5018 <li>sub: <code>*ptr = *ptr - val</code></li>
5019 <li>and: <code>*ptr = *ptr &amp; val</code></li>
5020 <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
5021 <li>or: <code>*ptr = *ptr | val</code></li>
5022 <li>xor: <code>*ptr = *ptr ^ val</code></li>
5023 <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
5024 <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
5025 <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5026 <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5027</ul>
5028
5029<h5>Example:</h5>
5030<pre>
5031 %old = atomicrmw add i32* %ptr, i32 1 acquire <i>; yields {i32}</i>
5032</pre>
5033
5034</div>
5035
5036<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005037<h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005038 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005039</h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005040
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005041<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005042
Chris Lattner590645f2002-04-14 06:13:44 +00005043<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005044<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005045 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00005046 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00005047</pre>
5048
Chris Lattner590645f2002-04-14 06:13:44 +00005049<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005050<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00005051 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5052 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005053
Chris Lattner590645f2002-04-14 06:13:44 +00005054<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005055<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00005056 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005057 elements of the aggregate object are indexed. The interpretation of each
5058 index is dependent on the type being indexed into. The first index always
5059 indexes the pointer value given as the first argument, the second index
5060 indexes a value of the type pointed to (not necessarily the value directly
5061 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00005062 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00005063 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00005064 can never be pointers, since that would require loading the pointer before
5065 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005066
5067<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00005068 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00005069 integer <b>constants</b> are allowed. When indexing into an array, pointer
5070 or vector, integers of any width are allowed, and they are not required to be
Eli Friedmand8874dc2011-08-12 23:37:55 +00005071 constant. These integers are treated as signed values where relevant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005072
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005073<p>For example, let's consider a C code fragment and how it gets compiled to
5074 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005075
Benjamin Kramer79698be2010-07-13 12:26:09 +00005076<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00005077struct RT {
5078 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00005079 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00005080 char C;
5081};
5082struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00005083 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00005084 double Y;
5085 struct RT Z;
5086};
Chris Lattner33fd7022004-04-05 01:30:49 +00005087
Chris Lattnera446f1b2007-05-29 15:43:56 +00005088int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005089 return &amp;s[1].Z.B[5][13];
5090}
Chris Lattner33fd7022004-04-05 01:30:49 +00005091</pre>
5092
Misha Brukman76307852003-11-08 01:05:38 +00005093<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005094
Benjamin Kramer79698be2010-07-13 12:26:09 +00005095<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +00005096%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
5097%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00005098
Dan Gohman6b867702009-07-25 02:23:48 +00005099define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005100entry:
5101 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
5102 ret i32* %reg
5103}
Chris Lattner33fd7022004-04-05 01:30:49 +00005104</pre>
5105
Chris Lattner590645f2002-04-14 06:13:44 +00005106<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005107<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005108 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
5109 }</tt>' type, a structure. The second index indexes into the third element
5110 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
5111 i8 }</tt>' type, another structure. The third index indexes into the second
5112 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
5113 array. The two dimensions of the array are subscripted into, yielding an
5114 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
5115 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005116
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005117<p>Note that it is perfectly legal to index partially through a structure,
5118 returning a pointer to an inner element. Because of this, the LLVM code for
5119 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005120
5121<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00005122 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005123 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00005124 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
5125 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005126 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
5127 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
5128 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00005129 }
Chris Lattnera8292f32002-05-06 22:08:29 +00005130</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00005131
Dan Gohman1639c392009-07-27 21:53:46 +00005132<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00005133 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
5134 base pointer is not an <i>in bounds</i> address of an allocated object,
5135 or if any of the addresses that would be formed by successive addition of
5136 the offsets implied by the indices to the base address with infinitely
Eli Friedmand8874dc2011-08-12 23:37:55 +00005137 precise signed arithmetic are not an <i>in bounds</i> address of that
5138 allocated object. The <i>in bounds</i> addresses for an allocated object
5139 are all the addresses that point into the object, plus the address one
5140 byte past the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005141
5142<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
Eli Friedmand8874dc2011-08-12 23:37:55 +00005143 the base address with silently-wrapping two's complement arithmetic. If the
5144 offsets have a different width from the pointer, they are sign-extended or
5145 truncated to the width of the pointer. The result value of the
5146 <tt>getelementptr</tt> may be outside the object pointed to by the base
5147 pointer. The result value may not necessarily be used to access memory
5148 though, even if it happens to point into allocated storage. See the
5149 <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5150 information.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005151
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005152<p>The getelementptr instruction is often confusing. For some more insight into
5153 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00005154
Chris Lattner590645f2002-04-14 06:13:44 +00005155<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005156<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005157 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005158 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5159 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005160 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005161 <i>; yields i8*:eptr</i>
5162 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00005163 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00005164 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00005165</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005166
Chris Lattner33fd7022004-04-05 01:30:49 +00005167</div>
Reid Spencer443460a2006-11-09 21:15:49 +00005168
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005169</div>
5170
Chris Lattner2f7c9632001-06-06 20:29:01 +00005171<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005172<h3>
5173 <a name="convertops">Conversion Operations</a>
5174</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005175
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005176<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005177
Reid Spencer97c5fa42006-11-08 01:18:52 +00005178<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005179 which all take a single operand and a type. They perform various bit
5180 conversions on the operand.</p>
5181
Chris Lattnera8292f32002-05-06 22:08:29 +00005182<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005183<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005184 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005185</h4>
5186
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005187<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005188
5189<h5>Syntax:</h5>
5190<pre>
5191 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5192</pre>
5193
5194<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005195<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5196 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005197
5198<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005199<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5200 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5201 of the same number of integers.
5202 The bit size of the <tt>value</tt> must be larger than
5203 the bit size of the destination type, <tt>ty2</tt>.
5204 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005205
5206<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005207<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5208 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5209 source size must be larger than the destination size, <tt>trunc</tt> cannot
5210 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005211
5212<h5>Example:</h5>
5213<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005214 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
5215 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
5216 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
5217 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005218</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005219
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005220</div>
5221
5222<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005223<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005224 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005225</h4>
5226
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005227<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005228
5229<h5>Syntax:</h5>
5230<pre>
5231 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5232</pre>
5233
5234<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005235<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005236 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005237
5238
5239<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005240<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5241 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5242 of the same number of integers.
5243 The bit size of the <tt>value</tt> must be smaller than
5244 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005245 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005246
5247<h5>Semantics:</h5>
5248<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005249 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005250
Reid Spencer07c9c682007-01-12 15:46:11 +00005251<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005252
5253<h5>Example:</h5>
5254<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005255 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005256 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005257 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005258</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005259
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005260</div>
5261
5262<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005263<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005264 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005265</h4>
5266
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005267<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005268
5269<h5>Syntax:</h5>
5270<pre>
5271 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5272</pre>
5273
5274<h5>Overview:</h5>
5275<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5276
5277<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005278<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5279 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5280 of the same number of integers.
5281 The bit size of the <tt>value</tt> must be smaller than
5282 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005283 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005284
5285<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005286<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5287 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5288 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005289
Reid Spencer36a15422007-01-12 03:35:51 +00005290<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005291
5292<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005293<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005294 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005295 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005296 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005297</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005298
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005299</div>
5300
5301<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005302<h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005303 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005304</h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005305
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005306<div>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005307
5308<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005309<pre>
5310 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5311</pre>
5312
5313<h5>Overview:</h5>
5314<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005315 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005316
5317<h5>Arguments:</h5>
5318<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005319 point</a> value to cast and a <a href="#t_floating">floating point</a> type
5320 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00005321 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005322 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005323
5324<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005325<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00005326 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005327 <a href="#t_floating">floating point</a> type. If the value cannot fit
5328 within the destination type, <tt>ty2</tt>, then the results are
5329 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005330
5331<h5>Example:</h5>
5332<pre>
5333 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
5334 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
5335</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005336
Reid Spencer2e2740d2006-11-09 21:48:10 +00005337</div>
5338
5339<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005340<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005341 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005342</h4>
5343
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005344<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005345
5346<h5>Syntax:</h5>
5347<pre>
5348 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5349</pre>
5350
5351<h5>Overview:</h5>
5352<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005353 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005354
5355<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005356<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005357 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5358 a <a href="#t_floating">floating point</a> type to cast it to. The source
5359 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005360
5361<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005362<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005363 <a href="#t_floating">floating point</a> type to a larger
5364 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5365 used to make a <i>no-op cast</i> because it always changes bits. Use
5366 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005367
5368<h5>Example:</h5>
5369<pre>
Nick Lewycky9feca672011-03-31 18:20:19 +00005370 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
5371 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005372</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005373
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005374</div>
5375
5376<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005377<h4>
Reid Spencer2eadb532007-01-21 00:29:26 +00005378 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005379</h4>
5380
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005381<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005382
5383<h5>Syntax:</h5>
5384<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005385 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005386</pre>
5387
5388<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00005389<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005390 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005391
5392<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005393<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5394 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5395 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5396 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5397 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005398
5399<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005400<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005401 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5402 towards zero) unsigned integer value. If the value cannot fit
5403 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005404
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005405<h5>Example:</h5>
5406<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005407 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005408 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005409 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005410</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005411
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005412</div>
5413
5414<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005415<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005416 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005417</h4>
5418
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005419<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005420
5421<h5>Syntax:</h5>
5422<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005423 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005424</pre>
5425
5426<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005427<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005428 <a href="#t_floating">floating point</a> <tt>value</tt> to
5429 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005430
Chris Lattnera8292f32002-05-06 22:08:29 +00005431<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005432<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5433 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5434 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5435 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5436 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005437
Chris Lattnera8292f32002-05-06 22:08:29 +00005438<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005439<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005440 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5441 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5442 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005443
Chris Lattner70de6632001-07-09 00:26:23 +00005444<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005445<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005446 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005447 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005448 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005449</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005450
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005451</div>
5452
5453<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005454<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005455 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005456</h4>
5457
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005458<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005459
5460<h5>Syntax:</h5>
5461<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005462 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005463</pre>
5464
5465<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005466<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005467 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005468
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005469<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005470<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005471 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5472 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5473 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5474 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005475
5476<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005477<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005478 integer quantity and converts it to the corresponding floating point
5479 value. If the value cannot fit in the floating point value, the results are
5480 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005481
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005482<h5>Example:</h5>
5483<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005484 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005485 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005486</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005487
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005488</div>
5489
5490<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005491<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005492 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005493</h4>
5494
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005495<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005496
5497<h5>Syntax:</h5>
5498<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005499 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005500</pre>
5501
5502<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005503<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5504 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005505
5506<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005507<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005508 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5509 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5510 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5511 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005512
5513<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005514<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5515 quantity and converts it to the corresponding floating point value. If the
5516 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005517
5518<h5>Example:</h5>
5519<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005520 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005521 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005522</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005523
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005524</div>
5525
5526<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005527<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005528 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005529</h4>
5530
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005531<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005532
5533<h5>Syntax:</h5>
5534<pre>
5535 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5536</pre>
5537
5538<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005539<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
5540 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005541
5542<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005543<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5544 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
5545 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005546
5547<h5>Semantics:</h5>
5548<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005549 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5550 truncating or zero extending that value to the size of the integer type. If
5551 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5552 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5553 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5554 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005555
5556<h5>Example:</h5>
5557<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005558 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
5559 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005560</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005561
Reid Spencerb7344ff2006-11-11 21:00:47 +00005562</div>
5563
5564<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005565<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005566 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005567</h4>
5568
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005569<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005570
5571<h5>Syntax:</h5>
5572<pre>
5573 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5574</pre>
5575
5576<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005577<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5578 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005579
5580<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00005581<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005582 value to cast, and a type to cast it to, which must be a
5583 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005584
5585<h5>Semantics:</h5>
5586<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005587 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5588 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5589 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5590 than the size of a pointer then a zero extension is done. If they are the
5591 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005592
5593<h5>Example:</h5>
5594<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005595 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005596 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5597 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005598</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005599
Reid Spencerb7344ff2006-11-11 21:00:47 +00005600</div>
5601
5602<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005603<h4>
Reid Spencer5b950642006-11-11 23:08:07 +00005604 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005605</h4>
5606
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005607<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005608
5609<h5>Syntax:</h5>
5610<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00005611 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005612</pre>
5613
5614<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005615<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005616 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005617
5618<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005619<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5620 non-aggregate first class value, and a type to cast it to, which must also be
5621 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5622 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5623 identical. If the source type is a pointer, the destination type must also be
5624 a pointer. This instruction supports bitwise conversion of vectors to
5625 integers and to vectors of other types (as long as they have the same
5626 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005627
5628<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005629<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005630 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5631 this conversion. The conversion is done as if the <tt>value</tt> had been
5632 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5633 be converted to other pointer types with this instruction. To convert
5634 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5635 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005636
5637<h5>Example:</h5>
5638<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005639 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005640 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher455c5772009-12-05 02:46:03 +00005641 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005642</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005643
Misha Brukman76307852003-11-08 01:05:38 +00005644</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005645
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005646</div>
5647
Reid Spencer97c5fa42006-11-08 01:18:52 +00005648<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005649<h3>
5650 <a name="otherops">Other Operations</a>
5651</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005652
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005653<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005654
5655<p>The instructions in this category are the "miscellaneous" instructions, which
5656 defy better classification.</p>
5657
Reid Spencerc828a0e2006-11-18 21:50:54 +00005658<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005659<h4>
5660 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5661</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005662
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005663<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005664
Reid Spencerc828a0e2006-11-18 21:50:54 +00005665<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005666<pre>
5667 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005668</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005669
Reid Spencerc828a0e2006-11-18 21:50:54 +00005670<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005671<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5672 boolean values based on comparison of its two integer, integer vector, or
5673 pointer operands.</p>
5674
Reid Spencerc828a0e2006-11-18 21:50:54 +00005675<h5>Arguments:</h5>
5676<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005677 the condition code indicating the kind of comparison to perform. It is not a
5678 value, just a keyword. The possible condition code are:</p>
5679
Reid Spencerc828a0e2006-11-18 21:50:54 +00005680<ol>
5681 <li><tt>eq</tt>: equal</li>
5682 <li><tt>ne</tt>: not equal </li>
5683 <li><tt>ugt</tt>: unsigned greater than</li>
5684 <li><tt>uge</tt>: unsigned greater or equal</li>
5685 <li><tt>ult</tt>: unsigned less than</li>
5686 <li><tt>ule</tt>: unsigned less or equal</li>
5687 <li><tt>sgt</tt>: signed greater than</li>
5688 <li><tt>sge</tt>: signed greater or equal</li>
5689 <li><tt>slt</tt>: signed less than</li>
5690 <li><tt>sle</tt>: signed less or equal</li>
5691</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005692
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005693<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005694 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5695 typed. They must also be identical types.</p>
5696
Reid Spencerc828a0e2006-11-18 21:50:54 +00005697<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005698<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5699 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005700 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005701 result, as follows:</p>
5702
Reid Spencerc828a0e2006-11-18 21:50:54 +00005703<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005704 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005705 <tt>false</tt> otherwise. No sign interpretation is necessary or
5706 performed.</li>
5707
Eric Christopher455c5772009-12-05 02:46:03 +00005708 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005709 <tt>false</tt> otherwise. No sign interpretation is necessary or
5710 performed.</li>
5711
Reid Spencerc828a0e2006-11-18 21:50:54 +00005712 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005713 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5714
Reid Spencerc828a0e2006-11-18 21:50:54 +00005715 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005716 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5717 to <tt>op2</tt>.</li>
5718
Reid Spencerc828a0e2006-11-18 21:50:54 +00005719 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005720 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5721
Reid Spencerc828a0e2006-11-18 21:50:54 +00005722 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005723 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5724
Reid Spencerc828a0e2006-11-18 21:50:54 +00005725 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005726 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5727
Reid Spencerc828a0e2006-11-18 21:50:54 +00005728 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005729 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5730 to <tt>op2</tt>.</li>
5731
Reid Spencerc828a0e2006-11-18 21:50:54 +00005732 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005733 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5734
Reid Spencerc828a0e2006-11-18 21:50:54 +00005735 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005736 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005737</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005738
Reid Spencerc828a0e2006-11-18 21:50:54 +00005739<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005740 values are compared as if they were integers.</p>
5741
5742<p>If the operands are integer vectors, then they are compared element by
5743 element. The result is an <tt>i1</tt> vector with the same number of elements
5744 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005745
5746<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005747<pre>
5748 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005749 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5750 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5751 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5752 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5753 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005754</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005755
5756<p>Note that the code generator does not yet support vector types with
5757 the <tt>icmp</tt> instruction.</p>
5758
Reid Spencerc828a0e2006-11-18 21:50:54 +00005759</div>
5760
5761<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005762<h4>
5763 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5764</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005765
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005766<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005767
Reid Spencerc828a0e2006-11-18 21:50:54 +00005768<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005769<pre>
5770 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005771</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005772
Reid Spencerc828a0e2006-11-18 21:50:54 +00005773<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005774<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5775 values based on comparison of its operands.</p>
5776
5777<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005778(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005779
5780<p>If the operands are floating point vectors, then the result type is a vector
5781 of boolean with the same number of elements as the operands being
5782 compared.</p>
5783
Reid Spencerc828a0e2006-11-18 21:50:54 +00005784<h5>Arguments:</h5>
5785<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005786 the condition code indicating the kind of comparison to perform. It is not a
5787 value, just a keyword. The possible condition code are:</p>
5788
Reid Spencerc828a0e2006-11-18 21:50:54 +00005789<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00005790 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005791 <li><tt>oeq</tt>: ordered and equal</li>
5792 <li><tt>ogt</tt>: ordered and greater than </li>
5793 <li><tt>oge</tt>: ordered and greater than or equal</li>
5794 <li><tt>olt</tt>: ordered and less than </li>
5795 <li><tt>ole</tt>: ordered and less than or equal</li>
5796 <li><tt>one</tt>: ordered and not equal</li>
5797 <li><tt>ord</tt>: ordered (no nans)</li>
5798 <li><tt>ueq</tt>: unordered or equal</li>
5799 <li><tt>ugt</tt>: unordered or greater than </li>
5800 <li><tt>uge</tt>: unordered or greater than or equal</li>
5801 <li><tt>ult</tt>: unordered or less than </li>
5802 <li><tt>ule</tt>: unordered or less than or equal</li>
5803 <li><tt>une</tt>: unordered or not equal</li>
5804 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00005805 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005806</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005807
Jeff Cohen222a8a42007-04-29 01:07:00 +00005808<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005809 <i>unordered</i> means that either operand may be a QNAN.</p>
5810
5811<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5812 a <a href="#t_floating">floating point</a> type or
5813 a <a href="#t_vector">vector</a> of floating point type. They must have
5814 identical types.</p>
5815
Reid Spencerc828a0e2006-11-18 21:50:54 +00005816<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00005817<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005818 according to the condition code given as <tt>cond</tt>. If the operands are
5819 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005820 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005821 follows:</p>
5822
Reid Spencerc828a0e2006-11-18 21:50:54 +00005823<ol>
5824 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005825
Eric Christopher455c5772009-12-05 02:46:03 +00005826 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005827 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5828
Reid Spencerf69acf32006-11-19 03:00:14 +00005829 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00005830 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005831
Eric Christopher455c5772009-12-05 02:46:03 +00005832 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005833 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5834
Eric Christopher455c5772009-12-05 02:46:03 +00005835 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005836 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5837
Eric Christopher455c5772009-12-05 02:46:03 +00005838 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005839 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5840
Eric Christopher455c5772009-12-05 02:46:03 +00005841 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005842 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5843
Reid Spencerf69acf32006-11-19 03:00:14 +00005844 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005845
Eric Christopher455c5772009-12-05 02:46:03 +00005846 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005847 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5848
Eric Christopher455c5772009-12-05 02:46:03 +00005849 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005850 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5851
Eric Christopher455c5772009-12-05 02:46:03 +00005852 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005853 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5854
Eric Christopher455c5772009-12-05 02:46:03 +00005855 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005856 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5857
Eric Christopher455c5772009-12-05 02:46:03 +00005858 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005859 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5860
Eric Christopher455c5772009-12-05 02:46:03 +00005861 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005862 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5863
Reid Spencerf69acf32006-11-19 03:00:14 +00005864 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005865
Reid Spencerc828a0e2006-11-18 21:50:54 +00005866 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5867</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005868
5869<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005870<pre>
5871 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00005872 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5873 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5874 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005875</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005876
5877<p>Note that the code generator does not yet support vector types with
5878 the <tt>fcmp</tt> instruction.</p>
5879
Reid Spencerc828a0e2006-11-18 21:50:54 +00005880</div>
5881
Reid Spencer97c5fa42006-11-08 01:18:52 +00005882<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005883<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005884 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005885</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005886
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005887<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005888
Reid Spencer97c5fa42006-11-08 01:18:52 +00005889<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005890<pre>
5891 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5892</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005893
Reid Spencer97c5fa42006-11-08 01:18:52 +00005894<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005895<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5896 SSA graph representing the function.</p>
5897
Reid Spencer97c5fa42006-11-08 01:18:52 +00005898<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005899<p>The type of the incoming values is specified with the first type field. After
5900 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5901 one pair for each predecessor basic block of the current block. Only values
5902 of <a href="#t_firstclass">first class</a> type may be used as the value
5903 arguments to the PHI node. Only labels may be used as the label
5904 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005905
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005906<p>There must be no non-phi instructions between the start of a basic block and
5907 the PHI instructions: i.e. PHI instructions must be first in a basic
5908 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005909
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005910<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5911 occur on the edge from the corresponding predecessor block to the current
5912 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5913 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005914
Reid Spencer97c5fa42006-11-08 01:18:52 +00005915<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005916<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005917 specified by the pair corresponding to the predecessor basic block that
5918 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005919
Reid Spencer97c5fa42006-11-08 01:18:52 +00005920<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005921<pre>
5922Loop: ; Infinite loop that counts from 0 on up...
5923 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5924 %nextindvar = add i32 %indvar, 1
5925 br label %Loop
5926</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005927
Reid Spencer97c5fa42006-11-08 01:18:52 +00005928</div>
5929
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005930<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005931<h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005932 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005933</h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005934
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005935<div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005936
5937<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005938<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005939 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5940
Dan Gohmanef9462f2008-10-14 16:51:45 +00005941 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005942</pre>
5943
5944<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005945<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5946 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005947
5948
5949<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005950<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5951 values indicating the condition, and two values of the
5952 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5953 vectors and the condition is a scalar, then entire vectors are selected, not
5954 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005955
5956<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005957<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5958 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005959
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005960<p>If the condition is a vector of i1, then the value arguments must be vectors
5961 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005962
5963<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005964<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005965 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005966</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005967
5968<p>Note that the code generator does not yet support conditions
5969 with vector type.</p>
5970
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005971</div>
5972
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00005973<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005974<h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005975 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005976</h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005977
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005978<div>
Chris Lattnere23c1392005-05-06 05:47:36 +00005979
Chris Lattner2f7c9632001-06-06 20:29:01 +00005980<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005981<pre>
Devang Patel02256232008-10-07 17:48:33 +00005982 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00005983</pre>
5984
Chris Lattner2f7c9632001-06-06 20:29:01 +00005985<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005986<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005987
Chris Lattner2f7c9632001-06-06 20:29:01 +00005988<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005989<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005990
Chris Lattnera8292f32002-05-06 22:08:29 +00005991<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005992 <li>The optional "tail" marker indicates that the callee function does not
5993 access any allocas or varargs in the caller. Note that calls may be
5994 marked "tail" even if they do not occur before
5995 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5996 present, the function call is eligible for tail call optimization,
5997 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00005998 optimized into a jump</a>. The code generator may optimize calls marked
5999 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
6000 sibling call optimization</a> when the caller and callee have
6001 matching signatures, or 2) forced tail call optimization when the
6002 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006003 <ul>
6004 <li>Caller and callee both have the calling
6005 convention <tt>fastcc</tt>.</li>
6006 <li>The call is in tail position (ret immediately follows call and ret
6007 uses value of call or is void).</li>
6008 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00006009 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006010 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
6011 constraints are met.</a></li>
6012 </ul>
6013 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006014
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006015 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
6016 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006017 defaults to using C calling conventions. The calling convention of the
6018 call must match the calling convention of the target function, or else the
6019 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006020
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006021 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
6022 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
6023 '<tt>inreg</tt>' attributes are valid here.</li>
6024
6025 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
6026 type of the return value. Functions that return no value are marked
6027 <tt><a href="#t_void">void</a></tt>.</li>
6028
6029 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
6030 being invoked. The argument types must match the types implied by this
6031 signature. This type can be omitted if the function is not varargs and if
6032 the function type does not return a pointer to a function.</li>
6033
6034 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
6035 be invoked. In most cases, this is a direct function invocation, but
6036 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
6037 to function value.</li>
6038
6039 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00006040 signature argument types and parameter attributes. All arguments must be
6041 of <a href="#t_firstclass">first class</a> type. If the function
6042 signature indicates the function accepts a variable number of arguments,
6043 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006044
6045 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6046 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6047 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00006048</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00006049
Chris Lattner2f7c9632001-06-06 20:29:01 +00006050<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006051<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6052 a specified function, with its incoming arguments bound to the specified
6053 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6054 function, control flow continues with the instruction after the function
6055 call, and the return value of the function is bound to the result
6056 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006057
Chris Lattner2f7c9632001-06-06 20:29:01 +00006058<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006059<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00006060 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006061 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00006062 %X = tail call i32 @foo() <i>; yields i32</i>
6063 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
6064 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00006065
6066 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00006067 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00006068 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
6069 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00006070 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00006071 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00006072</pre>
6073
Dale Johannesen68f971b2009-09-24 18:38:21 +00006074<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00006075standard C99 library as being the C99 library functions, and may perform
6076optimizations or generate code for them under that assumption. This is
6077something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00006078freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00006079
Misha Brukman76307852003-11-08 01:05:38 +00006080</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006081
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006082<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006083<h4>
Chris Lattner33337472006-01-13 23:26:01 +00006084 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006085</h4>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006086
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006087<div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006088
Chris Lattner26ca62e2003-10-18 05:51:36 +00006089<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006090<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006091 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00006092</pre>
6093
Chris Lattner26ca62e2003-10-18 05:51:36 +00006094<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006095<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006096 the "variable argument" area of a function call. It is used to implement the
6097 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006098
Chris Lattner26ca62e2003-10-18 05:51:36 +00006099<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006100<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6101 argument. It returns a value of the specified argument type and increments
6102 the <tt>va_list</tt> to point to the next argument. The actual type
6103 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006104
Chris Lattner26ca62e2003-10-18 05:51:36 +00006105<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006106<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6107 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6108 to the next argument. For more information, see the variable argument
6109 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006110
6111<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006112 take a variable number of arguments, for example, the <tt>vfprintf</tt>
6113 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006114
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006115<p><tt>va_arg</tt> is an LLVM instruction instead of
6116 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6117 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006118
Chris Lattner26ca62e2003-10-18 05:51:36 +00006119<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006120<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6121
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006122<p>Note that the code generator does not yet fully support va_arg on many
6123 targets. Also, it does not currently support va_arg with aggregate types on
6124 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00006125
Misha Brukman76307852003-11-08 01:05:38 +00006126</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006127
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006128<!-- _______________________________________________________________________ -->
6129<h4>
6130 <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6131</h4>
6132
6133<div>
6134
6135<h5>Syntax:</h5>
6136<pre>
Bill Wendling49bfb122011-08-08 08:06:05 +00006137 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6138 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
6139
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006140 &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
Bill Wendlingfae14752011-08-12 20:24:12 +00006141 &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006142</pre>
6143
6144<h5>Overview:</h5>
6145<p>The '<tt>landingpad</tt>' instruction is used by
6146 <a href="ExceptionHandling.html#overview">LLVM's exception handling
6147 system</a> to specify that a basic block is a landing pad &mdash; one where
6148 the exception lands, and corresponds to the code found in the
6149 <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6150 defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6151 re-entry to the function. The <tt>resultval</tt> has the
6152 type <tt>somety</tt>.</p>
6153
6154<h5>Arguments:</h5>
6155<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6156 function associated with the unwinding mechanism. The optional
6157 <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6158
6159<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
Bill Wendlingfae14752011-08-12 20:24:12 +00006160 or <tt>filter</tt> &mdash; and contains the global variable representing the
6161 "type" that may be caught or filtered respectively. Unlike the
6162 <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6163 its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6164 throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006165 one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6166
6167<h5>Semantics:</h5>
6168<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6169 personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6170 therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6171 calling conventions, how the personality function results are represented in
6172 LLVM IR is target specific.</p>
6173
Bill Wendling0524b8d2011-08-03 17:17:06 +00006174<p>The clauses are applied in order from top to bottom. If two
6175 <tt>landingpad</tt> instructions are merged together through inlining, the
Bill Wendlinga503fc02011-08-08 07:58:58 +00006176 clauses from the calling function are appended to the list of clauses.</p>
Bill Wendling0524b8d2011-08-03 17:17:06 +00006177
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006178<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6179
6180<ul>
6181 <li>A landing pad block is a basic block which is the unwind destination of an
6182 '<tt>invoke</tt>' instruction.</li>
6183 <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6184 first non-PHI instruction.</li>
6185 <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6186 pad block.</li>
6187 <li>A basic block that is not a landing pad block may not include a
6188 '<tt>landingpad</tt>' instruction.</li>
6189 <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6190 personality function.</li>
6191</ul>
6192
6193<h5>Example:</h5>
6194<pre>
6195 ;; A landing pad which can catch an integer.
6196 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6197 catch i8** @_ZTIi
6198 ;; A landing pad that is a cleanup.
6199 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
Bill Wendlingfae14752011-08-12 20:24:12 +00006200 cleanup
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006201 ;; A landing pad which can catch an integer and can only throw a double.
6202 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6203 catch i8** @_ZTIi
Bill Wendlingfae14752011-08-12 20:24:12 +00006204 filter [1 x i8**] [@_ZTId]
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006205</pre>
6206
6207</div>
6208
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006209</div>
6210
6211</div>
6212
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006213<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006214<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00006215<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00006216
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006217<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006218
6219<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006220 well known names and semantics and are required to follow certain
6221 restrictions. Overall, these intrinsics represent an extension mechanism for
6222 the LLVM language that does not require changing all of the transformations
6223 in LLVM when adding to the language (or the bitcode reader/writer, the
6224 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006225
John Criswell88190562005-05-16 16:17:45 +00006226<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006227 prefix is reserved in LLVM for intrinsic names; thus, function names may not
6228 begin with this prefix. Intrinsic functions must always be external
6229 functions: you cannot define the body of intrinsic functions. Intrinsic
6230 functions may only be used in call or invoke instructions: it is illegal to
6231 take the address of an intrinsic function. Additionally, because intrinsic
6232 functions are part of the LLVM language, it is required if any are added that
6233 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006234
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006235<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6236 family of functions that perform the same operation but on different data
6237 types. Because LLVM can represent over 8 million different integer types,
6238 overloading is used commonly to allow an intrinsic function to operate on any
6239 integer type. One or more of the argument types or the result type can be
6240 overloaded to accept any integer type. Argument types may also be defined as
6241 exactly matching a previous argument's type or the result type. This allows
6242 an intrinsic function which accepts multiple arguments, but needs all of them
6243 to be of the same type, to only be overloaded with respect to a single
6244 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006245
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006246<p>Overloaded intrinsics will have the names of its overloaded argument types
6247 encoded into its function name, each preceded by a period. Only those types
6248 which are overloaded result in a name suffix. Arguments whose type is matched
6249 against another type do not. For example, the <tt>llvm.ctpop</tt> function
6250 can take an integer of any width and returns an integer of exactly the same
6251 integer width. This leads to a family of functions such as
6252 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6253 %val)</tt>. Only one type, the return type, is overloaded, and only one type
6254 suffix is required. Because the argument's type is matched against the return
6255 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006256
Eric Christopher455c5772009-12-05 02:46:03 +00006257<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006258 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006259
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006260<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006261<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006262 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006263</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006264
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006265<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006266
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006267<p>Variable argument support is defined in LLVM with
6268 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6269 intrinsic functions. These functions are related to the similarly named
6270 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006271
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006272<p>All of these functions operate on arguments that use a target-specific value
6273 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
6274 not define what this type is, so all transformations should be prepared to
6275 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006276
Chris Lattner30b868d2006-05-15 17:26:46 +00006277<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006278 instruction and the variable argument handling intrinsic functions are
6279 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006280
Benjamin Kramer79698be2010-07-13 12:26:09 +00006281<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006282define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00006283 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00006284 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006285 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006286 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006287
6288 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00006289 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00006290
6291 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00006292 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006293 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00006294 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006295 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006296
6297 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006298 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006299 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00006300}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006301
6302declare void @llvm.va_start(i8*)
6303declare void @llvm.va_copy(i8*, i8*)
6304declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00006305</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00006306
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006307<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006308<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006309 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006310</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006311
6312
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006313<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006314
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006315<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006316<pre>
6317 declare void %llvm.va_start(i8* &lt;arglist&gt;)
6318</pre>
6319
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006320<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006321<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6322 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006323
6324<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006325<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006326
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006327<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006328<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006329 macro available in C. In a target-dependent way, it initializes
6330 the <tt>va_list</tt> element to which the argument points, so that the next
6331 call to <tt>va_arg</tt> will produce the first variable argument passed to
6332 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6333 need to know the last argument of the function as the compiler can figure
6334 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006335
Misha Brukman76307852003-11-08 01:05:38 +00006336</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006337
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006338<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006339<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006340 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006341</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006342
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006343<div>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006344
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006345<h5>Syntax:</h5>
6346<pre>
6347 declare void @llvm.va_end(i8* &lt;arglist&gt;)
6348</pre>
6349
6350<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006351<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006352 which has been initialized previously
6353 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6354 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006355
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006356<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006357<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006358
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006359<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006360<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006361 macro available in C. In a target-dependent way, it destroys
6362 the <tt>va_list</tt> element to which the argument points. Calls
6363 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6364 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6365 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006366
Misha Brukman76307852003-11-08 01:05:38 +00006367</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006368
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006369<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006370<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006371 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006372</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006373
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006374<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006375
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006376<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006377<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006378 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006379</pre>
6380
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006381<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006382<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006383 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006384
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006385<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006386<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006387 The second argument is a pointer to a <tt>va_list</tt> element to copy
6388 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006389
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006390<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006391<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006392 macro available in C. In a target-dependent way, it copies the
6393 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6394 element. This intrinsic is necessary because
6395 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6396 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006397
Misha Brukman76307852003-11-08 01:05:38 +00006398</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006399
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006400</div>
6401
Chris Lattnerfee11462004-02-12 17:01:32 +00006402<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006403<h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006404 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006405</h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006406
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006407<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006408
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006409<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00006410Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006411intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6412roots on the stack</a>, as well as garbage collector implementations that
6413require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6414barriers. Front-ends for type-safe garbage collected languages should generate
6415these intrinsics to make use of the LLVM garbage collectors. For more details,
6416see <a href="GarbageCollection.html">Accurate Garbage Collection with
6417LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006418
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006419<p>The garbage collection intrinsics only operate on objects in the generic
6420 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006421
Chris Lattner757528b0b2004-05-23 21:06:01 +00006422<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006423<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006424 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006425</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006426
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006427<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006428
6429<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006430<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006431 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006432</pre>
6433
6434<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00006435<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006436 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006437
6438<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006439<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006440 root pointer. The second pointer (which must be either a constant or a
6441 global value address) contains the meta-data to be associated with the
6442 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006443
6444<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00006445<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006446 location. At compile-time, the code generator generates information to allow
6447 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6448 intrinsic may only be used in a function which <a href="#gc">specifies a GC
6449 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006450
6451</div>
6452
Chris Lattner757528b0b2004-05-23 21:06:01 +00006453<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006454<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006455 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006456</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006457
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006458<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006459
6460<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006461<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006462 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006463</pre>
6464
6465<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006466<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006467 locations, allowing garbage collector implementations that require read
6468 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006469
6470<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006471<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006472 allocated from the garbage collector. The first object is a pointer to the
6473 start of the referenced object, if needed by the language runtime (otherwise
6474 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006475
6476<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006477<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006478 instruction, but may be replaced with substantially more complex code by the
6479 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6480 may only be used in a function which <a href="#gc">specifies a GC
6481 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006482
6483</div>
6484
Chris Lattner757528b0b2004-05-23 21:06:01 +00006485<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006486<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006487 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006488</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006489
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006490<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006491
6492<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006493<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006494 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006495</pre>
6496
6497<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006498<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006499 locations, allowing garbage collector implementations that require write
6500 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006501
6502<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006503<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006504 object to store it to, and the third is the address of the field of Obj to
6505 store to. If the runtime does not require a pointer to the object, Obj may
6506 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006507
6508<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006509<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006510 instruction, but may be replaced with substantially more complex code by the
6511 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6512 may only be used in a function which <a href="#gc">specifies a GC
6513 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006514
6515</div>
6516
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006517</div>
6518
Chris Lattner757528b0b2004-05-23 21:06:01 +00006519<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006520<h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006521 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006522</h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006523
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006524<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006525
6526<p>These intrinsics are provided by LLVM to expose special features that may
6527 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006528
Chris Lattner3649c3a2004-02-14 04:08:35 +00006529<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006530<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006531 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006532</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006533
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006534<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006535
6536<h5>Syntax:</h5>
6537<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006538 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006539</pre>
6540
6541<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006542<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6543 target-specific value indicating the return address of the current function
6544 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006545
6546<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006547<p>The argument to this intrinsic indicates which function to return the address
6548 for. Zero indicates the calling function, one indicates its caller, etc.
6549 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006550
6551<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006552<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6553 indicating the return address of the specified call frame, or zero if it
6554 cannot be identified. The value returned by this intrinsic is likely to be
6555 incorrect or 0 for arguments other than zero, so it should only be used for
6556 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006557
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006558<p>Note that calling this intrinsic does not prevent function inlining or other
6559 aggressive transformations, so the value returned may not be that of the
6560 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006561
Chris Lattner3649c3a2004-02-14 04:08:35 +00006562</div>
6563
Chris Lattner3649c3a2004-02-14 04:08:35 +00006564<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006565<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006566 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006567</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006568
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006569<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006570
6571<h5>Syntax:</h5>
6572<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006573 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006574</pre>
6575
6576<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006577<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6578 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006579
6580<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006581<p>The argument to this intrinsic indicates which function to return the frame
6582 pointer for. Zero indicates the calling function, one indicates its caller,
6583 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006584
6585<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006586<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6587 indicating the frame address of the specified call frame, or zero if it
6588 cannot be identified. The value returned by this intrinsic is likely to be
6589 incorrect or 0 for arguments other than zero, so it should only be used for
6590 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006591
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006592<p>Note that calling this intrinsic does not prevent function inlining or other
6593 aggressive transformations, so the value returned may not be that of the
6594 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006595
Chris Lattner3649c3a2004-02-14 04:08:35 +00006596</div>
6597
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006598<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006599<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006600 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006601</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006602
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006603<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006604
6605<h5>Syntax:</h5>
6606<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006607 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00006608</pre>
6609
6610<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006611<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6612 of the function stack, for use
6613 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6614 useful for implementing language features like scoped automatic variable
6615 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006616
6617<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006618<p>This intrinsic returns a opaque pointer value that can be passed
6619 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6620 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6621 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6622 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6623 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6624 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006625
6626</div>
6627
6628<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006629<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006630 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006631</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006632
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006633<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006634
6635<h5>Syntax:</h5>
6636<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006637 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00006638</pre>
6639
6640<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006641<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6642 the function stack to the state it was in when the
6643 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6644 executed. This is useful for implementing language features like scoped
6645 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006646
6647<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006648<p>See the description
6649 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006650
6651</div>
6652
Chris Lattner2f0f0012006-01-13 02:03:13 +00006653<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006654<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006655 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006656</h4>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006657
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006658<div>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006659
6660<h5>Syntax:</h5>
6661<pre>
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006662 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006663</pre>
6664
6665<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006666<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6667 insert a prefetch instruction if supported; otherwise, it is a noop.
6668 Prefetches have no effect on the behavior of the program but can change its
6669 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006670
6671<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006672<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6673 specifier determining if the fetch should be for a read (0) or write (1),
6674 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006675 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6676 specifies whether the prefetch is performed on the data (1) or instruction (0)
6677 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6678 must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006679
6680<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006681<p>This intrinsic does not modify the behavior of the program. In particular,
6682 prefetches cannot trap and do not produce a value. On targets that support
6683 this intrinsic, the prefetch can provide hints to the processor cache for
6684 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006685
6686</div>
6687
Andrew Lenharthb4427912005-03-28 20:05:49 +00006688<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006689<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006690 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006691</h4>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006692
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006693<div>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006694
6695<h5>Syntax:</h5>
6696<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006697 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00006698</pre>
6699
6700<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006701<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6702 Counter (PC) in a region of code to simulators and other tools. The method
6703 is target specific, but it is expected that the marker will use exported
6704 symbols to transmit the PC of the marker. The marker makes no guarantees
6705 that it will remain with any specific instruction after optimizations. It is
6706 possible that the presence of a marker will inhibit optimizations. The
6707 intended use is to be inserted after optimizations to allow correlations of
6708 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006709
6710<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006711<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006712
6713<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006714<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00006715 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006716
6717</div>
6718
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006719<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006720<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006721 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006722</h4>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006723
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006724<div>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006725
6726<h5>Syntax:</h5>
6727<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00006728 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006729</pre>
6730
6731<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006732<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6733 counter register (or similar low latency, high accuracy clocks) on those
6734 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6735 should map to RPCC. As the backing counters overflow quickly (on the order
6736 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006737
6738<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006739<p>When directly supported, reading the cycle counter should not modify any
6740 memory. Implementations are allowed to either return a application specific
6741 value or a system wide value. On backends without support, this is lowered
6742 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006743
6744</div>
6745
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006746</div>
6747
Chris Lattner3649c3a2004-02-14 04:08:35 +00006748<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006749<h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006750 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006751</h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006752
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006753<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006754
6755<p>LLVM provides intrinsics for a few important standard C library functions.
6756 These intrinsics allow source-language front-ends to pass information about
6757 the alignment of the pointer arguments to the code generator, providing
6758 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006759
Chris Lattnerfee11462004-02-12 17:01:32 +00006760<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006761<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006762 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006763</h4>
Chris Lattnerfee11462004-02-12 17:01:32 +00006764
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006765<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006766
6767<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006768<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00006769 integer bit width and for different address spaces. Not all targets support
6770 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006771
Chris Lattnerfee11462004-02-12 17:01:32 +00006772<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006773 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006774 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006775 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006776 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00006777</pre>
6778
6779<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006780<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6781 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006782
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006783<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006784 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6785 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006786
6787<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006788
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006789<p>The first argument is a pointer to the destination, the second is a pointer
6790 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006791 number of bytes to copy, the fourth argument is the alignment of the
6792 source and destination locations, and the fifth is a boolean indicating a
6793 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006794
Dan Gohmana269a0a2010-03-01 17:41:39 +00006795<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006796 then the caller guarantees that both the source and destination pointers are
6797 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006798
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006799<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6800 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6801 The detailed access behavior is not very cleanly specified and it is unwise
6802 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006803
Chris Lattnerfee11462004-02-12 17:01:32 +00006804<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006805
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006806<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6807 source location to the destination location, which are not allowed to
6808 overlap. It copies "len" bytes of memory over. If the argument is known to
6809 be aligned to some boundary, this can be specified as the fourth argument,
6810 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006811
Chris Lattnerfee11462004-02-12 17:01:32 +00006812</div>
6813
Chris Lattnerf30152e2004-02-12 18:10:10 +00006814<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006815<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006816 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006817</h4>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006818
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006819<div>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006820
6821<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006822<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00006823 width and for different address space. Not all targets support all bit
6824 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006825
Chris Lattnerf30152e2004-02-12 18:10:10 +00006826<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006827 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006828 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006829 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006830 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00006831</pre>
6832
6833<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006834<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6835 source location to the destination location. It is similar to the
6836 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6837 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006838
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006839<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006840 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6841 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006842
6843<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006844
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006845<p>The first argument is a pointer to the destination, the second is a pointer
6846 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006847 number of bytes to copy, the fourth argument is the alignment of the
6848 source and destination locations, and the fifth is a boolean indicating a
6849 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006850
Dan Gohmana269a0a2010-03-01 17:41:39 +00006851<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006852 then the caller guarantees that the source and destination pointers are
6853 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006854
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006855<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6856 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6857 The detailed access behavior is not very cleanly specified and it is unwise
6858 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006859
Chris Lattnerf30152e2004-02-12 18:10:10 +00006860<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006861
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006862<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6863 source location to the destination location, which may overlap. It copies
6864 "len" bytes of memory over. If the argument is known to be aligned to some
6865 boundary, this can be specified as the fourth argument, otherwise it should
6866 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006867
Chris Lattnerf30152e2004-02-12 18:10:10 +00006868</div>
6869
Chris Lattner3649c3a2004-02-14 04:08:35 +00006870<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006871<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006872 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006873</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006874
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006875<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006876
6877<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006878<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00006879 width and for different address spaces. However, not all targets support all
6880 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006881
Chris Lattner3649c3a2004-02-14 04:08:35 +00006882<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006883 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006884 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006885 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006886 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006887</pre>
6888
6889<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006890<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6891 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006892
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006893<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00006894 intrinsic does not return a value and takes extra alignment/volatile
6895 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006896
6897<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006898<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00006899 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006900 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00006901 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006902
Dan Gohmana269a0a2010-03-01 17:41:39 +00006903<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006904 then the caller guarantees that the destination pointer is aligned to that
6905 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006906
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006907<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6908 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6909 The detailed access behavior is not very cleanly specified and it is unwise
6910 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006911
Chris Lattner3649c3a2004-02-14 04:08:35 +00006912<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006913<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6914 at the destination location. If the argument is known to be aligned to some
6915 boundary, this can be specified as the fourth argument, otherwise it should
6916 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006917
Chris Lattner3649c3a2004-02-14 04:08:35 +00006918</div>
6919
Chris Lattner3b4f4372004-06-11 02:28:03 +00006920<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006921<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006922 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006923</h4>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006924
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006925<div>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006926
6927<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006928<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6929 floating point or vector of floating point type. Not all targets support all
6930 types however.</p>
6931
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006932<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006933 declare float @llvm.sqrt.f32(float %Val)
6934 declare double @llvm.sqrt.f64(double %Val)
6935 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6936 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6937 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006938</pre>
6939
6940<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006941<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6942 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6943 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6944 behavior for negative numbers other than -0.0 (which allows for better
6945 optimization, because there is no need to worry about errno being
6946 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006947
6948<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006949<p>The argument and return value are floating point numbers of the same
6950 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006951
6952<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006953<p>This function returns the sqrt of the specified operand if it is a
6954 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006955
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006956</div>
6957
Chris Lattner33b73f92006-09-08 06:34:02 +00006958<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006959<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006960 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006961</h4>
Chris Lattner33b73f92006-09-08 06:34:02 +00006962
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006963<div>
Chris Lattner33b73f92006-09-08 06:34:02 +00006964
6965<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006966<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6967 floating point or vector of floating point type. Not all targets support all
6968 types however.</p>
6969
Chris Lattner33b73f92006-09-08 06:34:02 +00006970<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006971 declare float @llvm.powi.f32(float %Val, i32 %power)
6972 declare double @llvm.powi.f64(double %Val, i32 %power)
6973 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6974 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6975 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00006976</pre>
6977
6978<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006979<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6980 specified (positive or negative) power. The order of evaluation of
6981 multiplications is not defined. When a vector of floating point type is
6982 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006983
6984<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006985<p>The second argument is an integer power, and the first is a value to raise to
6986 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006987
6988<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006989<p>This function returns the first value raised to the second power with an
6990 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006991
Chris Lattner33b73f92006-09-08 06:34:02 +00006992</div>
6993
Dan Gohmanb6324c12007-10-15 20:30:11 +00006994<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006995<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006996 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006997</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006998
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006999<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007000
7001<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007002<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
7003 floating point or vector of floating point type. Not all targets support all
7004 types however.</p>
7005
Dan Gohmanb6324c12007-10-15 20:30:11 +00007006<pre>
7007 declare float @llvm.sin.f32(float %Val)
7008 declare double @llvm.sin.f64(double %Val)
7009 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7010 declare fp128 @llvm.sin.f128(fp128 %Val)
7011 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7012</pre>
7013
7014<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007015<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007016
7017<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007018<p>The argument and return value are floating point numbers of the same
7019 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007020
7021<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007022<p>This function returns the sine of the specified operand, returning the same
7023 values as the libm <tt>sin</tt> functions would, and handles error conditions
7024 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007025
Dan Gohmanb6324c12007-10-15 20:30:11 +00007026</div>
7027
7028<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007029<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007030 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007031</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007032
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007033<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007034
7035<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007036<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
7037 floating point or vector of floating point type. Not all targets support all
7038 types however.</p>
7039
Dan Gohmanb6324c12007-10-15 20:30:11 +00007040<pre>
7041 declare float @llvm.cos.f32(float %Val)
7042 declare double @llvm.cos.f64(double %Val)
7043 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7044 declare fp128 @llvm.cos.f128(fp128 %Val)
7045 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7046</pre>
7047
7048<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007049<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007050
7051<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007052<p>The argument and return value are floating point numbers of the same
7053 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007054
7055<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007056<p>This function returns the cosine of the specified operand, returning the same
7057 values as the libm <tt>cos</tt> functions would, and handles error conditions
7058 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007059
Dan Gohmanb6324c12007-10-15 20:30:11 +00007060</div>
7061
7062<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007063<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007064 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007065</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007066
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007067<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007068
7069<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007070<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7071 floating point or vector of floating point type. Not all targets support all
7072 types however.</p>
7073
Dan Gohmanb6324c12007-10-15 20:30:11 +00007074<pre>
7075 declare float @llvm.pow.f32(float %Val, float %Power)
7076 declare double @llvm.pow.f64(double %Val, double %Power)
7077 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7078 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7079 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7080</pre>
7081
7082<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007083<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7084 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007085
7086<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007087<p>The second argument is a floating point power, and the first is a value to
7088 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007089
7090<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007091<p>This function returns the first value raised to the second power, returning
7092 the same values as the libm <tt>pow</tt> functions would, and handles error
7093 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007094
Dan Gohmanb6324c12007-10-15 20:30:11 +00007095</div>
7096
Dan Gohman911fa902011-05-23 21:13:03 +00007097<!-- _______________________________________________________________________ -->
7098<h4>
7099 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7100</h4>
7101
7102<div>
7103
7104<h5>Syntax:</h5>
7105<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7106 floating point or vector of floating point type. Not all targets support all
7107 types however.</p>
7108
7109<pre>
7110 declare float @llvm.exp.f32(float %Val)
7111 declare double @llvm.exp.f64(double %Val)
7112 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7113 declare fp128 @llvm.exp.f128(fp128 %Val)
7114 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7115</pre>
7116
7117<h5>Overview:</h5>
7118<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7119
7120<h5>Arguments:</h5>
7121<p>The argument and return value are floating point numbers of the same
7122 type.</p>
7123
7124<h5>Semantics:</h5>
7125<p>This function returns the same values as the libm <tt>exp</tt> functions
7126 would, and handles error conditions in the same way.</p>
7127
7128</div>
7129
7130<!-- _______________________________________________________________________ -->
7131<h4>
7132 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7133</h4>
7134
7135<div>
7136
7137<h5>Syntax:</h5>
7138<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7139 floating point or vector of floating point type. Not all targets support all
7140 types however.</p>
7141
7142<pre>
7143 declare float @llvm.log.f32(float %Val)
7144 declare double @llvm.log.f64(double %Val)
7145 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7146 declare fp128 @llvm.log.f128(fp128 %Val)
7147 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7148</pre>
7149
7150<h5>Overview:</h5>
7151<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7152
7153<h5>Arguments:</h5>
7154<p>The argument and return value are floating point numbers of the same
7155 type.</p>
7156
7157<h5>Semantics:</h5>
7158<p>This function returns the same values as the libm <tt>log</tt> functions
7159 would, and handles error conditions in the same way.</p>
7160
Nick Lewyckycd196f62011-10-31 01:32:21 +00007161</div>
7162
7163<!-- _______________________________________________________________________ -->
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007164<h4>
7165 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7166</h4>
7167
7168<div>
7169
7170<h5>Syntax:</h5>
7171<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7172 floating point or vector of floating point type. Not all targets support all
7173 types however.</p>
7174
7175<pre>
7176 declare float @llvm.fma.f32(float %a, float %b, float %c)
7177 declare double @llvm.fma.f64(double %a, double %b, double %c)
7178 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7179 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7180 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7181</pre>
7182
7183<h5>Overview:</h5>
Cameron Zwaricha32fd212011-07-08 22:13:55 +00007184<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007185 operation.</p>
7186
7187<h5>Arguments:</h5>
7188<p>The argument and return value are floating point numbers of the same
7189 type.</p>
7190
7191<h5>Semantics:</h5>
7192<p>This function returns the same values as the libm <tt>fma</tt> functions
7193 would.</p>
7194
Dan Gohman911fa902011-05-23 21:13:03 +00007195</div>
7196
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00007197</div>
7198
Andrew Lenharth1d463522005-05-03 18:01:48 +00007199<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007200<h3>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007201 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007202</h3>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007203
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007204<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007205
7206<p>LLVM provides intrinsics for a few important bit manipulation operations.
7207 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007208
Andrew Lenharth1d463522005-05-03 18:01:48 +00007209<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007210<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007211 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007212</h4>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007213
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007214<div>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007215
7216<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007217<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007218 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7219
Nate Begeman0f223bb2006-01-13 23:26:38 +00007220<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007221 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7222 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7223 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00007224</pre>
7225
7226<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007227<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7228 values with an even number of bytes (positive multiple of 16 bits). These
7229 are useful for performing operations on data that is not in the target's
7230 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007231
7232<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007233<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7234 and low byte of the input i16 swapped. Similarly,
7235 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7236 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7237 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7238 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7239 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7240 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007241
7242</div>
7243
7244<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007245<h4>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00007246 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007247</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007248
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007249<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007250
7251<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007252<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007253 width, or on any vector with integer elements. Not all targets support all
7254 bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007255
Andrew Lenharth1d463522005-05-03 18:01:48 +00007256<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007257 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007258 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007259 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007260 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7261 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007262 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007263</pre>
7264
7265<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007266<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7267 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007268
7269<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007270<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007271 integer type, or a vector with integer elements.
7272 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007273
7274<h5>Semantics:</h5>
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007275<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7276 element of a vector.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007277
Andrew Lenharth1d463522005-05-03 18:01:48 +00007278</div>
7279
7280<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007281<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007282 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007283</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007284
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007285<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007286
7287<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007288<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007289 integer bit width, or any vector whose elements are integers. Not all
7290 targets support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007291
Andrew Lenharth1d463522005-05-03 18:01:48 +00007292<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007293 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
7294 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007295 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007296 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
7297 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007298 declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007299</pre>
7300
7301<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007302<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7303 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007304
7305<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007306<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007307 integer type, or any vector type with integer element type.
7308 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007309
7310<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007311<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007312 zeros in a variable, or within each element of the vector if the operation
7313 is of vector type. If the src == 0 then the result is the size in bits of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007314 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007315
Andrew Lenharth1d463522005-05-03 18:01:48 +00007316</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00007317
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007318<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007319<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007320 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007321</h4>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007322
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007323<div>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007324
7325<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007326<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007327 integer bit width, or any vector of integer elements. Not all targets
7328 support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007329
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007330<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007331 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
7332 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007333 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007334 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
7335 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007336 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007337</pre>
7338
7339<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007340<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7341 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007342
7343<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007344<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007345 integer type, or a vectory with integer element type.. The return type
7346 must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007347
7348<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007349<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007350 zeros in a variable, or within each element of a vector.
7351 If the src == 0 then the result is the size in bits of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007352 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007353
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007354</div>
7355
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007356</div>
7357
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007358<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007359<h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007360 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007361</h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007362
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007363<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007364
7365<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007366
Bill Wendlingf4d70622009-02-08 01:40:31 +00007367<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007368<h4>
7369 <a name="int_sadd_overflow">
7370 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7371 </a>
7372</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007373
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007374<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007375
7376<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007377<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007378 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007379
7380<pre>
7381 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7382 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7383 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7384</pre>
7385
7386<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007387<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007388 a signed addition of the two arguments, and indicate whether an overflow
7389 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007390
7391<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007392<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007393 be of integer types of any bit width, but they must have the same bit
7394 width. The second element of the result structure must be of
7395 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7396 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007397
7398<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007399<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007400 a signed addition of the two variables. They return a structure &mdash; the
7401 first element of which is the signed summation, and the second element of
7402 which is a bit specifying if the signed summation resulted in an
7403 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007404
7405<h5>Examples:</h5>
7406<pre>
7407 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7408 %sum = extractvalue {i32, i1} %res, 0
7409 %obit = extractvalue {i32, i1} %res, 1
7410 br i1 %obit, label %overflow, label %normal
7411</pre>
7412
7413</div>
7414
7415<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007416<h4>
7417 <a name="int_uadd_overflow">
7418 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7419 </a>
7420</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007421
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007422<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007423
7424<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007425<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007426 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007427
7428<pre>
7429 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7430 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7431 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7432</pre>
7433
7434<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007435<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007436 an unsigned addition of the two arguments, and indicate whether a carry
7437 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007438
7439<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007440<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007441 be of integer types of any bit width, but they must have the same bit
7442 width. The second element of the result structure must be of
7443 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7444 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007445
7446<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007447<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007448 an unsigned addition of the two arguments. They return a structure &mdash;
7449 the first element of which is the sum, and the second element of which is a
7450 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007451
7452<h5>Examples:</h5>
7453<pre>
7454 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7455 %sum = extractvalue {i32, i1} %res, 0
7456 %obit = extractvalue {i32, i1} %res, 1
7457 br i1 %obit, label %carry, label %normal
7458</pre>
7459
7460</div>
7461
7462<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007463<h4>
7464 <a name="int_ssub_overflow">
7465 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7466 </a>
7467</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007468
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007469<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007470
7471<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007472<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007473 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007474
7475<pre>
7476 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7477 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7478 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7479</pre>
7480
7481<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007482<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007483 a signed subtraction of the two arguments, and indicate whether an overflow
7484 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007485
7486<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007487<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007488 be of integer types of any bit width, but they must have the same bit
7489 width. The second element of the result structure must be of
7490 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7491 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007492
7493<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007494<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007495 a signed subtraction of the two arguments. They return a structure &mdash;
7496 the first element of which is the subtraction, and the second element of
7497 which is a bit specifying if the signed subtraction resulted in an
7498 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007499
7500<h5>Examples:</h5>
7501<pre>
7502 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7503 %sum = extractvalue {i32, i1} %res, 0
7504 %obit = extractvalue {i32, i1} %res, 1
7505 br i1 %obit, label %overflow, label %normal
7506</pre>
7507
7508</div>
7509
7510<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007511<h4>
7512 <a name="int_usub_overflow">
7513 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7514 </a>
7515</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007516
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007517<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007518
7519<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007520<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007521 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007522
7523<pre>
7524 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7525 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7526 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7527</pre>
7528
7529<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007530<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007531 an unsigned subtraction of the two arguments, and indicate whether an
7532 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007533
7534<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007535<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007536 be of integer types of any bit width, but they must have the same bit
7537 width. The second element of the result structure must be of
7538 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7539 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007540
7541<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007542<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007543 an unsigned subtraction of the two arguments. They return a structure &mdash;
7544 the first element of which is the subtraction, and the second element of
7545 which is a bit specifying if the unsigned subtraction resulted in an
7546 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007547
7548<h5>Examples:</h5>
7549<pre>
7550 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7551 %sum = extractvalue {i32, i1} %res, 0
7552 %obit = extractvalue {i32, i1} %res, 1
7553 br i1 %obit, label %overflow, label %normal
7554</pre>
7555
7556</div>
7557
7558<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007559<h4>
7560 <a name="int_smul_overflow">
7561 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7562 </a>
7563</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007564
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007565<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007566
7567<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007568<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007569 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007570
7571<pre>
7572 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7573 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7574 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7575</pre>
7576
7577<h5>Overview:</h5>
7578
7579<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007580 a signed multiplication of the two arguments, and indicate whether an
7581 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007582
7583<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007584<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007585 be of integer types of any bit width, but they must have the same bit
7586 width. The second element of the result structure must be of
7587 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7588 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007589
7590<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007591<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007592 a signed multiplication of the two arguments. They return a structure &mdash;
7593 the first element of which is the multiplication, and the second element of
7594 which is a bit specifying if the signed multiplication resulted in an
7595 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007596
7597<h5>Examples:</h5>
7598<pre>
7599 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7600 %sum = extractvalue {i32, i1} %res, 0
7601 %obit = extractvalue {i32, i1} %res, 1
7602 br i1 %obit, label %overflow, label %normal
7603</pre>
7604
Reid Spencer5bf54c82007-04-11 23:23:49 +00007605</div>
7606
Bill Wendlingb9a73272009-02-08 23:00:09 +00007607<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007608<h4>
7609 <a name="int_umul_overflow">
7610 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
7611 </a>
7612</h4>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007613
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007614<div>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007615
7616<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007617<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007618 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007619
7620<pre>
7621 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7622 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7623 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7624</pre>
7625
7626<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007627<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007628 a unsigned multiplication of the two arguments, and indicate whether an
7629 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007630
7631<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007632<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007633 be of integer types of any bit width, but they must have the same bit
7634 width. The second element of the result structure must be of
7635 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7636 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007637
7638<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007639<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007640 an unsigned multiplication of the two arguments. They return a structure
7641 &mdash; the first element of which is the multiplication, and the second
7642 element of which is a bit specifying if the unsigned multiplication resulted
7643 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007644
7645<h5>Examples:</h5>
7646<pre>
7647 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7648 %sum = extractvalue {i32, i1} %res, 0
7649 %obit = extractvalue {i32, i1} %res, 1
7650 br i1 %obit, label %overflow, label %normal
7651</pre>
7652
7653</div>
7654
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007655</div>
7656
Chris Lattner941515c2004-01-06 05:31:32 +00007657<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007658<h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007659 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007660</h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007661
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007662<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007663
Chris Lattner022a9fb2010-03-15 04:12:21 +00007664<p>Half precision floating point is a storage-only format. This means that it is
7665 a dense encoding (in memory) but does not support computation in the
7666 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007667
Chris Lattner022a9fb2010-03-15 04:12:21 +00007668<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007669 value as an i16, then convert it to float with <a
7670 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7671 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00007672 double etc). To store the value back to memory, it is first converted to
7673 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007674 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7675 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007676
7677<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007678<h4>
7679 <a name="int_convert_to_fp16">
7680 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7681 </a>
7682</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007683
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007684<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007685
7686<h5>Syntax:</h5>
7687<pre>
7688 declare i16 @llvm.convert.to.fp16(f32 %a)
7689</pre>
7690
7691<h5>Overview:</h5>
7692<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7693 a conversion from single precision floating point format to half precision
7694 floating point format.</p>
7695
7696<h5>Arguments:</h5>
7697<p>The intrinsic function contains single argument - the value to be
7698 converted.</p>
7699
7700<h5>Semantics:</h5>
7701<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7702 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00007703 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007704 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007705
7706<h5>Examples:</h5>
7707<pre>
7708 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7709 store i16 %res, i16* @x, align 2
7710</pre>
7711
7712</div>
7713
7714<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007715<h4>
7716 <a name="int_convert_from_fp16">
7717 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7718 </a>
7719</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007720
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007721<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007722
7723<h5>Syntax:</h5>
7724<pre>
7725 declare f32 @llvm.convert.from.fp16(i16 %a)
7726</pre>
7727
7728<h5>Overview:</h5>
7729<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7730 a conversion from half precision floating point format to single precision
7731 floating point format.</p>
7732
7733<h5>Arguments:</h5>
7734<p>The intrinsic function contains single argument - the value to be
7735 converted.</p>
7736
7737<h5>Semantics:</h5>
7738<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00007739 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007740 precision floating point format. The input half-float value is represented by
7741 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007742
7743<h5>Examples:</h5>
7744<pre>
7745 %a = load i16* @x, align 2
7746 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7747</pre>
7748
7749</div>
7750
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007751</div>
7752
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007753<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007754<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007755 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007756</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007757
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007758<div>
Chris Lattner941515c2004-01-06 05:31:32 +00007759
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007760<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7761 prefix), are described in
7762 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7763 Level Debugging</a> document.</p>
7764
7765</div>
Chris Lattner941515c2004-01-06 05:31:32 +00007766
Jim Laskey2211f492007-03-14 19:31:19 +00007767<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007768<h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007769 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007770</h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007771
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007772<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007773
7774<p>The LLVM exception handling intrinsics (which all start with
7775 <tt>llvm.eh.</tt> prefix), are described in
7776 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7777 Handling</a> document.</p>
7778
Jim Laskey2211f492007-03-14 19:31:19 +00007779</div>
7780
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007781<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007782<h3>
Duncan Sandsa0984362011-09-06 13:37:06 +00007783 <a name="int_trampoline">Trampoline Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007784</h3>
Duncan Sands644f9172007-07-27 12:58:54 +00007785
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007786<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007787
Duncan Sandsa0984362011-09-06 13:37:06 +00007788<p>These intrinsics make it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00007789 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7790 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007791 function pointer lacking the nest parameter - the caller does not need to
7792 provide a value for it. Instead, the value to use is stored in advance in a
7793 "trampoline", a block of memory usually allocated on the stack, which also
7794 contains code to splice the nest value into the argument list. This is used
7795 to implement the GCC nested function address extension.</p>
7796
7797<p>For example, if the function is
7798 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7799 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7800 follows:</p>
7801
Benjamin Kramer79698be2010-07-13 12:26:09 +00007802<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00007803 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7804 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Duncan Sandsa0984362011-09-06 13:37:06 +00007805 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7806 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
Duncan Sands86e01192007-09-11 14:10:23 +00007807 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00007808</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007809
Dan Gohmand6a6f612010-05-28 17:07:41 +00007810<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7811 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007812
Duncan Sands644f9172007-07-27 12:58:54 +00007813<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007814<h4>
7815 <a name="int_it">
7816 '<tt>llvm.init.trampoline</tt>' Intrinsic
7817 </a>
7818</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007819
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007820<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007821
Duncan Sands644f9172007-07-27 12:58:54 +00007822<h5>Syntax:</h5>
7823<pre>
Duncan Sandsa0984362011-09-06 13:37:06 +00007824 declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00007825</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007826
Duncan Sands644f9172007-07-27 12:58:54 +00007827<h5>Overview:</h5>
Duncan Sandsa0984362011-09-06 13:37:06 +00007828<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
7829 turning it into a trampoline.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007830
Duncan Sands644f9172007-07-27 12:58:54 +00007831<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007832<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7833 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7834 sufficiently aligned block of memory; this memory is written to by the
7835 intrinsic. Note that the size and the alignment are target-specific - LLVM
7836 currently provides no portable way of determining them, so a front-end that
7837 generates this intrinsic needs to have some target-specific knowledge.
7838 The <tt>func</tt> argument must hold a function bitcast to
7839 an <tt>i8*</tt>.</p>
7840
Duncan Sands644f9172007-07-27 12:58:54 +00007841<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007842<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsa0984362011-09-06 13:37:06 +00007843 dependent code, turning it into a function. Then <tt>tramp</tt> needs to be
7844 passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
7845 which can be <a href="#int_trampoline">bitcast (to a new function) and
7846 called</a>. The new function's signature is the same as that of
7847 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
7848 removed. At most one such <tt>nest</tt> argument is allowed, and it must be of
7849 pointer type. Calling the new function is equivalent to calling <tt>func</tt>
7850 with the same argument list, but with <tt>nval</tt> used for the missing
7851 <tt>nest</tt> argument. If, after calling <tt>llvm.init.trampoline</tt>, the
7852 memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
7853 to the returned function pointer is undefined.</p>
7854</div>
7855
7856<!-- _______________________________________________________________________ -->
7857<h4>
7858 <a name="int_at">
7859 '<tt>llvm.adjust.trampoline</tt>' Intrinsic
7860 </a>
7861</h4>
7862
7863<div>
7864
7865<h5>Syntax:</h5>
7866<pre>
7867 declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
7868</pre>
7869
7870<h5>Overview:</h5>
7871<p>This performs any required machine-specific adjustment to the address of a
7872 trampoline (passed as <tt>tramp</tt>).</p>
7873
7874<h5>Arguments:</h5>
7875<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
7876 filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
7877 </a>.</p>
7878
7879<h5>Semantics:</h5>
7880<p>On some architectures the address of the code to be executed needs to be
7881 different to the address where the trampoline is actually stored. This
7882 intrinsic returns the executable address corresponding to <tt>tramp</tt>
7883 after performing the required machine specific adjustments.
7884 The pointer returned can then be <a href="#int_trampoline"> bitcast and
7885 executed</a>.
7886</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007887
Duncan Sands644f9172007-07-27 12:58:54 +00007888</div>
7889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007890</div>
7891
Duncan Sands644f9172007-07-27 12:58:54 +00007892<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007893<h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007894 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007895</h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007896
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007897<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007898
7899<p>This class of intrinsics exists to information about the lifetime of memory
7900 objects and ranges where variables are immutable.</p>
7901
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007902<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007903<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007904 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007905</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007906
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007907<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007908
7909<h5>Syntax:</h5>
7910<pre>
7911 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7912</pre>
7913
7914<h5>Overview:</h5>
7915<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7916 object's lifetime.</p>
7917
7918<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007919<p>The first argument is a constant integer representing the size of the
7920 object, or -1 if it is variable sized. The second argument is a pointer to
7921 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007922
7923<h5>Semantics:</h5>
7924<p>This intrinsic indicates that before this point in the code, the value of the
7925 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007926 never be used and has an undefined value. A load from the pointer that
7927 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007928 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7929
7930</div>
7931
7932<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007933<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007934 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007935</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007936
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007937<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007938
7939<h5>Syntax:</h5>
7940<pre>
7941 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7942</pre>
7943
7944<h5>Overview:</h5>
7945<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7946 object's lifetime.</p>
7947
7948<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007949<p>The first argument is a constant integer representing the size of the
7950 object, or -1 if it is variable sized. The second argument is a pointer to
7951 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007952
7953<h5>Semantics:</h5>
7954<p>This intrinsic indicates that after this point in the code, the value of the
7955 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7956 never be used and has an undefined value. Any stores into the memory object
7957 following this intrinsic may be removed as dead.
7958
7959</div>
7960
7961<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007962<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007963 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007964</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007965
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007966<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007967
7968<h5>Syntax:</h5>
7969<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00007970 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007971</pre>
7972
7973<h5>Overview:</h5>
7974<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7975 a memory object will not change.</p>
7976
7977<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007978<p>The first argument is a constant integer representing the size of the
7979 object, or -1 if it is variable sized. The second argument is a pointer to
7980 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007981
7982<h5>Semantics:</h5>
7983<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7984 the return value, the referenced memory location is constant and
7985 unchanging.</p>
7986
7987</div>
7988
7989<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007990<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007991 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007992</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007993
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007994<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007995
7996<h5>Syntax:</h5>
7997<pre>
7998 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7999</pre>
8000
8001<h5>Overview:</h5>
8002<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
8003 a memory object are mutable.</p>
8004
8005<h5>Arguments:</h5>
8006<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00008007 The second argument is a constant integer representing the size of the
8008 object, or -1 if it is variable sized and the third argument is a pointer
8009 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008010
8011<h5>Semantics:</h5>
8012<p>This intrinsic indicates that the memory is mutable again.</p>
8013
8014</div>
8015
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008016</div>
8017
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00008018<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008019<h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008020 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008021</h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008022
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008023<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008024
8025<p>This class of intrinsics is designed to be generic and has no specific
8026 purpose.</p>
8027
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008028<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008029<h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008030 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008031</h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008032
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008033<div>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008034
8035<h5>Syntax:</h5>
8036<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008037 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008038</pre>
8039
8040<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008041<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008042
8043<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008044<p>The first argument is a pointer to a value, the second is a pointer to a
8045 global string, the third is a pointer to a global string which is the source
8046 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008047
8048<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008049<p>This intrinsic allows annotation of local variables with arbitrary strings.
8050 This can be useful for special purpose optimizations that want to look for
John Criswellf0d536a2011-08-19 16:57:55 +00008051 these annotations. These have no other defined use; they are ignored by code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008052 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008053
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008054</div>
8055
Tanya Lattner293c0372007-09-21 22:59:12 +00008056<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008057<h4>
Tanya Lattner0186a652007-09-21 23:57:59 +00008058 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008059</h4>
Tanya Lattner293c0372007-09-21 22:59:12 +00008060
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008061<div>
Tanya Lattner293c0372007-09-21 22:59:12 +00008062
8063<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008064<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8065 any integer bit width.</p>
8066
Tanya Lattner293c0372007-09-21 22:59:12 +00008067<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008068 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8069 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8070 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8071 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8072 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00008073</pre>
8074
8075<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008076<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008077
8078<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008079<p>The first argument is an integer value (result of some expression), the
8080 second is a pointer to a global string, the third is a pointer to a global
8081 string which is the source file name, and the last argument is the line
8082 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008083
8084<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008085<p>This intrinsic allows annotations to be put on arbitrary expressions with
8086 arbitrary strings. This can be useful for special purpose optimizations that
John Criswellf0d536a2011-08-19 16:57:55 +00008087 want to look for these annotations. These have no other defined use; they
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008088 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008089
Tanya Lattner293c0372007-09-21 22:59:12 +00008090</div>
Jim Laskey2211f492007-03-14 19:31:19 +00008091
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008092<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008093<h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008094 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008095</h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008096
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008097<div>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008098
8099<h5>Syntax:</h5>
8100<pre>
8101 declare void @llvm.trap()
8102</pre>
8103
8104<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008105<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008106
8107<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008108<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008109
8110<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008111<p>This intrinsics is lowered to the target dependent trap instruction. If the
8112 target does not have a trap instruction, this intrinsic will be lowered to
8113 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008114
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008115</div>
8116
Bill Wendling14313312008-11-19 05:56:17 +00008117<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008118<h4>
Misha Brukman50de2b22008-11-22 23:55:29 +00008119 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008120</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008121
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008122<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008123
Bill Wendling14313312008-11-19 05:56:17 +00008124<h5>Syntax:</h5>
8125<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008126 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00008127</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008128
Bill Wendling14313312008-11-19 05:56:17 +00008129<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008130<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8131 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8132 ensure that it is placed on the stack before local variables.</p>
8133
Bill Wendling14313312008-11-19 05:56:17 +00008134<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008135<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8136 arguments. The first argument is the value loaded from the stack
8137 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8138 that has enough space to hold the value of the guard.</p>
8139
Bill Wendling14313312008-11-19 05:56:17 +00008140<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008141<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8142 the <tt>AllocaInst</tt> stack slot to be before local variables on the
8143 stack. This is to ensure that if a local variable on the stack is
8144 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00008145 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008146 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8147 function.</p>
8148
Bill Wendling14313312008-11-19 05:56:17 +00008149</div>
8150
Eric Christopher73484322009-11-30 08:03:53 +00008151<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008152<h4>
Eric Christopher73484322009-11-30 08:03:53 +00008153 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008154</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008155
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008156<div>
Eric Christopher73484322009-11-30 08:03:53 +00008157
8158<h5>Syntax:</h5>
8159<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008160 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
8161 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00008162</pre>
8163
8164<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008165<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8166 the optimizers to determine at compile time whether a) an operation (like
8167 memcpy) will overflow a buffer that corresponds to an object, or b) that a
8168 runtime check for overflow isn't necessary. An object in this context means
8169 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008170
8171<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008172<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00008173 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00008174 is a boolean 0 or 1. This argument determines whether you want the
8175 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00008176 1, variables are not allowed.</p>
8177
Eric Christopher73484322009-11-30 08:03:53 +00008178<h5>Semantics:</h5>
8179<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00008180 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
8181 depending on the <tt>type</tt> argument, if the size cannot be determined at
8182 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008183
8184</div>
8185
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008186</div>
8187
8188</div>
8189
Chris Lattner2f7c9632001-06-06 20:29:01 +00008190<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00008191<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00008192<address>
8193 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008194 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008195 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008196 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008197
8198 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumica46f5a2011-04-09 02:13:37 +00008199 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00008200 Last modified: $Date$
8201</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00008202
Misha Brukman76307852003-11-08 01:05:38 +00008203</body>
8204</html>