blob: 07e94a9f84e49e52041125c9b9a4a4a657d63d72 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000315 function definition. Furthermore the inliner doesn't consider such function
316 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000317"``cc 10``" - GHC convention
318 This calling convention has been implemented specifically for use by
319 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
320 It passes everything in registers, going to extremes to achieve this
321 by disabling callee save registers. This calling convention should
322 not be used lightly but only for specific situations such as an
323 alternative to the *register pinning* performance technique often
324 used when implementing functional programming languages. At the
325 moment only X86 supports this convention and it has the following
326 limitations:
327
328 - On *X86-32* only supports up to 4 bit type parameters. No
329 floating point types are supported.
330 - On *X86-64* only supports up to 10 bit type parameters and 6
331 floating point parameters.
332
333 This calling convention supports `tail call
334 optimization <CodeGenerator.html#id80>`_ but requires both the
335 caller and callee are using it.
336"``cc 11``" - The HiPE calling convention
337 This calling convention has been implemented specifically for use by
338 the `High-Performance Erlang
339 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
340 native code compiler of the `Ericsson's Open Source Erlang/OTP
341 system <http://www.erlang.org/download.shtml>`_. It uses more
342 registers for argument passing than the ordinary C calling
343 convention and defines no callee-saved registers. The calling
344 convention properly supports `tail call
345 optimization <CodeGenerator.html#id80>`_ but requires that both the
346 caller and the callee use it. It uses a *register pinning*
347 mechanism, similar to GHC's convention, for keeping frequently
348 accessed runtime components pinned to specific hardware registers.
349 At the moment only X86 supports this convention (both 32 and 64
350 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000351"``webkit_jscc``" - WebKit's JavaScript calling convention
352 This calling convention has been implemented for `WebKit FTL JIT
353 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
354 stack right to left (as cdecl does), and returns a value in the
355 platform's customary return register.
356"``anyregcc``" - Dynamic calling convention for code patching
357 This is a special convention that supports patching an arbitrary code
358 sequence in place of a call site. This convention forces the call
359 arguments into registers but allows them to be dynamcially
360 allocated. This can currently only be used with calls to
361 llvm.experimental.patchpoint because only this intrinsic records
362 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363"``preserve_mostcc``" - The `PreserveMost` calling convention
364 This calling convention attempts to make the code in the caller as little
365 intrusive as possible. This calling convention behaves identical to the `C`
366 calling convention on how arguments and return values are passed, but it
367 uses a different set of caller/callee-saved registers. This alleviates the
368 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000369 call in the caller. If the arguments are passed in callee-saved registers,
370 then they will be preserved by the callee across the call. This doesn't
371 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372
373 - On X86-64 the callee preserves all general purpose registers, except for
374 R11. R11 can be used as a scratch register. Floating-point registers
375 (XMMs/YMMs) are not preserved and need to be saved by the caller.
376
377 The idea behind this convention is to support calls to runtime functions
378 that have a hot path and a cold path. The hot path is usually a small piece
379 of code that doesn't many registers. The cold path might need to call out to
380 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000381 registers, which haven't already been saved by the caller. The
382 `PreserveMost` calling convention is very similar to the `cold` calling
383 convention in terms of caller/callee-saved registers, but they are used for
384 different types of function calls. `coldcc` is for function calls that are
385 rarely executed, whereas `preserve_mostcc` function calls are intended to be
386 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
387 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000388
389 This calling convention will be used by a future version of the ObjectiveC
390 runtime and should therefore still be considered experimental at this time.
391 Although this convention was created to optimize certain runtime calls to
392 the ObjectiveC runtime, it is not limited to this runtime and might be used
393 by other runtimes in the future too. The current implementation only
394 supports X86-64, but the intention is to support more architectures in the
395 future.
396"``preserve_allcc``" - The `PreserveAll` calling convention
397 This calling convention attempts to make the code in the caller even less
398 intrusive than the `PreserveMost` calling convention. This calling
399 convention also behaves identical to the `C` calling convention on how
400 arguments and return values are passed, but it uses a different set of
401 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000402 recovering a large register set before and after the call in the caller. If
403 the arguments are passed in callee-saved registers, then they will be
404 preserved by the callee across the call. This doesn't apply for values
405 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000406
407 - On X86-64 the callee preserves all general purpose registers, except for
408 R11. R11 can be used as a scratch register. Furthermore it also preserves
409 all floating-point registers (XMMs/YMMs).
410
411 The idea behind this convention is to support calls to runtime functions
412 that don't need to call out to any other functions.
413
414 This calling convention, like the `PreserveMost` calling convention, will be
415 used by a future version of the ObjectiveC runtime and should be considered
416 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000417"``cc <n>``" - Numbered convention
418 Any calling convention may be specified by number, allowing
419 target-specific calling conventions to be used. Target specific
420 calling conventions start at 64.
421
422More calling conventions can be added/defined on an as-needed basis, to
423support Pascal conventions or any other well-known target-independent
424convention.
425
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000426.. _visibilitystyles:
427
Sean Silvab084af42012-12-07 10:36:55 +0000428Visibility Styles
429-----------------
430
431All Global Variables and Functions have one of the following visibility
432styles:
433
434"``default``" - Default style
435 On targets that use the ELF object file format, default visibility
436 means that the declaration is visible to other modules and, in
437 shared libraries, means that the declared entity may be overridden.
438 On Darwin, default visibility means that the declaration is visible
439 to other modules. Default visibility corresponds to "external
440 linkage" in the language.
441"``hidden``" - Hidden style
442 Two declarations of an object with hidden visibility refer to the
443 same object if they are in the same shared object. Usually, hidden
444 visibility indicates that the symbol will not be placed into the
445 dynamic symbol table, so no other module (executable or shared
446 library) can reference it directly.
447"``protected``" - Protected style
448 On ELF, protected visibility indicates that the symbol will be
449 placed in the dynamic symbol table, but that references within the
450 defining module will bind to the local symbol. That is, the symbol
451 cannot be overridden by another module.
452
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000453.. _namedtypes:
454
Nico Rieck7157bb72014-01-14 15:22:47 +0000455DLL Storage Classes
456-------------------
457
458All Global Variables, Functions and Aliases can have one of the following
459DLL storage class:
460
461``dllimport``
462 "``dllimport``" causes the compiler to reference a function or variable via
463 a global pointer to a pointer that is set up by the DLL exporting the
464 symbol. On Microsoft Windows targets, the pointer name is formed by
465 combining ``__imp_`` and the function or variable name.
466``dllexport``
467 "``dllexport``" causes the compiler to provide a global pointer to a pointer
468 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
469 Microsoft Windows targets, the pointer name is formed by combining
470 ``__imp_`` and the function or variable name. Since this storage class
471 exists for defining a dll interface, the compiler, assembler and linker know
472 it is externally referenced and must refrain from deleting the symbol.
473
Sean Silvab084af42012-12-07 10:36:55 +0000474Named Types
475-----------
476
477LLVM IR allows you to specify name aliases for certain types. This can
478make it easier to read the IR and make the IR more condensed
479(particularly when recursive types are involved). An example of a name
480specification is:
481
482.. code-block:: llvm
483
484 %mytype = type { %mytype*, i32 }
485
486You may give a name to any :ref:`type <typesystem>` except
487":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
488expected with the syntax "%mytype".
489
490Note that type names are aliases for the structural type that they
491indicate, and that you can therefore specify multiple names for the same
492type. This often leads to confusing behavior when dumping out a .ll
493file. Since LLVM IR uses structural typing, the name is not part of the
494type. When printing out LLVM IR, the printer will pick *one name* to
495render all types of a particular shape. This means that if you have code
496where two different source types end up having the same LLVM type, that
497the dumper will sometimes print the "wrong" or unexpected type. This is
498an important design point and isn't going to change.
499
500.. _globalvars:
501
502Global Variables
503----------------
504
505Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000506instead of run-time.
507
508Global variables definitions must be initialized, may have an explicit section
509to be placed in, and may have an optional explicit alignment specified.
510
511Global variables in other translation units can also be declared, in which
512case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514A variable may be defined as ``thread_local``, which means that it will
515not be shared by threads (each thread will have a separated copy of the
516variable). Not all targets support thread-local variables. Optionally, a
517TLS model may be specified:
518
519``localdynamic``
520 For variables that are only used within the current shared library.
521``initialexec``
522 For variables in modules that will not be loaded dynamically.
523``localexec``
524 For variables defined in the executable and only used within it.
525
526The models correspond to the ELF TLS models; see `ELF Handling For
527Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
528more information on under which circumstances the different models may
529be used. The target may choose a different TLS model if the specified
530model is not supported, or if a better choice of model can be made.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
585iteration.
586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
589Syntax::
590
591 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
592 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
593 <global | constant> <Type>
594 [, section "name"] [, align <Alignment>]
595
Sean Silvab084af42012-12-07 10:36:55 +0000596For example, the following defines a global in a numbered address space
597with an initializer, section, and alignment:
598
599.. code-block:: llvm
600
601 @G = addrspace(5) constant float 1.0, section "foo", align 4
602
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000603The following example just declares a global variable
604
605.. code-block:: llvm
606
607 @G = external global i32
608
Sean Silvab084af42012-12-07 10:36:55 +0000609The following example defines a thread-local global with the
610``initialexec`` TLS model:
611
612.. code-block:: llvm
613
614 @G = thread_local(initialexec) global i32 0, align 4
615
616.. _functionstructure:
617
618Functions
619---------
620
621LLVM function definitions consist of the "``define``" keyword, an
622optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000623style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
624an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000625an optional ``unnamed_addr`` attribute, a return type, an optional
626:ref:`parameter attribute <paramattrs>` for the return type, a function
627name, a (possibly empty) argument list (each with optional :ref:`parameter
628attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
629an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000630collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
631curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000632
633LLVM function declarations consist of the "``declare``" keyword, an
634optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000635style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
636an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000637an optional ``unnamed_addr`` attribute, a return type, an optional
638:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639name, a possibly empty list of arguments, an optional alignment, an optional
640:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000641
Bill Wendling6822ecb2013-10-27 05:09:12 +0000642A function definition contains a list of basic blocks, forming the CFG (Control
643Flow Graph) for the function. Each basic block may optionally start with a label
644(giving the basic block a symbol table entry), contains a list of instructions,
645and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
646function return). If an explicit label is not provided, a block is assigned an
647implicit numbered label, using the next value from the same counter as used for
648unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
649entry block does not have an explicit label, it will be assigned label "%0",
650then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000651
652The first basic block in a function is special in two ways: it is
653immediately executed on entrance to the function, and it is not allowed
654to have predecessor basic blocks (i.e. there can not be any branches to
655the entry block of a function). Because the block can have no
656predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
657
658LLVM allows an explicit section to be specified for functions. If the
659target supports it, it will emit functions to the section specified.
660
661An explicit alignment may be specified for a function. If not present,
662or if the alignment is set to zero, the alignment of the function is set
663by the target to whatever it feels convenient. If an explicit alignment
664is specified, the function is forced to have at least that much
665alignment. All alignments must be a power of 2.
666
667If the ``unnamed_addr`` attribute is given, the address is know to not
668be significant and two identical functions can be merged.
669
670Syntax::
671
Nico Rieck7157bb72014-01-14 15:22:47 +0000672 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000673 [cconv] [ret attrs]
674 <ResultType> @<FunctionName> ([argument list])
675 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000676 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000677
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000678.. _langref_aliases:
679
Sean Silvab084af42012-12-07 10:36:55 +0000680Aliases
681-------
682
683Aliases act as "second name" for the aliasee value (which can be either
684function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000685Aliases may have an optional :ref:`linkage type <linkage>`, an optional
686:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
687<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000688
689Syntax::
690
Nico Rieck7157bb72014-01-14 15:22:47 +0000691 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000692
Rafael Espindola65785492013-10-07 13:57:59 +0000693The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000694``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000695``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000696might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000697alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000698
Sean Silvab084af42012-12-07 10:36:55 +0000699.. _namedmetadatastructure:
700
701Named Metadata
702--------------
703
704Named metadata is a collection of metadata. :ref:`Metadata
705nodes <metadata>` (but not metadata strings) are the only valid
706operands for a named metadata.
707
708Syntax::
709
710 ; Some unnamed metadata nodes, which are referenced by the named metadata.
711 !0 = metadata !{metadata !"zero"}
712 !1 = metadata !{metadata !"one"}
713 !2 = metadata !{metadata !"two"}
714 ; A named metadata.
715 !name = !{!0, !1, !2}
716
717.. _paramattrs:
718
719Parameter Attributes
720--------------------
721
722The return type and each parameter of a function type may have a set of
723*parameter attributes* associated with them. Parameter attributes are
724used to communicate additional information about the result or
725parameters of a function. Parameter attributes are considered to be part
726of the function, not of the function type, so functions with different
727parameter attributes can have the same function type.
728
729Parameter attributes are simple keywords that follow the type specified.
730If multiple parameter attributes are needed, they are space separated.
731For example:
732
733.. code-block:: llvm
734
735 declare i32 @printf(i8* noalias nocapture, ...)
736 declare i32 @atoi(i8 zeroext)
737 declare signext i8 @returns_signed_char()
738
739Note that any attributes for the function result (``nounwind``,
740``readonly``) come immediately after the argument list.
741
742Currently, only the following parameter attributes are defined:
743
744``zeroext``
745 This indicates to the code generator that the parameter or return
746 value should be zero-extended to the extent required by the target's
747 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
748 the caller (for a parameter) or the callee (for a return value).
749``signext``
750 This indicates to the code generator that the parameter or return
751 value should be sign-extended to the extent required by the target's
752 ABI (which is usually 32-bits) by the caller (for a parameter) or
753 the callee (for a return value).
754``inreg``
755 This indicates that this parameter or return value should be treated
756 in a special target-dependent fashion during while emitting code for
757 a function call or return (usually, by putting it in a register as
758 opposed to memory, though some targets use it to distinguish between
759 two different kinds of registers). Use of this attribute is
760 target-specific.
761``byval``
762 This indicates that the pointer parameter should really be passed by
763 value to the function. The attribute implies that a hidden copy of
764 the pointee is made between the caller and the callee, so the callee
765 is unable to modify the value in the caller. This attribute is only
766 valid on LLVM pointer arguments. It is generally used to pass
767 structs and arrays by value, but is also valid on pointers to
768 scalars. The copy is considered to belong to the caller not the
769 callee (for example, ``readonly`` functions should not write to
770 ``byval`` parameters). This is not a valid attribute for return
771 values.
772
773 The byval attribute also supports specifying an alignment with the
774 align attribute. It indicates the alignment of the stack slot to
775 form and the known alignment of the pointer specified to the call
776 site. If the alignment is not specified, then the code generator
777 makes a target-specific assumption.
778
Reid Klecknera534a382013-12-19 02:14:12 +0000779.. _attr_inalloca:
780
781``inalloca``
782
783.. Warning:: This feature is unstable and not fully implemented.
784
Reid Kleckner60d3a832014-01-16 22:59:24 +0000785 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000786 address of outgoing stack arguments. An ``inalloca`` argument must
787 be a pointer to stack memory produced by an ``alloca`` instruction.
788 The alloca, or argument allocation, must also be tagged with the
789 inalloca keyword. Only the past argument may have the ``inalloca``
790 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000791
Reid Kleckner436c42e2014-01-17 23:58:17 +0000792 An argument allocation may be used by a call at most once because
793 the call may deallocate it. The ``inalloca`` attribute cannot be
794 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000795 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
796 ``inalloca`` attribute also disables LLVM's implicit lowering of
797 large aggregate return values, which means that frontend authors
798 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000799
Reid Kleckner60d3a832014-01-16 22:59:24 +0000800 When the call site is reached, the argument allocation must have
801 been the most recent stack allocation that is still live, or the
802 results are undefined. It is possible to allocate additional stack
803 space after an argument allocation and before its call site, but it
804 must be cleared off with :ref:`llvm.stackrestore
805 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000806
807 See :doc:`InAlloca` for more information on how to use this
808 attribute.
809
Sean Silvab084af42012-12-07 10:36:55 +0000810``sret``
811 This indicates that the pointer parameter specifies the address of a
812 structure that is the return value of the function in the source
813 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000814 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000815 not to trap and to be properly aligned. This may only be applied to
816 the first parameter. This is not a valid attribute for return
817 values.
818``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000819 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000820 the argument or return value do not alias pointer values which are
821 not *based* on it, ignoring certain "irrelevant" dependencies. For a
822 call to the parent function, dependencies between memory references
823 from before or after the call and from those during the call are
824 "irrelevant" to the ``noalias`` keyword for the arguments and return
825 value used in that call. The caller shares the responsibility with
826 the callee for ensuring that these requirements are met. For further
827 details, please see the discussion of the NoAlias response in `alias
828 analysis <AliasAnalysis.html#MustMayNo>`_.
829
830 Note that this definition of ``noalias`` is intentionally similar
831 to the definition of ``restrict`` in C99 for function arguments,
832 though it is slightly weaker.
833
834 For function return values, C99's ``restrict`` is not meaningful,
835 while LLVM's ``noalias`` is.
836``nocapture``
837 This indicates that the callee does not make any copies of the
838 pointer that outlive the callee itself. This is not a valid
839 attribute for return values.
840
841.. _nest:
842
843``nest``
844 This indicates that the pointer parameter can be excised using the
845 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000846 attribute for return values and can only be applied to one parameter.
847
848``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000849 This indicates that the function always returns the argument as its return
850 value. This is an optimization hint to the code generator when generating
851 the caller, allowing tail call optimization and omission of register saves
852 and restores in some cases; it is not checked or enforced when generating
853 the callee. The parameter and the function return type must be valid
854 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
855 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000856
857.. _gc:
858
859Garbage Collector Names
860-----------------------
861
862Each function may specify a garbage collector name, which is simply a
863string:
864
865.. code-block:: llvm
866
867 define void @f() gc "name" { ... }
868
869The compiler declares the supported values of *name*. Specifying a
870collector which will cause the compiler to alter its output in order to
871support the named garbage collection algorithm.
872
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000873.. _prefixdata:
874
875Prefix Data
876-----------
877
878Prefix data is data associated with a function which the code generator
879will emit immediately before the function body. The purpose of this feature
880is to allow frontends to associate language-specific runtime metadata with
881specific functions and make it available through the function pointer while
882still allowing the function pointer to be called. To access the data for a
883given function, a program may bitcast the function pointer to a pointer to
884the constant's type. This implies that the IR symbol points to the start
885of the prefix data.
886
887To maintain the semantics of ordinary function calls, the prefix data must
888have a particular format. Specifically, it must begin with a sequence of
889bytes which decode to a sequence of machine instructions, valid for the
890module's target, which transfer control to the point immediately succeeding
891the prefix data, without performing any other visible action. This allows
892the inliner and other passes to reason about the semantics of the function
893definition without needing to reason about the prefix data. Obviously this
894makes the format of the prefix data highly target dependent.
895
Peter Collingbourne213358a2013-09-23 20:14:21 +0000896Prefix data is laid out as if it were an initializer for a global variable
897of the prefix data's type. No padding is automatically placed between the
898prefix data and the function body. If padding is required, it must be part
899of the prefix data.
900
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000901A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
902which encodes the ``nop`` instruction:
903
904.. code-block:: llvm
905
906 define void @f() prefix i8 144 { ... }
907
908Generally prefix data can be formed by encoding a relative branch instruction
909which skips the metadata, as in this example of valid prefix data for the
910x86_64 architecture, where the first two bytes encode ``jmp .+10``:
911
912.. code-block:: llvm
913
914 %0 = type <{ i8, i8, i8* }>
915
916 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
917
918A function may have prefix data but no body. This has similar semantics
919to the ``available_externally`` linkage in that the data may be used by the
920optimizers but will not be emitted in the object file.
921
Bill Wendling63b88192013-02-06 06:52:58 +0000922.. _attrgrp:
923
924Attribute Groups
925----------------
926
927Attribute groups are groups of attributes that are referenced by objects within
928the IR. They are important for keeping ``.ll`` files readable, because a lot of
929functions will use the same set of attributes. In the degenerative case of a
930``.ll`` file that corresponds to a single ``.c`` file, the single attribute
931group will capture the important command line flags used to build that file.
932
933An attribute group is a module-level object. To use an attribute group, an
934object references the attribute group's ID (e.g. ``#37``). An object may refer
935to more than one attribute group. In that situation, the attributes from the
936different groups are merged.
937
938Here is an example of attribute groups for a function that should always be
939inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
940
941.. code-block:: llvm
942
943 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000944 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000945
946 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000947 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000948
949 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
950 define void @f() #0 #1 { ... }
951
Sean Silvab084af42012-12-07 10:36:55 +0000952.. _fnattrs:
953
954Function Attributes
955-------------------
956
957Function attributes are set to communicate additional information about
958a function. Function attributes are considered to be part of the
959function, not of the function type, so functions with different function
960attributes can have the same function type.
961
962Function attributes are simple keywords that follow the type specified.
963If multiple attributes are needed, they are space separated. For
964example:
965
966.. code-block:: llvm
967
968 define void @f() noinline { ... }
969 define void @f() alwaysinline { ... }
970 define void @f() alwaysinline optsize { ... }
971 define void @f() optsize { ... }
972
Sean Silvab084af42012-12-07 10:36:55 +0000973``alignstack(<n>)``
974 This attribute indicates that, when emitting the prologue and
975 epilogue, the backend should forcibly align the stack pointer.
976 Specify the desired alignment, which must be a power of two, in
977 parentheses.
978``alwaysinline``
979 This attribute indicates that the inliner should attempt to inline
980 this function into callers whenever possible, ignoring any active
981 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000982``builtin``
983 This indicates that the callee function at a call site should be
984 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000985 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000986 direct calls to functions which are declared with the ``nobuiltin``
987 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000988``cold``
989 This attribute indicates that this function is rarely called. When
990 computing edge weights, basic blocks post-dominated by a cold
991 function call are also considered to be cold; and, thus, given low
992 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000993``inlinehint``
994 This attribute indicates that the source code contained a hint that
995 inlining this function is desirable (such as the "inline" keyword in
996 C/C++). It is just a hint; it imposes no requirements on the
997 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000998``minsize``
999 This attribute suggests that optimization passes and code generator
1000 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001001 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001002 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001003``naked``
1004 This attribute disables prologue / epilogue emission for the
1005 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001006``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001007 This indicates that the callee function at a call site is not recognized as
1008 a built-in function. LLVM will retain the original call and not replace it
1009 with equivalent code based on the semantics of the built-in function, unless
1010 the call site uses the ``builtin`` attribute. This is valid at call sites
1011 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001012``noduplicate``
1013 This attribute indicates that calls to the function cannot be
1014 duplicated. A call to a ``noduplicate`` function may be moved
1015 within its parent function, but may not be duplicated within
1016 its parent function.
1017
1018 A function containing a ``noduplicate`` call may still
1019 be an inlining candidate, provided that the call is not
1020 duplicated by inlining. That implies that the function has
1021 internal linkage and only has one call site, so the original
1022 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001023``noimplicitfloat``
1024 This attributes disables implicit floating point instructions.
1025``noinline``
1026 This attribute indicates that the inliner should never inline this
1027 function in any situation. This attribute may not be used together
1028 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001029``nonlazybind``
1030 This attribute suppresses lazy symbol binding for the function. This
1031 may make calls to the function faster, at the cost of extra program
1032 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001033``noredzone``
1034 This attribute indicates that the code generator should not use a
1035 red zone, even if the target-specific ABI normally permits it.
1036``noreturn``
1037 This function attribute indicates that the function never returns
1038 normally. This produces undefined behavior at runtime if the
1039 function ever does dynamically return.
1040``nounwind``
1041 This function attribute indicates that the function never returns
1042 with an unwind or exceptional control flow. If the function does
1043 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001044``optnone``
1045 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001046 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001047 exception of interprocedural optimization passes.
1048 This attribute cannot be used together with the ``alwaysinline``
1049 attribute; this attribute is also incompatible
1050 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001051
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001052 This attribute requires the ``noinline`` attribute to be specified on
1053 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001054 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001055 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001056``optsize``
1057 This attribute suggests that optimization passes and code generator
1058 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001059 and otherwise do optimizations specifically to reduce code size as
1060 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001061``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001062 On a function, this attribute indicates that the function computes its
1063 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001064 without dereferencing any pointer arguments or otherwise accessing
1065 any mutable state (e.g. memory, control registers, etc) visible to
1066 caller functions. It does not write through any pointer arguments
1067 (including ``byval`` arguments) and never changes any state visible
1068 to callers. This means that it cannot unwind exceptions by calling
1069 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001070
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001071 On an argument, this attribute indicates that the function does not
1072 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001073 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001074``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001075 On a function, this attribute indicates that the function does not write
1076 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001077 modify any state (e.g. memory, control registers, etc) visible to
1078 caller functions. It may dereference pointer arguments and read
1079 state that may be set in the caller. A readonly function always
1080 returns the same value (or unwinds an exception identically) when
1081 called with the same set of arguments and global state. It cannot
1082 unwind an exception by calling the ``C++`` exception throwing
1083 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001084
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001085 On an argument, this attribute indicates that the function does not write
1086 through this pointer argument, even though it may write to the memory that
1087 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001088``returns_twice``
1089 This attribute indicates that this function can return twice. The C
1090 ``setjmp`` is an example of such a function. The compiler disables
1091 some optimizations (like tail calls) in the caller of these
1092 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001093``sanitize_address``
1094 This attribute indicates that AddressSanitizer checks
1095 (dynamic address safety analysis) are enabled for this function.
1096``sanitize_memory``
1097 This attribute indicates that MemorySanitizer checks (dynamic detection
1098 of accesses to uninitialized memory) are enabled for this function.
1099``sanitize_thread``
1100 This attribute indicates that ThreadSanitizer checks
1101 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001102``ssp``
1103 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001104 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001105 placed on the stack before the local variables that's checked upon
1106 return from the function to see if it has been overwritten. A
1107 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001108 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001109
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001110 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1111 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1112 - Calls to alloca() with variable sizes or constant sizes greater than
1113 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001114
1115 If a function that has an ``ssp`` attribute is inlined into a
1116 function that doesn't have an ``ssp`` attribute, then the resulting
1117 function will have an ``ssp`` attribute.
1118``sspreq``
1119 This attribute indicates that the function should *always* emit a
1120 stack smashing protector. This overrides the ``ssp`` function
1121 attribute.
1122
1123 If a function that has an ``sspreq`` attribute is inlined into a
1124 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001125 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1126 an ``sspreq`` attribute.
1127``sspstrong``
1128 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001129 protector. This attribute causes a strong heuristic to be used when
1130 determining if a function needs stack protectors. The strong heuristic
1131 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001132
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001133 - Arrays of any size and type
1134 - Aggregates containing an array of any size and type.
1135 - Calls to alloca().
1136 - Local variables that have had their address taken.
1137
1138 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001139
1140 If a function that has an ``sspstrong`` attribute is inlined into a
1141 function that doesn't have an ``sspstrong`` attribute, then the
1142 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001143``uwtable``
1144 This attribute indicates that the ABI being targeted requires that
1145 an unwind table entry be produce for this function even if we can
1146 show that no exceptions passes by it. This is normally the case for
1147 the ELF x86-64 abi, but it can be disabled for some compilation
1148 units.
Sean Silvab084af42012-12-07 10:36:55 +00001149
1150.. _moduleasm:
1151
1152Module-Level Inline Assembly
1153----------------------------
1154
1155Modules may contain "module-level inline asm" blocks, which corresponds
1156to the GCC "file scope inline asm" blocks. These blocks are internally
1157concatenated by LLVM and treated as a single unit, but may be separated
1158in the ``.ll`` file if desired. The syntax is very simple:
1159
1160.. code-block:: llvm
1161
1162 module asm "inline asm code goes here"
1163 module asm "more can go here"
1164
1165The strings can contain any character by escaping non-printable
1166characters. The escape sequence used is simply "\\xx" where "xx" is the
1167two digit hex code for the number.
1168
1169The inline asm code is simply printed to the machine code .s file when
1170assembly code is generated.
1171
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001172.. _langref_datalayout:
1173
Sean Silvab084af42012-12-07 10:36:55 +00001174Data Layout
1175-----------
1176
1177A module may specify a target specific data layout string that specifies
1178how data is to be laid out in memory. The syntax for the data layout is
1179simply:
1180
1181.. code-block:: llvm
1182
1183 target datalayout = "layout specification"
1184
1185The *layout specification* consists of a list of specifications
1186separated by the minus sign character ('-'). Each specification starts
1187with a letter and may include other information after the letter to
1188define some aspect of the data layout. The specifications accepted are
1189as follows:
1190
1191``E``
1192 Specifies that the target lays out data in big-endian form. That is,
1193 the bits with the most significance have the lowest address
1194 location.
1195``e``
1196 Specifies that the target lays out data in little-endian form. That
1197 is, the bits with the least significance have the lowest address
1198 location.
1199``S<size>``
1200 Specifies the natural alignment of the stack in bits. Alignment
1201 promotion of stack variables is limited to the natural stack
1202 alignment to avoid dynamic stack realignment. The stack alignment
1203 must be a multiple of 8-bits. If omitted, the natural stack
1204 alignment defaults to "unspecified", which does not prevent any
1205 alignment promotions.
1206``p[n]:<size>:<abi>:<pref>``
1207 This specifies the *size* of a pointer and its ``<abi>`` and
1208 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001209 bits. The address space, ``n`` is optional, and if not specified,
1210 denotes the default address space 0. The value of ``n`` must be
1211 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001212``i<size>:<abi>:<pref>``
1213 This specifies the alignment for an integer type of a given bit
1214 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1215``v<size>:<abi>:<pref>``
1216 This specifies the alignment for a vector type of a given bit
1217 ``<size>``.
1218``f<size>:<abi>:<pref>``
1219 This specifies the alignment for a floating point type of a given bit
1220 ``<size>``. Only values of ``<size>`` that are supported by the target
1221 will work. 32 (float) and 64 (double) are supported on all targets; 80
1222 or 128 (different flavors of long double) are also supported on some
1223 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001224``a:<abi>:<pref>``
1225 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001226``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001227 If present, specifies that llvm names are mangled in the output. The
1228 options are
1229
1230 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1231 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1232 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1233 symbols get a ``_`` prefix.
1234 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1235 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001236``n<size1>:<size2>:<size3>...``
1237 This specifies a set of native integer widths for the target CPU in
1238 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1239 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1240 this set are considered to support most general arithmetic operations
1241 efficiently.
1242
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001243On every specification that takes a ``<abi>:<pref>``, specifying the
1244``<pref>`` alignment is optional. If omitted, the preceding ``:``
1245should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1246
Sean Silvab084af42012-12-07 10:36:55 +00001247When constructing the data layout for a given target, LLVM starts with a
1248default set of specifications which are then (possibly) overridden by
1249the specifications in the ``datalayout`` keyword. The default
1250specifications are given in this list:
1251
1252- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001253- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1254- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1255 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001256- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001257- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1258- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1259- ``i16:16:16`` - i16 is 16-bit aligned
1260- ``i32:32:32`` - i32 is 32-bit aligned
1261- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1262 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001263- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001264- ``f32:32:32`` - float is 32-bit aligned
1265- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001266- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001267- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1268- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001269- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001270
1271When LLVM is determining the alignment for a given type, it uses the
1272following rules:
1273
1274#. If the type sought is an exact match for one of the specifications,
1275 that specification is used.
1276#. If no match is found, and the type sought is an integer type, then
1277 the smallest integer type that is larger than the bitwidth of the
1278 sought type is used. If none of the specifications are larger than
1279 the bitwidth then the largest integer type is used. For example,
1280 given the default specifications above, the i7 type will use the
1281 alignment of i8 (next largest) while both i65 and i256 will use the
1282 alignment of i64 (largest specified).
1283#. If no match is found, and the type sought is a vector type, then the
1284 largest vector type that is smaller than the sought vector type will
1285 be used as a fall back. This happens because <128 x double> can be
1286 implemented in terms of 64 <2 x double>, for example.
1287
1288The function of the data layout string may not be what you expect.
1289Notably, this is not a specification from the frontend of what alignment
1290the code generator should use.
1291
1292Instead, if specified, the target data layout is required to match what
1293the ultimate *code generator* expects. This string is used by the
1294mid-level optimizers to improve code, and this only works if it matches
1295what the ultimate code generator uses. If you would like to generate IR
1296that does not embed this target-specific detail into the IR, then you
1297don't have to specify the string. This will disable some optimizations
1298that require precise layout information, but this also prevents those
1299optimizations from introducing target specificity into the IR.
1300
Bill Wendling5cc90842013-10-18 23:41:25 +00001301.. _langref_triple:
1302
1303Target Triple
1304-------------
1305
1306A module may specify a target triple string that describes the target
1307host. The syntax for the target triple is simply:
1308
1309.. code-block:: llvm
1310
1311 target triple = "x86_64-apple-macosx10.7.0"
1312
1313The *target triple* string consists of a series of identifiers delimited
1314by the minus sign character ('-'). The canonical forms are:
1315
1316::
1317
1318 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1319 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1320
1321This information is passed along to the backend so that it generates
1322code for the proper architecture. It's possible to override this on the
1323command line with the ``-mtriple`` command line option.
1324
Sean Silvab084af42012-12-07 10:36:55 +00001325.. _pointeraliasing:
1326
1327Pointer Aliasing Rules
1328----------------------
1329
1330Any memory access must be done through a pointer value associated with
1331an address range of the memory access, otherwise the behavior is
1332undefined. Pointer values are associated with address ranges according
1333to the following rules:
1334
1335- A pointer value is associated with the addresses associated with any
1336 value it is *based* on.
1337- An address of a global variable is associated with the address range
1338 of the variable's storage.
1339- The result value of an allocation instruction is associated with the
1340 address range of the allocated storage.
1341- A null pointer in the default address-space is associated with no
1342 address.
1343- An integer constant other than zero or a pointer value returned from
1344 a function not defined within LLVM may be associated with address
1345 ranges allocated through mechanisms other than those provided by
1346 LLVM. Such ranges shall not overlap with any ranges of addresses
1347 allocated by mechanisms provided by LLVM.
1348
1349A pointer value is *based* on another pointer value according to the
1350following rules:
1351
1352- A pointer value formed from a ``getelementptr`` operation is *based*
1353 on the first operand of the ``getelementptr``.
1354- The result value of a ``bitcast`` is *based* on the operand of the
1355 ``bitcast``.
1356- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1357 values that contribute (directly or indirectly) to the computation of
1358 the pointer's value.
1359- The "*based* on" relationship is transitive.
1360
1361Note that this definition of *"based"* is intentionally similar to the
1362definition of *"based"* in C99, though it is slightly weaker.
1363
1364LLVM IR does not associate types with memory. The result type of a
1365``load`` merely indicates the size and alignment of the memory from
1366which to load, as well as the interpretation of the value. The first
1367operand type of a ``store`` similarly only indicates the size and
1368alignment of the store.
1369
1370Consequently, type-based alias analysis, aka TBAA, aka
1371``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1372:ref:`Metadata <metadata>` may be used to encode additional information
1373which specialized optimization passes may use to implement type-based
1374alias analysis.
1375
1376.. _volatile:
1377
1378Volatile Memory Accesses
1379------------------------
1380
1381Certain memory accesses, such as :ref:`load <i_load>`'s,
1382:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1383marked ``volatile``. The optimizers must not change the number of
1384volatile operations or change their order of execution relative to other
1385volatile operations. The optimizers *may* change the order of volatile
1386operations relative to non-volatile operations. This is not Java's
1387"volatile" and has no cross-thread synchronization behavior.
1388
Andrew Trick89fc5a62013-01-30 21:19:35 +00001389IR-level volatile loads and stores cannot safely be optimized into
1390llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1391flagged volatile. Likewise, the backend should never split or merge
1392target-legal volatile load/store instructions.
1393
Andrew Trick7e6f9282013-01-31 00:49:39 +00001394.. admonition:: Rationale
1395
1396 Platforms may rely on volatile loads and stores of natively supported
1397 data width to be executed as single instruction. For example, in C
1398 this holds for an l-value of volatile primitive type with native
1399 hardware support, but not necessarily for aggregate types. The
1400 frontend upholds these expectations, which are intentionally
1401 unspecified in the IR. The rules above ensure that IR transformation
1402 do not violate the frontend's contract with the language.
1403
Sean Silvab084af42012-12-07 10:36:55 +00001404.. _memmodel:
1405
1406Memory Model for Concurrent Operations
1407--------------------------------------
1408
1409The LLVM IR does not define any way to start parallel threads of
1410execution or to register signal handlers. Nonetheless, there are
1411platform-specific ways to create them, and we define LLVM IR's behavior
1412in their presence. This model is inspired by the C++0x memory model.
1413
1414For a more informal introduction to this model, see the :doc:`Atomics`.
1415
1416We define a *happens-before* partial order as the least partial order
1417that
1418
1419- Is a superset of single-thread program order, and
1420- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1421 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1422 techniques, like pthread locks, thread creation, thread joining,
1423 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1424 Constraints <ordering>`).
1425
1426Note that program order does not introduce *happens-before* edges
1427between a thread and signals executing inside that thread.
1428
1429Every (defined) read operation (load instructions, memcpy, atomic
1430loads/read-modify-writes, etc.) R reads a series of bytes written by
1431(defined) write operations (store instructions, atomic
1432stores/read-modify-writes, memcpy, etc.). For the purposes of this
1433section, initialized globals are considered to have a write of the
1434initializer which is atomic and happens before any other read or write
1435of the memory in question. For each byte of a read R, R\ :sub:`byte`
1436may see any write to the same byte, except:
1437
1438- If write\ :sub:`1` happens before write\ :sub:`2`, and
1439 write\ :sub:`2` happens before R\ :sub:`byte`, then
1440 R\ :sub:`byte` does not see write\ :sub:`1`.
1441- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1442 R\ :sub:`byte` does not see write\ :sub:`3`.
1443
1444Given that definition, R\ :sub:`byte` is defined as follows:
1445
1446- If R is volatile, the result is target-dependent. (Volatile is
1447 supposed to give guarantees which can support ``sig_atomic_t`` in
1448 C/C++, and may be used for accesses to addresses which do not behave
1449 like normal memory. It does not generally provide cross-thread
1450 synchronization.)
1451- Otherwise, if there is no write to the same byte that happens before
1452 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1453- Otherwise, if R\ :sub:`byte` may see exactly one write,
1454 R\ :sub:`byte` returns the value written by that write.
1455- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1456 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1457 Memory Ordering Constraints <ordering>` section for additional
1458 constraints on how the choice is made.
1459- Otherwise R\ :sub:`byte` returns ``undef``.
1460
1461R returns the value composed of the series of bytes it read. This
1462implies that some bytes within the value may be ``undef`` **without**
1463the entire value being ``undef``. Note that this only defines the
1464semantics of the operation; it doesn't mean that targets will emit more
1465than one instruction to read the series of bytes.
1466
1467Note that in cases where none of the atomic intrinsics are used, this
1468model places only one restriction on IR transformations on top of what
1469is required for single-threaded execution: introducing a store to a byte
1470which might not otherwise be stored is not allowed in general.
1471(Specifically, in the case where another thread might write to and read
1472from an address, introducing a store can change a load that may see
1473exactly one write into a load that may see multiple writes.)
1474
1475.. _ordering:
1476
1477Atomic Memory Ordering Constraints
1478----------------------------------
1479
1480Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1481:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1482:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1483an ordering parameter that determines which other atomic instructions on
1484the same address they *synchronize with*. These semantics are borrowed
1485from Java and C++0x, but are somewhat more colloquial. If these
1486descriptions aren't precise enough, check those specs (see spec
1487references in the :doc:`atomics guide <Atomics>`).
1488:ref:`fence <i_fence>` instructions treat these orderings somewhat
1489differently since they don't take an address. See that instruction's
1490documentation for details.
1491
1492For a simpler introduction to the ordering constraints, see the
1493:doc:`Atomics`.
1494
1495``unordered``
1496 The set of values that can be read is governed by the happens-before
1497 partial order. A value cannot be read unless some operation wrote
1498 it. This is intended to provide a guarantee strong enough to model
1499 Java's non-volatile shared variables. This ordering cannot be
1500 specified for read-modify-write operations; it is not strong enough
1501 to make them atomic in any interesting way.
1502``monotonic``
1503 In addition to the guarantees of ``unordered``, there is a single
1504 total order for modifications by ``monotonic`` operations on each
1505 address. All modification orders must be compatible with the
1506 happens-before order. There is no guarantee that the modification
1507 orders can be combined to a global total order for the whole program
1508 (and this often will not be possible). The read in an atomic
1509 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1510 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1511 order immediately before the value it writes. If one atomic read
1512 happens before another atomic read of the same address, the later
1513 read must see the same value or a later value in the address's
1514 modification order. This disallows reordering of ``monotonic`` (or
1515 stronger) operations on the same address. If an address is written
1516 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1517 read that address repeatedly, the other threads must eventually see
1518 the write. This corresponds to the C++0x/C1x
1519 ``memory_order_relaxed``.
1520``acquire``
1521 In addition to the guarantees of ``monotonic``, a
1522 *synchronizes-with* edge may be formed with a ``release`` operation.
1523 This is intended to model C++'s ``memory_order_acquire``.
1524``release``
1525 In addition to the guarantees of ``monotonic``, if this operation
1526 writes a value which is subsequently read by an ``acquire``
1527 operation, it *synchronizes-with* that operation. (This isn't a
1528 complete description; see the C++0x definition of a release
1529 sequence.) This corresponds to the C++0x/C1x
1530 ``memory_order_release``.
1531``acq_rel`` (acquire+release)
1532 Acts as both an ``acquire`` and ``release`` operation on its
1533 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1534``seq_cst`` (sequentially consistent)
1535 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1536 operation which only reads, ``release`` for an operation which only
1537 writes), there is a global total order on all
1538 sequentially-consistent operations on all addresses, which is
1539 consistent with the *happens-before* partial order and with the
1540 modification orders of all the affected addresses. Each
1541 sequentially-consistent read sees the last preceding write to the
1542 same address in this global order. This corresponds to the C++0x/C1x
1543 ``memory_order_seq_cst`` and Java volatile.
1544
1545.. _singlethread:
1546
1547If an atomic operation is marked ``singlethread``, it only *synchronizes
1548with* or participates in modification and seq\_cst total orderings with
1549other operations running in the same thread (for example, in signal
1550handlers).
1551
1552.. _fastmath:
1553
1554Fast-Math Flags
1555---------------
1556
1557LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1558:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1559:ref:`frem <i_frem>`) have the following flags that can set to enable
1560otherwise unsafe floating point operations
1561
1562``nnan``
1563 No NaNs - Allow optimizations to assume the arguments and result are not
1564 NaN. Such optimizations are required to retain defined behavior over
1565 NaNs, but the value of the result is undefined.
1566
1567``ninf``
1568 No Infs - Allow optimizations to assume the arguments and result are not
1569 +/-Inf. Such optimizations are required to retain defined behavior over
1570 +/-Inf, but the value of the result is undefined.
1571
1572``nsz``
1573 No Signed Zeros - Allow optimizations to treat the sign of a zero
1574 argument or result as insignificant.
1575
1576``arcp``
1577 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1578 argument rather than perform division.
1579
1580``fast``
1581 Fast - Allow algebraically equivalent transformations that may
1582 dramatically change results in floating point (e.g. reassociate). This
1583 flag implies all the others.
1584
1585.. _typesystem:
1586
1587Type System
1588===========
1589
1590The LLVM type system is one of the most important features of the
1591intermediate representation. Being typed enables a number of
1592optimizations to be performed on the intermediate representation
1593directly, without having to do extra analyses on the side before the
1594transformation. A strong type system makes it easier to read the
1595generated code and enables novel analyses and transformations that are
1596not feasible to perform on normal three address code representations.
1597
Rafael Espindola08013342013-12-07 19:34:20 +00001598.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001599
Rafael Espindola08013342013-12-07 19:34:20 +00001600Void Type
1601---------
Sean Silvab084af42012-12-07 10:36:55 +00001602
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001603:Overview:
1604
Rafael Espindola08013342013-12-07 19:34:20 +00001605
1606The void type does not represent any value and has no size.
1607
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001608:Syntax:
1609
Rafael Espindola08013342013-12-07 19:34:20 +00001610
1611::
1612
1613 void
Sean Silvab084af42012-12-07 10:36:55 +00001614
1615
Rafael Espindola08013342013-12-07 19:34:20 +00001616.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001617
Rafael Espindola08013342013-12-07 19:34:20 +00001618Function Type
1619-------------
Sean Silvab084af42012-12-07 10:36:55 +00001620
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001621:Overview:
1622
Sean Silvab084af42012-12-07 10:36:55 +00001623
Rafael Espindola08013342013-12-07 19:34:20 +00001624The function type can be thought of as a function signature. It consists of a
1625return type and a list of formal parameter types. The return type of a function
1626type is a void type or first class type --- except for :ref:`label <t_label>`
1627and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001628
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001629:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001630
Rafael Espindola08013342013-12-07 19:34:20 +00001631::
Sean Silvab084af42012-12-07 10:36:55 +00001632
Rafael Espindola08013342013-12-07 19:34:20 +00001633 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001634
Rafael Espindola08013342013-12-07 19:34:20 +00001635...where '``<parameter list>``' is a comma-separated list of type
1636specifiers. Optionally, the parameter list may include a type ``...``, which
1637indicates that the function takes a variable number of arguments. Variable
1638argument functions can access their arguments with the :ref:`variable argument
1639handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1640except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001642:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001643
Rafael Espindola08013342013-12-07 19:34:20 +00001644+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1645| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1646+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1647| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1648+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1649| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1650+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1651| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1652+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1653
1654.. _t_firstclass:
1655
1656First Class Types
1657-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001658
1659The :ref:`first class <t_firstclass>` types are perhaps the most important.
1660Values of these types are the only ones which can be produced by
1661instructions.
1662
Rafael Espindola08013342013-12-07 19:34:20 +00001663.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001664
Rafael Espindola08013342013-12-07 19:34:20 +00001665Single Value Types
1666^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001667
Rafael Espindola08013342013-12-07 19:34:20 +00001668These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001669
1670.. _t_integer:
1671
1672Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001673""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001674
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001675:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001676
1677The integer type is a very simple type that simply specifies an
1678arbitrary bit width for the integer type desired. Any bit width from 1
1679bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1680
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001681:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001682
1683::
1684
1685 iN
1686
1687The number of bits the integer will occupy is specified by the ``N``
1688value.
1689
1690Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001691*********
Sean Silvab084af42012-12-07 10:36:55 +00001692
1693+----------------+------------------------------------------------+
1694| ``i1`` | a single-bit integer. |
1695+----------------+------------------------------------------------+
1696| ``i32`` | a 32-bit integer. |
1697+----------------+------------------------------------------------+
1698| ``i1942652`` | a really big integer of over 1 million bits. |
1699+----------------+------------------------------------------------+
1700
1701.. _t_floating:
1702
1703Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001704""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001705
1706.. list-table::
1707 :header-rows: 1
1708
1709 * - Type
1710 - Description
1711
1712 * - ``half``
1713 - 16-bit floating point value
1714
1715 * - ``float``
1716 - 32-bit floating point value
1717
1718 * - ``double``
1719 - 64-bit floating point value
1720
1721 * - ``fp128``
1722 - 128-bit floating point value (112-bit mantissa)
1723
1724 * - ``x86_fp80``
1725 - 80-bit floating point value (X87)
1726
1727 * - ``ppc_fp128``
1728 - 128-bit floating point value (two 64-bits)
1729
1730.. _t_x86mmx:
1731
1732X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001733"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001734
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001735:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001736
1737The x86mmx type represents a value held in an MMX register on an x86
1738machine. The operations allowed on it are quite limited: parameters and
1739return values, load and store, and bitcast. User-specified MMX
1740instructions are represented as intrinsic or asm calls with arguments
1741and/or results of this type. There are no arrays, vectors or constants
1742of this type.
1743
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001744:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001745
1746::
1747
1748 x86mmx
1749
Sean Silvab084af42012-12-07 10:36:55 +00001750
Rafael Espindola08013342013-12-07 19:34:20 +00001751.. _t_pointer:
1752
1753Pointer Type
1754""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001755
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001756:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001757
Rafael Espindola08013342013-12-07 19:34:20 +00001758The pointer type is used to specify memory locations. Pointers are
1759commonly used to reference objects in memory.
1760
1761Pointer types may have an optional address space attribute defining the
1762numbered address space where the pointed-to object resides. The default
1763address space is number zero. The semantics of non-zero address spaces
1764are target-specific.
1765
1766Note that LLVM does not permit pointers to void (``void*``) nor does it
1767permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001769:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001770
1771::
1772
Rafael Espindola08013342013-12-07 19:34:20 +00001773 <type> *
1774
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001775:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001776
1777+-------------------------+--------------------------------------------------------------------------------------------------------------+
1778| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1779+-------------------------+--------------------------------------------------------------------------------------------------------------+
1780| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1781+-------------------------+--------------------------------------------------------------------------------------------------------------+
1782| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1783+-------------------------+--------------------------------------------------------------------------------------------------------------+
1784
1785.. _t_vector:
1786
1787Vector Type
1788"""""""""""
1789
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001790:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001791
1792A vector type is a simple derived type that represents a vector of
1793elements. Vector types are used when multiple primitive data are
1794operated in parallel using a single instruction (SIMD). A vector type
1795requires a size (number of elements) and an underlying primitive data
1796type. Vector types are considered :ref:`first class <t_firstclass>`.
1797
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001798:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001799
1800::
1801
1802 < <# elements> x <elementtype> >
1803
1804The number of elements is a constant integer value larger than 0;
1805elementtype may be any integer or floating point type, or a pointer to
1806these types. Vectors of size zero are not allowed.
1807
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001808:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001809
1810+-------------------+--------------------------------------------------+
1811| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1812+-------------------+--------------------------------------------------+
1813| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1814+-------------------+--------------------------------------------------+
1815| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1816+-------------------+--------------------------------------------------+
1817| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1818+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001819
1820.. _t_label:
1821
1822Label Type
1823^^^^^^^^^^
1824
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001825:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001826
1827The label type represents code labels.
1828
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001829:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001830
1831::
1832
1833 label
1834
1835.. _t_metadata:
1836
1837Metadata Type
1838^^^^^^^^^^^^^
1839
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001840:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001841
1842The metadata type represents embedded metadata. No derived types may be
1843created from metadata except for :ref:`function <t_function>` arguments.
1844
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001845:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001846
1847::
1848
1849 metadata
1850
Sean Silvab084af42012-12-07 10:36:55 +00001851.. _t_aggregate:
1852
1853Aggregate Types
1854^^^^^^^^^^^^^^^
1855
1856Aggregate Types are a subset of derived types that can contain multiple
1857member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1858aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1859aggregate types.
1860
1861.. _t_array:
1862
1863Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001864""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001865
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001866:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001867
1868The array type is a very simple derived type that arranges elements
1869sequentially in memory. The array type requires a size (number of
1870elements) and an underlying data type.
1871
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001872:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001873
1874::
1875
1876 [<# elements> x <elementtype>]
1877
1878The number of elements is a constant integer value; ``elementtype`` may
1879be any type with a size.
1880
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001881:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883+------------------+--------------------------------------+
1884| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1885+------------------+--------------------------------------+
1886| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1887+------------------+--------------------------------------+
1888| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1889+------------------+--------------------------------------+
1890
1891Here are some examples of multidimensional arrays:
1892
1893+-----------------------------+----------------------------------------------------------+
1894| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1895+-----------------------------+----------------------------------------------------------+
1896| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1897+-----------------------------+----------------------------------------------------------+
1898| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1899+-----------------------------+----------------------------------------------------------+
1900
1901There is no restriction on indexing beyond the end of the array implied
1902by a static type (though there are restrictions on indexing beyond the
1903bounds of an allocated object in some cases). This means that
1904single-dimension 'variable sized array' addressing can be implemented in
1905LLVM with a zero length array type. An implementation of 'pascal style
1906arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1907example.
1908
Sean Silvab084af42012-12-07 10:36:55 +00001909.. _t_struct:
1910
1911Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001912""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001913
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001914:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001915
1916The structure type is used to represent a collection of data members
1917together in memory. The elements of a structure may be any type that has
1918a size.
1919
1920Structures in memory are accessed using '``load``' and '``store``' by
1921getting a pointer to a field with the '``getelementptr``' instruction.
1922Structures in registers are accessed using the '``extractvalue``' and
1923'``insertvalue``' instructions.
1924
1925Structures may optionally be "packed" structures, which indicate that
1926the alignment of the struct is one byte, and that there is no padding
1927between the elements. In non-packed structs, padding between field types
1928is inserted as defined by the DataLayout string in the module, which is
1929required to match what the underlying code generator expects.
1930
1931Structures can either be "literal" or "identified". A literal structure
1932is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1933identified types are always defined at the top level with a name.
1934Literal types are uniqued by their contents and can never be recursive
1935or opaque since there is no way to write one. Identified types can be
1936recursive, can be opaqued, and are never uniqued.
1937
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001938:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001939
1940::
1941
1942 %T1 = type { <type list> } ; Identified normal struct type
1943 %T2 = type <{ <type list> }> ; Identified packed struct type
1944
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001945:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001946
1947+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1948| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1949+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001950| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001951+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1952| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1953+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1954
1955.. _t_opaque:
1956
1957Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001958""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001959
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001960:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001961
1962Opaque structure types are used to represent named structure types that
1963do not have a body specified. This corresponds (for example) to the C
1964notion of a forward declared structure.
1965
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001966:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001967
1968::
1969
1970 %X = type opaque
1971 %52 = type opaque
1972
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001973:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975+--------------+-------------------+
1976| ``opaque`` | An opaque type. |
1977+--------------+-------------------+
1978
Sean Silvab084af42012-12-07 10:36:55 +00001979Constants
1980=========
1981
1982LLVM has several different basic types of constants. This section
1983describes them all and their syntax.
1984
1985Simple Constants
1986----------------
1987
1988**Boolean constants**
1989 The two strings '``true``' and '``false``' are both valid constants
1990 of the ``i1`` type.
1991**Integer constants**
1992 Standard integers (such as '4') are constants of the
1993 :ref:`integer <t_integer>` type. Negative numbers may be used with
1994 integer types.
1995**Floating point constants**
1996 Floating point constants use standard decimal notation (e.g.
1997 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1998 hexadecimal notation (see below). The assembler requires the exact
1999 decimal value of a floating-point constant. For example, the
2000 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2001 decimal in binary. Floating point constants must have a :ref:`floating
2002 point <t_floating>` type.
2003**Null pointer constants**
2004 The identifier '``null``' is recognized as a null pointer constant
2005 and must be of :ref:`pointer type <t_pointer>`.
2006
2007The one non-intuitive notation for constants is the hexadecimal form of
2008floating point constants. For example, the form
2009'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2010than) '``double 4.5e+15``'. The only time hexadecimal floating point
2011constants are required (and the only time that they are generated by the
2012disassembler) is when a floating point constant must be emitted but it
2013cannot be represented as a decimal floating point number in a reasonable
2014number of digits. For example, NaN's, infinities, and other special
2015values are represented in their IEEE hexadecimal format so that assembly
2016and disassembly do not cause any bits to change in the constants.
2017
2018When using the hexadecimal form, constants of types half, float, and
2019double are represented using the 16-digit form shown above (which
2020matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002021must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002022precision, respectively. Hexadecimal format is always used for long
2023double, and there are three forms of long double. The 80-bit format used
2024by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2025128-bit format used by PowerPC (two adjacent doubles) is represented by
2026``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002027represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2028will only work if they match the long double format on your target.
2029The IEEE 16-bit format (half precision) is represented by ``0xH``
2030followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2031(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002032
2033There are no constants of type x86mmx.
2034
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002035.. _complexconstants:
2036
Sean Silvab084af42012-12-07 10:36:55 +00002037Complex Constants
2038-----------------
2039
2040Complex constants are a (potentially recursive) combination of simple
2041constants and smaller complex constants.
2042
2043**Structure constants**
2044 Structure constants are represented with notation similar to
2045 structure type definitions (a comma separated list of elements,
2046 surrounded by braces (``{}``)). For example:
2047 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2048 "``@G = external global i32``". Structure constants must have
2049 :ref:`structure type <t_struct>`, and the number and types of elements
2050 must match those specified by the type.
2051**Array constants**
2052 Array constants are represented with notation similar to array type
2053 definitions (a comma separated list of elements, surrounded by
2054 square brackets (``[]``)). For example:
2055 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2056 :ref:`array type <t_array>`, and the number and types of elements must
2057 match those specified by the type.
2058**Vector constants**
2059 Vector constants are represented with notation similar to vector
2060 type definitions (a comma separated list of elements, surrounded by
2061 less-than/greater-than's (``<>``)). For example:
2062 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2063 must have :ref:`vector type <t_vector>`, and the number and types of
2064 elements must match those specified by the type.
2065**Zero initialization**
2066 The string '``zeroinitializer``' can be used to zero initialize a
2067 value to zero of *any* type, including scalar and
2068 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2069 having to print large zero initializers (e.g. for large arrays) and
2070 is always exactly equivalent to using explicit zero initializers.
2071**Metadata node**
2072 A metadata node is a structure-like constant with :ref:`metadata
2073 type <t_metadata>`. For example:
2074 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2075 constants that are meant to be interpreted as part of the
2076 instruction stream, metadata is a place to attach additional
2077 information such as debug info.
2078
2079Global Variable and Function Addresses
2080--------------------------------------
2081
2082The addresses of :ref:`global variables <globalvars>` and
2083:ref:`functions <functionstructure>` are always implicitly valid
2084(link-time) constants. These constants are explicitly referenced when
2085the :ref:`identifier for the global <identifiers>` is used and always have
2086:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2087file:
2088
2089.. code-block:: llvm
2090
2091 @X = global i32 17
2092 @Y = global i32 42
2093 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2094
2095.. _undefvalues:
2096
2097Undefined Values
2098----------------
2099
2100The string '``undef``' can be used anywhere a constant is expected, and
2101indicates that the user of the value may receive an unspecified
2102bit-pattern. Undefined values may be of any type (other than '``label``'
2103or '``void``') and be used anywhere a constant is permitted.
2104
2105Undefined values are useful because they indicate to the compiler that
2106the program is well defined no matter what value is used. This gives the
2107compiler more freedom to optimize. Here are some examples of
2108(potentially surprising) transformations that are valid (in pseudo IR):
2109
2110.. code-block:: llvm
2111
2112 %A = add %X, undef
2113 %B = sub %X, undef
2114 %C = xor %X, undef
2115 Safe:
2116 %A = undef
2117 %B = undef
2118 %C = undef
2119
2120This is safe because all of the output bits are affected by the undef
2121bits. Any output bit can have a zero or one depending on the input bits.
2122
2123.. code-block:: llvm
2124
2125 %A = or %X, undef
2126 %B = and %X, undef
2127 Safe:
2128 %A = -1
2129 %B = 0
2130 Unsafe:
2131 %A = undef
2132 %B = undef
2133
2134These logical operations have bits that are not always affected by the
2135input. For example, if ``%X`` has a zero bit, then the output of the
2136'``and``' operation will always be a zero for that bit, no matter what
2137the corresponding bit from the '``undef``' is. As such, it is unsafe to
2138optimize or assume that the result of the '``and``' is '``undef``'.
2139However, it is safe to assume that all bits of the '``undef``' could be
21400, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2141all the bits of the '``undef``' operand to the '``or``' could be set,
2142allowing the '``or``' to be folded to -1.
2143
2144.. code-block:: llvm
2145
2146 %A = select undef, %X, %Y
2147 %B = select undef, 42, %Y
2148 %C = select %X, %Y, undef
2149 Safe:
2150 %A = %X (or %Y)
2151 %B = 42 (or %Y)
2152 %C = %Y
2153 Unsafe:
2154 %A = undef
2155 %B = undef
2156 %C = undef
2157
2158This set of examples shows that undefined '``select``' (and conditional
2159branch) conditions can go *either way*, but they have to come from one
2160of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2161both known to have a clear low bit, then ``%A`` would have to have a
2162cleared low bit. However, in the ``%C`` example, the optimizer is
2163allowed to assume that the '``undef``' operand could be the same as
2164``%Y``, allowing the whole '``select``' to be eliminated.
2165
2166.. code-block:: llvm
2167
2168 %A = xor undef, undef
2169
2170 %B = undef
2171 %C = xor %B, %B
2172
2173 %D = undef
2174 %E = icmp lt %D, 4
2175 %F = icmp gte %D, 4
2176
2177 Safe:
2178 %A = undef
2179 %B = undef
2180 %C = undef
2181 %D = undef
2182 %E = undef
2183 %F = undef
2184
2185This example points out that two '``undef``' operands are not
2186necessarily the same. This can be surprising to people (and also matches
2187C semantics) where they assume that "``X^X``" is always zero, even if
2188``X`` is undefined. This isn't true for a number of reasons, but the
2189short answer is that an '``undef``' "variable" can arbitrarily change
2190its value over its "live range". This is true because the variable
2191doesn't actually *have a live range*. Instead, the value is logically
2192read from arbitrary registers that happen to be around when needed, so
2193the value is not necessarily consistent over time. In fact, ``%A`` and
2194``%C`` need to have the same semantics or the core LLVM "replace all
2195uses with" concept would not hold.
2196
2197.. code-block:: llvm
2198
2199 %A = fdiv undef, %X
2200 %B = fdiv %X, undef
2201 Safe:
2202 %A = undef
2203 b: unreachable
2204
2205These examples show the crucial difference between an *undefined value*
2206and *undefined behavior*. An undefined value (like '``undef``') is
2207allowed to have an arbitrary bit-pattern. This means that the ``%A``
2208operation can be constant folded to '``undef``', because the '``undef``'
2209could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2210However, in the second example, we can make a more aggressive
2211assumption: because the ``undef`` is allowed to be an arbitrary value,
2212we are allowed to assume that it could be zero. Since a divide by zero
2213has *undefined behavior*, we are allowed to assume that the operation
2214does not execute at all. This allows us to delete the divide and all
2215code after it. Because the undefined operation "can't happen", the
2216optimizer can assume that it occurs in dead code.
2217
2218.. code-block:: llvm
2219
2220 a: store undef -> %X
2221 b: store %X -> undef
2222 Safe:
2223 a: <deleted>
2224 b: unreachable
2225
2226These examples reiterate the ``fdiv`` example: a store *of* an undefined
2227value can be assumed to not have any effect; we can assume that the
2228value is overwritten with bits that happen to match what was already
2229there. However, a store *to* an undefined location could clobber
2230arbitrary memory, therefore, it has undefined behavior.
2231
2232.. _poisonvalues:
2233
2234Poison Values
2235-------------
2236
2237Poison values are similar to :ref:`undef values <undefvalues>`, however
2238they also represent the fact that an instruction or constant expression
2239which cannot evoke side effects has nevertheless detected a condition
2240which results in undefined behavior.
2241
2242There is currently no way of representing a poison value in the IR; they
2243only exist when produced by operations such as :ref:`add <i_add>` with
2244the ``nsw`` flag.
2245
2246Poison value behavior is defined in terms of value *dependence*:
2247
2248- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2249- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2250 their dynamic predecessor basic block.
2251- Function arguments depend on the corresponding actual argument values
2252 in the dynamic callers of their functions.
2253- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2254 instructions that dynamically transfer control back to them.
2255- :ref:`Invoke <i_invoke>` instructions depend on the
2256 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2257 call instructions that dynamically transfer control back to them.
2258- Non-volatile loads and stores depend on the most recent stores to all
2259 of the referenced memory addresses, following the order in the IR
2260 (including loads and stores implied by intrinsics such as
2261 :ref:`@llvm.memcpy <int_memcpy>`.)
2262- An instruction with externally visible side effects depends on the
2263 most recent preceding instruction with externally visible side
2264 effects, following the order in the IR. (This includes :ref:`volatile
2265 operations <volatile>`.)
2266- An instruction *control-depends* on a :ref:`terminator
2267 instruction <terminators>` if the terminator instruction has
2268 multiple successors and the instruction is always executed when
2269 control transfers to one of the successors, and may not be executed
2270 when control is transferred to another.
2271- Additionally, an instruction also *control-depends* on a terminator
2272 instruction if the set of instructions it otherwise depends on would
2273 be different if the terminator had transferred control to a different
2274 successor.
2275- Dependence is transitive.
2276
2277Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2278with the additional affect that any instruction which has a *dependence*
2279on a poison value has undefined behavior.
2280
2281Here are some examples:
2282
2283.. code-block:: llvm
2284
2285 entry:
2286 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2287 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2288 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2289 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2290
2291 store i32 %poison, i32* @g ; Poison value stored to memory.
2292 %poison2 = load i32* @g ; Poison value loaded back from memory.
2293
2294 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2295
2296 %narrowaddr = bitcast i32* @g to i16*
2297 %wideaddr = bitcast i32* @g to i64*
2298 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2299 %poison4 = load i64* %wideaddr ; Returns a poison value.
2300
2301 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2302 br i1 %cmp, label %true, label %end ; Branch to either destination.
2303
2304 true:
2305 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2306 ; it has undefined behavior.
2307 br label %end
2308
2309 end:
2310 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2311 ; Both edges into this PHI are
2312 ; control-dependent on %cmp, so this
2313 ; always results in a poison value.
2314
2315 store volatile i32 0, i32* @g ; This would depend on the store in %true
2316 ; if %cmp is true, or the store in %entry
2317 ; otherwise, so this is undefined behavior.
2318
2319 br i1 %cmp, label %second_true, label %second_end
2320 ; The same branch again, but this time the
2321 ; true block doesn't have side effects.
2322
2323 second_true:
2324 ; No side effects!
2325 ret void
2326
2327 second_end:
2328 store volatile i32 0, i32* @g ; This time, the instruction always depends
2329 ; on the store in %end. Also, it is
2330 ; control-equivalent to %end, so this is
2331 ; well-defined (ignoring earlier undefined
2332 ; behavior in this example).
2333
2334.. _blockaddress:
2335
2336Addresses of Basic Blocks
2337-------------------------
2338
2339``blockaddress(@function, %block)``
2340
2341The '``blockaddress``' constant computes the address of the specified
2342basic block in the specified function, and always has an ``i8*`` type.
2343Taking the address of the entry block is illegal.
2344
2345This value only has defined behavior when used as an operand to the
2346':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2347against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002348undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002349no label is equal to the null pointer. This may be passed around as an
2350opaque pointer sized value as long as the bits are not inspected. This
2351allows ``ptrtoint`` and arithmetic to be performed on these values so
2352long as the original value is reconstituted before the ``indirectbr``
2353instruction.
2354
2355Finally, some targets may provide defined semantics when using the value
2356as the operand to an inline assembly, but that is target specific.
2357
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002358.. _constantexprs:
2359
Sean Silvab084af42012-12-07 10:36:55 +00002360Constant Expressions
2361--------------------
2362
2363Constant expressions are used to allow expressions involving other
2364constants to be used as constants. Constant expressions may be of any
2365:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2366that does not have side effects (e.g. load and call are not supported).
2367The following is the syntax for constant expressions:
2368
2369``trunc (CST to TYPE)``
2370 Truncate a constant to another type. The bit size of CST must be
2371 larger than the bit size of TYPE. Both types must be integers.
2372``zext (CST to TYPE)``
2373 Zero extend a constant to another type. The bit size of CST must be
2374 smaller than the bit size of TYPE. Both types must be integers.
2375``sext (CST to TYPE)``
2376 Sign extend a constant to another type. The bit size of CST must be
2377 smaller than the bit size of TYPE. Both types must be integers.
2378``fptrunc (CST to TYPE)``
2379 Truncate a floating point constant to another floating point type.
2380 The size of CST must be larger than the size of TYPE. Both types
2381 must be floating point.
2382``fpext (CST to TYPE)``
2383 Floating point extend a constant to another type. The size of CST
2384 must be smaller or equal to the size of TYPE. Both types must be
2385 floating point.
2386``fptoui (CST to TYPE)``
2387 Convert a floating point constant to the corresponding unsigned
2388 integer constant. TYPE must be a scalar or vector integer type. CST
2389 must be of scalar or vector floating point type. Both CST and TYPE
2390 must be scalars, or vectors of the same number of elements. If the
2391 value won't fit in the integer type, the results are undefined.
2392``fptosi (CST to TYPE)``
2393 Convert a floating point constant to the corresponding signed
2394 integer constant. TYPE must be a scalar or vector integer type. CST
2395 must be of scalar or vector floating point type. Both CST and TYPE
2396 must be scalars, or vectors of the same number of elements. If the
2397 value won't fit in the integer type, the results are undefined.
2398``uitofp (CST to TYPE)``
2399 Convert an unsigned integer constant to the corresponding floating
2400 point constant. TYPE must be a scalar or vector floating point type.
2401 CST must be of scalar or vector integer type. Both CST and TYPE must
2402 be scalars, or vectors of the same number of elements. If the value
2403 won't fit in the floating point type, the results are undefined.
2404``sitofp (CST to TYPE)``
2405 Convert a signed integer constant to the corresponding floating
2406 point constant. TYPE must be a scalar or vector floating point type.
2407 CST must be of scalar or vector integer type. Both CST and TYPE must
2408 be scalars, or vectors of the same number of elements. If the value
2409 won't fit in the floating point type, the results are undefined.
2410``ptrtoint (CST to TYPE)``
2411 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002412 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002413 pointer type. The ``CST`` value is zero extended, truncated, or
2414 unchanged to make it fit in ``TYPE``.
2415``inttoptr (CST to TYPE)``
2416 Convert an integer constant to a pointer constant. TYPE must be a
2417 pointer type. CST must be of integer type. The CST value is zero
2418 extended, truncated, or unchanged to make it fit in a pointer size.
2419 This one is *really* dangerous!
2420``bitcast (CST to TYPE)``
2421 Convert a constant, CST, to another TYPE. The constraints of the
2422 operands are the same as those for the :ref:`bitcast
2423 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002424``addrspacecast (CST to TYPE)``
2425 Convert a constant pointer or constant vector of pointer, CST, to another
2426 TYPE in a different address space. The constraints of the operands are the
2427 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002428``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2429 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2430 constants. As with the :ref:`getelementptr <i_getelementptr>`
2431 instruction, the index list may have zero or more indexes, which are
2432 required to make sense for the type of "CSTPTR".
2433``select (COND, VAL1, VAL2)``
2434 Perform the :ref:`select operation <i_select>` on constants.
2435``icmp COND (VAL1, VAL2)``
2436 Performs the :ref:`icmp operation <i_icmp>` on constants.
2437``fcmp COND (VAL1, VAL2)``
2438 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2439``extractelement (VAL, IDX)``
2440 Perform the :ref:`extractelement operation <i_extractelement>` on
2441 constants.
2442``insertelement (VAL, ELT, IDX)``
2443 Perform the :ref:`insertelement operation <i_insertelement>` on
2444 constants.
2445``shufflevector (VEC1, VEC2, IDXMASK)``
2446 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2447 constants.
2448``extractvalue (VAL, IDX0, IDX1, ...)``
2449 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2450 constants. The index list is interpreted in a similar manner as
2451 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2452 least one index value must be specified.
2453``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2454 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2455 The index list is interpreted in a similar manner as indices in a
2456 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2457 value must be specified.
2458``OPCODE (LHS, RHS)``
2459 Perform the specified operation of the LHS and RHS constants. OPCODE
2460 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2461 binary <bitwiseops>` operations. The constraints on operands are
2462 the same as those for the corresponding instruction (e.g. no bitwise
2463 operations on floating point values are allowed).
2464
2465Other Values
2466============
2467
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002468.. _inlineasmexprs:
2469
Sean Silvab084af42012-12-07 10:36:55 +00002470Inline Assembler Expressions
2471----------------------------
2472
2473LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2474Inline Assembly <moduleasm>`) through the use of a special value. This
2475value represents the inline assembler as a string (containing the
2476instructions to emit), a list of operand constraints (stored as a
2477string), a flag that indicates whether or not the inline asm expression
2478has side effects, and a flag indicating whether the function containing
2479the asm needs to align its stack conservatively. An example inline
2480assembler expression is:
2481
2482.. code-block:: llvm
2483
2484 i32 (i32) asm "bswap $0", "=r,r"
2485
2486Inline assembler expressions may **only** be used as the callee operand
2487of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2488Thus, typically we have:
2489
2490.. code-block:: llvm
2491
2492 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2493
2494Inline asms with side effects not visible in the constraint list must be
2495marked as having side effects. This is done through the use of the
2496'``sideeffect``' keyword, like so:
2497
2498.. code-block:: llvm
2499
2500 call void asm sideeffect "eieio", ""()
2501
2502In some cases inline asms will contain code that will not work unless
2503the stack is aligned in some way, such as calls or SSE instructions on
2504x86, yet will not contain code that does that alignment within the asm.
2505The compiler should make conservative assumptions about what the asm
2506might contain and should generate its usual stack alignment code in the
2507prologue if the '``alignstack``' keyword is present:
2508
2509.. code-block:: llvm
2510
2511 call void asm alignstack "eieio", ""()
2512
2513Inline asms also support using non-standard assembly dialects. The
2514assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2515the inline asm is using the Intel dialect. Currently, ATT and Intel are
2516the only supported dialects. An example is:
2517
2518.. code-block:: llvm
2519
2520 call void asm inteldialect "eieio", ""()
2521
2522If multiple keywords appear the '``sideeffect``' keyword must come
2523first, the '``alignstack``' keyword second and the '``inteldialect``'
2524keyword last.
2525
2526Inline Asm Metadata
2527^^^^^^^^^^^^^^^^^^^
2528
2529The call instructions that wrap inline asm nodes may have a
2530"``!srcloc``" MDNode attached to it that contains a list of constant
2531integers. If present, the code generator will use the integer as the
2532location cookie value when report errors through the ``LLVMContext``
2533error reporting mechanisms. This allows a front-end to correlate backend
2534errors that occur with inline asm back to the source code that produced
2535it. For example:
2536
2537.. code-block:: llvm
2538
2539 call void asm sideeffect "something bad", ""(), !srcloc !42
2540 ...
2541 !42 = !{ i32 1234567 }
2542
2543It is up to the front-end to make sense of the magic numbers it places
2544in the IR. If the MDNode contains multiple constants, the code generator
2545will use the one that corresponds to the line of the asm that the error
2546occurs on.
2547
2548.. _metadata:
2549
2550Metadata Nodes and Metadata Strings
2551-----------------------------------
2552
2553LLVM IR allows metadata to be attached to instructions in the program
2554that can convey extra information about the code to the optimizers and
2555code generator. One example application of metadata is source-level
2556debug information. There are two metadata primitives: strings and nodes.
2557All metadata has the ``metadata`` type and is identified in syntax by a
2558preceding exclamation point ('``!``').
2559
2560A metadata string is a string surrounded by double quotes. It can
2561contain any character by escaping non-printable characters with
2562"``\xx``" where "``xx``" is the two digit hex code. For example:
2563"``!"test\00"``".
2564
2565Metadata nodes are represented with notation similar to structure
2566constants (a comma separated list of elements, surrounded by braces and
2567preceded by an exclamation point). Metadata nodes can have any values as
2568their operand. For example:
2569
2570.. code-block:: llvm
2571
2572 !{ metadata !"test\00", i32 10}
2573
2574A :ref:`named metadata <namedmetadatastructure>` is a collection of
2575metadata nodes, which can be looked up in the module symbol table. For
2576example:
2577
2578.. code-block:: llvm
2579
2580 !foo = metadata !{!4, !3}
2581
2582Metadata can be used as function arguments. Here ``llvm.dbg.value``
2583function is using two metadata arguments:
2584
2585.. code-block:: llvm
2586
2587 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2588
2589Metadata can be attached with an instruction. Here metadata ``!21`` is
2590attached to the ``add`` instruction using the ``!dbg`` identifier:
2591
2592.. code-block:: llvm
2593
2594 %indvar.next = add i64 %indvar, 1, !dbg !21
2595
2596More information about specific metadata nodes recognized by the
2597optimizers and code generator is found below.
2598
2599'``tbaa``' Metadata
2600^^^^^^^^^^^^^^^^^^^
2601
2602In LLVM IR, memory does not have types, so LLVM's own type system is not
2603suitable for doing TBAA. Instead, metadata is added to the IR to
2604describe a type system of a higher level language. This can be used to
2605implement typical C/C++ TBAA, but it can also be used to implement
2606custom alias analysis behavior for other languages.
2607
2608The current metadata format is very simple. TBAA metadata nodes have up
2609to three fields, e.g.:
2610
2611.. code-block:: llvm
2612
2613 !0 = metadata !{ metadata !"an example type tree" }
2614 !1 = metadata !{ metadata !"int", metadata !0 }
2615 !2 = metadata !{ metadata !"float", metadata !0 }
2616 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2617
2618The first field is an identity field. It can be any value, usually a
2619metadata string, which uniquely identifies the type. The most important
2620name in the tree is the name of the root node. Two trees with different
2621root node names are entirely disjoint, even if they have leaves with
2622common names.
2623
2624The second field identifies the type's parent node in the tree, or is
2625null or omitted for a root node. A type is considered to alias all of
2626its descendants and all of its ancestors in the tree. Also, a type is
2627considered to alias all types in other trees, so that bitcode produced
2628from multiple front-ends is handled conservatively.
2629
2630If the third field is present, it's an integer which if equal to 1
2631indicates that the type is "constant" (meaning
2632``pointsToConstantMemory`` should return true; see `other useful
2633AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2634
2635'``tbaa.struct``' Metadata
2636^^^^^^^^^^^^^^^^^^^^^^^^^^
2637
2638The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2639aggregate assignment operations in C and similar languages, however it
2640is defined to copy a contiguous region of memory, which is more than
2641strictly necessary for aggregate types which contain holes due to
2642padding. Also, it doesn't contain any TBAA information about the fields
2643of the aggregate.
2644
2645``!tbaa.struct`` metadata can describe which memory subregions in a
2646memcpy are padding and what the TBAA tags of the struct are.
2647
2648The current metadata format is very simple. ``!tbaa.struct`` metadata
2649nodes are a list of operands which are in conceptual groups of three.
2650For each group of three, the first operand gives the byte offset of a
2651field in bytes, the second gives its size in bytes, and the third gives
2652its tbaa tag. e.g.:
2653
2654.. code-block:: llvm
2655
2656 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2657
2658This describes a struct with two fields. The first is at offset 0 bytes
2659with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2660and has size 4 bytes and has tbaa tag !2.
2661
2662Note that the fields need not be contiguous. In this example, there is a
26634 byte gap between the two fields. This gap represents padding which
2664does not carry useful data and need not be preserved.
2665
2666'``fpmath``' Metadata
2667^^^^^^^^^^^^^^^^^^^^^
2668
2669``fpmath`` metadata may be attached to any instruction of floating point
2670type. It can be used to express the maximum acceptable error in the
2671result of that instruction, in ULPs, thus potentially allowing the
2672compiler to use a more efficient but less accurate method of computing
2673it. ULP is defined as follows:
2674
2675 If ``x`` is a real number that lies between two finite consecutive
2676 floating-point numbers ``a`` and ``b``, without being equal to one
2677 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2678 distance between the two non-equal finite floating-point numbers
2679 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2680
2681The metadata node shall consist of a single positive floating point
2682number representing the maximum relative error, for example:
2683
2684.. code-block:: llvm
2685
2686 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2687
2688'``range``' Metadata
2689^^^^^^^^^^^^^^^^^^^^
2690
2691``range`` metadata may be attached only to loads of integer types. It
2692expresses the possible ranges the loaded value is in. The ranges are
2693represented with a flattened list of integers. The loaded value is known
2694to be in the union of the ranges defined by each consecutive pair. Each
2695pair has the following properties:
2696
2697- The type must match the type loaded by the instruction.
2698- The pair ``a,b`` represents the range ``[a,b)``.
2699- Both ``a`` and ``b`` are constants.
2700- The range is allowed to wrap.
2701- The range should not represent the full or empty set. That is,
2702 ``a!=b``.
2703
2704In addition, the pairs must be in signed order of the lower bound and
2705they must be non-contiguous.
2706
2707Examples:
2708
2709.. code-block:: llvm
2710
2711 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2712 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2713 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2714 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2715 ...
2716 !0 = metadata !{ i8 0, i8 2 }
2717 !1 = metadata !{ i8 255, i8 2 }
2718 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2719 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2720
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002721'``llvm.loop``'
2722^^^^^^^^^^^^^^^
2723
2724It is sometimes useful to attach information to loop constructs. Currently,
2725loop metadata is implemented as metadata attached to the branch instruction
2726in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002727guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002728specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002729
2730The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002731itself to avoid merging it with any other identifier metadata, e.g.,
2732during module linkage or function inlining. That is, each loop should refer
2733to their own identification metadata even if they reside in separate functions.
2734The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002735constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002736
2737.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002738
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002739 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002740 !1 = metadata !{ metadata !1 }
2741
Paul Redmond5fdf8362013-05-28 20:00:34 +00002742The loop identifier metadata can be used to specify additional per-loop
2743metadata. Any operands after the first operand can be treated as user-defined
2744metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2745by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002746
Paul Redmond5fdf8362013-05-28 20:00:34 +00002747.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002748
Paul Redmond5fdf8362013-05-28 20:00:34 +00002749 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2750 ...
2751 !0 = metadata !{ metadata !0, metadata !1 }
2752 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002753
2754'``llvm.mem``'
2755^^^^^^^^^^^^^^^
2756
2757Metadata types used to annotate memory accesses with information helpful
2758for optimizations are prefixed with ``llvm.mem``.
2759
2760'``llvm.mem.parallel_loop_access``' Metadata
2761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2762
2763For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002764the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002765also all of the memory accessing instructions in the loop body need to be
2766marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2767is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002768the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002769converted to sequential loops due to optimization passes that are unaware of
2770the parallel semantics and that insert new memory instructions to the loop
2771body.
2772
2773Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002774both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002775metadata types that refer to the same loop identifier metadata.
2776
2777.. code-block:: llvm
2778
2779 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002780 ...
2781 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2782 ...
2783 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2784 ...
2785 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002786
2787 for.end:
2788 ...
2789 !0 = metadata !{ metadata !0 }
2790
2791It is also possible to have nested parallel loops. In that case the
2792memory accesses refer to a list of loop identifier metadata nodes instead of
2793the loop identifier metadata node directly:
2794
2795.. code-block:: llvm
2796
2797 outer.for.body:
2798 ...
2799
2800 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002801 ...
2802 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2803 ...
2804 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2805 ...
2806 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002807
2808 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002809 ...
2810 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2811 ...
2812 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2813 ...
2814 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002815
2816 outer.for.end: ; preds = %for.body
2817 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002818 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2819 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2820 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002821
Paul Redmond5fdf8362013-05-28 20:00:34 +00002822'``llvm.vectorizer``'
2823^^^^^^^^^^^^^^^^^^^^^
2824
2825Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2826vectorization parameters such as vectorization factor and unroll factor.
2827
2828``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2829loop identification metadata.
2830
2831'``llvm.vectorizer.unroll``' Metadata
2832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2833
2834This metadata instructs the loop vectorizer to unroll the specified
2835loop exactly ``N`` times.
2836
2837The first operand is the string ``llvm.vectorizer.unroll`` and the second
2838operand is an integer specifying the unroll factor. For example:
2839
2840.. code-block:: llvm
2841
2842 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2843
2844Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2845loop.
2846
2847If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2848determined automatically.
2849
2850'``llvm.vectorizer.width``' Metadata
2851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2852
Paul Redmondeccbb322013-05-30 17:22:46 +00002853This metadata sets the target width of the vectorizer to ``N``. Without
2854this metadata, the vectorizer will choose a width automatically.
2855Regardless of this metadata, the vectorizer will only vectorize loops if
2856it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002857
2858The first operand is the string ``llvm.vectorizer.width`` and the second
2859operand is an integer specifying the width. For example:
2860
2861.. code-block:: llvm
2862
2863 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2864
2865Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2866loop.
2867
2868If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2869automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002870
Sean Silvab084af42012-12-07 10:36:55 +00002871Module Flags Metadata
2872=====================
2873
2874Information about the module as a whole is difficult to convey to LLVM's
2875subsystems. The LLVM IR isn't sufficient to transmit this information.
2876The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002877this. These flags are in the form of key / value pairs --- much like a
2878dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002879look it up.
2880
2881The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2882Each triplet has the following form:
2883
2884- The first element is a *behavior* flag, which specifies the behavior
2885 when two (or more) modules are merged together, and it encounters two
2886 (or more) metadata with the same ID. The supported behaviors are
2887 described below.
2888- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002889 metadata. Each module may only have one flag entry for each unique ID (not
2890 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002891- The third element is the value of the flag.
2892
2893When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002894``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2895each unique metadata ID string, there will be exactly one entry in the merged
2896modules ``llvm.module.flags`` metadata table, and the value for that entry will
2897be determined by the merge behavior flag, as described below. The only exception
2898is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002899
2900The following behaviors are supported:
2901
2902.. list-table::
2903 :header-rows: 1
2904 :widths: 10 90
2905
2906 * - Value
2907 - Behavior
2908
2909 * - 1
2910 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002911 Emits an error if two values disagree, otherwise the resulting value
2912 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002913
2914 * - 2
2915 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002916 Emits a warning if two values disagree. The result value will be the
2917 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002918
2919 * - 3
2920 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002921 Adds a requirement that another module flag be present and have a
2922 specified value after linking is performed. The value must be a
2923 metadata pair, where the first element of the pair is the ID of the
2924 module flag to be restricted, and the second element of the pair is
2925 the value the module flag should be restricted to. This behavior can
2926 be used to restrict the allowable results (via triggering of an
2927 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002928
2929 * - 4
2930 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002931 Uses the specified value, regardless of the behavior or value of the
2932 other module. If both modules specify **Override**, but the values
2933 differ, an error will be emitted.
2934
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002935 * - 5
2936 - **Append**
2937 Appends the two values, which are required to be metadata nodes.
2938
2939 * - 6
2940 - **AppendUnique**
2941 Appends the two values, which are required to be metadata
2942 nodes. However, duplicate entries in the second list are dropped
2943 during the append operation.
2944
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002945It is an error for a particular unique flag ID to have multiple behaviors,
2946except in the case of **Require** (which adds restrictions on another metadata
2947value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002948
2949An example of module flags:
2950
2951.. code-block:: llvm
2952
2953 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2954 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2955 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2956 !3 = metadata !{ i32 3, metadata !"qux",
2957 metadata !{
2958 metadata !"foo", i32 1
2959 }
2960 }
2961 !llvm.module.flags = !{ !0, !1, !2, !3 }
2962
2963- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2964 if two or more ``!"foo"`` flags are seen is to emit an error if their
2965 values are not equal.
2966
2967- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2968 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002969 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002970
2971- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2972 behavior if two or more ``!"qux"`` flags are seen is to emit a
2973 warning if their values are not equal.
2974
2975- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2976
2977 ::
2978
2979 metadata !{ metadata !"foo", i32 1 }
2980
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002981 The behavior is to emit an error if the ``llvm.module.flags`` does not
2982 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2983 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002984
2985Objective-C Garbage Collection Module Flags Metadata
2986----------------------------------------------------
2987
2988On the Mach-O platform, Objective-C stores metadata about garbage
2989collection in a special section called "image info". The metadata
2990consists of a version number and a bitmask specifying what types of
2991garbage collection are supported (if any) by the file. If two or more
2992modules are linked together their garbage collection metadata needs to
2993be merged rather than appended together.
2994
2995The Objective-C garbage collection module flags metadata consists of the
2996following key-value pairs:
2997
2998.. list-table::
2999 :header-rows: 1
3000 :widths: 30 70
3001
3002 * - Key
3003 - Value
3004
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003005 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003006 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003007
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003008 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003009 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003010 always 0.
3011
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003012 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003013 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003014 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3015 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3016 Objective-C ABI version 2.
3017
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003018 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003019 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003020 not. Valid values are 0, for no garbage collection, and 2, for garbage
3021 collection supported.
3022
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003023 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003024 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003025 If present, its value must be 6. This flag requires that the
3026 ``Objective-C Garbage Collection`` flag have the value 2.
3027
3028Some important flag interactions:
3029
3030- If a module with ``Objective-C Garbage Collection`` set to 0 is
3031 merged with a module with ``Objective-C Garbage Collection`` set to
3032 2, then the resulting module has the
3033 ``Objective-C Garbage Collection`` flag set to 0.
3034- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3035 merged with a module with ``Objective-C GC Only`` set to 6.
3036
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003037Automatic Linker Flags Module Flags Metadata
3038--------------------------------------------
3039
3040Some targets support embedding flags to the linker inside individual object
3041files. Typically this is used in conjunction with language extensions which
3042allow source files to explicitly declare the libraries they depend on, and have
3043these automatically be transmitted to the linker via object files.
3044
3045These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003046using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003047to be ``AppendUnique``, and the value for the key is expected to be a metadata
3048node which should be a list of other metadata nodes, each of which should be a
3049list of metadata strings defining linker options.
3050
3051For example, the following metadata section specifies two separate sets of
3052linker options, presumably to link against ``libz`` and the ``Cocoa``
3053framework::
3054
Michael Liaoa7699082013-03-06 18:24:34 +00003055 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003056 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003057 metadata !{ metadata !"-lz" },
3058 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003059 !llvm.module.flags = !{ !0 }
3060
3061The metadata encoding as lists of lists of options, as opposed to a collapsed
3062list of options, is chosen so that the IR encoding can use multiple option
3063strings to specify e.g., a single library, while still having that specifier be
3064preserved as an atomic element that can be recognized by a target specific
3065assembly writer or object file emitter.
3066
3067Each individual option is required to be either a valid option for the target's
3068linker, or an option that is reserved by the target specific assembly writer or
3069object file emitter. No other aspect of these options is defined by the IR.
3070
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003071.. _intrinsicglobalvariables:
3072
Sean Silvab084af42012-12-07 10:36:55 +00003073Intrinsic Global Variables
3074==========================
3075
3076LLVM has a number of "magic" global variables that contain data that
3077affect code generation or other IR semantics. These are documented here.
3078All globals of this sort should have a section specified as
3079"``llvm.metadata``". This section and all globals that start with
3080"``llvm.``" are reserved for use by LLVM.
3081
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003082.. _gv_llvmused:
3083
Sean Silvab084af42012-12-07 10:36:55 +00003084The '``llvm.used``' Global Variable
3085-----------------------------------
3086
Rafael Espindola74f2e462013-04-22 14:58:02 +00003087The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003088:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003089pointers to named global variables, functions and aliases which may optionally
3090have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003091use of it is:
3092
3093.. code-block:: llvm
3094
3095 @X = global i8 4
3096 @Y = global i32 123
3097
3098 @llvm.used = appending global [2 x i8*] [
3099 i8* @X,
3100 i8* bitcast (i32* @Y to i8*)
3101 ], section "llvm.metadata"
3102
Rafael Espindola74f2e462013-04-22 14:58:02 +00003103If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3104and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003105symbol that it cannot see (which is why they have to be named). For example, if
3106a variable has internal linkage and no references other than that from the
3107``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3108references from inline asms and other things the compiler cannot "see", and
3109corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003110
3111On some targets, the code generator must emit a directive to the
3112assembler or object file to prevent the assembler and linker from
3113molesting the symbol.
3114
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003115.. _gv_llvmcompilerused:
3116
Sean Silvab084af42012-12-07 10:36:55 +00003117The '``llvm.compiler.used``' Global Variable
3118--------------------------------------------
3119
3120The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3121directive, except that it only prevents the compiler from touching the
3122symbol. On targets that support it, this allows an intelligent linker to
3123optimize references to the symbol without being impeded as it would be
3124by ``@llvm.used``.
3125
3126This is a rare construct that should only be used in rare circumstances,
3127and should not be exposed to source languages.
3128
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003129.. _gv_llvmglobalctors:
3130
Sean Silvab084af42012-12-07 10:36:55 +00003131The '``llvm.global_ctors``' Global Variable
3132-------------------------------------------
3133
3134.. code-block:: llvm
3135
3136 %0 = type { i32, void ()* }
3137 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3138
3139The ``@llvm.global_ctors`` array contains a list of constructor
3140functions and associated priorities. The functions referenced by this
3141array will be called in ascending order of priority (i.e. lowest first)
3142when the module is loaded. The order of functions with the same priority
3143is not defined.
3144
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003145.. _llvmglobaldtors:
3146
Sean Silvab084af42012-12-07 10:36:55 +00003147The '``llvm.global_dtors``' Global Variable
3148-------------------------------------------
3149
3150.. code-block:: llvm
3151
3152 %0 = type { i32, void ()* }
3153 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3154
3155The ``@llvm.global_dtors`` array contains a list of destructor functions
3156and associated priorities. The functions referenced by this array will
3157be called in descending order of priority (i.e. highest first) when the
3158module is loaded. The order of functions with the same priority is not
3159defined.
3160
3161Instruction Reference
3162=====================
3163
3164The LLVM instruction set consists of several different classifications
3165of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3166instructions <binaryops>`, :ref:`bitwise binary
3167instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3168:ref:`other instructions <otherops>`.
3169
3170.. _terminators:
3171
3172Terminator Instructions
3173-----------------------
3174
3175As mentioned :ref:`previously <functionstructure>`, every basic block in a
3176program ends with a "Terminator" instruction, which indicates which
3177block should be executed after the current block is finished. These
3178terminator instructions typically yield a '``void``' value: they produce
3179control flow, not values (the one exception being the
3180':ref:`invoke <i_invoke>`' instruction).
3181
3182The terminator instructions are: ':ref:`ret <i_ret>`',
3183':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3184':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3185':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3186
3187.. _i_ret:
3188
3189'``ret``' Instruction
3190^^^^^^^^^^^^^^^^^^^^^
3191
3192Syntax:
3193"""""""
3194
3195::
3196
3197 ret <type> <value> ; Return a value from a non-void function
3198 ret void ; Return from void function
3199
3200Overview:
3201"""""""""
3202
3203The '``ret``' instruction is used to return control flow (and optionally
3204a value) from a function back to the caller.
3205
3206There are two forms of the '``ret``' instruction: one that returns a
3207value and then causes control flow, and one that just causes control
3208flow to occur.
3209
3210Arguments:
3211""""""""""
3212
3213The '``ret``' instruction optionally accepts a single argument, the
3214return value. The type of the return value must be a ':ref:`first
3215class <t_firstclass>`' type.
3216
3217A function is not :ref:`well formed <wellformed>` if it it has a non-void
3218return type and contains a '``ret``' instruction with no return value or
3219a return value with a type that does not match its type, or if it has a
3220void return type and contains a '``ret``' instruction with a return
3221value.
3222
3223Semantics:
3224""""""""""
3225
3226When the '``ret``' instruction is executed, control flow returns back to
3227the calling function's context. If the caller is a
3228":ref:`call <i_call>`" instruction, execution continues at the
3229instruction after the call. If the caller was an
3230":ref:`invoke <i_invoke>`" instruction, execution continues at the
3231beginning of the "normal" destination block. If the instruction returns
3232a value, that value shall set the call or invoke instruction's return
3233value.
3234
3235Example:
3236""""""""
3237
3238.. code-block:: llvm
3239
3240 ret i32 5 ; Return an integer value of 5
3241 ret void ; Return from a void function
3242 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3243
3244.. _i_br:
3245
3246'``br``' Instruction
3247^^^^^^^^^^^^^^^^^^^^
3248
3249Syntax:
3250"""""""
3251
3252::
3253
3254 br i1 <cond>, label <iftrue>, label <iffalse>
3255 br label <dest> ; Unconditional branch
3256
3257Overview:
3258"""""""""
3259
3260The '``br``' instruction is used to cause control flow to transfer to a
3261different basic block in the current function. There are two forms of
3262this instruction, corresponding to a conditional branch and an
3263unconditional branch.
3264
3265Arguments:
3266""""""""""
3267
3268The conditional branch form of the '``br``' instruction takes a single
3269'``i1``' value and two '``label``' values. The unconditional form of the
3270'``br``' instruction takes a single '``label``' value as a target.
3271
3272Semantics:
3273""""""""""
3274
3275Upon execution of a conditional '``br``' instruction, the '``i1``'
3276argument is evaluated. If the value is ``true``, control flows to the
3277'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3278to the '``iffalse``' ``label`` argument.
3279
3280Example:
3281""""""""
3282
3283.. code-block:: llvm
3284
3285 Test:
3286 %cond = icmp eq i32 %a, %b
3287 br i1 %cond, label %IfEqual, label %IfUnequal
3288 IfEqual:
3289 ret i32 1
3290 IfUnequal:
3291 ret i32 0
3292
3293.. _i_switch:
3294
3295'``switch``' Instruction
3296^^^^^^^^^^^^^^^^^^^^^^^^
3297
3298Syntax:
3299"""""""
3300
3301::
3302
3303 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3304
3305Overview:
3306"""""""""
3307
3308The '``switch``' instruction is used to transfer control flow to one of
3309several different places. It is a generalization of the '``br``'
3310instruction, allowing a branch to occur to one of many possible
3311destinations.
3312
3313Arguments:
3314""""""""""
3315
3316The '``switch``' instruction uses three parameters: an integer
3317comparison value '``value``', a default '``label``' destination, and an
3318array of pairs of comparison value constants and '``label``'s. The table
3319is not allowed to contain duplicate constant entries.
3320
3321Semantics:
3322""""""""""
3323
3324The ``switch`` instruction specifies a table of values and destinations.
3325When the '``switch``' instruction is executed, this table is searched
3326for the given value. If the value is found, control flow is transferred
3327to the corresponding destination; otherwise, control flow is transferred
3328to the default destination.
3329
3330Implementation:
3331"""""""""""""""
3332
3333Depending on properties of the target machine and the particular
3334``switch`` instruction, this instruction may be code generated in
3335different ways. For example, it could be generated as a series of
3336chained conditional branches or with a lookup table.
3337
3338Example:
3339""""""""
3340
3341.. code-block:: llvm
3342
3343 ; Emulate a conditional br instruction
3344 %Val = zext i1 %value to i32
3345 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3346
3347 ; Emulate an unconditional br instruction
3348 switch i32 0, label %dest [ ]
3349
3350 ; Implement a jump table:
3351 switch i32 %val, label %otherwise [ i32 0, label %onzero
3352 i32 1, label %onone
3353 i32 2, label %ontwo ]
3354
3355.. _i_indirectbr:
3356
3357'``indirectbr``' Instruction
3358^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3359
3360Syntax:
3361"""""""
3362
3363::
3364
3365 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3366
3367Overview:
3368"""""""""
3369
3370The '``indirectbr``' instruction implements an indirect branch to a
3371label within the current function, whose address is specified by
3372"``address``". Address must be derived from a
3373:ref:`blockaddress <blockaddress>` constant.
3374
3375Arguments:
3376""""""""""
3377
3378The '``address``' argument is the address of the label to jump to. The
3379rest of the arguments indicate the full set of possible destinations
3380that the address may point to. Blocks are allowed to occur multiple
3381times in the destination list, though this isn't particularly useful.
3382
3383This destination list is required so that dataflow analysis has an
3384accurate understanding of the CFG.
3385
3386Semantics:
3387""""""""""
3388
3389Control transfers to the block specified in the address argument. All
3390possible destination blocks must be listed in the label list, otherwise
3391this instruction has undefined behavior. This implies that jumps to
3392labels defined in other functions have undefined behavior as well.
3393
3394Implementation:
3395"""""""""""""""
3396
3397This is typically implemented with a jump through a register.
3398
3399Example:
3400""""""""
3401
3402.. code-block:: llvm
3403
3404 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3405
3406.. _i_invoke:
3407
3408'``invoke``' Instruction
3409^^^^^^^^^^^^^^^^^^^^^^^^
3410
3411Syntax:
3412"""""""
3413
3414::
3415
3416 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3417 to label <normal label> unwind label <exception label>
3418
3419Overview:
3420"""""""""
3421
3422The '``invoke``' instruction causes control to transfer to a specified
3423function, with the possibility of control flow transfer to either the
3424'``normal``' label or the '``exception``' label. If the callee function
3425returns with the "``ret``" instruction, control flow will return to the
3426"normal" label. If the callee (or any indirect callees) returns via the
3427":ref:`resume <i_resume>`" instruction or other exception handling
3428mechanism, control is interrupted and continued at the dynamically
3429nearest "exception" label.
3430
3431The '``exception``' label is a `landing
3432pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3433'``exception``' label is required to have the
3434":ref:`landingpad <i_landingpad>`" instruction, which contains the
3435information about the behavior of the program after unwinding happens,
3436as its first non-PHI instruction. The restrictions on the
3437"``landingpad``" instruction's tightly couples it to the "``invoke``"
3438instruction, so that the important information contained within the
3439"``landingpad``" instruction can't be lost through normal code motion.
3440
3441Arguments:
3442""""""""""
3443
3444This instruction requires several arguments:
3445
3446#. The optional "cconv" marker indicates which :ref:`calling
3447 convention <callingconv>` the call should use. If none is
3448 specified, the call defaults to using C calling conventions.
3449#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3450 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3451 are valid here.
3452#. '``ptr to function ty``': shall be the signature of the pointer to
3453 function value being invoked. In most cases, this is a direct
3454 function invocation, but indirect ``invoke``'s are just as possible,
3455 branching off an arbitrary pointer to function value.
3456#. '``function ptr val``': An LLVM value containing a pointer to a
3457 function to be invoked.
3458#. '``function args``': argument list whose types match the function
3459 signature argument types and parameter attributes. All arguments must
3460 be of :ref:`first class <t_firstclass>` type. If the function signature
3461 indicates the function accepts a variable number of arguments, the
3462 extra arguments can be specified.
3463#. '``normal label``': the label reached when the called function
3464 executes a '``ret``' instruction.
3465#. '``exception label``': the label reached when a callee returns via
3466 the :ref:`resume <i_resume>` instruction or other exception handling
3467 mechanism.
3468#. The optional :ref:`function attributes <fnattrs>` list. Only
3469 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3470 attributes are valid here.
3471
3472Semantics:
3473""""""""""
3474
3475This instruction is designed to operate as a standard '``call``'
3476instruction in most regards. The primary difference is that it
3477establishes an association with a label, which is used by the runtime
3478library to unwind the stack.
3479
3480This instruction is used in languages with destructors to ensure that
3481proper cleanup is performed in the case of either a ``longjmp`` or a
3482thrown exception. Additionally, this is important for implementation of
3483'``catch``' clauses in high-level languages that support them.
3484
3485For the purposes of the SSA form, the definition of the value returned
3486by the '``invoke``' instruction is deemed to occur on the edge from the
3487current block to the "normal" label. If the callee unwinds then no
3488return value is available.
3489
3490Example:
3491""""""""
3492
3493.. code-block:: llvm
3494
3495 %retval = invoke i32 @Test(i32 15) to label %Continue
3496 unwind label %TestCleanup ; {i32}:retval set
3497 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3498 unwind label %TestCleanup ; {i32}:retval set
3499
3500.. _i_resume:
3501
3502'``resume``' Instruction
3503^^^^^^^^^^^^^^^^^^^^^^^^
3504
3505Syntax:
3506"""""""
3507
3508::
3509
3510 resume <type> <value>
3511
3512Overview:
3513"""""""""
3514
3515The '``resume``' instruction is a terminator instruction that has no
3516successors.
3517
3518Arguments:
3519""""""""""
3520
3521The '``resume``' instruction requires one argument, which must have the
3522same type as the result of any '``landingpad``' instruction in the same
3523function.
3524
3525Semantics:
3526""""""""""
3527
3528The '``resume``' instruction resumes propagation of an existing
3529(in-flight) exception whose unwinding was interrupted with a
3530:ref:`landingpad <i_landingpad>` instruction.
3531
3532Example:
3533""""""""
3534
3535.. code-block:: llvm
3536
3537 resume { i8*, i32 } %exn
3538
3539.. _i_unreachable:
3540
3541'``unreachable``' Instruction
3542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3543
3544Syntax:
3545"""""""
3546
3547::
3548
3549 unreachable
3550
3551Overview:
3552"""""""""
3553
3554The '``unreachable``' instruction has no defined semantics. This
3555instruction is used to inform the optimizer that a particular portion of
3556the code is not reachable. This can be used to indicate that the code
3557after a no-return function cannot be reached, and other facts.
3558
3559Semantics:
3560""""""""""
3561
3562The '``unreachable``' instruction has no defined semantics.
3563
3564.. _binaryops:
3565
3566Binary Operations
3567-----------------
3568
3569Binary operators are used to do most of the computation in a program.
3570They require two operands of the same type, execute an operation on
3571them, and produce a single value. The operands might represent multiple
3572data, as is the case with the :ref:`vector <t_vector>` data type. The
3573result value has the same type as its operands.
3574
3575There are several different binary operators:
3576
3577.. _i_add:
3578
3579'``add``' Instruction
3580^^^^^^^^^^^^^^^^^^^^^
3581
3582Syntax:
3583"""""""
3584
3585::
3586
3587 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3588 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3589 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3590 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3591
3592Overview:
3593"""""""""
3594
3595The '``add``' instruction returns the sum of its two operands.
3596
3597Arguments:
3598""""""""""
3599
3600The two arguments to the '``add``' instruction must be
3601:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3602arguments must have identical types.
3603
3604Semantics:
3605""""""""""
3606
3607The value produced is the integer sum of the two operands.
3608
3609If the sum has unsigned overflow, the result returned is the
3610mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3611the result.
3612
3613Because LLVM integers use a two's complement representation, this
3614instruction is appropriate for both signed and unsigned integers.
3615
3616``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3617respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3618result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3619unsigned and/or signed overflow, respectively, occurs.
3620
3621Example:
3622""""""""
3623
3624.. code-block:: llvm
3625
3626 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3627
3628.. _i_fadd:
3629
3630'``fadd``' Instruction
3631^^^^^^^^^^^^^^^^^^^^^^
3632
3633Syntax:
3634"""""""
3635
3636::
3637
3638 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3639
3640Overview:
3641"""""""""
3642
3643The '``fadd``' instruction returns the sum of its two operands.
3644
3645Arguments:
3646""""""""""
3647
3648The two arguments to the '``fadd``' instruction must be :ref:`floating
3649point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3650Both arguments must have identical types.
3651
3652Semantics:
3653""""""""""
3654
3655The value produced is the floating point sum of the two operands. This
3656instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3657which are optimization hints to enable otherwise unsafe floating point
3658optimizations:
3659
3660Example:
3661""""""""
3662
3663.. code-block:: llvm
3664
3665 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3666
3667'``sub``' Instruction
3668^^^^^^^^^^^^^^^^^^^^^
3669
3670Syntax:
3671"""""""
3672
3673::
3674
3675 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3676 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3677 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3678 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3679
3680Overview:
3681"""""""""
3682
3683The '``sub``' instruction returns the difference of its two operands.
3684
3685Note that the '``sub``' instruction is used to represent the '``neg``'
3686instruction present in most other intermediate representations.
3687
3688Arguments:
3689""""""""""
3690
3691The two arguments to the '``sub``' instruction must be
3692:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3693arguments must have identical types.
3694
3695Semantics:
3696""""""""""
3697
3698The value produced is the integer difference of the two operands.
3699
3700If the difference has unsigned overflow, the result returned is the
3701mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3702the result.
3703
3704Because LLVM integers use a two's complement representation, this
3705instruction is appropriate for both signed and unsigned integers.
3706
3707``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3708respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3709result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3710unsigned and/or signed overflow, respectively, occurs.
3711
3712Example:
3713""""""""
3714
3715.. code-block:: llvm
3716
3717 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3718 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3719
3720.. _i_fsub:
3721
3722'``fsub``' Instruction
3723^^^^^^^^^^^^^^^^^^^^^^
3724
3725Syntax:
3726"""""""
3727
3728::
3729
3730 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3731
3732Overview:
3733"""""""""
3734
3735The '``fsub``' instruction returns the difference of its two operands.
3736
3737Note that the '``fsub``' instruction is used to represent the '``fneg``'
3738instruction present in most other intermediate representations.
3739
3740Arguments:
3741""""""""""
3742
3743The two arguments to the '``fsub``' instruction must be :ref:`floating
3744point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3745Both arguments must have identical types.
3746
3747Semantics:
3748""""""""""
3749
3750The value produced is the floating point difference of the two operands.
3751This instruction can also take any number of :ref:`fast-math
3752flags <fastmath>`, which are optimization hints to enable otherwise
3753unsafe floating point optimizations:
3754
3755Example:
3756""""""""
3757
3758.. code-block:: llvm
3759
3760 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3761 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3762
3763'``mul``' Instruction
3764^^^^^^^^^^^^^^^^^^^^^
3765
3766Syntax:
3767"""""""
3768
3769::
3770
3771 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3772 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3773 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3774 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3775
3776Overview:
3777"""""""""
3778
3779The '``mul``' instruction returns the product of its two operands.
3780
3781Arguments:
3782""""""""""
3783
3784The two arguments to the '``mul``' instruction must be
3785:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3786arguments must have identical types.
3787
3788Semantics:
3789""""""""""
3790
3791The value produced is the integer product of the two operands.
3792
3793If the result of the multiplication has unsigned overflow, the result
3794returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3795bit width of the result.
3796
3797Because LLVM integers use a two's complement representation, and the
3798result is the same width as the operands, this instruction returns the
3799correct result for both signed and unsigned integers. If a full product
3800(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3801sign-extended or zero-extended as appropriate to the width of the full
3802product.
3803
3804``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3805respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3806result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3807unsigned and/or signed overflow, respectively, occurs.
3808
3809Example:
3810""""""""
3811
3812.. code-block:: llvm
3813
3814 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3815
3816.. _i_fmul:
3817
3818'``fmul``' Instruction
3819^^^^^^^^^^^^^^^^^^^^^^
3820
3821Syntax:
3822"""""""
3823
3824::
3825
3826 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3827
3828Overview:
3829"""""""""
3830
3831The '``fmul``' instruction returns the product of its two operands.
3832
3833Arguments:
3834""""""""""
3835
3836The two arguments to the '``fmul``' instruction must be :ref:`floating
3837point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3838Both arguments must have identical types.
3839
3840Semantics:
3841""""""""""
3842
3843The value produced is the floating point product of the two operands.
3844This instruction can also take any number of :ref:`fast-math
3845flags <fastmath>`, which are optimization hints to enable otherwise
3846unsafe floating point optimizations:
3847
3848Example:
3849""""""""
3850
3851.. code-block:: llvm
3852
3853 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3854
3855'``udiv``' Instruction
3856^^^^^^^^^^^^^^^^^^^^^^
3857
3858Syntax:
3859"""""""
3860
3861::
3862
3863 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3864 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3865
3866Overview:
3867"""""""""
3868
3869The '``udiv``' instruction returns the quotient of its two operands.
3870
3871Arguments:
3872""""""""""
3873
3874The two arguments to the '``udiv``' instruction must be
3875:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3876arguments must have identical types.
3877
3878Semantics:
3879""""""""""
3880
3881The value produced is the unsigned integer quotient of the two operands.
3882
3883Note that unsigned integer division and signed integer division are
3884distinct operations; for signed integer division, use '``sdiv``'.
3885
3886Division by zero leads to undefined behavior.
3887
3888If the ``exact`` keyword is present, the result value of the ``udiv`` is
3889a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3890such, "((a udiv exact b) mul b) == a").
3891
3892Example:
3893""""""""
3894
3895.. code-block:: llvm
3896
3897 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3898
3899'``sdiv``' Instruction
3900^^^^^^^^^^^^^^^^^^^^^^
3901
3902Syntax:
3903"""""""
3904
3905::
3906
3907 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3908 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3909
3910Overview:
3911"""""""""
3912
3913The '``sdiv``' instruction returns the quotient of its two operands.
3914
3915Arguments:
3916""""""""""
3917
3918The two arguments to the '``sdiv``' instruction must be
3919:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3920arguments must have identical types.
3921
3922Semantics:
3923""""""""""
3924
3925The value produced is the signed integer quotient of the two operands
3926rounded towards zero.
3927
3928Note that signed integer division and unsigned integer division are
3929distinct operations; for unsigned integer division, use '``udiv``'.
3930
3931Division by zero leads to undefined behavior. Overflow also leads to
3932undefined behavior; this is a rare case, but can occur, for example, by
3933doing a 32-bit division of -2147483648 by -1.
3934
3935If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3936a :ref:`poison value <poisonvalues>` if the result would be rounded.
3937
3938Example:
3939""""""""
3940
3941.. code-block:: llvm
3942
3943 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3944
3945.. _i_fdiv:
3946
3947'``fdiv``' Instruction
3948^^^^^^^^^^^^^^^^^^^^^^
3949
3950Syntax:
3951"""""""
3952
3953::
3954
3955 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3956
3957Overview:
3958"""""""""
3959
3960The '``fdiv``' instruction returns the quotient of its two operands.
3961
3962Arguments:
3963""""""""""
3964
3965The two arguments to the '``fdiv``' instruction must be :ref:`floating
3966point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3967Both arguments must have identical types.
3968
3969Semantics:
3970""""""""""
3971
3972The value produced is the floating point quotient of the two operands.
3973This instruction can also take any number of :ref:`fast-math
3974flags <fastmath>`, which are optimization hints to enable otherwise
3975unsafe floating point optimizations:
3976
3977Example:
3978""""""""
3979
3980.. code-block:: llvm
3981
3982 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3983
3984'``urem``' Instruction
3985^^^^^^^^^^^^^^^^^^^^^^
3986
3987Syntax:
3988"""""""
3989
3990::
3991
3992 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3993
3994Overview:
3995"""""""""
3996
3997The '``urem``' instruction returns the remainder from the unsigned
3998division of its two arguments.
3999
4000Arguments:
4001""""""""""
4002
4003The two arguments to the '``urem``' instruction must be
4004:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4005arguments must have identical types.
4006
4007Semantics:
4008""""""""""
4009
4010This instruction returns the unsigned integer *remainder* of a division.
4011This instruction always performs an unsigned division to get the
4012remainder.
4013
4014Note that unsigned integer remainder and signed integer remainder are
4015distinct operations; for signed integer remainder, use '``srem``'.
4016
4017Taking the remainder of a division by zero leads to undefined behavior.
4018
4019Example:
4020""""""""
4021
4022.. code-block:: llvm
4023
4024 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4025
4026'``srem``' Instruction
4027^^^^^^^^^^^^^^^^^^^^^^
4028
4029Syntax:
4030"""""""
4031
4032::
4033
4034 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4035
4036Overview:
4037"""""""""
4038
4039The '``srem``' instruction returns the remainder from the signed
4040division of its two operands. This instruction can also take
4041:ref:`vector <t_vector>` versions of the values in which case the elements
4042must be integers.
4043
4044Arguments:
4045""""""""""
4046
4047The two arguments to the '``srem``' instruction must be
4048:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4049arguments must have identical types.
4050
4051Semantics:
4052""""""""""
4053
4054This instruction returns the *remainder* of a division (where the result
4055is either zero or has the same sign as the dividend, ``op1``), not the
4056*modulo* operator (where the result is either zero or has the same sign
4057as the divisor, ``op2``) of a value. For more information about the
4058difference, see `The Math
4059Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4060table of how this is implemented in various languages, please see
4061`Wikipedia: modulo
4062operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4063
4064Note that signed integer remainder and unsigned integer remainder are
4065distinct operations; for unsigned integer remainder, use '``urem``'.
4066
4067Taking the remainder of a division by zero leads to undefined behavior.
4068Overflow also leads to undefined behavior; this is a rare case, but can
4069occur, for example, by taking the remainder of a 32-bit division of
4070-2147483648 by -1. (The remainder doesn't actually overflow, but this
4071rule lets srem be implemented using instructions that return both the
4072result of the division and the remainder.)
4073
4074Example:
4075""""""""
4076
4077.. code-block:: llvm
4078
4079 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4080
4081.. _i_frem:
4082
4083'``frem``' Instruction
4084^^^^^^^^^^^^^^^^^^^^^^
4085
4086Syntax:
4087"""""""
4088
4089::
4090
4091 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4092
4093Overview:
4094"""""""""
4095
4096The '``frem``' instruction returns the remainder from the division of
4097its two operands.
4098
4099Arguments:
4100""""""""""
4101
4102The two arguments to the '``frem``' instruction must be :ref:`floating
4103point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4104Both arguments must have identical types.
4105
4106Semantics:
4107""""""""""
4108
4109This instruction returns the *remainder* of a division. The remainder
4110has the same sign as the dividend. This instruction can also take any
4111number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4112to enable otherwise unsafe floating point optimizations:
4113
4114Example:
4115""""""""
4116
4117.. code-block:: llvm
4118
4119 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4120
4121.. _bitwiseops:
4122
4123Bitwise Binary Operations
4124-------------------------
4125
4126Bitwise binary operators are used to do various forms of bit-twiddling
4127in a program. They are generally very efficient instructions and can
4128commonly be strength reduced from other instructions. They require two
4129operands of the same type, execute an operation on them, and produce a
4130single value. The resulting value is the same type as its operands.
4131
4132'``shl``' Instruction
4133^^^^^^^^^^^^^^^^^^^^^
4134
4135Syntax:
4136"""""""
4137
4138::
4139
4140 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4141 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4142 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4143 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4144
4145Overview:
4146"""""""""
4147
4148The '``shl``' instruction returns the first operand shifted to the left
4149a specified number of bits.
4150
4151Arguments:
4152""""""""""
4153
4154Both arguments to the '``shl``' instruction must be the same
4155:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4156'``op2``' is treated as an unsigned value.
4157
4158Semantics:
4159""""""""""
4160
4161The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4162where ``n`` is the width of the result. If ``op2`` is (statically or
4163dynamically) negative or equal to or larger than the number of bits in
4164``op1``, the result is undefined. If the arguments are vectors, each
4165vector element of ``op1`` is shifted by the corresponding shift amount
4166in ``op2``.
4167
4168If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4169value <poisonvalues>` if it shifts out any non-zero bits. If the
4170``nsw`` keyword is present, then the shift produces a :ref:`poison
4171value <poisonvalues>` if it shifts out any bits that disagree with the
4172resultant sign bit. As such, NUW/NSW have the same semantics as they
4173would if the shift were expressed as a mul instruction with the same
4174nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4175
4176Example:
4177""""""""
4178
4179.. code-block:: llvm
4180
4181 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4182 <result> = shl i32 4, 2 ; yields {i32}: 16
4183 <result> = shl i32 1, 10 ; yields {i32}: 1024
4184 <result> = shl i32 1, 32 ; undefined
4185 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4186
4187'``lshr``' Instruction
4188^^^^^^^^^^^^^^^^^^^^^^
4189
4190Syntax:
4191"""""""
4192
4193::
4194
4195 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4196 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4197
4198Overview:
4199"""""""""
4200
4201The '``lshr``' instruction (logical shift right) returns the first
4202operand shifted to the right a specified number of bits with zero fill.
4203
4204Arguments:
4205""""""""""
4206
4207Both arguments to the '``lshr``' instruction must be the same
4208:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4209'``op2``' is treated as an unsigned value.
4210
4211Semantics:
4212""""""""""
4213
4214This instruction always performs a logical shift right operation. The
4215most significant bits of the result will be filled with zero bits after
4216the shift. If ``op2`` is (statically or dynamically) equal to or larger
4217than the number of bits in ``op1``, the result is undefined. If the
4218arguments are vectors, each vector element of ``op1`` is shifted by the
4219corresponding shift amount in ``op2``.
4220
4221If the ``exact`` keyword is present, the result value of the ``lshr`` is
4222a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4223non-zero.
4224
4225Example:
4226""""""""
4227
4228.. code-block:: llvm
4229
4230 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4231 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4232 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004233 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004234 <result> = lshr i32 1, 32 ; undefined
4235 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4236
4237'``ashr``' Instruction
4238^^^^^^^^^^^^^^^^^^^^^^
4239
4240Syntax:
4241"""""""
4242
4243::
4244
4245 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4246 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4247
4248Overview:
4249"""""""""
4250
4251The '``ashr``' instruction (arithmetic shift right) returns the first
4252operand shifted to the right a specified number of bits with sign
4253extension.
4254
4255Arguments:
4256""""""""""
4257
4258Both arguments to the '``ashr``' instruction must be the same
4259:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4260'``op2``' is treated as an unsigned value.
4261
4262Semantics:
4263""""""""""
4264
4265This instruction always performs an arithmetic shift right operation,
4266The most significant bits of the result will be filled with the sign bit
4267of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4268than the number of bits in ``op1``, the result is undefined. If the
4269arguments are vectors, each vector element of ``op1`` is shifted by the
4270corresponding shift amount in ``op2``.
4271
4272If the ``exact`` keyword is present, the result value of the ``ashr`` is
4273a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4274non-zero.
4275
4276Example:
4277""""""""
4278
4279.. code-block:: llvm
4280
4281 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4282 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4283 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4284 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4285 <result> = ashr i32 1, 32 ; undefined
4286 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4287
4288'``and``' Instruction
4289^^^^^^^^^^^^^^^^^^^^^
4290
4291Syntax:
4292"""""""
4293
4294::
4295
4296 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4297
4298Overview:
4299"""""""""
4300
4301The '``and``' instruction returns the bitwise logical and of its two
4302operands.
4303
4304Arguments:
4305""""""""""
4306
4307The two arguments to the '``and``' instruction must be
4308:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4309arguments must have identical types.
4310
4311Semantics:
4312""""""""""
4313
4314The truth table used for the '``and``' instruction is:
4315
4316+-----+-----+-----+
4317| In0 | In1 | Out |
4318+-----+-----+-----+
4319| 0 | 0 | 0 |
4320+-----+-----+-----+
4321| 0 | 1 | 0 |
4322+-----+-----+-----+
4323| 1 | 0 | 0 |
4324+-----+-----+-----+
4325| 1 | 1 | 1 |
4326+-----+-----+-----+
4327
4328Example:
4329""""""""
4330
4331.. code-block:: llvm
4332
4333 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4334 <result> = and i32 15, 40 ; yields {i32}:result = 8
4335 <result> = and i32 4, 8 ; yields {i32}:result = 0
4336
4337'``or``' Instruction
4338^^^^^^^^^^^^^^^^^^^^
4339
4340Syntax:
4341"""""""
4342
4343::
4344
4345 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4346
4347Overview:
4348"""""""""
4349
4350The '``or``' instruction returns the bitwise logical inclusive or of its
4351two operands.
4352
4353Arguments:
4354""""""""""
4355
4356The two arguments to the '``or``' instruction must be
4357:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4358arguments must have identical types.
4359
4360Semantics:
4361""""""""""
4362
4363The truth table used for the '``or``' instruction is:
4364
4365+-----+-----+-----+
4366| In0 | In1 | Out |
4367+-----+-----+-----+
4368| 0 | 0 | 0 |
4369+-----+-----+-----+
4370| 0 | 1 | 1 |
4371+-----+-----+-----+
4372| 1 | 0 | 1 |
4373+-----+-----+-----+
4374| 1 | 1 | 1 |
4375+-----+-----+-----+
4376
4377Example:
4378""""""""
4379
4380::
4381
4382 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4383 <result> = or i32 15, 40 ; yields {i32}:result = 47
4384 <result> = or i32 4, 8 ; yields {i32}:result = 12
4385
4386'``xor``' Instruction
4387^^^^^^^^^^^^^^^^^^^^^
4388
4389Syntax:
4390"""""""
4391
4392::
4393
4394 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4395
4396Overview:
4397"""""""""
4398
4399The '``xor``' instruction returns the bitwise logical exclusive or of
4400its two operands. The ``xor`` is used to implement the "one's
4401complement" operation, which is the "~" operator in C.
4402
4403Arguments:
4404""""""""""
4405
4406The two arguments to the '``xor``' instruction must be
4407:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4408arguments must have identical types.
4409
4410Semantics:
4411""""""""""
4412
4413The truth table used for the '``xor``' instruction is:
4414
4415+-----+-----+-----+
4416| In0 | In1 | Out |
4417+-----+-----+-----+
4418| 0 | 0 | 0 |
4419+-----+-----+-----+
4420| 0 | 1 | 1 |
4421+-----+-----+-----+
4422| 1 | 0 | 1 |
4423+-----+-----+-----+
4424| 1 | 1 | 0 |
4425+-----+-----+-----+
4426
4427Example:
4428""""""""
4429
4430.. code-block:: llvm
4431
4432 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4433 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4434 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4435 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4436
4437Vector Operations
4438-----------------
4439
4440LLVM supports several instructions to represent vector operations in a
4441target-independent manner. These instructions cover the element-access
4442and vector-specific operations needed to process vectors effectively.
4443While LLVM does directly support these vector operations, many
4444sophisticated algorithms will want to use target-specific intrinsics to
4445take full advantage of a specific target.
4446
4447.. _i_extractelement:
4448
4449'``extractelement``' Instruction
4450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4451
4452Syntax:
4453"""""""
4454
4455::
4456
4457 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4458
4459Overview:
4460"""""""""
4461
4462The '``extractelement``' instruction extracts a single scalar element
4463from a vector at a specified index.
4464
4465Arguments:
4466""""""""""
4467
4468The first operand of an '``extractelement``' instruction is a value of
4469:ref:`vector <t_vector>` type. The second operand is an index indicating
4470the position from which to extract the element. The index may be a
4471variable.
4472
4473Semantics:
4474""""""""""
4475
4476The result is a scalar of the same type as the element type of ``val``.
4477Its value is the value at position ``idx`` of ``val``. If ``idx``
4478exceeds the length of ``val``, the results are undefined.
4479
4480Example:
4481""""""""
4482
4483.. code-block:: llvm
4484
4485 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4486
4487.. _i_insertelement:
4488
4489'``insertelement``' Instruction
4490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4491
4492Syntax:
4493"""""""
4494
4495::
4496
4497 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4498
4499Overview:
4500"""""""""
4501
4502The '``insertelement``' instruction inserts a scalar element into a
4503vector at a specified index.
4504
4505Arguments:
4506""""""""""
4507
4508The first operand of an '``insertelement``' instruction is a value of
4509:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4510type must equal the element type of the first operand. The third operand
4511is an index indicating the position at which to insert the value. The
4512index may be a variable.
4513
4514Semantics:
4515""""""""""
4516
4517The result is a vector of the same type as ``val``. Its element values
4518are those of ``val`` except at position ``idx``, where it gets the value
4519``elt``. If ``idx`` exceeds the length of ``val``, the results are
4520undefined.
4521
4522Example:
4523""""""""
4524
4525.. code-block:: llvm
4526
4527 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4528
4529.. _i_shufflevector:
4530
4531'``shufflevector``' Instruction
4532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4533
4534Syntax:
4535"""""""
4536
4537::
4538
4539 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4540
4541Overview:
4542"""""""""
4543
4544The '``shufflevector``' instruction constructs a permutation of elements
4545from two input vectors, returning a vector with the same element type as
4546the input and length that is the same as the shuffle mask.
4547
4548Arguments:
4549""""""""""
4550
4551The first two operands of a '``shufflevector``' instruction are vectors
4552with the same type. The third argument is a shuffle mask whose element
4553type is always 'i32'. The result of the instruction is a vector whose
4554length is the same as the shuffle mask and whose element type is the
4555same as the element type of the first two operands.
4556
4557The shuffle mask operand is required to be a constant vector with either
4558constant integer or undef values.
4559
4560Semantics:
4561""""""""""
4562
4563The elements of the two input vectors are numbered from left to right
4564across both of the vectors. The shuffle mask operand specifies, for each
4565element of the result vector, which element of the two input vectors the
4566result element gets. The element selector may be undef (meaning "don't
4567care") and the second operand may be undef if performing a shuffle from
4568only one vector.
4569
4570Example:
4571""""""""
4572
4573.. code-block:: llvm
4574
4575 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4576 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4577 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4578 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4579 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4580 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4581 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4582 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4583
4584Aggregate Operations
4585--------------------
4586
4587LLVM supports several instructions for working with
4588:ref:`aggregate <t_aggregate>` values.
4589
4590.. _i_extractvalue:
4591
4592'``extractvalue``' Instruction
4593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4594
4595Syntax:
4596"""""""
4597
4598::
4599
4600 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4601
4602Overview:
4603"""""""""
4604
4605The '``extractvalue``' instruction extracts the value of a member field
4606from an :ref:`aggregate <t_aggregate>` value.
4607
4608Arguments:
4609""""""""""
4610
4611The first operand of an '``extractvalue``' instruction is a value of
4612:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4613constant indices to specify which value to extract in a similar manner
4614as indices in a '``getelementptr``' instruction.
4615
4616The major differences to ``getelementptr`` indexing are:
4617
4618- Since the value being indexed is not a pointer, the first index is
4619 omitted and assumed to be zero.
4620- At least one index must be specified.
4621- Not only struct indices but also array indices must be in bounds.
4622
4623Semantics:
4624""""""""""
4625
4626The result is the value at the position in the aggregate specified by
4627the index operands.
4628
4629Example:
4630""""""""
4631
4632.. code-block:: llvm
4633
4634 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4635
4636.. _i_insertvalue:
4637
4638'``insertvalue``' Instruction
4639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4640
4641Syntax:
4642"""""""
4643
4644::
4645
4646 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4647
4648Overview:
4649"""""""""
4650
4651The '``insertvalue``' instruction inserts a value into a member field in
4652an :ref:`aggregate <t_aggregate>` value.
4653
4654Arguments:
4655""""""""""
4656
4657The first operand of an '``insertvalue``' instruction is a value of
4658:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4659a first-class value to insert. The following operands are constant
4660indices indicating the position at which to insert the value in a
4661similar manner as indices in a '``extractvalue``' instruction. The value
4662to insert must have the same type as the value identified by the
4663indices.
4664
4665Semantics:
4666""""""""""
4667
4668The result is an aggregate of the same type as ``val``. Its value is
4669that of ``val`` except that the value at the position specified by the
4670indices is that of ``elt``.
4671
4672Example:
4673""""""""
4674
4675.. code-block:: llvm
4676
4677 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4678 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4679 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4680
4681.. _memoryops:
4682
4683Memory Access and Addressing Operations
4684---------------------------------------
4685
4686A key design point of an SSA-based representation is how it represents
4687memory. In LLVM, no memory locations are in SSA form, which makes things
4688very simple. This section describes how to read, write, and allocate
4689memory in LLVM.
4690
4691.. _i_alloca:
4692
4693'``alloca``' Instruction
4694^^^^^^^^^^^^^^^^^^^^^^^^
4695
4696Syntax:
4697"""""""
4698
4699::
4700
Reid Kleckner436c42e2014-01-17 23:58:17 +00004701 <result> = alloca <type>[, inalloca][, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004702
4703Overview:
4704"""""""""
4705
4706The '``alloca``' instruction allocates memory on the stack frame of the
4707currently executing function, to be automatically released when this
4708function returns to its caller. The object is always allocated in the
4709generic address space (address space zero).
4710
4711Arguments:
4712""""""""""
4713
4714The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4715bytes of memory on the runtime stack, returning a pointer of the
4716appropriate type to the program. If "NumElements" is specified, it is
4717the number of elements allocated, otherwise "NumElements" is defaulted
4718to be one. If a constant alignment is specified, the value result of the
4719allocation is guaranteed to be aligned to at least that boundary. If not
4720specified, or if zero, the target can choose to align the allocation on
4721any convenient boundary compatible with the type.
4722
4723'``type``' may be any sized type.
4724
4725Semantics:
4726""""""""""
4727
4728Memory is allocated; a pointer is returned. The operation is undefined
4729if there is insufficient stack space for the allocation. '``alloca``'d
4730memory is automatically released when the function returns. The
4731'``alloca``' instruction is commonly used to represent automatic
4732variables that must have an address available. When the function returns
4733(either with the ``ret`` or ``resume`` instructions), the memory is
4734reclaimed. Allocating zero bytes is legal, but the result is undefined.
4735The order in which memory is allocated (ie., which way the stack grows)
4736is not specified.
4737
4738Example:
4739""""""""
4740
4741.. code-block:: llvm
4742
4743 %ptr = alloca i32 ; yields {i32*}:ptr
4744 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4745 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4746 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4747
4748.. _i_load:
4749
4750'``load``' Instruction
4751^^^^^^^^^^^^^^^^^^^^^^
4752
4753Syntax:
4754"""""""
4755
4756::
4757
4758 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4759 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4760 !<index> = !{ i32 1 }
4761
4762Overview:
4763"""""""""
4764
4765The '``load``' instruction is used to read from memory.
4766
4767Arguments:
4768""""""""""
4769
Eli Bendersky239a78b2013-04-17 20:17:08 +00004770The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004771from which to load. The pointer must point to a :ref:`first
4772class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4773then the optimizer is not allowed to modify the number or order of
4774execution of this ``load`` with other :ref:`volatile
4775operations <volatile>`.
4776
4777If the ``load`` is marked as ``atomic``, it takes an extra
4778:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4779``release`` and ``acq_rel`` orderings are not valid on ``load``
4780instructions. Atomic loads produce :ref:`defined <memmodel>` results
4781when they may see multiple atomic stores. The type of the pointee must
4782be an integer type whose bit width is a power of two greater than or
4783equal to eight and less than or equal to a target-specific size limit.
4784``align`` must be explicitly specified on atomic loads, and the load has
4785undefined behavior if the alignment is not set to a value which is at
4786least the size in bytes of the pointee. ``!nontemporal`` does not have
4787any defined semantics for atomic loads.
4788
4789The optional constant ``align`` argument specifies the alignment of the
4790operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004791or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004792alignment for the target. It is the responsibility of the code emitter
4793to ensure that the alignment information is correct. Overestimating the
4794alignment results in undefined behavior. Underestimating the alignment
4795may produce less efficient code. An alignment of 1 is always safe.
4796
4797The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004798metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004799``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004800metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004801that this load is not expected to be reused in the cache. The code
4802generator may select special instructions to save cache bandwidth, such
4803as the ``MOVNT`` instruction on x86.
4804
4805The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004806metadata name ``<index>`` corresponding to a metadata node with no
4807entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004808instruction tells the optimizer and code generator that this load
4809address points to memory which does not change value during program
4810execution. The optimizer may then move this load around, for example, by
4811hoisting it out of loops using loop invariant code motion.
4812
4813Semantics:
4814""""""""""
4815
4816The location of memory pointed to is loaded. If the value being loaded
4817is of scalar type then the number of bytes read does not exceed the
4818minimum number of bytes needed to hold all bits of the type. For
4819example, loading an ``i24`` reads at most three bytes. When loading a
4820value of a type like ``i20`` with a size that is not an integral number
4821of bytes, the result is undefined if the value was not originally
4822written using a store of the same type.
4823
4824Examples:
4825"""""""""
4826
4827.. code-block:: llvm
4828
4829 %ptr = alloca i32 ; yields {i32*}:ptr
4830 store i32 3, i32* %ptr ; yields {void}
4831 %val = load i32* %ptr ; yields {i32}:val = i32 3
4832
4833.. _i_store:
4834
4835'``store``' Instruction
4836^^^^^^^^^^^^^^^^^^^^^^^
4837
4838Syntax:
4839"""""""
4840
4841::
4842
4843 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4844 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4845
4846Overview:
4847"""""""""
4848
4849The '``store``' instruction is used to write to memory.
4850
4851Arguments:
4852""""""""""
4853
Eli Benderskyca380842013-04-17 17:17:20 +00004854There are two arguments to the ``store`` instruction: a value to store
4855and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004856operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004857the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004858then the optimizer is not allowed to modify the number or order of
4859execution of this ``store`` with other :ref:`volatile
4860operations <volatile>`.
4861
4862If the ``store`` is marked as ``atomic``, it takes an extra
4863:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4864``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4865instructions. Atomic loads produce :ref:`defined <memmodel>` results
4866when they may see multiple atomic stores. The type of the pointee must
4867be an integer type whose bit width is a power of two greater than or
4868equal to eight and less than or equal to a target-specific size limit.
4869``align`` must be explicitly specified on atomic stores, and the store
4870has undefined behavior if the alignment is not set to a value which is
4871at least the size in bytes of the pointee. ``!nontemporal`` does not
4872have any defined semantics for atomic stores.
4873
Eli Benderskyca380842013-04-17 17:17:20 +00004874The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004875operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004876or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004877alignment for the target. It is the responsibility of the code emitter
4878to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004879alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004880alignment may produce less efficient code. An alignment of 1 is always
4881safe.
4882
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004883The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004884name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004885value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004886tells the optimizer and code generator that this load is not expected to
4887be reused in the cache. The code generator may select special
4888instructions to save cache bandwidth, such as the MOVNT instruction on
4889x86.
4890
4891Semantics:
4892""""""""""
4893
Eli Benderskyca380842013-04-17 17:17:20 +00004894The contents of memory are updated to contain ``<value>`` at the
4895location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004896of scalar type then the number of bytes written does not exceed the
4897minimum number of bytes needed to hold all bits of the type. For
4898example, storing an ``i24`` writes at most three bytes. When writing a
4899value of a type like ``i20`` with a size that is not an integral number
4900of bytes, it is unspecified what happens to the extra bits that do not
4901belong to the type, but they will typically be overwritten.
4902
4903Example:
4904""""""""
4905
4906.. code-block:: llvm
4907
4908 %ptr = alloca i32 ; yields {i32*}:ptr
4909 store i32 3, i32* %ptr ; yields {void}
4910 %val = load i32* %ptr ; yields {i32}:val = i32 3
4911
4912.. _i_fence:
4913
4914'``fence``' Instruction
4915^^^^^^^^^^^^^^^^^^^^^^^
4916
4917Syntax:
4918"""""""
4919
4920::
4921
4922 fence [singlethread] <ordering> ; yields {void}
4923
4924Overview:
4925"""""""""
4926
4927The '``fence``' instruction is used to introduce happens-before edges
4928between operations.
4929
4930Arguments:
4931""""""""""
4932
4933'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4934defines what *synchronizes-with* edges they add. They can only be given
4935``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4936
4937Semantics:
4938""""""""""
4939
4940A fence A which has (at least) ``release`` ordering semantics
4941*synchronizes with* a fence B with (at least) ``acquire`` ordering
4942semantics if and only if there exist atomic operations X and Y, both
4943operating on some atomic object M, such that A is sequenced before X, X
4944modifies M (either directly or through some side effect of a sequence
4945headed by X), Y is sequenced before B, and Y observes M. This provides a
4946*happens-before* dependency between A and B. Rather than an explicit
4947``fence``, one (but not both) of the atomic operations X or Y might
4948provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4949still *synchronize-with* the explicit ``fence`` and establish the
4950*happens-before* edge.
4951
4952A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4953``acquire`` and ``release`` semantics specified above, participates in
4954the global program order of other ``seq_cst`` operations and/or fences.
4955
4956The optional ":ref:`singlethread <singlethread>`" argument specifies
4957that the fence only synchronizes with other fences in the same thread.
4958(This is useful for interacting with signal handlers.)
4959
4960Example:
4961""""""""
4962
4963.. code-block:: llvm
4964
4965 fence acquire ; yields {void}
4966 fence singlethread seq_cst ; yields {void}
4967
4968.. _i_cmpxchg:
4969
4970'``cmpxchg``' Instruction
4971^^^^^^^^^^^^^^^^^^^^^^^^^
4972
4973Syntax:
4974"""""""
4975
4976::
4977
4978 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4979
4980Overview:
4981"""""""""
4982
4983The '``cmpxchg``' instruction is used to atomically modify memory. It
4984loads a value in memory and compares it to a given value. If they are
4985equal, it stores a new value into the memory.
4986
4987Arguments:
4988""""""""""
4989
4990There are three arguments to the '``cmpxchg``' instruction: an address
4991to operate on, a value to compare to the value currently be at that
4992address, and a new value to place at that address if the compared values
4993are equal. The type of '<cmp>' must be an integer type whose bit width
4994is a power of two greater than or equal to eight and less than or equal
4995to a target-specific size limit. '<cmp>' and '<new>' must have the same
4996type, and the type of '<pointer>' must be a pointer to that type. If the
4997``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4998to modify the number or order of execution of this ``cmpxchg`` with
4999other :ref:`volatile operations <volatile>`.
5000
5001The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
5002synchronizes with other atomic operations.
5003
5004The optional "``singlethread``" argument declares that the ``cmpxchg``
5005is only atomic with respect to code (usually signal handlers) running in
5006the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5007respect to all other code in the system.
5008
5009The pointer passed into cmpxchg must have alignment greater than or
5010equal to the size in memory of the operand.
5011
5012Semantics:
5013""""""""""
5014
5015The contents of memory at the location specified by the '``<pointer>``'
5016operand is read and compared to '``<cmp>``'; if the read value is the
5017equal, '``<new>``' is written. The original value at the location is
5018returned.
5019
5020A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
5021of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
5022atomic load with an ordering parameter determined by dropping any
5023``release`` part of the ``cmpxchg``'s ordering.
5024
5025Example:
5026""""""""
5027
5028.. code-block:: llvm
5029
5030 entry:
5031 %orig = atomic load i32* %ptr unordered ; yields {i32}
5032 br label %loop
5033
5034 loop:
5035 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5036 %squared = mul i32 %cmp, %cmp
5037 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5038 %success = icmp eq i32 %cmp, %old
5039 br i1 %success, label %done, label %loop
5040
5041 done:
5042 ...
5043
5044.. _i_atomicrmw:
5045
5046'``atomicrmw``' Instruction
5047^^^^^^^^^^^^^^^^^^^^^^^^^^^
5048
5049Syntax:
5050"""""""
5051
5052::
5053
5054 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5055
5056Overview:
5057"""""""""
5058
5059The '``atomicrmw``' instruction is used to atomically modify memory.
5060
5061Arguments:
5062""""""""""
5063
5064There are three arguments to the '``atomicrmw``' instruction: an
5065operation to apply, an address whose value to modify, an argument to the
5066operation. The operation must be one of the following keywords:
5067
5068- xchg
5069- add
5070- sub
5071- and
5072- nand
5073- or
5074- xor
5075- max
5076- min
5077- umax
5078- umin
5079
5080The type of '<value>' must be an integer type whose bit width is a power
5081of two greater than or equal to eight and less than or equal to a
5082target-specific size limit. The type of the '``<pointer>``' operand must
5083be a pointer to that type. If the ``atomicrmw`` is marked as
5084``volatile``, then the optimizer is not allowed to modify the number or
5085order of execution of this ``atomicrmw`` with other :ref:`volatile
5086operations <volatile>`.
5087
5088Semantics:
5089""""""""""
5090
5091The contents of memory at the location specified by the '``<pointer>``'
5092operand are atomically read, modified, and written back. The original
5093value at the location is returned. The modification is specified by the
5094operation argument:
5095
5096- xchg: ``*ptr = val``
5097- add: ``*ptr = *ptr + val``
5098- sub: ``*ptr = *ptr - val``
5099- and: ``*ptr = *ptr & val``
5100- nand: ``*ptr = ~(*ptr & val)``
5101- or: ``*ptr = *ptr | val``
5102- xor: ``*ptr = *ptr ^ val``
5103- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5104- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5105- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5106 comparison)
5107- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5108 comparison)
5109
5110Example:
5111""""""""
5112
5113.. code-block:: llvm
5114
5115 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5116
5117.. _i_getelementptr:
5118
5119'``getelementptr``' Instruction
5120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5121
5122Syntax:
5123"""""""
5124
5125::
5126
5127 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5128 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5129 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5130
5131Overview:
5132"""""""""
5133
5134The '``getelementptr``' instruction is used to get the address of a
5135subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5136address calculation only and does not access memory.
5137
5138Arguments:
5139""""""""""
5140
5141The first argument is always a pointer or a vector of pointers, and
5142forms the basis of the calculation. The remaining arguments are indices
5143that indicate which of the elements of the aggregate object are indexed.
5144The interpretation of each index is dependent on the type being indexed
5145into. The first index always indexes the pointer value given as the
5146first argument, the second index indexes a value of the type pointed to
5147(not necessarily the value directly pointed to, since the first index
5148can be non-zero), etc. The first type indexed into must be a pointer
5149value, subsequent types can be arrays, vectors, and structs. Note that
5150subsequent types being indexed into can never be pointers, since that
5151would require loading the pointer before continuing calculation.
5152
5153The type of each index argument depends on the type it is indexing into.
5154When indexing into a (optionally packed) structure, only ``i32`` integer
5155**constants** are allowed (when using a vector of indices they must all
5156be the **same** ``i32`` integer constant). When indexing into an array,
5157pointer or vector, integers of any width are allowed, and they are not
5158required to be constant. These integers are treated as signed values
5159where relevant.
5160
5161For example, let's consider a C code fragment and how it gets compiled
5162to LLVM:
5163
5164.. code-block:: c
5165
5166 struct RT {
5167 char A;
5168 int B[10][20];
5169 char C;
5170 };
5171 struct ST {
5172 int X;
5173 double Y;
5174 struct RT Z;
5175 };
5176
5177 int *foo(struct ST *s) {
5178 return &s[1].Z.B[5][13];
5179 }
5180
5181The LLVM code generated by Clang is:
5182
5183.. code-block:: llvm
5184
5185 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5186 %struct.ST = type { i32, double, %struct.RT }
5187
5188 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5189 entry:
5190 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5191 ret i32* %arrayidx
5192 }
5193
5194Semantics:
5195""""""""""
5196
5197In the example above, the first index is indexing into the
5198'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5199= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5200indexes into the third element of the structure, yielding a
5201'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5202structure. The third index indexes into the second element of the
5203structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5204dimensions of the array are subscripted into, yielding an '``i32``'
5205type. The '``getelementptr``' instruction returns a pointer to this
5206element, thus computing a value of '``i32*``' type.
5207
5208Note that it is perfectly legal to index partially through a structure,
5209returning a pointer to an inner element. Because of this, the LLVM code
5210for the given testcase is equivalent to:
5211
5212.. code-block:: llvm
5213
5214 define i32* @foo(%struct.ST* %s) {
5215 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5216 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5217 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5218 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5219 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5220 ret i32* %t5
5221 }
5222
5223If the ``inbounds`` keyword is present, the result value of the
5224``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5225pointer is not an *in bounds* address of an allocated object, or if any
5226of the addresses that would be formed by successive addition of the
5227offsets implied by the indices to the base address with infinitely
5228precise signed arithmetic are not an *in bounds* address of that
5229allocated object. The *in bounds* addresses for an allocated object are
5230all the addresses that point into the object, plus the address one byte
5231past the end. In cases where the base is a vector of pointers the
5232``inbounds`` keyword applies to each of the computations element-wise.
5233
5234If the ``inbounds`` keyword is not present, the offsets are added to the
5235base address with silently-wrapping two's complement arithmetic. If the
5236offsets have a different width from the pointer, they are sign-extended
5237or truncated to the width of the pointer. The result value of the
5238``getelementptr`` may be outside the object pointed to by the base
5239pointer. The result value may not necessarily be used to access memory
5240though, even if it happens to point into allocated storage. See the
5241:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5242information.
5243
5244The getelementptr instruction is often confusing. For some more insight
5245into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5246
5247Example:
5248""""""""
5249
5250.. code-block:: llvm
5251
5252 ; yields [12 x i8]*:aptr
5253 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5254 ; yields i8*:vptr
5255 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5256 ; yields i8*:eptr
5257 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5258 ; yields i32*:iptr
5259 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5260
5261In cases where the pointer argument is a vector of pointers, each index
5262must be a vector with the same number of elements. For example:
5263
5264.. code-block:: llvm
5265
5266 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5267
5268Conversion Operations
5269---------------------
5270
5271The instructions in this category are the conversion instructions
5272(casting) which all take a single operand and a type. They perform
5273various bit conversions on the operand.
5274
5275'``trunc .. to``' Instruction
5276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5277
5278Syntax:
5279"""""""
5280
5281::
5282
5283 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5284
5285Overview:
5286"""""""""
5287
5288The '``trunc``' instruction truncates its operand to the type ``ty2``.
5289
5290Arguments:
5291""""""""""
5292
5293The '``trunc``' instruction takes a value to trunc, and a type to trunc
5294it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5295of the same number of integers. The bit size of the ``value`` must be
5296larger than the bit size of the destination type, ``ty2``. Equal sized
5297types are not allowed.
5298
5299Semantics:
5300""""""""""
5301
5302The '``trunc``' instruction truncates the high order bits in ``value``
5303and converts the remaining bits to ``ty2``. Since the source size must
5304be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5305It will always truncate bits.
5306
5307Example:
5308""""""""
5309
5310.. code-block:: llvm
5311
5312 %X = trunc i32 257 to i8 ; yields i8:1
5313 %Y = trunc i32 123 to i1 ; yields i1:true
5314 %Z = trunc i32 122 to i1 ; yields i1:false
5315 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5316
5317'``zext .. to``' Instruction
5318^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5319
5320Syntax:
5321"""""""
5322
5323::
5324
5325 <result> = zext <ty> <value> to <ty2> ; yields ty2
5326
5327Overview:
5328"""""""""
5329
5330The '``zext``' instruction zero extends its operand to type ``ty2``.
5331
5332Arguments:
5333""""""""""
5334
5335The '``zext``' instruction takes a value to cast, and a type to cast it
5336to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5337the same number of integers. The bit size of the ``value`` must be
5338smaller than the bit size of the destination type, ``ty2``.
5339
5340Semantics:
5341""""""""""
5342
5343The ``zext`` fills the high order bits of the ``value`` with zero bits
5344until it reaches the size of the destination type, ``ty2``.
5345
5346When zero extending from i1, the result will always be either 0 or 1.
5347
5348Example:
5349""""""""
5350
5351.. code-block:: llvm
5352
5353 %X = zext i32 257 to i64 ; yields i64:257
5354 %Y = zext i1 true to i32 ; yields i32:1
5355 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5356
5357'``sext .. to``' Instruction
5358^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5359
5360Syntax:
5361"""""""
5362
5363::
5364
5365 <result> = sext <ty> <value> to <ty2> ; yields ty2
5366
5367Overview:
5368"""""""""
5369
5370The '``sext``' sign extends ``value`` to the type ``ty2``.
5371
5372Arguments:
5373""""""""""
5374
5375The '``sext``' instruction takes a value to cast, and a type to cast it
5376to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5377the same number of integers. The bit size of the ``value`` must be
5378smaller than the bit size of the destination type, ``ty2``.
5379
5380Semantics:
5381""""""""""
5382
5383The '``sext``' instruction performs a sign extension by copying the sign
5384bit (highest order bit) of the ``value`` until it reaches the bit size
5385of the type ``ty2``.
5386
5387When sign extending from i1, the extension always results in -1 or 0.
5388
5389Example:
5390""""""""
5391
5392.. code-block:: llvm
5393
5394 %X = sext i8 -1 to i16 ; yields i16 :65535
5395 %Y = sext i1 true to i32 ; yields i32:-1
5396 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5397
5398'``fptrunc .. to``' Instruction
5399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5400
5401Syntax:
5402"""""""
5403
5404::
5405
5406 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5407
5408Overview:
5409"""""""""
5410
5411The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5412
5413Arguments:
5414""""""""""
5415
5416The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5417value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5418The size of ``value`` must be larger than the size of ``ty2``. This
5419implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5420
5421Semantics:
5422""""""""""
5423
5424The '``fptrunc``' instruction truncates a ``value`` from a larger
5425:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5426point <t_floating>` type. If the value cannot fit within the
5427destination type, ``ty2``, then the results are undefined.
5428
5429Example:
5430""""""""
5431
5432.. code-block:: llvm
5433
5434 %X = fptrunc double 123.0 to float ; yields float:123.0
5435 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5436
5437'``fpext .. to``' Instruction
5438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5439
5440Syntax:
5441"""""""
5442
5443::
5444
5445 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5446
5447Overview:
5448"""""""""
5449
5450The '``fpext``' extends a floating point ``value`` to a larger floating
5451point value.
5452
5453Arguments:
5454""""""""""
5455
5456The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5457``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5458to. The source type must be smaller than the destination type.
5459
5460Semantics:
5461""""""""""
5462
5463The '``fpext``' instruction extends the ``value`` from a smaller
5464:ref:`floating point <t_floating>` type to a larger :ref:`floating
5465point <t_floating>` type. The ``fpext`` cannot be used to make a
5466*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5467*no-op cast* for a floating point cast.
5468
5469Example:
5470""""""""
5471
5472.. code-block:: llvm
5473
5474 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5475 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5476
5477'``fptoui .. to``' Instruction
5478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5479
5480Syntax:
5481"""""""
5482
5483::
5484
5485 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5486
5487Overview:
5488"""""""""
5489
5490The '``fptoui``' converts a floating point ``value`` to its unsigned
5491integer equivalent of type ``ty2``.
5492
5493Arguments:
5494""""""""""
5495
5496The '``fptoui``' instruction takes a value to cast, which must be a
5497scalar or vector :ref:`floating point <t_floating>` value, and a type to
5498cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5499``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5500type with the same number of elements as ``ty``
5501
5502Semantics:
5503""""""""""
5504
5505The '``fptoui``' instruction converts its :ref:`floating
5506point <t_floating>` operand into the nearest (rounding towards zero)
5507unsigned integer value. If the value cannot fit in ``ty2``, the results
5508are undefined.
5509
5510Example:
5511""""""""
5512
5513.. code-block:: llvm
5514
5515 %X = fptoui double 123.0 to i32 ; yields i32:123
5516 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5517 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5518
5519'``fptosi .. to``' Instruction
5520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5521
5522Syntax:
5523"""""""
5524
5525::
5526
5527 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5528
5529Overview:
5530"""""""""
5531
5532The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5533``value`` to type ``ty2``.
5534
5535Arguments:
5536""""""""""
5537
5538The '``fptosi``' instruction takes a value to cast, which must be a
5539scalar or vector :ref:`floating point <t_floating>` value, and a type to
5540cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5541``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5542type with the same number of elements as ``ty``
5543
5544Semantics:
5545""""""""""
5546
5547The '``fptosi``' instruction converts its :ref:`floating
5548point <t_floating>` operand into the nearest (rounding towards zero)
5549signed integer value. If the value cannot fit in ``ty2``, the results
5550are undefined.
5551
5552Example:
5553""""""""
5554
5555.. code-block:: llvm
5556
5557 %X = fptosi double -123.0 to i32 ; yields i32:-123
5558 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5559 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5560
5561'``uitofp .. to``' Instruction
5562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5563
5564Syntax:
5565"""""""
5566
5567::
5568
5569 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5570
5571Overview:
5572"""""""""
5573
5574The '``uitofp``' instruction regards ``value`` as an unsigned integer
5575and converts that value to the ``ty2`` type.
5576
5577Arguments:
5578""""""""""
5579
5580The '``uitofp``' instruction takes a value to cast, which must be a
5581scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5582``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5583``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5584type with the same number of elements as ``ty``
5585
5586Semantics:
5587""""""""""
5588
5589The '``uitofp``' instruction interprets its operand as an unsigned
5590integer quantity and converts it to the corresponding floating point
5591value. If the value cannot fit in the floating point value, the results
5592are undefined.
5593
5594Example:
5595""""""""
5596
5597.. code-block:: llvm
5598
5599 %X = uitofp i32 257 to float ; yields float:257.0
5600 %Y = uitofp i8 -1 to double ; yields double:255.0
5601
5602'``sitofp .. to``' Instruction
5603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5604
5605Syntax:
5606"""""""
5607
5608::
5609
5610 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5611
5612Overview:
5613"""""""""
5614
5615The '``sitofp``' instruction regards ``value`` as a signed integer and
5616converts that value to the ``ty2`` type.
5617
5618Arguments:
5619""""""""""
5620
5621The '``sitofp``' instruction takes a value to cast, which must be a
5622scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5623``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5624``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5625type with the same number of elements as ``ty``
5626
5627Semantics:
5628""""""""""
5629
5630The '``sitofp``' instruction interprets its operand as a signed integer
5631quantity and converts it to the corresponding floating point value. If
5632the value cannot fit in the floating point value, the results are
5633undefined.
5634
5635Example:
5636""""""""
5637
5638.. code-block:: llvm
5639
5640 %X = sitofp i32 257 to float ; yields float:257.0
5641 %Y = sitofp i8 -1 to double ; yields double:-1.0
5642
5643.. _i_ptrtoint:
5644
5645'``ptrtoint .. to``' Instruction
5646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5647
5648Syntax:
5649"""""""
5650
5651::
5652
5653 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5654
5655Overview:
5656"""""""""
5657
5658The '``ptrtoint``' instruction converts the pointer or a vector of
5659pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5660
5661Arguments:
5662""""""""""
5663
5664The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5665a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5666type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5667a vector of integers type.
5668
5669Semantics:
5670""""""""""
5671
5672The '``ptrtoint``' instruction converts ``value`` to integer type
5673``ty2`` by interpreting the pointer value as an integer and either
5674truncating or zero extending that value to the size of the integer type.
5675If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5676``value`` is larger than ``ty2`` then a truncation is done. If they are
5677the same size, then nothing is done (*no-op cast*) other than a type
5678change.
5679
5680Example:
5681""""""""
5682
5683.. code-block:: llvm
5684
5685 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5686 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5687 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5688
5689.. _i_inttoptr:
5690
5691'``inttoptr .. to``' Instruction
5692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5693
5694Syntax:
5695"""""""
5696
5697::
5698
5699 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5700
5701Overview:
5702"""""""""
5703
5704The '``inttoptr``' instruction converts an integer ``value`` to a
5705pointer type, ``ty2``.
5706
5707Arguments:
5708""""""""""
5709
5710The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5711cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5712type.
5713
5714Semantics:
5715""""""""""
5716
5717The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5718applying either a zero extension or a truncation depending on the size
5719of the integer ``value``. If ``value`` is larger than the size of a
5720pointer then a truncation is done. If ``value`` is smaller than the size
5721of a pointer then a zero extension is done. If they are the same size,
5722nothing is done (*no-op cast*).
5723
5724Example:
5725""""""""
5726
5727.. code-block:: llvm
5728
5729 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5730 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5731 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5732 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5733
5734.. _i_bitcast:
5735
5736'``bitcast .. to``' Instruction
5737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5738
5739Syntax:
5740"""""""
5741
5742::
5743
5744 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5745
5746Overview:
5747"""""""""
5748
5749The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5750changing any bits.
5751
5752Arguments:
5753""""""""""
5754
5755The '``bitcast``' instruction takes a value to cast, which must be a
5756non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005757also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5758bit sizes of ``value`` and the destination type, ``ty2``, must be
5759identical. If the source type is a pointer, the destination type must
5760also be a pointer of the same size. This instruction supports bitwise
5761conversion of vectors to integers and to vectors of other types (as
5762long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005763
5764Semantics:
5765""""""""""
5766
Matt Arsenault24b49c42013-07-31 17:49:08 +00005767The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5768is always a *no-op cast* because no bits change with this
5769conversion. The conversion is done as if the ``value`` had been stored
5770to memory and read back as type ``ty2``. Pointer (or vector of
5771pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005772pointers) types with the same address space through this instruction.
5773To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5774or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005775
5776Example:
5777""""""""
5778
5779.. code-block:: llvm
5780
5781 %X = bitcast i8 255 to i8 ; yields i8 :-1
5782 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5783 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5784 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5785
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005786.. _i_addrspacecast:
5787
5788'``addrspacecast .. to``' Instruction
5789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5790
5791Syntax:
5792"""""""
5793
5794::
5795
5796 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5797
5798Overview:
5799"""""""""
5800
5801The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5802address space ``n`` to type ``pty2`` in address space ``m``.
5803
5804Arguments:
5805""""""""""
5806
5807The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5808to cast and a pointer type to cast it to, which must have a different
5809address space.
5810
5811Semantics:
5812""""""""""
5813
5814The '``addrspacecast``' instruction converts the pointer value
5815``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005816value modification, depending on the target and the address space
5817pair. Pointer conversions within the same address space must be
5818performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005819conversion is legal then both result and operand refer to the same memory
5820location.
5821
5822Example:
5823""""""""
5824
5825.. code-block:: llvm
5826
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005827 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5828 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5829 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005830
Sean Silvab084af42012-12-07 10:36:55 +00005831.. _otherops:
5832
5833Other Operations
5834----------------
5835
5836The instructions in this category are the "miscellaneous" instructions,
5837which defy better classification.
5838
5839.. _i_icmp:
5840
5841'``icmp``' Instruction
5842^^^^^^^^^^^^^^^^^^^^^^
5843
5844Syntax:
5845"""""""
5846
5847::
5848
5849 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5850
5851Overview:
5852"""""""""
5853
5854The '``icmp``' instruction returns a boolean value or a vector of
5855boolean values based on comparison of its two integer, integer vector,
5856pointer, or pointer vector operands.
5857
5858Arguments:
5859""""""""""
5860
5861The '``icmp``' instruction takes three operands. The first operand is
5862the condition code indicating the kind of comparison to perform. It is
5863not a value, just a keyword. The possible condition code are:
5864
5865#. ``eq``: equal
5866#. ``ne``: not equal
5867#. ``ugt``: unsigned greater than
5868#. ``uge``: unsigned greater or equal
5869#. ``ult``: unsigned less than
5870#. ``ule``: unsigned less or equal
5871#. ``sgt``: signed greater than
5872#. ``sge``: signed greater or equal
5873#. ``slt``: signed less than
5874#. ``sle``: signed less or equal
5875
5876The remaining two arguments must be :ref:`integer <t_integer>` or
5877:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5878must also be identical types.
5879
5880Semantics:
5881""""""""""
5882
5883The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5884code given as ``cond``. The comparison performed always yields either an
5885:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5886
5887#. ``eq``: yields ``true`` if the operands are equal, ``false``
5888 otherwise. No sign interpretation is necessary or performed.
5889#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5890 otherwise. No sign interpretation is necessary or performed.
5891#. ``ugt``: interprets the operands as unsigned values and yields
5892 ``true`` if ``op1`` is greater than ``op2``.
5893#. ``uge``: interprets the operands as unsigned values and yields
5894 ``true`` if ``op1`` is greater than or equal to ``op2``.
5895#. ``ult``: interprets the operands as unsigned values and yields
5896 ``true`` if ``op1`` is less than ``op2``.
5897#. ``ule``: interprets the operands as unsigned values and yields
5898 ``true`` if ``op1`` is less than or equal to ``op2``.
5899#. ``sgt``: interprets the operands as signed values and yields ``true``
5900 if ``op1`` is greater than ``op2``.
5901#. ``sge``: interprets the operands as signed values and yields ``true``
5902 if ``op1`` is greater than or equal to ``op2``.
5903#. ``slt``: interprets the operands as signed values and yields ``true``
5904 if ``op1`` is less than ``op2``.
5905#. ``sle``: interprets the operands as signed values and yields ``true``
5906 if ``op1`` is less than or equal to ``op2``.
5907
5908If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5909are compared as if they were integers.
5910
5911If the operands are integer vectors, then they are compared element by
5912element. The result is an ``i1`` vector with the same number of elements
5913as the values being compared. Otherwise, the result is an ``i1``.
5914
5915Example:
5916""""""""
5917
5918.. code-block:: llvm
5919
5920 <result> = icmp eq i32 4, 5 ; yields: result=false
5921 <result> = icmp ne float* %X, %X ; yields: result=false
5922 <result> = icmp ult i16 4, 5 ; yields: result=true
5923 <result> = icmp sgt i16 4, 5 ; yields: result=false
5924 <result> = icmp ule i16 -4, 5 ; yields: result=false
5925 <result> = icmp sge i16 4, 5 ; yields: result=false
5926
5927Note that the code generator does not yet support vector types with the
5928``icmp`` instruction.
5929
5930.. _i_fcmp:
5931
5932'``fcmp``' Instruction
5933^^^^^^^^^^^^^^^^^^^^^^
5934
5935Syntax:
5936"""""""
5937
5938::
5939
5940 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5941
5942Overview:
5943"""""""""
5944
5945The '``fcmp``' instruction returns a boolean value or vector of boolean
5946values based on comparison of its operands.
5947
5948If the operands are floating point scalars, then the result type is a
5949boolean (:ref:`i1 <t_integer>`).
5950
5951If the operands are floating point vectors, then the result type is a
5952vector of boolean with the same number of elements as the operands being
5953compared.
5954
5955Arguments:
5956""""""""""
5957
5958The '``fcmp``' instruction takes three operands. The first operand is
5959the condition code indicating the kind of comparison to perform. It is
5960not a value, just a keyword. The possible condition code are:
5961
5962#. ``false``: no comparison, always returns false
5963#. ``oeq``: ordered and equal
5964#. ``ogt``: ordered and greater than
5965#. ``oge``: ordered and greater than or equal
5966#. ``olt``: ordered and less than
5967#. ``ole``: ordered and less than or equal
5968#. ``one``: ordered and not equal
5969#. ``ord``: ordered (no nans)
5970#. ``ueq``: unordered or equal
5971#. ``ugt``: unordered or greater than
5972#. ``uge``: unordered or greater than or equal
5973#. ``ult``: unordered or less than
5974#. ``ule``: unordered or less than or equal
5975#. ``une``: unordered or not equal
5976#. ``uno``: unordered (either nans)
5977#. ``true``: no comparison, always returns true
5978
5979*Ordered* means that neither operand is a QNAN while *unordered* means
5980that either operand may be a QNAN.
5981
5982Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5983point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5984type. They must have identical types.
5985
5986Semantics:
5987""""""""""
5988
5989The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5990condition code given as ``cond``. If the operands are vectors, then the
5991vectors are compared element by element. Each comparison performed
5992always yields an :ref:`i1 <t_integer>` result, as follows:
5993
5994#. ``false``: always yields ``false``, regardless of operands.
5995#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5996 is equal to ``op2``.
5997#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5998 is greater than ``op2``.
5999#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6000 is greater than or equal to ``op2``.
6001#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6002 is less than ``op2``.
6003#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6004 is less than or equal to ``op2``.
6005#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6006 is not equal to ``op2``.
6007#. ``ord``: yields ``true`` if both operands are not a QNAN.
6008#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6009 equal to ``op2``.
6010#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6011 greater than ``op2``.
6012#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6013 greater than or equal to ``op2``.
6014#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6015 less than ``op2``.
6016#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6017 less than or equal to ``op2``.
6018#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6019 not equal to ``op2``.
6020#. ``uno``: yields ``true`` if either operand is a QNAN.
6021#. ``true``: always yields ``true``, regardless of operands.
6022
6023Example:
6024""""""""
6025
6026.. code-block:: llvm
6027
6028 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6029 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6030 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6031 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6032
6033Note that the code generator does not yet support vector types with the
6034``fcmp`` instruction.
6035
6036.. _i_phi:
6037
6038'``phi``' Instruction
6039^^^^^^^^^^^^^^^^^^^^^
6040
6041Syntax:
6042"""""""
6043
6044::
6045
6046 <result> = phi <ty> [ <val0>, <label0>], ...
6047
6048Overview:
6049"""""""""
6050
6051The '``phi``' instruction is used to implement the φ node in the SSA
6052graph representing the function.
6053
6054Arguments:
6055""""""""""
6056
6057The type of the incoming values is specified with the first type field.
6058After this, the '``phi``' instruction takes a list of pairs as
6059arguments, with one pair for each predecessor basic block of the current
6060block. Only values of :ref:`first class <t_firstclass>` type may be used as
6061the value arguments to the PHI node. Only labels may be used as the
6062label arguments.
6063
6064There must be no non-phi instructions between the start of a basic block
6065and the PHI instructions: i.e. PHI instructions must be first in a basic
6066block.
6067
6068For the purposes of the SSA form, the use of each incoming value is
6069deemed to occur on the edge from the corresponding predecessor block to
6070the current block (but after any definition of an '``invoke``'
6071instruction's return value on the same edge).
6072
6073Semantics:
6074""""""""""
6075
6076At runtime, the '``phi``' instruction logically takes on the value
6077specified by the pair corresponding to the predecessor basic block that
6078executed just prior to the current block.
6079
6080Example:
6081""""""""
6082
6083.. code-block:: llvm
6084
6085 Loop: ; Infinite loop that counts from 0 on up...
6086 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6087 %nextindvar = add i32 %indvar, 1
6088 br label %Loop
6089
6090.. _i_select:
6091
6092'``select``' Instruction
6093^^^^^^^^^^^^^^^^^^^^^^^^
6094
6095Syntax:
6096"""""""
6097
6098::
6099
6100 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6101
6102 selty is either i1 or {<N x i1>}
6103
6104Overview:
6105"""""""""
6106
6107The '``select``' instruction is used to choose one value based on a
6108condition, without branching.
6109
6110Arguments:
6111""""""""""
6112
6113The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6114values indicating the condition, and two values of the same :ref:`first
6115class <t_firstclass>` type. If the val1/val2 are vectors and the
6116condition is a scalar, then entire vectors are selected, not individual
6117elements.
6118
6119Semantics:
6120""""""""""
6121
6122If the condition is an i1 and it evaluates to 1, the instruction returns
6123the first value argument; otherwise, it returns the second value
6124argument.
6125
6126If the condition is a vector of i1, then the value arguments must be
6127vectors of the same size, and the selection is done element by element.
6128
6129Example:
6130""""""""
6131
6132.. code-block:: llvm
6133
6134 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6135
6136.. _i_call:
6137
6138'``call``' Instruction
6139^^^^^^^^^^^^^^^^^^^^^^
6140
6141Syntax:
6142"""""""
6143
6144::
6145
6146 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6147
6148Overview:
6149"""""""""
6150
6151The '``call``' instruction represents a simple function call.
6152
6153Arguments:
6154""""""""""
6155
6156This instruction requires several arguments:
6157
6158#. The optional "tail" marker indicates that the callee function does
6159 not access any allocas or varargs in the caller. Note that calls may
6160 be marked "tail" even if they do not occur before a
6161 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6162 function call is eligible for tail call optimization, but `might not
6163 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6164 The code generator may optimize calls marked "tail" with either 1)
6165 automatic `sibling call
6166 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6167 callee have matching signatures, or 2) forced tail call optimization
6168 when the following extra requirements are met:
6169
6170 - Caller and callee both have the calling convention ``fastcc``.
6171 - The call is in tail position (ret immediately follows call and ret
6172 uses value of call or is void).
6173 - Option ``-tailcallopt`` is enabled, or
6174 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6175 - `Platform specific constraints are
6176 met. <CodeGenerator.html#tailcallopt>`_
6177
6178#. The optional "cconv" marker indicates which :ref:`calling
6179 convention <callingconv>` the call should use. If none is
6180 specified, the call defaults to using C calling conventions. The
6181 calling convention of the call must match the calling convention of
6182 the target function, or else the behavior is undefined.
6183#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6184 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6185 are valid here.
6186#. '``ty``': the type of the call instruction itself which is also the
6187 type of the return value. Functions that return no value are marked
6188 ``void``.
6189#. '``fnty``': shall be the signature of the pointer to function value
6190 being invoked. The argument types must match the types implied by
6191 this signature. This type can be omitted if the function is not
6192 varargs and if the function type does not return a pointer to a
6193 function.
6194#. '``fnptrval``': An LLVM value containing a pointer to a function to
6195 be invoked. In most cases, this is a direct function invocation, but
6196 indirect ``call``'s are just as possible, calling an arbitrary pointer
6197 to function value.
6198#. '``function args``': argument list whose types match the function
6199 signature argument types and parameter attributes. All arguments must
6200 be of :ref:`first class <t_firstclass>` type. If the function signature
6201 indicates the function accepts a variable number of arguments, the
6202 extra arguments can be specified.
6203#. The optional :ref:`function attributes <fnattrs>` list. Only
6204 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6205 attributes are valid here.
6206
6207Semantics:
6208""""""""""
6209
6210The '``call``' instruction is used to cause control flow to transfer to
6211a specified function, with its incoming arguments bound to the specified
6212values. Upon a '``ret``' instruction in the called function, control
6213flow continues with the instruction after the function call, and the
6214return value of the function is bound to the result argument.
6215
6216Example:
6217""""""""
6218
6219.. code-block:: llvm
6220
6221 %retval = call i32 @test(i32 %argc)
6222 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6223 %X = tail call i32 @foo() ; yields i32
6224 %Y = tail call fastcc i32 @foo() ; yields i32
6225 call void %foo(i8 97 signext)
6226
6227 %struct.A = type { i32, i8 }
6228 %r = call %struct.A @foo() ; yields { 32, i8 }
6229 %gr = extractvalue %struct.A %r, 0 ; yields i32
6230 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6231 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6232 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6233
6234llvm treats calls to some functions with names and arguments that match
6235the standard C99 library as being the C99 library functions, and may
6236perform optimizations or generate code for them under that assumption.
6237This is something we'd like to change in the future to provide better
6238support for freestanding environments and non-C-based languages.
6239
6240.. _i_va_arg:
6241
6242'``va_arg``' Instruction
6243^^^^^^^^^^^^^^^^^^^^^^^^
6244
6245Syntax:
6246"""""""
6247
6248::
6249
6250 <resultval> = va_arg <va_list*> <arglist>, <argty>
6251
6252Overview:
6253"""""""""
6254
6255The '``va_arg``' instruction is used to access arguments passed through
6256the "variable argument" area of a function call. It is used to implement
6257the ``va_arg`` macro in C.
6258
6259Arguments:
6260""""""""""
6261
6262This instruction takes a ``va_list*`` value and the type of the
6263argument. It returns a value of the specified argument type and
6264increments the ``va_list`` to point to the next argument. The actual
6265type of ``va_list`` is target specific.
6266
6267Semantics:
6268""""""""""
6269
6270The '``va_arg``' instruction loads an argument of the specified type
6271from the specified ``va_list`` and causes the ``va_list`` to point to
6272the next argument. For more information, see the variable argument
6273handling :ref:`Intrinsic Functions <int_varargs>`.
6274
6275It is legal for this instruction to be called in a function which does
6276not take a variable number of arguments, for example, the ``vfprintf``
6277function.
6278
6279``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6280function <intrinsics>` because it takes a type as an argument.
6281
6282Example:
6283""""""""
6284
6285See the :ref:`variable argument processing <int_varargs>` section.
6286
6287Note that the code generator does not yet fully support va\_arg on many
6288targets. Also, it does not currently support va\_arg with aggregate
6289types on any target.
6290
6291.. _i_landingpad:
6292
6293'``landingpad``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
6301 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6302 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6303
6304 <clause> := catch <type> <value>
6305 <clause> := filter <array constant type> <array constant>
6306
6307Overview:
6308"""""""""
6309
6310The '``landingpad``' instruction is used by `LLVM's exception handling
6311system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006312is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006313code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6314defines values supplied by the personality function (``pers_fn``) upon
6315re-entry to the function. The ``resultval`` has the type ``resultty``.
6316
6317Arguments:
6318""""""""""
6319
6320This instruction takes a ``pers_fn`` value. This is the personality
6321function associated with the unwinding mechanism. The optional
6322``cleanup`` flag indicates that the landing pad block is a cleanup.
6323
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006324A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006325contains the global variable representing the "type" that may be caught
6326or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6327clause takes an array constant as its argument. Use
6328"``[0 x i8**] undef``" for a filter which cannot throw. The
6329'``landingpad``' instruction must contain *at least* one ``clause`` or
6330the ``cleanup`` flag.
6331
6332Semantics:
6333""""""""""
6334
6335The '``landingpad``' instruction defines the values which are set by the
6336personality function (``pers_fn``) upon re-entry to the function, and
6337therefore the "result type" of the ``landingpad`` instruction. As with
6338calling conventions, how the personality function results are
6339represented in LLVM IR is target specific.
6340
6341The clauses are applied in order from top to bottom. If two
6342``landingpad`` instructions are merged together through inlining, the
6343clauses from the calling function are appended to the list of clauses.
6344When the call stack is being unwound due to an exception being thrown,
6345the exception is compared against each ``clause`` in turn. If it doesn't
6346match any of the clauses, and the ``cleanup`` flag is not set, then
6347unwinding continues further up the call stack.
6348
6349The ``landingpad`` instruction has several restrictions:
6350
6351- A landing pad block is a basic block which is the unwind destination
6352 of an '``invoke``' instruction.
6353- A landing pad block must have a '``landingpad``' instruction as its
6354 first non-PHI instruction.
6355- There can be only one '``landingpad``' instruction within the landing
6356 pad block.
6357- A basic block that is not a landing pad block may not include a
6358 '``landingpad``' instruction.
6359- All '``landingpad``' instructions in a function must have the same
6360 personality function.
6361
6362Example:
6363""""""""
6364
6365.. code-block:: llvm
6366
6367 ;; A landing pad which can catch an integer.
6368 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6369 catch i8** @_ZTIi
6370 ;; A landing pad that is a cleanup.
6371 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6372 cleanup
6373 ;; A landing pad which can catch an integer and can only throw a double.
6374 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6375 catch i8** @_ZTIi
6376 filter [1 x i8**] [@_ZTId]
6377
6378.. _intrinsics:
6379
6380Intrinsic Functions
6381===================
6382
6383LLVM supports the notion of an "intrinsic function". These functions
6384have well known names and semantics and are required to follow certain
6385restrictions. Overall, these intrinsics represent an extension mechanism
6386for the LLVM language that does not require changing all of the
6387transformations in LLVM when adding to the language (or the bitcode
6388reader/writer, the parser, etc...).
6389
6390Intrinsic function names must all start with an "``llvm.``" prefix. This
6391prefix is reserved in LLVM for intrinsic names; thus, function names may
6392not begin with this prefix. Intrinsic functions must always be external
6393functions: you cannot define the body of intrinsic functions. Intrinsic
6394functions may only be used in call or invoke instructions: it is illegal
6395to take the address of an intrinsic function. Additionally, because
6396intrinsic functions are part of the LLVM language, it is required if any
6397are added that they be documented here.
6398
6399Some intrinsic functions can be overloaded, i.e., the intrinsic
6400represents a family of functions that perform the same operation but on
6401different data types. Because LLVM can represent over 8 million
6402different integer types, overloading is used commonly to allow an
6403intrinsic function to operate on any integer type. One or more of the
6404argument types or the result type can be overloaded to accept any
6405integer type. Argument types may also be defined as exactly matching a
6406previous argument's type or the result type. This allows an intrinsic
6407function which accepts multiple arguments, but needs all of them to be
6408of the same type, to only be overloaded with respect to a single
6409argument or the result.
6410
6411Overloaded intrinsics will have the names of its overloaded argument
6412types encoded into its function name, each preceded by a period. Only
6413those types which are overloaded result in a name suffix. Arguments
6414whose type is matched against another type do not. For example, the
6415``llvm.ctpop`` function can take an integer of any width and returns an
6416integer of exactly the same integer width. This leads to a family of
6417functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6418``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6419overloaded, and only one type suffix is required. Because the argument's
6420type is matched against the return type, it does not require its own
6421name suffix.
6422
6423To learn how to add an intrinsic function, please see the `Extending
6424LLVM Guide <ExtendingLLVM.html>`_.
6425
6426.. _int_varargs:
6427
6428Variable Argument Handling Intrinsics
6429-------------------------------------
6430
6431Variable argument support is defined in LLVM with the
6432:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6433functions. These functions are related to the similarly named macros
6434defined in the ``<stdarg.h>`` header file.
6435
6436All of these functions operate on arguments that use a target-specific
6437value type "``va_list``". The LLVM assembly language reference manual
6438does not define what this type is, so all transformations should be
6439prepared to handle these functions regardless of the type used.
6440
6441This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6442variable argument handling intrinsic functions are used.
6443
6444.. code-block:: llvm
6445
6446 define i32 @test(i32 %X, ...) {
6447 ; Initialize variable argument processing
6448 %ap = alloca i8*
6449 %ap2 = bitcast i8** %ap to i8*
6450 call void @llvm.va_start(i8* %ap2)
6451
6452 ; Read a single integer argument
6453 %tmp = va_arg i8** %ap, i32
6454
6455 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6456 %aq = alloca i8*
6457 %aq2 = bitcast i8** %aq to i8*
6458 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6459 call void @llvm.va_end(i8* %aq2)
6460
6461 ; Stop processing of arguments.
6462 call void @llvm.va_end(i8* %ap2)
6463 ret i32 %tmp
6464 }
6465
6466 declare void @llvm.va_start(i8*)
6467 declare void @llvm.va_copy(i8*, i8*)
6468 declare void @llvm.va_end(i8*)
6469
6470.. _int_va_start:
6471
6472'``llvm.va_start``' Intrinsic
6473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6474
6475Syntax:
6476"""""""
6477
6478::
6479
Nick Lewycky04f6de02013-09-11 22:04:52 +00006480 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006481
6482Overview:
6483"""""""""
6484
6485The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6486subsequent use by ``va_arg``.
6487
6488Arguments:
6489""""""""""
6490
6491The argument is a pointer to a ``va_list`` element to initialize.
6492
6493Semantics:
6494""""""""""
6495
6496The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6497available in C. In a target-dependent way, it initializes the
6498``va_list`` element to which the argument points, so that the next call
6499to ``va_arg`` will produce the first variable argument passed to the
6500function. Unlike the C ``va_start`` macro, this intrinsic does not need
6501to know the last argument of the function as the compiler can figure
6502that out.
6503
6504'``llvm.va_end``' Intrinsic
6505^^^^^^^^^^^^^^^^^^^^^^^^^^^
6506
6507Syntax:
6508"""""""
6509
6510::
6511
6512 declare void @llvm.va_end(i8* <arglist>)
6513
6514Overview:
6515"""""""""
6516
6517The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6518initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6519
6520Arguments:
6521""""""""""
6522
6523The argument is a pointer to a ``va_list`` to destroy.
6524
6525Semantics:
6526""""""""""
6527
6528The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6529available in C. In a target-dependent way, it destroys the ``va_list``
6530element to which the argument points. Calls to
6531:ref:`llvm.va_start <int_va_start>` and
6532:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6533``llvm.va_end``.
6534
6535.. _int_va_copy:
6536
6537'``llvm.va_copy``' Intrinsic
6538^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6539
6540Syntax:
6541"""""""
6542
6543::
6544
6545 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6546
6547Overview:
6548"""""""""
6549
6550The '``llvm.va_copy``' intrinsic copies the current argument position
6551from the source argument list to the destination argument list.
6552
6553Arguments:
6554""""""""""
6555
6556The first argument is a pointer to a ``va_list`` element to initialize.
6557The second argument is a pointer to a ``va_list`` element to copy from.
6558
6559Semantics:
6560""""""""""
6561
6562The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6563available in C. In a target-dependent way, it copies the source
6564``va_list`` element into the destination ``va_list`` element. This
6565intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6566arbitrarily complex and require, for example, memory allocation.
6567
6568Accurate Garbage Collection Intrinsics
6569--------------------------------------
6570
6571LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6572(GC) requires the implementation and generation of these intrinsics.
6573These intrinsics allow identification of :ref:`GC roots on the
6574stack <int_gcroot>`, as well as garbage collector implementations that
6575require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6576Front-ends for type-safe garbage collected languages should generate
6577these intrinsics to make use of the LLVM garbage collectors. For more
6578details, see `Accurate Garbage Collection with
6579LLVM <GarbageCollection.html>`_.
6580
6581The garbage collection intrinsics only operate on objects in the generic
6582address space (address space zero).
6583
6584.. _int_gcroot:
6585
6586'``llvm.gcroot``' Intrinsic
6587^^^^^^^^^^^^^^^^^^^^^^^^^^^
6588
6589Syntax:
6590"""""""
6591
6592::
6593
6594 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6595
6596Overview:
6597"""""""""
6598
6599The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6600the code generator, and allows some metadata to be associated with it.
6601
6602Arguments:
6603""""""""""
6604
6605The first argument specifies the address of a stack object that contains
6606the root pointer. The second pointer (which must be either a constant or
6607a global value address) contains the meta-data to be associated with the
6608root.
6609
6610Semantics:
6611""""""""""
6612
6613At runtime, a call to this intrinsic stores a null pointer into the
6614"ptrloc" location. At compile-time, the code generator generates
6615information to allow the runtime to find the pointer at GC safe points.
6616The '``llvm.gcroot``' intrinsic may only be used in a function which
6617:ref:`specifies a GC algorithm <gc>`.
6618
6619.. _int_gcread:
6620
6621'``llvm.gcread``' Intrinsic
6622^^^^^^^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
6629 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6630
6631Overview:
6632"""""""""
6633
6634The '``llvm.gcread``' intrinsic identifies reads of references from heap
6635locations, allowing garbage collector implementations that require read
6636barriers.
6637
6638Arguments:
6639""""""""""
6640
6641The second argument is the address to read from, which should be an
6642address allocated from the garbage collector. The first object is a
6643pointer to the start of the referenced object, if needed by the language
6644runtime (otherwise null).
6645
6646Semantics:
6647""""""""""
6648
6649The '``llvm.gcread``' intrinsic has the same semantics as a load
6650instruction, but may be replaced with substantially more complex code by
6651the garbage collector runtime, as needed. The '``llvm.gcread``'
6652intrinsic may only be used in a function which :ref:`specifies a GC
6653algorithm <gc>`.
6654
6655.. _int_gcwrite:
6656
6657'``llvm.gcwrite``' Intrinsic
6658^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6659
6660Syntax:
6661"""""""
6662
6663::
6664
6665 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6666
6667Overview:
6668"""""""""
6669
6670The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6671locations, allowing garbage collector implementations that require write
6672barriers (such as generational or reference counting collectors).
6673
6674Arguments:
6675""""""""""
6676
6677The first argument is the reference to store, the second is the start of
6678the object to store it to, and the third is the address of the field of
6679Obj to store to. If the runtime does not require a pointer to the
6680object, Obj may be null.
6681
6682Semantics:
6683""""""""""
6684
6685The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6686instruction, but may be replaced with substantially more complex code by
6687the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6688intrinsic may only be used in a function which :ref:`specifies a GC
6689algorithm <gc>`.
6690
6691Code Generator Intrinsics
6692-------------------------
6693
6694These intrinsics are provided by LLVM to expose special features that
6695may only be implemented with code generator support.
6696
6697'``llvm.returnaddress``' Intrinsic
6698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6699
6700Syntax:
6701"""""""
6702
6703::
6704
6705 declare i8 *@llvm.returnaddress(i32 <level>)
6706
6707Overview:
6708"""""""""
6709
6710The '``llvm.returnaddress``' intrinsic attempts to compute a
6711target-specific value indicating the return address of the current
6712function or one of its callers.
6713
6714Arguments:
6715""""""""""
6716
6717The argument to this intrinsic indicates which function to return the
6718address for. Zero indicates the calling function, one indicates its
6719caller, etc. The argument is **required** to be a constant integer
6720value.
6721
6722Semantics:
6723""""""""""
6724
6725The '``llvm.returnaddress``' intrinsic either returns a pointer
6726indicating the return address of the specified call frame, or zero if it
6727cannot be identified. The value returned by this intrinsic is likely to
6728be incorrect or 0 for arguments other than zero, so it should only be
6729used for debugging purposes.
6730
6731Note that calling this intrinsic does not prevent function inlining or
6732other aggressive transformations, so the value returned may not be that
6733of the obvious source-language caller.
6734
6735'``llvm.frameaddress``' Intrinsic
6736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6737
6738Syntax:
6739"""""""
6740
6741::
6742
6743 declare i8* @llvm.frameaddress(i32 <level>)
6744
6745Overview:
6746"""""""""
6747
6748The '``llvm.frameaddress``' intrinsic attempts to return the
6749target-specific frame pointer value for the specified stack frame.
6750
6751Arguments:
6752""""""""""
6753
6754The argument to this intrinsic indicates which function to return the
6755frame pointer for. Zero indicates the calling function, one indicates
6756its caller, etc. The argument is **required** to be a constant integer
6757value.
6758
6759Semantics:
6760""""""""""
6761
6762The '``llvm.frameaddress``' intrinsic either returns a pointer
6763indicating the frame address of the specified call frame, or zero if it
6764cannot be identified. The value returned by this intrinsic is likely to
6765be incorrect or 0 for arguments other than zero, so it should only be
6766used for debugging purposes.
6767
6768Note that calling this intrinsic does not prevent function inlining or
6769other aggressive transformations, so the value returned may not be that
6770of the obvious source-language caller.
6771
6772.. _int_stacksave:
6773
6774'``llvm.stacksave``' Intrinsic
6775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6776
6777Syntax:
6778"""""""
6779
6780::
6781
6782 declare i8* @llvm.stacksave()
6783
6784Overview:
6785"""""""""
6786
6787The '``llvm.stacksave``' intrinsic is used to remember the current state
6788of the function stack, for use with
6789:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6790implementing language features like scoped automatic variable sized
6791arrays in C99.
6792
6793Semantics:
6794""""""""""
6795
6796This intrinsic returns a opaque pointer value that can be passed to
6797:ref:`llvm.stackrestore <int_stackrestore>`. When an
6798``llvm.stackrestore`` intrinsic is executed with a value saved from
6799``llvm.stacksave``, it effectively restores the state of the stack to
6800the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6801practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6802were allocated after the ``llvm.stacksave`` was executed.
6803
6804.. _int_stackrestore:
6805
6806'``llvm.stackrestore``' Intrinsic
6807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6808
6809Syntax:
6810"""""""
6811
6812::
6813
6814 declare void @llvm.stackrestore(i8* %ptr)
6815
6816Overview:
6817"""""""""
6818
6819The '``llvm.stackrestore``' intrinsic is used to restore the state of
6820the function stack to the state it was in when the corresponding
6821:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6822useful for implementing language features like scoped automatic variable
6823sized arrays in C99.
6824
6825Semantics:
6826""""""""""
6827
6828See the description for :ref:`llvm.stacksave <int_stacksave>`.
6829
6830'``llvm.prefetch``' Intrinsic
6831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6832
6833Syntax:
6834"""""""
6835
6836::
6837
6838 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6839
6840Overview:
6841"""""""""
6842
6843The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6844insert a prefetch instruction if supported; otherwise, it is a noop.
6845Prefetches have no effect on the behavior of the program but can change
6846its performance characteristics.
6847
6848Arguments:
6849""""""""""
6850
6851``address`` is the address to be prefetched, ``rw`` is the specifier
6852determining if the fetch should be for a read (0) or write (1), and
6853``locality`` is a temporal locality specifier ranging from (0) - no
6854locality, to (3) - extremely local keep in cache. The ``cache type``
6855specifies whether the prefetch is performed on the data (1) or
6856instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6857arguments must be constant integers.
6858
6859Semantics:
6860""""""""""
6861
6862This intrinsic does not modify the behavior of the program. In
6863particular, prefetches cannot trap and do not produce a value. On
6864targets that support this intrinsic, the prefetch can provide hints to
6865the processor cache for better performance.
6866
6867'``llvm.pcmarker``' Intrinsic
6868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6869
6870Syntax:
6871"""""""
6872
6873::
6874
6875 declare void @llvm.pcmarker(i32 <id>)
6876
6877Overview:
6878"""""""""
6879
6880The '``llvm.pcmarker``' intrinsic is a method to export a Program
6881Counter (PC) in a region of code to simulators and other tools. The
6882method is target specific, but it is expected that the marker will use
6883exported symbols to transmit the PC of the marker. The marker makes no
6884guarantees that it will remain with any specific instruction after
6885optimizations. It is possible that the presence of a marker will inhibit
6886optimizations. The intended use is to be inserted after optimizations to
6887allow correlations of simulation runs.
6888
6889Arguments:
6890""""""""""
6891
6892``id`` is a numerical id identifying the marker.
6893
6894Semantics:
6895""""""""""
6896
6897This intrinsic does not modify the behavior of the program. Backends
6898that do not support this intrinsic may ignore it.
6899
6900'``llvm.readcyclecounter``' Intrinsic
6901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6902
6903Syntax:
6904"""""""
6905
6906::
6907
6908 declare i64 @llvm.readcyclecounter()
6909
6910Overview:
6911"""""""""
6912
6913The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6914counter register (or similar low latency, high accuracy clocks) on those
6915targets that support it. On X86, it should map to RDTSC. On Alpha, it
6916should map to RPCC. As the backing counters overflow quickly (on the
6917order of 9 seconds on alpha), this should only be used for small
6918timings.
6919
6920Semantics:
6921""""""""""
6922
6923When directly supported, reading the cycle counter should not modify any
6924memory. Implementations are allowed to either return a application
6925specific value or a system wide value. On backends without support, this
6926is lowered to a constant 0.
6927
Tim Northoverbc933082013-05-23 19:11:20 +00006928Note that runtime support may be conditional on the privilege-level code is
6929running at and the host platform.
6930
Sean Silvab084af42012-12-07 10:36:55 +00006931Standard C Library Intrinsics
6932-----------------------------
6933
6934LLVM provides intrinsics for a few important standard C library
6935functions. These intrinsics allow source-language front-ends to pass
6936information about the alignment of the pointer arguments to the code
6937generator, providing opportunity for more efficient code generation.
6938
6939.. _int_memcpy:
6940
6941'``llvm.memcpy``' Intrinsic
6942^^^^^^^^^^^^^^^^^^^^^^^^^^^
6943
6944Syntax:
6945"""""""
6946
6947This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6948integer bit width and for different address spaces. Not all targets
6949support all bit widths however.
6950
6951::
6952
6953 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6954 i32 <len>, i32 <align>, i1 <isvolatile>)
6955 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6956 i64 <len>, i32 <align>, i1 <isvolatile>)
6957
6958Overview:
6959"""""""""
6960
6961The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6962source location to the destination location.
6963
6964Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6965intrinsics do not return a value, takes extra alignment/isvolatile
6966arguments and the pointers can be in specified address spaces.
6967
6968Arguments:
6969""""""""""
6970
6971The first argument is a pointer to the destination, the second is a
6972pointer to the source. The third argument is an integer argument
6973specifying the number of bytes to copy, the fourth argument is the
6974alignment of the source and destination locations, and the fifth is a
6975boolean indicating a volatile access.
6976
6977If the call to this intrinsic has an alignment value that is not 0 or 1,
6978then the caller guarantees that both the source and destination pointers
6979are aligned to that boundary.
6980
6981If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6982a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6983very cleanly specified and it is unwise to depend on it.
6984
6985Semantics:
6986""""""""""
6987
6988The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6989source location to the destination location, which are not allowed to
6990overlap. It copies "len" bytes of memory over. If the argument is known
6991to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006992argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006993
6994'``llvm.memmove``' Intrinsic
6995^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6996
6997Syntax:
6998"""""""
6999
7000This is an overloaded intrinsic. You can use llvm.memmove on any integer
7001bit width and for different address space. Not all targets support all
7002bit widths however.
7003
7004::
7005
7006 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7007 i32 <len>, i32 <align>, i1 <isvolatile>)
7008 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7009 i64 <len>, i32 <align>, i1 <isvolatile>)
7010
7011Overview:
7012"""""""""
7013
7014The '``llvm.memmove.*``' intrinsics move a block of memory from the
7015source location to the destination location. It is similar to the
7016'``llvm.memcpy``' intrinsic but allows the two memory locations to
7017overlap.
7018
7019Note that, unlike the standard libc function, the ``llvm.memmove.*``
7020intrinsics do not return a value, takes extra alignment/isvolatile
7021arguments and the pointers can be in specified address spaces.
7022
7023Arguments:
7024""""""""""
7025
7026The first argument is a pointer to the destination, the second is a
7027pointer to the source. The third argument is an integer argument
7028specifying the number of bytes to copy, the fourth argument is the
7029alignment of the source and destination locations, and the fifth is a
7030boolean indicating a volatile access.
7031
7032If the call to this intrinsic has an alignment value that is not 0 or 1,
7033then the caller guarantees that the source and destination pointers are
7034aligned to that boundary.
7035
7036If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7037is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7038not very cleanly specified and it is unwise to depend on it.
7039
7040Semantics:
7041""""""""""
7042
7043The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7044source location to the destination location, which may overlap. It
7045copies "len" bytes of memory over. If the argument is known to be
7046aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007047otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007048
7049'``llvm.memset.*``' Intrinsics
7050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7051
7052Syntax:
7053"""""""
7054
7055This is an overloaded intrinsic. You can use llvm.memset on any integer
7056bit width and for different address spaces. However, not all targets
7057support all bit widths.
7058
7059::
7060
7061 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7062 i32 <len>, i32 <align>, i1 <isvolatile>)
7063 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7064 i64 <len>, i32 <align>, i1 <isvolatile>)
7065
7066Overview:
7067"""""""""
7068
7069The '``llvm.memset.*``' intrinsics fill a block of memory with a
7070particular byte value.
7071
7072Note that, unlike the standard libc function, the ``llvm.memset``
7073intrinsic does not return a value and takes extra alignment/volatile
7074arguments. Also, the destination can be in an arbitrary address space.
7075
7076Arguments:
7077""""""""""
7078
7079The first argument is a pointer to the destination to fill, the second
7080is the byte value with which to fill it, the third argument is an
7081integer argument specifying the number of bytes to fill, and the fourth
7082argument is the known alignment of the destination location.
7083
7084If the call to this intrinsic has an alignment value that is not 0 or 1,
7085then the caller guarantees that the destination pointer is aligned to
7086that boundary.
7087
7088If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7089a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7090very cleanly specified and it is unwise to depend on it.
7091
7092Semantics:
7093""""""""""
7094
7095The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7096at the destination location. If the argument is known to be aligned to
7097some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007098it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007099
7100'``llvm.sqrt.*``' Intrinsic
7101^^^^^^^^^^^^^^^^^^^^^^^^^^^
7102
7103Syntax:
7104"""""""
7105
7106This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7107floating point or vector of floating point type. Not all targets support
7108all types however.
7109
7110::
7111
7112 declare float @llvm.sqrt.f32(float %Val)
7113 declare double @llvm.sqrt.f64(double %Val)
7114 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7115 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7116 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7117
7118Overview:
7119"""""""""
7120
7121The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7122returning the same value as the libm '``sqrt``' functions would. Unlike
7123``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7124negative numbers other than -0.0 (which allows for better optimization,
7125because there is no need to worry about errno being set).
7126``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7127
7128Arguments:
7129""""""""""
7130
7131The argument and return value are floating point numbers of the same
7132type.
7133
7134Semantics:
7135""""""""""
7136
7137This function returns the sqrt of the specified operand if it is a
7138nonnegative floating point number.
7139
7140'``llvm.powi.*``' Intrinsic
7141^^^^^^^^^^^^^^^^^^^^^^^^^^^
7142
7143Syntax:
7144"""""""
7145
7146This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7147floating point or vector of floating point type. Not all targets support
7148all types however.
7149
7150::
7151
7152 declare float @llvm.powi.f32(float %Val, i32 %power)
7153 declare double @llvm.powi.f64(double %Val, i32 %power)
7154 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7155 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7156 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7157
7158Overview:
7159"""""""""
7160
7161The '``llvm.powi.*``' intrinsics return the first operand raised to the
7162specified (positive or negative) power. The order of evaluation of
7163multiplications is not defined. When a vector of floating point type is
7164used, the second argument remains a scalar integer value.
7165
7166Arguments:
7167""""""""""
7168
7169The second argument is an integer power, and the first is a value to
7170raise to that power.
7171
7172Semantics:
7173""""""""""
7174
7175This function returns the first value raised to the second power with an
7176unspecified sequence of rounding operations.
7177
7178'``llvm.sin.*``' Intrinsic
7179^^^^^^^^^^^^^^^^^^^^^^^^^^
7180
7181Syntax:
7182"""""""
7183
7184This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7185floating point or vector of floating point type. Not all targets support
7186all types however.
7187
7188::
7189
7190 declare float @llvm.sin.f32(float %Val)
7191 declare double @llvm.sin.f64(double %Val)
7192 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7193 declare fp128 @llvm.sin.f128(fp128 %Val)
7194 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7195
7196Overview:
7197"""""""""
7198
7199The '``llvm.sin.*``' intrinsics return the sine of the operand.
7200
7201Arguments:
7202""""""""""
7203
7204The argument and return value are floating point numbers of the same
7205type.
7206
7207Semantics:
7208""""""""""
7209
7210This function returns the sine of the specified operand, returning the
7211same values as the libm ``sin`` functions would, and handles error
7212conditions in the same way.
7213
7214'``llvm.cos.*``' Intrinsic
7215^^^^^^^^^^^^^^^^^^^^^^^^^^
7216
7217Syntax:
7218"""""""
7219
7220This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7221floating point or vector of floating point type. Not all targets support
7222all types however.
7223
7224::
7225
7226 declare float @llvm.cos.f32(float %Val)
7227 declare double @llvm.cos.f64(double %Val)
7228 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7229 declare fp128 @llvm.cos.f128(fp128 %Val)
7230 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7231
7232Overview:
7233"""""""""
7234
7235The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7236
7237Arguments:
7238""""""""""
7239
7240The argument and return value are floating point numbers of the same
7241type.
7242
7243Semantics:
7244""""""""""
7245
7246This function returns the cosine of the specified operand, returning the
7247same values as the libm ``cos`` functions would, and handles error
7248conditions in the same way.
7249
7250'``llvm.pow.*``' Intrinsic
7251^^^^^^^^^^^^^^^^^^^^^^^^^^
7252
7253Syntax:
7254"""""""
7255
7256This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7257floating point or vector of floating point type. Not all targets support
7258all types however.
7259
7260::
7261
7262 declare float @llvm.pow.f32(float %Val, float %Power)
7263 declare double @llvm.pow.f64(double %Val, double %Power)
7264 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7265 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7266 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7267
7268Overview:
7269"""""""""
7270
7271The '``llvm.pow.*``' intrinsics return the first operand raised to the
7272specified (positive or negative) power.
7273
7274Arguments:
7275""""""""""
7276
7277The second argument is a floating point power, and the first is a value
7278to raise to that power.
7279
7280Semantics:
7281""""""""""
7282
7283This function returns the first value raised to the second power,
7284returning the same values as the libm ``pow`` functions would, and
7285handles error conditions in the same way.
7286
7287'``llvm.exp.*``' Intrinsic
7288^^^^^^^^^^^^^^^^^^^^^^^^^^
7289
7290Syntax:
7291"""""""
7292
7293This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7294floating point or vector of floating point type. Not all targets support
7295all types however.
7296
7297::
7298
7299 declare float @llvm.exp.f32(float %Val)
7300 declare double @llvm.exp.f64(double %Val)
7301 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7302 declare fp128 @llvm.exp.f128(fp128 %Val)
7303 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7304
7305Overview:
7306"""""""""
7307
7308The '``llvm.exp.*``' intrinsics perform the exp function.
7309
7310Arguments:
7311""""""""""
7312
7313The argument and return value are floating point numbers of the same
7314type.
7315
7316Semantics:
7317""""""""""
7318
7319This function returns the same values as the libm ``exp`` functions
7320would, and handles error conditions in the same way.
7321
7322'``llvm.exp2.*``' Intrinsic
7323^^^^^^^^^^^^^^^^^^^^^^^^^^^
7324
7325Syntax:
7326"""""""
7327
7328This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7329floating point or vector of floating point type. Not all targets support
7330all types however.
7331
7332::
7333
7334 declare float @llvm.exp2.f32(float %Val)
7335 declare double @llvm.exp2.f64(double %Val)
7336 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7337 declare fp128 @llvm.exp2.f128(fp128 %Val)
7338 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7339
7340Overview:
7341"""""""""
7342
7343The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7344
7345Arguments:
7346""""""""""
7347
7348The argument and return value are floating point numbers of the same
7349type.
7350
7351Semantics:
7352""""""""""
7353
7354This function returns the same values as the libm ``exp2`` functions
7355would, and handles error conditions in the same way.
7356
7357'``llvm.log.*``' Intrinsic
7358^^^^^^^^^^^^^^^^^^^^^^^^^^
7359
7360Syntax:
7361"""""""
7362
7363This is an overloaded intrinsic. You can use ``llvm.log`` on any
7364floating point or vector of floating point type. Not all targets support
7365all types however.
7366
7367::
7368
7369 declare float @llvm.log.f32(float %Val)
7370 declare double @llvm.log.f64(double %Val)
7371 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7372 declare fp128 @llvm.log.f128(fp128 %Val)
7373 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7374
7375Overview:
7376"""""""""
7377
7378The '``llvm.log.*``' intrinsics perform the log function.
7379
7380Arguments:
7381""""""""""
7382
7383The argument and return value are floating point numbers of the same
7384type.
7385
7386Semantics:
7387""""""""""
7388
7389This function returns the same values as the libm ``log`` functions
7390would, and handles error conditions in the same way.
7391
7392'``llvm.log10.*``' Intrinsic
7393^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7394
7395Syntax:
7396"""""""
7397
7398This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7399floating point or vector of floating point type. Not all targets support
7400all types however.
7401
7402::
7403
7404 declare float @llvm.log10.f32(float %Val)
7405 declare double @llvm.log10.f64(double %Val)
7406 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7407 declare fp128 @llvm.log10.f128(fp128 %Val)
7408 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7409
7410Overview:
7411"""""""""
7412
7413The '``llvm.log10.*``' intrinsics perform the log10 function.
7414
7415Arguments:
7416""""""""""
7417
7418The argument and return value are floating point numbers of the same
7419type.
7420
7421Semantics:
7422""""""""""
7423
7424This function returns the same values as the libm ``log10`` functions
7425would, and handles error conditions in the same way.
7426
7427'``llvm.log2.*``' Intrinsic
7428^^^^^^^^^^^^^^^^^^^^^^^^^^^
7429
7430Syntax:
7431"""""""
7432
7433This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7434floating point or vector of floating point type. Not all targets support
7435all types however.
7436
7437::
7438
7439 declare float @llvm.log2.f32(float %Val)
7440 declare double @llvm.log2.f64(double %Val)
7441 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7442 declare fp128 @llvm.log2.f128(fp128 %Val)
7443 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7444
7445Overview:
7446"""""""""
7447
7448The '``llvm.log2.*``' intrinsics perform the log2 function.
7449
7450Arguments:
7451""""""""""
7452
7453The argument and return value are floating point numbers of the same
7454type.
7455
7456Semantics:
7457""""""""""
7458
7459This function returns the same values as the libm ``log2`` functions
7460would, and handles error conditions in the same way.
7461
7462'``llvm.fma.*``' Intrinsic
7463^^^^^^^^^^^^^^^^^^^^^^^^^^
7464
7465Syntax:
7466"""""""
7467
7468This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7469floating point or vector of floating point type. Not all targets support
7470all types however.
7471
7472::
7473
7474 declare float @llvm.fma.f32(float %a, float %b, float %c)
7475 declare double @llvm.fma.f64(double %a, double %b, double %c)
7476 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7477 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7478 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7479
7480Overview:
7481"""""""""
7482
7483The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7484operation.
7485
7486Arguments:
7487""""""""""
7488
7489The argument and return value are floating point numbers of the same
7490type.
7491
7492Semantics:
7493""""""""""
7494
7495This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007496would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007497
7498'``llvm.fabs.*``' Intrinsic
7499^^^^^^^^^^^^^^^^^^^^^^^^^^^
7500
7501Syntax:
7502"""""""
7503
7504This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7505floating point or vector of floating point type. Not all targets support
7506all types however.
7507
7508::
7509
7510 declare float @llvm.fabs.f32(float %Val)
7511 declare double @llvm.fabs.f64(double %Val)
7512 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7513 declare fp128 @llvm.fabs.f128(fp128 %Val)
7514 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7515
7516Overview:
7517"""""""""
7518
7519The '``llvm.fabs.*``' intrinsics return the absolute value of the
7520operand.
7521
7522Arguments:
7523""""""""""
7524
7525The argument and return value are floating point numbers of the same
7526type.
7527
7528Semantics:
7529""""""""""
7530
7531This function returns the same values as the libm ``fabs`` functions
7532would, and handles error conditions in the same way.
7533
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007534'``llvm.copysign.*``' Intrinsic
7535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7536
7537Syntax:
7538"""""""
7539
7540This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7541floating point or vector of floating point type. Not all targets support
7542all types however.
7543
7544::
7545
7546 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7547 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7548 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7549 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7550 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7551
7552Overview:
7553"""""""""
7554
7555The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7556first operand and the sign of the second operand.
7557
7558Arguments:
7559""""""""""
7560
7561The arguments and return value are floating point numbers of the same
7562type.
7563
7564Semantics:
7565""""""""""
7566
7567This function returns the same values as the libm ``copysign``
7568functions would, and handles error conditions in the same way.
7569
Sean Silvab084af42012-12-07 10:36:55 +00007570'``llvm.floor.*``' Intrinsic
7571^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7572
7573Syntax:
7574"""""""
7575
7576This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7577floating point or vector of floating point type. Not all targets support
7578all types however.
7579
7580::
7581
7582 declare float @llvm.floor.f32(float %Val)
7583 declare double @llvm.floor.f64(double %Val)
7584 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7585 declare fp128 @llvm.floor.f128(fp128 %Val)
7586 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7587
7588Overview:
7589"""""""""
7590
7591The '``llvm.floor.*``' intrinsics return the floor of the operand.
7592
7593Arguments:
7594""""""""""
7595
7596The argument and return value are floating point numbers of the same
7597type.
7598
7599Semantics:
7600""""""""""
7601
7602This function returns the same values as the libm ``floor`` functions
7603would, and handles error conditions in the same way.
7604
7605'``llvm.ceil.*``' Intrinsic
7606^^^^^^^^^^^^^^^^^^^^^^^^^^^
7607
7608Syntax:
7609"""""""
7610
7611This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7612floating point or vector of floating point type. Not all targets support
7613all types however.
7614
7615::
7616
7617 declare float @llvm.ceil.f32(float %Val)
7618 declare double @llvm.ceil.f64(double %Val)
7619 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7620 declare fp128 @llvm.ceil.f128(fp128 %Val)
7621 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7622
7623Overview:
7624"""""""""
7625
7626The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7627
7628Arguments:
7629""""""""""
7630
7631The argument and return value are floating point numbers of the same
7632type.
7633
7634Semantics:
7635""""""""""
7636
7637This function returns the same values as the libm ``ceil`` functions
7638would, and handles error conditions in the same way.
7639
7640'``llvm.trunc.*``' Intrinsic
7641^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7642
7643Syntax:
7644"""""""
7645
7646This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7647floating point or vector of floating point type. Not all targets support
7648all types however.
7649
7650::
7651
7652 declare float @llvm.trunc.f32(float %Val)
7653 declare double @llvm.trunc.f64(double %Val)
7654 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7655 declare fp128 @llvm.trunc.f128(fp128 %Val)
7656 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7657
7658Overview:
7659"""""""""
7660
7661The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7662nearest integer not larger in magnitude than the operand.
7663
7664Arguments:
7665""""""""""
7666
7667The argument and return value are floating point numbers of the same
7668type.
7669
7670Semantics:
7671""""""""""
7672
7673This function returns the same values as the libm ``trunc`` functions
7674would, and handles error conditions in the same way.
7675
7676'``llvm.rint.*``' Intrinsic
7677^^^^^^^^^^^^^^^^^^^^^^^^^^^
7678
7679Syntax:
7680"""""""
7681
7682This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7683floating point or vector of floating point type. Not all targets support
7684all types however.
7685
7686::
7687
7688 declare float @llvm.rint.f32(float %Val)
7689 declare double @llvm.rint.f64(double %Val)
7690 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7691 declare fp128 @llvm.rint.f128(fp128 %Val)
7692 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7693
7694Overview:
7695"""""""""
7696
7697The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7698nearest integer. It may raise an inexact floating-point exception if the
7699operand isn't an integer.
7700
7701Arguments:
7702""""""""""
7703
7704The argument and return value are floating point numbers of the same
7705type.
7706
7707Semantics:
7708""""""""""
7709
7710This function returns the same values as the libm ``rint`` functions
7711would, and handles error conditions in the same way.
7712
7713'``llvm.nearbyint.*``' Intrinsic
7714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7715
7716Syntax:
7717"""""""
7718
7719This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7720floating point or vector of floating point type. Not all targets support
7721all types however.
7722
7723::
7724
7725 declare float @llvm.nearbyint.f32(float %Val)
7726 declare double @llvm.nearbyint.f64(double %Val)
7727 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7728 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7729 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7730
7731Overview:
7732"""""""""
7733
7734The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7735nearest integer.
7736
7737Arguments:
7738""""""""""
7739
7740The argument and return value are floating point numbers of the same
7741type.
7742
7743Semantics:
7744""""""""""
7745
7746This function returns the same values as the libm ``nearbyint``
7747functions would, and handles error conditions in the same way.
7748
Hal Finkel171817e2013-08-07 22:49:12 +00007749'``llvm.round.*``' Intrinsic
7750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7751
7752Syntax:
7753"""""""
7754
7755This is an overloaded intrinsic. You can use ``llvm.round`` on any
7756floating point or vector of floating point type. Not all targets support
7757all types however.
7758
7759::
7760
7761 declare float @llvm.round.f32(float %Val)
7762 declare double @llvm.round.f64(double %Val)
7763 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7764 declare fp128 @llvm.round.f128(fp128 %Val)
7765 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7766
7767Overview:
7768"""""""""
7769
7770The '``llvm.round.*``' intrinsics returns the operand rounded to the
7771nearest integer.
7772
7773Arguments:
7774""""""""""
7775
7776The argument and return value are floating point numbers of the same
7777type.
7778
7779Semantics:
7780""""""""""
7781
7782This function returns the same values as the libm ``round``
7783functions would, and handles error conditions in the same way.
7784
Sean Silvab084af42012-12-07 10:36:55 +00007785Bit Manipulation Intrinsics
7786---------------------------
7787
7788LLVM provides intrinsics for a few important bit manipulation
7789operations. These allow efficient code generation for some algorithms.
7790
7791'``llvm.bswap.*``' Intrinsics
7792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7793
7794Syntax:
7795"""""""
7796
7797This is an overloaded intrinsic function. You can use bswap on any
7798integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7799
7800::
7801
7802 declare i16 @llvm.bswap.i16(i16 <id>)
7803 declare i32 @llvm.bswap.i32(i32 <id>)
7804 declare i64 @llvm.bswap.i64(i64 <id>)
7805
7806Overview:
7807"""""""""
7808
7809The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7810values with an even number of bytes (positive multiple of 16 bits).
7811These are useful for performing operations on data that is not in the
7812target's native byte order.
7813
7814Semantics:
7815""""""""""
7816
7817The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7818and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7819intrinsic returns an i32 value that has the four bytes of the input i32
7820swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7821returned i32 will have its bytes in 3, 2, 1, 0 order. The
7822``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7823concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7824respectively).
7825
7826'``llvm.ctpop.*``' Intrinsic
7827^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7828
7829Syntax:
7830"""""""
7831
7832This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7833bit width, or on any vector with integer elements. Not all targets
7834support all bit widths or vector types, however.
7835
7836::
7837
7838 declare i8 @llvm.ctpop.i8(i8 <src>)
7839 declare i16 @llvm.ctpop.i16(i16 <src>)
7840 declare i32 @llvm.ctpop.i32(i32 <src>)
7841 declare i64 @llvm.ctpop.i64(i64 <src>)
7842 declare i256 @llvm.ctpop.i256(i256 <src>)
7843 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7844
7845Overview:
7846"""""""""
7847
7848The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7849in a value.
7850
7851Arguments:
7852""""""""""
7853
7854The only argument is the value to be counted. The argument may be of any
7855integer type, or a vector with integer elements. The return type must
7856match the argument type.
7857
7858Semantics:
7859""""""""""
7860
7861The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7862each element of a vector.
7863
7864'``llvm.ctlz.*``' Intrinsic
7865^^^^^^^^^^^^^^^^^^^^^^^^^^^
7866
7867Syntax:
7868"""""""
7869
7870This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7871integer bit width, or any vector whose elements are integers. Not all
7872targets support all bit widths or vector types, however.
7873
7874::
7875
7876 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7877 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7878 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7879 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7880 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7881 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7882
7883Overview:
7884"""""""""
7885
7886The '``llvm.ctlz``' family of intrinsic functions counts the number of
7887leading zeros in a variable.
7888
7889Arguments:
7890""""""""""
7891
7892The first argument is the value to be counted. This argument may be of
7893any integer type, or a vectory with integer element type. The return
7894type must match the first argument type.
7895
7896The second argument must be a constant and is a flag to indicate whether
7897the intrinsic should ensure that a zero as the first argument produces a
7898defined result. Historically some architectures did not provide a
7899defined result for zero values as efficiently, and many algorithms are
7900now predicated on avoiding zero-value inputs.
7901
7902Semantics:
7903""""""""""
7904
7905The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7906zeros in a variable, or within each element of the vector. If
7907``src == 0`` then the result is the size in bits of the type of ``src``
7908if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7909``llvm.ctlz(i32 2) = 30``.
7910
7911'``llvm.cttz.*``' Intrinsic
7912^^^^^^^^^^^^^^^^^^^^^^^^^^^
7913
7914Syntax:
7915"""""""
7916
7917This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7918integer bit width, or any vector of integer elements. Not all targets
7919support all bit widths or vector types, however.
7920
7921::
7922
7923 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7924 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7925 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7926 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7927 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7928 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7929
7930Overview:
7931"""""""""
7932
7933The '``llvm.cttz``' family of intrinsic functions counts the number of
7934trailing zeros.
7935
7936Arguments:
7937""""""""""
7938
7939The first argument is the value to be counted. This argument may be of
7940any integer type, or a vectory with integer element type. The return
7941type must match the first argument type.
7942
7943The second argument must be a constant and is a flag to indicate whether
7944the intrinsic should ensure that a zero as the first argument produces a
7945defined result. Historically some architectures did not provide a
7946defined result for zero values as efficiently, and many algorithms are
7947now predicated on avoiding zero-value inputs.
7948
7949Semantics:
7950""""""""""
7951
7952The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7953zeros in a variable, or within each element of a vector. If ``src == 0``
7954then the result is the size in bits of the type of ``src`` if
7955``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7956``llvm.cttz(2) = 1``.
7957
7958Arithmetic with Overflow Intrinsics
7959-----------------------------------
7960
7961LLVM provides intrinsics for some arithmetic with overflow operations.
7962
7963'``llvm.sadd.with.overflow.*``' Intrinsics
7964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7965
7966Syntax:
7967"""""""
7968
7969This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7970on any integer bit width.
7971
7972::
7973
7974 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7975 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7976 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7977
7978Overview:
7979"""""""""
7980
7981The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7982a signed addition of the two arguments, and indicate whether an overflow
7983occurred during the signed summation.
7984
7985Arguments:
7986""""""""""
7987
7988The arguments (%a and %b) and the first element of the result structure
7989may be of integer types of any bit width, but they must have the same
7990bit width. The second element of the result structure must be of type
7991``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7992addition.
7993
7994Semantics:
7995""""""""""
7996
7997The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007998a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007999first element of which is the signed summation, and the second element
8000of which is a bit specifying if the signed summation resulted in an
8001overflow.
8002
8003Examples:
8004"""""""""
8005
8006.. code-block:: llvm
8007
8008 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8009 %sum = extractvalue {i32, i1} %res, 0
8010 %obit = extractvalue {i32, i1} %res, 1
8011 br i1 %obit, label %overflow, label %normal
8012
8013'``llvm.uadd.with.overflow.*``' Intrinsics
8014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8015
8016Syntax:
8017"""""""
8018
8019This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8020on any integer bit width.
8021
8022::
8023
8024 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8025 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8026 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8027
8028Overview:
8029"""""""""
8030
8031The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8032an unsigned addition of the two arguments, and indicate whether a carry
8033occurred during the unsigned summation.
8034
8035Arguments:
8036""""""""""
8037
8038The arguments (%a and %b) and the first element of the result structure
8039may be of integer types of any bit width, but they must have the same
8040bit width. The second element of the result structure must be of type
8041``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8042addition.
8043
8044Semantics:
8045""""""""""
8046
8047The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008048an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008049first element of which is the sum, and the second element of which is a
8050bit specifying if the unsigned summation resulted in a carry.
8051
8052Examples:
8053"""""""""
8054
8055.. code-block:: llvm
8056
8057 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8058 %sum = extractvalue {i32, i1} %res, 0
8059 %obit = extractvalue {i32, i1} %res, 1
8060 br i1 %obit, label %carry, label %normal
8061
8062'``llvm.ssub.with.overflow.*``' Intrinsics
8063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8064
8065Syntax:
8066"""""""
8067
8068This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8069on any integer bit width.
8070
8071::
8072
8073 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8074 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8075 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8076
8077Overview:
8078"""""""""
8079
8080The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8081a signed subtraction of the two arguments, and indicate whether an
8082overflow occurred during the signed subtraction.
8083
8084Arguments:
8085""""""""""
8086
8087The arguments (%a and %b) and the first element of the result structure
8088may be of integer types of any bit width, but they must have the same
8089bit width. The second element of the result structure must be of type
8090``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8091subtraction.
8092
8093Semantics:
8094""""""""""
8095
8096The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008097a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008098first element of which is the subtraction, and the second element of
8099which is a bit specifying if the signed subtraction resulted in an
8100overflow.
8101
8102Examples:
8103"""""""""
8104
8105.. code-block:: llvm
8106
8107 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8108 %sum = extractvalue {i32, i1} %res, 0
8109 %obit = extractvalue {i32, i1} %res, 1
8110 br i1 %obit, label %overflow, label %normal
8111
8112'``llvm.usub.with.overflow.*``' Intrinsics
8113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8114
8115Syntax:
8116"""""""
8117
8118This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8119on any integer bit width.
8120
8121::
8122
8123 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8124 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8125 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8126
8127Overview:
8128"""""""""
8129
8130The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8131an unsigned subtraction of the two arguments, and indicate whether an
8132overflow occurred during the unsigned subtraction.
8133
8134Arguments:
8135""""""""""
8136
8137The arguments (%a and %b) and the first element of the result structure
8138may be of integer types of any bit width, but they must have the same
8139bit width. The second element of the result structure must be of type
8140``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8141subtraction.
8142
8143Semantics:
8144""""""""""
8145
8146The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008147an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008148the first element of which is the subtraction, and the second element of
8149which is a bit specifying if the unsigned subtraction resulted in an
8150overflow.
8151
8152Examples:
8153"""""""""
8154
8155.. code-block:: llvm
8156
8157 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8158 %sum = extractvalue {i32, i1} %res, 0
8159 %obit = extractvalue {i32, i1} %res, 1
8160 br i1 %obit, label %overflow, label %normal
8161
8162'``llvm.smul.with.overflow.*``' Intrinsics
8163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8164
8165Syntax:
8166"""""""
8167
8168This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8169on any integer bit width.
8170
8171::
8172
8173 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8174 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8175 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8176
8177Overview:
8178"""""""""
8179
8180The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8181a signed multiplication of the two arguments, and indicate whether an
8182overflow occurred during the signed multiplication.
8183
8184Arguments:
8185""""""""""
8186
8187The arguments (%a and %b) and the first element of the result structure
8188may be of integer types of any bit width, but they must have the same
8189bit width. The second element of the result structure must be of type
8190``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8191multiplication.
8192
8193Semantics:
8194""""""""""
8195
8196The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008197a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008198the first element of which is the multiplication, and the second element
8199of which is a bit specifying if the signed multiplication resulted in an
8200overflow.
8201
8202Examples:
8203"""""""""
8204
8205.. code-block:: llvm
8206
8207 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8208 %sum = extractvalue {i32, i1} %res, 0
8209 %obit = extractvalue {i32, i1} %res, 1
8210 br i1 %obit, label %overflow, label %normal
8211
8212'``llvm.umul.with.overflow.*``' Intrinsics
8213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8214
8215Syntax:
8216"""""""
8217
8218This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8219on any integer bit width.
8220
8221::
8222
8223 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8224 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8225 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8226
8227Overview:
8228"""""""""
8229
8230The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8231a unsigned multiplication of the two arguments, and indicate whether an
8232overflow occurred during the unsigned multiplication.
8233
8234Arguments:
8235""""""""""
8236
8237The arguments (%a and %b) and the first element of the result structure
8238may be of integer types of any bit width, but they must have the same
8239bit width. The second element of the result structure must be of type
8240``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8241multiplication.
8242
8243Semantics:
8244""""""""""
8245
8246The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008247an unsigned multiplication of the two arguments. They return a structure ---
8248the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008249element of which is a bit specifying if the unsigned multiplication
8250resulted in an overflow.
8251
8252Examples:
8253"""""""""
8254
8255.. code-block:: llvm
8256
8257 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8258 %sum = extractvalue {i32, i1} %res, 0
8259 %obit = extractvalue {i32, i1} %res, 1
8260 br i1 %obit, label %overflow, label %normal
8261
8262Specialised Arithmetic Intrinsics
8263---------------------------------
8264
8265'``llvm.fmuladd.*``' Intrinsic
8266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8267
8268Syntax:
8269"""""""
8270
8271::
8272
8273 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8274 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8275
8276Overview:
8277"""""""""
8278
8279The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008280expressions that can be fused if the code generator determines that (a) the
8281target instruction set has support for a fused operation, and (b) that the
8282fused operation is more efficient than the equivalent, separate pair of mul
8283and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008284
8285Arguments:
8286""""""""""
8287
8288The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8289multiplicands, a and b, and an addend c.
8290
8291Semantics:
8292""""""""""
8293
8294The expression:
8295
8296::
8297
8298 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8299
8300is equivalent to the expression a \* b + c, except that rounding will
8301not be performed between the multiplication and addition steps if the
8302code generator fuses the operations. Fusion is not guaranteed, even if
8303the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008304corresponding llvm.fma.\* intrinsic function should be used
8305instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008306
8307Examples:
8308"""""""""
8309
8310.. code-block:: llvm
8311
8312 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8313
8314Half Precision Floating Point Intrinsics
8315----------------------------------------
8316
8317For most target platforms, half precision floating point is a
8318storage-only format. This means that it is a dense encoding (in memory)
8319but does not support computation in the format.
8320
8321This means that code must first load the half-precision floating point
8322value as an i16, then convert it to float with
8323:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8324then be performed on the float value (including extending to double
8325etc). To store the value back to memory, it is first converted to float
8326if needed, then converted to i16 with
8327:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8328i16 value.
8329
8330.. _int_convert_to_fp16:
8331
8332'``llvm.convert.to.fp16``' Intrinsic
8333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8334
8335Syntax:
8336"""""""
8337
8338::
8339
8340 declare i16 @llvm.convert.to.fp16(f32 %a)
8341
8342Overview:
8343"""""""""
8344
8345The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8346from single precision floating point format to half precision floating
8347point format.
8348
8349Arguments:
8350""""""""""
8351
8352The intrinsic function contains single argument - the value to be
8353converted.
8354
8355Semantics:
8356""""""""""
8357
8358The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8359from single precision floating point format to half precision floating
8360point format. The return value is an ``i16`` which contains the
8361converted number.
8362
8363Examples:
8364"""""""""
8365
8366.. code-block:: llvm
8367
8368 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8369 store i16 %res, i16* @x, align 2
8370
8371.. _int_convert_from_fp16:
8372
8373'``llvm.convert.from.fp16``' Intrinsic
8374^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8375
8376Syntax:
8377"""""""
8378
8379::
8380
8381 declare f32 @llvm.convert.from.fp16(i16 %a)
8382
8383Overview:
8384"""""""""
8385
8386The '``llvm.convert.from.fp16``' intrinsic function performs a
8387conversion from half precision floating point format to single precision
8388floating point format.
8389
8390Arguments:
8391""""""""""
8392
8393The intrinsic function contains single argument - the value to be
8394converted.
8395
8396Semantics:
8397""""""""""
8398
8399The '``llvm.convert.from.fp16``' intrinsic function performs a
8400conversion from half single precision floating point format to single
8401precision floating point format. The input half-float value is
8402represented by an ``i16`` value.
8403
8404Examples:
8405"""""""""
8406
8407.. code-block:: llvm
8408
8409 %a = load i16* @x, align 2
8410 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8411
8412Debugger Intrinsics
8413-------------------
8414
8415The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8416prefix), are described in the `LLVM Source Level
8417Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8418document.
8419
8420Exception Handling Intrinsics
8421-----------------------------
8422
8423The LLVM exception handling intrinsics (which all start with
8424``llvm.eh.`` prefix), are described in the `LLVM Exception
8425Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8426
8427.. _int_trampoline:
8428
8429Trampoline Intrinsics
8430---------------------
8431
8432These intrinsics make it possible to excise one parameter, marked with
8433the :ref:`nest <nest>` attribute, from a function. The result is a
8434callable function pointer lacking the nest parameter - the caller does
8435not need to provide a value for it. Instead, the value to use is stored
8436in advance in a "trampoline", a block of memory usually allocated on the
8437stack, which also contains code to splice the nest value into the
8438argument list. This is used to implement the GCC nested function address
8439extension.
8440
8441For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8442then the resulting function pointer has signature ``i32 (i32, i32)*``.
8443It can be created as follows:
8444
8445.. code-block:: llvm
8446
8447 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8448 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8449 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8450 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8451 %fp = bitcast i8* %p to i32 (i32, i32)*
8452
8453The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8454``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8455
8456.. _int_it:
8457
8458'``llvm.init.trampoline``' Intrinsic
8459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8460
8461Syntax:
8462"""""""
8463
8464::
8465
8466 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8467
8468Overview:
8469"""""""""
8470
8471This fills the memory pointed to by ``tramp`` with executable code,
8472turning it into a trampoline.
8473
8474Arguments:
8475""""""""""
8476
8477The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8478pointers. The ``tramp`` argument must point to a sufficiently large and
8479sufficiently aligned block of memory; this memory is written to by the
8480intrinsic. Note that the size and the alignment are target-specific -
8481LLVM currently provides no portable way of determining them, so a
8482front-end that generates this intrinsic needs to have some
8483target-specific knowledge. The ``func`` argument must hold a function
8484bitcast to an ``i8*``.
8485
8486Semantics:
8487""""""""""
8488
8489The block of memory pointed to by ``tramp`` is filled with target
8490dependent code, turning it into a function. Then ``tramp`` needs to be
8491passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8492be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8493function's signature is the same as that of ``func`` with any arguments
8494marked with the ``nest`` attribute removed. At most one such ``nest``
8495argument is allowed, and it must be of pointer type. Calling the new
8496function is equivalent to calling ``func`` with the same argument list,
8497but with ``nval`` used for the missing ``nest`` argument. If, after
8498calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8499modified, then the effect of any later call to the returned function
8500pointer is undefined.
8501
8502.. _int_at:
8503
8504'``llvm.adjust.trampoline``' Intrinsic
8505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8506
8507Syntax:
8508"""""""
8509
8510::
8511
8512 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8513
8514Overview:
8515"""""""""
8516
8517This performs any required machine-specific adjustment to the address of
8518a trampoline (passed as ``tramp``).
8519
8520Arguments:
8521""""""""""
8522
8523``tramp`` must point to a block of memory which already has trampoline
8524code filled in by a previous call to
8525:ref:`llvm.init.trampoline <int_it>`.
8526
8527Semantics:
8528""""""""""
8529
8530On some architectures the address of the code to be executed needs to be
8531different to the address where the trampoline is actually stored. This
8532intrinsic returns the executable address corresponding to ``tramp``
8533after performing the required machine specific adjustments. The pointer
8534returned can then be :ref:`bitcast and executed <int_trampoline>`.
8535
8536Memory Use Markers
8537------------------
8538
8539This class of intrinsics exists to information about the lifetime of
8540memory objects and ranges where variables are immutable.
8541
Reid Klecknera534a382013-12-19 02:14:12 +00008542.. _int_lifestart:
8543
Sean Silvab084af42012-12-07 10:36:55 +00008544'``llvm.lifetime.start``' Intrinsic
8545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8546
8547Syntax:
8548"""""""
8549
8550::
8551
8552 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8553
8554Overview:
8555"""""""""
8556
8557The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8558object's lifetime.
8559
8560Arguments:
8561""""""""""
8562
8563The first argument is a constant integer representing the size of the
8564object, or -1 if it is variable sized. The second argument is a pointer
8565to the object.
8566
8567Semantics:
8568""""""""""
8569
8570This intrinsic indicates that before this point in the code, the value
8571of the memory pointed to by ``ptr`` is dead. This means that it is known
8572to never be used and has an undefined value. A load from the pointer
8573that precedes this intrinsic can be replaced with ``'undef'``.
8574
Reid Klecknera534a382013-12-19 02:14:12 +00008575.. _int_lifeend:
8576
Sean Silvab084af42012-12-07 10:36:55 +00008577'``llvm.lifetime.end``' Intrinsic
8578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8579
8580Syntax:
8581"""""""
8582
8583::
8584
8585 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8586
8587Overview:
8588"""""""""
8589
8590The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8591object's lifetime.
8592
8593Arguments:
8594""""""""""
8595
8596The first argument is a constant integer representing the size of the
8597object, or -1 if it is variable sized. The second argument is a pointer
8598to the object.
8599
8600Semantics:
8601""""""""""
8602
8603This intrinsic indicates that after this point in the code, the value of
8604the memory pointed to by ``ptr`` is dead. This means that it is known to
8605never be used and has an undefined value. Any stores into the memory
8606object following this intrinsic may be removed as dead.
8607
8608'``llvm.invariant.start``' Intrinsic
8609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8610
8611Syntax:
8612"""""""
8613
8614::
8615
8616 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8617
8618Overview:
8619"""""""""
8620
8621The '``llvm.invariant.start``' intrinsic specifies that the contents of
8622a memory object will not change.
8623
8624Arguments:
8625""""""""""
8626
8627The first argument is a constant integer representing the size of the
8628object, or -1 if it is variable sized. The second argument is a pointer
8629to the object.
8630
8631Semantics:
8632""""""""""
8633
8634This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8635the return value, the referenced memory location is constant and
8636unchanging.
8637
8638'``llvm.invariant.end``' Intrinsic
8639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8640
8641Syntax:
8642"""""""
8643
8644::
8645
8646 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8647
8648Overview:
8649"""""""""
8650
8651The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8652memory object are mutable.
8653
8654Arguments:
8655""""""""""
8656
8657The first argument is the matching ``llvm.invariant.start`` intrinsic.
8658The second argument is a constant integer representing the size of the
8659object, or -1 if it is variable sized and the third argument is a
8660pointer to the object.
8661
8662Semantics:
8663""""""""""
8664
8665This intrinsic indicates that the memory is mutable again.
8666
8667General Intrinsics
8668------------------
8669
8670This class of intrinsics is designed to be generic and has no specific
8671purpose.
8672
8673'``llvm.var.annotation``' Intrinsic
8674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8675
8676Syntax:
8677"""""""
8678
8679::
8680
8681 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8682
8683Overview:
8684"""""""""
8685
8686The '``llvm.var.annotation``' intrinsic.
8687
8688Arguments:
8689""""""""""
8690
8691The first argument is a pointer to a value, the second is a pointer to a
8692global string, the third is a pointer to a global string which is the
8693source file name, and the last argument is the line number.
8694
8695Semantics:
8696""""""""""
8697
8698This intrinsic allows annotation of local variables with arbitrary
8699strings. This can be useful for special purpose optimizations that want
8700to look for these annotations. These have no other defined use; they are
8701ignored by code generation and optimization.
8702
Michael Gottesman88d18832013-03-26 00:34:27 +00008703'``llvm.ptr.annotation.*``' Intrinsic
8704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8705
8706Syntax:
8707"""""""
8708
8709This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8710pointer to an integer of any width. *NOTE* you must specify an address space for
8711the pointer. The identifier for the default address space is the integer
8712'``0``'.
8713
8714::
8715
8716 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8717 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8718 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8719 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8720 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8721
8722Overview:
8723"""""""""
8724
8725The '``llvm.ptr.annotation``' intrinsic.
8726
8727Arguments:
8728""""""""""
8729
8730The first argument is a pointer to an integer value of arbitrary bitwidth
8731(result of some expression), the second is a pointer to a global string, the
8732third is a pointer to a global string which is the source file name, and the
8733last argument is the line number. It returns the value of the first argument.
8734
8735Semantics:
8736""""""""""
8737
8738This intrinsic allows annotation of a pointer to an integer with arbitrary
8739strings. This can be useful for special purpose optimizations that want to look
8740for these annotations. These have no other defined use; they are ignored by code
8741generation and optimization.
8742
Sean Silvab084af42012-12-07 10:36:55 +00008743'``llvm.annotation.*``' Intrinsic
8744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8745
8746Syntax:
8747"""""""
8748
8749This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8750any integer bit width.
8751
8752::
8753
8754 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8755 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8756 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8757 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8758 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8759
8760Overview:
8761"""""""""
8762
8763The '``llvm.annotation``' intrinsic.
8764
8765Arguments:
8766""""""""""
8767
8768The first argument is an integer value (result of some expression), the
8769second is a pointer to a global string, the third is a pointer to a
8770global string which is the source file name, and the last argument is
8771the line number. It returns the value of the first argument.
8772
8773Semantics:
8774""""""""""
8775
8776This intrinsic allows annotations to be put on arbitrary expressions
8777with arbitrary strings. This can be useful for special purpose
8778optimizations that want to look for these annotations. These have no
8779other defined use; they are ignored by code generation and optimization.
8780
8781'``llvm.trap``' Intrinsic
8782^^^^^^^^^^^^^^^^^^^^^^^^^
8783
8784Syntax:
8785"""""""
8786
8787::
8788
8789 declare void @llvm.trap() noreturn nounwind
8790
8791Overview:
8792"""""""""
8793
8794The '``llvm.trap``' intrinsic.
8795
8796Arguments:
8797""""""""""
8798
8799None.
8800
8801Semantics:
8802""""""""""
8803
8804This intrinsic is lowered to the target dependent trap instruction. If
8805the target does not have a trap instruction, this intrinsic will be
8806lowered to a call of the ``abort()`` function.
8807
8808'``llvm.debugtrap``' Intrinsic
8809^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8810
8811Syntax:
8812"""""""
8813
8814::
8815
8816 declare void @llvm.debugtrap() nounwind
8817
8818Overview:
8819"""""""""
8820
8821The '``llvm.debugtrap``' intrinsic.
8822
8823Arguments:
8824""""""""""
8825
8826None.
8827
8828Semantics:
8829""""""""""
8830
8831This intrinsic is lowered to code which is intended to cause an
8832execution trap with the intention of requesting the attention of a
8833debugger.
8834
8835'``llvm.stackprotector``' Intrinsic
8836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8837
8838Syntax:
8839"""""""
8840
8841::
8842
8843 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8844
8845Overview:
8846"""""""""
8847
8848The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8849onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8850is placed on the stack before local variables.
8851
8852Arguments:
8853""""""""""
8854
8855The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8856The first argument is the value loaded from the stack guard
8857``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8858enough space to hold the value of the guard.
8859
8860Semantics:
8861""""""""""
8862
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008863This intrinsic causes the prologue/epilogue inserter to force the position of
8864the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8865to ensure that if a local variable on the stack is overwritten, it will destroy
8866the value of the guard. When the function exits, the guard on the stack is
8867checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8868different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8869calling the ``__stack_chk_fail()`` function.
8870
8871'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008873
8874Syntax:
8875"""""""
8876
8877::
8878
8879 declare void @llvm.stackprotectorcheck(i8** <guard>)
8880
8881Overview:
8882"""""""""
8883
8884The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008885created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008886``__stack_chk_fail()`` function.
8887
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008888Arguments:
8889""""""""""
8890
8891The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8892the variable ``@__stack_chk_guard``.
8893
8894Semantics:
8895""""""""""
8896
8897This intrinsic is provided to perform the stack protector check by comparing
8898``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8899values do not match call the ``__stack_chk_fail()`` function.
8900
8901The reason to provide this as an IR level intrinsic instead of implementing it
8902via other IR operations is that in order to perform this operation at the IR
8903level without an intrinsic, one would need to create additional basic blocks to
8904handle the success/failure cases. This makes it difficult to stop the stack
8905protector check from disrupting sibling tail calls in Codegen. With this
8906intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008907codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008908
Sean Silvab084af42012-12-07 10:36:55 +00008909'``llvm.objectsize``' Intrinsic
8910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8911
8912Syntax:
8913"""""""
8914
8915::
8916
8917 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8918 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8919
8920Overview:
8921"""""""""
8922
8923The ``llvm.objectsize`` intrinsic is designed to provide information to
8924the optimizers to determine at compile time whether a) an operation
8925(like memcpy) will overflow a buffer that corresponds to an object, or
8926b) that a runtime check for overflow isn't necessary. An object in this
8927context means an allocation of a specific class, structure, array, or
8928other object.
8929
8930Arguments:
8931""""""""""
8932
8933The ``llvm.objectsize`` intrinsic takes two arguments. The first
8934argument is a pointer to or into the ``object``. The second argument is
8935a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8936or -1 (if false) when the object size is unknown. The second argument
8937only accepts constants.
8938
8939Semantics:
8940""""""""""
8941
8942The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8943the size of the object concerned. If the size cannot be determined at
8944compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8945on the ``min`` argument).
8946
8947'``llvm.expect``' Intrinsic
8948^^^^^^^^^^^^^^^^^^^^^^^^^^^
8949
8950Syntax:
8951"""""""
8952
8953::
8954
8955 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8956 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8957
8958Overview:
8959"""""""""
8960
8961The ``llvm.expect`` intrinsic provides information about expected (the
8962most probable) value of ``val``, which can be used by optimizers.
8963
8964Arguments:
8965""""""""""
8966
8967The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8968a value. The second argument is an expected value, this needs to be a
8969constant value, variables are not allowed.
8970
8971Semantics:
8972""""""""""
8973
8974This intrinsic is lowered to the ``val``.
8975
8976'``llvm.donothing``' Intrinsic
8977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8978
8979Syntax:
8980"""""""
8981
8982::
8983
8984 declare void @llvm.donothing() nounwind readnone
8985
8986Overview:
8987"""""""""
8988
8989The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8990only intrinsic that can be called with an invoke instruction.
8991
8992Arguments:
8993""""""""""
8994
8995None.
8996
8997Semantics:
8998""""""""""
8999
9000This intrinsic does nothing, and it's removed by optimizers and ignored
9001by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009002
9003Stack Map Intrinsics
9004--------------------
9005
9006LLVM provides experimental intrinsics to support runtime patching
9007mechanisms commonly desired in dynamic language JITs. These intrinsics
9008are described in :doc:`StackMaps`.