blob: 62ce112d5731eed53cabe636b856a6bde7ec3cb8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000315 function definition. Furthermore the inliner doesn't consider such function
316 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000317"``cc 10``" - GHC convention
318 This calling convention has been implemented specifically for use by
319 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
320 It passes everything in registers, going to extremes to achieve this
321 by disabling callee save registers. This calling convention should
322 not be used lightly but only for specific situations such as an
323 alternative to the *register pinning* performance technique often
324 used when implementing functional programming languages. At the
325 moment only X86 supports this convention and it has the following
326 limitations:
327
328 - On *X86-32* only supports up to 4 bit type parameters. No
329 floating point types are supported.
330 - On *X86-64* only supports up to 10 bit type parameters and 6
331 floating point parameters.
332
333 This calling convention supports `tail call
334 optimization <CodeGenerator.html#id80>`_ but requires both the
335 caller and callee are using it.
336"``cc 11``" - The HiPE calling convention
337 This calling convention has been implemented specifically for use by
338 the `High-Performance Erlang
339 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
340 native code compiler of the `Ericsson's Open Source Erlang/OTP
341 system <http://www.erlang.org/download.shtml>`_. It uses more
342 registers for argument passing than the ordinary C calling
343 convention and defines no callee-saved registers. The calling
344 convention properly supports `tail call
345 optimization <CodeGenerator.html#id80>`_ but requires that both the
346 caller and the callee use it. It uses a *register pinning*
347 mechanism, similar to GHC's convention, for keeping frequently
348 accessed runtime components pinned to specific hardware registers.
349 At the moment only X86 supports this convention (both 32 and 64
350 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000351"``webkit_jscc``" - WebKit's JavaScript calling convention
352 This calling convention has been implemented for `WebKit FTL JIT
353 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
354 stack right to left (as cdecl does), and returns a value in the
355 platform's customary return register.
356"``anyregcc``" - Dynamic calling convention for code patching
357 This is a special convention that supports patching an arbitrary code
358 sequence in place of a call site. This convention forces the call
359 arguments into registers but allows them to be dynamcially
360 allocated. This can currently only be used with calls to
361 llvm.experimental.patchpoint because only this intrinsic records
362 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363"``preserve_mostcc``" - The `PreserveMost` calling convention
364 This calling convention attempts to make the code in the caller as little
365 intrusive as possible. This calling convention behaves identical to the `C`
366 calling convention on how arguments and return values are passed, but it
367 uses a different set of caller/callee-saved registers. This alleviates the
368 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000369 call in the caller. If the arguments are passed in callee-saved registers,
370 then they will be preserved by the callee across the call. This doesn't
371 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372
373 - On X86-64 the callee preserves all general purpose registers, except for
374 R11. R11 can be used as a scratch register. Floating-point registers
375 (XMMs/YMMs) are not preserved and need to be saved by the caller.
376
377 The idea behind this convention is to support calls to runtime functions
378 that have a hot path and a cold path. The hot path is usually a small piece
379 of code that doesn't many registers. The cold path might need to call out to
380 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000381 registers, which haven't already been saved by the caller. The
382 `PreserveMost` calling convention is very similar to the `cold` calling
383 convention in terms of caller/callee-saved registers, but they are used for
384 different types of function calls. `coldcc` is for function calls that are
385 rarely executed, whereas `preserve_mostcc` function calls are intended to be
386 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
387 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000388
389 This calling convention will be used by a future version of the ObjectiveC
390 runtime and should therefore still be considered experimental at this time.
391 Although this convention was created to optimize certain runtime calls to
392 the ObjectiveC runtime, it is not limited to this runtime and might be used
393 by other runtimes in the future too. The current implementation only
394 supports X86-64, but the intention is to support more architectures in the
395 future.
396"``preserve_allcc``" - The `PreserveAll` calling convention
397 This calling convention attempts to make the code in the caller even less
398 intrusive than the `PreserveMost` calling convention. This calling
399 convention also behaves identical to the `C` calling convention on how
400 arguments and return values are passed, but it uses a different set of
401 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000402 recovering a large register set before and after the call in the caller. If
403 the arguments are passed in callee-saved registers, then they will be
404 preserved by the callee across the call. This doesn't apply for values
405 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000406
407 - On X86-64 the callee preserves all general purpose registers, except for
408 R11. R11 can be used as a scratch register. Furthermore it also preserves
409 all floating-point registers (XMMs/YMMs).
410
411 The idea behind this convention is to support calls to runtime functions
412 that don't need to call out to any other functions.
413
414 This calling convention, like the `PreserveMost` calling convention, will be
415 used by a future version of the ObjectiveC runtime and should be considered
416 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000417"``cc <n>``" - Numbered convention
418 Any calling convention may be specified by number, allowing
419 target-specific calling conventions to be used. Target specific
420 calling conventions start at 64.
421
422More calling conventions can be added/defined on an as-needed basis, to
423support Pascal conventions or any other well-known target-independent
424convention.
425
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000426.. _visibilitystyles:
427
Sean Silvab084af42012-12-07 10:36:55 +0000428Visibility Styles
429-----------------
430
431All Global Variables and Functions have one of the following visibility
432styles:
433
434"``default``" - Default style
435 On targets that use the ELF object file format, default visibility
436 means that the declaration is visible to other modules and, in
437 shared libraries, means that the declared entity may be overridden.
438 On Darwin, default visibility means that the declaration is visible
439 to other modules. Default visibility corresponds to "external
440 linkage" in the language.
441"``hidden``" - Hidden style
442 Two declarations of an object with hidden visibility refer to the
443 same object if they are in the same shared object. Usually, hidden
444 visibility indicates that the symbol will not be placed into the
445 dynamic symbol table, so no other module (executable or shared
446 library) can reference it directly.
447"``protected``" - Protected style
448 On ELF, protected visibility indicates that the symbol will be
449 placed in the dynamic symbol table, but that references within the
450 defining module will bind to the local symbol. That is, the symbol
451 cannot be overridden by another module.
452
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000453.. _namedtypes:
454
Nico Rieck7157bb72014-01-14 15:22:47 +0000455DLL Storage Classes
456-------------------
457
458All Global Variables, Functions and Aliases can have one of the following
459DLL storage class:
460
461``dllimport``
462 "``dllimport``" causes the compiler to reference a function or variable via
463 a global pointer to a pointer that is set up by the DLL exporting the
464 symbol. On Microsoft Windows targets, the pointer name is formed by
465 combining ``__imp_`` and the function or variable name.
466``dllexport``
467 "``dllexport``" causes the compiler to provide a global pointer to a pointer
468 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
469 Microsoft Windows targets, the pointer name is formed by combining
470 ``__imp_`` and the function or variable name. Since this storage class
471 exists for defining a dll interface, the compiler, assembler and linker know
472 it is externally referenced and must refrain from deleting the symbol.
473
Sean Silvab084af42012-12-07 10:36:55 +0000474Named Types
475-----------
476
477LLVM IR allows you to specify name aliases for certain types. This can
478make it easier to read the IR and make the IR more condensed
479(particularly when recursive types are involved). An example of a name
480specification is:
481
482.. code-block:: llvm
483
484 %mytype = type { %mytype*, i32 }
485
486You may give a name to any :ref:`type <typesystem>` except
487":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
488expected with the syntax "%mytype".
489
490Note that type names are aliases for the structural type that they
491indicate, and that you can therefore specify multiple names for the same
492type. This often leads to confusing behavior when dumping out a .ll
493file. Since LLVM IR uses structural typing, the name is not part of the
494type. When printing out LLVM IR, the printer will pick *one name* to
495render all types of a particular shape. This means that if you have code
496where two different source types end up having the same LLVM type, that
497the dumper will sometimes print the "wrong" or unexpected type. This is
498an important design point and isn't going to change.
499
500.. _globalvars:
501
502Global Variables
503----------------
504
505Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000506instead of run-time.
507
508Global variables definitions must be initialized, may have an explicit section
509to be placed in, and may have an optional explicit alignment specified.
510
511Global variables in other translation units can also be declared, in which
512case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514A variable may be defined as ``thread_local``, which means that it will
515not be shared by threads (each thread will have a separated copy of the
516variable). Not all targets support thread-local variables. Optionally, a
517TLS model may be specified:
518
519``localdynamic``
520 For variables that are only used within the current shared library.
521``initialexec``
522 For variables in modules that will not be loaded dynamically.
523``localexec``
524 For variables defined in the executable and only used within it.
525
526The models correspond to the ELF TLS models; see `ELF Handling For
527Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
528more information on under which circumstances the different models may
529be used. The target may choose a different TLS model if the specified
530model is not supported, or if a better choice of model can be made.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
585iteration.
586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
589Syntax::
590
591 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
592 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
593 <global | constant> <Type>
594 [, section "name"] [, align <Alignment>]
595
Sean Silvab084af42012-12-07 10:36:55 +0000596For example, the following defines a global in a numbered address space
597with an initializer, section, and alignment:
598
599.. code-block:: llvm
600
601 @G = addrspace(5) constant float 1.0, section "foo", align 4
602
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000603The following example just declares a global variable
604
605.. code-block:: llvm
606
607 @G = external global i32
608
Sean Silvab084af42012-12-07 10:36:55 +0000609The following example defines a thread-local global with the
610``initialexec`` TLS model:
611
612.. code-block:: llvm
613
614 @G = thread_local(initialexec) global i32 0, align 4
615
616.. _functionstructure:
617
618Functions
619---------
620
621LLVM function definitions consist of the "``define``" keyword, an
622optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000623style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
624an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000625an optional ``unnamed_addr`` attribute, a return type, an optional
626:ref:`parameter attribute <paramattrs>` for the return type, a function
627name, a (possibly empty) argument list (each with optional :ref:`parameter
628attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
629an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000630collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
631curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000632
633LLVM function declarations consist of the "``declare``" keyword, an
634optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000635style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
636an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000637an optional ``unnamed_addr`` attribute, a return type, an optional
638:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639name, a possibly empty list of arguments, an optional alignment, an optional
640:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000641
Bill Wendling6822ecb2013-10-27 05:09:12 +0000642A function definition contains a list of basic blocks, forming the CFG (Control
643Flow Graph) for the function. Each basic block may optionally start with a label
644(giving the basic block a symbol table entry), contains a list of instructions,
645and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
646function return). If an explicit label is not provided, a block is assigned an
647implicit numbered label, using the next value from the same counter as used for
648unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
649entry block does not have an explicit label, it will be assigned label "%0",
650then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000651
652The first basic block in a function is special in two ways: it is
653immediately executed on entrance to the function, and it is not allowed
654to have predecessor basic blocks (i.e. there can not be any branches to
655the entry block of a function). Because the block can have no
656predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
657
658LLVM allows an explicit section to be specified for functions. If the
659target supports it, it will emit functions to the section specified.
660
661An explicit alignment may be specified for a function. If not present,
662or if the alignment is set to zero, the alignment of the function is set
663by the target to whatever it feels convenient. If an explicit alignment
664is specified, the function is forced to have at least that much
665alignment. All alignments must be a power of 2.
666
667If the ``unnamed_addr`` attribute is given, the address is know to not
668be significant and two identical functions can be merged.
669
670Syntax::
671
Nico Rieck7157bb72014-01-14 15:22:47 +0000672 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000673 [cconv] [ret attrs]
674 <ResultType> @<FunctionName> ([argument list])
675 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000676 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000677
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000678.. _langref_aliases:
679
Sean Silvab084af42012-12-07 10:36:55 +0000680Aliases
681-------
682
683Aliases act as "second name" for the aliasee value (which can be either
684function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000685Aliases may have an optional :ref:`linkage type <linkage>`, an optional
686:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
687<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000688
689Syntax::
690
Nico Rieck7157bb72014-01-14 15:22:47 +0000691 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000692
Rafael Espindola65785492013-10-07 13:57:59 +0000693The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000694``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000695``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000696might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000697alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000698
Sean Silvab084af42012-12-07 10:36:55 +0000699.. _namedmetadatastructure:
700
701Named Metadata
702--------------
703
704Named metadata is a collection of metadata. :ref:`Metadata
705nodes <metadata>` (but not metadata strings) are the only valid
706operands for a named metadata.
707
708Syntax::
709
710 ; Some unnamed metadata nodes, which are referenced by the named metadata.
711 !0 = metadata !{metadata !"zero"}
712 !1 = metadata !{metadata !"one"}
713 !2 = metadata !{metadata !"two"}
714 ; A named metadata.
715 !name = !{!0, !1, !2}
716
717.. _paramattrs:
718
719Parameter Attributes
720--------------------
721
722The return type and each parameter of a function type may have a set of
723*parameter attributes* associated with them. Parameter attributes are
724used to communicate additional information about the result or
725parameters of a function. Parameter attributes are considered to be part
726of the function, not of the function type, so functions with different
727parameter attributes can have the same function type.
728
729Parameter attributes are simple keywords that follow the type specified.
730If multiple parameter attributes are needed, they are space separated.
731For example:
732
733.. code-block:: llvm
734
735 declare i32 @printf(i8* noalias nocapture, ...)
736 declare i32 @atoi(i8 zeroext)
737 declare signext i8 @returns_signed_char()
738
739Note that any attributes for the function result (``nounwind``,
740``readonly``) come immediately after the argument list.
741
742Currently, only the following parameter attributes are defined:
743
744``zeroext``
745 This indicates to the code generator that the parameter or return
746 value should be zero-extended to the extent required by the target's
747 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
748 the caller (for a parameter) or the callee (for a return value).
749``signext``
750 This indicates to the code generator that the parameter or return
751 value should be sign-extended to the extent required by the target's
752 ABI (which is usually 32-bits) by the caller (for a parameter) or
753 the callee (for a return value).
754``inreg``
755 This indicates that this parameter or return value should be treated
756 in a special target-dependent fashion during while emitting code for
757 a function call or return (usually, by putting it in a register as
758 opposed to memory, though some targets use it to distinguish between
759 two different kinds of registers). Use of this attribute is
760 target-specific.
761``byval``
762 This indicates that the pointer parameter should really be passed by
763 value to the function. The attribute implies that a hidden copy of
764 the pointee is made between the caller and the callee, so the callee
765 is unable to modify the value in the caller. This attribute is only
766 valid on LLVM pointer arguments. It is generally used to pass
767 structs and arrays by value, but is also valid on pointers to
768 scalars. The copy is considered to belong to the caller not the
769 callee (for example, ``readonly`` functions should not write to
770 ``byval`` parameters). This is not a valid attribute for return
771 values.
772
773 The byval attribute also supports specifying an alignment with the
774 align attribute. It indicates the alignment of the stack slot to
775 form and the known alignment of the pointer specified to the call
776 site. If the alignment is not specified, then the code generator
777 makes a target-specific assumption.
778
Reid Klecknera534a382013-12-19 02:14:12 +0000779.. _attr_inalloca:
780
781``inalloca``
782
783.. Warning:: This feature is unstable and not fully implemented.
784
Reid Kleckner60d3a832014-01-16 22:59:24 +0000785 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000786 address of outgoing stack arguments. An ``inalloca`` argument must
787 be a pointer to stack memory produced by an ``alloca`` instruction.
788 The alloca, or argument allocation, must also be tagged with the
789 inalloca keyword. Only the past argument may have the ``inalloca``
790 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000791
Reid Kleckner436c42e2014-01-17 23:58:17 +0000792 An argument allocation may be used by a call at most once because
793 the call may deallocate it. The ``inalloca`` attribute cannot be
794 used in conjunction with other attributes that affect argument
795 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``.
Reid Klecknera534a382013-12-19 02:14:12 +0000796
Reid Kleckner60d3a832014-01-16 22:59:24 +0000797 When the call site is reached, the argument allocation must have
798 been the most recent stack allocation that is still live, or the
799 results are undefined. It is possible to allocate additional stack
800 space after an argument allocation and before its call site, but it
801 must be cleared off with :ref:`llvm.stackrestore
802 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000803
804 See :doc:`InAlloca` for more information on how to use this
805 attribute.
806
Sean Silvab084af42012-12-07 10:36:55 +0000807``sret``
808 This indicates that the pointer parameter specifies the address of a
809 structure that is the return value of the function in the source
810 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000811 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000812 not to trap and to be properly aligned. This may only be applied to
813 the first parameter. This is not a valid attribute for return
814 values.
815``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000816 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000817 the argument or return value do not alias pointer values which are
818 not *based* on it, ignoring certain "irrelevant" dependencies. For a
819 call to the parent function, dependencies between memory references
820 from before or after the call and from those during the call are
821 "irrelevant" to the ``noalias`` keyword for the arguments and return
822 value used in that call. The caller shares the responsibility with
823 the callee for ensuring that these requirements are met. For further
824 details, please see the discussion of the NoAlias response in `alias
825 analysis <AliasAnalysis.html#MustMayNo>`_.
826
827 Note that this definition of ``noalias`` is intentionally similar
828 to the definition of ``restrict`` in C99 for function arguments,
829 though it is slightly weaker.
830
831 For function return values, C99's ``restrict`` is not meaningful,
832 while LLVM's ``noalias`` is.
833``nocapture``
834 This indicates that the callee does not make any copies of the
835 pointer that outlive the callee itself. This is not a valid
836 attribute for return values.
837
838.. _nest:
839
840``nest``
841 This indicates that the pointer parameter can be excised using the
842 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000843 attribute for return values and can only be applied to one parameter.
844
845``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000846 This indicates that the function always returns the argument as its return
847 value. This is an optimization hint to the code generator when generating
848 the caller, allowing tail call optimization and omission of register saves
849 and restores in some cases; it is not checked or enforced when generating
850 the callee. The parameter and the function return type must be valid
851 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
852 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000853
854.. _gc:
855
856Garbage Collector Names
857-----------------------
858
859Each function may specify a garbage collector name, which is simply a
860string:
861
862.. code-block:: llvm
863
864 define void @f() gc "name" { ... }
865
866The compiler declares the supported values of *name*. Specifying a
867collector which will cause the compiler to alter its output in order to
868support the named garbage collection algorithm.
869
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000870.. _prefixdata:
871
872Prefix Data
873-----------
874
875Prefix data is data associated with a function which the code generator
876will emit immediately before the function body. The purpose of this feature
877is to allow frontends to associate language-specific runtime metadata with
878specific functions and make it available through the function pointer while
879still allowing the function pointer to be called. To access the data for a
880given function, a program may bitcast the function pointer to a pointer to
881the constant's type. This implies that the IR symbol points to the start
882of the prefix data.
883
884To maintain the semantics of ordinary function calls, the prefix data must
885have a particular format. Specifically, it must begin with a sequence of
886bytes which decode to a sequence of machine instructions, valid for the
887module's target, which transfer control to the point immediately succeeding
888the prefix data, without performing any other visible action. This allows
889the inliner and other passes to reason about the semantics of the function
890definition without needing to reason about the prefix data. Obviously this
891makes the format of the prefix data highly target dependent.
892
Peter Collingbourne213358a2013-09-23 20:14:21 +0000893Prefix data is laid out as if it were an initializer for a global variable
894of the prefix data's type. No padding is automatically placed between the
895prefix data and the function body. If padding is required, it must be part
896of the prefix data.
897
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000898A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
899which encodes the ``nop`` instruction:
900
901.. code-block:: llvm
902
903 define void @f() prefix i8 144 { ... }
904
905Generally prefix data can be formed by encoding a relative branch instruction
906which skips the metadata, as in this example of valid prefix data for the
907x86_64 architecture, where the first two bytes encode ``jmp .+10``:
908
909.. code-block:: llvm
910
911 %0 = type <{ i8, i8, i8* }>
912
913 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
914
915A function may have prefix data but no body. This has similar semantics
916to the ``available_externally`` linkage in that the data may be used by the
917optimizers but will not be emitted in the object file.
918
Bill Wendling63b88192013-02-06 06:52:58 +0000919.. _attrgrp:
920
921Attribute Groups
922----------------
923
924Attribute groups are groups of attributes that are referenced by objects within
925the IR. They are important for keeping ``.ll`` files readable, because a lot of
926functions will use the same set of attributes. In the degenerative case of a
927``.ll`` file that corresponds to a single ``.c`` file, the single attribute
928group will capture the important command line flags used to build that file.
929
930An attribute group is a module-level object. To use an attribute group, an
931object references the attribute group's ID (e.g. ``#37``). An object may refer
932to more than one attribute group. In that situation, the attributes from the
933different groups are merged.
934
935Here is an example of attribute groups for a function that should always be
936inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
937
938.. code-block:: llvm
939
940 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000941 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000942
943 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000944 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000945
946 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
947 define void @f() #0 #1 { ... }
948
Sean Silvab084af42012-12-07 10:36:55 +0000949.. _fnattrs:
950
951Function Attributes
952-------------------
953
954Function attributes are set to communicate additional information about
955a function. Function attributes are considered to be part of the
956function, not of the function type, so functions with different function
957attributes can have the same function type.
958
959Function attributes are simple keywords that follow the type specified.
960If multiple attributes are needed, they are space separated. For
961example:
962
963.. code-block:: llvm
964
965 define void @f() noinline { ... }
966 define void @f() alwaysinline { ... }
967 define void @f() alwaysinline optsize { ... }
968 define void @f() optsize { ... }
969
Sean Silvab084af42012-12-07 10:36:55 +0000970``alignstack(<n>)``
971 This attribute indicates that, when emitting the prologue and
972 epilogue, the backend should forcibly align the stack pointer.
973 Specify the desired alignment, which must be a power of two, in
974 parentheses.
975``alwaysinline``
976 This attribute indicates that the inliner should attempt to inline
977 this function into callers whenever possible, ignoring any active
978 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000979``builtin``
980 This indicates that the callee function at a call site should be
981 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000982 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000983 direct calls to functions which are declared with the ``nobuiltin``
984 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000985``cold``
986 This attribute indicates that this function is rarely called. When
987 computing edge weights, basic blocks post-dominated by a cold
988 function call are also considered to be cold; and, thus, given low
989 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000990``inlinehint``
991 This attribute indicates that the source code contained a hint that
992 inlining this function is desirable (such as the "inline" keyword in
993 C/C++). It is just a hint; it imposes no requirements on the
994 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000995``minsize``
996 This attribute suggests that optimization passes and code generator
997 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000998 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000999 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001000``naked``
1001 This attribute disables prologue / epilogue emission for the
1002 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001003``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001004 This indicates that the callee function at a call site is not recognized as
1005 a built-in function. LLVM will retain the original call and not replace it
1006 with equivalent code based on the semantics of the built-in function, unless
1007 the call site uses the ``builtin`` attribute. This is valid at call sites
1008 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001009``noduplicate``
1010 This attribute indicates that calls to the function cannot be
1011 duplicated. A call to a ``noduplicate`` function may be moved
1012 within its parent function, but may not be duplicated within
1013 its parent function.
1014
1015 A function containing a ``noduplicate`` call may still
1016 be an inlining candidate, provided that the call is not
1017 duplicated by inlining. That implies that the function has
1018 internal linkage and only has one call site, so the original
1019 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001020``noimplicitfloat``
1021 This attributes disables implicit floating point instructions.
1022``noinline``
1023 This attribute indicates that the inliner should never inline this
1024 function in any situation. This attribute may not be used together
1025 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001026``nonlazybind``
1027 This attribute suppresses lazy symbol binding for the function. This
1028 may make calls to the function faster, at the cost of extra program
1029 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001030``noredzone``
1031 This attribute indicates that the code generator should not use a
1032 red zone, even if the target-specific ABI normally permits it.
1033``noreturn``
1034 This function attribute indicates that the function never returns
1035 normally. This produces undefined behavior at runtime if the
1036 function ever does dynamically return.
1037``nounwind``
1038 This function attribute indicates that the function never returns
1039 with an unwind or exceptional control flow. If the function does
1040 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001041``optnone``
1042 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001043 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001044 exception of interprocedural optimization passes.
1045 This attribute cannot be used together with the ``alwaysinline``
1046 attribute; this attribute is also incompatible
1047 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001048
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001049 This attribute requires the ``noinline`` attribute to be specified on
1050 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001051 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001052 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001053``optsize``
1054 This attribute suggests that optimization passes and code generator
1055 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001056 and otherwise do optimizations specifically to reduce code size as
1057 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001058``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001059 On a function, this attribute indicates that the function computes its
1060 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001061 without dereferencing any pointer arguments or otherwise accessing
1062 any mutable state (e.g. memory, control registers, etc) visible to
1063 caller functions. It does not write through any pointer arguments
1064 (including ``byval`` arguments) and never changes any state visible
1065 to callers. This means that it cannot unwind exceptions by calling
1066 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001067
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001068 On an argument, this attribute indicates that the function does not
1069 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001070 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001071``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001072 On a function, this attribute indicates that the function does not write
1073 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001074 modify any state (e.g. memory, control registers, etc) visible to
1075 caller functions. It may dereference pointer arguments and read
1076 state that may be set in the caller. A readonly function always
1077 returns the same value (or unwinds an exception identically) when
1078 called with the same set of arguments and global state. It cannot
1079 unwind an exception by calling the ``C++`` exception throwing
1080 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001081
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001082 On an argument, this attribute indicates that the function does not write
1083 through this pointer argument, even though it may write to the memory that
1084 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001085``returns_twice``
1086 This attribute indicates that this function can return twice. The C
1087 ``setjmp`` is an example of such a function. The compiler disables
1088 some optimizations (like tail calls) in the caller of these
1089 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001090``sanitize_address``
1091 This attribute indicates that AddressSanitizer checks
1092 (dynamic address safety analysis) are enabled for this function.
1093``sanitize_memory``
1094 This attribute indicates that MemorySanitizer checks (dynamic detection
1095 of accesses to uninitialized memory) are enabled for this function.
1096``sanitize_thread``
1097 This attribute indicates that ThreadSanitizer checks
1098 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001099``ssp``
1100 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001101 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001102 placed on the stack before the local variables that's checked upon
1103 return from the function to see if it has been overwritten. A
1104 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001105 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001106
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001107 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1108 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1109 - Calls to alloca() with variable sizes or constant sizes greater than
1110 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001111
1112 If a function that has an ``ssp`` attribute is inlined into a
1113 function that doesn't have an ``ssp`` attribute, then the resulting
1114 function will have an ``ssp`` attribute.
1115``sspreq``
1116 This attribute indicates that the function should *always* emit a
1117 stack smashing protector. This overrides the ``ssp`` function
1118 attribute.
1119
1120 If a function that has an ``sspreq`` attribute is inlined into a
1121 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001122 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1123 an ``sspreq`` attribute.
1124``sspstrong``
1125 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001126 protector. This attribute causes a strong heuristic to be used when
1127 determining if a function needs stack protectors. The strong heuristic
1128 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001129
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001130 - Arrays of any size and type
1131 - Aggregates containing an array of any size and type.
1132 - Calls to alloca().
1133 - Local variables that have had their address taken.
1134
1135 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001136
1137 If a function that has an ``sspstrong`` attribute is inlined into a
1138 function that doesn't have an ``sspstrong`` attribute, then the
1139 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001140``uwtable``
1141 This attribute indicates that the ABI being targeted requires that
1142 an unwind table entry be produce for this function even if we can
1143 show that no exceptions passes by it. This is normally the case for
1144 the ELF x86-64 abi, but it can be disabled for some compilation
1145 units.
Sean Silvab084af42012-12-07 10:36:55 +00001146
1147.. _moduleasm:
1148
1149Module-Level Inline Assembly
1150----------------------------
1151
1152Modules may contain "module-level inline asm" blocks, which corresponds
1153to the GCC "file scope inline asm" blocks. These blocks are internally
1154concatenated by LLVM and treated as a single unit, but may be separated
1155in the ``.ll`` file if desired. The syntax is very simple:
1156
1157.. code-block:: llvm
1158
1159 module asm "inline asm code goes here"
1160 module asm "more can go here"
1161
1162The strings can contain any character by escaping non-printable
1163characters. The escape sequence used is simply "\\xx" where "xx" is the
1164two digit hex code for the number.
1165
1166The inline asm code is simply printed to the machine code .s file when
1167assembly code is generated.
1168
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001169.. _langref_datalayout:
1170
Sean Silvab084af42012-12-07 10:36:55 +00001171Data Layout
1172-----------
1173
1174A module may specify a target specific data layout string that specifies
1175how data is to be laid out in memory. The syntax for the data layout is
1176simply:
1177
1178.. code-block:: llvm
1179
1180 target datalayout = "layout specification"
1181
1182The *layout specification* consists of a list of specifications
1183separated by the minus sign character ('-'). Each specification starts
1184with a letter and may include other information after the letter to
1185define some aspect of the data layout. The specifications accepted are
1186as follows:
1187
1188``E``
1189 Specifies that the target lays out data in big-endian form. That is,
1190 the bits with the most significance have the lowest address
1191 location.
1192``e``
1193 Specifies that the target lays out data in little-endian form. That
1194 is, the bits with the least significance have the lowest address
1195 location.
1196``S<size>``
1197 Specifies the natural alignment of the stack in bits. Alignment
1198 promotion of stack variables is limited to the natural stack
1199 alignment to avoid dynamic stack realignment. The stack alignment
1200 must be a multiple of 8-bits. If omitted, the natural stack
1201 alignment defaults to "unspecified", which does not prevent any
1202 alignment promotions.
1203``p[n]:<size>:<abi>:<pref>``
1204 This specifies the *size* of a pointer and its ``<abi>`` and
1205 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001206 bits. The address space, ``n`` is optional, and if not specified,
1207 denotes the default address space 0. The value of ``n`` must be
1208 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001209``i<size>:<abi>:<pref>``
1210 This specifies the alignment for an integer type of a given bit
1211 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1212``v<size>:<abi>:<pref>``
1213 This specifies the alignment for a vector type of a given bit
1214 ``<size>``.
1215``f<size>:<abi>:<pref>``
1216 This specifies the alignment for a floating point type of a given bit
1217 ``<size>``. Only values of ``<size>`` that are supported by the target
1218 will work. 32 (float) and 64 (double) are supported on all targets; 80
1219 or 128 (different flavors of long double) are also supported on some
1220 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001221``a:<abi>:<pref>``
1222 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001223``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001224 If present, specifies that llvm names are mangled in the output. The
1225 options are
1226
1227 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1228 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1229 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1230 symbols get a ``_`` prefix.
1231 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1232 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001233``n<size1>:<size2>:<size3>...``
1234 This specifies a set of native integer widths for the target CPU in
1235 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1236 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1237 this set are considered to support most general arithmetic operations
1238 efficiently.
1239
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001240On every specification that takes a ``<abi>:<pref>``, specifying the
1241``<pref>`` alignment is optional. If omitted, the preceding ``:``
1242should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1243
Sean Silvab084af42012-12-07 10:36:55 +00001244When constructing the data layout for a given target, LLVM starts with a
1245default set of specifications which are then (possibly) overridden by
1246the specifications in the ``datalayout`` keyword. The default
1247specifications are given in this list:
1248
1249- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001250- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1251- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1252 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001253- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001254- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1255- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1256- ``i16:16:16`` - i16 is 16-bit aligned
1257- ``i32:32:32`` - i32 is 32-bit aligned
1258- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1259 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001260- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001261- ``f32:32:32`` - float is 32-bit aligned
1262- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001263- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001264- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1265- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001266- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001267
1268When LLVM is determining the alignment for a given type, it uses the
1269following rules:
1270
1271#. If the type sought is an exact match for one of the specifications,
1272 that specification is used.
1273#. If no match is found, and the type sought is an integer type, then
1274 the smallest integer type that is larger than the bitwidth of the
1275 sought type is used. If none of the specifications are larger than
1276 the bitwidth then the largest integer type is used. For example,
1277 given the default specifications above, the i7 type will use the
1278 alignment of i8 (next largest) while both i65 and i256 will use the
1279 alignment of i64 (largest specified).
1280#. If no match is found, and the type sought is a vector type, then the
1281 largest vector type that is smaller than the sought vector type will
1282 be used as a fall back. This happens because <128 x double> can be
1283 implemented in terms of 64 <2 x double>, for example.
1284
1285The function of the data layout string may not be what you expect.
1286Notably, this is not a specification from the frontend of what alignment
1287the code generator should use.
1288
1289Instead, if specified, the target data layout is required to match what
1290the ultimate *code generator* expects. This string is used by the
1291mid-level optimizers to improve code, and this only works if it matches
1292what the ultimate code generator uses. If you would like to generate IR
1293that does not embed this target-specific detail into the IR, then you
1294don't have to specify the string. This will disable some optimizations
1295that require precise layout information, but this also prevents those
1296optimizations from introducing target specificity into the IR.
1297
Bill Wendling5cc90842013-10-18 23:41:25 +00001298.. _langref_triple:
1299
1300Target Triple
1301-------------
1302
1303A module may specify a target triple string that describes the target
1304host. The syntax for the target triple is simply:
1305
1306.. code-block:: llvm
1307
1308 target triple = "x86_64-apple-macosx10.7.0"
1309
1310The *target triple* string consists of a series of identifiers delimited
1311by the minus sign character ('-'). The canonical forms are:
1312
1313::
1314
1315 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1316 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1317
1318This information is passed along to the backend so that it generates
1319code for the proper architecture. It's possible to override this on the
1320command line with the ``-mtriple`` command line option.
1321
Sean Silvab084af42012-12-07 10:36:55 +00001322.. _pointeraliasing:
1323
1324Pointer Aliasing Rules
1325----------------------
1326
1327Any memory access must be done through a pointer value associated with
1328an address range of the memory access, otherwise the behavior is
1329undefined. Pointer values are associated with address ranges according
1330to the following rules:
1331
1332- A pointer value is associated with the addresses associated with any
1333 value it is *based* on.
1334- An address of a global variable is associated with the address range
1335 of the variable's storage.
1336- The result value of an allocation instruction is associated with the
1337 address range of the allocated storage.
1338- A null pointer in the default address-space is associated with no
1339 address.
1340- An integer constant other than zero or a pointer value returned from
1341 a function not defined within LLVM may be associated with address
1342 ranges allocated through mechanisms other than those provided by
1343 LLVM. Such ranges shall not overlap with any ranges of addresses
1344 allocated by mechanisms provided by LLVM.
1345
1346A pointer value is *based* on another pointer value according to the
1347following rules:
1348
1349- A pointer value formed from a ``getelementptr`` operation is *based*
1350 on the first operand of the ``getelementptr``.
1351- The result value of a ``bitcast`` is *based* on the operand of the
1352 ``bitcast``.
1353- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1354 values that contribute (directly or indirectly) to the computation of
1355 the pointer's value.
1356- The "*based* on" relationship is transitive.
1357
1358Note that this definition of *"based"* is intentionally similar to the
1359definition of *"based"* in C99, though it is slightly weaker.
1360
1361LLVM IR does not associate types with memory. The result type of a
1362``load`` merely indicates the size and alignment of the memory from
1363which to load, as well as the interpretation of the value. The first
1364operand type of a ``store`` similarly only indicates the size and
1365alignment of the store.
1366
1367Consequently, type-based alias analysis, aka TBAA, aka
1368``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1369:ref:`Metadata <metadata>` may be used to encode additional information
1370which specialized optimization passes may use to implement type-based
1371alias analysis.
1372
1373.. _volatile:
1374
1375Volatile Memory Accesses
1376------------------------
1377
1378Certain memory accesses, such as :ref:`load <i_load>`'s,
1379:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1380marked ``volatile``. The optimizers must not change the number of
1381volatile operations or change their order of execution relative to other
1382volatile operations. The optimizers *may* change the order of volatile
1383operations relative to non-volatile operations. This is not Java's
1384"volatile" and has no cross-thread synchronization behavior.
1385
Andrew Trick89fc5a62013-01-30 21:19:35 +00001386IR-level volatile loads and stores cannot safely be optimized into
1387llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1388flagged volatile. Likewise, the backend should never split or merge
1389target-legal volatile load/store instructions.
1390
Andrew Trick7e6f9282013-01-31 00:49:39 +00001391.. admonition:: Rationale
1392
1393 Platforms may rely on volatile loads and stores of natively supported
1394 data width to be executed as single instruction. For example, in C
1395 this holds for an l-value of volatile primitive type with native
1396 hardware support, but not necessarily for aggregate types. The
1397 frontend upholds these expectations, which are intentionally
1398 unspecified in the IR. The rules above ensure that IR transformation
1399 do not violate the frontend's contract with the language.
1400
Sean Silvab084af42012-12-07 10:36:55 +00001401.. _memmodel:
1402
1403Memory Model for Concurrent Operations
1404--------------------------------------
1405
1406The LLVM IR does not define any way to start parallel threads of
1407execution or to register signal handlers. Nonetheless, there are
1408platform-specific ways to create them, and we define LLVM IR's behavior
1409in their presence. This model is inspired by the C++0x memory model.
1410
1411For a more informal introduction to this model, see the :doc:`Atomics`.
1412
1413We define a *happens-before* partial order as the least partial order
1414that
1415
1416- Is a superset of single-thread program order, and
1417- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1418 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1419 techniques, like pthread locks, thread creation, thread joining,
1420 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1421 Constraints <ordering>`).
1422
1423Note that program order does not introduce *happens-before* edges
1424between a thread and signals executing inside that thread.
1425
1426Every (defined) read operation (load instructions, memcpy, atomic
1427loads/read-modify-writes, etc.) R reads a series of bytes written by
1428(defined) write operations (store instructions, atomic
1429stores/read-modify-writes, memcpy, etc.). For the purposes of this
1430section, initialized globals are considered to have a write of the
1431initializer which is atomic and happens before any other read or write
1432of the memory in question. For each byte of a read R, R\ :sub:`byte`
1433may see any write to the same byte, except:
1434
1435- If write\ :sub:`1` happens before write\ :sub:`2`, and
1436 write\ :sub:`2` happens before R\ :sub:`byte`, then
1437 R\ :sub:`byte` does not see write\ :sub:`1`.
1438- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1439 R\ :sub:`byte` does not see write\ :sub:`3`.
1440
1441Given that definition, R\ :sub:`byte` is defined as follows:
1442
1443- If R is volatile, the result is target-dependent. (Volatile is
1444 supposed to give guarantees which can support ``sig_atomic_t`` in
1445 C/C++, and may be used for accesses to addresses which do not behave
1446 like normal memory. It does not generally provide cross-thread
1447 synchronization.)
1448- Otherwise, if there is no write to the same byte that happens before
1449 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1450- Otherwise, if R\ :sub:`byte` may see exactly one write,
1451 R\ :sub:`byte` returns the value written by that write.
1452- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1453 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1454 Memory Ordering Constraints <ordering>` section for additional
1455 constraints on how the choice is made.
1456- Otherwise R\ :sub:`byte` returns ``undef``.
1457
1458R returns the value composed of the series of bytes it read. This
1459implies that some bytes within the value may be ``undef`` **without**
1460the entire value being ``undef``. Note that this only defines the
1461semantics of the operation; it doesn't mean that targets will emit more
1462than one instruction to read the series of bytes.
1463
1464Note that in cases where none of the atomic intrinsics are used, this
1465model places only one restriction on IR transformations on top of what
1466is required for single-threaded execution: introducing a store to a byte
1467which might not otherwise be stored is not allowed in general.
1468(Specifically, in the case where another thread might write to and read
1469from an address, introducing a store can change a load that may see
1470exactly one write into a load that may see multiple writes.)
1471
1472.. _ordering:
1473
1474Atomic Memory Ordering Constraints
1475----------------------------------
1476
1477Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1478:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1479:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1480an ordering parameter that determines which other atomic instructions on
1481the same address they *synchronize with*. These semantics are borrowed
1482from Java and C++0x, but are somewhat more colloquial. If these
1483descriptions aren't precise enough, check those specs (see spec
1484references in the :doc:`atomics guide <Atomics>`).
1485:ref:`fence <i_fence>` instructions treat these orderings somewhat
1486differently since they don't take an address. See that instruction's
1487documentation for details.
1488
1489For a simpler introduction to the ordering constraints, see the
1490:doc:`Atomics`.
1491
1492``unordered``
1493 The set of values that can be read is governed by the happens-before
1494 partial order. A value cannot be read unless some operation wrote
1495 it. This is intended to provide a guarantee strong enough to model
1496 Java's non-volatile shared variables. This ordering cannot be
1497 specified for read-modify-write operations; it is not strong enough
1498 to make them atomic in any interesting way.
1499``monotonic``
1500 In addition to the guarantees of ``unordered``, there is a single
1501 total order for modifications by ``monotonic`` operations on each
1502 address. All modification orders must be compatible with the
1503 happens-before order. There is no guarantee that the modification
1504 orders can be combined to a global total order for the whole program
1505 (and this often will not be possible). The read in an atomic
1506 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1507 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1508 order immediately before the value it writes. If one atomic read
1509 happens before another atomic read of the same address, the later
1510 read must see the same value or a later value in the address's
1511 modification order. This disallows reordering of ``monotonic`` (or
1512 stronger) operations on the same address. If an address is written
1513 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1514 read that address repeatedly, the other threads must eventually see
1515 the write. This corresponds to the C++0x/C1x
1516 ``memory_order_relaxed``.
1517``acquire``
1518 In addition to the guarantees of ``monotonic``, a
1519 *synchronizes-with* edge may be formed with a ``release`` operation.
1520 This is intended to model C++'s ``memory_order_acquire``.
1521``release``
1522 In addition to the guarantees of ``monotonic``, if this operation
1523 writes a value which is subsequently read by an ``acquire``
1524 operation, it *synchronizes-with* that operation. (This isn't a
1525 complete description; see the C++0x definition of a release
1526 sequence.) This corresponds to the C++0x/C1x
1527 ``memory_order_release``.
1528``acq_rel`` (acquire+release)
1529 Acts as both an ``acquire`` and ``release`` operation on its
1530 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1531``seq_cst`` (sequentially consistent)
1532 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1533 operation which only reads, ``release`` for an operation which only
1534 writes), there is a global total order on all
1535 sequentially-consistent operations on all addresses, which is
1536 consistent with the *happens-before* partial order and with the
1537 modification orders of all the affected addresses. Each
1538 sequentially-consistent read sees the last preceding write to the
1539 same address in this global order. This corresponds to the C++0x/C1x
1540 ``memory_order_seq_cst`` and Java volatile.
1541
1542.. _singlethread:
1543
1544If an atomic operation is marked ``singlethread``, it only *synchronizes
1545with* or participates in modification and seq\_cst total orderings with
1546other operations running in the same thread (for example, in signal
1547handlers).
1548
1549.. _fastmath:
1550
1551Fast-Math Flags
1552---------------
1553
1554LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1555:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1556:ref:`frem <i_frem>`) have the following flags that can set to enable
1557otherwise unsafe floating point operations
1558
1559``nnan``
1560 No NaNs - Allow optimizations to assume the arguments and result are not
1561 NaN. Such optimizations are required to retain defined behavior over
1562 NaNs, but the value of the result is undefined.
1563
1564``ninf``
1565 No Infs - Allow optimizations to assume the arguments and result are not
1566 +/-Inf. Such optimizations are required to retain defined behavior over
1567 +/-Inf, but the value of the result is undefined.
1568
1569``nsz``
1570 No Signed Zeros - Allow optimizations to treat the sign of a zero
1571 argument or result as insignificant.
1572
1573``arcp``
1574 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1575 argument rather than perform division.
1576
1577``fast``
1578 Fast - Allow algebraically equivalent transformations that may
1579 dramatically change results in floating point (e.g. reassociate). This
1580 flag implies all the others.
1581
1582.. _typesystem:
1583
1584Type System
1585===========
1586
1587The LLVM type system is one of the most important features of the
1588intermediate representation. Being typed enables a number of
1589optimizations to be performed on the intermediate representation
1590directly, without having to do extra analyses on the side before the
1591transformation. A strong type system makes it easier to read the
1592generated code and enables novel analyses and transformations that are
1593not feasible to perform on normal three address code representations.
1594
Rafael Espindola08013342013-12-07 19:34:20 +00001595.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001596
Rafael Espindola08013342013-12-07 19:34:20 +00001597Void Type
1598---------
Sean Silvab084af42012-12-07 10:36:55 +00001599
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001600:Overview:
1601
Rafael Espindola08013342013-12-07 19:34:20 +00001602
1603The void type does not represent any value and has no size.
1604
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001605:Syntax:
1606
Rafael Espindola08013342013-12-07 19:34:20 +00001607
1608::
1609
1610 void
Sean Silvab084af42012-12-07 10:36:55 +00001611
1612
Rafael Espindola08013342013-12-07 19:34:20 +00001613.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001614
Rafael Espindola08013342013-12-07 19:34:20 +00001615Function Type
1616-------------
Sean Silvab084af42012-12-07 10:36:55 +00001617
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001618:Overview:
1619
Sean Silvab084af42012-12-07 10:36:55 +00001620
Rafael Espindola08013342013-12-07 19:34:20 +00001621The function type can be thought of as a function signature. It consists of a
1622return type and a list of formal parameter types. The return type of a function
1623type is a void type or first class type --- except for :ref:`label <t_label>`
1624and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001625
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001626:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001627
Rafael Espindola08013342013-12-07 19:34:20 +00001628::
Sean Silvab084af42012-12-07 10:36:55 +00001629
Rafael Espindola08013342013-12-07 19:34:20 +00001630 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001631
Rafael Espindola08013342013-12-07 19:34:20 +00001632...where '``<parameter list>``' is a comma-separated list of type
1633specifiers. Optionally, the parameter list may include a type ``...``, which
1634indicates that the function takes a variable number of arguments. Variable
1635argument functions can access their arguments with the :ref:`variable argument
1636handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1637except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001638
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001639:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001640
Rafael Espindola08013342013-12-07 19:34:20 +00001641+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1642| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1643+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1644| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1645+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1646| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1647+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1648| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1649+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1650
1651.. _t_firstclass:
1652
1653First Class Types
1654-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001655
1656The :ref:`first class <t_firstclass>` types are perhaps the most important.
1657Values of these types are the only ones which can be produced by
1658instructions.
1659
Rafael Espindola08013342013-12-07 19:34:20 +00001660.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001661
Rafael Espindola08013342013-12-07 19:34:20 +00001662Single Value Types
1663^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001664
Rafael Espindola08013342013-12-07 19:34:20 +00001665These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001666
1667.. _t_integer:
1668
1669Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001670""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001671
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001672:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001673
1674The integer type is a very simple type that simply specifies an
1675arbitrary bit width for the integer type desired. Any bit width from 1
1676bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1677
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001678:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001679
1680::
1681
1682 iN
1683
1684The number of bits the integer will occupy is specified by the ``N``
1685value.
1686
1687Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001688*********
Sean Silvab084af42012-12-07 10:36:55 +00001689
1690+----------------+------------------------------------------------+
1691| ``i1`` | a single-bit integer. |
1692+----------------+------------------------------------------------+
1693| ``i32`` | a 32-bit integer. |
1694+----------------+------------------------------------------------+
1695| ``i1942652`` | a really big integer of over 1 million bits. |
1696+----------------+------------------------------------------------+
1697
1698.. _t_floating:
1699
1700Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001701""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001702
1703.. list-table::
1704 :header-rows: 1
1705
1706 * - Type
1707 - Description
1708
1709 * - ``half``
1710 - 16-bit floating point value
1711
1712 * - ``float``
1713 - 32-bit floating point value
1714
1715 * - ``double``
1716 - 64-bit floating point value
1717
1718 * - ``fp128``
1719 - 128-bit floating point value (112-bit mantissa)
1720
1721 * - ``x86_fp80``
1722 - 80-bit floating point value (X87)
1723
1724 * - ``ppc_fp128``
1725 - 128-bit floating point value (two 64-bits)
1726
1727.. _t_x86mmx:
1728
1729X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001730"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001731
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001732:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001733
1734The x86mmx type represents a value held in an MMX register on an x86
1735machine. The operations allowed on it are quite limited: parameters and
1736return values, load and store, and bitcast. User-specified MMX
1737instructions are represented as intrinsic or asm calls with arguments
1738and/or results of this type. There are no arrays, vectors or constants
1739of this type.
1740
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001741:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001742
1743::
1744
1745 x86mmx
1746
Sean Silvab084af42012-12-07 10:36:55 +00001747
Rafael Espindola08013342013-12-07 19:34:20 +00001748.. _t_pointer:
1749
1750Pointer Type
1751""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001752
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001753:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001754
Rafael Espindola08013342013-12-07 19:34:20 +00001755The pointer type is used to specify memory locations. Pointers are
1756commonly used to reference objects in memory.
1757
1758Pointer types may have an optional address space attribute defining the
1759numbered address space where the pointed-to object resides. The default
1760address space is number zero. The semantics of non-zero address spaces
1761are target-specific.
1762
1763Note that LLVM does not permit pointers to void (``void*``) nor does it
1764permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001765
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001766:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001767
1768::
1769
Rafael Espindola08013342013-12-07 19:34:20 +00001770 <type> *
1771
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001772:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001773
1774+-------------------------+--------------------------------------------------------------------------------------------------------------+
1775| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1776+-------------------------+--------------------------------------------------------------------------------------------------------------+
1777| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1778+-------------------------+--------------------------------------------------------------------------------------------------------------+
1779| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1780+-------------------------+--------------------------------------------------------------------------------------------------------------+
1781
1782.. _t_vector:
1783
1784Vector Type
1785"""""""""""
1786
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001787:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001788
1789A vector type is a simple derived type that represents a vector of
1790elements. Vector types are used when multiple primitive data are
1791operated in parallel using a single instruction (SIMD). A vector type
1792requires a size (number of elements) and an underlying primitive data
1793type. Vector types are considered :ref:`first class <t_firstclass>`.
1794
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001795:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001796
1797::
1798
1799 < <# elements> x <elementtype> >
1800
1801The number of elements is a constant integer value larger than 0;
1802elementtype may be any integer or floating point type, or a pointer to
1803these types. Vectors of size zero are not allowed.
1804
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001805:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001806
1807+-------------------+--------------------------------------------------+
1808| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1809+-------------------+--------------------------------------------------+
1810| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1811+-------------------+--------------------------------------------------+
1812| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1813+-------------------+--------------------------------------------------+
1814| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1815+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001816
1817.. _t_label:
1818
1819Label Type
1820^^^^^^^^^^
1821
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001822:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001823
1824The label type represents code labels.
1825
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001826:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001827
1828::
1829
1830 label
1831
1832.. _t_metadata:
1833
1834Metadata Type
1835^^^^^^^^^^^^^
1836
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001837:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001838
1839The metadata type represents embedded metadata. No derived types may be
1840created from metadata except for :ref:`function <t_function>` arguments.
1841
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001842:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001843
1844::
1845
1846 metadata
1847
Sean Silvab084af42012-12-07 10:36:55 +00001848.. _t_aggregate:
1849
1850Aggregate Types
1851^^^^^^^^^^^^^^^
1852
1853Aggregate Types are a subset of derived types that can contain multiple
1854member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1855aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1856aggregate types.
1857
1858.. _t_array:
1859
1860Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001861""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001862
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001863:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001864
1865The array type is a very simple derived type that arranges elements
1866sequentially in memory. The array type requires a size (number of
1867elements) and an underlying data type.
1868
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001869:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001870
1871::
1872
1873 [<# elements> x <elementtype>]
1874
1875The number of elements is a constant integer value; ``elementtype`` may
1876be any type with a size.
1877
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001878:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001879
1880+------------------+--------------------------------------+
1881| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1882+------------------+--------------------------------------+
1883| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1884+------------------+--------------------------------------+
1885| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1886+------------------+--------------------------------------+
1887
1888Here are some examples of multidimensional arrays:
1889
1890+-----------------------------+----------------------------------------------------------+
1891| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1892+-----------------------------+----------------------------------------------------------+
1893| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1894+-----------------------------+----------------------------------------------------------+
1895| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1896+-----------------------------+----------------------------------------------------------+
1897
1898There is no restriction on indexing beyond the end of the array implied
1899by a static type (though there are restrictions on indexing beyond the
1900bounds of an allocated object in some cases). This means that
1901single-dimension 'variable sized array' addressing can be implemented in
1902LLVM with a zero length array type. An implementation of 'pascal style
1903arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1904example.
1905
Sean Silvab084af42012-12-07 10:36:55 +00001906.. _t_struct:
1907
1908Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001909""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001910
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001911:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001912
1913The structure type is used to represent a collection of data members
1914together in memory. The elements of a structure may be any type that has
1915a size.
1916
1917Structures in memory are accessed using '``load``' and '``store``' by
1918getting a pointer to a field with the '``getelementptr``' instruction.
1919Structures in registers are accessed using the '``extractvalue``' and
1920'``insertvalue``' instructions.
1921
1922Structures may optionally be "packed" structures, which indicate that
1923the alignment of the struct is one byte, and that there is no padding
1924between the elements. In non-packed structs, padding between field types
1925is inserted as defined by the DataLayout string in the module, which is
1926required to match what the underlying code generator expects.
1927
1928Structures can either be "literal" or "identified". A literal structure
1929is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1930identified types are always defined at the top level with a name.
1931Literal types are uniqued by their contents and can never be recursive
1932or opaque since there is no way to write one. Identified types can be
1933recursive, can be opaqued, and are never uniqued.
1934
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001935:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001936
1937::
1938
1939 %T1 = type { <type list> } ; Identified normal struct type
1940 %T2 = type <{ <type list> }> ; Identified packed struct type
1941
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001942:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001943
1944+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1945| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1946+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001947| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001948+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1949| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1950+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1951
1952.. _t_opaque:
1953
1954Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001955""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001956
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001957:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001958
1959Opaque structure types are used to represent named structure types that
1960do not have a body specified. This corresponds (for example) to the C
1961notion of a forward declared structure.
1962
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001963:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001964
1965::
1966
1967 %X = type opaque
1968 %52 = type opaque
1969
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001970:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001971
1972+--------------+-------------------+
1973| ``opaque`` | An opaque type. |
1974+--------------+-------------------+
1975
Sean Silvab084af42012-12-07 10:36:55 +00001976Constants
1977=========
1978
1979LLVM has several different basic types of constants. This section
1980describes them all and their syntax.
1981
1982Simple Constants
1983----------------
1984
1985**Boolean constants**
1986 The two strings '``true``' and '``false``' are both valid constants
1987 of the ``i1`` type.
1988**Integer constants**
1989 Standard integers (such as '4') are constants of the
1990 :ref:`integer <t_integer>` type. Negative numbers may be used with
1991 integer types.
1992**Floating point constants**
1993 Floating point constants use standard decimal notation (e.g.
1994 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1995 hexadecimal notation (see below). The assembler requires the exact
1996 decimal value of a floating-point constant. For example, the
1997 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1998 decimal in binary. Floating point constants must have a :ref:`floating
1999 point <t_floating>` type.
2000**Null pointer constants**
2001 The identifier '``null``' is recognized as a null pointer constant
2002 and must be of :ref:`pointer type <t_pointer>`.
2003
2004The one non-intuitive notation for constants is the hexadecimal form of
2005floating point constants. For example, the form
2006'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2007than) '``double 4.5e+15``'. The only time hexadecimal floating point
2008constants are required (and the only time that they are generated by the
2009disassembler) is when a floating point constant must be emitted but it
2010cannot be represented as a decimal floating point number in a reasonable
2011number of digits. For example, NaN's, infinities, and other special
2012values are represented in their IEEE hexadecimal format so that assembly
2013and disassembly do not cause any bits to change in the constants.
2014
2015When using the hexadecimal form, constants of types half, float, and
2016double are represented using the 16-digit form shown above (which
2017matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002018must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002019precision, respectively. Hexadecimal format is always used for long
2020double, and there are three forms of long double. The 80-bit format used
2021by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2022128-bit format used by PowerPC (two adjacent doubles) is represented by
2023``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002024represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2025will only work if they match the long double format on your target.
2026The IEEE 16-bit format (half precision) is represented by ``0xH``
2027followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2028(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002029
2030There are no constants of type x86mmx.
2031
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002032.. _complexconstants:
2033
Sean Silvab084af42012-12-07 10:36:55 +00002034Complex Constants
2035-----------------
2036
2037Complex constants are a (potentially recursive) combination of simple
2038constants and smaller complex constants.
2039
2040**Structure constants**
2041 Structure constants are represented with notation similar to
2042 structure type definitions (a comma separated list of elements,
2043 surrounded by braces (``{}``)). For example:
2044 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2045 "``@G = external global i32``". Structure constants must have
2046 :ref:`structure type <t_struct>`, and the number and types of elements
2047 must match those specified by the type.
2048**Array constants**
2049 Array constants are represented with notation similar to array type
2050 definitions (a comma separated list of elements, surrounded by
2051 square brackets (``[]``)). For example:
2052 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2053 :ref:`array type <t_array>`, and the number and types of elements must
2054 match those specified by the type.
2055**Vector constants**
2056 Vector constants are represented with notation similar to vector
2057 type definitions (a comma separated list of elements, surrounded by
2058 less-than/greater-than's (``<>``)). For example:
2059 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2060 must have :ref:`vector type <t_vector>`, and the number and types of
2061 elements must match those specified by the type.
2062**Zero initialization**
2063 The string '``zeroinitializer``' can be used to zero initialize a
2064 value to zero of *any* type, including scalar and
2065 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2066 having to print large zero initializers (e.g. for large arrays) and
2067 is always exactly equivalent to using explicit zero initializers.
2068**Metadata node**
2069 A metadata node is a structure-like constant with :ref:`metadata
2070 type <t_metadata>`. For example:
2071 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2072 constants that are meant to be interpreted as part of the
2073 instruction stream, metadata is a place to attach additional
2074 information such as debug info.
2075
2076Global Variable and Function Addresses
2077--------------------------------------
2078
2079The addresses of :ref:`global variables <globalvars>` and
2080:ref:`functions <functionstructure>` are always implicitly valid
2081(link-time) constants. These constants are explicitly referenced when
2082the :ref:`identifier for the global <identifiers>` is used and always have
2083:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2084file:
2085
2086.. code-block:: llvm
2087
2088 @X = global i32 17
2089 @Y = global i32 42
2090 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2091
2092.. _undefvalues:
2093
2094Undefined Values
2095----------------
2096
2097The string '``undef``' can be used anywhere a constant is expected, and
2098indicates that the user of the value may receive an unspecified
2099bit-pattern. Undefined values may be of any type (other than '``label``'
2100or '``void``') and be used anywhere a constant is permitted.
2101
2102Undefined values are useful because they indicate to the compiler that
2103the program is well defined no matter what value is used. This gives the
2104compiler more freedom to optimize. Here are some examples of
2105(potentially surprising) transformations that are valid (in pseudo IR):
2106
2107.. code-block:: llvm
2108
2109 %A = add %X, undef
2110 %B = sub %X, undef
2111 %C = xor %X, undef
2112 Safe:
2113 %A = undef
2114 %B = undef
2115 %C = undef
2116
2117This is safe because all of the output bits are affected by the undef
2118bits. Any output bit can have a zero or one depending on the input bits.
2119
2120.. code-block:: llvm
2121
2122 %A = or %X, undef
2123 %B = and %X, undef
2124 Safe:
2125 %A = -1
2126 %B = 0
2127 Unsafe:
2128 %A = undef
2129 %B = undef
2130
2131These logical operations have bits that are not always affected by the
2132input. For example, if ``%X`` has a zero bit, then the output of the
2133'``and``' operation will always be a zero for that bit, no matter what
2134the corresponding bit from the '``undef``' is. As such, it is unsafe to
2135optimize or assume that the result of the '``and``' is '``undef``'.
2136However, it is safe to assume that all bits of the '``undef``' could be
21370, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2138all the bits of the '``undef``' operand to the '``or``' could be set,
2139allowing the '``or``' to be folded to -1.
2140
2141.. code-block:: llvm
2142
2143 %A = select undef, %X, %Y
2144 %B = select undef, 42, %Y
2145 %C = select %X, %Y, undef
2146 Safe:
2147 %A = %X (or %Y)
2148 %B = 42 (or %Y)
2149 %C = %Y
2150 Unsafe:
2151 %A = undef
2152 %B = undef
2153 %C = undef
2154
2155This set of examples shows that undefined '``select``' (and conditional
2156branch) conditions can go *either way*, but they have to come from one
2157of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2158both known to have a clear low bit, then ``%A`` would have to have a
2159cleared low bit. However, in the ``%C`` example, the optimizer is
2160allowed to assume that the '``undef``' operand could be the same as
2161``%Y``, allowing the whole '``select``' to be eliminated.
2162
2163.. code-block:: llvm
2164
2165 %A = xor undef, undef
2166
2167 %B = undef
2168 %C = xor %B, %B
2169
2170 %D = undef
2171 %E = icmp lt %D, 4
2172 %F = icmp gte %D, 4
2173
2174 Safe:
2175 %A = undef
2176 %B = undef
2177 %C = undef
2178 %D = undef
2179 %E = undef
2180 %F = undef
2181
2182This example points out that two '``undef``' operands are not
2183necessarily the same. This can be surprising to people (and also matches
2184C semantics) where they assume that "``X^X``" is always zero, even if
2185``X`` is undefined. This isn't true for a number of reasons, but the
2186short answer is that an '``undef``' "variable" can arbitrarily change
2187its value over its "live range". This is true because the variable
2188doesn't actually *have a live range*. Instead, the value is logically
2189read from arbitrary registers that happen to be around when needed, so
2190the value is not necessarily consistent over time. In fact, ``%A`` and
2191``%C`` need to have the same semantics or the core LLVM "replace all
2192uses with" concept would not hold.
2193
2194.. code-block:: llvm
2195
2196 %A = fdiv undef, %X
2197 %B = fdiv %X, undef
2198 Safe:
2199 %A = undef
2200 b: unreachable
2201
2202These examples show the crucial difference between an *undefined value*
2203and *undefined behavior*. An undefined value (like '``undef``') is
2204allowed to have an arbitrary bit-pattern. This means that the ``%A``
2205operation can be constant folded to '``undef``', because the '``undef``'
2206could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2207However, in the second example, we can make a more aggressive
2208assumption: because the ``undef`` is allowed to be an arbitrary value,
2209we are allowed to assume that it could be zero. Since a divide by zero
2210has *undefined behavior*, we are allowed to assume that the operation
2211does not execute at all. This allows us to delete the divide and all
2212code after it. Because the undefined operation "can't happen", the
2213optimizer can assume that it occurs in dead code.
2214
2215.. code-block:: llvm
2216
2217 a: store undef -> %X
2218 b: store %X -> undef
2219 Safe:
2220 a: <deleted>
2221 b: unreachable
2222
2223These examples reiterate the ``fdiv`` example: a store *of* an undefined
2224value can be assumed to not have any effect; we can assume that the
2225value is overwritten with bits that happen to match what was already
2226there. However, a store *to* an undefined location could clobber
2227arbitrary memory, therefore, it has undefined behavior.
2228
2229.. _poisonvalues:
2230
2231Poison Values
2232-------------
2233
2234Poison values are similar to :ref:`undef values <undefvalues>`, however
2235they also represent the fact that an instruction or constant expression
2236which cannot evoke side effects has nevertheless detected a condition
2237which results in undefined behavior.
2238
2239There is currently no way of representing a poison value in the IR; they
2240only exist when produced by operations such as :ref:`add <i_add>` with
2241the ``nsw`` flag.
2242
2243Poison value behavior is defined in terms of value *dependence*:
2244
2245- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2246- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2247 their dynamic predecessor basic block.
2248- Function arguments depend on the corresponding actual argument values
2249 in the dynamic callers of their functions.
2250- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2251 instructions that dynamically transfer control back to them.
2252- :ref:`Invoke <i_invoke>` instructions depend on the
2253 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2254 call instructions that dynamically transfer control back to them.
2255- Non-volatile loads and stores depend on the most recent stores to all
2256 of the referenced memory addresses, following the order in the IR
2257 (including loads and stores implied by intrinsics such as
2258 :ref:`@llvm.memcpy <int_memcpy>`.)
2259- An instruction with externally visible side effects depends on the
2260 most recent preceding instruction with externally visible side
2261 effects, following the order in the IR. (This includes :ref:`volatile
2262 operations <volatile>`.)
2263- An instruction *control-depends* on a :ref:`terminator
2264 instruction <terminators>` if the terminator instruction has
2265 multiple successors and the instruction is always executed when
2266 control transfers to one of the successors, and may not be executed
2267 when control is transferred to another.
2268- Additionally, an instruction also *control-depends* on a terminator
2269 instruction if the set of instructions it otherwise depends on would
2270 be different if the terminator had transferred control to a different
2271 successor.
2272- Dependence is transitive.
2273
2274Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2275with the additional affect that any instruction which has a *dependence*
2276on a poison value has undefined behavior.
2277
2278Here are some examples:
2279
2280.. code-block:: llvm
2281
2282 entry:
2283 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2284 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2285 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2286 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2287
2288 store i32 %poison, i32* @g ; Poison value stored to memory.
2289 %poison2 = load i32* @g ; Poison value loaded back from memory.
2290
2291 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2292
2293 %narrowaddr = bitcast i32* @g to i16*
2294 %wideaddr = bitcast i32* @g to i64*
2295 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2296 %poison4 = load i64* %wideaddr ; Returns a poison value.
2297
2298 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2299 br i1 %cmp, label %true, label %end ; Branch to either destination.
2300
2301 true:
2302 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2303 ; it has undefined behavior.
2304 br label %end
2305
2306 end:
2307 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2308 ; Both edges into this PHI are
2309 ; control-dependent on %cmp, so this
2310 ; always results in a poison value.
2311
2312 store volatile i32 0, i32* @g ; This would depend on the store in %true
2313 ; if %cmp is true, or the store in %entry
2314 ; otherwise, so this is undefined behavior.
2315
2316 br i1 %cmp, label %second_true, label %second_end
2317 ; The same branch again, but this time the
2318 ; true block doesn't have side effects.
2319
2320 second_true:
2321 ; No side effects!
2322 ret void
2323
2324 second_end:
2325 store volatile i32 0, i32* @g ; This time, the instruction always depends
2326 ; on the store in %end. Also, it is
2327 ; control-equivalent to %end, so this is
2328 ; well-defined (ignoring earlier undefined
2329 ; behavior in this example).
2330
2331.. _blockaddress:
2332
2333Addresses of Basic Blocks
2334-------------------------
2335
2336``blockaddress(@function, %block)``
2337
2338The '``blockaddress``' constant computes the address of the specified
2339basic block in the specified function, and always has an ``i8*`` type.
2340Taking the address of the entry block is illegal.
2341
2342This value only has defined behavior when used as an operand to the
2343':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2344against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002345undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002346no label is equal to the null pointer. This may be passed around as an
2347opaque pointer sized value as long as the bits are not inspected. This
2348allows ``ptrtoint`` and arithmetic to be performed on these values so
2349long as the original value is reconstituted before the ``indirectbr``
2350instruction.
2351
2352Finally, some targets may provide defined semantics when using the value
2353as the operand to an inline assembly, but that is target specific.
2354
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002355.. _constantexprs:
2356
Sean Silvab084af42012-12-07 10:36:55 +00002357Constant Expressions
2358--------------------
2359
2360Constant expressions are used to allow expressions involving other
2361constants to be used as constants. Constant expressions may be of any
2362:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2363that does not have side effects (e.g. load and call are not supported).
2364The following is the syntax for constant expressions:
2365
2366``trunc (CST to TYPE)``
2367 Truncate a constant to another type. The bit size of CST must be
2368 larger than the bit size of TYPE. Both types must be integers.
2369``zext (CST to TYPE)``
2370 Zero extend a constant to another type. The bit size of CST must be
2371 smaller than the bit size of TYPE. Both types must be integers.
2372``sext (CST to TYPE)``
2373 Sign extend a constant to another type. The bit size of CST must be
2374 smaller than the bit size of TYPE. Both types must be integers.
2375``fptrunc (CST to TYPE)``
2376 Truncate a floating point constant to another floating point type.
2377 The size of CST must be larger than the size of TYPE. Both types
2378 must be floating point.
2379``fpext (CST to TYPE)``
2380 Floating point extend a constant to another type. The size of CST
2381 must be smaller or equal to the size of TYPE. Both types must be
2382 floating point.
2383``fptoui (CST to TYPE)``
2384 Convert a floating point constant to the corresponding unsigned
2385 integer constant. TYPE must be a scalar or vector integer type. CST
2386 must be of scalar or vector floating point type. Both CST and TYPE
2387 must be scalars, or vectors of the same number of elements. If the
2388 value won't fit in the integer type, the results are undefined.
2389``fptosi (CST to TYPE)``
2390 Convert a floating point constant to the corresponding signed
2391 integer constant. TYPE must be a scalar or vector integer type. CST
2392 must be of scalar or vector floating point type. Both CST and TYPE
2393 must be scalars, or vectors of the same number of elements. If the
2394 value won't fit in the integer type, the results are undefined.
2395``uitofp (CST to TYPE)``
2396 Convert an unsigned integer constant to the corresponding floating
2397 point constant. TYPE must be a scalar or vector floating point type.
2398 CST must be of scalar or vector integer type. Both CST and TYPE must
2399 be scalars, or vectors of the same number of elements. If the value
2400 won't fit in the floating point type, the results are undefined.
2401``sitofp (CST to TYPE)``
2402 Convert a signed integer constant to the corresponding floating
2403 point constant. TYPE must be a scalar or vector floating point type.
2404 CST must be of scalar or vector integer type. Both CST and TYPE must
2405 be scalars, or vectors of the same number of elements. If the value
2406 won't fit in the floating point type, the results are undefined.
2407``ptrtoint (CST to TYPE)``
2408 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002409 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002410 pointer type. The ``CST`` value is zero extended, truncated, or
2411 unchanged to make it fit in ``TYPE``.
2412``inttoptr (CST to TYPE)``
2413 Convert an integer constant to a pointer constant. TYPE must be a
2414 pointer type. CST must be of integer type. The CST value is zero
2415 extended, truncated, or unchanged to make it fit in a pointer size.
2416 This one is *really* dangerous!
2417``bitcast (CST to TYPE)``
2418 Convert a constant, CST, to another TYPE. The constraints of the
2419 operands are the same as those for the :ref:`bitcast
2420 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002421``addrspacecast (CST to TYPE)``
2422 Convert a constant pointer or constant vector of pointer, CST, to another
2423 TYPE in a different address space. The constraints of the operands are the
2424 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002425``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2426 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2427 constants. As with the :ref:`getelementptr <i_getelementptr>`
2428 instruction, the index list may have zero or more indexes, which are
2429 required to make sense for the type of "CSTPTR".
2430``select (COND, VAL1, VAL2)``
2431 Perform the :ref:`select operation <i_select>` on constants.
2432``icmp COND (VAL1, VAL2)``
2433 Performs the :ref:`icmp operation <i_icmp>` on constants.
2434``fcmp COND (VAL1, VAL2)``
2435 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2436``extractelement (VAL, IDX)``
2437 Perform the :ref:`extractelement operation <i_extractelement>` on
2438 constants.
2439``insertelement (VAL, ELT, IDX)``
2440 Perform the :ref:`insertelement operation <i_insertelement>` on
2441 constants.
2442``shufflevector (VEC1, VEC2, IDXMASK)``
2443 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2444 constants.
2445``extractvalue (VAL, IDX0, IDX1, ...)``
2446 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2447 constants. The index list is interpreted in a similar manner as
2448 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2449 least one index value must be specified.
2450``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2451 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2452 The index list is interpreted in a similar manner as indices in a
2453 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2454 value must be specified.
2455``OPCODE (LHS, RHS)``
2456 Perform the specified operation of the LHS and RHS constants. OPCODE
2457 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2458 binary <bitwiseops>` operations. The constraints on operands are
2459 the same as those for the corresponding instruction (e.g. no bitwise
2460 operations on floating point values are allowed).
2461
2462Other Values
2463============
2464
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002465.. _inlineasmexprs:
2466
Sean Silvab084af42012-12-07 10:36:55 +00002467Inline Assembler Expressions
2468----------------------------
2469
2470LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2471Inline Assembly <moduleasm>`) through the use of a special value. This
2472value represents the inline assembler as a string (containing the
2473instructions to emit), a list of operand constraints (stored as a
2474string), a flag that indicates whether or not the inline asm expression
2475has side effects, and a flag indicating whether the function containing
2476the asm needs to align its stack conservatively. An example inline
2477assembler expression is:
2478
2479.. code-block:: llvm
2480
2481 i32 (i32) asm "bswap $0", "=r,r"
2482
2483Inline assembler expressions may **only** be used as the callee operand
2484of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2485Thus, typically we have:
2486
2487.. code-block:: llvm
2488
2489 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2490
2491Inline asms with side effects not visible in the constraint list must be
2492marked as having side effects. This is done through the use of the
2493'``sideeffect``' keyword, like so:
2494
2495.. code-block:: llvm
2496
2497 call void asm sideeffect "eieio", ""()
2498
2499In some cases inline asms will contain code that will not work unless
2500the stack is aligned in some way, such as calls or SSE instructions on
2501x86, yet will not contain code that does that alignment within the asm.
2502The compiler should make conservative assumptions about what the asm
2503might contain and should generate its usual stack alignment code in the
2504prologue if the '``alignstack``' keyword is present:
2505
2506.. code-block:: llvm
2507
2508 call void asm alignstack "eieio", ""()
2509
2510Inline asms also support using non-standard assembly dialects. The
2511assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2512the inline asm is using the Intel dialect. Currently, ATT and Intel are
2513the only supported dialects. An example is:
2514
2515.. code-block:: llvm
2516
2517 call void asm inteldialect "eieio", ""()
2518
2519If multiple keywords appear the '``sideeffect``' keyword must come
2520first, the '``alignstack``' keyword second and the '``inteldialect``'
2521keyword last.
2522
2523Inline Asm Metadata
2524^^^^^^^^^^^^^^^^^^^
2525
2526The call instructions that wrap inline asm nodes may have a
2527"``!srcloc``" MDNode attached to it that contains a list of constant
2528integers. If present, the code generator will use the integer as the
2529location cookie value when report errors through the ``LLVMContext``
2530error reporting mechanisms. This allows a front-end to correlate backend
2531errors that occur with inline asm back to the source code that produced
2532it. For example:
2533
2534.. code-block:: llvm
2535
2536 call void asm sideeffect "something bad", ""(), !srcloc !42
2537 ...
2538 !42 = !{ i32 1234567 }
2539
2540It is up to the front-end to make sense of the magic numbers it places
2541in the IR. If the MDNode contains multiple constants, the code generator
2542will use the one that corresponds to the line of the asm that the error
2543occurs on.
2544
2545.. _metadata:
2546
2547Metadata Nodes and Metadata Strings
2548-----------------------------------
2549
2550LLVM IR allows metadata to be attached to instructions in the program
2551that can convey extra information about the code to the optimizers and
2552code generator. One example application of metadata is source-level
2553debug information. There are two metadata primitives: strings and nodes.
2554All metadata has the ``metadata`` type and is identified in syntax by a
2555preceding exclamation point ('``!``').
2556
2557A metadata string is a string surrounded by double quotes. It can
2558contain any character by escaping non-printable characters with
2559"``\xx``" where "``xx``" is the two digit hex code. For example:
2560"``!"test\00"``".
2561
2562Metadata nodes are represented with notation similar to structure
2563constants (a comma separated list of elements, surrounded by braces and
2564preceded by an exclamation point). Metadata nodes can have any values as
2565their operand. For example:
2566
2567.. code-block:: llvm
2568
2569 !{ metadata !"test\00", i32 10}
2570
2571A :ref:`named metadata <namedmetadatastructure>` is a collection of
2572metadata nodes, which can be looked up in the module symbol table. For
2573example:
2574
2575.. code-block:: llvm
2576
2577 !foo = metadata !{!4, !3}
2578
2579Metadata can be used as function arguments. Here ``llvm.dbg.value``
2580function is using two metadata arguments:
2581
2582.. code-block:: llvm
2583
2584 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2585
2586Metadata can be attached with an instruction. Here metadata ``!21`` is
2587attached to the ``add`` instruction using the ``!dbg`` identifier:
2588
2589.. code-block:: llvm
2590
2591 %indvar.next = add i64 %indvar, 1, !dbg !21
2592
2593More information about specific metadata nodes recognized by the
2594optimizers and code generator is found below.
2595
2596'``tbaa``' Metadata
2597^^^^^^^^^^^^^^^^^^^
2598
2599In LLVM IR, memory does not have types, so LLVM's own type system is not
2600suitable for doing TBAA. Instead, metadata is added to the IR to
2601describe a type system of a higher level language. This can be used to
2602implement typical C/C++ TBAA, but it can also be used to implement
2603custom alias analysis behavior for other languages.
2604
2605The current metadata format is very simple. TBAA metadata nodes have up
2606to three fields, e.g.:
2607
2608.. code-block:: llvm
2609
2610 !0 = metadata !{ metadata !"an example type tree" }
2611 !1 = metadata !{ metadata !"int", metadata !0 }
2612 !2 = metadata !{ metadata !"float", metadata !0 }
2613 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2614
2615The first field is an identity field. It can be any value, usually a
2616metadata string, which uniquely identifies the type. The most important
2617name in the tree is the name of the root node. Two trees with different
2618root node names are entirely disjoint, even if they have leaves with
2619common names.
2620
2621The second field identifies the type's parent node in the tree, or is
2622null or omitted for a root node. A type is considered to alias all of
2623its descendants and all of its ancestors in the tree. Also, a type is
2624considered to alias all types in other trees, so that bitcode produced
2625from multiple front-ends is handled conservatively.
2626
2627If the third field is present, it's an integer which if equal to 1
2628indicates that the type is "constant" (meaning
2629``pointsToConstantMemory`` should return true; see `other useful
2630AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2631
2632'``tbaa.struct``' Metadata
2633^^^^^^^^^^^^^^^^^^^^^^^^^^
2634
2635The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2636aggregate assignment operations in C and similar languages, however it
2637is defined to copy a contiguous region of memory, which is more than
2638strictly necessary for aggregate types which contain holes due to
2639padding. Also, it doesn't contain any TBAA information about the fields
2640of the aggregate.
2641
2642``!tbaa.struct`` metadata can describe which memory subregions in a
2643memcpy are padding and what the TBAA tags of the struct are.
2644
2645The current metadata format is very simple. ``!tbaa.struct`` metadata
2646nodes are a list of operands which are in conceptual groups of three.
2647For each group of three, the first operand gives the byte offset of a
2648field in bytes, the second gives its size in bytes, and the third gives
2649its tbaa tag. e.g.:
2650
2651.. code-block:: llvm
2652
2653 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2654
2655This describes a struct with two fields. The first is at offset 0 bytes
2656with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2657and has size 4 bytes and has tbaa tag !2.
2658
2659Note that the fields need not be contiguous. In this example, there is a
26604 byte gap between the two fields. This gap represents padding which
2661does not carry useful data and need not be preserved.
2662
2663'``fpmath``' Metadata
2664^^^^^^^^^^^^^^^^^^^^^
2665
2666``fpmath`` metadata may be attached to any instruction of floating point
2667type. It can be used to express the maximum acceptable error in the
2668result of that instruction, in ULPs, thus potentially allowing the
2669compiler to use a more efficient but less accurate method of computing
2670it. ULP is defined as follows:
2671
2672 If ``x`` is a real number that lies between two finite consecutive
2673 floating-point numbers ``a`` and ``b``, without being equal to one
2674 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2675 distance between the two non-equal finite floating-point numbers
2676 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2677
2678The metadata node shall consist of a single positive floating point
2679number representing the maximum relative error, for example:
2680
2681.. code-block:: llvm
2682
2683 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2684
2685'``range``' Metadata
2686^^^^^^^^^^^^^^^^^^^^
2687
2688``range`` metadata may be attached only to loads of integer types. It
2689expresses the possible ranges the loaded value is in. The ranges are
2690represented with a flattened list of integers. The loaded value is known
2691to be in the union of the ranges defined by each consecutive pair. Each
2692pair has the following properties:
2693
2694- The type must match the type loaded by the instruction.
2695- The pair ``a,b`` represents the range ``[a,b)``.
2696- Both ``a`` and ``b`` are constants.
2697- The range is allowed to wrap.
2698- The range should not represent the full or empty set. That is,
2699 ``a!=b``.
2700
2701In addition, the pairs must be in signed order of the lower bound and
2702they must be non-contiguous.
2703
2704Examples:
2705
2706.. code-block:: llvm
2707
2708 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2709 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2710 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2711 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2712 ...
2713 !0 = metadata !{ i8 0, i8 2 }
2714 !1 = metadata !{ i8 255, i8 2 }
2715 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2716 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2717
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002718'``llvm.loop``'
2719^^^^^^^^^^^^^^^
2720
2721It is sometimes useful to attach information to loop constructs. Currently,
2722loop metadata is implemented as metadata attached to the branch instruction
2723in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002724guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002725specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002726
2727The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002728itself to avoid merging it with any other identifier metadata, e.g.,
2729during module linkage or function inlining. That is, each loop should refer
2730to their own identification metadata even if they reside in separate functions.
2731The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002732constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002733
2734.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002735
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002736 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002737 !1 = metadata !{ metadata !1 }
2738
Paul Redmond5fdf8362013-05-28 20:00:34 +00002739The loop identifier metadata can be used to specify additional per-loop
2740metadata. Any operands after the first operand can be treated as user-defined
2741metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2742by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002743
Paul Redmond5fdf8362013-05-28 20:00:34 +00002744.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002745
Paul Redmond5fdf8362013-05-28 20:00:34 +00002746 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2747 ...
2748 !0 = metadata !{ metadata !0, metadata !1 }
2749 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002750
2751'``llvm.mem``'
2752^^^^^^^^^^^^^^^
2753
2754Metadata types used to annotate memory accesses with information helpful
2755for optimizations are prefixed with ``llvm.mem``.
2756
2757'``llvm.mem.parallel_loop_access``' Metadata
2758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2759
2760For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002761the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002762also all of the memory accessing instructions in the loop body need to be
2763marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2764is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002765the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002766converted to sequential loops due to optimization passes that are unaware of
2767the parallel semantics and that insert new memory instructions to the loop
2768body.
2769
2770Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002771both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002772metadata types that refer to the same loop identifier metadata.
2773
2774.. code-block:: llvm
2775
2776 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002777 ...
2778 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2779 ...
2780 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2781 ...
2782 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002783
2784 for.end:
2785 ...
2786 !0 = metadata !{ metadata !0 }
2787
2788It is also possible to have nested parallel loops. In that case the
2789memory accesses refer to a list of loop identifier metadata nodes instead of
2790the loop identifier metadata node directly:
2791
2792.. code-block:: llvm
2793
2794 outer.for.body:
2795 ...
2796
2797 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002798 ...
2799 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2800 ...
2801 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2802 ...
2803 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002804
2805 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002806 ...
2807 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2808 ...
2809 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2810 ...
2811 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002812
2813 outer.for.end: ; preds = %for.body
2814 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002815 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2816 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2817 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002818
Paul Redmond5fdf8362013-05-28 20:00:34 +00002819'``llvm.vectorizer``'
2820^^^^^^^^^^^^^^^^^^^^^
2821
2822Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2823vectorization parameters such as vectorization factor and unroll factor.
2824
2825``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2826loop identification metadata.
2827
2828'``llvm.vectorizer.unroll``' Metadata
2829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2830
2831This metadata instructs the loop vectorizer to unroll the specified
2832loop exactly ``N`` times.
2833
2834The first operand is the string ``llvm.vectorizer.unroll`` and the second
2835operand is an integer specifying the unroll factor. For example:
2836
2837.. code-block:: llvm
2838
2839 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2840
2841Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2842loop.
2843
2844If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2845determined automatically.
2846
2847'``llvm.vectorizer.width``' Metadata
2848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2849
Paul Redmondeccbb322013-05-30 17:22:46 +00002850This metadata sets the target width of the vectorizer to ``N``. Without
2851this metadata, the vectorizer will choose a width automatically.
2852Regardless of this metadata, the vectorizer will only vectorize loops if
2853it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002854
2855The first operand is the string ``llvm.vectorizer.width`` and the second
2856operand is an integer specifying the width. For example:
2857
2858.. code-block:: llvm
2859
2860 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2861
2862Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2863loop.
2864
2865If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2866automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002867
Sean Silvab084af42012-12-07 10:36:55 +00002868Module Flags Metadata
2869=====================
2870
2871Information about the module as a whole is difficult to convey to LLVM's
2872subsystems. The LLVM IR isn't sufficient to transmit this information.
2873The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002874this. These flags are in the form of key / value pairs --- much like a
2875dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002876look it up.
2877
2878The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2879Each triplet has the following form:
2880
2881- The first element is a *behavior* flag, which specifies the behavior
2882 when two (or more) modules are merged together, and it encounters two
2883 (or more) metadata with the same ID. The supported behaviors are
2884 described below.
2885- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002886 metadata. Each module may only have one flag entry for each unique ID (not
2887 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002888- The third element is the value of the flag.
2889
2890When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002891``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2892each unique metadata ID string, there will be exactly one entry in the merged
2893modules ``llvm.module.flags`` metadata table, and the value for that entry will
2894be determined by the merge behavior flag, as described below. The only exception
2895is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002896
2897The following behaviors are supported:
2898
2899.. list-table::
2900 :header-rows: 1
2901 :widths: 10 90
2902
2903 * - Value
2904 - Behavior
2905
2906 * - 1
2907 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002908 Emits an error if two values disagree, otherwise the resulting value
2909 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002910
2911 * - 2
2912 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002913 Emits a warning if two values disagree. The result value will be the
2914 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002915
2916 * - 3
2917 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002918 Adds a requirement that another module flag be present and have a
2919 specified value after linking is performed. The value must be a
2920 metadata pair, where the first element of the pair is the ID of the
2921 module flag to be restricted, and the second element of the pair is
2922 the value the module flag should be restricted to. This behavior can
2923 be used to restrict the allowable results (via triggering of an
2924 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002925
2926 * - 4
2927 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002928 Uses the specified value, regardless of the behavior or value of the
2929 other module. If both modules specify **Override**, but the values
2930 differ, an error will be emitted.
2931
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002932 * - 5
2933 - **Append**
2934 Appends the two values, which are required to be metadata nodes.
2935
2936 * - 6
2937 - **AppendUnique**
2938 Appends the two values, which are required to be metadata
2939 nodes. However, duplicate entries in the second list are dropped
2940 during the append operation.
2941
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002942It is an error for a particular unique flag ID to have multiple behaviors,
2943except in the case of **Require** (which adds restrictions on another metadata
2944value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002945
2946An example of module flags:
2947
2948.. code-block:: llvm
2949
2950 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2951 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2952 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2953 !3 = metadata !{ i32 3, metadata !"qux",
2954 metadata !{
2955 metadata !"foo", i32 1
2956 }
2957 }
2958 !llvm.module.flags = !{ !0, !1, !2, !3 }
2959
2960- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2961 if two or more ``!"foo"`` flags are seen is to emit an error if their
2962 values are not equal.
2963
2964- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2965 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002966 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002967
2968- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2969 behavior if two or more ``!"qux"`` flags are seen is to emit a
2970 warning if their values are not equal.
2971
2972- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2973
2974 ::
2975
2976 metadata !{ metadata !"foo", i32 1 }
2977
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002978 The behavior is to emit an error if the ``llvm.module.flags`` does not
2979 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2980 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002981
2982Objective-C Garbage Collection Module Flags Metadata
2983----------------------------------------------------
2984
2985On the Mach-O platform, Objective-C stores metadata about garbage
2986collection in a special section called "image info". The metadata
2987consists of a version number and a bitmask specifying what types of
2988garbage collection are supported (if any) by the file. If two or more
2989modules are linked together their garbage collection metadata needs to
2990be merged rather than appended together.
2991
2992The Objective-C garbage collection module flags metadata consists of the
2993following key-value pairs:
2994
2995.. list-table::
2996 :header-rows: 1
2997 :widths: 30 70
2998
2999 * - Key
3000 - Value
3001
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003002 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003003 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003004
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003005 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003006 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003007 always 0.
3008
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003009 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003010 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003011 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3012 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3013 Objective-C ABI version 2.
3014
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003015 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003016 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003017 not. Valid values are 0, for no garbage collection, and 2, for garbage
3018 collection supported.
3019
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003020 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003021 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003022 If present, its value must be 6. This flag requires that the
3023 ``Objective-C Garbage Collection`` flag have the value 2.
3024
3025Some important flag interactions:
3026
3027- If a module with ``Objective-C Garbage Collection`` set to 0 is
3028 merged with a module with ``Objective-C Garbage Collection`` set to
3029 2, then the resulting module has the
3030 ``Objective-C Garbage Collection`` flag set to 0.
3031- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3032 merged with a module with ``Objective-C GC Only`` set to 6.
3033
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003034Automatic Linker Flags Module Flags Metadata
3035--------------------------------------------
3036
3037Some targets support embedding flags to the linker inside individual object
3038files. Typically this is used in conjunction with language extensions which
3039allow source files to explicitly declare the libraries they depend on, and have
3040these automatically be transmitted to the linker via object files.
3041
3042These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003043using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003044to be ``AppendUnique``, and the value for the key is expected to be a metadata
3045node which should be a list of other metadata nodes, each of which should be a
3046list of metadata strings defining linker options.
3047
3048For example, the following metadata section specifies two separate sets of
3049linker options, presumably to link against ``libz`` and the ``Cocoa``
3050framework::
3051
Michael Liaoa7699082013-03-06 18:24:34 +00003052 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003053 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003054 metadata !{ metadata !"-lz" },
3055 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003056 !llvm.module.flags = !{ !0 }
3057
3058The metadata encoding as lists of lists of options, as opposed to a collapsed
3059list of options, is chosen so that the IR encoding can use multiple option
3060strings to specify e.g., a single library, while still having that specifier be
3061preserved as an atomic element that can be recognized by a target specific
3062assembly writer or object file emitter.
3063
3064Each individual option is required to be either a valid option for the target's
3065linker, or an option that is reserved by the target specific assembly writer or
3066object file emitter. No other aspect of these options is defined by the IR.
3067
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003068.. _intrinsicglobalvariables:
3069
Sean Silvab084af42012-12-07 10:36:55 +00003070Intrinsic Global Variables
3071==========================
3072
3073LLVM has a number of "magic" global variables that contain data that
3074affect code generation or other IR semantics. These are documented here.
3075All globals of this sort should have a section specified as
3076"``llvm.metadata``". This section and all globals that start with
3077"``llvm.``" are reserved for use by LLVM.
3078
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003079.. _gv_llvmused:
3080
Sean Silvab084af42012-12-07 10:36:55 +00003081The '``llvm.used``' Global Variable
3082-----------------------------------
3083
Rafael Espindola74f2e462013-04-22 14:58:02 +00003084The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003085:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003086pointers to named global variables, functions and aliases which may optionally
3087have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003088use of it is:
3089
3090.. code-block:: llvm
3091
3092 @X = global i8 4
3093 @Y = global i32 123
3094
3095 @llvm.used = appending global [2 x i8*] [
3096 i8* @X,
3097 i8* bitcast (i32* @Y to i8*)
3098 ], section "llvm.metadata"
3099
Rafael Espindola74f2e462013-04-22 14:58:02 +00003100If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3101and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003102symbol that it cannot see (which is why they have to be named). For example, if
3103a variable has internal linkage and no references other than that from the
3104``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3105references from inline asms and other things the compiler cannot "see", and
3106corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003107
3108On some targets, the code generator must emit a directive to the
3109assembler or object file to prevent the assembler and linker from
3110molesting the symbol.
3111
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003112.. _gv_llvmcompilerused:
3113
Sean Silvab084af42012-12-07 10:36:55 +00003114The '``llvm.compiler.used``' Global Variable
3115--------------------------------------------
3116
3117The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3118directive, except that it only prevents the compiler from touching the
3119symbol. On targets that support it, this allows an intelligent linker to
3120optimize references to the symbol without being impeded as it would be
3121by ``@llvm.used``.
3122
3123This is a rare construct that should only be used in rare circumstances,
3124and should not be exposed to source languages.
3125
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003126.. _gv_llvmglobalctors:
3127
Sean Silvab084af42012-12-07 10:36:55 +00003128The '``llvm.global_ctors``' Global Variable
3129-------------------------------------------
3130
3131.. code-block:: llvm
3132
3133 %0 = type { i32, void ()* }
3134 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3135
3136The ``@llvm.global_ctors`` array contains a list of constructor
3137functions and associated priorities. The functions referenced by this
3138array will be called in ascending order of priority (i.e. lowest first)
3139when the module is loaded. The order of functions with the same priority
3140is not defined.
3141
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003142.. _llvmglobaldtors:
3143
Sean Silvab084af42012-12-07 10:36:55 +00003144The '``llvm.global_dtors``' Global Variable
3145-------------------------------------------
3146
3147.. code-block:: llvm
3148
3149 %0 = type { i32, void ()* }
3150 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3151
3152The ``@llvm.global_dtors`` array contains a list of destructor functions
3153and associated priorities. The functions referenced by this array will
3154be called in descending order of priority (i.e. highest first) when the
3155module is loaded. The order of functions with the same priority is not
3156defined.
3157
3158Instruction Reference
3159=====================
3160
3161The LLVM instruction set consists of several different classifications
3162of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3163instructions <binaryops>`, :ref:`bitwise binary
3164instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3165:ref:`other instructions <otherops>`.
3166
3167.. _terminators:
3168
3169Terminator Instructions
3170-----------------------
3171
3172As mentioned :ref:`previously <functionstructure>`, every basic block in a
3173program ends with a "Terminator" instruction, which indicates which
3174block should be executed after the current block is finished. These
3175terminator instructions typically yield a '``void``' value: they produce
3176control flow, not values (the one exception being the
3177':ref:`invoke <i_invoke>`' instruction).
3178
3179The terminator instructions are: ':ref:`ret <i_ret>`',
3180':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3181':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3182':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3183
3184.. _i_ret:
3185
3186'``ret``' Instruction
3187^^^^^^^^^^^^^^^^^^^^^
3188
3189Syntax:
3190"""""""
3191
3192::
3193
3194 ret <type> <value> ; Return a value from a non-void function
3195 ret void ; Return from void function
3196
3197Overview:
3198"""""""""
3199
3200The '``ret``' instruction is used to return control flow (and optionally
3201a value) from a function back to the caller.
3202
3203There are two forms of the '``ret``' instruction: one that returns a
3204value and then causes control flow, and one that just causes control
3205flow to occur.
3206
3207Arguments:
3208""""""""""
3209
3210The '``ret``' instruction optionally accepts a single argument, the
3211return value. The type of the return value must be a ':ref:`first
3212class <t_firstclass>`' type.
3213
3214A function is not :ref:`well formed <wellformed>` if it it has a non-void
3215return type and contains a '``ret``' instruction with no return value or
3216a return value with a type that does not match its type, or if it has a
3217void return type and contains a '``ret``' instruction with a return
3218value.
3219
3220Semantics:
3221""""""""""
3222
3223When the '``ret``' instruction is executed, control flow returns back to
3224the calling function's context. If the caller is a
3225":ref:`call <i_call>`" instruction, execution continues at the
3226instruction after the call. If the caller was an
3227":ref:`invoke <i_invoke>`" instruction, execution continues at the
3228beginning of the "normal" destination block. If the instruction returns
3229a value, that value shall set the call or invoke instruction's return
3230value.
3231
3232Example:
3233""""""""
3234
3235.. code-block:: llvm
3236
3237 ret i32 5 ; Return an integer value of 5
3238 ret void ; Return from a void function
3239 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3240
3241.. _i_br:
3242
3243'``br``' Instruction
3244^^^^^^^^^^^^^^^^^^^^
3245
3246Syntax:
3247"""""""
3248
3249::
3250
3251 br i1 <cond>, label <iftrue>, label <iffalse>
3252 br label <dest> ; Unconditional branch
3253
3254Overview:
3255"""""""""
3256
3257The '``br``' instruction is used to cause control flow to transfer to a
3258different basic block in the current function. There are two forms of
3259this instruction, corresponding to a conditional branch and an
3260unconditional branch.
3261
3262Arguments:
3263""""""""""
3264
3265The conditional branch form of the '``br``' instruction takes a single
3266'``i1``' value and two '``label``' values. The unconditional form of the
3267'``br``' instruction takes a single '``label``' value as a target.
3268
3269Semantics:
3270""""""""""
3271
3272Upon execution of a conditional '``br``' instruction, the '``i1``'
3273argument is evaluated. If the value is ``true``, control flows to the
3274'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3275to the '``iffalse``' ``label`` argument.
3276
3277Example:
3278""""""""
3279
3280.. code-block:: llvm
3281
3282 Test:
3283 %cond = icmp eq i32 %a, %b
3284 br i1 %cond, label %IfEqual, label %IfUnequal
3285 IfEqual:
3286 ret i32 1
3287 IfUnequal:
3288 ret i32 0
3289
3290.. _i_switch:
3291
3292'``switch``' Instruction
3293^^^^^^^^^^^^^^^^^^^^^^^^
3294
3295Syntax:
3296"""""""
3297
3298::
3299
3300 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3301
3302Overview:
3303"""""""""
3304
3305The '``switch``' instruction is used to transfer control flow to one of
3306several different places. It is a generalization of the '``br``'
3307instruction, allowing a branch to occur to one of many possible
3308destinations.
3309
3310Arguments:
3311""""""""""
3312
3313The '``switch``' instruction uses three parameters: an integer
3314comparison value '``value``', a default '``label``' destination, and an
3315array of pairs of comparison value constants and '``label``'s. The table
3316is not allowed to contain duplicate constant entries.
3317
3318Semantics:
3319""""""""""
3320
3321The ``switch`` instruction specifies a table of values and destinations.
3322When the '``switch``' instruction is executed, this table is searched
3323for the given value. If the value is found, control flow is transferred
3324to the corresponding destination; otherwise, control flow is transferred
3325to the default destination.
3326
3327Implementation:
3328"""""""""""""""
3329
3330Depending on properties of the target machine and the particular
3331``switch`` instruction, this instruction may be code generated in
3332different ways. For example, it could be generated as a series of
3333chained conditional branches or with a lookup table.
3334
3335Example:
3336""""""""
3337
3338.. code-block:: llvm
3339
3340 ; Emulate a conditional br instruction
3341 %Val = zext i1 %value to i32
3342 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3343
3344 ; Emulate an unconditional br instruction
3345 switch i32 0, label %dest [ ]
3346
3347 ; Implement a jump table:
3348 switch i32 %val, label %otherwise [ i32 0, label %onzero
3349 i32 1, label %onone
3350 i32 2, label %ontwo ]
3351
3352.. _i_indirectbr:
3353
3354'``indirectbr``' Instruction
3355^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3356
3357Syntax:
3358"""""""
3359
3360::
3361
3362 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3363
3364Overview:
3365"""""""""
3366
3367The '``indirectbr``' instruction implements an indirect branch to a
3368label within the current function, whose address is specified by
3369"``address``". Address must be derived from a
3370:ref:`blockaddress <blockaddress>` constant.
3371
3372Arguments:
3373""""""""""
3374
3375The '``address``' argument is the address of the label to jump to. The
3376rest of the arguments indicate the full set of possible destinations
3377that the address may point to. Blocks are allowed to occur multiple
3378times in the destination list, though this isn't particularly useful.
3379
3380This destination list is required so that dataflow analysis has an
3381accurate understanding of the CFG.
3382
3383Semantics:
3384""""""""""
3385
3386Control transfers to the block specified in the address argument. All
3387possible destination blocks must be listed in the label list, otherwise
3388this instruction has undefined behavior. This implies that jumps to
3389labels defined in other functions have undefined behavior as well.
3390
3391Implementation:
3392"""""""""""""""
3393
3394This is typically implemented with a jump through a register.
3395
3396Example:
3397""""""""
3398
3399.. code-block:: llvm
3400
3401 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3402
3403.. _i_invoke:
3404
3405'``invoke``' Instruction
3406^^^^^^^^^^^^^^^^^^^^^^^^
3407
3408Syntax:
3409"""""""
3410
3411::
3412
3413 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3414 to label <normal label> unwind label <exception label>
3415
3416Overview:
3417"""""""""
3418
3419The '``invoke``' instruction causes control to transfer to a specified
3420function, with the possibility of control flow transfer to either the
3421'``normal``' label or the '``exception``' label. If the callee function
3422returns with the "``ret``" instruction, control flow will return to the
3423"normal" label. If the callee (or any indirect callees) returns via the
3424":ref:`resume <i_resume>`" instruction or other exception handling
3425mechanism, control is interrupted and continued at the dynamically
3426nearest "exception" label.
3427
3428The '``exception``' label is a `landing
3429pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3430'``exception``' label is required to have the
3431":ref:`landingpad <i_landingpad>`" instruction, which contains the
3432information about the behavior of the program after unwinding happens,
3433as its first non-PHI instruction. The restrictions on the
3434"``landingpad``" instruction's tightly couples it to the "``invoke``"
3435instruction, so that the important information contained within the
3436"``landingpad``" instruction can't be lost through normal code motion.
3437
3438Arguments:
3439""""""""""
3440
3441This instruction requires several arguments:
3442
3443#. The optional "cconv" marker indicates which :ref:`calling
3444 convention <callingconv>` the call should use. If none is
3445 specified, the call defaults to using C calling conventions.
3446#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3447 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3448 are valid here.
3449#. '``ptr to function ty``': shall be the signature of the pointer to
3450 function value being invoked. In most cases, this is a direct
3451 function invocation, but indirect ``invoke``'s are just as possible,
3452 branching off an arbitrary pointer to function value.
3453#. '``function ptr val``': An LLVM value containing a pointer to a
3454 function to be invoked.
3455#. '``function args``': argument list whose types match the function
3456 signature argument types and parameter attributes. All arguments must
3457 be of :ref:`first class <t_firstclass>` type. If the function signature
3458 indicates the function accepts a variable number of arguments, the
3459 extra arguments can be specified.
3460#. '``normal label``': the label reached when the called function
3461 executes a '``ret``' instruction.
3462#. '``exception label``': the label reached when a callee returns via
3463 the :ref:`resume <i_resume>` instruction or other exception handling
3464 mechanism.
3465#. The optional :ref:`function attributes <fnattrs>` list. Only
3466 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3467 attributes are valid here.
3468
3469Semantics:
3470""""""""""
3471
3472This instruction is designed to operate as a standard '``call``'
3473instruction in most regards. The primary difference is that it
3474establishes an association with a label, which is used by the runtime
3475library to unwind the stack.
3476
3477This instruction is used in languages with destructors to ensure that
3478proper cleanup is performed in the case of either a ``longjmp`` or a
3479thrown exception. Additionally, this is important for implementation of
3480'``catch``' clauses in high-level languages that support them.
3481
3482For the purposes of the SSA form, the definition of the value returned
3483by the '``invoke``' instruction is deemed to occur on the edge from the
3484current block to the "normal" label. If the callee unwinds then no
3485return value is available.
3486
3487Example:
3488""""""""
3489
3490.. code-block:: llvm
3491
3492 %retval = invoke i32 @Test(i32 15) to label %Continue
3493 unwind label %TestCleanup ; {i32}:retval set
3494 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3495 unwind label %TestCleanup ; {i32}:retval set
3496
3497.. _i_resume:
3498
3499'``resume``' Instruction
3500^^^^^^^^^^^^^^^^^^^^^^^^
3501
3502Syntax:
3503"""""""
3504
3505::
3506
3507 resume <type> <value>
3508
3509Overview:
3510"""""""""
3511
3512The '``resume``' instruction is a terminator instruction that has no
3513successors.
3514
3515Arguments:
3516""""""""""
3517
3518The '``resume``' instruction requires one argument, which must have the
3519same type as the result of any '``landingpad``' instruction in the same
3520function.
3521
3522Semantics:
3523""""""""""
3524
3525The '``resume``' instruction resumes propagation of an existing
3526(in-flight) exception whose unwinding was interrupted with a
3527:ref:`landingpad <i_landingpad>` instruction.
3528
3529Example:
3530""""""""
3531
3532.. code-block:: llvm
3533
3534 resume { i8*, i32 } %exn
3535
3536.. _i_unreachable:
3537
3538'``unreachable``' Instruction
3539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3540
3541Syntax:
3542"""""""
3543
3544::
3545
3546 unreachable
3547
3548Overview:
3549"""""""""
3550
3551The '``unreachable``' instruction has no defined semantics. This
3552instruction is used to inform the optimizer that a particular portion of
3553the code is not reachable. This can be used to indicate that the code
3554after a no-return function cannot be reached, and other facts.
3555
3556Semantics:
3557""""""""""
3558
3559The '``unreachable``' instruction has no defined semantics.
3560
3561.. _binaryops:
3562
3563Binary Operations
3564-----------------
3565
3566Binary operators are used to do most of the computation in a program.
3567They require two operands of the same type, execute an operation on
3568them, and produce a single value. The operands might represent multiple
3569data, as is the case with the :ref:`vector <t_vector>` data type. The
3570result value has the same type as its operands.
3571
3572There are several different binary operators:
3573
3574.. _i_add:
3575
3576'``add``' Instruction
3577^^^^^^^^^^^^^^^^^^^^^
3578
3579Syntax:
3580"""""""
3581
3582::
3583
3584 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3585 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3586 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3587 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3588
3589Overview:
3590"""""""""
3591
3592The '``add``' instruction returns the sum of its two operands.
3593
3594Arguments:
3595""""""""""
3596
3597The two arguments to the '``add``' instruction must be
3598:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3599arguments must have identical types.
3600
3601Semantics:
3602""""""""""
3603
3604The value produced is the integer sum of the two operands.
3605
3606If the sum has unsigned overflow, the result returned is the
3607mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3608the result.
3609
3610Because LLVM integers use a two's complement representation, this
3611instruction is appropriate for both signed and unsigned integers.
3612
3613``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3614respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3615result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3616unsigned and/or signed overflow, respectively, occurs.
3617
3618Example:
3619""""""""
3620
3621.. code-block:: llvm
3622
3623 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3624
3625.. _i_fadd:
3626
3627'``fadd``' Instruction
3628^^^^^^^^^^^^^^^^^^^^^^
3629
3630Syntax:
3631"""""""
3632
3633::
3634
3635 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3636
3637Overview:
3638"""""""""
3639
3640The '``fadd``' instruction returns the sum of its two operands.
3641
3642Arguments:
3643""""""""""
3644
3645The two arguments to the '``fadd``' instruction must be :ref:`floating
3646point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3647Both arguments must have identical types.
3648
3649Semantics:
3650""""""""""
3651
3652The value produced is the floating point sum of the two operands. This
3653instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3654which are optimization hints to enable otherwise unsafe floating point
3655optimizations:
3656
3657Example:
3658""""""""
3659
3660.. code-block:: llvm
3661
3662 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3663
3664'``sub``' Instruction
3665^^^^^^^^^^^^^^^^^^^^^
3666
3667Syntax:
3668"""""""
3669
3670::
3671
3672 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3673 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3674 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3675 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3676
3677Overview:
3678"""""""""
3679
3680The '``sub``' instruction returns the difference of its two operands.
3681
3682Note that the '``sub``' instruction is used to represent the '``neg``'
3683instruction present in most other intermediate representations.
3684
3685Arguments:
3686""""""""""
3687
3688The two arguments to the '``sub``' instruction must be
3689:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3690arguments must have identical types.
3691
3692Semantics:
3693""""""""""
3694
3695The value produced is the integer difference of the two operands.
3696
3697If the difference has unsigned overflow, the result returned is the
3698mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3699the result.
3700
3701Because LLVM integers use a two's complement representation, this
3702instruction is appropriate for both signed and unsigned integers.
3703
3704``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3705respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3706result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3707unsigned and/or signed overflow, respectively, occurs.
3708
3709Example:
3710""""""""
3711
3712.. code-block:: llvm
3713
3714 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3715 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3716
3717.. _i_fsub:
3718
3719'``fsub``' Instruction
3720^^^^^^^^^^^^^^^^^^^^^^
3721
3722Syntax:
3723"""""""
3724
3725::
3726
3727 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3728
3729Overview:
3730"""""""""
3731
3732The '``fsub``' instruction returns the difference of its two operands.
3733
3734Note that the '``fsub``' instruction is used to represent the '``fneg``'
3735instruction present in most other intermediate representations.
3736
3737Arguments:
3738""""""""""
3739
3740The two arguments to the '``fsub``' instruction must be :ref:`floating
3741point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3742Both arguments must have identical types.
3743
3744Semantics:
3745""""""""""
3746
3747The value produced is the floating point difference of the two operands.
3748This instruction can also take any number of :ref:`fast-math
3749flags <fastmath>`, which are optimization hints to enable otherwise
3750unsafe floating point optimizations:
3751
3752Example:
3753""""""""
3754
3755.. code-block:: llvm
3756
3757 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3758 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3759
3760'``mul``' Instruction
3761^^^^^^^^^^^^^^^^^^^^^
3762
3763Syntax:
3764"""""""
3765
3766::
3767
3768 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3769 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3770 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3771 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3772
3773Overview:
3774"""""""""
3775
3776The '``mul``' instruction returns the product of its two operands.
3777
3778Arguments:
3779""""""""""
3780
3781The two arguments to the '``mul``' instruction must be
3782:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3783arguments must have identical types.
3784
3785Semantics:
3786""""""""""
3787
3788The value produced is the integer product of the two operands.
3789
3790If the result of the multiplication has unsigned overflow, the result
3791returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3792bit width of the result.
3793
3794Because LLVM integers use a two's complement representation, and the
3795result is the same width as the operands, this instruction returns the
3796correct result for both signed and unsigned integers. If a full product
3797(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3798sign-extended or zero-extended as appropriate to the width of the full
3799product.
3800
3801``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3802respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3803result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3804unsigned and/or signed overflow, respectively, occurs.
3805
3806Example:
3807""""""""
3808
3809.. code-block:: llvm
3810
3811 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3812
3813.. _i_fmul:
3814
3815'``fmul``' Instruction
3816^^^^^^^^^^^^^^^^^^^^^^
3817
3818Syntax:
3819"""""""
3820
3821::
3822
3823 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3824
3825Overview:
3826"""""""""
3827
3828The '``fmul``' instruction returns the product of its two operands.
3829
3830Arguments:
3831""""""""""
3832
3833The two arguments to the '``fmul``' instruction must be :ref:`floating
3834point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3835Both arguments must have identical types.
3836
3837Semantics:
3838""""""""""
3839
3840The value produced is the floating point product of the two operands.
3841This instruction can also take any number of :ref:`fast-math
3842flags <fastmath>`, which are optimization hints to enable otherwise
3843unsafe floating point optimizations:
3844
3845Example:
3846""""""""
3847
3848.. code-block:: llvm
3849
3850 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3851
3852'``udiv``' Instruction
3853^^^^^^^^^^^^^^^^^^^^^^
3854
3855Syntax:
3856"""""""
3857
3858::
3859
3860 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3861 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3862
3863Overview:
3864"""""""""
3865
3866The '``udiv``' instruction returns the quotient of its two operands.
3867
3868Arguments:
3869""""""""""
3870
3871The two arguments to the '``udiv``' instruction must be
3872:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3873arguments must have identical types.
3874
3875Semantics:
3876""""""""""
3877
3878The value produced is the unsigned integer quotient of the two operands.
3879
3880Note that unsigned integer division and signed integer division are
3881distinct operations; for signed integer division, use '``sdiv``'.
3882
3883Division by zero leads to undefined behavior.
3884
3885If the ``exact`` keyword is present, the result value of the ``udiv`` is
3886a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3887such, "((a udiv exact b) mul b) == a").
3888
3889Example:
3890""""""""
3891
3892.. code-block:: llvm
3893
3894 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3895
3896'``sdiv``' Instruction
3897^^^^^^^^^^^^^^^^^^^^^^
3898
3899Syntax:
3900"""""""
3901
3902::
3903
3904 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3905 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3906
3907Overview:
3908"""""""""
3909
3910The '``sdiv``' instruction returns the quotient of its two operands.
3911
3912Arguments:
3913""""""""""
3914
3915The two arguments to the '``sdiv``' instruction must be
3916:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3917arguments must have identical types.
3918
3919Semantics:
3920""""""""""
3921
3922The value produced is the signed integer quotient of the two operands
3923rounded towards zero.
3924
3925Note that signed integer division and unsigned integer division are
3926distinct operations; for unsigned integer division, use '``udiv``'.
3927
3928Division by zero leads to undefined behavior. Overflow also leads to
3929undefined behavior; this is a rare case, but can occur, for example, by
3930doing a 32-bit division of -2147483648 by -1.
3931
3932If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3933a :ref:`poison value <poisonvalues>` if the result would be rounded.
3934
3935Example:
3936""""""""
3937
3938.. code-block:: llvm
3939
3940 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3941
3942.. _i_fdiv:
3943
3944'``fdiv``' Instruction
3945^^^^^^^^^^^^^^^^^^^^^^
3946
3947Syntax:
3948"""""""
3949
3950::
3951
3952 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3953
3954Overview:
3955"""""""""
3956
3957The '``fdiv``' instruction returns the quotient of its two operands.
3958
3959Arguments:
3960""""""""""
3961
3962The two arguments to the '``fdiv``' instruction must be :ref:`floating
3963point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3964Both arguments must have identical types.
3965
3966Semantics:
3967""""""""""
3968
3969The value produced is the floating point quotient of the two operands.
3970This instruction can also take any number of :ref:`fast-math
3971flags <fastmath>`, which are optimization hints to enable otherwise
3972unsafe floating point optimizations:
3973
3974Example:
3975""""""""
3976
3977.. code-block:: llvm
3978
3979 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3980
3981'``urem``' Instruction
3982^^^^^^^^^^^^^^^^^^^^^^
3983
3984Syntax:
3985"""""""
3986
3987::
3988
3989 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3990
3991Overview:
3992"""""""""
3993
3994The '``urem``' instruction returns the remainder from the unsigned
3995division of its two arguments.
3996
3997Arguments:
3998""""""""""
3999
4000The two arguments to the '``urem``' instruction must be
4001:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4002arguments must have identical types.
4003
4004Semantics:
4005""""""""""
4006
4007This instruction returns the unsigned integer *remainder* of a division.
4008This instruction always performs an unsigned division to get the
4009remainder.
4010
4011Note that unsigned integer remainder and signed integer remainder are
4012distinct operations; for signed integer remainder, use '``srem``'.
4013
4014Taking the remainder of a division by zero leads to undefined behavior.
4015
4016Example:
4017""""""""
4018
4019.. code-block:: llvm
4020
4021 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4022
4023'``srem``' Instruction
4024^^^^^^^^^^^^^^^^^^^^^^
4025
4026Syntax:
4027"""""""
4028
4029::
4030
4031 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4032
4033Overview:
4034"""""""""
4035
4036The '``srem``' instruction returns the remainder from the signed
4037division of its two operands. This instruction can also take
4038:ref:`vector <t_vector>` versions of the values in which case the elements
4039must be integers.
4040
4041Arguments:
4042""""""""""
4043
4044The two arguments to the '``srem``' instruction must be
4045:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4046arguments must have identical types.
4047
4048Semantics:
4049""""""""""
4050
4051This instruction returns the *remainder* of a division (where the result
4052is either zero or has the same sign as the dividend, ``op1``), not the
4053*modulo* operator (where the result is either zero or has the same sign
4054as the divisor, ``op2``) of a value. For more information about the
4055difference, see `The Math
4056Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4057table of how this is implemented in various languages, please see
4058`Wikipedia: modulo
4059operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4060
4061Note that signed integer remainder and unsigned integer remainder are
4062distinct operations; for unsigned integer remainder, use '``urem``'.
4063
4064Taking the remainder of a division by zero leads to undefined behavior.
4065Overflow also leads to undefined behavior; this is a rare case, but can
4066occur, for example, by taking the remainder of a 32-bit division of
4067-2147483648 by -1. (The remainder doesn't actually overflow, but this
4068rule lets srem be implemented using instructions that return both the
4069result of the division and the remainder.)
4070
4071Example:
4072""""""""
4073
4074.. code-block:: llvm
4075
4076 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4077
4078.. _i_frem:
4079
4080'``frem``' Instruction
4081^^^^^^^^^^^^^^^^^^^^^^
4082
4083Syntax:
4084"""""""
4085
4086::
4087
4088 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4089
4090Overview:
4091"""""""""
4092
4093The '``frem``' instruction returns the remainder from the division of
4094its two operands.
4095
4096Arguments:
4097""""""""""
4098
4099The two arguments to the '``frem``' instruction must be :ref:`floating
4100point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4101Both arguments must have identical types.
4102
4103Semantics:
4104""""""""""
4105
4106This instruction returns the *remainder* of a division. The remainder
4107has the same sign as the dividend. This instruction can also take any
4108number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4109to enable otherwise unsafe floating point optimizations:
4110
4111Example:
4112""""""""
4113
4114.. code-block:: llvm
4115
4116 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4117
4118.. _bitwiseops:
4119
4120Bitwise Binary Operations
4121-------------------------
4122
4123Bitwise binary operators are used to do various forms of bit-twiddling
4124in a program. They are generally very efficient instructions and can
4125commonly be strength reduced from other instructions. They require two
4126operands of the same type, execute an operation on them, and produce a
4127single value. The resulting value is the same type as its operands.
4128
4129'``shl``' Instruction
4130^^^^^^^^^^^^^^^^^^^^^
4131
4132Syntax:
4133"""""""
4134
4135::
4136
4137 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4138 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4139 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4140 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4141
4142Overview:
4143"""""""""
4144
4145The '``shl``' instruction returns the first operand shifted to the left
4146a specified number of bits.
4147
4148Arguments:
4149""""""""""
4150
4151Both arguments to the '``shl``' instruction must be the same
4152:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4153'``op2``' is treated as an unsigned value.
4154
4155Semantics:
4156""""""""""
4157
4158The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4159where ``n`` is the width of the result. If ``op2`` is (statically or
4160dynamically) negative or equal to or larger than the number of bits in
4161``op1``, the result is undefined. If the arguments are vectors, each
4162vector element of ``op1`` is shifted by the corresponding shift amount
4163in ``op2``.
4164
4165If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4166value <poisonvalues>` if it shifts out any non-zero bits. If the
4167``nsw`` keyword is present, then the shift produces a :ref:`poison
4168value <poisonvalues>` if it shifts out any bits that disagree with the
4169resultant sign bit. As such, NUW/NSW have the same semantics as they
4170would if the shift were expressed as a mul instruction with the same
4171nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4172
4173Example:
4174""""""""
4175
4176.. code-block:: llvm
4177
4178 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4179 <result> = shl i32 4, 2 ; yields {i32}: 16
4180 <result> = shl i32 1, 10 ; yields {i32}: 1024
4181 <result> = shl i32 1, 32 ; undefined
4182 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4183
4184'``lshr``' Instruction
4185^^^^^^^^^^^^^^^^^^^^^^
4186
4187Syntax:
4188"""""""
4189
4190::
4191
4192 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4193 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4194
4195Overview:
4196"""""""""
4197
4198The '``lshr``' instruction (logical shift right) returns the first
4199operand shifted to the right a specified number of bits with zero fill.
4200
4201Arguments:
4202""""""""""
4203
4204Both arguments to the '``lshr``' instruction must be the same
4205:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4206'``op2``' is treated as an unsigned value.
4207
4208Semantics:
4209""""""""""
4210
4211This instruction always performs a logical shift right operation. The
4212most significant bits of the result will be filled with zero bits after
4213the shift. If ``op2`` is (statically or dynamically) equal to or larger
4214than the number of bits in ``op1``, the result is undefined. If the
4215arguments are vectors, each vector element of ``op1`` is shifted by the
4216corresponding shift amount in ``op2``.
4217
4218If the ``exact`` keyword is present, the result value of the ``lshr`` is
4219a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4220non-zero.
4221
4222Example:
4223""""""""
4224
4225.. code-block:: llvm
4226
4227 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4228 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4229 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004230 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004231 <result> = lshr i32 1, 32 ; undefined
4232 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4233
4234'``ashr``' Instruction
4235^^^^^^^^^^^^^^^^^^^^^^
4236
4237Syntax:
4238"""""""
4239
4240::
4241
4242 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4243 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4244
4245Overview:
4246"""""""""
4247
4248The '``ashr``' instruction (arithmetic shift right) returns the first
4249operand shifted to the right a specified number of bits with sign
4250extension.
4251
4252Arguments:
4253""""""""""
4254
4255Both arguments to the '``ashr``' instruction must be the same
4256:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4257'``op2``' is treated as an unsigned value.
4258
4259Semantics:
4260""""""""""
4261
4262This instruction always performs an arithmetic shift right operation,
4263The most significant bits of the result will be filled with the sign bit
4264of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4265than the number of bits in ``op1``, the result is undefined. If the
4266arguments are vectors, each vector element of ``op1`` is shifted by the
4267corresponding shift amount in ``op2``.
4268
4269If the ``exact`` keyword is present, the result value of the ``ashr`` is
4270a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4271non-zero.
4272
4273Example:
4274""""""""
4275
4276.. code-block:: llvm
4277
4278 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4279 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4280 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4281 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4282 <result> = ashr i32 1, 32 ; undefined
4283 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4284
4285'``and``' Instruction
4286^^^^^^^^^^^^^^^^^^^^^
4287
4288Syntax:
4289"""""""
4290
4291::
4292
4293 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4294
4295Overview:
4296"""""""""
4297
4298The '``and``' instruction returns the bitwise logical and of its two
4299operands.
4300
4301Arguments:
4302""""""""""
4303
4304The two arguments to the '``and``' instruction must be
4305:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4306arguments must have identical types.
4307
4308Semantics:
4309""""""""""
4310
4311The truth table used for the '``and``' instruction is:
4312
4313+-----+-----+-----+
4314| In0 | In1 | Out |
4315+-----+-----+-----+
4316| 0 | 0 | 0 |
4317+-----+-----+-----+
4318| 0 | 1 | 0 |
4319+-----+-----+-----+
4320| 1 | 0 | 0 |
4321+-----+-----+-----+
4322| 1 | 1 | 1 |
4323+-----+-----+-----+
4324
4325Example:
4326""""""""
4327
4328.. code-block:: llvm
4329
4330 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4331 <result> = and i32 15, 40 ; yields {i32}:result = 8
4332 <result> = and i32 4, 8 ; yields {i32}:result = 0
4333
4334'``or``' Instruction
4335^^^^^^^^^^^^^^^^^^^^
4336
4337Syntax:
4338"""""""
4339
4340::
4341
4342 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4343
4344Overview:
4345"""""""""
4346
4347The '``or``' instruction returns the bitwise logical inclusive or of its
4348two operands.
4349
4350Arguments:
4351""""""""""
4352
4353The two arguments to the '``or``' instruction must be
4354:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4355arguments must have identical types.
4356
4357Semantics:
4358""""""""""
4359
4360The truth table used for the '``or``' instruction is:
4361
4362+-----+-----+-----+
4363| In0 | In1 | Out |
4364+-----+-----+-----+
4365| 0 | 0 | 0 |
4366+-----+-----+-----+
4367| 0 | 1 | 1 |
4368+-----+-----+-----+
4369| 1 | 0 | 1 |
4370+-----+-----+-----+
4371| 1 | 1 | 1 |
4372+-----+-----+-----+
4373
4374Example:
4375""""""""
4376
4377::
4378
4379 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4380 <result> = or i32 15, 40 ; yields {i32}:result = 47
4381 <result> = or i32 4, 8 ; yields {i32}:result = 12
4382
4383'``xor``' Instruction
4384^^^^^^^^^^^^^^^^^^^^^
4385
4386Syntax:
4387"""""""
4388
4389::
4390
4391 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4392
4393Overview:
4394"""""""""
4395
4396The '``xor``' instruction returns the bitwise logical exclusive or of
4397its two operands. The ``xor`` is used to implement the "one's
4398complement" operation, which is the "~" operator in C.
4399
4400Arguments:
4401""""""""""
4402
4403The two arguments to the '``xor``' instruction must be
4404:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4405arguments must have identical types.
4406
4407Semantics:
4408""""""""""
4409
4410The truth table used for the '``xor``' instruction is:
4411
4412+-----+-----+-----+
4413| In0 | In1 | Out |
4414+-----+-----+-----+
4415| 0 | 0 | 0 |
4416+-----+-----+-----+
4417| 0 | 1 | 1 |
4418+-----+-----+-----+
4419| 1 | 0 | 1 |
4420+-----+-----+-----+
4421| 1 | 1 | 0 |
4422+-----+-----+-----+
4423
4424Example:
4425""""""""
4426
4427.. code-block:: llvm
4428
4429 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4430 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4431 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4432 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4433
4434Vector Operations
4435-----------------
4436
4437LLVM supports several instructions to represent vector operations in a
4438target-independent manner. These instructions cover the element-access
4439and vector-specific operations needed to process vectors effectively.
4440While LLVM does directly support these vector operations, many
4441sophisticated algorithms will want to use target-specific intrinsics to
4442take full advantage of a specific target.
4443
4444.. _i_extractelement:
4445
4446'``extractelement``' Instruction
4447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4448
4449Syntax:
4450"""""""
4451
4452::
4453
4454 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4455
4456Overview:
4457"""""""""
4458
4459The '``extractelement``' instruction extracts a single scalar element
4460from a vector at a specified index.
4461
4462Arguments:
4463""""""""""
4464
4465The first operand of an '``extractelement``' instruction is a value of
4466:ref:`vector <t_vector>` type. The second operand is an index indicating
4467the position from which to extract the element. The index may be a
4468variable.
4469
4470Semantics:
4471""""""""""
4472
4473The result is a scalar of the same type as the element type of ``val``.
4474Its value is the value at position ``idx`` of ``val``. If ``idx``
4475exceeds the length of ``val``, the results are undefined.
4476
4477Example:
4478""""""""
4479
4480.. code-block:: llvm
4481
4482 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4483
4484.. _i_insertelement:
4485
4486'``insertelement``' Instruction
4487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4488
4489Syntax:
4490"""""""
4491
4492::
4493
4494 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4495
4496Overview:
4497"""""""""
4498
4499The '``insertelement``' instruction inserts a scalar element into a
4500vector at a specified index.
4501
4502Arguments:
4503""""""""""
4504
4505The first operand of an '``insertelement``' instruction is a value of
4506:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4507type must equal the element type of the first operand. The third operand
4508is an index indicating the position at which to insert the value. The
4509index may be a variable.
4510
4511Semantics:
4512""""""""""
4513
4514The result is a vector of the same type as ``val``. Its element values
4515are those of ``val`` except at position ``idx``, where it gets the value
4516``elt``. If ``idx`` exceeds the length of ``val``, the results are
4517undefined.
4518
4519Example:
4520""""""""
4521
4522.. code-block:: llvm
4523
4524 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4525
4526.. _i_shufflevector:
4527
4528'``shufflevector``' Instruction
4529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4530
4531Syntax:
4532"""""""
4533
4534::
4535
4536 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4537
4538Overview:
4539"""""""""
4540
4541The '``shufflevector``' instruction constructs a permutation of elements
4542from two input vectors, returning a vector with the same element type as
4543the input and length that is the same as the shuffle mask.
4544
4545Arguments:
4546""""""""""
4547
4548The first two operands of a '``shufflevector``' instruction are vectors
4549with the same type. The third argument is a shuffle mask whose element
4550type is always 'i32'. The result of the instruction is a vector whose
4551length is the same as the shuffle mask and whose element type is the
4552same as the element type of the first two operands.
4553
4554The shuffle mask operand is required to be a constant vector with either
4555constant integer or undef values.
4556
4557Semantics:
4558""""""""""
4559
4560The elements of the two input vectors are numbered from left to right
4561across both of the vectors. The shuffle mask operand specifies, for each
4562element of the result vector, which element of the two input vectors the
4563result element gets. The element selector may be undef (meaning "don't
4564care") and the second operand may be undef if performing a shuffle from
4565only one vector.
4566
4567Example:
4568""""""""
4569
4570.. code-block:: llvm
4571
4572 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4573 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4574 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4575 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4576 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4577 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4578 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4579 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4580
4581Aggregate Operations
4582--------------------
4583
4584LLVM supports several instructions for working with
4585:ref:`aggregate <t_aggregate>` values.
4586
4587.. _i_extractvalue:
4588
4589'``extractvalue``' Instruction
4590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4591
4592Syntax:
4593"""""""
4594
4595::
4596
4597 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4598
4599Overview:
4600"""""""""
4601
4602The '``extractvalue``' instruction extracts the value of a member field
4603from an :ref:`aggregate <t_aggregate>` value.
4604
4605Arguments:
4606""""""""""
4607
4608The first operand of an '``extractvalue``' instruction is a value of
4609:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4610constant indices to specify which value to extract in a similar manner
4611as indices in a '``getelementptr``' instruction.
4612
4613The major differences to ``getelementptr`` indexing are:
4614
4615- Since the value being indexed is not a pointer, the first index is
4616 omitted and assumed to be zero.
4617- At least one index must be specified.
4618- Not only struct indices but also array indices must be in bounds.
4619
4620Semantics:
4621""""""""""
4622
4623The result is the value at the position in the aggregate specified by
4624the index operands.
4625
4626Example:
4627""""""""
4628
4629.. code-block:: llvm
4630
4631 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4632
4633.. _i_insertvalue:
4634
4635'``insertvalue``' Instruction
4636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4637
4638Syntax:
4639"""""""
4640
4641::
4642
4643 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4644
4645Overview:
4646"""""""""
4647
4648The '``insertvalue``' instruction inserts a value into a member field in
4649an :ref:`aggregate <t_aggregate>` value.
4650
4651Arguments:
4652""""""""""
4653
4654The first operand of an '``insertvalue``' instruction is a value of
4655:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4656a first-class value to insert. The following operands are constant
4657indices indicating the position at which to insert the value in a
4658similar manner as indices in a '``extractvalue``' instruction. The value
4659to insert must have the same type as the value identified by the
4660indices.
4661
4662Semantics:
4663""""""""""
4664
4665The result is an aggregate of the same type as ``val``. Its value is
4666that of ``val`` except that the value at the position specified by the
4667indices is that of ``elt``.
4668
4669Example:
4670""""""""
4671
4672.. code-block:: llvm
4673
4674 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4675 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4676 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4677
4678.. _memoryops:
4679
4680Memory Access and Addressing Operations
4681---------------------------------------
4682
4683A key design point of an SSA-based representation is how it represents
4684memory. In LLVM, no memory locations are in SSA form, which makes things
4685very simple. This section describes how to read, write, and allocate
4686memory in LLVM.
4687
4688.. _i_alloca:
4689
4690'``alloca``' Instruction
4691^^^^^^^^^^^^^^^^^^^^^^^^
4692
4693Syntax:
4694"""""""
4695
4696::
4697
Reid Kleckner436c42e2014-01-17 23:58:17 +00004698 <result> = alloca <type>[, inalloca][, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004699
4700Overview:
4701"""""""""
4702
4703The '``alloca``' instruction allocates memory on the stack frame of the
4704currently executing function, to be automatically released when this
4705function returns to its caller. The object is always allocated in the
4706generic address space (address space zero).
4707
4708Arguments:
4709""""""""""
4710
4711The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4712bytes of memory on the runtime stack, returning a pointer of the
4713appropriate type to the program. If "NumElements" is specified, it is
4714the number of elements allocated, otherwise "NumElements" is defaulted
4715to be one. If a constant alignment is specified, the value result of the
4716allocation is guaranteed to be aligned to at least that boundary. If not
4717specified, or if zero, the target can choose to align the allocation on
4718any convenient boundary compatible with the type.
4719
4720'``type``' may be any sized type.
4721
4722Semantics:
4723""""""""""
4724
4725Memory is allocated; a pointer is returned. The operation is undefined
4726if there is insufficient stack space for the allocation. '``alloca``'d
4727memory is automatically released when the function returns. The
4728'``alloca``' instruction is commonly used to represent automatic
4729variables that must have an address available. When the function returns
4730(either with the ``ret`` or ``resume`` instructions), the memory is
4731reclaimed. Allocating zero bytes is legal, but the result is undefined.
4732The order in which memory is allocated (ie., which way the stack grows)
4733is not specified.
4734
4735Example:
4736""""""""
4737
4738.. code-block:: llvm
4739
4740 %ptr = alloca i32 ; yields {i32*}:ptr
4741 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4742 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4743 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4744
4745.. _i_load:
4746
4747'``load``' Instruction
4748^^^^^^^^^^^^^^^^^^^^^^
4749
4750Syntax:
4751"""""""
4752
4753::
4754
4755 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4756 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4757 !<index> = !{ i32 1 }
4758
4759Overview:
4760"""""""""
4761
4762The '``load``' instruction is used to read from memory.
4763
4764Arguments:
4765""""""""""
4766
Eli Bendersky239a78b2013-04-17 20:17:08 +00004767The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004768from which to load. The pointer must point to a :ref:`first
4769class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4770then the optimizer is not allowed to modify the number or order of
4771execution of this ``load`` with other :ref:`volatile
4772operations <volatile>`.
4773
4774If the ``load`` is marked as ``atomic``, it takes an extra
4775:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4776``release`` and ``acq_rel`` orderings are not valid on ``load``
4777instructions. Atomic loads produce :ref:`defined <memmodel>` results
4778when they may see multiple atomic stores. The type of the pointee must
4779be an integer type whose bit width is a power of two greater than or
4780equal to eight and less than or equal to a target-specific size limit.
4781``align`` must be explicitly specified on atomic loads, and the load has
4782undefined behavior if the alignment is not set to a value which is at
4783least the size in bytes of the pointee. ``!nontemporal`` does not have
4784any defined semantics for atomic loads.
4785
4786The optional constant ``align`` argument specifies the alignment of the
4787operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004788or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004789alignment for the target. It is the responsibility of the code emitter
4790to ensure that the alignment information is correct. Overestimating the
4791alignment results in undefined behavior. Underestimating the alignment
4792may produce less efficient code. An alignment of 1 is always safe.
4793
4794The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004795metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004796``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004797metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004798that this load is not expected to be reused in the cache. The code
4799generator may select special instructions to save cache bandwidth, such
4800as the ``MOVNT`` instruction on x86.
4801
4802The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004803metadata name ``<index>`` corresponding to a metadata node with no
4804entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004805instruction tells the optimizer and code generator that this load
4806address points to memory which does not change value during program
4807execution. The optimizer may then move this load around, for example, by
4808hoisting it out of loops using loop invariant code motion.
4809
4810Semantics:
4811""""""""""
4812
4813The location of memory pointed to is loaded. If the value being loaded
4814is of scalar type then the number of bytes read does not exceed the
4815minimum number of bytes needed to hold all bits of the type. For
4816example, loading an ``i24`` reads at most three bytes. When loading a
4817value of a type like ``i20`` with a size that is not an integral number
4818of bytes, the result is undefined if the value was not originally
4819written using a store of the same type.
4820
4821Examples:
4822"""""""""
4823
4824.. code-block:: llvm
4825
4826 %ptr = alloca i32 ; yields {i32*}:ptr
4827 store i32 3, i32* %ptr ; yields {void}
4828 %val = load i32* %ptr ; yields {i32}:val = i32 3
4829
4830.. _i_store:
4831
4832'``store``' Instruction
4833^^^^^^^^^^^^^^^^^^^^^^^
4834
4835Syntax:
4836"""""""
4837
4838::
4839
4840 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4841 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4842
4843Overview:
4844"""""""""
4845
4846The '``store``' instruction is used to write to memory.
4847
4848Arguments:
4849""""""""""
4850
Eli Benderskyca380842013-04-17 17:17:20 +00004851There are two arguments to the ``store`` instruction: a value to store
4852and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004853operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004854the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004855then the optimizer is not allowed to modify the number or order of
4856execution of this ``store`` with other :ref:`volatile
4857operations <volatile>`.
4858
4859If the ``store`` is marked as ``atomic``, it takes an extra
4860:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4861``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4862instructions. Atomic loads produce :ref:`defined <memmodel>` results
4863when they may see multiple atomic stores. The type of the pointee must
4864be an integer type whose bit width is a power of two greater than or
4865equal to eight and less than or equal to a target-specific size limit.
4866``align`` must be explicitly specified on atomic stores, and the store
4867has undefined behavior if the alignment is not set to a value which is
4868at least the size in bytes of the pointee. ``!nontemporal`` does not
4869have any defined semantics for atomic stores.
4870
Eli Benderskyca380842013-04-17 17:17:20 +00004871The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004872operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004873or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004874alignment for the target. It is the responsibility of the code emitter
4875to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004876alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004877alignment may produce less efficient code. An alignment of 1 is always
4878safe.
4879
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004880The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004881name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004882value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004883tells the optimizer and code generator that this load is not expected to
4884be reused in the cache. The code generator may select special
4885instructions to save cache bandwidth, such as the MOVNT instruction on
4886x86.
4887
4888Semantics:
4889""""""""""
4890
Eli Benderskyca380842013-04-17 17:17:20 +00004891The contents of memory are updated to contain ``<value>`` at the
4892location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004893of scalar type then the number of bytes written does not exceed the
4894minimum number of bytes needed to hold all bits of the type. For
4895example, storing an ``i24`` writes at most three bytes. When writing a
4896value of a type like ``i20`` with a size that is not an integral number
4897of bytes, it is unspecified what happens to the extra bits that do not
4898belong to the type, but they will typically be overwritten.
4899
4900Example:
4901""""""""
4902
4903.. code-block:: llvm
4904
4905 %ptr = alloca i32 ; yields {i32*}:ptr
4906 store i32 3, i32* %ptr ; yields {void}
4907 %val = load i32* %ptr ; yields {i32}:val = i32 3
4908
4909.. _i_fence:
4910
4911'``fence``' Instruction
4912^^^^^^^^^^^^^^^^^^^^^^^
4913
4914Syntax:
4915"""""""
4916
4917::
4918
4919 fence [singlethread] <ordering> ; yields {void}
4920
4921Overview:
4922"""""""""
4923
4924The '``fence``' instruction is used to introduce happens-before edges
4925between operations.
4926
4927Arguments:
4928""""""""""
4929
4930'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4931defines what *synchronizes-with* edges they add. They can only be given
4932``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4933
4934Semantics:
4935""""""""""
4936
4937A fence A which has (at least) ``release`` ordering semantics
4938*synchronizes with* a fence B with (at least) ``acquire`` ordering
4939semantics if and only if there exist atomic operations X and Y, both
4940operating on some atomic object M, such that A is sequenced before X, X
4941modifies M (either directly or through some side effect of a sequence
4942headed by X), Y is sequenced before B, and Y observes M. This provides a
4943*happens-before* dependency between A and B. Rather than an explicit
4944``fence``, one (but not both) of the atomic operations X or Y might
4945provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4946still *synchronize-with* the explicit ``fence`` and establish the
4947*happens-before* edge.
4948
4949A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4950``acquire`` and ``release`` semantics specified above, participates in
4951the global program order of other ``seq_cst`` operations and/or fences.
4952
4953The optional ":ref:`singlethread <singlethread>`" argument specifies
4954that the fence only synchronizes with other fences in the same thread.
4955(This is useful for interacting with signal handlers.)
4956
4957Example:
4958""""""""
4959
4960.. code-block:: llvm
4961
4962 fence acquire ; yields {void}
4963 fence singlethread seq_cst ; yields {void}
4964
4965.. _i_cmpxchg:
4966
4967'``cmpxchg``' Instruction
4968^^^^^^^^^^^^^^^^^^^^^^^^^
4969
4970Syntax:
4971"""""""
4972
4973::
4974
4975 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4976
4977Overview:
4978"""""""""
4979
4980The '``cmpxchg``' instruction is used to atomically modify memory. It
4981loads a value in memory and compares it to a given value. If they are
4982equal, it stores a new value into the memory.
4983
4984Arguments:
4985""""""""""
4986
4987There are three arguments to the '``cmpxchg``' instruction: an address
4988to operate on, a value to compare to the value currently be at that
4989address, and a new value to place at that address if the compared values
4990are equal. The type of '<cmp>' must be an integer type whose bit width
4991is a power of two greater than or equal to eight and less than or equal
4992to a target-specific size limit. '<cmp>' and '<new>' must have the same
4993type, and the type of '<pointer>' must be a pointer to that type. If the
4994``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4995to modify the number or order of execution of this ``cmpxchg`` with
4996other :ref:`volatile operations <volatile>`.
4997
4998The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4999synchronizes with other atomic operations.
5000
5001The optional "``singlethread``" argument declares that the ``cmpxchg``
5002is only atomic with respect to code (usually signal handlers) running in
5003the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5004respect to all other code in the system.
5005
5006The pointer passed into cmpxchg must have alignment greater than or
5007equal to the size in memory of the operand.
5008
5009Semantics:
5010""""""""""
5011
5012The contents of memory at the location specified by the '``<pointer>``'
5013operand is read and compared to '``<cmp>``'; if the read value is the
5014equal, '``<new>``' is written. The original value at the location is
5015returned.
5016
5017A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
5018of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
5019atomic load with an ordering parameter determined by dropping any
5020``release`` part of the ``cmpxchg``'s ordering.
5021
5022Example:
5023""""""""
5024
5025.. code-block:: llvm
5026
5027 entry:
5028 %orig = atomic load i32* %ptr unordered ; yields {i32}
5029 br label %loop
5030
5031 loop:
5032 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5033 %squared = mul i32 %cmp, %cmp
5034 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5035 %success = icmp eq i32 %cmp, %old
5036 br i1 %success, label %done, label %loop
5037
5038 done:
5039 ...
5040
5041.. _i_atomicrmw:
5042
5043'``atomicrmw``' Instruction
5044^^^^^^^^^^^^^^^^^^^^^^^^^^^
5045
5046Syntax:
5047"""""""
5048
5049::
5050
5051 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5052
5053Overview:
5054"""""""""
5055
5056The '``atomicrmw``' instruction is used to atomically modify memory.
5057
5058Arguments:
5059""""""""""
5060
5061There are three arguments to the '``atomicrmw``' instruction: an
5062operation to apply, an address whose value to modify, an argument to the
5063operation. The operation must be one of the following keywords:
5064
5065- xchg
5066- add
5067- sub
5068- and
5069- nand
5070- or
5071- xor
5072- max
5073- min
5074- umax
5075- umin
5076
5077The type of '<value>' must be an integer type whose bit width is a power
5078of two greater than or equal to eight and less than or equal to a
5079target-specific size limit. The type of the '``<pointer>``' operand must
5080be a pointer to that type. If the ``atomicrmw`` is marked as
5081``volatile``, then the optimizer is not allowed to modify the number or
5082order of execution of this ``atomicrmw`` with other :ref:`volatile
5083operations <volatile>`.
5084
5085Semantics:
5086""""""""""
5087
5088The contents of memory at the location specified by the '``<pointer>``'
5089operand are atomically read, modified, and written back. The original
5090value at the location is returned. The modification is specified by the
5091operation argument:
5092
5093- xchg: ``*ptr = val``
5094- add: ``*ptr = *ptr + val``
5095- sub: ``*ptr = *ptr - val``
5096- and: ``*ptr = *ptr & val``
5097- nand: ``*ptr = ~(*ptr & val)``
5098- or: ``*ptr = *ptr | val``
5099- xor: ``*ptr = *ptr ^ val``
5100- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5101- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5102- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5103 comparison)
5104- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5105 comparison)
5106
5107Example:
5108""""""""
5109
5110.. code-block:: llvm
5111
5112 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5113
5114.. _i_getelementptr:
5115
5116'``getelementptr``' Instruction
5117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5118
5119Syntax:
5120"""""""
5121
5122::
5123
5124 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5125 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5126 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5127
5128Overview:
5129"""""""""
5130
5131The '``getelementptr``' instruction is used to get the address of a
5132subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5133address calculation only and does not access memory.
5134
5135Arguments:
5136""""""""""
5137
5138The first argument is always a pointer or a vector of pointers, and
5139forms the basis of the calculation. The remaining arguments are indices
5140that indicate which of the elements of the aggregate object are indexed.
5141The interpretation of each index is dependent on the type being indexed
5142into. The first index always indexes the pointer value given as the
5143first argument, the second index indexes a value of the type pointed to
5144(not necessarily the value directly pointed to, since the first index
5145can be non-zero), etc. The first type indexed into must be a pointer
5146value, subsequent types can be arrays, vectors, and structs. Note that
5147subsequent types being indexed into can never be pointers, since that
5148would require loading the pointer before continuing calculation.
5149
5150The type of each index argument depends on the type it is indexing into.
5151When indexing into a (optionally packed) structure, only ``i32`` integer
5152**constants** are allowed (when using a vector of indices they must all
5153be the **same** ``i32`` integer constant). When indexing into an array,
5154pointer or vector, integers of any width are allowed, and they are not
5155required to be constant. These integers are treated as signed values
5156where relevant.
5157
5158For example, let's consider a C code fragment and how it gets compiled
5159to LLVM:
5160
5161.. code-block:: c
5162
5163 struct RT {
5164 char A;
5165 int B[10][20];
5166 char C;
5167 };
5168 struct ST {
5169 int X;
5170 double Y;
5171 struct RT Z;
5172 };
5173
5174 int *foo(struct ST *s) {
5175 return &s[1].Z.B[5][13];
5176 }
5177
5178The LLVM code generated by Clang is:
5179
5180.. code-block:: llvm
5181
5182 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5183 %struct.ST = type { i32, double, %struct.RT }
5184
5185 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5186 entry:
5187 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5188 ret i32* %arrayidx
5189 }
5190
5191Semantics:
5192""""""""""
5193
5194In the example above, the first index is indexing into the
5195'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5196= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5197indexes into the third element of the structure, yielding a
5198'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5199structure. The third index indexes into the second element of the
5200structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5201dimensions of the array are subscripted into, yielding an '``i32``'
5202type. The '``getelementptr``' instruction returns a pointer to this
5203element, thus computing a value of '``i32*``' type.
5204
5205Note that it is perfectly legal to index partially through a structure,
5206returning a pointer to an inner element. Because of this, the LLVM code
5207for the given testcase is equivalent to:
5208
5209.. code-block:: llvm
5210
5211 define i32* @foo(%struct.ST* %s) {
5212 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5213 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5214 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5215 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5216 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5217 ret i32* %t5
5218 }
5219
5220If the ``inbounds`` keyword is present, the result value of the
5221``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5222pointer is not an *in bounds* address of an allocated object, or if any
5223of the addresses that would be formed by successive addition of the
5224offsets implied by the indices to the base address with infinitely
5225precise signed arithmetic are not an *in bounds* address of that
5226allocated object. The *in bounds* addresses for an allocated object are
5227all the addresses that point into the object, plus the address one byte
5228past the end. In cases where the base is a vector of pointers the
5229``inbounds`` keyword applies to each of the computations element-wise.
5230
5231If the ``inbounds`` keyword is not present, the offsets are added to the
5232base address with silently-wrapping two's complement arithmetic. If the
5233offsets have a different width from the pointer, they are sign-extended
5234or truncated to the width of the pointer. The result value of the
5235``getelementptr`` may be outside the object pointed to by the base
5236pointer. The result value may not necessarily be used to access memory
5237though, even if it happens to point into allocated storage. See the
5238:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5239information.
5240
5241The getelementptr instruction is often confusing. For some more insight
5242into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5243
5244Example:
5245""""""""
5246
5247.. code-block:: llvm
5248
5249 ; yields [12 x i8]*:aptr
5250 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5251 ; yields i8*:vptr
5252 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5253 ; yields i8*:eptr
5254 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5255 ; yields i32*:iptr
5256 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5257
5258In cases where the pointer argument is a vector of pointers, each index
5259must be a vector with the same number of elements. For example:
5260
5261.. code-block:: llvm
5262
5263 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5264
5265Conversion Operations
5266---------------------
5267
5268The instructions in this category are the conversion instructions
5269(casting) which all take a single operand and a type. They perform
5270various bit conversions on the operand.
5271
5272'``trunc .. to``' Instruction
5273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5274
5275Syntax:
5276"""""""
5277
5278::
5279
5280 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5281
5282Overview:
5283"""""""""
5284
5285The '``trunc``' instruction truncates its operand to the type ``ty2``.
5286
5287Arguments:
5288""""""""""
5289
5290The '``trunc``' instruction takes a value to trunc, and a type to trunc
5291it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5292of the same number of integers. The bit size of the ``value`` must be
5293larger than the bit size of the destination type, ``ty2``. Equal sized
5294types are not allowed.
5295
5296Semantics:
5297""""""""""
5298
5299The '``trunc``' instruction truncates the high order bits in ``value``
5300and converts the remaining bits to ``ty2``. Since the source size must
5301be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5302It will always truncate bits.
5303
5304Example:
5305""""""""
5306
5307.. code-block:: llvm
5308
5309 %X = trunc i32 257 to i8 ; yields i8:1
5310 %Y = trunc i32 123 to i1 ; yields i1:true
5311 %Z = trunc i32 122 to i1 ; yields i1:false
5312 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5313
5314'``zext .. to``' Instruction
5315^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5316
5317Syntax:
5318"""""""
5319
5320::
5321
5322 <result> = zext <ty> <value> to <ty2> ; yields ty2
5323
5324Overview:
5325"""""""""
5326
5327The '``zext``' instruction zero extends its operand to type ``ty2``.
5328
5329Arguments:
5330""""""""""
5331
5332The '``zext``' instruction takes a value to cast, and a type to cast it
5333to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5334the same number of integers. The bit size of the ``value`` must be
5335smaller than the bit size of the destination type, ``ty2``.
5336
5337Semantics:
5338""""""""""
5339
5340The ``zext`` fills the high order bits of the ``value`` with zero bits
5341until it reaches the size of the destination type, ``ty2``.
5342
5343When zero extending from i1, the result will always be either 0 or 1.
5344
5345Example:
5346""""""""
5347
5348.. code-block:: llvm
5349
5350 %X = zext i32 257 to i64 ; yields i64:257
5351 %Y = zext i1 true to i32 ; yields i32:1
5352 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5353
5354'``sext .. to``' Instruction
5355^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5356
5357Syntax:
5358"""""""
5359
5360::
5361
5362 <result> = sext <ty> <value> to <ty2> ; yields ty2
5363
5364Overview:
5365"""""""""
5366
5367The '``sext``' sign extends ``value`` to the type ``ty2``.
5368
5369Arguments:
5370""""""""""
5371
5372The '``sext``' instruction takes a value to cast, and a type to cast it
5373to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5374the same number of integers. The bit size of the ``value`` must be
5375smaller than the bit size of the destination type, ``ty2``.
5376
5377Semantics:
5378""""""""""
5379
5380The '``sext``' instruction performs a sign extension by copying the sign
5381bit (highest order bit) of the ``value`` until it reaches the bit size
5382of the type ``ty2``.
5383
5384When sign extending from i1, the extension always results in -1 or 0.
5385
5386Example:
5387""""""""
5388
5389.. code-block:: llvm
5390
5391 %X = sext i8 -1 to i16 ; yields i16 :65535
5392 %Y = sext i1 true to i32 ; yields i32:-1
5393 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5394
5395'``fptrunc .. to``' Instruction
5396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5397
5398Syntax:
5399"""""""
5400
5401::
5402
5403 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5404
5405Overview:
5406"""""""""
5407
5408The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5409
5410Arguments:
5411""""""""""
5412
5413The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5414value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5415The size of ``value`` must be larger than the size of ``ty2``. This
5416implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5417
5418Semantics:
5419""""""""""
5420
5421The '``fptrunc``' instruction truncates a ``value`` from a larger
5422:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5423point <t_floating>` type. If the value cannot fit within the
5424destination type, ``ty2``, then the results are undefined.
5425
5426Example:
5427""""""""
5428
5429.. code-block:: llvm
5430
5431 %X = fptrunc double 123.0 to float ; yields float:123.0
5432 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5433
5434'``fpext .. to``' Instruction
5435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5436
5437Syntax:
5438"""""""
5439
5440::
5441
5442 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5443
5444Overview:
5445"""""""""
5446
5447The '``fpext``' extends a floating point ``value`` to a larger floating
5448point value.
5449
5450Arguments:
5451""""""""""
5452
5453The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5454``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5455to. The source type must be smaller than the destination type.
5456
5457Semantics:
5458""""""""""
5459
5460The '``fpext``' instruction extends the ``value`` from a smaller
5461:ref:`floating point <t_floating>` type to a larger :ref:`floating
5462point <t_floating>` type. The ``fpext`` cannot be used to make a
5463*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5464*no-op cast* for a floating point cast.
5465
5466Example:
5467""""""""
5468
5469.. code-block:: llvm
5470
5471 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5472 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5473
5474'``fptoui .. to``' Instruction
5475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5476
5477Syntax:
5478"""""""
5479
5480::
5481
5482 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5483
5484Overview:
5485"""""""""
5486
5487The '``fptoui``' converts a floating point ``value`` to its unsigned
5488integer equivalent of type ``ty2``.
5489
5490Arguments:
5491""""""""""
5492
5493The '``fptoui``' instruction takes a value to cast, which must be a
5494scalar or vector :ref:`floating point <t_floating>` value, and a type to
5495cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5496``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5497type with the same number of elements as ``ty``
5498
5499Semantics:
5500""""""""""
5501
5502The '``fptoui``' instruction converts its :ref:`floating
5503point <t_floating>` operand into the nearest (rounding towards zero)
5504unsigned integer value. If the value cannot fit in ``ty2``, the results
5505are undefined.
5506
5507Example:
5508""""""""
5509
5510.. code-block:: llvm
5511
5512 %X = fptoui double 123.0 to i32 ; yields i32:123
5513 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5514 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5515
5516'``fptosi .. to``' Instruction
5517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5518
5519Syntax:
5520"""""""
5521
5522::
5523
5524 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5525
5526Overview:
5527"""""""""
5528
5529The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5530``value`` to type ``ty2``.
5531
5532Arguments:
5533""""""""""
5534
5535The '``fptosi``' instruction takes a value to cast, which must be a
5536scalar or vector :ref:`floating point <t_floating>` value, and a type to
5537cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5538``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5539type with the same number of elements as ``ty``
5540
5541Semantics:
5542""""""""""
5543
5544The '``fptosi``' instruction converts its :ref:`floating
5545point <t_floating>` operand into the nearest (rounding towards zero)
5546signed integer value. If the value cannot fit in ``ty2``, the results
5547are undefined.
5548
5549Example:
5550""""""""
5551
5552.. code-block:: llvm
5553
5554 %X = fptosi double -123.0 to i32 ; yields i32:-123
5555 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5556 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5557
5558'``uitofp .. to``' Instruction
5559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5560
5561Syntax:
5562"""""""
5563
5564::
5565
5566 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5567
5568Overview:
5569"""""""""
5570
5571The '``uitofp``' instruction regards ``value`` as an unsigned integer
5572and converts that value to the ``ty2`` type.
5573
5574Arguments:
5575""""""""""
5576
5577The '``uitofp``' instruction takes a value to cast, which must be a
5578scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5579``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5580``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5581type with the same number of elements as ``ty``
5582
5583Semantics:
5584""""""""""
5585
5586The '``uitofp``' instruction interprets its operand as an unsigned
5587integer quantity and converts it to the corresponding floating point
5588value. If the value cannot fit in the floating point value, the results
5589are undefined.
5590
5591Example:
5592""""""""
5593
5594.. code-block:: llvm
5595
5596 %X = uitofp i32 257 to float ; yields float:257.0
5597 %Y = uitofp i8 -1 to double ; yields double:255.0
5598
5599'``sitofp .. to``' Instruction
5600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5601
5602Syntax:
5603"""""""
5604
5605::
5606
5607 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5608
5609Overview:
5610"""""""""
5611
5612The '``sitofp``' instruction regards ``value`` as a signed integer and
5613converts that value to the ``ty2`` type.
5614
5615Arguments:
5616""""""""""
5617
5618The '``sitofp``' instruction takes a value to cast, which must be a
5619scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5620``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5621``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5622type with the same number of elements as ``ty``
5623
5624Semantics:
5625""""""""""
5626
5627The '``sitofp``' instruction interprets its operand as a signed integer
5628quantity and converts it to the corresponding floating point value. If
5629the value cannot fit in the floating point value, the results are
5630undefined.
5631
5632Example:
5633""""""""
5634
5635.. code-block:: llvm
5636
5637 %X = sitofp i32 257 to float ; yields float:257.0
5638 %Y = sitofp i8 -1 to double ; yields double:-1.0
5639
5640.. _i_ptrtoint:
5641
5642'``ptrtoint .. to``' Instruction
5643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5644
5645Syntax:
5646"""""""
5647
5648::
5649
5650 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5651
5652Overview:
5653"""""""""
5654
5655The '``ptrtoint``' instruction converts the pointer or a vector of
5656pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5657
5658Arguments:
5659""""""""""
5660
5661The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5662a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5663type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5664a vector of integers type.
5665
5666Semantics:
5667""""""""""
5668
5669The '``ptrtoint``' instruction converts ``value`` to integer type
5670``ty2`` by interpreting the pointer value as an integer and either
5671truncating or zero extending that value to the size of the integer type.
5672If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5673``value`` is larger than ``ty2`` then a truncation is done. If they are
5674the same size, then nothing is done (*no-op cast*) other than a type
5675change.
5676
5677Example:
5678""""""""
5679
5680.. code-block:: llvm
5681
5682 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5683 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5684 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5685
5686.. _i_inttoptr:
5687
5688'``inttoptr .. to``' Instruction
5689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5690
5691Syntax:
5692"""""""
5693
5694::
5695
5696 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5697
5698Overview:
5699"""""""""
5700
5701The '``inttoptr``' instruction converts an integer ``value`` to a
5702pointer type, ``ty2``.
5703
5704Arguments:
5705""""""""""
5706
5707The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5708cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5709type.
5710
5711Semantics:
5712""""""""""
5713
5714The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5715applying either a zero extension or a truncation depending on the size
5716of the integer ``value``. If ``value`` is larger than the size of a
5717pointer then a truncation is done. If ``value`` is smaller than the size
5718of a pointer then a zero extension is done. If they are the same size,
5719nothing is done (*no-op cast*).
5720
5721Example:
5722""""""""
5723
5724.. code-block:: llvm
5725
5726 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5727 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5728 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5729 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5730
5731.. _i_bitcast:
5732
5733'``bitcast .. to``' Instruction
5734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5735
5736Syntax:
5737"""""""
5738
5739::
5740
5741 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5742
5743Overview:
5744"""""""""
5745
5746The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5747changing any bits.
5748
5749Arguments:
5750""""""""""
5751
5752The '``bitcast``' instruction takes a value to cast, which must be a
5753non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005754also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5755bit sizes of ``value`` and the destination type, ``ty2``, must be
5756identical. If the source type is a pointer, the destination type must
5757also be a pointer of the same size. This instruction supports bitwise
5758conversion of vectors to integers and to vectors of other types (as
5759long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005760
5761Semantics:
5762""""""""""
5763
Matt Arsenault24b49c42013-07-31 17:49:08 +00005764The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5765is always a *no-op cast* because no bits change with this
5766conversion. The conversion is done as if the ``value`` had been stored
5767to memory and read back as type ``ty2``. Pointer (or vector of
5768pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005769pointers) types with the same address space through this instruction.
5770To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5771or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005772
5773Example:
5774""""""""
5775
5776.. code-block:: llvm
5777
5778 %X = bitcast i8 255 to i8 ; yields i8 :-1
5779 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5780 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5781 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5782
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005783.. _i_addrspacecast:
5784
5785'``addrspacecast .. to``' Instruction
5786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5787
5788Syntax:
5789"""""""
5790
5791::
5792
5793 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5794
5795Overview:
5796"""""""""
5797
5798The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5799address space ``n`` to type ``pty2`` in address space ``m``.
5800
5801Arguments:
5802""""""""""
5803
5804The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5805to cast and a pointer type to cast it to, which must have a different
5806address space.
5807
5808Semantics:
5809""""""""""
5810
5811The '``addrspacecast``' instruction converts the pointer value
5812``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005813value modification, depending on the target and the address space
5814pair. Pointer conversions within the same address space must be
5815performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005816conversion is legal then both result and operand refer to the same memory
5817location.
5818
5819Example:
5820""""""""
5821
5822.. code-block:: llvm
5823
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005824 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5825 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5826 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005827
Sean Silvab084af42012-12-07 10:36:55 +00005828.. _otherops:
5829
5830Other Operations
5831----------------
5832
5833The instructions in this category are the "miscellaneous" instructions,
5834which defy better classification.
5835
5836.. _i_icmp:
5837
5838'``icmp``' Instruction
5839^^^^^^^^^^^^^^^^^^^^^^
5840
5841Syntax:
5842"""""""
5843
5844::
5845
5846 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5847
5848Overview:
5849"""""""""
5850
5851The '``icmp``' instruction returns a boolean value or a vector of
5852boolean values based on comparison of its two integer, integer vector,
5853pointer, or pointer vector operands.
5854
5855Arguments:
5856""""""""""
5857
5858The '``icmp``' instruction takes three operands. The first operand is
5859the condition code indicating the kind of comparison to perform. It is
5860not a value, just a keyword. The possible condition code are:
5861
5862#. ``eq``: equal
5863#. ``ne``: not equal
5864#. ``ugt``: unsigned greater than
5865#. ``uge``: unsigned greater or equal
5866#. ``ult``: unsigned less than
5867#. ``ule``: unsigned less or equal
5868#. ``sgt``: signed greater than
5869#. ``sge``: signed greater or equal
5870#. ``slt``: signed less than
5871#. ``sle``: signed less or equal
5872
5873The remaining two arguments must be :ref:`integer <t_integer>` or
5874:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5875must also be identical types.
5876
5877Semantics:
5878""""""""""
5879
5880The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5881code given as ``cond``. The comparison performed always yields either an
5882:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5883
5884#. ``eq``: yields ``true`` if the operands are equal, ``false``
5885 otherwise. No sign interpretation is necessary or performed.
5886#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5887 otherwise. No sign interpretation is necessary or performed.
5888#. ``ugt``: interprets the operands as unsigned values and yields
5889 ``true`` if ``op1`` is greater than ``op2``.
5890#. ``uge``: interprets the operands as unsigned values and yields
5891 ``true`` if ``op1`` is greater than or equal to ``op2``.
5892#. ``ult``: interprets the operands as unsigned values and yields
5893 ``true`` if ``op1`` is less than ``op2``.
5894#. ``ule``: interprets the operands as unsigned values and yields
5895 ``true`` if ``op1`` is less than or equal to ``op2``.
5896#. ``sgt``: interprets the operands as signed values and yields ``true``
5897 if ``op1`` is greater than ``op2``.
5898#. ``sge``: interprets the operands as signed values and yields ``true``
5899 if ``op1`` is greater than or equal to ``op2``.
5900#. ``slt``: interprets the operands as signed values and yields ``true``
5901 if ``op1`` is less than ``op2``.
5902#. ``sle``: interprets the operands as signed values and yields ``true``
5903 if ``op1`` is less than or equal to ``op2``.
5904
5905If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5906are compared as if they were integers.
5907
5908If the operands are integer vectors, then they are compared element by
5909element. The result is an ``i1`` vector with the same number of elements
5910as the values being compared. Otherwise, the result is an ``i1``.
5911
5912Example:
5913""""""""
5914
5915.. code-block:: llvm
5916
5917 <result> = icmp eq i32 4, 5 ; yields: result=false
5918 <result> = icmp ne float* %X, %X ; yields: result=false
5919 <result> = icmp ult i16 4, 5 ; yields: result=true
5920 <result> = icmp sgt i16 4, 5 ; yields: result=false
5921 <result> = icmp ule i16 -4, 5 ; yields: result=false
5922 <result> = icmp sge i16 4, 5 ; yields: result=false
5923
5924Note that the code generator does not yet support vector types with the
5925``icmp`` instruction.
5926
5927.. _i_fcmp:
5928
5929'``fcmp``' Instruction
5930^^^^^^^^^^^^^^^^^^^^^^
5931
5932Syntax:
5933"""""""
5934
5935::
5936
5937 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5938
5939Overview:
5940"""""""""
5941
5942The '``fcmp``' instruction returns a boolean value or vector of boolean
5943values based on comparison of its operands.
5944
5945If the operands are floating point scalars, then the result type is a
5946boolean (:ref:`i1 <t_integer>`).
5947
5948If the operands are floating point vectors, then the result type is a
5949vector of boolean with the same number of elements as the operands being
5950compared.
5951
5952Arguments:
5953""""""""""
5954
5955The '``fcmp``' instruction takes three operands. The first operand is
5956the condition code indicating the kind of comparison to perform. It is
5957not a value, just a keyword. The possible condition code are:
5958
5959#. ``false``: no comparison, always returns false
5960#. ``oeq``: ordered and equal
5961#. ``ogt``: ordered and greater than
5962#. ``oge``: ordered and greater than or equal
5963#. ``olt``: ordered and less than
5964#. ``ole``: ordered and less than or equal
5965#. ``one``: ordered and not equal
5966#. ``ord``: ordered (no nans)
5967#. ``ueq``: unordered or equal
5968#. ``ugt``: unordered or greater than
5969#. ``uge``: unordered or greater than or equal
5970#. ``ult``: unordered or less than
5971#. ``ule``: unordered or less than or equal
5972#. ``une``: unordered or not equal
5973#. ``uno``: unordered (either nans)
5974#. ``true``: no comparison, always returns true
5975
5976*Ordered* means that neither operand is a QNAN while *unordered* means
5977that either operand may be a QNAN.
5978
5979Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5980point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5981type. They must have identical types.
5982
5983Semantics:
5984""""""""""
5985
5986The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5987condition code given as ``cond``. If the operands are vectors, then the
5988vectors are compared element by element. Each comparison performed
5989always yields an :ref:`i1 <t_integer>` result, as follows:
5990
5991#. ``false``: always yields ``false``, regardless of operands.
5992#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5993 is equal to ``op2``.
5994#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5995 is greater than ``op2``.
5996#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5997 is greater than or equal to ``op2``.
5998#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5999 is less than ``op2``.
6000#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6001 is less than or equal to ``op2``.
6002#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6003 is not equal to ``op2``.
6004#. ``ord``: yields ``true`` if both operands are not a QNAN.
6005#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6006 equal to ``op2``.
6007#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6008 greater than ``op2``.
6009#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6010 greater than or equal to ``op2``.
6011#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6012 less than ``op2``.
6013#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6014 less than or equal to ``op2``.
6015#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6016 not equal to ``op2``.
6017#. ``uno``: yields ``true`` if either operand is a QNAN.
6018#. ``true``: always yields ``true``, regardless of operands.
6019
6020Example:
6021""""""""
6022
6023.. code-block:: llvm
6024
6025 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6026 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6027 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6028 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6029
6030Note that the code generator does not yet support vector types with the
6031``fcmp`` instruction.
6032
6033.. _i_phi:
6034
6035'``phi``' Instruction
6036^^^^^^^^^^^^^^^^^^^^^
6037
6038Syntax:
6039"""""""
6040
6041::
6042
6043 <result> = phi <ty> [ <val0>, <label0>], ...
6044
6045Overview:
6046"""""""""
6047
6048The '``phi``' instruction is used to implement the φ node in the SSA
6049graph representing the function.
6050
6051Arguments:
6052""""""""""
6053
6054The type of the incoming values is specified with the first type field.
6055After this, the '``phi``' instruction takes a list of pairs as
6056arguments, with one pair for each predecessor basic block of the current
6057block. Only values of :ref:`first class <t_firstclass>` type may be used as
6058the value arguments to the PHI node. Only labels may be used as the
6059label arguments.
6060
6061There must be no non-phi instructions between the start of a basic block
6062and the PHI instructions: i.e. PHI instructions must be first in a basic
6063block.
6064
6065For the purposes of the SSA form, the use of each incoming value is
6066deemed to occur on the edge from the corresponding predecessor block to
6067the current block (but after any definition of an '``invoke``'
6068instruction's return value on the same edge).
6069
6070Semantics:
6071""""""""""
6072
6073At runtime, the '``phi``' instruction logically takes on the value
6074specified by the pair corresponding to the predecessor basic block that
6075executed just prior to the current block.
6076
6077Example:
6078""""""""
6079
6080.. code-block:: llvm
6081
6082 Loop: ; Infinite loop that counts from 0 on up...
6083 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6084 %nextindvar = add i32 %indvar, 1
6085 br label %Loop
6086
6087.. _i_select:
6088
6089'``select``' Instruction
6090^^^^^^^^^^^^^^^^^^^^^^^^
6091
6092Syntax:
6093"""""""
6094
6095::
6096
6097 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6098
6099 selty is either i1 or {<N x i1>}
6100
6101Overview:
6102"""""""""
6103
6104The '``select``' instruction is used to choose one value based on a
6105condition, without branching.
6106
6107Arguments:
6108""""""""""
6109
6110The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6111values indicating the condition, and two values of the same :ref:`first
6112class <t_firstclass>` type. If the val1/val2 are vectors and the
6113condition is a scalar, then entire vectors are selected, not individual
6114elements.
6115
6116Semantics:
6117""""""""""
6118
6119If the condition is an i1 and it evaluates to 1, the instruction returns
6120the first value argument; otherwise, it returns the second value
6121argument.
6122
6123If the condition is a vector of i1, then the value arguments must be
6124vectors of the same size, and the selection is done element by element.
6125
6126Example:
6127""""""""
6128
6129.. code-block:: llvm
6130
6131 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6132
6133.. _i_call:
6134
6135'``call``' Instruction
6136^^^^^^^^^^^^^^^^^^^^^^
6137
6138Syntax:
6139"""""""
6140
6141::
6142
6143 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6144
6145Overview:
6146"""""""""
6147
6148The '``call``' instruction represents a simple function call.
6149
6150Arguments:
6151""""""""""
6152
6153This instruction requires several arguments:
6154
6155#. The optional "tail" marker indicates that the callee function does
6156 not access any allocas or varargs in the caller. Note that calls may
6157 be marked "tail" even if they do not occur before a
6158 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6159 function call is eligible for tail call optimization, but `might not
6160 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6161 The code generator may optimize calls marked "tail" with either 1)
6162 automatic `sibling call
6163 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6164 callee have matching signatures, or 2) forced tail call optimization
6165 when the following extra requirements are met:
6166
6167 - Caller and callee both have the calling convention ``fastcc``.
6168 - The call is in tail position (ret immediately follows call and ret
6169 uses value of call or is void).
6170 - Option ``-tailcallopt`` is enabled, or
6171 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6172 - `Platform specific constraints are
6173 met. <CodeGenerator.html#tailcallopt>`_
6174
6175#. The optional "cconv" marker indicates which :ref:`calling
6176 convention <callingconv>` the call should use. If none is
6177 specified, the call defaults to using C calling conventions. The
6178 calling convention of the call must match the calling convention of
6179 the target function, or else the behavior is undefined.
6180#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6181 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6182 are valid here.
6183#. '``ty``': the type of the call instruction itself which is also the
6184 type of the return value. Functions that return no value are marked
6185 ``void``.
6186#. '``fnty``': shall be the signature of the pointer to function value
6187 being invoked. The argument types must match the types implied by
6188 this signature. This type can be omitted if the function is not
6189 varargs and if the function type does not return a pointer to a
6190 function.
6191#. '``fnptrval``': An LLVM value containing a pointer to a function to
6192 be invoked. In most cases, this is a direct function invocation, but
6193 indirect ``call``'s are just as possible, calling an arbitrary pointer
6194 to function value.
6195#. '``function args``': argument list whose types match the function
6196 signature argument types and parameter attributes. All arguments must
6197 be of :ref:`first class <t_firstclass>` type. If the function signature
6198 indicates the function accepts a variable number of arguments, the
6199 extra arguments can be specified.
6200#. The optional :ref:`function attributes <fnattrs>` list. Only
6201 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6202 attributes are valid here.
6203
6204Semantics:
6205""""""""""
6206
6207The '``call``' instruction is used to cause control flow to transfer to
6208a specified function, with its incoming arguments bound to the specified
6209values. Upon a '``ret``' instruction in the called function, control
6210flow continues with the instruction after the function call, and the
6211return value of the function is bound to the result argument.
6212
6213Example:
6214""""""""
6215
6216.. code-block:: llvm
6217
6218 %retval = call i32 @test(i32 %argc)
6219 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6220 %X = tail call i32 @foo() ; yields i32
6221 %Y = tail call fastcc i32 @foo() ; yields i32
6222 call void %foo(i8 97 signext)
6223
6224 %struct.A = type { i32, i8 }
6225 %r = call %struct.A @foo() ; yields { 32, i8 }
6226 %gr = extractvalue %struct.A %r, 0 ; yields i32
6227 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6228 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6229 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6230
6231llvm treats calls to some functions with names and arguments that match
6232the standard C99 library as being the C99 library functions, and may
6233perform optimizations or generate code for them under that assumption.
6234This is something we'd like to change in the future to provide better
6235support for freestanding environments and non-C-based languages.
6236
6237.. _i_va_arg:
6238
6239'``va_arg``' Instruction
6240^^^^^^^^^^^^^^^^^^^^^^^^
6241
6242Syntax:
6243"""""""
6244
6245::
6246
6247 <resultval> = va_arg <va_list*> <arglist>, <argty>
6248
6249Overview:
6250"""""""""
6251
6252The '``va_arg``' instruction is used to access arguments passed through
6253the "variable argument" area of a function call. It is used to implement
6254the ``va_arg`` macro in C.
6255
6256Arguments:
6257""""""""""
6258
6259This instruction takes a ``va_list*`` value and the type of the
6260argument. It returns a value of the specified argument type and
6261increments the ``va_list`` to point to the next argument. The actual
6262type of ``va_list`` is target specific.
6263
6264Semantics:
6265""""""""""
6266
6267The '``va_arg``' instruction loads an argument of the specified type
6268from the specified ``va_list`` and causes the ``va_list`` to point to
6269the next argument. For more information, see the variable argument
6270handling :ref:`Intrinsic Functions <int_varargs>`.
6271
6272It is legal for this instruction to be called in a function which does
6273not take a variable number of arguments, for example, the ``vfprintf``
6274function.
6275
6276``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6277function <intrinsics>` because it takes a type as an argument.
6278
6279Example:
6280""""""""
6281
6282See the :ref:`variable argument processing <int_varargs>` section.
6283
6284Note that the code generator does not yet fully support va\_arg on many
6285targets. Also, it does not currently support va\_arg with aggregate
6286types on any target.
6287
6288.. _i_landingpad:
6289
6290'``landingpad``' Instruction
6291^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6292
6293Syntax:
6294"""""""
6295
6296::
6297
6298 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6299 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6300
6301 <clause> := catch <type> <value>
6302 <clause> := filter <array constant type> <array constant>
6303
6304Overview:
6305"""""""""
6306
6307The '``landingpad``' instruction is used by `LLVM's exception handling
6308system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006309is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006310code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6311defines values supplied by the personality function (``pers_fn``) upon
6312re-entry to the function. The ``resultval`` has the type ``resultty``.
6313
6314Arguments:
6315""""""""""
6316
6317This instruction takes a ``pers_fn`` value. This is the personality
6318function associated with the unwinding mechanism. The optional
6319``cleanup`` flag indicates that the landing pad block is a cleanup.
6320
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006321A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006322contains the global variable representing the "type" that may be caught
6323or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6324clause takes an array constant as its argument. Use
6325"``[0 x i8**] undef``" for a filter which cannot throw. The
6326'``landingpad``' instruction must contain *at least* one ``clause`` or
6327the ``cleanup`` flag.
6328
6329Semantics:
6330""""""""""
6331
6332The '``landingpad``' instruction defines the values which are set by the
6333personality function (``pers_fn``) upon re-entry to the function, and
6334therefore the "result type" of the ``landingpad`` instruction. As with
6335calling conventions, how the personality function results are
6336represented in LLVM IR is target specific.
6337
6338The clauses are applied in order from top to bottom. If two
6339``landingpad`` instructions are merged together through inlining, the
6340clauses from the calling function are appended to the list of clauses.
6341When the call stack is being unwound due to an exception being thrown,
6342the exception is compared against each ``clause`` in turn. If it doesn't
6343match any of the clauses, and the ``cleanup`` flag is not set, then
6344unwinding continues further up the call stack.
6345
6346The ``landingpad`` instruction has several restrictions:
6347
6348- A landing pad block is a basic block which is the unwind destination
6349 of an '``invoke``' instruction.
6350- A landing pad block must have a '``landingpad``' instruction as its
6351 first non-PHI instruction.
6352- There can be only one '``landingpad``' instruction within the landing
6353 pad block.
6354- A basic block that is not a landing pad block may not include a
6355 '``landingpad``' instruction.
6356- All '``landingpad``' instructions in a function must have the same
6357 personality function.
6358
6359Example:
6360""""""""
6361
6362.. code-block:: llvm
6363
6364 ;; A landing pad which can catch an integer.
6365 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6366 catch i8** @_ZTIi
6367 ;; A landing pad that is a cleanup.
6368 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6369 cleanup
6370 ;; A landing pad which can catch an integer and can only throw a double.
6371 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6372 catch i8** @_ZTIi
6373 filter [1 x i8**] [@_ZTId]
6374
6375.. _intrinsics:
6376
6377Intrinsic Functions
6378===================
6379
6380LLVM supports the notion of an "intrinsic function". These functions
6381have well known names and semantics and are required to follow certain
6382restrictions. Overall, these intrinsics represent an extension mechanism
6383for the LLVM language that does not require changing all of the
6384transformations in LLVM when adding to the language (or the bitcode
6385reader/writer, the parser, etc...).
6386
6387Intrinsic function names must all start with an "``llvm.``" prefix. This
6388prefix is reserved in LLVM for intrinsic names; thus, function names may
6389not begin with this prefix. Intrinsic functions must always be external
6390functions: you cannot define the body of intrinsic functions. Intrinsic
6391functions may only be used in call or invoke instructions: it is illegal
6392to take the address of an intrinsic function. Additionally, because
6393intrinsic functions are part of the LLVM language, it is required if any
6394are added that they be documented here.
6395
6396Some intrinsic functions can be overloaded, i.e., the intrinsic
6397represents a family of functions that perform the same operation but on
6398different data types. Because LLVM can represent over 8 million
6399different integer types, overloading is used commonly to allow an
6400intrinsic function to operate on any integer type. One or more of the
6401argument types or the result type can be overloaded to accept any
6402integer type. Argument types may also be defined as exactly matching a
6403previous argument's type or the result type. This allows an intrinsic
6404function which accepts multiple arguments, but needs all of them to be
6405of the same type, to only be overloaded with respect to a single
6406argument or the result.
6407
6408Overloaded intrinsics will have the names of its overloaded argument
6409types encoded into its function name, each preceded by a period. Only
6410those types which are overloaded result in a name suffix. Arguments
6411whose type is matched against another type do not. For example, the
6412``llvm.ctpop`` function can take an integer of any width and returns an
6413integer of exactly the same integer width. This leads to a family of
6414functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6415``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6416overloaded, and only one type suffix is required. Because the argument's
6417type is matched against the return type, it does not require its own
6418name suffix.
6419
6420To learn how to add an intrinsic function, please see the `Extending
6421LLVM Guide <ExtendingLLVM.html>`_.
6422
6423.. _int_varargs:
6424
6425Variable Argument Handling Intrinsics
6426-------------------------------------
6427
6428Variable argument support is defined in LLVM with the
6429:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6430functions. These functions are related to the similarly named macros
6431defined in the ``<stdarg.h>`` header file.
6432
6433All of these functions operate on arguments that use a target-specific
6434value type "``va_list``". The LLVM assembly language reference manual
6435does not define what this type is, so all transformations should be
6436prepared to handle these functions regardless of the type used.
6437
6438This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6439variable argument handling intrinsic functions are used.
6440
6441.. code-block:: llvm
6442
6443 define i32 @test(i32 %X, ...) {
6444 ; Initialize variable argument processing
6445 %ap = alloca i8*
6446 %ap2 = bitcast i8** %ap to i8*
6447 call void @llvm.va_start(i8* %ap2)
6448
6449 ; Read a single integer argument
6450 %tmp = va_arg i8** %ap, i32
6451
6452 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6453 %aq = alloca i8*
6454 %aq2 = bitcast i8** %aq to i8*
6455 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6456 call void @llvm.va_end(i8* %aq2)
6457
6458 ; Stop processing of arguments.
6459 call void @llvm.va_end(i8* %ap2)
6460 ret i32 %tmp
6461 }
6462
6463 declare void @llvm.va_start(i8*)
6464 declare void @llvm.va_copy(i8*, i8*)
6465 declare void @llvm.va_end(i8*)
6466
6467.. _int_va_start:
6468
6469'``llvm.va_start``' Intrinsic
6470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6471
6472Syntax:
6473"""""""
6474
6475::
6476
Nick Lewycky04f6de02013-09-11 22:04:52 +00006477 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006478
6479Overview:
6480"""""""""
6481
6482The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6483subsequent use by ``va_arg``.
6484
6485Arguments:
6486""""""""""
6487
6488The argument is a pointer to a ``va_list`` element to initialize.
6489
6490Semantics:
6491""""""""""
6492
6493The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6494available in C. In a target-dependent way, it initializes the
6495``va_list`` element to which the argument points, so that the next call
6496to ``va_arg`` will produce the first variable argument passed to the
6497function. Unlike the C ``va_start`` macro, this intrinsic does not need
6498to know the last argument of the function as the compiler can figure
6499that out.
6500
6501'``llvm.va_end``' Intrinsic
6502^^^^^^^^^^^^^^^^^^^^^^^^^^^
6503
6504Syntax:
6505"""""""
6506
6507::
6508
6509 declare void @llvm.va_end(i8* <arglist>)
6510
6511Overview:
6512"""""""""
6513
6514The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6515initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6516
6517Arguments:
6518""""""""""
6519
6520The argument is a pointer to a ``va_list`` to destroy.
6521
6522Semantics:
6523""""""""""
6524
6525The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6526available in C. In a target-dependent way, it destroys the ``va_list``
6527element to which the argument points. Calls to
6528:ref:`llvm.va_start <int_va_start>` and
6529:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6530``llvm.va_end``.
6531
6532.. _int_va_copy:
6533
6534'``llvm.va_copy``' Intrinsic
6535^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6536
6537Syntax:
6538"""""""
6539
6540::
6541
6542 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6543
6544Overview:
6545"""""""""
6546
6547The '``llvm.va_copy``' intrinsic copies the current argument position
6548from the source argument list to the destination argument list.
6549
6550Arguments:
6551""""""""""
6552
6553The first argument is a pointer to a ``va_list`` element to initialize.
6554The second argument is a pointer to a ``va_list`` element to copy from.
6555
6556Semantics:
6557""""""""""
6558
6559The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6560available in C. In a target-dependent way, it copies the source
6561``va_list`` element into the destination ``va_list`` element. This
6562intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6563arbitrarily complex and require, for example, memory allocation.
6564
6565Accurate Garbage Collection Intrinsics
6566--------------------------------------
6567
6568LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6569(GC) requires the implementation and generation of these intrinsics.
6570These intrinsics allow identification of :ref:`GC roots on the
6571stack <int_gcroot>`, as well as garbage collector implementations that
6572require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6573Front-ends for type-safe garbage collected languages should generate
6574these intrinsics to make use of the LLVM garbage collectors. For more
6575details, see `Accurate Garbage Collection with
6576LLVM <GarbageCollection.html>`_.
6577
6578The garbage collection intrinsics only operate on objects in the generic
6579address space (address space zero).
6580
6581.. _int_gcroot:
6582
6583'``llvm.gcroot``' Intrinsic
6584^^^^^^^^^^^^^^^^^^^^^^^^^^^
6585
6586Syntax:
6587"""""""
6588
6589::
6590
6591 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6592
6593Overview:
6594"""""""""
6595
6596The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6597the code generator, and allows some metadata to be associated with it.
6598
6599Arguments:
6600""""""""""
6601
6602The first argument specifies the address of a stack object that contains
6603the root pointer. The second pointer (which must be either a constant or
6604a global value address) contains the meta-data to be associated with the
6605root.
6606
6607Semantics:
6608""""""""""
6609
6610At runtime, a call to this intrinsic stores a null pointer into the
6611"ptrloc" location. At compile-time, the code generator generates
6612information to allow the runtime to find the pointer at GC safe points.
6613The '``llvm.gcroot``' intrinsic may only be used in a function which
6614:ref:`specifies a GC algorithm <gc>`.
6615
6616.. _int_gcread:
6617
6618'``llvm.gcread``' Intrinsic
6619^^^^^^^^^^^^^^^^^^^^^^^^^^^
6620
6621Syntax:
6622"""""""
6623
6624::
6625
6626 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6627
6628Overview:
6629"""""""""
6630
6631The '``llvm.gcread``' intrinsic identifies reads of references from heap
6632locations, allowing garbage collector implementations that require read
6633barriers.
6634
6635Arguments:
6636""""""""""
6637
6638The second argument is the address to read from, which should be an
6639address allocated from the garbage collector. The first object is a
6640pointer to the start of the referenced object, if needed by the language
6641runtime (otherwise null).
6642
6643Semantics:
6644""""""""""
6645
6646The '``llvm.gcread``' intrinsic has the same semantics as a load
6647instruction, but may be replaced with substantially more complex code by
6648the garbage collector runtime, as needed. The '``llvm.gcread``'
6649intrinsic may only be used in a function which :ref:`specifies a GC
6650algorithm <gc>`.
6651
6652.. _int_gcwrite:
6653
6654'``llvm.gcwrite``' Intrinsic
6655^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6656
6657Syntax:
6658"""""""
6659
6660::
6661
6662 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6663
6664Overview:
6665"""""""""
6666
6667The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6668locations, allowing garbage collector implementations that require write
6669barriers (such as generational or reference counting collectors).
6670
6671Arguments:
6672""""""""""
6673
6674The first argument is the reference to store, the second is the start of
6675the object to store it to, and the third is the address of the field of
6676Obj to store to. If the runtime does not require a pointer to the
6677object, Obj may be null.
6678
6679Semantics:
6680""""""""""
6681
6682The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6683instruction, but may be replaced with substantially more complex code by
6684the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6685intrinsic may only be used in a function which :ref:`specifies a GC
6686algorithm <gc>`.
6687
6688Code Generator Intrinsics
6689-------------------------
6690
6691These intrinsics are provided by LLVM to expose special features that
6692may only be implemented with code generator support.
6693
6694'``llvm.returnaddress``' Intrinsic
6695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6696
6697Syntax:
6698"""""""
6699
6700::
6701
6702 declare i8 *@llvm.returnaddress(i32 <level>)
6703
6704Overview:
6705"""""""""
6706
6707The '``llvm.returnaddress``' intrinsic attempts to compute a
6708target-specific value indicating the return address of the current
6709function or one of its callers.
6710
6711Arguments:
6712""""""""""
6713
6714The argument to this intrinsic indicates which function to return the
6715address for. Zero indicates the calling function, one indicates its
6716caller, etc. The argument is **required** to be a constant integer
6717value.
6718
6719Semantics:
6720""""""""""
6721
6722The '``llvm.returnaddress``' intrinsic either returns a pointer
6723indicating the return address of the specified call frame, or zero if it
6724cannot be identified. The value returned by this intrinsic is likely to
6725be incorrect or 0 for arguments other than zero, so it should only be
6726used for debugging purposes.
6727
6728Note that calling this intrinsic does not prevent function inlining or
6729other aggressive transformations, so the value returned may not be that
6730of the obvious source-language caller.
6731
6732'``llvm.frameaddress``' Intrinsic
6733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6734
6735Syntax:
6736"""""""
6737
6738::
6739
6740 declare i8* @llvm.frameaddress(i32 <level>)
6741
6742Overview:
6743"""""""""
6744
6745The '``llvm.frameaddress``' intrinsic attempts to return the
6746target-specific frame pointer value for the specified stack frame.
6747
6748Arguments:
6749""""""""""
6750
6751The argument to this intrinsic indicates which function to return the
6752frame pointer for. Zero indicates the calling function, one indicates
6753its caller, etc. The argument is **required** to be a constant integer
6754value.
6755
6756Semantics:
6757""""""""""
6758
6759The '``llvm.frameaddress``' intrinsic either returns a pointer
6760indicating the frame address of the specified call frame, or zero if it
6761cannot be identified. The value returned by this intrinsic is likely to
6762be incorrect or 0 for arguments other than zero, so it should only be
6763used for debugging purposes.
6764
6765Note that calling this intrinsic does not prevent function inlining or
6766other aggressive transformations, so the value returned may not be that
6767of the obvious source-language caller.
6768
6769.. _int_stacksave:
6770
6771'``llvm.stacksave``' Intrinsic
6772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6773
6774Syntax:
6775"""""""
6776
6777::
6778
6779 declare i8* @llvm.stacksave()
6780
6781Overview:
6782"""""""""
6783
6784The '``llvm.stacksave``' intrinsic is used to remember the current state
6785of the function stack, for use with
6786:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6787implementing language features like scoped automatic variable sized
6788arrays in C99.
6789
6790Semantics:
6791""""""""""
6792
6793This intrinsic returns a opaque pointer value that can be passed to
6794:ref:`llvm.stackrestore <int_stackrestore>`. When an
6795``llvm.stackrestore`` intrinsic is executed with a value saved from
6796``llvm.stacksave``, it effectively restores the state of the stack to
6797the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6798practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6799were allocated after the ``llvm.stacksave`` was executed.
6800
6801.. _int_stackrestore:
6802
6803'``llvm.stackrestore``' Intrinsic
6804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6805
6806Syntax:
6807"""""""
6808
6809::
6810
6811 declare void @llvm.stackrestore(i8* %ptr)
6812
6813Overview:
6814"""""""""
6815
6816The '``llvm.stackrestore``' intrinsic is used to restore the state of
6817the function stack to the state it was in when the corresponding
6818:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6819useful for implementing language features like scoped automatic variable
6820sized arrays in C99.
6821
6822Semantics:
6823""""""""""
6824
6825See the description for :ref:`llvm.stacksave <int_stacksave>`.
6826
6827'``llvm.prefetch``' Intrinsic
6828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6829
6830Syntax:
6831"""""""
6832
6833::
6834
6835 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6836
6837Overview:
6838"""""""""
6839
6840The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6841insert a prefetch instruction if supported; otherwise, it is a noop.
6842Prefetches have no effect on the behavior of the program but can change
6843its performance characteristics.
6844
6845Arguments:
6846""""""""""
6847
6848``address`` is the address to be prefetched, ``rw`` is the specifier
6849determining if the fetch should be for a read (0) or write (1), and
6850``locality`` is a temporal locality specifier ranging from (0) - no
6851locality, to (3) - extremely local keep in cache. The ``cache type``
6852specifies whether the prefetch is performed on the data (1) or
6853instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6854arguments must be constant integers.
6855
6856Semantics:
6857""""""""""
6858
6859This intrinsic does not modify the behavior of the program. In
6860particular, prefetches cannot trap and do not produce a value. On
6861targets that support this intrinsic, the prefetch can provide hints to
6862the processor cache for better performance.
6863
6864'``llvm.pcmarker``' Intrinsic
6865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6866
6867Syntax:
6868"""""""
6869
6870::
6871
6872 declare void @llvm.pcmarker(i32 <id>)
6873
6874Overview:
6875"""""""""
6876
6877The '``llvm.pcmarker``' intrinsic is a method to export a Program
6878Counter (PC) in a region of code to simulators and other tools. The
6879method is target specific, but it is expected that the marker will use
6880exported symbols to transmit the PC of the marker. The marker makes no
6881guarantees that it will remain with any specific instruction after
6882optimizations. It is possible that the presence of a marker will inhibit
6883optimizations. The intended use is to be inserted after optimizations to
6884allow correlations of simulation runs.
6885
6886Arguments:
6887""""""""""
6888
6889``id`` is a numerical id identifying the marker.
6890
6891Semantics:
6892""""""""""
6893
6894This intrinsic does not modify the behavior of the program. Backends
6895that do not support this intrinsic may ignore it.
6896
6897'``llvm.readcyclecounter``' Intrinsic
6898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6899
6900Syntax:
6901"""""""
6902
6903::
6904
6905 declare i64 @llvm.readcyclecounter()
6906
6907Overview:
6908"""""""""
6909
6910The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6911counter register (or similar low latency, high accuracy clocks) on those
6912targets that support it. On X86, it should map to RDTSC. On Alpha, it
6913should map to RPCC. As the backing counters overflow quickly (on the
6914order of 9 seconds on alpha), this should only be used for small
6915timings.
6916
6917Semantics:
6918""""""""""
6919
6920When directly supported, reading the cycle counter should not modify any
6921memory. Implementations are allowed to either return a application
6922specific value or a system wide value. On backends without support, this
6923is lowered to a constant 0.
6924
Tim Northoverbc933082013-05-23 19:11:20 +00006925Note that runtime support may be conditional on the privilege-level code is
6926running at and the host platform.
6927
Sean Silvab084af42012-12-07 10:36:55 +00006928Standard C Library Intrinsics
6929-----------------------------
6930
6931LLVM provides intrinsics for a few important standard C library
6932functions. These intrinsics allow source-language front-ends to pass
6933information about the alignment of the pointer arguments to the code
6934generator, providing opportunity for more efficient code generation.
6935
6936.. _int_memcpy:
6937
6938'``llvm.memcpy``' Intrinsic
6939^^^^^^^^^^^^^^^^^^^^^^^^^^^
6940
6941Syntax:
6942"""""""
6943
6944This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6945integer bit width and for different address spaces. Not all targets
6946support all bit widths however.
6947
6948::
6949
6950 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6951 i32 <len>, i32 <align>, i1 <isvolatile>)
6952 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6953 i64 <len>, i32 <align>, i1 <isvolatile>)
6954
6955Overview:
6956"""""""""
6957
6958The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6959source location to the destination location.
6960
6961Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6962intrinsics do not return a value, takes extra alignment/isvolatile
6963arguments and the pointers can be in specified address spaces.
6964
6965Arguments:
6966""""""""""
6967
6968The first argument is a pointer to the destination, the second is a
6969pointer to the source. The third argument is an integer argument
6970specifying the number of bytes to copy, the fourth argument is the
6971alignment of the source and destination locations, and the fifth is a
6972boolean indicating a volatile access.
6973
6974If the call to this intrinsic has an alignment value that is not 0 or 1,
6975then the caller guarantees that both the source and destination pointers
6976are aligned to that boundary.
6977
6978If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6979a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6980very cleanly specified and it is unwise to depend on it.
6981
6982Semantics:
6983""""""""""
6984
6985The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6986source location to the destination location, which are not allowed to
6987overlap. It copies "len" bytes of memory over. If the argument is known
6988to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006989argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006990
6991'``llvm.memmove``' Intrinsic
6992^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6993
6994Syntax:
6995"""""""
6996
6997This is an overloaded intrinsic. You can use llvm.memmove on any integer
6998bit width and for different address space. Not all targets support all
6999bit widths however.
7000
7001::
7002
7003 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7004 i32 <len>, i32 <align>, i1 <isvolatile>)
7005 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7006 i64 <len>, i32 <align>, i1 <isvolatile>)
7007
7008Overview:
7009"""""""""
7010
7011The '``llvm.memmove.*``' intrinsics move a block of memory from the
7012source location to the destination location. It is similar to the
7013'``llvm.memcpy``' intrinsic but allows the two memory locations to
7014overlap.
7015
7016Note that, unlike the standard libc function, the ``llvm.memmove.*``
7017intrinsics do not return a value, takes extra alignment/isvolatile
7018arguments and the pointers can be in specified address spaces.
7019
7020Arguments:
7021""""""""""
7022
7023The first argument is a pointer to the destination, the second is a
7024pointer to the source. The third argument is an integer argument
7025specifying the number of bytes to copy, the fourth argument is the
7026alignment of the source and destination locations, and the fifth is a
7027boolean indicating a volatile access.
7028
7029If the call to this intrinsic has an alignment value that is not 0 or 1,
7030then the caller guarantees that the source and destination pointers are
7031aligned to that boundary.
7032
7033If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7034is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7035not very cleanly specified and it is unwise to depend on it.
7036
7037Semantics:
7038""""""""""
7039
7040The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7041source location to the destination location, which may overlap. It
7042copies "len" bytes of memory over. If the argument is known to be
7043aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007044otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007045
7046'``llvm.memset.*``' Intrinsics
7047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7048
7049Syntax:
7050"""""""
7051
7052This is an overloaded intrinsic. You can use llvm.memset on any integer
7053bit width and for different address spaces. However, not all targets
7054support all bit widths.
7055
7056::
7057
7058 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7059 i32 <len>, i32 <align>, i1 <isvolatile>)
7060 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7061 i64 <len>, i32 <align>, i1 <isvolatile>)
7062
7063Overview:
7064"""""""""
7065
7066The '``llvm.memset.*``' intrinsics fill a block of memory with a
7067particular byte value.
7068
7069Note that, unlike the standard libc function, the ``llvm.memset``
7070intrinsic does not return a value and takes extra alignment/volatile
7071arguments. Also, the destination can be in an arbitrary address space.
7072
7073Arguments:
7074""""""""""
7075
7076The first argument is a pointer to the destination to fill, the second
7077is the byte value with which to fill it, the third argument is an
7078integer argument specifying the number of bytes to fill, and the fourth
7079argument is the known alignment of the destination location.
7080
7081If the call to this intrinsic has an alignment value that is not 0 or 1,
7082then the caller guarantees that the destination pointer is aligned to
7083that boundary.
7084
7085If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7086a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7087very cleanly specified and it is unwise to depend on it.
7088
7089Semantics:
7090""""""""""
7091
7092The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7093at the destination location. If the argument is known to be aligned to
7094some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007095it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007096
7097'``llvm.sqrt.*``' Intrinsic
7098^^^^^^^^^^^^^^^^^^^^^^^^^^^
7099
7100Syntax:
7101"""""""
7102
7103This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7104floating point or vector of floating point type. Not all targets support
7105all types however.
7106
7107::
7108
7109 declare float @llvm.sqrt.f32(float %Val)
7110 declare double @llvm.sqrt.f64(double %Val)
7111 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7112 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7113 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7114
7115Overview:
7116"""""""""
7117
7118The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7119returning the same value as the libm '``sqrt``' functions would. Unlike
7120``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7121negative numbers other than -0.0 (which allows for better optimization,
7122because there is no need to worry about errno being set).
7123``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7124
7125Arguments:
7126""""""""""
7127
7128The argument and return value are floating point numbers of the same
7129type.
7130
7131Semantics:
7132""""""""""
7133
7134This function returns the sqrt of the specified operand if it is a
7135nonnegative floating point number.
7136
7137'``llvm.powi.*``' Intrinsic
7138^^^^^^^^^^^^^^^^^^^^^^^^^^^
7139
7140Syntax:
7141"""""""
7142
7143This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7144floating point or vector of floating point type. Not all targets support
7145all types however.
7146
7147::
7148
7149 declare float @llvm.powi.f32(float %Val, i32 %power)
7150 declare double @llvm.powi.f64(double %Val, i32 %power)
7151 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7152 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7153 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7154
7155Overview:
7156"""""""""
7157
7158The '``llvm.powi.*``' intrinsics return the first operand raised to the
7159specified (positive or negative) power. The order of evaluation of
7160multiplications is not defined. When a vector of floating point type is
7161used, the second argument remains a scalar integer value.
7162
7163Arguments:
7164""""""""""
7165
7166The second argument is an integer power, and the first is a value to
7167raise to that power.
7168
7169Semantics:
7170""""""""""
7171
7172This function returns the first value raised to the second power with an
7173unspecified sequence of rounding operations.
7174
7175'``llvm.sin.*``' Intrinsic
7176^^^^^^^^^^^^^^^^^^^^^^^^^^
7177
7178Syntax:
7179"""""""
7180
7181This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7182floating point or vector of floating point type. Not all targets support
7183all types however.
7184
7185::
7186
7187 declare float @llvm.sin.f32(float %Val)
7188 declare double @llvm.sin.f64(double %Val)
7189 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7190 declare fp128 @llvm.sin.f128(fp128 %Val)
7191 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7192
7193Overview:
7194"""""""""
7195
7196The '``llvm.sin.*``' intrinsics return the sine of the operand.
7197
7198Arguments:
7199""""""""""
7200
7201The argument and return value are floating point numbers of the same
7202type.
7203
7204Semantics:
7205""""""""""
7206
7207This function returns the sine of the specified operand, returning the
7208same values as the libm ``sin`` functions would, and handles error
7209conditions in the same way.
7210
7211'``llvm.cos.*``' Intrinsic
7212^^^^^^^^^^^^^^^^^^^^^^^^^^
7213
7214Syntax:
7215"""""""
7216
7217This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7218floating point or vector of floating point type. Not all targets support
7219all types however.
7220
7221::
7222
7223 declare float @llvm.cos.f32(float %Val)
7224 declare double @llvm.cos.f64(double %Val)
7225 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7226 declare fp128 @llvm.cos.f128(fp128 %Val)
7227 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7228
7229Overview:
7230"""""""""
7231
7232The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7233
7234Arguments:
7235""""""""""
7236
7237The argument and return value are floating point numbers of the same
7238type.
7239
7240Semantics:
7241""""""""""
7242
7243This function returns the cosine of the specified operand, returning the
7244same values as the libm ``cos`` functions would, and handles error
7245conditions in the same way.
7246
7247'``llvm.pow.*``' Intrinsic
7248^^^^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7254floating point or vector of floating point type. Not all targets support
7255all types however.
7256
7257::
7258
7259 declare float @llvm.pow.f32(float %Val, float %Power)
7260 declare double @llvm.pow.f64(double %Val, double %Power)
7261 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7262 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7263 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7264
7265Overview:
7266"""""""""
7267
7268The '``llvm.pow.*``' intrinsics return the first operand raised to the
7269specified (positive or negative) power.
7270
7271Arguments:
7272""""""""""
7273
7274The second argument is a floating point power, and the first is a value
7275to raise to that power.
7276
7277Semantics:
7278""""""""""
7279
7280This function returns the first value raised to the second power,
7281returning the same values as the libm ``pow`` functions would, and
7282handles error conditions in the same way.
7283
7284'``llvm.exp.*``' Intrinsic
7285^^^^^^^^^^^^^^^^^^^^^^^^^^
7286
7287Syntax:
7288"""""""
7289
7290This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7291floating point or vector of floating point type. Not all targets support
7292all types however.
7293
7294::
7295
7296 declare float @llvm.exp.f32(float %Val)
7297 declare double @llvm.exp.f64(double %Val)
7298 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7299 declare fp128 @llvm.exp.f128(fp128 %Val)
7300 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7301
7302Overview:
7303"""""""""
7304
7305The '``llvm.exp.*``' intrinsics perform the exp function.
7306
7307Arguments:
7308""""""""""
7309
7310The argument and return value are floating point numbers of the same
7311type.
7312
7313Semantics:
7314""""""""""
7315
7316This function returns the same values as the libm ``exp`` functions
7317would, and handles error conditions in the same way.
7318
7319'``llvm.exp2.*``' Intrinsic
7320^^^^^^^^^^^^^^^^^^^^^^^^^^^
7321
7322Syntax:
7323"""""""
7324
7325This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7326floating point or vector of floating point type. Not all targets support
7327all types however.
7328
7329::
7330
7331 declare float @llvm.exp2.f32(float %Val)
7332 declare double @llvm.exp2.f64(double %Val)
7333 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7334 declare fp128 @llvm.exp2.f128(fp128 %Val)
7335 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7336
7337Overview:
7338"""""""""
7339
7340The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7341
7342Arguments:
7343""""""""""
7344
7345The argument and return value are floating point numbers of the same
7346type.
7347
7348Semantics:
7349""""""""""
7350
7351This function returns the same values as the libm ``exp2`` functions
7352would, and handles error conditions in the same way.
7353
7354'``llvm.log.*``' Intrinsic
7355^^^^^^^^^^^^^^^^^^^^^^^^^^
7356
7357Syntax:
7358"""""""
7359
7360This is an overloaded intrinsic. You can use ``llvm.log`` on any
7361floating point or vector of floating point type. Not all targets support
7362all types however.
7363
7364::
7365
7366 declare float @llvm.log.f32(float %Val)
7367 declare double @llvm.log.f64(double %Val)
7368 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7369 declare fp128 @llvm.log.f128(fp128 %Val)
7370 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7371
7372Overview:
7373"""""""""
7374
7375The '``llvm.log.*``' intrinsics perform the log function.
7376
7377Arguments:
7378""""""""""
7379
7380The argument and return value are floating point numbers of the same
7381type.
7382
7383Semantics:
7384""""""""""
7385
7386This function returns the same values as the libm ``log`` functions
7387would, and handles error conditions in the same way.
7388
7389'``llvm.log10.*``' Intrinsic
7390^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7391
7392Syntax:
7393"""""""
7394
7395This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7396floating point or vector of floating point type. Not all targets support
7397all types however.
7398
7399::
7400
7401 declare float @llvm.log10.f32(float %Val)
7402 declare double @llvm.log10.f64(double %Val)
7403 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7404 declare fp128 @llvm.log10.f128(fp128 %Val)
7405 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7406
7407Overview:
7408"""""""""
7409
7410The '``llvm.log10.*``' intrinsics perform the log10 function.
7411
7412Arguments:
7413""""""""""
7414
7415The argument and return value are floating point numbers of the same
7416type.
7417
7418Semantics:
7419""""""""""
7420
7421This function returns the same values as the libm ``log10`` functions
7422would, and handles error conditions in the same way.
7423
7424'``llvm.log2.*``' Intrinsic
7425^^^^^^^^^^^^^^^^^^^^^^^^^^^
7426
7427Syntax:
7428"""""""
7429
7430This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7431floating point or vector of floating point type. Not all targets support
7432all types however.
7433
7434::
7435
7436 declare float @llvm.log2.f32(float %Val)
7437 declare double @llvm.log2.f64(double %Val)
7438 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7439 declare fp128 @llvm.log2.f128(fp128 %Val)
7440 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7441
7442Overview:
7443"""""""""
7444
7445The '``llvm.log2.*``' intrinsics perform the log2 function.
7446
7447Arguments:
7448""""""""""
7449
7450The argument and return value are floating point numbers of the same
7451type.
7452
7453Semantics:
7454""""""""""
7455
7456This function returns the same values as the libm ``log2`` functions
7457would, and handles error conditions in the same way.
7458
7459'``llvm.fma.*``' Intrinsic
7460^^^^^^^^^^^^^^^^^^^^^^^^^^
7461
7462Syntax:
7463"""""""
7464
7465This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7466floating point or vector of floating point type. Not all targets support
7467all types however.
7468
7469::
7470
7471 declare float @llvm.fma.f32(float %a, float %b, float %c)
7472 declare double @llvm.fma.f64(double %a, double %b, double %c)
7473 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7474 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7475 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7476
7477Overview:
7478"""""""""
7479
7480The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7481operation.
7482
7483Arguments:
7484""""""""""
7485
7486The argument and return value are floating point numbers of the same
7487type.
7488
7489Semantics:
7490""""""""""
7491
7492This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007493would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007494
7495'``llvm.fabs.*``' Intrinsic
7496^^^^^^^^^^^^^^^^^^^^^^^^^^^
7497
7498Syntax:
7499"""""""
7500
7501This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7502floating point or vector of floating point type. Not all targets support
7503all types however.
7504
7505::
7506
7507 declare float @llvm.fabs.f32(float %Val)
7508 declare double @llvm.fabs.f64(double %Val)
7509 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7510 declare fp128 @llvm.fabs.f128(fp128 %Val)
7511 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7512
7513Overview:
7514"""""""""
7515
7516The '``llvm.fabs.*``' intrinsics return the absolute value of the
7517operand.
7518
7519Arguments:
7520""""""""""
7521
7522The argument and return value are floating point numbers of the same
7523type.
7524
7525Semantics:
7526""""""""""
7527
7528This function returns the same values as the libm ``fabs`` functions
7529would, and handles error conditions in the same way.
7530
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007531'``llvm.copysign.*``' Intrinsic
7532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7533
7534Syntax:
7535"""""""
7536
7537This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7538floating point or vector of floating point type. Not all targets support
7539all types however.
7540
7541::
7542
7543 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7544 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7545 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7546 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7547 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7548
7549Overview:
7550"""""""""
7551
7552The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7553first operand and the sign of the second operand.
7554
7555Arguments:
7556""""""""""
7557
7558The arguments and return value are floating point numbers of the same
7559type.
7560
7561Semantics:
7562""""""""""
7563
7564This function returns the same values as the libm ``copysign``
7565functions would, and handles error conditions in the same way.
7566
Sean Silvab084af42012-12-07 10:36:55 +00007567'``llvm.floor.*``' Intrinsic
7568^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7569
7570Syntax:
7571"""""""
7572
7573This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7574floating point or vector of floating point type. Not all targets support
7575all types however.
7576
7577::
7578
7579 declare float @llvm.floor.f32(float %Val)
7580 declare double @llvm.floor.f64(double %Val)
7581 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7582 declare fp128 @llvm.floor.f128(fp128 %Val)
7583 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7584
7585Overview:
7586"""""""""
7587
7588The '``llvm.floor.*``' intrinsics return the floor of the operand.
7589
7590Arguments:
7591""""""""""
7592
7593The argument and return value are floating point numbers of the same
7594type.
7595
7596Semantics:
7597""""""""""
7598
7599This function returns the same values as the libm ``floor`` functions
7600would, and handles error conditions in the same way.
7601
7602'``llvm.ceil.*``' Intrinsic
7603^^^^^^^^^^^^^^^^^^^^^^^^^^^
7604
7605Syntax:
7606"""""""
7607
7608This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7609floating point or vector of floating point type. Not all targets support
7610all types however.
7611
7612::
7613
7614 declare float @llvm.ceil.f32(float %Val)
7615 declare double @llvm.ceil.f64(double %Val)
7616 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7617 declare fp128 @llvm.ceil.f128(fp128 %Val)
7618 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7619
7620Overview:
7621"""""""""
7622
7623The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7624
7625Arguments:
7626""""""""""
7627
7628The argument and return value are floating point numbers of the same
7629type.
7630
7631Semantics:
7632""""""""""
7633
7634This function returns the same values as the libm ``ceil`` functions
7635would, and handles error conditions in the same way.
7636
7637'``llvm.trunc.*``' Intrinsic
7638^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7639
7640Syntax:
7641"""""""
7642
7643This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7644floating point or vector of floating point type. Not all targets support
7645all types however.
7646
7647::
7648
7649 declare float @llvm.trunc.f32(float %Val)
7650 declare double @llvm.trunc.f64(double %Val)
7651 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7652 declare fp128 @llvm.trunc.f128(fp128 %Val)
7653 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7654
7655Overview:
7656"""""""""
7657
7658The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7659nearest integer not larger in magnitude than the operand.
7660
7661Arguments:
7662""""""""""
7663
7664The argument and return value are floating point numbers of the same
7665type.
7666
7667Semantics:
7668""""""""""
7669
7670This function returns the same values as the libm ``trunc`` functions
7671would, and handles error conditions in the same way.
7672
7673'``llvm.rint.*``' Intrinsic
7674^^^^^^^^^^^^^^^^^^^^^^^^^^^
7675
7676Syntax:
7677"""""""
7678
7679This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7680floating point or vector of floating point type. Not all targets support
7681all types however.
7682
7683::
7684
7685 declare float @llvm.rint.f32(float %Val)
7686 declare double @llvm.rint.f64(double %Val)
7687 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7688 declare fp128 @llvm.rint.f128(fp128 %Val)
7689 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7690
7691Overview:
7692"""""""""
7693
7694The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7695nearest integer. It may raise an inexact floating-point exception if the
7696operand isn't an integer.
7697
7698Arguments:
7699""""""""""
7700
7701The argument and return value are floating point numbers of the same
7702type.
7703
7704Semantics:
7705""""""""""
7706
7707This function returns the same values as the libm ``rint`` functions
7708would, and handles error conditions in the same way.
7709
7710'``llvm.nearbyint.*``' Intrinsic
7711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7712
7713Syntax:
7714"""""""
7715
7716This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7717floating point or vector of floating point type. Not all targets support
7718all types however.
7719
7720::
7721
7722 declare float @llvm.nearbyint.f32(float %Val)
7723 declare double @llvm.nearbyint.f64(double %Val)
7724 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7725 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7726 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7727
7728Overview:
7729"""""""""
7730
7731The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7732nearest integer.
7733
7734Arguments:
7735""""""""""
7736
7737The argument and return value are floating point numbers of the same
7738type.
7739
7740Semantics:
7741""""""""""
7742
7743This function returns the same values as the libm ``nearbyint``
7744functions would, and handles error conditions in the same way.
7745
Hal Finkel171817e2013-08-07 22:49:12 +00007746'``llvm.round.*``' Intrinsic
7747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752This is an overloaded intrinsic. You can use ``llvm.round`` on any
7753floating point or vector of floating point type. Not all targets support
7754all types however.
7755
7756::
7757
7758 declare float @llvm.round.f32(float %Val)
7759 declare double @llvm.round.f64(double %Val)
7760 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7761 declare fp128 @llvm.round.f128(fp128 %Val)
7762 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7763
7764Overview:
7765"""""""""
7766
7767The '``llvm.round.*``' intrinsics returns the operand rounded to the
7768nearest integer.
7769
7770Arguments:
7771""""""""""
7772
7773The argument and return value are floating point numbers of the same
7774type.
7775
7776Semantics:
7777""""""""""
7778
7779This function returns the same values as the libm ``round``
7780functions would, and handles error conditions in the same way.
7781
Sean Silvab084af42012-12-07 10:36:55 +00007782Bit Manipulation Intrinsics
7783---------------------------
7784
7785LLVM provides intrinsics for a few important bit manipulation
7786operations. These allow efficient code generation for some algorithms.
7787
7788'``llvm.bswap.*``' Intrinsics
7789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7790
7791Syntax:
7792"""""""
7793
7794This is an overloaded intrinsic function. You can use bswap on any
7795integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7796
7797::
7798
7799 declare i16 @llvm.bswap.i16(i16 <id>)
7800 declare i32 @llvm.bswap.i32(i32 <id>)
7801 declare i64 @llvm.bswap.i64(i64 <id>)
7802
7803Overview:
7804"""""""""
7805
7806The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7807values with an even number of bytes (positive multiple of 16 bits).
7808These are useful for performing operations on data that is not in the
7809target's native byte order.
7810
7811Semantics:
7812""""""""""
7813
7814The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7815and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7816intrinsic returns an i32 value that has the four bytes of the input i32
7817swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7818returned i32 will have its bytes in 3, 2, 1, 0 order. The
7819``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7820concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7821respectively).
7822
7823'``llvm.ctpop.*``' Intrinsic
7824^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7825
7826Syntax:
7827"""""""
7828
7829This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7830bit width, or on any vector with integer elements. Not all targets
7831support all bit widths or vector types, however.
7832
7833::
7834
7835 declare i8 @llvm.ctpop.i8(i8 <src>)
7836 declare i16 @llvm.ctpop.i16(i16 <src>)
7837 declare i32 @llvm.ctpop.i32(i32 <src>)
7838 declare i64 @llvm.ctpop.i64(i64 <src>)
7839 declare i256 @llvm.ctpop.i256(i256 <src>)
7840 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7841
7842Overview:
7843"""""""""
7844
7845The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7846in a value.
7847
7848Arguments:
7849""""""""""
7850
7851The only argument is the value to be counted. The argument may be of any
7852integer type, or a vector with integer elements. The return type must
7853match the argument type.
7854
7855Semantics:
7856""""""""""
7857
7858The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7859each element of a vector.
7860
7861'``llvm.ctlz.*``' Intrinsic
7862^^^^^^^^^^^^^^^^^^^^^^^^^^^
7863
7864Syntax:
7865"""""""
7866
7867This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7868integer bit width, or any vector whose elements are integers. Not all
7869targets support all bit widths or vector types, however.
7870
7871::
7872
7873 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7874 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7875 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7876 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7877 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7878 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7879
7880Overview:
7881"""""""""
7882
7883The '``llvm.ctlz``' family of intrinsic functions counts the number of
7884leading zeros in a variable.
7885
7886Arguments:
7887""""""""""
7888
7889The first argument is the value to be counted. This argument may be of
7890any integer type, or a vectory with integer element type. The return
7891type must match the first argument type.
7892
7893The second argument must be a constant and is a flag to indicate whether
7894the intrinsic should ensure that a zero as the first argument produces a
7895defined result. Historically some architectures did not provide a
7896defined result for zero values as efficiently, and many algorithms are
7897now predicated on avoiding zero-value inputs.
7898
7899Semantics:
7900""""""""""
7901
7902The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7903zeros in a variable, or within each element of the vector. If
7904``src == 0`` then the result is the size in bits of the type of ``src``
7905if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7906``llvm.ctlz(i32 2) = 30``.
7907
7908'``llvm.cttz.*``' Intrinsic
7909^^^^^^^^^^^^^^^^^^^^^^^^^^^
7910
7911Syntax:
7912"""""""
7913
7914This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7915integer bit width, or any vector of integer elements. Not all targets
7916support all bit widths or vector types, however.
7917
7918::
7919
7920 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7921 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7922 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7923 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7924 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7925 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7926
7927Overview:
7928"""""""""
7929
7930The '``llvm.cttz``' family of intrinsic functions counts the number of
7931trailing zeros.
7932
7933Arguments:
7934""""""""""
7935
7936The first argument is the value to be counted. This argument may be of
7937any integer type, or a vectory with integer element type. The return
7938type must match the first argument type.
7939
7940The second argument must be a constant and is a flag to indicate whether
7941the intrinsic should ensure that a zero as the first argument produces a
7942defined result. Historically some architectures did not provide a
7943defined result for zero values as efficiently, and many algorithms are
7944now predicated on avoiding zero-value inputs.
7945
7946Semantics:
7947""""""""""
7948
7949The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7950zeros in a variable, or within each element of a vector. If ``src == 0``
7951then the result is the size in bits of the type of ``src`` if
7952``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7953``llvm.cttz(2) = 1``.
7954
7955Arithmetic with Overflow Intrinsics
7956-----------------------------------
7957
7958LLVM provides intrinsics for some arithmetic with overflow operations.
7959
7960'``llvm.sadd.with.overflow.*``' Intrinsics
7961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7962
7963Syntax:
7964"""""""
7965
7966This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7967on any integer bit width.
7968
7969::
7970
7971 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7972 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7973 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7974
7975Overview:
7976"""""""""
7977
7978The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7979a signed addition of the two arguments, and indicate whether an overflow
7980occurred during the signed summation.
7981
7982Arguments:
7983""""""""""
7984
7985The arguments (%a and %b) and the first element of the result structure
7986may be of integer types of any bit width, but they must have the same
7987bit width. The second element of the result structure must be of type
7988``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7989addition.
7990
7991Semantics:
7992""""""""""
7993
7994The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007995a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007996first element of which is the signed summation, and the second element
7997of which is a bit specifying if the signed summation resulted in an
7998overflow.
7999
8000Examples:
8001"""""""""
8002
8003.. code-block:: llvm
8004
8005 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8006 %sum = extractvalue {i32, i1} %res, 0
8007 %obit = extractvalue {i32, i1} %res, 1
8008 br i1 %obit, label %overflow, label %normal
8009
8010'``llvm.uadd.with.overflow.*``' Intrinsics
8011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8012
8013Syntax:
8014"""""""
8015
8016This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8017on any integer bit width.
8018
8019::
8020
8021 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8022 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8023 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8024
8025Overview:
8026"""""""""
8027
8028The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8029an unsigned addition of the two arguments, and indicate whether a carry
8030occurred during the unsigned summation.
8031
8032Arguments:
8033""""""""""
8034
8035The arguments (%a and %b) and the first element of the result structure
8036may be of integer types of any bit width, but they must have the same
8037bit width. The second element of the result structure must be of type
8038``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8039addition.
8040
8041Semantics:
8042""""""""""
8043
8044The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008045an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008046first element of which is the sum, and the second element of which is a
8047bit specifying if the unsigned summation resulted in a carry.
8048
8049Examples:
8050"""""""""
8051
8052.. code-block:: llvm
8053
8054 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8055 %sum = extractvalue {i32, i1} %res, 0
8056 %obit = extractvalue {i32, i1} %res, 1
8057 br i1 %obit, label %carry, label %normal
8058
8059'``llvm.ssub.with.overflow.*``' Intrinsics
8060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8066on any integer bit width.
8067
8068::
8069
8070 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8071 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8072 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8073
8074Overview:
8075"""""""""
8076
8077The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8078a signed subtraction of the two arguments, and indicate whether an
8079overflow occurred during the signed subtraction.
8080
8081Arguments:
8082""""""""""
8083
8084The arguments (%a and %b) and the first element of the result structure
8085may be of integer types of any bit width, but they must have the same
8086bit width. The second element of the result structure must be of type
8087``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8088subtraction.
8089
8090Semantics:
8091""""""""""
8092
8093The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008094a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008095first element of which is the subtraction, and the second element of
8096which is a bit specifying if the signed subtraction resulted in an
8097overflow.
8098
8099Examples:
8100"""""""""
8101
8102.. code-block:: llvm
8103
8104 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8105 %sum = extractvalue {i32, i1} %res, 0
8106 %obit = extractvalue {i32, i1} %res, 1
8107 br i1 %obit, label %overflow, label %normal
8108
8109'``llvm.usub.with.overflow.*``' Intrinsics
8110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8111
8112Syntax:
8113"""""""
8114
8115This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8116on any integer bit width.
8117
8118::
8119
8120 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8121 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8122 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8123
8124Overview:
8125"""""""""
8126
8127The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8128an unsigned subtraction of the two arguments, and indicate whether an
8129overflow occurred during the unsigned subtraction.
8130
8131Arguments:
8132""""""""""
8133
8134The arguments (%a and %b) and the first element of the result structure
8135may be of integer types of any bit width, but they must have the same
8136bit width. The second element of the result structure must be of type
8137``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8138subtraction.
8139
8140Semantics:
8141""""""""""
8142
8143The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008144an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008145the first element of which is the subtraction, and the second element of
8146which is a bit specifying if the unsigned subtraction resulted in an
8147overflow.
8148
8149Examples:
8150"""""""""
8151
8152.. code-block:: llvm
8153
8154 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8155 %sum = extractvalue {i32, i1} %res, 0
8156 %obit = extractvalue {i32, i1} %res, 1
8157 br i1 %obit, label %overflow, label %normal
8158
8159'``llvm.smul.with.overflow.*``' Intrinsics
8160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8161
8162Syntax:
8163"""""""
8164
8165This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8166on any integer bit width.
8167
8168::
8169
8170 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8171 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8172 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8173
8174Overview:
8175"""""""""
8176
8177The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8178a signed multiplication of the two arguments, and indicate whether an
8179overflow occurred during the signed multiplication.
8180
8181Arguments:
8182""""""""""
8183
8184The arguments (%a and %b) and the first element of the result structure
8185may be of integer types of any bit width, but they must have the same
8186bit width. The second element of the result structure must be of type
8187``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8188multiplication.
8189
8190Semantics:
8191""""""""""
8192
8193The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008194a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008195the first element of which is the multiplication, and the second element
8196of which is a bit specifying if the signed multiplication resulted in an
8197overflow.
8198
8199Examples:
8200"""""""""
8201
8202.. code-block:: llvm
8203
8204 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8205 %sum = extractvalue {i32, i1} %res, 0
8206 %obit = extractvalue {i32, i1} %res, 1
8207 br i1 %obit, label %overflow, label %normal
8208
8209'``llvm.umul.with.overflow.*``' Intrinsics
8210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8211
8212Syntax:
8213"""""""
8214
8215This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8216on any integer bit width.
8217
8218::
8219
8220 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8221 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8222 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8223
8224Overview:
8225"""""""""
8226
8227The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8228a unsigned multiplication of the two arguments, and indicate whether an
8229overflow occurred during the unsigned multiplication.
8230
8231Arguments:
8232""""""""""
8233
8234The arguments (%a and %b) and the first element of the result structure
8235may be of integer types of any bit width, but they must have the same
8236bit width. The second element of the result structure must be of type
8237``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8238multiplication.
8239
8240Semantics:
8241""""""""""
8242
8243The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008244an unsigned multiplication of the two arguments. They return a structure ---
8245the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008246element of which is a bit specifying if the unsigned multiplication
8247resulted in an overflow.
8248
8249Examples:
8250"""""""""
8251
8252.. code-block:: llvm
8253
8254 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8255 %sum = extractvalue {i32, i1} %res, 0
8256 %obit = extractvalue {i32, i1} %res, 1
8257 br i1 %obit, label %overflow, label %normal
8258
8259Specialised Arithmetic Intrinsics
8260---------------------------------
8261
8262'``llvm.fmuladd.*``' Intrinsic
8263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8264
8265Syntax:
8266"""""""
8267
8268::
8269
8270 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8271 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8272
8273Overview:
8274"""""""""
8275
8276The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008277expressions that can be fused if the code generator determines that (a) the
8278target instruction set has support for a fused operation, and (b) that the
8279fused operation is more efficient than the equivalent, separate pair of mul
8280and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008281
8282Arguments:
8283""""""""""
8284
8285The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8286multiplicands, a and b, and an addend c.
8287
8288Semantics:
8289""""""""""
8290
8291The expression:
8292
8293::
8294
8295 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8296
8297is equivalent to the expression a \* b + c, except that rounding will
8298not be performed between the multiplication and addition steps if the
8299code generator fuses the operations. Fusion is not guaranteed, even if
8300the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008301corresponding llvm.fma.\* intrinsic function should be used
8302instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008303
8304Examples:
8305"""""""""
8306
8307.. code-block:: llvm
8308
8309 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8310
8311Half Precision Floating Point Intrinsics
8312----------------------------------------
8313
8314For most target platforms, half precision floating point is a
8315storage-only format. This means that it is a dense encoding (in memory)
8316but does not support computation in the format.
8317
8318This means that code must first load the half-precision floating point
8319value as an i16, then convert it to float with
8320:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8321then be performed on the float value (including extending to double
8322etc). To store the value back to memory, it is first converted to float
8323if needed, then converted to i16 with
8324:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8325i16 value.
8326
8327.. _int_convert_to_fp16:
8328
8329'``llvm.convert.to.fp16``' Intrinsic
8330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8331
8332Syntax:
8333"""""""
8334
8335::
8336
8337 declare i16 @llvm.convert.to.fp16(f32 %a)
8338
8339Overview:
8340"""""""""
8341
8342The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8343from single precision floating point format to half precision floating
8344point format.
8345
8346Arguments:
8347""""""""""
8348
8349The intrinsic function contains single argument - the value to be
8350converted.
8351
8352Semantics:
8353""""""""""
8354
8355The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8356from single precision floating point format to half precision floating
8357point format. The return value is an ``i16`` which contains the
8358converted number.
8359
8360Examples:
8361"""""""""
8362
8363.. code-block:: llvm
8364
8365 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8366 store i16 %res, i16* @x, align 2
8367
8368.. _int_convert_from_fp16:
8369
8370'``llvm.convert.from.fp16``' Intrinsic
8371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8372
8373Syntax:
8374"""""""
8375
8376::
8377
8378 declare f32 @llvm.convert.from.fp16(i16 %a)
8379
8380Overview:
8381"""""""""
8382
8383The '``llvm.convert.from.fp16``' intrinsic function performs a
8384conversion from half precision floating point format to single precision
8385floating point format.
8386
8387Arguments:
8388""""""""""
8389
8390The intrinsic function contains single argument - the value to be
8391converted.
8392
8393Semantics:
8394""""""""""
8395
8396The '``llvm.convert.from.fp16``' intrinsic function performs a
8397conversion from half single precision floating point format to single
8398precision floating point format. The input half-float value is
8399represented by an ``i16`` value.
8400
8401Examples:
8402"""""""""
8403
8404.. code-block:: llvm
8405
8406 %a = load i16* @x, align 2
8407 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8408
8409Debugger Intrinsics
8410-------------------
8411
8412The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8413prefix), are described in the `LLVM Source Level
8414Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8415document.
8416
8417Exception Handling Intrinsics
8418-----------------------------
8419
8420The LLVM exception handling intrinsics (which all start with
8421``llvm.eh.`` prefix), are described in the `LLVM Exception
8422Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8423
8424.. _int_trampoline:
8425
8426Trampoline Intrinsics
8427---------------------
8428
8429These intrinsics make it possible to excise one parameter, marked with
8430the :ref:`nest <nest>` attribute, from a function. The result is a
8431callable function pointer lacking the nest parameter - the caller does
8432not need to provide a value for it. Instead, the value to use is stored
8433in advance in a "trampoline", a block of memory usually allocated on the
8434stack, which also contains code to splice the nest value into the
8435argument list. This is used to implement the GCC nested function address
8436extension.
8437
8438For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8439then the resulting function pointer has signature ``i32 (i32, i32)*``.
8440It can be created as follows:
8441
8442.. code-block:: llvm
8443
8444 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8445 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8446 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8447 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8448 %fp = bitcast i8* %p to i32 (i32, i32)*
8449
8450The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8451``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8452
8453.. _int_it:
8454
8455'``llvm.init.trampoline``' Intrinsic
8456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8457
8458Syntax:
8459"""""""
8460
8461::
8462
8463 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8464
8465Overview:
8466"""""""""
8467
8468This fills the memory pointed to by ``tramp`` with executable code,
8469turning it into a trampoline.
8470
8471Arguments:
8472""""""""""
8473
8474The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8475pointers. The ``tramp`` argument must point to a sufficiently large and
8476sufficiently aligned block of memory; this memory is written to by the
8477intrinsic. Note that the size and the alignment are target-specific -
8478LLVM currently provides no portable way of determining them, so a
8479front-end that generates this intrinsic needs to have some
8480target-specific knowledge. The ``func`` argument must hold a function
8481bitcast to an ``i8*``.
8482
8483Semantics:
8484""""""""""
8485
8486The block of memory pointed to by ``tramp`` is filled with target
8487dependent code, turning it into a function. Then ``tramp`` needs to be
8488passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8489be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8490function's signature is the same as that of ``func`` with any arguments
8491marked with the ``nest`` attribute removed. At most one such ``nest``
8492argument is allowed, and it must be of pointer type. Calling the new
8493function is equivalent to calling ``func`` with the same argument list,
8494but with ``nval`` used for the missing ``nest`` argument. If, after
8495calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8496modified, then the effect of any later call to the returned function
8497pointer is undefined.
8498
8499.. _int_at:
8500
8501'``llvm.adjust.trampoline``' Intrinsic
8502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8503
8504Syntax:
8505"""""""
8506
8507::
8508
8509 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8510
8511Overview:
8512"""""""""
8513
8514This performs any required machine-specific adjustment to the address of
8515a trampoline (passed as ``tramp``).
8516
8517Arguments:
8518""""""""""
8519
8520``tramp`` must point to a block of memory which already has trampoline
8521code filled in by a previous call to
8522:ref:`llvm.init.trampoline <int_it>`.
8523
8524Semantics:
8525""""""""""
8526
8527On some architectures the address of the code to be executed needs to be
8528different to the address where the trampoline is actually stored. This
8529intrinsic returns the executable address corresponding to ``tramp``
8530after performing the required machine specific adjustments. The pointer
8531returned can then be :ref:`bitcast and executed <int_trampoline>`.
8532
8533Memory Use Markers
8534------------------
8535
8536This class of intrinsics exists to information about the lifetime of
8537memory objects and ranges where variables are immutable.
8538
Reid Klecknera534a382013-12-19 02:14:12 +00008539.. _int_lifestart:
8540
Sean Silvab084af42012-12-07 10:36:55 +00008541'``llvm.lifetime.start``' Intrinsic
8542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8543
8544Syntax:
8545"""""""
8546
8547::
8548
8549 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8550
8551Overview:
8552"""""""""
8553
8554The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8555object's lifetime.
8556
8557Arguments:
8558""""""""""
8559
8560The first argument is a constant integer representing the size of the
8561object, or -1 if it is variable sized. The second argument is a pointer
8562to the object.
8563
8564Semantics:
8565""""""""""
8566
8567This intrinsic indicates that before this point in the code, the value
8568of the memory pointed to by ``ptr`` is dead. This means that it is known
8569to never be used and has an undefined value. A load from the pointer
8570that precedes this intrinsic can be replaced with ``'undef'``.
8571
Reid Klecknera534a382013-12-19 02:14:12 +00008572.. _int_lifeend:
8573
Sean Silvab084af42012-12-07 10:36:55 +00008574'``llvm.lifetime.end``' Intrinsic
8575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8576
8577Syntax:
8578"""""""
8579
8580::
8581
8582 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8583
8584Overview:
8585"""""""""
8586
8587The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8588object's lifetime.
8589
8590Arguments:
8591""""""""""
8592
8593The first argument is a constant integer representing the size of the
8594object, or -1 if it is variable sized. The second argument is a pointer
8595to the object.
8596
8597Semantics:
8598""""""""""
8599
8600This intrinsic indicates that after this point in the code, the value of
8601the memory pointed to by ``ptr`` is dead. This means that it is known to
8602never be used and has an undefined value. Any stores into the memory
8603object following this intrinsic may be removed as dead.
8604
8605'``llvm.invariant.start``' Intrinsic
8606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8607
8608Syntax:
8609"""""""
8610
8611::
8612
8613 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8614
8615Overview:
8616"""""""""
8617
8618The '``llvm.invariant.start``' intrinsic specifies that the contents of
8619a memory object will not change.
8620
8621Arguments:
8622""""""""""
8623
8624The first argument is a constant integer representing the size of the
8625object, or -1 if it is variable sized. The second argument is a pointer
8626to the object.
8627
8628Semantics:
8629""""""""""
8630
8631This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8632the return value, the referenced memory location is constant and
8633unchanging.
8634
8635'``llvm.invariant.end``' Intrinsic
8636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8637
8638Syntax:
8639"""""""
8640
8641::
8642
8643 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8644
8645Overview:
8646"""""""""
8647
8648The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8649memory object are mutable.
8650
8651Arguments:
8652""""""""""
8653
8654The first argument is the matching ``llvm.invariant.start`` intrinsic.
8655The second argument is a constant integer representing the size of the
8656object, or -1 if it is variable sized and the third argument is a
8657pointer to the object.
8658
8659Semantics:
8660""""""""""
8661
8662This intrinsic indicates that the memory is mutable again.
8663
8664General Intrinsics
8665------------------
8666
8667This class of intrinsics is designed to be generic and has no specific
8668purpose.
8669
8670'``llvm.var.annotation``' Intrinsic
8671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8672
8673Syntax:
8674"""""""
8675
8676::
8677
8678 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8679
8680Overview:
8681"""""""""
8682
8683The '``llvm.var.annotation``' intrinsic.
8684
8685Arguments:
8686""""""""""
8687
8688The first argument is a pointer to a value, the second is a pointer to a
8689global string, the third is a pointer to a global string which is the
8690source file name, and the last argument is the line number.
8691
8692Semantics:
8693""""""""""
8694
8695This intrinsic allows annotation of local variables with arbitrary
8696strings. This can be useful for special purpose optimizations that want
8697to look for these annotations. These have no other defined use; they are
8698ignored by code generation and optimization.
8699
Michael Gottesman88d18832013-03-26 00:34:27 +00008700'``llvm.ptr.annotation.*``' Intrinsic
8701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8702
8703Syntax:
8704"""""""
8705
8706This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8707pointer to an integer of any width. *NOTE* you must specify an address space for
8708the pointer. The identifier for the default address space is the integer
8709'``0``'.
8710
8711::
8712
8713 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8714 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8715 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8716 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8717 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8718
8719Overview:
8720"""""""""
8721
8722The '``llvm.ptr.annotation``' intrinsic.
8723
8724Arguments:
8725""""""""""
8726
8727The first argument is a pointer to an integer value of arbitrary bitwidth
8728(result of some expression), the second is a pointer to a global string, the
8729third is a pointer to a global string which is the source file name, and the
8730last argument is the line number. It returns the value of the first argument.
8731
8732Semantics:
8733""""""""""
8734
8735This intrinsic allows annotation of a pointer to an integer with arbitrary
8736strings. This can be useful for special purpose optimizations that want to look
8737for these annotations. These have no other defined use; they are ignored by code
8738generation and optimization.
8739
Sean Silvab084af42012-12-07 10:36:55 +00008740'``llvm.annotation.*``' Intrinsic
8741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8742
8743Syntax:
8744"""""""
8745
8746This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8747any integer bit width.
8748
8749::
8750
8751 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8752 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8753 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8754 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8755 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8756
8757Overview:
8758"""""""""
8759
8760The '``llvm.annotation``' intrinsic.
8761
8762Arguments:
8763""""""""""
8764
8765The first argument is an integer value (result of some expression), the
8766second is a pointer to a global string, the third is a pointer to a
8767global string which is the source file name, and the last argument is
8768the line number. It returns the value of the first argument.
8769
8770Semantics:
8771""""""""""
8772
8773This intrinsic allows annotations to be put on arbitrary expressions
8774with arbitrary strings. This can be useful for special purpose
8775optimizations that want to look for these annotations. These have no
8776other defined use; they are ignored by code generation and optimization.
8777
8778'``llvm.trap``' Intrinsic
8779^^^^^^^^^^^^^^^^^^^^^^^^^
8780
8781Syntax:
8782"""""""
8783
8784::
8785
8786 declare void @llvm.trap() noreturn nounwind
8787
8788Overview:
8789"""""""""
8790
8791The '``llvm.trap``' intrinsic.
8792
8793Arguments:
8794""""""""""
8795
8796None.
8797
8798Semantics:
8799""""""""""
8800
8801This intrinsic is lowered to the target dependent trap instruction. If
8802the target does not have a trap instruction, this intrinsic will be
8803lowered to a call of the ``abort()`` function.
8804
8805'``llvm.debugtrap``' Intrinsic
8806^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8807
8808Syntax:
8809"""""""
8810
8811::
8812
8813 declare void @llvm.debugtrap() nounwind
8814
8815Overview:
8816"""""""""
8817
8818The '``llvm.debugtrap``' intrinsic.
8819
8820Arguments:
8821""""""""""
8822
8823None.
8824
8825Semantics:
8826""""""""""
8827
8828This intrinsic is lowered to code which is intended to cause an
8829execution trap with the intention of requesting the attention of a
8830debugger.
8831
8832'``llvm.stackprotector``' Intrinsic
8833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8834
8835Syntax:
8836"""""""
8837
8838::
8839
8840 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8841
8842Overview:
8843"""""""""
8844
8845The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8846onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8847is placed on the stack before local variables.
8848
8849Arguments:
8850""""""""""
8851
8852The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8853The first argument is the value loaded from the stack guard
8854``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8855enough space to hold the value of the guard.
8856
8857Semantics:
8858""""""""""
8859
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008860This intrinsic causes the prologue/epilogue inserter to force the position of
8861the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8862to ensure that if a local variable on the stack is overwritten, it will destroy
8863the value of the guard. When the function exits, the guard on the stack is
8864checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8865different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8866calling the ``__stack_chk_fail()`` function.
8867
8868'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008870
8871Syntax:
8872"""""""
8873
8874::
8875
8876 declare void @llvm.stackprotectorcheck(i8** <guard>)
8877
8878Overview:
8879"""""""""
8880
8881The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008882created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008883``__stack_chk_fail()`` function.
8884
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008885Arguments:
8886""""""""""
8887
8888The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8889the variable ``@__stack_chk_guard``.
8890
8891Semantics:
8892""""""""""
8893
8894This intrinsic is provided to perform the stack protector check by comparing
8895``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8896values do not match call the ``__stack_chk_fail()`` function.
8897
8898The reason to provide this as an IR level intrinsic instead of implementing it
8899via other IR operations is that in order to perform this operation at the IR
8900level without an intrinsic, one would need to create additional basic blocks to
8901handle the success/failure cases. This makes it difficult to stop the stack
8902protector check from disrupting sibling tail calls in Codegen. With this
8903intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008904codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008905
Sean Silvab084af42012-12-07 10:36:55 +00008906'``llvm.objectsize``' Intrinsic
8907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8908
8909Syntax:
8910"""""""
8911
8912::
8913
8914 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8915 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8916
8917Overview:
8918"""""""""
8919
8920The ``llvm.objectsize`` intrinsic is designed to provide information to
8921the optimizers to determine at compile time whether a) an operation
8922(like memcpy) will overflow a buffer that corresponds to an object, or
8923b) that a runtime check for overflow isn't necessary. An object in this
8924context means an allocation of a specific class, structure, array, or
8925other object.
8926
8927Arguments:
8928""""""""""
8929
8930The ``llvm.objectsize`` intrinsic takes two arguments. The first
8931argument is a pointer to or into the ``object``. The second argument is
8932a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8933or -1 (if false) when the object size is unknown. The second argument
8934only accepts constants.
8935
8936Semantics:
8937""""""""""
8938
8939The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8940the size of the object concerned. If the size cannot be determined at
8941compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8942on the ``min`` argument).
8943
8944'``llvm.expect``' Intrinsic
8945^^^^^^^^^^^^^^^^^^^^^^^^^^^
8946
8947Syntax:
8948"""""""
8949
8950::
8951
8952 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8953 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8954
8955Overview:
8956"""""""""
8957
8958The ``llvm.expect`` intrinsic provides information about expected (the
8959most probable) value of ``val``, which can be used by optimizers.
8960
8961Arguments:
8962""""""""""
8963
8964The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8965a value. The second argument is an expected value, this needs to be a
8966constant value, variables are not allowed.
8967
8968Semantics:
8969""""""""""
8970
8971This intrinsic is lowered to the ``val``.
8972
8973'``llvm.donothing``' Intrinsic
8974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8975
8976Syntax:
8977"""""""
8978
8979::
8980
8981 declare void @llvm.donothing() nounwind readnone
8982
8983Overview:
8984"""""""""
8985
8986The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8987only intrinsic that can be called with an invoke instruction.
8988
8989Arguments:
8990""""""""""
8991
8992None.
8993
8994Semantics:
8995""""""""""
8996
8997This intrinsic does nothing, and it's removed by optimizers and ignored
8998by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00008999
9000Stack Map Intrinsics
9001--------------------
9002
9003LLVM provides experimental intrinsics to support runtime patching
9004mechanisms commonly desired in dynamic language JITs. These intrinsics
9005are described in :doc:`StackMaps`.