blob: a2d99a6ef0c6ff3233d5b1835ad44376a2fd544c [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Chandler Carruth66b31302015-01-04 12:03:27 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruthb98f63d2015-01-15 10:41:28 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000678namespace {
679struct FindSCEVSize {
680 int Size;
681 FindSCEVSize() : Size(0) {}
682
683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
688 bool isDone() const {
689 return false;
690 }
691};
692}
693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700}
701
702namespace {
703
David Majnemer4e879362014-12-14 09:12:33 +0000704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
David Majnemer4e879362014-12-14 09:12:33 +0000713 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getValue()->getValue();
768 APInt DenominatorVal = D->getValue()->getValue();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 assert(Numerator->isAffine() && "Numerator should be affine");
789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792 Numerator->getNoWrapFlags());
793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 }
796
797 void visitAddExpr(const SCEVAddExpr *Numerator) {
798 SmallVector<const SCEV *, 2> Qs, Rs;
799 Type *Ty = Denominator->getType();
800
801 for (const SCEV *Op : Numerator->operands()) {
802 const SCEV *Q, *R;
803 divide(SE, Op, Denominator, &Q, &R);
804
805 // Bail out if types do not match.
806 if (Ty != Q->getType() || Ty != R->getType()) {
807 Quotient = Zero;
808 Remainder = Numerator;
809 return;
810 }
811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
833 if (Ty != Op->getType()) {
834 Quotient = Zero;
835 Remainder = Numerator;
836 return;
837 }
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 FoundDenominatorTerm = true;
860 Qs.push_back(Q);
861 }
862
863 if (FoundDenominatorTerm) {
864 Remainder = Zero;
865 if (Qs.size() == 1)
866 Quotient = Qs[0];
867 else
868 Quotient = SE.getMulExpr(Qs);
869 return;
870 }
871
872 if (!isa<SCEVUnknown>(Denominator)) {
873 Quotient = Zero;
874 Remainder = Numerator;
875 return;
876 }
877
878 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879 ValueToValueMap RewriteMap;
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(Zero)->getValue();
882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884 if (Remainder->isZero()) {
885 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887 cast<SCEVConstant>(One)->getValue();
888 Quotient =
889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890 return;
891 }
892
893 // Quotient is (Numerator - Remainder) divided by Denominator.
894 const SCEV *Q, *R;
895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897 // This SCEV does not seem to simplify: fail the division here.
898 Quotient = Zero;
899 Remainder = Numerator;
900 return;
901 }
902 divide(SE, Diff, Denominator, &Q, &R);
903 assert(R == Zero &&
904 "(Numerator - Remainder) should evenly divide Denominator");
905 Quotient = Q;
906 }
907
908private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910 const SCEV *Denominator)
911 : SE(S), Denominator(Denominator) {
912 Zero = SE.getConstant(Denominator->getType(), 0);
913 One = SE.getConstant(Denominator->getType(), 1);
914
915 // By default, we don't know how to divide Expr by Denominator.
916 // Providing the default here simplifies the rest of the code.
917 Quotient = Zero;
918 Remainder = Numerator;
919 }
920
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921 ScalarEvolution &SE;
922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000923};
924
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000925}
926
Chris Lattnerd934c702004-04-02 20:23:17 +0000927//===----------------------------------------------------------------------===//
928// Simple SCEV method implementations
929//===----------------------------------------------------------------------===//
930
Eli Friedman61f67622008-08-04 23:49:06 +0000931/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000932/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000933static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000934 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000935 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000936 // Handle the simplest case efficiently.
937 if (K == 1)
938 return SE.getTruncateOrZeroExtend(It, ResultTy);
939
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000940 // We are using the following formula for BC(It, K):
941 //
942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // Suppose, W is the bitwidth of the return value. We must be prepared for
945 // overflow. Hence, we must assure that the result of our computation is
946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
947 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000950 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000955 //
Eli Friedman61f67622008-08-04 23:49:06 +0000956 // This formula is trivially equivalent to the previous formula. However,
957 // this formula can be implemented much more efficiently. The trick is that
958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959 // arithmetic. To do exact division in modular arithmetic, all we have
960 // to do is multiply by the inverse. Therefore, this step can be done at
961 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000962 //
Eli Friedman61f67622008-08-04 23:49:06 +0000963 // The next issue is how to safely do the division by 2^T. The way this
964 // is done is by doing the multiplication step at a width of at least W + T
965 // bits. This way, the bottom W+T bits of the product are accurate. Then,
966 // when we perform the division by 2^T (which is equivalent to a right shift
967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
968 // truncated out after the division by 2^T.
969 //
970 // In comparison to just directly using the first formula, this technique
971 // is much more efficient; using the first formula requires W * K bits,
972 // but this formula less than W + K bits. Also, the first formula requires
973 // a division step, whereas this formula only requires multiplies and shifts.
974 //
975 // It doesn't matter whether the subtraction step is done in the calculation
976 // width or the input iteration count's width; if the subtraction overflows,
977 // the result must be zero anyway. We prefer here to do it in the width of
978 // the induction variable because it helps a lot for certain cases; CodeGen
979 // isn't smart enough to ignore the overflow, which leads to much less
980 // efficient code if the width of the subtraction is wider than the native
981 // register width.
982 //
983 // (It's possible to not widen at all by pulling out factors of 2 before
984 // the multiplication; for example, K=2 can be calculated as
985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986 // extra arithmetic, so it's not an obvious win, and it gets
987 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Eli Friedman61f67622008-08-04 23:49:06 +0000989 // Protection from insane SCEVs; this bound is conservative,
990 // but it probably doesn't matter.
991 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000992 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000994 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000995
Eli Friedman61f67622008-08-04 23:49:06 +0000996 // Calculate K! / 2^T and T; we divide out the factors of two before
997 // multiplying for calculating K! / 2^T to avoid overflow.
998 // Other overflow doesn't matter because we only care about the bottom
999 // W bits of the result.
1000 APInt OddFactorial(W, 1);
1001 unsigned T = 1;
1002 for (unsigned i = 3; i <= K; ++i) {
1003 APInt Mult(W, i);
1004 unsigned TwoFactors = Mult.countTrailingZeros();
1005 T += TwoFactors;
1006 Mult = Mult.lshr(TwoFactors);
1007 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001008 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001009
Eli Friedman61f67622008-08-04 23:49:06 +00001010 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001011 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001012
Dan Gohman8b0a4192010-03-01 17:49:51 +00001013 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001015
1016 // Calculate the multiplicative inverse of K! / 2^T;
1017 // this multiplication factor will perform the exact division by
1018 // K! / 2^T.
1019 APInt Mod = APInt::getSignedMinValue(W+1);
1020 APInt MultiplyFactor = OddFactorial.zext(W+1);
1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022 MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001026 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001028 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001030 Dividend = SE.getMulExpr(Dividend,
1031 SE.getTruncateOrZeroExtend(S, CalculationTy));
1032 }
1033
1034 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001036
1037 // Truncate the result, and divide by K! / 2^T.
1038
1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001041}
1042
Chris Lattnerd934c702004-04-02 20:23:17 +00001043/// evaluateAtIteration - Return the value of this chain of recurrences at
1044/// the specified iteration number. We can evaluate this recurrence by
1045/// multiplying each element in the chain by the binomial coefficient
1046/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001051///
Dan Gohmanaf752342009-07-07 17:06:11 +00001052const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001053 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001056 // The computation is correct in the face of overflow provided that the
1057 // multiplication is performed _after_ the evaluation of the binomial
1058 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001060 if (isa<SCEVCouldNotCompute>(Coeff))
1061 return Coeff;
1062
1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001064 }
1065 return Result;
1066}
1067
Chris Lattnerd934c702004-04-02 20:23:17 +00001068//===----------------------------------------------------------------------===//
1069// SCEV Expression folder implementations
1070//===----------------------------------------------------------------------===//
1071
Dan Gohmanaf752342009-07-07 17:06:11 +00001072const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001073 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001075 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001076 assert(isSCEVable(Ty) &&
1077 "This is not a conversion to a SCEVable type!");
1078 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001079
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 FoldingSetNodeID ID;
1081 ID.AddInteger(scTruncate);
1082 ID.AddPointer(Op);
1083 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001084 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
Dan Gohman3423e722009-06-30 20:13:32 +00001087 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001089 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001091
Dan Gohman79af8542009-04-22 16:20:48 +00001092 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001094 return getTruncateExpr(ST->getOperand(), Ty);
1095
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105 // eliminate all the truncates.
1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107 SmallVector<const SCEV *, 4> Operands;
1108 bool hasTrunc = false;
1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111 hasTrunc = isa<SCEVTruncateExpr>(S);
1112 Operands.push_back(S);
1113 }
1114 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001115 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001117 }
1118
Nick Lewycky5c901f32011-01-19 18:56:00 +00001119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1120 // eliminate all the truncates.
1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1122 SmallVector<const SCEV *, 4> Operands;
1123 bool hasTrunc = false;
1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
1127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Sanjoy Das4153f472015-02-18 01:47:07 +00001151// Get the limit of a recurrence such that incrementing by Step cannot cause
1152// signed overflow as long as the value of the recurrence within the
1153// loop does not exceed this limit before incrementing.
1154static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155 ICmpInst::Predicate *Pred,
1156 ScalarEvolution *SE) {
1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158 if (SE->isKnownPositive(Step)) {
1159 *Pred = ICmpInst::ICMP_SLT;
1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161 SE->getSignedRange(Step).getSignedMax());
1162 }
1163 if (SE->isKnownNegative(Step)) {
1164 *Pred = ICmpInst::ICMP_SGT;
1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166 SE->getSignedRange(Step).getSignedMin());
1167 }
1168 return nullptr;
1169}
1170
1171// Get the limit of a recurrence such that incrementing by Step cannot cause
1172// unsigned overflow as long as the value of the recurrence within the loop does
1173// not exceed this limit before incrementing.
1174static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175 ICmpInst::Predicate *Pred,
1176 ScalarEvolution *SE) {
1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178 *Pred = ICmpInst::ICMP_ULT;
1179
1180 return SE->getConstant(APInt::getMinValue(BitWidth) -
1181 SE->getUnsignedRange(Step).getUnsignedMax());
1182}
1183
1184namespace {
1185
1186struct ExtendOpTraitsBase {
1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188};
1189
1190// Used to make code generic over signed and unsigned overflow.
1191template <typename ExtendOp> struct ExtendOpTraits {
1192 // Members present:
1193 //
1194 // static const SCEV::NoWrapFlags WrapType;
1195 //
1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197 //
1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199 // ICmpInst::Predicate *Pred,
1200 // ScalarEvolution *SE);
1201};
1202
1203template <>
1204struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206
1207 static const GetExtendExprTy GetExtendExpr;
1208
1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210 ICmpInst::Predicate *Pred,
1211 ScalarEvolution *SE) {
1212 return getSignedOverflowLimitForStep(Step, Pred, SE);
1213 }
1214};
1215
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001216const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218
1219template <>
1220struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222
1223 static const GetExtendExprTy GetExtendExpr;
1224
1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226 ICmpInst::Predicate *Pred,
1227 ScalarEvolution *SE) {
1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229 }
1230};
1231
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001232const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234}
1235
1236// The recurrence AR has been shown to have no signed/unsigned wrap or something
1237// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241// expression "Step + sext/zext(PreIncAR)" is congruent with
1242// "sext/zext(PostIncAR)"
1243template <typename ExtendOpTy>
1244static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245 ScalarEvolution *SE) {
1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248
1249 const Loop *L = AR->getLoop();
1250 const SCEV *Start = AR->getStart();
1251 const SCEV *Step = AR->getStepRecurrence(*SE);
1252
1253 // Check for a simple looking step prior to loop entry.
1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255 if (!SA)
1256 return nullptr;
1257
1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259 // subtraction is expensive. For this purpose, perform a quick and dirty
1260 // difference, by checking for Step in the operand list.
1261 SmallVector<const SCEV *, 4> DiffOps;
1262 for (const SCEV *Op : SA->operands())
1263 if (Op != Step)
1264 DiffOps.push_back(Op);
1265
1266 if (DiffOps.size() == SA->getNumOperands())
1267 return nullptr;
1268
1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270 // `Step`:
1271
1272 // 1. NSW/NUW flags on the step increment.
1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1276
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1278 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001279 //
1280
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001281 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001284 return PreStart;
1285
1286 // 2. Direct overflow check on the step operation's expression.
1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1289 const SCEV *OperandExtendedStart =
1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1291 (SE->*GetExtendExpr)(Step, WideTy));
1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1293 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1298 }
1299 return PreStart;
1300 }
1301
1302 // 3. Loop precondition.
1303 ICmpInst::Predicate Pred;
1304 const SCEV *OverflowLimit =
1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1306
1307 if (OverflowLimit &&
1308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1309 return PreStart;
1310 }
1311 return nullptr;
1312}
1313
1314// Get the normalized zero or sign extended expression for this AddRec's Start.
1315template <typename ExtendOpTy>
1316static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1317 ScalarEvolution *SE) {
1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1319
1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1321 if (!PreStart)
1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1323
1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1325 (SE->*GetExtendExpr)(PreStart, Ty));
1326}
1327
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001328// Try to prove away overflow by looking at "nearby" add recurrences. A
1329// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1330// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1331//
1332// Formally:
1333//
1334// {S,+,X} == {S-T,+,X} + T
1335// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1336//
1337// If ({S-T,+,X} + T) does not overflow ... (1)
1338//
1339// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1340//
1341// If {S-T,+,X} does not overflow ... (2)
1342//
1343// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1344// == {Ext(S-T)+Ext(T),+,Ext(X)}
1345//
1346// If (S-T)+T does not overflow ... (3)
1347//
1348// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1349// == {Ext(S),+,Ext(X)} == LHS
1350//
1351// Thus, if (1), (2) and (3) are true for some T, then
1352// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1353//
1354// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1355// does not overflow" restricted to the 0th iteration. Therefore we only need
1356// to check for (1) and (2).
1357//
1358// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1359// is `Delta` (defined below).
1360//
1361template <typename ExtendOpTy>
1362bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1363 const SCEV *Step,
1364 const Loop *L) {
1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1366
1367 // We restrict `Start` to a constant to prevent SCEV from spending too much
1368 // time here. It is correct (but more expensive) to continue with a
1369 // non-constant `Start` and do a general SCEV subtraction to compute
1370 // `PreStart` below.
1371 //
1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1373 if (!StartC)
1374 return false;
1375
1376 APInt StartAI = StartC->getValue()->getValue();
1377
1378 for (unsigned Delta : {-2, -1, 1, 2}) {
1379 const SCEV *PreStart = getConstant(StartAI - Delta);
1380
1381 // Give up if we don't already have the add recurrence we need because
1382 // actually constructing an add recurrence is relatively expensive.
1383 const SCEVAddRecExpr *PreAR = [&]() {
1384 FoldingSetNodeID ID;
1385 ID.AddInteger(scAddRecExpr);
1386 ID.AddPointer(PreStart);
1387 ID.AddPointer(Step);
1388 ID.AddPointer(L);
1389 void *IP = nullptr;
1390 return static_cast<SCEVAddRecExpr *>(
NAKAMURA Takumi8f49dd32015-03-05 01:02:45 +00001391 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001392 }();
1393
1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398 DeltaS, &Pred, this);
1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1400 return true;
1401 }
1402 }
1403
1404 return false;
1405}
1406
Dan Gohmanaf752342009-07-07 17:06:11 +00001407const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001408 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001410 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001411 assert(isSCEVable(Ty) &&
1412 "This is not a conversion to a SCEVable type!");
1413 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001414
Dan Gohman3423e722009-06-30 20:13:32 +00001415 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001419
Dan Gohman79af8542009-04-22 16:20:48 +00001420 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001422 return getZeroExtendExpr(SZ->getOperand(), Ty);
1423
Dan Gohman74a0ba12009-07-13 20:55:53 +00001424 // Before doing any expensive analysis, check to see if we've already
1425 // computed a SCEV for this Op and Ty.
1426 FoldingSetNodeID ID;
1427 ID.AddInteger(scZeroExtend);
1428 ID.AddPointer(Op);
1429 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001430 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001433 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435 // It's possible the bits taken off by the truncate were all zero bits. If
1436 // so, we should be able to simplify this further.
1437 const SCEV *X = ST->getOperand();
1438 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001439 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440 unsigned NewBits = getTypeSizeInBits(Ty);
1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001442 CR.zextOrTrunc(NewBits)))
1443 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001444 }
1445
Dan Gohman76466372009-04-27 20:16:15 +00001446 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001448 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001451 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001452 const SCEV *Start = AR->getStart();
1453 const SCEV *Step = AR->getStepRecurrence(*this);
1454 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455 const Loop *L = AR->getLoop();
1456
Dan Gohman62ef6a72009-07-25 01:22:26 +00001457 // If we have special knowledge that this addrec won't overflow,
1458 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001459 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001460 return getAddRecExpr(
1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001463
Dan Gohman76466372009-04-27 20:16:15 +00001464 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1465 // Note that this serves two purposes: It filters out loops that are
1466 // simply not analyzable, and it covers the case where this code is
1467 // being called from within backedge-taken count analysis, such that
1468 // attempting to ask for the backedge-taken count would likely result
1469 // in infinite recursion. In the later case, the analysis code will
1470 // cope with a conservative value, and it will take care to purge
1471 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001474 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001475 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001476
1477 // Check whether the backedge-taken count can be losslessly casted to
1478 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001480 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001481 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1483 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001485 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1489 const SCEV *WideMaxBECount =
1490 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001491 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001492 getAddExpr(WideStart,
1493 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001494 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001495 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001496 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001498 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001499 return getAddRecExpr(
1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001502 }
Dan Gohman76466372009-04-27 20:16:15 +00001503 // Similar to above, only this time treat the step value as signed.
1504 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001505 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001506 getAddExpr(WideStart,
1507 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001508 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001509 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001510 // Cache knowledge of AR NW, which is propagated to this AddRec.
1511 // Negative step causes unsigned wrap, but it still can't self-wrap.
1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001513 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001514 return getAddRecExpr(
1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001517 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001518 }
1519
1520 // If the backedge is guarded by a comparison with the pre-inc value
1521 // the addrec is safe. Also, if the entry is guarded by a comparison
1522 // with the start value and the backedge is guarded by a comparison
1523 // with the post-inc value, the addrec is safe.
1524 if (isKnownPositive(Step)) {
1525 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1526 getUnsignedRange(Step).getUnsignedMax());
1527 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001528 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001529 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001530 AR->getPostIncExpr(*this), N))) {
1531 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001533 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001534 return getAddRecExpr(
1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1536 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001537 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001538 } else if (isKnownNegative(Step)) {
1539 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1540 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001541 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1542 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001543 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001544 AR->getPostIncExpr(*this), N))) {
1545 // Cache knowledge of AR NW, which is propagated to this AddRec.
1546 // Negative step causes unsigned wrap, but it still can't self-wrap.
1547 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1548 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001549 return getAddRecExpr(
1550 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1551 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001552 }
Dan Gohman76466372009-04-27 20:16:15 +00001553 }
1554 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001555
1556 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1558 return getAddRecExpr(
1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1560 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1561 }
Dan Gohman76466372009-04-27 20:16:15 +00001562 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001563
Dan Gohman74a0ba12009-07-13 20:55:53 +00001564 // The cast wasn't folded; create an explicit cast node.
1565 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001567 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1568 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001569 UniqueSCEVs.InsertNode(S, IP);
1570 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001571}
1572
Dan Gohmanaf752342009-07-07 17:06:11 +00001573const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001574 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001575 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001576 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001577 assert(isSCEVable(Ty) &&
1578 "This is not a conversion to a SCEVable type!");
1579 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001580
Dan Gohman3423e722009-06-30 20:13:32 +00001581 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001582 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1583 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001584 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001585
Dan Gohman79af8542009-04-22 16:20:48 +00001586 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001587 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001588 return getSignExtendExpr(SS->getOperand(), Ty);
1589
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001590 // sext(zext(x)) --> zext(x)
1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592 return getZeroExtendExpr(SZ->getOperand(), Ty);
1593
Dan Gohman74a0ba12009-07-13 20:55:53 +00001594 // Before doing any expensive analysis, check to see if we've already
1595 // computed a SCEV for this Op and Ty.
1596 FoldingSetNodeID ID;
1597 ID.AddInteger(scSignExtend);
1598 ID.AddPointer(Op);
1599 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001600 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001603 // If the input value is provably positive, build a zext instead.
1604 if (isKnownNonNegative(Op))
1605 return getZeroExtendExpr(Op, Ty);
1606
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001607 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1608 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1609 // It's possible the bits taken off by the truncate were all sign bits. If
1610 // so, we should be able to simplify this further.
1611 const SCEV *X = ST->getOperand();
1612 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001613 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1614 unsigned NewBits = getTypeSizeInBits(Ty);
1615 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001616 CR.sextOrTrunc(NewBits)))
1617 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001618 }
1619
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001620 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1621 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1622 if (SA->getNumOperands() == 2) {
1623 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1624 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1625 if (SMul && SC1) {
1626 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001627 const APInt &C1 = SC1->getValue()->getValue();
1628 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001629 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001630 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001631 return getAddExpr(getSignExtendExpr(SC1, Ty),
1632 getSignExtendExpr(SMul, Ty));
1633 }
1634 }
1635 }
1636 }
Dan Gohman76466372009-04-27 20:16:15 +00001637 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001638 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001639 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001640 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001641 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001642 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001643 const SCEV *Start = AR->getStart();
1644 const SCEV *Step = AR->getStepRecurrence(*this);
1645 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1646 const Loop *L = AR->getLoop();
1647
Dan Gohman62ef6a72009-07-25 01:22:26 +00001648 // If we have special knowledge that this addrec won't overflow,
1649 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001650 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001651 return getAddRecExpr(
1652 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1653 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001654
Dan Gohman76466372009-04-27 20:16:15 +00001655 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1656 // Note that this serves two purposes: It filters out loops that are
1657 // simply not analyzable, and it covers the case where this code is
1658 // being called from within backedge-taken count analysis, such that
1659 // attempting to ask for the backedge-taken count would likely result
1660 // in infinite recursion. In the later case, the analysis code will
1661 // cope with a conservative value, and it will take care to purge
1662 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001663 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001664 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001665 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001666 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001667
1668 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001669 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001670 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001671 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001672 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001673 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1674 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001675 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001676 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001677 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001678 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1679 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1680 const SCEV *WideMaxBECount =
1681 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001682 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001683 getAddExpr(WideStart,
1684 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001685 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001686 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001687 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1688 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001689 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001690 return getAddRecExpr(
1691 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1692 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001693 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001694 // Similar to above, only this time treat the step value as unsigned.
1695 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001696 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001697 getAddExpr(WideStart,
1698 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001699 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001700 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001701 // If AR wraps around then
1702 //
1703 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1704 // => SAdd != OperandExtendedAdd
1705 //
1706 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1707 // (SAdd == OperandExtendedAdd => AR is NW)
1708
1709 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1710
Dan Gohman8c129d72009-07-16 17:34:36 +00001711 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001712 return getAddRecExpr(
1713 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1714 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001715 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001716 }
1717
1718 // If the backedge is guarded by a comparison with the pre-inc value
1719 // the addrec is safe. Also, if the entry is guarded by a comparison
1720 // with the start value and the backedge is guarded by a comparison
1721 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001722 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001723 const SCEV *OverflowLimit =
1724 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001725 if (OverflowLimit &&
1726 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1727 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1728 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1729 OverflowLimit)))) {
1730 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1731 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001732 return getAddRecExpr(
1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1734 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001735 }
1736 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001737 // If Start and Step are constants, check if we can apply this
1738 // transformation:
1739 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1740 auto SC1 = dyn_cast<SCEVConstant>(Start);
1741 auto SC2 = dyn_cast<SCEVConstant>(Step);
1742 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001743 const APInt &C1 = SC1->getValue()->getValue();
1744 const APInt &C2 = SC2->getValue()->getValue();
1745 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1746 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001747 Start = getSignExtendExpr(Start, Ty);
1748 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1749 L, AR->getNoWrapFlags());
1750 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1751 }
1752 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001753
1754 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1755 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1756 return getAddRecExpr(
1757 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1758 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1759 }
Dan Gohman76466372009-04-27 20:16:15 +00001760 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001761
Dan Gohman74a0ba12009-07-13 20:55:53 +00001762 // The cast wasn't folded; create an explicit cast node.
1763 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001764 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001765 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1766 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001767 UniqueSCEVs.InsertNode(S, IP);
1768 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001769}
1770
Dan Gohman8db2edc2009-06-13 15:56:47 +00001771/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1772/// unspecified bits out to the given type.
1773///
Dan Gohmanaf752342009-07-07 17:06:11 +00001774const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001775 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001776 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1777 "This is not an extending conversion!");
1778 assert(isSCEVable(Ty) &&
1779 "This is not a conversion to a SCEVable type!");
1780 Ty = getEffectiveSCEVType(Ty);
1781
1782 // Sign-extend negative constants.
1783 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1784 if (SC->getValue()->getValue().isNegative())
1785 return getSignExtendExpr(Op, Ty);
1786
1787 // Peel off a truncate cast.
1788 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001789 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001790 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1791 return getAnyExtendExpr(NewOp, Ty);
1792 return getTruncateOrNoop(NewOp, Ty);
1793 }
1794
1795 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001796 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001797 if (!isa<SCEVZeroExtendExpr>(ZExt))
1798 return ZExt;
1799
1800 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001801 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001802 if (!isa<SCEVSignExtendExpr>(SExt))
1803 return SExt;
1804
Dan Gohman51ad99d2010-01-21 02:09:26 +00001805 // Force the cast to be folded into the operands of an addrec.
1806 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1807 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001808 for (const SCEV *Op : AR->operands())
1809 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001810 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001811 }
1812
Dan Gohman8db2edc2009-06-13 15:56:47 +00001813 // If the expression is obviously signed, use the sext cast value.
1814 if (isa<SCEVSMaxExpr>(Op))
1815 return SExt;
1816
1817 // Absent any other information, use the zext cast value.
1818 return ZExt;
1819}
1820
Dan Gohman038d02e2009-06-14 22:58:51 +00001821/// CollectAddOperandsWithScales - Process the given Ops list, which is
1822/// a list of operands to be added under the given scale, update the given
1823/// map. This is a helper function for getAddRecExpr. As an example of
1824/// what it does, given a sequence of operands that would form an add
1825/// expression like this:
1826///
Tobias Grosserba49e422014-03-05 10:37:17 +00001827/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001828///
1829/// where A and B are constants, update the map with these values:
1830///
1831/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1832///
1833/// and add 13 + A*B*29 to AccumulatedConstant.
1834/// This will allow getAddRecExpr to produce this:
1835///
1836/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1837///
1838/// This form often exposes folding opportunities that are hidden in
1839/// the original operand list.
1840///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001841/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001842/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1843/// the common case where no interesting opportunities are present, and
1844/// is also used as a check to avoid infinite recursion.
1845///
1846static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001847CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001848 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001849 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001850 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001851 const APInt &Scale,
1852 ScalarEvolution &SE) {
1853 bool Interesting = false;
1854
Dan Gohman45073042010-06-18 19:12:32 +00001855 // Iterate over the add operands. They are sorted, with constants first.
1856 unsigned i = 0;
1857 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1858 ++i;
1859 // Pull a buried constant out to the outside.
1860 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1861 Interesting = true;
1862 AccumulatedConstant += Scale * C->getValue()->getValue();
1863 }
1864
1865 // Next comes everything else. We're especially interested in multiplies
1866 // here, but they're in the middle, so just visit the rest with one loop.
1867 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001868 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1869 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1870 APInt NewScale =
1871 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1872 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1873 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001874 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001875 Interesting |=
1876 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001877 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001878 NewScale, SE);
1879 } else {
1880 // A multiplication of a constant with some other value. Update
1881 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001882 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1883 const SCEV *Key = SE.getMulExpr(MulOps);
1884 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001885 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001886 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001887 NewOps.push_back(Pair.first->first);
1888 } else {
1889 Pair.first->second += NewScale;
1890 // The map already had an entry for this value, which may indicate
1891 // a folding opportunity.
1892 Interesting = true;
1893 }
1894 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001895 } else {
1896 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001897 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001898 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001899 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001900 NewOps.push_back(Pair.first->first);
1901 } else {
1902 Pair.first->second += Scale;
1903 // The map already had an entry for this value, which may indicate
1904 // a folding opportunity.
1905 Interesting = true;
1906 }
1907 }
1908 }
1909
1910 return Interesting;
1911}
1912
1913namespace {
1914 struct APIntCompare {
1915 bool operator()(const APInt &LHS, const APInt &RHS) const {
1916 return LHS.ult(RHS);
1917 }
1918 };
1919}
1920
Sanjoy Das81401d42015-01-10 23:41:24 +00001921// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1922// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1923// can't-overflow flags for the operation if possible.
1924static SCEV::NoWrapFlags
1925StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1926 const SmallVectorImpl<const SCEV *> &Ops,
1927 SCEV::NoWrapFlags OldFlags) {
1928 using namespace std::placeholders;
1929
1930 bool CanAnalyze =
1931 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1932 (void)CanAnalyze;
1933 assert(CanAnalyze && "don't call from other places!");
1934
1935 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1936 SCEV::NoWrapFlags SignOrUnsignWrap =
1937 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1938
1939 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1940 auto IsKnownNonNegative =
1941 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1942
1943 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1944 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1945 return ScalarEvolution::setFlags(OldFlags,
1946 (SCEV::NoWrapFlags)SignOrUnsignMask);
1947
1948 return OldFlags;
1949}
1950
Dan Gohman4d5435d2009-05-24 23:45:28 +00001951/// getAddExpr - Get a canonical add expression, or something simpler if
1952/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001953const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001954 SCEV::NoWrapFlags Flags) {
1955 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1956 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001957 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001958 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001959#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001960 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001961 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001962 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001963 "SCEVAddExpr operand types don't match!");
1964#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001965
Sanjoy Das81401d42015-01-10 23:41:24 +00001966 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001967
Chris Lattnerd934c702004-04-02 20:23:17 +00001968 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001969 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001970
1971 // If there are any constants, fold them together.
1972 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001973 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001974 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001975 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001976 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001977 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001978 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1979 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001980 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001981 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001982 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001983 }
1984
1985 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001986 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001987 Ops.erase(Ops.begin());
1988 --Idx;
1989 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001990
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001991 if (Ops.size() == 1) return Ops[0];
1992 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001993
Dan Gohman15871f22010-08-27 21:39:59 +00001994 // Okay, check to see if the same value occurs in the operand list more than
1995 // once. If so, merge them together into an multiply expression. Since we
1996 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001997 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001998 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001999 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002000 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002001 // Scan ahead to count how many equal operands there are.
2002 unsigned Count = 2;
2003 while (i+Count != e && Ops[i+Count] == Ops[i])
2004 ++Count;
2005 // Merge the values into a multiply.
2006 const SCEV *Scale = getConstant(Ty, Count);
2007 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2008 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002009 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002010 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002011 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002012 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002013 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002014 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002015 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002016 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002017
Dan Gohman2e55cc52009-05-08 21:03:19 +00002018 // Check for truncates. If all the operands are truncated from the same
2019 // type, see if factoring out the truncate would permit the result to be
2020 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2021 // if the contents of the resulting outer trunc fold to something simple.
2022 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2023 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002024 Type *DstType = Trunc->getType();
2025 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002026 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002027 bool Ok = true;
2028 // Check all the operands to see if they can be represented in the
2029 // source type of the truncate.
2030 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2031 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2032 if (T->getOperand()->getType() != SrcType) {
2033 Ok = false;
2034 break;
2035 }
2036 LargeOps.push_back(T->getOperand());
2037 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002038 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002039 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002040 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002041 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2042 if (const SCEVTruncateExpr *T =
2043 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2044 if (T->getOperand()->getType() != SrcType) {
2045 Ok = false;
2046 break;
2047 }
2048 LargeMulOps.push_back(T->getOperand());
2049 } else if (const SCEVConstant *C =
2050 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002051 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002052 } else {
2053 Ok = false;
2054 break;
2055 }
2056 }
2057 if (Ok)
2058 LargeOps.push_back(getMulExpr(LargeMulOps));
2059 } else {
2060 Ok = false;
2061 break;
2062 }
2063 }
2064 if (Ok) {
2065 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002066 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002067 // If it folds to something simple, use it. Otherwise, don't.
2068 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2069 return getTruncateExpr(Fold, DstType);
2070 }
2071 }
2072
2073 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002074 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2075 ++Idx;
2076
2077 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002078 if (Idx < Ops.size()) {
2079 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002080 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002081 // If we have an add, expand the add operands onto the end of the operands
2082 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002083 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002084 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002085 DeletedAdd = true;
2086 }
2087
2088 // If we deleted at least one add, we added operands to the end of the list,
2089 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002090 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002091 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002092 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002093 }
2094
2095 // Skip over the add expression until we get to a multiply.
2096 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2097 ++Idx;
2098
Dan Gohman038d02e2009-06-14 22:58:51 +00002099 // Check to see if there are any folding opportunities present with
2100 // operands multiplied by constant values.
2101 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2102 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002103 DenseMap<const SCEV *, APInt> M;
2104 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002105 APInt AccumulatedConstant(BitWidth, 0);
2106 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002107 Ops.data(), Ops.size(),
2108 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002109 // Some interesting folding opportunity is present, so its worthwhile to
2110 // re-generate the operands list. Group the operands by constant scale,
2111 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002112 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002113 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002114 E = NewOps.end(); I != E; ++I)
2115 MulOpLists[M.find(*I)->second].push_back(*I);
2116 // Re-generate the operands list.
2117 Ops.clear();
2118 if (AccumulatedConstant != 0)
2119 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002120 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2121 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002122 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002123 Ops.push_back(getMulExpr(getConstant(I->first),
2124 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002125 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00002126 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00002127 if (Ops.size() == 1)
2128 return Ops[0];
2129 return getAddExpr(Ops);
2130 }
2131 }
2132
Chris Lattnerd934c702004-04-02 20:23:17 +00002133 // If we are adding something to a multiply expression, make sure the
2134 // something is not already an operand of the multiply. If so, merge it into
2135 // the multiply.
2136 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002137 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002138 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002139 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002140 if (isa<SCEVConstant>(MulOpSCEV))
2141 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002142 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002143 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002144 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002145 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002146 if (Mul->getNumOperands() != 2) {
2147 // If the multiply has more than two operands, we must get the
2148 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002149 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2150 Mul->op_begin()+MulOp);
2151 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002152 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002153 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00002154 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002155 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002156 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002157 if (Ops.size() == 2) return OuterMul;
2158 if (AddOp < Idx) {
2159 Ops.erase(Ops.begin()+AddOp);
2160 Ops.erase(Ops.begin()+Idx-1);
2161 } else {
2162 Ops.erase(Ops.begin()+Idx);
2163 Ops.erase(Ops.begin()+AddOp-1);
2164 }
2165 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002166 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002167 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002168
Chris Lattnerd934c702004-04-02 20:23:17 +00002169 // Check this multiply against other multiplies being added together.
2170 for (unsigned OtherMulIdx = Idx+1;
2171 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2172 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002173 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002174 // If MulOp occurs in OtherMul, we can fold the two multiplies
2175 // together.
2176 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2177 OMulOp != e; ++OMulOp)
2178 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2179 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002180 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002181 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002182 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002183 Mul->op_begin()+MulOp);
2184 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002185 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002186 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002187 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002188 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002189 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002190 OtherMul->op_begin()+OMulOp);
2191 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002192 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002193 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002194 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2195 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002196 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002197 Ops.erase(Ops.begin()+Idx);
2198 Ops.erase(Ops.begin()+OtherMulIdx-1);
2199 Ops.push_back(OuterMul);
2200 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002201 }
2202 }
2203 }
2204 }
2205
2206 // If there are any add recurrences in the operands list, see if any other
2207 // added values are loop invariant. If so, we can fold them into the
2208 // recurrence.
2209 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2210 ++Idx;
2211
2212 // Scan over all recurrences, trying to fold loop invariants into them.
2213 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2214 // Scan all of the other operands to this add and add them to the vector if
2215 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002216 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002217 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002218 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002219 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002220 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002221 LIOps.push_back(Ops[i]);
2222 Ops.erase(Ops.begin()+i);
2223 --i; --e;
2224 }
2225
2226 // If we found some loop invariants, fold them into the recurrence.
2227 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002228 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002229 LIOps.push_back(AddRec->getStart());
2230
Dan Gohmanaf752342009-07-07 17:06:11 +00002231 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002232 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002233 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002234
Dan Gohman16206132010-06-30 07:16:37 +00002235 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002236 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002237 // Always propagate NW.
2238 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002239 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002240
Chris Lattnerd934c702004-04-02 20:23:17 +00002241 // If all of the other operands were loop invariant, we are done.
2242 if (Ops.size() == 1) return NewRec;
2243
Nick Lewyckydb66b822011-09-06 05:08:09 +00002244 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002245 for (unsigned i = 0;; ++i)
2246 if (Ops[i] == AddRec) {
2247 Ops[i] = NewRec;
2248 break;
2249 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002250 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002251 }
2252
2253 // Okay, if there weren't any loop invariants to be folded, check to see if
2254 // there are multiple AddRec's with the same loop induction variable being
2255 // added together. If so, we can fold them.
2256 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002257 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2258 ++OtherIdx)
2259 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2260 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2261 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2262 AddRec->op_end());
2263 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2264 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002265 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002266 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002267 if (OtherAddRec->getLoop() == AddRecLoop) {
2268 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2269 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002270 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002271 AddRecOps.append(OtherAddRec->op_begin()+i,
2272 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002273 break;
2274 }
Dan Gohman028c1812010-08-29 14:53:34 +00002275 AddRecOps[i] = getAddExpr(AddRecOps[i],
2276 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002277 }
2278 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002279 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002280 // Step size has changed, so we cannot guarantee no self-wraparound.
2281 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002282 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002283 }
2284
2285 // Otherwise couldn't fold anything into this recurrence. Move onto the
2286 // next one.
2287 }
2288
2289 // Okay, it looks like we really DO need an add expr. Check to see if we
2290 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002291 FoldingSetNodeID ID;
2292 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002293 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2294 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002295 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002296 SCEVAddExpr *S =
2297 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2298 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002299 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2300 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002301 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2302 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002303 UniqueSCEVs.InsertNode(S, IP);
2304 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002305 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002306 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002307}
2308
Nick Lewycky287682e2011-10-04 06:51:26 +00002309static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2310 uint64_t k = i*j;
2311 if (j > 1 && k / j != i) Overflow = true;
2312 return k;
2313}
2314
2315/// Compute the result of "n choose k", the binomial coefficient. If an
2316/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002317/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002318static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2319 // We use the multiplicative formula:
2320 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2321 // At each iteration, we take the n-th term of the numeral and divide by the
2322 // (k-n)th term of the denominator. This division will always produce an
2323 // integral result, and helps reduce the chance of overflow in the
2324 // intermediate computations. However, we can still overflow even when the
2325 // final result would fit.
2326
2327 if (n == 0 || n == k) return 1;
2328 if (k > n) return 0;
2329
2330 if (k > n/2)
2331 k = n-k;
2332
2333 uint64_t r = 1;
2334 for (uint64_t i = 1; i <= k; ++i) {
2335 r = umul_ov(r, n-(i-1), Overflow);
2336 r /= i;
2337 }
2338 return r;
2339}
2340
Nick Lewycky05044c22014-12-06 00:45:50 +00002341/// Determine if any of the operands in this SCEV are a constant or if
2342/// any of the add or multiply expressions in this SCEV contain a constant.
2343static bool containsConstantSomewhere(const SCEV *StartExpr) {
2344 SmallVector<const SCEV *, 4> Ops;
2345 Ops.push_back(StartExpr);
2346 while (!Ops.empty()) {
2347 const SCEV *CurrentExpr = Ops.pop_back_val();
2348 if (isa<SCEVConstant>(*CurrentExpr))
2349 return true;
2350
2351 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2352 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002353 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002354 }
2355 }
2356 return false;
2357}
2358
Dan Gohman4d5435d2009-05-24 23:45:28 +00002359/// getMulExpr - Get a canonical multiply expression, or something simpler if
2360/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002361const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002362 SCEV::NoWrapFlags Flags) {
2363 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2364 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002365 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002366 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002367#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002368 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002369 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002370 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002371 "SCEVMulExpr operand types don't match!");
2372#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002373
Sanjoy Das81401d42015-01-10 23:41:24 +00002374 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002375
Chris Lattnerd934c702004-04-02 20:23:17 +00002376 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002377 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002378
2379 // If there are any constants, fold them together.
2380 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002381 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002382
2383 // C1*(C2+V) -> C1*C2 + C1*V
2384 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002385 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2386 // If any of Add's ops are Adds or Muls with a constant,
2387 // apply this transformation as well.
2388 if (Add->getNumOperands() == 2)
2389 if (containsConstantSomewhere(Add))
2390 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2391 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002392
Chris Lattnerd934c702004-04-02 20:23:17 +00002393 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002394 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002395 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002396 ConstantInt *Fold = ConstantInt::get(getContext(),
2397 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002398 RHSC->getValue()->getValue());
2399 Ops[0] = getConstant(Fold);
2400 Ops.erase(Ops.begin()+1); // Erase the folded element
2401 if (Ops.size() == 1) return Ops[0];
2402 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002403 }
2404
2405 // If we are left with a constant one being multiplied, strip it off.
2406 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2407 Ops.erase(Ops.begin());
2408 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002409 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002410 // If we have a multiply of zero, it will always be zero.
2411 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002412 } else if (Ops[0]->isAllOnesValue()) {
2413 // If we have a mul by -1 of an add, try distributing the -1 among the
2414 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002415 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2417 SmallVector<const SCEV *, 4> NewOps;
2418 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002419 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2420 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002421 const SCEV *Mul = getMulExpr(Ops[0], *I);
2422 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2423 NewOps.push_back(Mul);
2424 }
2425 if (AnyFolded)
2426 return getAddExpr(NewOps);
2427 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002428 else if (const SCEVAddRecExpr *
2429 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2430 // Negation preserves a recurrence's no self-wrap property.
2431 SmallVector<const SCEV *, 4> Operands;
2432 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2433 E = AddRec->op_end(); I != E; ++I) {
2434 Operands.push_back(getMulExpr(Ops[0], *I));
2435 }
2436 return getAddRecExpr(Operands, AddRec->getLoop(),
2437 AddRec->getNoWrapFlags(SCEV::FlagNW));
2438 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002439 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002440 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002441
2442 if (Ops.size() == 1)
2443 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002444 }
2445
2446 // Skip over the add expression until we get to a multiply.
2447 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2448 ++Idx;
2449
Chris Lattnerd934c702004-04-02 20:23:17 +00002450 // If there are mul operands inline them all into this expression.
2451 if (Idx < Ops.size()) {
2452 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002453 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002454 // If we have an mul, expand the mul operands onto the end of the operands
2455 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002456 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002457 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002458 DeletedMul = true;
2459 }
2460
2461 // If we deleted at least one mul, we added operands to the end of the list,
2462 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002463 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002464 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002465 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002466 }
2467
2468 // If there are any add recurrences in the operands list, see if any other
2469 // added values are loop invariant. If so, we can fold them into the
2470 // recurrence.
2471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2472 ++Idx;
2473
2474 // Scan over all recurrences, trying to fold loop invariants into them.
2475 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2476 // Scan all of the other operands to this mul and add them to the vector if
2477 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002478 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002479 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002480 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002481 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002482 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002483 LIOps.push_back(Ops[i]);
2484 Ops.erase(Ops.begin()+i);
2485 --i; --e;
2486 }
2487
2488 // If we found some loop invariants, fold them into the recurrence.
2489 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002490 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002491 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002492 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002493 const SCEV *Scale = getMulExpr(LIOps);
2494 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2495 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002496
Dan Gohman16206132010-06-30 07:16:37 +00002497 // Build the new addrec. Propagate the NUW and NSW flags if both the
2498 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002499 //
2500 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002501 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002502 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2503 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002504
2505 // If all of the other operands were loop invariant, we are done.
2506 if (Ops.size() == 1) return NewRec;
2507
Nick Lewyckydb66b822011-09-06 05:08:09 +00002508 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002509 for (unsigned i = 0;; ++i)
2510 if (Ops[i] == AddRec) {
2511 Ops[i] = NewRec;
2512 break;
2513 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002514 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002515 }
2516
2517 // Okay, if there weren't any loop invariants to be folded, check to see if
2518 // there are multiple AddRec's with the same loop induction variable being
2519 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002520
2521 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2522 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2523 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2524 // ]]],+,...up to x=2n}.
2525 // Note that the arguments to choose() are always integers with values
2526 // known at compile time, never SCEV objects.
2527 //
2528 // The implementation avoids pointless extra computations when the two
2529 // addrec's are of different length (mathematically, it's equivalent to
2530 // an infinite stream of zeros on the right).
2531 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002532 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002533 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002534 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002535 const SCEVAddRecExpr *OtherAddRec =
2536 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2537 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002538 continue;
2539
Nick Lewycky97756402014-09-01 05:17:15 +00002540 bool Overflow = false;
2541 Type *Ty = AddRec->getType();
2542 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2543 SmallVector<const SCEV*, 7> AddRecOps;
2544 for (int x = 0, xe = AddRec->getNumOperands() +
2545 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2546 const SCEV *Term = getConstant(Ty, 0);
2547 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2548 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2549 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2550 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2551 z < ze && !Overflow; ++z) {
2552 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2553 uint64_t Coeff;
2554 if (LargerThan64Bits)
2555 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2556 else
2557 Coeff = Coeff1*Coeff2;
2558 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2559 const SCEV *Term1 = AddRec->getOperand(y-z);
2560 const SCEV *Term2 = OtherAddRec->getOperand(z);
2561 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002562 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002563 }
Nick Lewycky97756402014-09-01 05:17:15 +00002564 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002565 }
Nick Lewycky97756402014-09-01 05:17:15 +00002566 if (!Overflow) {
2567 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2568 SCEV::FlagAnyWrap);
2569 if (Ops.size() == 2) return NewAddRec;
2570 Ops[Idx] = NewAddRec;
2571 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2572 OpsModified = true;
2573 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2574 if (!AddRec)
2575 break;
2576 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002577 }
Nick Lewycky97756402014-09-01 05:17:15 +00002578 if (OpsModified)
2579 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002580
2581 // Otherwise couldn't fold anything into this recurrence. Move onto the
2582 // next one.
2583 }
2584
2585 // Okay, it looks like we really DO need an mul expr. Check to see if we
2586 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002587 FoldingSetNodeID ID;
2588 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002589 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2590 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002591 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002592 SCEVMulExpr *S =
2593 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2594 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002595 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2596 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002597 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2598 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002599 UniqueSCEVs.InsertNode(S, IP);
2600 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002601 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002602 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002603}
2604
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002605/// getUDivExpr - Get a canonical unsigned division expression, or something
2606/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002607const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2608 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002609 assert(getEffectiveSCEVType(LHS->getType()) ==
2610 getEffectiveSCEVType(RHS->getType()) &&
2611 "SCEVUDivExpr operand types don't match!");
2612
Dan Gohmana30370b2009-05-04 22:02:23 +00002613 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002614 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002615 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002616 // If the denominator is zero, the result of the udiv is undefined. Don't
2617 // try to analyze it, because the resolution chosen here may differ from
2618 // the resolution chosen in other parts of the compiler.
2619 if (!RHSC->getValue()->isZero()) {
2620 // Determine if the division can be folded into the operands of
2621 // its operands.
2622 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002623 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002624 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002625 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002626 // For non-power-of-two values, effectively round the value up to the
2627 // nearest power of two.
2628 if (!RHSC->getValue()->getValue().isPowerOf2())
2629 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002630 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002631 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2633 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002634 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2635 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2636 const APInt &StepInt = Step->getValue()->getValue();
2637 const APInt &DivInt = RHSC->getValue()->getValue();
2638 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002639 getZeroExtendExpr(AR, ExtTy) ==
2640 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2641 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002642 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002643 SmallVector<const SCEV *, 4> Operands;
2644 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2645 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002646 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002647 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002648 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002649 /// Get a canonical UDivExpr for a recurrence.
2650 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2651 // We can currently only fold X%N if X is constant.
2652 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2653 if (StartC && !DivInt.urem(StepInt) &&
2654 getZeroExtendExpr(AR, ExtTy) ==
2655 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2656 getZeroExtendExpr(Step, ExtTy),
2657 AR->getLoop(), SCEV::FlagAnyWrap)) {
2658 const APInt &StartInt = StartC->getValue()->getValue();
2659 const APInt &StartRem = StartInt.urem(StepInt);
2660 if (StartRem != 0)
2661 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2662 AR->getLoop(), SCEV::FlagNW);
2663 }
2664 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002665 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2666 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2667 SmallVector<const SCEV *, 4> Operands;
2668 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2669 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2670 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2671 // Find an operand that's safely divisible.
2672 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2673 const SCEV *Op = M->getOperand(i);
2674 const SCEV *Div = getUDivExpr(Op, RHSC);
2675 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2676 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2677 M->op_end());
2678 Operands[i] = Div;
2679 return getMulExpr(Operands);
2680 }
2681 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002682 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002683 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002684 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002685 SmallVector<const SCEV *, 4> Operands;
2686 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2687 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2688 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2689 Operands.clear();
2690 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2691 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2692 if (isa<SCEVUDivExpr>(Op) ||
2693 getMulExpr(Op, RHS) != A->getOperand(i))
2694 break;
2695 Operands.push_back(Op);
2696 }
2697 if (Operands.size() == A->getNumOperands())
2698 return getAddExpr(Operands);
2699 }
2700 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002701
Dan Gohmanacd700a2010-04-22 01:35:11 +00002702 // Fold if both operands are constant.
2703 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2704 Constant *LHSCV = LHSC->getValue();
2705 Constant *RHSCV = RHSC->getValue();
2706 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2707 RHSCV)));
2708 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002709 }
2710 }
2711
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002712 FoldingSetNodeID ID;
2713 ID.AddInteger(scUDivExpr);
2714 ID.AddPointer(LHS);
2715 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002716 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002717 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002718 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2719 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002720 UniqueSCEVs.InsertNode(S, IP);
2721 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002722}
2723
Nick Lewycky31eaca52014-01-27 10:04:03 +00002724static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2725 APInt A = C1->getValue()->getValue().abs();
2726 APInt B = C2->getValue()->getValue().abs();
2727 uint32_t ABW = A.getBitWidth();
2728 uint32_t BBW = B.getBitWidth();
2729
2730 if (ABW > BBW)
2731 B = B.zext(ABW);
2732 else if (ABW < BBW)
2733 A = A.zext(BBW);
2734
2735 return APIntOps::GreatestCommonDivisor(A, B);
2736}
2737
2738/// getUDivExactExpr - Get a canonical unsigned division expression, or
2739/// something simpler if possible. There is no representation for an exact udiv
2740/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2741/// We can't do this when it's not exact because the udiv may be clearing bits.
2742const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2743 const SCEV *RHS) {
2744 // TODO: we could try to find factors in all sorts of things, but for now we
2745 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2746 // end of this file for inspiration.
2747
2748 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2749 if (!Mul)
2750 return getUDivExpr(LHS, RHS);
2751
2752 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2753 // If the mulexpr multiplies by a constant, then that constant must be the
2754 // first element of the mulexpr.
2755 if (const SCEVConstant *LHSCst =
2756 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2757 if (LHSCst == RHSCst) {
2758 SmallVector<const SCEV *, 2> Operands;
2759 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2760 return getMulExpr(Operands);
2761 }
2762
2763 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2764 // that there's a factor provided by one of the other terms. We need to
2765 // check.
2766 APInt Factor = gcd(LHSCst, RHSCst);
2767 if (!Factor.isIntN(1)) {
2768 LHSCst = cast<SCEVConstant>(
2769 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2770 RHSCst = cast<SCEVConstant>(
2771 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2772 SmallVector<const SCEV *, 2> Operands;
2773 Operands.push_back(LHSCst);
2774 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2775 LHS = getMulExpr(Operands);
2776 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002777 Mul = dyn_cast<SCEVMulExpr>(LHS);
2778 if (!Mul)
2779 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002780 }
2781 }
2782 }
2783
2784 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2785 if (Mul->getOperand(i) == RHS) {
2786 SmallVector<const SCEV *, 2> Operands;
2787 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2788 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2789 return getMulExpr(Operands);
2790 }
2791 }
2792
2793 return getUDivExpr(LHS, RHS);
2794}
Chris Lattnerd934c702004-04-02 20:23:17 +00002795
Dan Gohman4d5435d2009-05-24 23:45:28 +00002796/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2797/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002798const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2799 const Loop *L,
2800 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002801 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002802 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002803 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002804 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002805 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002806 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002807 }
2808
2809 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002810 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002811}
2812
Dan Gohman4d5435d2009-05-24 23:45:28 +00002813/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2814/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002815const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002816ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002817 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002818 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002819#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002820 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002821 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002822 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002823 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002824 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002825 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002826 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002827#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002828
Dan Gohmanbe928e32008-06-18 16:23:07 +00002829 if (Operands.back()->isZero()) {
2830 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002831 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002832 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002833
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002834 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2835 // use that information to infer NUW and NSW flags. However, computing a
2836 // BE count requires calling getAddRecExpr, so we may not yet have a
2837 // meaningful BE count at this point (and if we don't, we'd be stuck
2838 // with a SCEVCouldNotCompute as the cached BE count).
2839
Sanjoy Das81401d42015-01-10 23:41:24 +00002840 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002841
Dan Gohman223a5d22008-08-08 18:33:12 +00002842 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002843 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002844 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002845 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002846 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002847 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002848 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002849 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002850 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002851 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002852 // AddRecs require their operands be loop-invariant with respect to their
2853 // loops. Don't perform this transformation if it would break this
2854 // requirement.
2855 bool AllInvariant = true;
2856 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002857 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002858 AllInvariant = false;
2859 break;
2860 }
2861 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002862 // Create a recurrence for the outer loop with the same step size.
2863 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002864 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2865 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002866 SCEV::NoWrapFlags OuterFlags =
2867 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002868
2869 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002870 AllInvariant = true;
2871 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002872 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002873 AllInvariant = false;
2874 break;
2875 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002876 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002877 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002878 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002879 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2880 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002881 SCEV::NoWrapFlags InnerFlags =
2882 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002883 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2884 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002885 }
2886 // Reset Operands to its original state.
2887 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002888 }
2889 }
2890
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002891 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2892 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002893 FoldingSetNodeID ID;
2894 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002895 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2896 ID.AddPointer(Operands[i]);
2897 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002898 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002899 SCEVAddRecExpr *S =
2900 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2901 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002902 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2903 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002904 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2905 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002906 UniqueSCEVs.InsertNode(S, IP);
2907 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002908 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002909 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002910}
2911
Dan Gohmanabd17092009-06-24 14:49:00 +00002912const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2913 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002914 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002915 Ops.push_back(LHS);
2916 Ops.push_back(RHS);
2917 return getSMaxExpr(Ops);
2918}
2919
Dan Gohmanaf752342009-07-07 17:06:11 +00002920const SCEV *
2921ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002922 assert(!Ops.empty() && "Cannot get empty smax!");
2923 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002924#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002925 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002926 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002927 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002928 "SCEVSMaxExpr operand types don't match!");
2929#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002930
2931 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002932 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002933
2934 // If there are any constants, fold them together.
2935 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002936 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002937 ++Idx;
2938 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002939 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002940 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002941 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002942 APIntOps::smax(LHSC->getValue()->getValue(),
2943 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002944 Ops[0] = getConstant(Fold);
2945 Ops.erase(Ops.begin()+1); // Erase the folded element
2946 if (Ops.size() == 1) return Ops[0];
2947 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002948 }
2949
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002950 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002951 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2952 Ops.erase(Ops.begin());
2953 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002954 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2955 // If we have an smax with a constant maximum-int, it will always be
2956 // maximum-int.
2957 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002958 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002959
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002960 if (Ops.size() == 1) return Ops[0];
2961 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002962
2963 // Find the first SMax
2964 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2965 ++Idx;
2966
2967 // Check to see if one of the operands is an SMax. If so, expand its operands
2968 // onto our operand list, and recurse to simplify.
2969 if (Idx < Ops.size()) {
2970 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002971 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002972 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002973 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002974 DeletedSMax = true;
2975 }
2976
2977 if (DeletedSMax)
2978 return getSMaxExpr(Ops);
2979 }
2980
2981 // Okay, check to see if the same value occurs in the operand list twice. If
2982 // so, delete one. Since we sorted the list, these values are required to
2983 // be adjacent.
2984 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002985 // X smax Y smax Y --> X smax Y
2986 // X smax Y --> X, if X is always greater than Y
2987 if (Ops[i] == Ops[i+1] ||
2988 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2989 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2990 --i; --e;
2991 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002992 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2993 --i; --e;
2994 }
2995
2996 if (Ops.size() == 1) return Ops[0];
2997
2998 assert(!Ops.empty() && "Reduced smax down to nothing!");
2999
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003000 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003001 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003002 FoldingSetNodeID ID;
3003 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003004 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3005 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003006 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003007 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003008 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3009 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003010 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3011 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003012 UniqueSCEVs.InsertNode(S, IP);
3013 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003014}
3015
Dan Gohmanabd17092009-06-24 14:49:00 +00003016const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3017 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003018 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003019 Ops.push_back(LHS);
3020 Ops.push_back(RHS);
3021 return getUMaxExpr(Ops);
3022}
3023
Dan Gohmanaf752342009-07-07 17:06:11 +00003024const SCEV *
3025ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003026 assert(!Ops.empty() && "Cannot get empty umax!");
3027 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003028#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003029 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003030 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003031 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003032 "SCEVUMaxExpr operand types don't match!");
3033#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003034
3035 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00003036 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003037
3038 // If there are any constants, fold them together.
3039 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003040 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003041 ++Idx;
3042 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003043 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003044 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003045 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003046 APIntOps::umax(LHSC->getValue()->getValue(),
3047 RHSC->getValue()->getValue()));
3048 Ops[0] = getConstant(Fold);
3049 Ops.erase(Ops.begin()+1); // Erase the folded element
3050 if (Ops.size() == 1) return Ops[0];
3051 LHSC = cast<SCEVConstant>(Ops[0]);
3052 }
3053
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003054 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003055 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3056 Ops.erase(Ops.begin());
3057 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003058 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3059 // If we have an umax with a constant maximum-int, it will always be
3060 // maximum-int.
3061 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003062 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003063
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003064 if (Ops.size() == 1) return Ops[0];
3065 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003066
3067 // Find the first UMax
3068 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3069 ++Idx;
3070
3071 // Check to see if one of the operands is a UMax. If so, expand its operands
3072 // onto our operand list, and recurse to simplify.
3073 if (Idx < Ops.size()) {
3074 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003075 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003076 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003077 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003078 DeletedUMax = true;
3079 }
3080
3081 if (DeletedUMax)
3082 return getUMaxExpr(Ops);
3083 }
3084
3085 // Okay, check to see if the same value occurs in the operand list twice. If
3086 // so, delete one. Since we sorted the list, these values are required to
3087 // be adjacent.
3088 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003089 // X umax Y umax Y --> X umax Y
3090 // X umax Y --> X, if X is always greater than Y
3091 if (Ops[i] == Ops[i+1] ||
3092 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3093 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3094 --i; --e;
3095 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003096 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3097 --i; --e;
3098 }
3099
3100 if (Ops.size() == 1) return Ops[0];
3101
3102 assert(!Ops.empty() && "Reduced umax down to nothing!");
3103
3104 // Okay, it looks like we really DO need a umax expr. Check to see if we
3105 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003106 FoldingSetNodeID ID;
3107 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3109 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003110 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003111 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003112 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3113 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003114 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3115 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003116 UniqueSCEVs.InsertNode(S, IP);
3117 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003118}
3119
Dan Gohmanabd17092009-06-24 14:49:00 +00003120const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3121 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003122 // ~smax(~x, ~y) == smin(x, y).
3123 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3124}
3125
Dan Gohmanabd17092009-06-24 14:49:00 +00003126const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3127 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003128 // ~umax(~x, ~y) == umin(x, y)
3129 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3130}
3131
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003132const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003133 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003134 // constant expression and then folding it back into a ConstantInt.
3135 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003136 return getConstant(IntTy,
3137 F->getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003138}
3139
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003140const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3141 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003142 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003143 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003144 // constant expression and then folding it back into a ConstantInt.
3145 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003146 return getConstant(
3147 IntTy,
3148 F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
3149 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003150}
3151
Dan Gohmanaf752342009-07-07 17:06:11 +00003152const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003153 // Don't attempt to do anything other than create a SCEVUnknown object
3154 // here. createSCEV only calls getUnknown after checking for all other
3155 // interesting possibilities, and any other code that calls getUnknown
3156 // is doing so in order to hide a value from SCEV canonicalization.
3157
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003158 FoldingSetNodeID ID;
3159 ID.AddInteger(scUnknown);
3160 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003161 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003162 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3163 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3164 "Stale SCEVUnknown in uniquing map!");
3165 return S;
3166 }
3167 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3168 FirstUnknown);
3169 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003170 UniqueSCEVs.InsertNode(S, IP);
3171 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003172}
3173
Chris Lattnerd934c702004-04-02 20:23:17 +00003174//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003175// Basic SCEV Analysis and PHI Idiom Recognition Code
3176//
3177
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003178/// isSCEVable - Test if values of the given type are analyzable within
3179/// the SCEV framework. This primarily includes integer types, and it
3180/// can optionally include pointer types if the ScalarEvolution class
3181/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003182bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003183 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003184 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003185}
3186
3187/// getTypeSizeInBits - Return the size in bits of the specified type,
3188/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003189uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003190 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003191 return F->getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003192}
3193
3194/// getEffectiveSCEVType - Return a type with the same bitwidth as
3195/// the given type and which represents how SCEV will treat the given
3196/// type, for which isSCEVable must return true. For pointer types,
3197/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003198Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003199 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3200
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003201 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003202 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003203 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003204
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003205 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003206 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003207 return F->getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003208}
Chris Lattnerd934c702004-04-02 20:23:17 +00003209
Dan Gohmanaf752342009-07-07 17:06:11 +00003210const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003211 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003212}
3213
Shuxin Yangefc4c012013-07-08 17:33:13 +00003214namespace {
3215 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3216 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3217 // is set iff if find such SCEVUnknown.
3218 //
3219 struct FindInvalidSCEVUnknown {
3220 bool FindOne;
3221 FindInvalidSCEVUnknown() { FindOne = false; }
3222 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003223 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003224 case scConstant:
3225 return false;
3226 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003227 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003228 FindOne = true;
3229 return false;
3230 default:
3231 return true;
3232 }
3233 }
3234 bool isDone() const { return FindOne; }
3235 };
3236}
3237
3238bool ScalarEvolution::checkValidity(const SCEV *S) const {
3239 FindInvalidSCEVUnknown F;
3240 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3241 ST.visitAll(S);
3242
3243 return !F.FindOne;
3244}
3245
Chris Lattnerd934c702004-04-02 20:23:17 +00003246/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3247/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003248const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003249 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003250
Shuxin Yangefc4c012013-07-08 17:33:13 +00003251 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3252 if (I != ValueExprMap.end()) {
3253 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003254 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003255 return S;
3256 else
3257 ValueExprMap.erase(I);
3258 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003259 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003260
3261 // The process of creating a SCEV for V may have caused other SCEVs
3262 // to have been created, so it's necessary to insert the new entry
3263 // from scratch, rather than trying to remember the insert position
3264 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003265 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003266 return S;
3267}
3268
Dan Gohman0a40ad92009-04-16 03:18:22 +00003269/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3270///
Dan Gohmanaf752342009-07-07 17:06:11 +00003271const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003272 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003273 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003274 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003275
Chris Lattner229907c2011-07-18 04:54:35 +00003276 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003277 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003278 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003279 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003280}
3281
3282/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003283const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003284 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003285 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003286 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003287
Chris Lattner229907c2011-07-18 04:54:35 +00003288 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003289 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003290 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003291 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003292 return getMinusSCEV(AllOnes, V);
3293}
3294
Andrew Trick8b55b732011-03-14 16:50:06 +00003295/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003296const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003297 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003298 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3299
Dan Gohman46f00a22010-07-20 16:53:00 +00003300 // Fast path: X - X --> 0.
3301 if (LHS == RHS)
3302 return getConstant(LHS->getType(), 0);
3303
Sanjoy Dascb473662015-01-22 00:48:47 +00003304 // X - Y --> X + -Y.
3305 // X -(nsw || nuw) Y --> X + -Y.
3306 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003307}
3308
3309/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3310/// input value to the specified type. If the type must be extended, it is zero
3311/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003312const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003313ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3314 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003315 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3316 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003317 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003318 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003319 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003320 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003321 return getTruncateExpr(V, Ty);
3322 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003323}
3324
3325/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3326/// input value to the specified type. If the type must be extended, it is sign
3327/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003328const SCEV *
3329ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003330 Type *Ty) {
3331 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003332 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3333 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003334 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003335 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003336 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003337 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003338 return getTruncateExpr(V, Ty);
3339 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003340}
3341
Dan Gohmane712a2f2009-05-13 03:46:30 +00003342/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3343/// input value to the specified type. If the type must be extended, it is zero
3344/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003345const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003346ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3347 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003348 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3349 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003350 "Cannot noop or zero extend with non-integer arguments!");
3351 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3352 "getNoopOrZeroExtend cannot truncate!");
3353 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3354 return V; // No conversion
3355 return getZeroExtendExpr(V, Ty);
3356}
3357
3358/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3359/// input value to the specified type. If the type must be extended, it is sign
3360/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003361const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003362ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3363 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003364 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3365 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003366 "Cannot noop or sign extend with non-integer arguments!");
3367 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3368 "getNoopOrSignExtend cannot truncate!");
3369 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3370 return V; // No conversion
3371 return getSignExtendExpr(V, Ty);
3372}
3373
Dan Gohman8db2edc2009-06-13 15:56:47 +00003374/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3375/// the input value to the specified type. If the type must be extended,
3376/// it is extended with unspecified bits. The conversion must not be
3377/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003378const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003379ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3380 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003381 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3382 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003383 "Cannot noop or any extend with non-integer arguments!");
3384 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3385 "getNoopOrAnyExtend cannot truncate!");
3386 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3387 return V; // No conversion
3388 return getAnyExtendExpr(V, Ty);
3389}
3390
Dan Gohmane712a2f2009-05-13 03:46:30 +00003391/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3392/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003393const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003394ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3395 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003396 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3397 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003398 "Cannot truncate or noop with non-integer arguments!");
3399 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3400 "getTruncateOrNoop cannot extend!");
3401 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3402 return V; // No conversion
3403 return getTruncateExpr(V, Ty);
3404}
3405
Dan Gohman96212b62009-06-22 00:31:57 +00003406/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3407/// the types using zero-extension, and then perform a umax operation
3408/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003409const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3410 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003411 const SCEV *PromotedLHS = LHS;
3412 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003413
3414 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3415 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3416 else
3417 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3418
3419 return getUMaxExpr(PromotedLHS, PromotedRHS);
3420}
3421
Dan Gohman2bc22302009-06-22 15:03:27 +00003422/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3423/// the types using zero-extension, and then perform a umin operation
3424/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003425const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3426 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003427 const SCEV *PromotedLHS = LHS;
3428 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003429
3430 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3431 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3432 else
3433 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3434
3435 return getUMinExpr(PromotedLHS, PromotedRHS);
3436}
3437
Andrew Trick87716c92011-03-17 23:51:11 +00003438/// getPointerBase - Transitively follow the chain of pointer-type operands
3439/// until reaching a SCEV that does not have a single pointer operand. This
3440/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3441/// but corner cases do exist.
3442const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3443 // A pointer operand may evaluate to a nonpointer expression, such as null.
3444 if (!V->getType()->isPointerTy())
3445 return V;
3446
3447 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3448 return getPointerBase(Cast->getOperand());
3449 }
3450 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003451 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003452 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3453 I != E; ++I) {
3454 if ((*I)->getType()->isPointerTy()) {
3455 // Cannot find the base of an expression with multiple pointer operands.
3456 if (PtrOp)
3457 return V;
3458 PtrOp = *I;
3459 }
3460 }
3461 if (!PtrOp)
3462 return V;
3463 return getPointerBase(PtrOp);
3464 }
3465 return V;
3466}
3467
Dan Gohman0b89dff2009-07-25 01:13:03 +00003468/// PushDefUseChildren - Push users of the given Instruction
3469/// onto the given Worklist.
3470static void
3471PushDefUseChildren(Instruction *I,
3472 SmallVectorImpl<Instruction *> &Worklist) {
3473 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003474 for (User *U : I->users())
3475 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003476}
3477
3478/// ForgetSymbolicValue - This looks up computed SCEV values for all
3479/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003480/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003481/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003482void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003483ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003484 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003485 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003486
Dan Gohman0b89dff2009-07-25 01:13:03 +00003487 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003488 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003489 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003490 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003491 if (!Visited.insert(I).second)
3492 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003493
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003494 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003495 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003496 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003497 const SCEV *Old = It->second;
3498
Dan Gohman0b89dff2009-07-25 01:13:03 +00003499 // Short-circuit the def-use traversal if the symbolic name
3500 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003501 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003502 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003503
Dan Gohman0b89dff2009-07-25 01:13:03 +00003504 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003505 // structure, it's a PHI that's in the progress of being computed
3506 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3507 // additional loop trip count information isn't going to change anything.
3508 // In the second case, createNodeForPHI will perform the necessary
3509 // updates on its own when it gets to that point. In the third, we do
3510 // want to forget the SCEVUnknown.
3511 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003512 !isa<SCEVUnknown>(Old) ||
3513 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003514 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003515 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003516 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003517 }
3518
3519 PushDefUseChildren(I, Worklist);
3520 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003521}
Chris Lattnerd934c702004-04-02 20:23:17 +00003522
3523/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3524/// a loop header, making it a potential recurrence, or it doesn't.
3525///
Dan Gohmanaf752342009-07-07 17:06:11 +00003526const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003527 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3528 if (L->getHeader() == PN->getParent()) {
3529 // The loop may have multiple entrances or multiple exits; we can analyze
3530 // this phi as an addrec if it has a unique entry value and a unique
3531 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003532 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003533 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3534 Value *V = PN->getIncomingValue(i);
3535 if (L->contains(PN->getIncomingBlock(i))) {
3536 if (!BEValueV) {
3537 BEValueV = V;
3538 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003539 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003540 break;
3541 }
3542 } else if (!StartValueV) {
3543 StartValueV = V;
3544 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003545 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003546 break;
3547 }
3548 }
3549 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003550 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003551 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003552 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003553 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003554 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003555
3556 // Using this symbolic name for the PHI, analyze the value coming around
3557 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003558 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003559
3560 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3561 // has a special value for the first iteration of the loop.
3562
3563 // If the value coming around the backedge is an add with the symbolic
3564 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003565 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003566 // If there is a single occurrence of the symbolic value, replace it
3567 // with a recurrence.
3568 unsigned FoundIndex = Add->getNumOperands();
3569 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3570 if (Add->getOperand(i) == SymbolicName)
3571 if (FoundIndex == e) {
3572 FoundIndex = i;
3573 break;
3574 }
3575
3576 if (FoundIndex != Add->getNumOperands()) {
3577 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003578 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003579 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3580 if (i != FoundIndex)
3581 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003582 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003583
3584 // This is not a valid addrec if the step amount is varying each
3585 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003586 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003587 (isa<SCEVAddRecExpr>(Accum) &&
3588 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003589 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003590
3591 // If the increment doesn't overflow, then neither the addrec nor
3592 // the post-increment will overflow.
3593 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003594 if (OBO->getOperand(0) == PN) {
3595 if (OBO->hasNoUnsignedWrap())
3596 Flags = setFlags(Flags, SCEV::FlagNUW);
3597 if (OBO->hasNoSignedWrap())
3598 Flags = setFlags(Flags, SCEV::FlagNSW);
3599 }
Benjamin Kramer6094f302013-10-28 07:30:06 +00003600 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003601 // If the increment is an inbounds GEP, then we know the address
3602 // space cannot be wrapped around. We cannot make any guarantee
3603 // about signed or unsigned overflow because pointers are
3604 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003605 // pointer. We can guarantee that no unsigned wrap occurs if the
3606 // indices form a positive value.
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003607 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003608 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003609
3610 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3611 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3612 Flags = setFlags(Flags, SCEV::FlagNUW);
3613 }
Sanjoy Dascb473662015-01-22 00:48:47 +00003614
3615 // We cannot transfer nuw and nsw flags from subtraction
3616 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3617 // for instance.
Dan Gohman51ad99d2010-01-21 02:09:26 +00003618 }
3619
Dan Gohman6635bb22010-04-12 07:49:36 +00003620 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003621 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003622
Dan Gohman51ad99d2010-01-21 02:09:26 +00003623 // Since the no-wrap flags are on the increment, they apply to the
3624 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003625 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003626 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003627 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003628
3629 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003630 // to be symbolic. We now need to go back and purge all of the
3631 // entries for the scalars that use the symbolic expression.
3632 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003633 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003634 return PHISCEV;
3635 }
3636 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003637 } else if (const SCEVAddRecExpr *AddRec =
3638 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003639 // Otherwise, this could be a loop like this:
3640 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3641 // In this case, j = {1,+,1} and BEValue is j.
3642 // Because the other in-value of i (0) fits the evolution of BEValue
3643 // i really is an addrec evolution.
3644 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003645 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003646
3647 // If StartVal = j.start - j.stride, we can use StartVal as the
3648 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003649 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003650 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003651 // FIXME: For constant StartVal, we should be able to infer
3652 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003653 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003654 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3655 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003656
3657 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003658 // to be symbolic. We now need to go back and purge all of the
3659 // entries for the scalars that use the symbolic expression.
3660 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003661 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003662 return PHISCEV;
3663 }
3664 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003665 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003666 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003667 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003668
Dan Gohmana9c205c2010-02-25 06:57:05 +00003669 // If the PHI has a single incoming value, follow that value, unless the
3670 // PHI's incoming blocks are in a different loop, in which case doing so
3671 // risks breaking LCSSA form. Instcombine would normally zap these, but
3672 // it doesn't have DominatorTree information, so it may miss cases.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003673 if (Value *V =
3674 SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003675 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003676 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003677
Chris Lattnerd934c702004-04-02 20:23:17 +00003678 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003679 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003680}
3681
Dan Gohmanee750d12009-05-08 20:26:55 +00003682/// createNodeForGEP - Expand GEP instructions into add and multiply
3683/// operations. This allows them to be analyzed by regular SCEV code.
3684///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003685const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003686 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003687 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003688 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003689 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003690 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003691
3692 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3693 // Add expression, because the Instruction may be guarded by control flow
3694 // and the no-overflow bits may not be valid for the expression in any
3695 // context.
3696 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3697
Dan Gohman1d2ded72010-05-03 22:09:21 +00003698 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003699 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003700 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003701 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003702 I != E; ++I) {
3703 Value *Index = *I;
3704 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003705 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003706 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003707 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003708 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003709
Dan Gohman16206132010-06-30 07:16:37 +00003710 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003711 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003712 } else {
3713 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003714 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003715 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003716 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003717 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3718
Dan Gohman16206132010-06-30 07:16:37 +00003719 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003720 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003721
3722 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003723 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003724 }
3725 }
Dan Gohman16206132010-06-30 07:16:37 +00003726
3727 // Get the SCEV for the GEP base.
3728 const SCEV *BaseS = getSCEV(Base);
3729
Dan Gohman16206132010-06-30 07:16:37 +00003730 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003731 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003732}
3733
Nick Lewycky3783b462007-11-22 07:59:40 +00003734/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3735/// guaranteed to end in (at every loop iteration). It is, at the same time,
3736/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3737/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003738uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003739ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003740 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003741 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003742
Dan Gohmana30370b2009-05-04 22:02:23 +00003743 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003744 return std::min(GetMinTrailingZeros(T->getOperand()),
3745 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003746
Dan Gohmana30370b2009-05-04 22:02:23 +00003747 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003748 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3749 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3750 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003751 }
3752
Dan Gohmana30370b2009-05-04 22:02:23 +00003753 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003754 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3755 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3756 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003757 }
3758
Dan Gohmana30370b2009-05-04 22:02:23 +00003759 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003760 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003761 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003762 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003763 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003764 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003765 }
3766
Dan Gohmana30370b2009-05-04 22:02:23 +00003767 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003768 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003769 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3770 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003771 for (unsigned i = 1, e = M->getNumOperands();
3772 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003773 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003774 BitWidth);
3775 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003776 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003777
Dan Gohmana30370b2009-05-04 22:02:23 +00003778 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003779 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003780 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003781 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003782 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003783 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003784 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003785
Dan Gohmana30370b2009-05-04 22:02:23 +00003786 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003787 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003788 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003789 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003790 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003791 return MinOpRes;
3792 }
3793
Dan Gohmana30370b2009-05-04 22:02:23 +00003794 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003795 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003796 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003797 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003798 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003799 return MinOpRes;
3800 }
3801
Dan Gohmanc702fc02009-06-19 23:29:04 +00003802 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3803 // For a SCEVUnknown, ask ValueTracking.
3804 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003805 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003806 computeKnownBits(U->getValue(), Zeros, Ones,
3807 F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003808 return Zeros.countTrailingOnes();
3809 }
3810
3811 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003812 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003813}
Chris Lattnerd934c702004-04-02 20:23:17 +00003814
Sanjoy Das1f05c512014-10-10 21:22:34 +00003815/// GetRangeFromMetadata - Helper method to assign a range to V from
3816/// metadata present in the IR.
3817static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3818 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003819 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003820 ConstantRange TotalRange(
3821 cast<IntegerType>(I->getType())->getBitWidth(), false);
3822
3823 unsigned NumRanges = MD->getNumOperands() / 2;
3824 assert(NumRanges >= 1);
3825
3826 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003827 ConstantInt *Lower =
3828 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3829 ConstantInt *Upper =
3830 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003831 ConstantRange Range(Lower->getValue(), Upper->getValue());
3832 TotalRange = TotalRange.unionWith(Range);
3833 }
3834
3835 return TotalRange;
3836 }
3837 }
3838
3839 return None;
3840}
3841
Sanjoy Das91b54772015-03-09 21:43:43 +00003842/// getRange - Determine the range for a particular SCEV. If SignHint is
3843/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
3844/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00003845///
3846ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00003847ScalarEvolution::getRange(const SCEV *S,
3848 ScalarEvolution::RangeSignHint SignHint) {
3849 DenseMap<const SCEV *, ConstantRange> &Cache =
3850 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
3851 : SignedRanges;
3852
Dan Gohman761065e2010-11-17 02:44:44 +00003853 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00003854 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
3855 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00003856 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003857
3858 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00003859 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003860
Dan Gohman85be4332010-01-26 19:19:05 +00003861 unsigned BitWidth = getTypeSizeInBits(S->getType());
3862 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3863
Sanjoy Das91b54772015-03-09 21:43:43 +00003864 // If the value has known zeros, the maximum value will have those known zeros
3865 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00003866 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00003867 if (TZ != 0) {
3868 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
3869 ConservativeResult =
3870 ConstantRange(APInt::getMinValue(BitWidth),
3871 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3872 else
3873 ConservativeResult = ConstantRange(
3874 APInt::getSignedMinValue(BitWidth),
3875 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3876 }
Dan Gohman85be4332010-01-26 19:19:05 +00003877
Dan Gohmane65c9172009-07-13 21:35:55 +00003878 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003879 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003880 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003881 X = X.add(getRange(Add->getOperand(i), SignHint));
3882 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003883 }
3884
3885 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003886 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003887 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003888 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
3889 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003890 }
3891
3892 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003893 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003894 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003895 X = X.smax(getRange(SMax->getOperand(i), SignHint));
3896 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003897 }
3898
3899 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003900 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003901 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003902 X = X.umax(getRange(UMax->getOperand(i), SignHint));
3903 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003904 }
3905
3906 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003907 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
3908 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
3909 return setRange(UDiv, SignHint,
3910 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003911 }
3912
3913 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003914 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
3915 return setRange(ZExt, SignHint,
3916 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003917 }
3918
3919 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003920 ConstantRange X = getRange(SExt->getOperand(), SignHint);
3921 return setRange(SExt, SignHint,
3922 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003923 }
3924
3925 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003926 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
3927 return setRange(Trunc, SignHint,
3928 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003929 }
3930
Dan Gohmane65c9172009-07-13 21:35:55 +00003931 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003932 // If there's no unsigned wrap, the value will never be less than its
3933 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003934 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003935 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003936 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003937 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003938 ConservativeResult.intersectWith(
3939 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003940
Dan Gohman51ad99d2010-01-21 02:09:26 +00003941 // If there's no signed wrap, and all the operands have the same sign or
3942 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003943 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003944 bool AllNonNeg = true;
3945 bool AllNonPos = true;
3946 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3947 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3948 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3949 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003950 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003951 ConservativeResult = ConservativeResult.intersectWith(
3952 ConstantRange(APInt(BitWidth, 0),
3953 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003954 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003955 ConservativeResult = ConservativeResult.intersectWith(
3956 ConstantRange(APInt::getSignedMinValue(BitWidth),
3957 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003958 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003959
3960 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003961 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003962 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003963 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003964 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3965 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003966
3967 // Check for overflow. This must be done with ConstantRange arithmetic
3968 // because we could be called from within the ScalarEvolution overflow
3969 // checking code.
3970
Dan Gohmane65c9172009-07-13 21:35:55 +00003971 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00003972 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3973 ConstantRange ZExtMaxBECountRange =
3974 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00003975
3976 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003977 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00003978 ConstantRange StepSRange = getSignedRange(Step);
3979 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00003980
Sanjoy Das91b54772015-03-09 21:43:43 +00003981 ConstantRange StartURange = getUnsignedRange(Start);
3982 ConstantRange EndURange =
3983 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00003984
Sanjoy Das91b54772015-03-09 21:43:43 +00003985 // Check for unsigned overflow.
3986 ConstantRange ZExtStartURange =
3987 StartURange.zextOrTrunc(BitWidth * 2 + 1);
3988 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
3989 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
3990 ZExtEndURange) {
3991 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
3992 EndURange.getUnsignedMin());
3993 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
3994 EndURange.getUnsignedMax());
3995 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
3996 if (!IsFullRange)
3997 ConservativeResult =
3998 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
3999 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004000
Sanjoy Das91b54772015-03-09 21:43:43 +00004001 ConstantRange StartSRange = getSignedRange(Start);
4002 ConstantRange EndSRange =
4003 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4004
4005 // Check for signed overflow. This must be done with ConstantRange
4006 // arithmetic because we could be called from within the ScalarEvolution
4007 // overflow checking code.
4008 ConstantRange SExtStartSRange =
4009 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4010 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4011 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4012 SExtEndSRange) {
4013 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4014 EndSRange.getSignedMin());
4015 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4016 EndSRange.getSignedMax());
4017 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4018 if (!IsFullRange)
4019 ConservativeResult =
4020 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4021 }
Dan Gohmand261d272009-06-24 01:05:09 +00004022 }
Dan Gohmand261d272009-06-24 01:05:09 +00004023 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004024
Sanjoy Das91b54772015-03-09 21:43:43 +00004025 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004026 }
4027
Dan Gohmanc702fc02009-06-19 23:29:04 +00004028 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004029 // Check if the IR explicitly contains !range metadata.
4030 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4031 if (MDRange.hasValue())
4032 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4033
Sanjoy Das91b54772015-03-09 21:43:43 +00004034 // Split here to avoid paying the compile-time cost of calling both
4035 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4036 // if needed.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004037 const DataLayout &DL = F->getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004038 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4039 // For a SCEVUnknown, ask ValueTracking.
4040 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4041 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
4042 if (Ones != ~Zeros + 1)
4043 ConservativeResult =
4044 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4045 } else {
4046 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4047 "generalize as needed!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004048 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
4049 if (NS > 1)
4050 ConservativeResult = ConservativeResult.intersectWith(
4051 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4052 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004053 }
4054
4055 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004056 }
4057
Sanjoy Das91b54772015-03-09 21:43:43 +00004058 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004059}
4060
Chris Lattnerd934c702004-04-02 20:23:17 +00004061/// createSCEV - We know that there is no SCEV for the specified value.
4062/// Analyze the expression.
4063///
Dan Gohmanaf752342009-07-07 17:06:11 +00004064const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004065 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004066 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004067
Dan Gohman05e89732008-06-22 19:56:46 +00004068 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004069 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004070 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004071
4072 // Don't attempt to analyze instructions in blocks that aren't
4073 // reachable. Such instructions don't matter, and they aren't required
4074 // to obey basic rules for definitions dominating uses which this
4075 // analysis depends on.
4076 if (!DT->isReachableFromEntry(I->getParent()))
4077 return getUnknown(V);
4078 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004079 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004080 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4081 return getConstant(CI);
4082 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004083 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004084 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4085 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004086 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004087 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004088
Dan Gohman80ca01c2009-07-17 20:47:02 +00004089 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004090 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004091 case Instruction::Add: {
4092 // The simple thing to do would be to just call getSCEV on both operands
4093 // and call getAddExpr with the result. However if we're looking at a
4094 // bunch of things all added together, this can be quite inefficient,
4095 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4096 // Instead, gather up all the operands and make a single getAddExpr call.
4097 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004098 //
4099 // Don't apply this instruction's NSW or NUW flags to the new
4100 // expression. The instruction may be guarded by control flow that the
4101 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4102 // mapped to the same SCEV expression, and it would be incorrect to transfer
4103 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004104 SmallVector<const SCEV *, 4> AddOps;
4105 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004106 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4107 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4108 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4109 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004110 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004111 const SCEV *Op1 = getSCEV(U->getOperand(1));
4112 if (Opcode == Instruction::Sub)
4113 AddOps.push_back(getNegativeSCEV(Op1));
4114 else
4115 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004116 }
4117 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004118 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004119 }
4120 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004121 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004122 SmallVector<const SCEV *, 4> MulOps;
4123 MulOps.push_back(getSCEV(U->getOperand(1)));
4124 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004125 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004126 Op = U->getOperand(0)) {
4127 U = cast<Operator>(Op);
4128 MulOps.push_back(getSCEV(U->getOperand(1)));
4129 }
4130 MulOps.push_back(getSCEV(U->getOperand(0)));
4131 return getMulExpr(MulOps);
4132 }
Dan Gohman05e89732008-06-22 19:56:46 +00004133 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004134 return getUDivExpr(getSCEV(U->getOperand(0)),
4135 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004136 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004137 return getMinusSCEV(getSCEV(U->getOperand(0)),
4138 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004139 case Instruction::And:
4140 // For an expression like x&255 that merely masks off the high bits,
4141 // use zext(trunc(x)) as the SCEV expression.
4142 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004143 if (CI->isNullValue())
4144 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004145 if (CI->isAllOnesValue())
4146 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004147 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004148
4149 // Instcombine's ShrinkDemandedConstant may strip bits out of
4150 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004151 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004152 // knew about to reconstruct a low-bits mask value.
4153 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004154 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004155 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004156 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004157 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
4158 F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004159
Nick Lewycky31eaca52014-01-27 10:04:03 +00004160 APInt EffectiveMask =
4161 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4162 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4163 const SCEV *MulCount = getConstant(
4164 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4165 return getMulExpr(
4166 getZeroExtendExpr(
4167 getTruncateExpr(
4168 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4169 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4170 U->getType()),
4171 MulCount);
4172 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004173 }
4174 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004175
Dan Gohman05e89732008-06-22 19:56:46 +00004176 case Instruction::Or:
4177 // If the RHS of the Or is a constant, we may have something like:
4178 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4179 // optimizations will transparently handle this case.
4180 //
4181 // In order for this transformation to be safe, the LHS must be of the
4182 // form X*(2^n) and the Or constant must be less than 2^n.
4183 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004184 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004185 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004186 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004187 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4188 // Build a plain add SCEV.
4189 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4190 // If the LHS of the add was an addrec and it has no-wrap flags,
4191 // transfer the no-wrap flags, since an or won't introduce a wrap.
4192 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4193 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004194 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4195 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004196 }
4197 return S;
4198 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004199 }
Dan Gohman05e89732008-06-22 19:56:46 +00004200 break;
4201 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004202 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004203 // If the RHS of the xor is a signbit, then this is just an add.
4204 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004205 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004206 return getAddExpr(getSCEV(U->getOperand(0)),
4207 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004208
4209 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004210 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004211 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004212
4213 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4214 // This is a variant of the check for xor with -1, and it handles
4215 // the case where instcombine has trimmed non-demanded bits out
4216 // of an xor with -1.
4217 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4218 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4219 if (BO->getOpcode() == Instruction::And &&
4220 LCI->getValue() == CI->getValue())
4221 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004222 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004223 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004224 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004225 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004226 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4227
Dan Gohman8b0a4192010-03-01 17:49:51 +00004228 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004229 // mask off the high bits. Complement the operand and
4230 // re-apply the zext.
4231 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4232 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4233
4234 // If C is a single bit, it may be in the sign-bit position
4235 // before the zero-extend. In this case, represent the xor
4236 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004237 APInt Trunc = CI->getValue().trunc(Z0TySize);
4238 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004239 Trunc.isSignBit())
4240 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4241 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004242 }
Dan Gohman05e89732008-06-22 19:56:46 +00004243 }
4244 break;
4245
4246 case Instruction::Shl:
4247 // Turn shift left of a constant amount into a multiply.
4248 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004249 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004250
4251 // If the shift count is not less than the bitwidth, the result of
4252 // the shift is undefined. Don't try to analyze it, because the
4253 // resolution chosen here may differ from the resolution chosen in
4254 // other parts of the compiler.
4255 if (SA->getValue().uge(BitWidth))
4256 break;
4257
Owen Andersonedb4a702009-07-24 23:12:02 +00004258 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004259 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004260 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004261 }
4262 break;
4263
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004264 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004265 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004266 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004267 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004268
4269 // If the shift count is not less than the bitwidth, the result of
4270 // the shift is undefined. Don't try to analyze it, because the
4271 // resolution chosen here may differ from the resolution chosen in
4272 // other parts of the compiler.
4273 if (SA->getValue().uge(BitWidth))
4274 break;
4275
Owen Andersonedb4a702009-07-24 23:12:02 +00004276 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004277 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004278 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004279 }
4280 break;
4281
Dan Gohman0ec05372009-04-21 02:26:00 +00004282 case Instruction::AShr:
4283 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4284 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004285 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004286 if (L->getOpcode() == Instruction::Shl &&
4287 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004288 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4289
4290 // If the shift count is not less than the bitwidth, the result of
4291 // the shift is undefined. Don't try to analyze it, because the
4292 // resolution chosen here may differ from the resolution chosen in
4293 // other parts of the compiler.
4294 if (CI->getValue().uge(BitWidth))
4295 break;
4296
Dan Gohmandf199482009-04-25 17:05:40 +00004297 uint64_t Amt = BitWidth - CI->getZExtValue();
4298 if (Amt == BitWidth)
4299 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004300 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004301 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004302 IntegerType::get(getContext(),
4303 Amt)),
4304 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004305 }
4306 break;
4307
Dan Gohman05e89732008-06-22 19:56:46 +00004308 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004309 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004310
4311 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004312 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004313
4314 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004315 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004316
4317 case Instruction::BitCast:
4318 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004319 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004320 return getSCEV(U->getOperand(0));
4321 break;
4322
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004323 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4324 // lead to pointer expressions which cannot safely be expanded to GEPs,
4325 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4326 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004327
Dan Gohmanee750d12009-05-08 20:26:55 +00004328 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004329 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004330
Dan Gohman05e89732008-06-22 19:56:46 +00004331 case Instruction::PHI:
4332 return createNodeForPHI(cast<PHINode>(U));
4333
4334 case Instruction::Select:
4335 // This could be a smax or umax that was lowered earlier.
4336 // Try to recover it.
4337 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4338 Value *LHS = ICI->getOperand(0);
4339 Value *RHS = ICI->getOperand(1);
4340 switch (ICI->getPredicate()) {
4341 case ICmpInst::ICMP_SLT:
4342 case ICmpInst::ICMP_SLE:
4343 std::swap(LHS, RHS);
4344 // fall through
4345 case ICmpInst::ICMP_SGT:
4346 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004347 // a >s b ? a+x : b+x -> smax(a, b)+x
4348 // a >s b ? b+x : a+x -> smin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004349 if (getTypeSizeInBits(LHS->getType()) <=
4350 getTypeSizeInBits(U->getType())) {
4351 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4352 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004353 const SCEV *LA = getSCEV(U->getOperand(1));
4354 const SCEV *RA = getSCEV(U->getOperand(2));
4355 const SCEV *LDiff = getMinusSCEV(LA, LS);
4356 const SCEV *RDiff = getMinusSCEV(RA, RS);
4357 if (LDiff == RDiff)
4358 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4359 LDiff = getMinusSCEV(LA, RS);
4360 RDiff = getMinusSCEV(RA, LS);
4361 if (LDiff == RDiff)
4362 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4363 }
Dan Gohman05e89732008-06-22 19:56:46 +00004364 break;
4365 case ICmpInst::ICMP_ULT:
4366 case ICmpInst::ICMP_ULE:
4367 std::swap(LHS, RHS);
4368 // fall through
4369 case ICmpInst::ICMP_UGT:
4370 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004371 // a >u b ? a+x : b+x -> umax(a, b)+x
4372 // a >u b ? b+x : a+x -> umin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004373 if (getTypeSizeInBits(LHS->getType()) <=
4374 getTypeSizeInBits(U->getType())) {
4375 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4376 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004377 const SCEV *LA = getSCEV(U->getOperand(1));
4378 const SCEV *RA = getSCEV(U->getOperand(2));
4379 const SCEV *LDiff = getMinusSCEV(LA, LS);
4380 const SCEV *RDiff = getMinusSCEV(RA, RS);
4381 if (LDiff == RDiff)
4382 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4383 LDiff = getMinusSCEV(LA, RS);
4384 RDiff = getMinusSCEV(RA, LS);
4385 if (LDiff == RDiff)
4386 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4387 }
Dan Gohman05e89732008-06-22 19:56:46 +00004388 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004389 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004390 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004391 if (getTypeSizeInBits(LHS->getType()) <=
4392 getTypeSizeInBits(U->getType()) &&
4393 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4394 const SCEV *One = getConstant(U->getType(), 1);
4395 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004396 const SCEV *LA = getSCEV(U->getOperand(1));
4397 const SCEV *RA = getSCEV(U->getOperand(2));
4398 const SCEV *LDiff = getMinusSCEV(LA, LS);
4399 const SCEV *RDiff = getMinusSCEV(RA, One);
4400 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004401 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004402 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004403 break;
4404 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004405 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004406 if (getTypeSizeInBits(LHS->getType()) <=
4407 getTypeSizeInBits(U->getType()) &&
4408 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4409 const SCEV *One = getConstant(U->getType(), 1);
4410 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004411 const SCEV *LA = getSCEV(U->getOperand(1));
4412 const SCEV *RA = getSCEV(U->getOperand(2));
4413 const SCEV *LDiff = getMinusSCEV(LA, One);
4414 const SCEV *RDiff = getMinusSCEV(RA, LS);
4415 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004416 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004417 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004418 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004419 default:
4420 break;
4421 }
4422 }
4423
4424 default: // We cannot analyze this expression.
4425 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004426 }
4427
Dan Gohmanc8e23622009-04-21 23:15:49 +00004428 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004429}
4430
4431
4432
4433//===----------------------------------------------------------------------===//
4434// Iteration Count Computation Code
4435//
4436
Chandler Carruth6666c272014-10-11 00:12:11 +00004437unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4438 if (BasicBlock *ExitingBB = L->getExitingBlock())
4439 return getSmallConstantTripCount(L, ExitingBB);
4440
4441 // No trip count information for multiple exits.
4442 return 0;
4443}
4444
Andrew Trick2b6860f2011-08-11 23:36:16 +00004445/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004446/// normal unsigned value. Returns 0 if the trip count is unknown or not
4447/// constant. Will also return 0 if the maximum trip count is very large (>=
4448/// 2^32).
4449///
4450/// This "trip count" assumes that control exits via ExitingBlock. More
4451/// precisely, it is the number of times that control may reach ExitingBlock
4452/// before taking the branch. For loops with multiple exits, it may not be the
4453/// number times that the loop header executes because the loop may exit
4454/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004455unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4456 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004457 assert(ExitingBlock && "Must pass a non-null exiting block!");
4458 assert(L->isLoopExiting(ExitingBlock) &&
4459 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004460 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004461 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004462 if (!ExitCount)
4463 return 0;
4464
4465 ConstantInt *ExitConst = ExitCount->getValue();
4466
4467 // Guard against huge trip counts.
4468 if (ExitConst->getValue().getActiveBits() > 32)
4469 return 0;
4470
4471 // In case of integer overflow, this returns 0, which is correct.
4472 return ((unsigned)ExitConst->getZExtValue()) + 1;
4473}
4474
Chandler Carruth6666c272014-10-11 00:12:11 +00004475unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4476 if (BasicBlock *ExitingBB = L->getExitingBlock())
4477 return getSmallConstantTripMultiple(L, ExitingBB);
4478
4479 // No trip multiple information for multiple exits.
4480 return 0;
4481}
4482
Andrew Trick2b6860f2011-08-11 23:36:16 +00004483/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4484/// trip count of this loop as a normal unsigned value, if possible. This
4485/// means that the actual trip count is always a multiple of the returned
4486/// value (don't forget the trip count could very well be zero as well!).
4487///
4488/// Returns 1 if the trip count is unknown or not guaranteed to be the
4489/// multiple of a constant (which is also the case if the trip count is simply
4490/// constant, use getSmallConstantTripCount for that case), Will also return 1
4491/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004492///
4493/// As explained in the comments for getSmallConstantTripCount, this assumes
4494/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004495unsigned
4496ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4497 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004498 assert(ExitingBlock && "Must pass a non-null exiting block!");
4499 assert(L->isLoopExiting(ExitingBlock) &&
4500 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004501 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004502 if (ExitCount == getCouldNotCompute())
4503 return 1;
4504
4505 // Get the trip count from the BE count by adding 1.
4506 const SCEV *TCMul = getAddExpr(ExitCount,
4507 getConstant(ExitCount->getType(), 1));
4508 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4509 // to factor simple cases.
4510 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4511 TCMul = Mul->getOperand(0);
4512
4513 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4514 if (!MulC)
4515 return 1;
4516
4517 ConstantInt *Result = MulC->getValue();
4518
Hal Finkel30bd9342012-10-24 19:46:44 +00004519 // Guard against huge trip counts (this requires checking
4520 // for zero to handle the case where the trip count == -1 and the
4521 // addition wraps).
4522 if (!Result || Result->getValue().getActiveBits() > 32 ||
4523 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004524 return 1;
4525
4526 return (unsigned)Result->getZExtValue();
4527}
4528
Andrew Trick3ca3f982011-07-26 17:19:55 +00004529// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004530// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004531// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004532const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4533 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004534}
4535
Dan Gohman0bddac12009-02-24 18:55:53 +00004536/// getBackedgeTakenCount - If the specified loop has a predictable
4537/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4538/// object. The backedge-taken count is the number of times the loop header
4539/// will be branched to from within the loop. This is one less than the
4540/// trip count of the loop, since it doesn't count the first iteration,
4541/// when the header is branched to from outside the loop.
4542///
4543/// Note that it is not valid to call this method on a loop without a
4544/// loop-invariant backedge-taken count (see
4545/// hasLoopInvariantBackedgeTakenCount).
4546///
Dan Gohmanaf752342009-07-07 17:06:11 +00004547const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004548 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004549}
4550
4551/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4552/// return the least SCEV value that is known never to be less than the
4553/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004554const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004555 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004556}
4557
Dan Gohmandc191042009-07-08 19:23:34 +00004558/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4559/// onto the given Worklist.
4560static void
4561PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4562 BasicBlock *Header = L->getHeader();
4563
4564 // Push all Loop-header PHIs onto the Worklist stack.
4565 for (BasicBlock::iterator I = Header->begin();
4566 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4567 Worklist.push_back(PN);
4568}
4569
Dan Gohman2b8da352009-04-30 20:47:05 +00004570const ScalarEvolution::BackedgeTakenInfo &
4571ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004572 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004573 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004574 // update the value. The temporary CouldNotCompute value tells SCEV
4575 // code elsewhere that it shouldn't attempt to request a new
4576 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004577 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004578 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004579 if (!Pair.second)
4580 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004581
Andrew Trick3ca3f982011-07-26 17:19:55 +00004582 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4583 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4584 // must be cleared in this scope.
4585 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4586
4587 if (Result.getExact(this) != getCouldNotCompute()) {
4588 assert(isLoopInvariant(Result.getExact(this), L) &&
4589 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004590 "Computed backedge-taken count isn't loop invariant for loop!");
4591 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004592 }
4593 else if (Result.getMax(this) == getCouldNotCompute() &&
4594 isa<PHINode>(L->getHeader()->begin())) {
4595 // Only count loops that have phi nodes as not being computable.
4596 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004597 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004598
Chris Lattnera337f5e2011-01-09 02:16:18 +00004599 // Now that we know more about the trip count for this loop, forget any
4600 // existing SCEV values for PHI nodes in this loop since they are only
4601 // conservative estimates made without the benefit of trip count
4602 // information. This is similar to the code in forgetLoop, except that
4603 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004604 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004605 SmallVector<Instruction *, 16> Worklist;
4606 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004607
Chris Lattnera337f5e2011-01-09 02:16:18 +00004608 SmallPtrSet<Instruction *, 8> Visited;
4609 while (!Worklist.empty()) {
4610 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004611 if (!Visited.insert(I).second)
4612 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004613
Chris Lattnera337f5e2011-01-09 02:16:18 +00004614 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004615 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004616 if (It != ValueExprMap.end()) {
4617 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004618
Chris Lattnera337f5e2011-01-09 02:16:18 +00004619 // SCEVUnknown for a PHI either means that it has an unrecognized
4620 // structure, or it's a PHI that's in the progress of being computed
4621 // by createNodeForPHI. In the former case, additional loop trip
4622 // count information isn't going to change anything. In the later
4623 // case, createNodeForPHI will perform the necessary updates on its
4624 // own when it gets to that point.
4625 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4626 forgetMemoizedResults(Old);
4627 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004628 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004629 if (PHINode *PN = dyn_cast<PHINode>(I))
4630 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004631 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004632
4633 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004634 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004635 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004636
4637 // Re-lookup the insert position, since the call to
4638 // ComputeBackedgeTakenCount above could result in a
4639 // recusive call to getBackedgeTakenInfo (on a different
4640 // loop), which would invalidate the iterator computed
4641 // earlier.
4642 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004643}
4644
Dan Gohman880c92a2009-10-31 15:04:55 +00004645/// forgetLoop - This method should be called by the client when it has
4646/// changed a loop in a way that may effect ScalarEvolution's ability to
4647/// compute a trip count, or if the loop is deleted.
4648void ScalarEvolution::forgetLoop(const Loop *L) {
4649 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004650 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4651 BackedgeTakenCounts.find(L);
4652 if (BTCPos != BackedgeTakenCounts.end()) {
4653 BTCPos->second.clear();
4654 BackedgeTakenCounts.erase(BTCPos);
4655 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004656
Dan Gohman880c92a2009-10-31 15:04:55 +00004657 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004658 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004659 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004660
Dan Gohmandc191042009-07-08 19:23:34 +00004661 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004662 while (!Worklist.empty()) {
4663 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004664 if (!Visited.insert(I).second)
4665 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004666
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004667 ValueExprMapType::iterator It =
4668 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004669 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004670 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004671 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004672 if (PHINode *PN = dyn_cast<PHINode>(I))
4673 ConstantEvolutionLoopExitValue.erase(PN);
4674 }
4675
4676 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004677 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004678
4679 // Forget all contained loops too, to avoid dangling entries in the
4680 // ValuesAtScopes map.
4681 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4682 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004683}
4684
Eric Christopheref6d5932010-07-29 01:25:38 +00004685/// forgetValue - This method should be called by the client when it has
4686/// changed a value in a way that may effect its value, or which may
4687/// disconnect it from a def-use chain linking it to a loop.
4688void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004689 Instruction *I = dyn_cast<Instruction>(V);
4690 if (!I) return;
4691
4692 // Drop information about expressions based on loop-header PHIs.
4693 SmallVector<Instruction *, 16> Worklist;
4694 Worklist.push_back(I);
4695
4696 SmallPtrSet<Instruction *, 8> Visited;
4697 while (!Worklist.empty()) {
4698 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004699 if (!Visited.insert(I).second)
4700 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004701
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004702 ValueExprMapType::iterator It =
4703 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004704 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004705 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004706 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004707 if (PHINode *PN = dyn_cast<PHINode>(I))
4708 ConstantEvolutionLoopExitValue.erase(PN);
4709 }
4710
4711 PushDefUseChildren(I, Worklist);
4712 }
4713}
4714
Andrew Trick3ca3f982011-07-26 17:19:55 +00004715/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004716/// exits. A computable result can only be return for loops with a single exit.
4717/// Returning the minimum taken count among all exits is incorrect because one
4718/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4719/// the limit of each loop test is never skipped. This is a valid assumption as
4720/// long as the loop exits via that test. For precise results, it is the
4721/// caller's responsibility to specify the relevant loop exit using
4722/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004723const SCEV *
4724ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4725 // If any exits were not computable, the loop is not computable.
4726 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4727
Andrew Trick90c7a102011-11-16 00:52:40 +00004728 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004729 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004730 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4731
Craig Topper9f008862014-04-15 04:59:12 +00004732 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004733 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004734 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004735
4736 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4737
4738 if (!BECount)
4739 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004740 else if (BECount != ENT->ExactNotTaken)
4741 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004742 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004743 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004744 return BECount;
4745}
4746
4747/// getExact - Get the exact not taken count for this loop exit.
4748const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004749ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004750 ScalarEvolution *SE) const {
4751 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004752 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004753
Andrew Trick77c55422011-08-02 04:23:35 +00004754 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004755 return ENT->ExactNotTaken;
4756 }
4757 return SE->getCouldNotCompute();
4758}
4759
4760/// getMax - Get the max backedge taken count for the loop.
4761const SCEV *
4762ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4763 return Max ? Max : SE->getCouldNotCompute();
4764}
4765
Andrew Trick9093e152013-03-26 03:14:53 +00004766bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4767 ScalarEvolution *SE) const {
4768 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4769 return true;
4770
4771 if (!ExitNotTaken.ExitingBlock)
4772 return false;
4773
4774 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004775 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004776
4777 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4778 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4779 return true;
4780 }
4781 }
4782 return false;
4783}
4784
Andrew Trick3ca3f982011-07-26 17:19:55 +00004785/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4786/// computable exit into a persistent ExitNotTakenInfo array.
4787ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4788 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4789 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4790
4791 if (!Complete)
4792 ExitNotTaken.setIncomplete();
4793
4794 unsigned NumExits = ExitCounts.size();
4795 if (NumExits == 0) return;
4796
Andrew Trick77c55422011-08-02 04:23:35 +00004797 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004798 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4799 if (NumExits == 1) return;
4800
4801 // Handle the rare case of multiple computable exits.
4802 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4803
4804 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4805 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4806 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004807 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004808 ENT->ExactNotTaken = ExitCounts[i].second;
4809 }
4810}
4811
4812/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4813void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004814 ExitNotTaken.ExitingBlock = nullptr;
4815 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004816 delete[] ExitNotTaken.getNextExit();
4817}
4818
Dan Gohman0bddac12009-02-24 18:55:53 +00004819/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4820/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004821ScalarEvolution::BackedgeTakenInfo
4822ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004823 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004824 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004825
Andrew Trick839e30b2014-05-23 19:47:13 +00004826 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004827 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004828 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004829 const SCEV *MustExitMaxBECount = nullptr;
4830 const SCEV *MayExitMaxBECount = nullptr;
4831
4832 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4833 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004834 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004835 BasicBlock *ExitBB = ExitingBlocks[i];
4836 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4837
4838 // 1. For each exit that can be computed, add an entry to ExitCounts.
4839 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004840 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004841 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004842 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004843 CouldComputeBECount = false;
4844 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004845 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004846
Andrew Trick839e30b2014-05-23 19:47:13 +00004847 // 2. Derive the loop's MaxBECount from each exit's max number of
4848 // non-exiting iterations. Partition the loop exits into two kinds:
4849 // LoopMustExits and LoopMayExits.
4850 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004851 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4852 // is a LoopMayExit. If any computable LoopMustExit is found, then
4853 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4854 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4855 // considered greater than any computable EL.Max.
4856 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004857 DT->dominates(ExitBB, Latch)) {
4858 if (!MustExitMaxBECount)
4859 MustExitMaxBECount = EL.Max;
4860 else {
4861 MustExitMaxBECount =
4862 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004863 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004864 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4865 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4866 MayExitMaxBECount = EL.Max;
4867 else {
4868 MayExitMaxBECount =
4869 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4870 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004871 }
Dan Gohman96212b62009-06-22 00:31:57 +00004872 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004873 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4874 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004875 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004876}
4877
Andrew Trick3ca3f982011-07-26 17:19:55 +00004878/// ComputeExitLimit - Compute the number of times the backedge of the specified
4879/// loop will execute if it exits via the specified block.
4880ScalarEvolution::ExitLimit
4881ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004882
4883 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004884 // exit at this block and remember the exit block and whether all other targets
4885 // lead to the loop header.
4886 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004887 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004888 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4889 SI != SE; ++SI)
4890 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004891 if (Exit) // Multiple exit successors.
4892 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004893 Exit = *SI;
4894 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004895 MustExecuteLoopHeader = false;
4896 }
Dan Gohmance973df2009-06-24 04:48:43 +00004897
Chris Lattner18954852007-01-07 02:24:26 +00004898 // At this point, we know we have a conditional branch that determines whether
4899 // the loop is exited. However, we don't know if the branch is executed each
4900 // time through the loop. If not, then the execution count of the branch will
4901 // not be equal to the trip count of the loop.
4902 //
4903 // Currently we check for this by checking to see if the Exit branch goes to
4904 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004905 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004906 // loop header. This is common for un-rotated loops.
4907 //
4908 // If both of those tests fail, walk up the unique predecessor chain to the
4909 // header, stopping if there is an edge that doesn't exit the loop. If the
4910 // header is reached, the execution count of the branch will be equal to the
4911 // trip count of the loop.
4912 //
4913 // More extensive analysis could be done to handle more cases here.
4914 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004915 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004916 // The simple checks failed, try climbing the unique predecessor chain
4917 // up to the header.
4918 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004919 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004920 BasicBlock *Pred = BB->getUniquePredecessor();
4921 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004922 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004923 TerminatorInst *PredTerm = Pred->getTerminator();
4924 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4925 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4926 if (PredSucc == BB)
4927 continue;
4928 // If the predecessor has a successor that isn't BB and isn't
4929 // outside the loop, assume the worst.
4930 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004931 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004932 }
4933 if (Pred == L->getHeader()) {
4934 Ok = true;
4935 break;
4936 }
4937 BB = Pred;
4938 }
4939 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004940 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004941 }
4942
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004943 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004944 TerminatorInst *Term = ExitingBlock->getTerminator();
4945 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4946 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4947 // Proceed to the next level to examine the exit condition expression.
4948 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4949 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004950 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004951 }
4952
4953 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4954 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004955 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004956
4957 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004958}
4959
Andrew Trick3ca3f982011-07-26 17:19:55 +00004960/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004961/// backedge of the specified loop will execute if its exit condition
4962/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004963///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004964/// @param ControlsExit is true if ExitCond directly controls the exit
4965/// branch. In this case, we can assume that the loop exits only if the
4966/// condition is true and can infer that failing to meet the condition prior to
4967/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004968ScalarEvolution::ExitLimit
4969ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4970 Value *ExitCond,
4971 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004972 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004973 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004974 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004975 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4976 if (BO->getOpcode() == Instruction::And) {
4977 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004978 bool EitherMayExit = L->contains(TBB);
4979 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004980 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004981 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004982 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004983 const SCEV *BECount = getCouldNotCompute();
4984 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004985 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004986 // Both conditions must be true for the loop to continue executing.
4987 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004988 if (EL0.Exact == getCouldNotCompute() ||
4989 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004990 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004991 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004992 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4993 if (EL0.Max == getCouldNotCompute())
4994 MaxBECount = EL1.Max;
4995 else if (EL1.Max == getCouldNotCompute())
4996 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004997 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004998 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004999 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005000 // Both conditions must be true at the same time for the loop to exit.
5001 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005002 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005003 if (EL0.Max == EL1.Max)
5004 MaxBECount = EL0.Max;
5005 if (EL0.Exact == EL1.Exact)
5006 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005007 }
5008
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005009 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005010 }
5011 if (BO->getOpcode() == Instruction::Or) {
5012 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005013 bool EitherMayExit = L->contains(FBB);
5014 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005015 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005016 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005017 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005018 const SCEV *BECount = getCouldNotCompute();
5019 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005020 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005021 // Both conditions must be false for the loop to continue executing.
5022 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005023 if (EL0.Exact == getCouldNotCompute() ||
5024 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005025 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005026 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005027 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5028 if (EL0.Max == getCouldNotCompute())
5029 MaxBECount = EL1.Max;
5030 else if (EL1.Max == getCouldNotCompute())
5031 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005032 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005033 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005034 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005035 // Both conditions must be false at the same time for the loop to exit.
5036 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005037 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005038 if (EL0.Max == EL1.Max)
5039 MaxBECount = EL0.Max;
5040 if (EL0.Exact == EL1.Exact)
5041 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005042 }
5043
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005044 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005045 }
5046 }
5047
5048 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005049 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005050 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005051 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005052
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005053 // Check for a constant condition. These are normally stripped out by
5054 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5055 // preserve the CFG and is temporarily leaving constant conditions
5056 // in place.
5057 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5058 if (L->contains(FBB) == !CI->getZExtValue())
5059 // The backedge is always taken.
5060 return getCouldNotCompute();
5061 else
5062 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005063 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005064 }
5065
Eli Friedmanebf98b02009-05-09 12:32:42 +00005066 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005067 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005068}
5069
Andrew Trick3ca3f982011-07-26 17:19:55 +00005070/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005071/// backedge of the specified loop will execute if its exit condition
5072/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005073ScalarEvolution::ExitLimit
5074ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5075 ICmpInst *ExitCond,
5076 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005077 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005078 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005079
Reid Spencer266e42b2006-12-23 06:05:41 +00005080 // If the condition was exit on true, convert the condition to exit on false
5081 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005082 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005083 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005084 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005085 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005086
5087 // Handle common loops like: for (X = "string"; *X; ++X)
5088 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5089 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005090 ExitLimit ItCnt =
5091 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005092 if (ItCnt.hasAnyInfo())
5093 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005094 }
5095
Dan Gohmanaf752342009-07-07 17:06:11 +00005096 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5097 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005098
5099 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005100 LHS = getSCEVAtScope(LHS, L);
5101 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005102
Dan Gohmance973df2009-06-24 04:48:43 +00005103 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005104 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005105 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005106 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005107 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005108 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005109 }
5110
Dan Gohman81585c12010-05-03 16:35:17 +00005111 // Simplify the operands before analyzing them.
5112 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5113
Chris Lattnerd934c702004-04-02 20:23:17 +00005114 // If we have a comparison of a chrec against a constant, try to use value
5115 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005116 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5117 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005118 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005119 // Form the constant range.
5120 ConstantRange CompRange(
5121 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005122
Dan Gohmanaf752342009-07-07 17:06:11 +00005123 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005124 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005125 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005126
Chris Lattnerd934c702004-04-02 20:23:17 +00005127 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005128 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005129 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005130 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005131 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005132 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005133 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005134 case ICmpInst::ICMP_EQ: { // while (X == Y)
5135 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005136 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5137 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005138 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005139 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005140 case ICmpInst::ICMP_SLT:
5141 case ICmpInst::ICMP_ULT: { // while (X < Y)
5142 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005143 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005144 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005145 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005146 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005147 case ICmpInst::ICMP_SGT:
5148 case ICmpInst::ICMP_UGT: { // while (X > Y)
5149 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005150 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005151 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005152 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005153 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005154 default:
Chris Lattner09169212004-04-02 20:26:46 +00005155#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005156 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005157 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005158 dbgs() << "[unsigned] ";
5159 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005160 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005161 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005162#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005163 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005164 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005165 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005166}
5167
Benjamin Kramer5a188542014-02-11 15:44:32 +00005168ScalarEvolution::ExitLimit
5169ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5170 SwitchInst *Switch,
5171 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005172 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005173 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5174
5175 // Give up if the exit is the default dest of a switch.
5176 if (Switch->getDefaultDest() == ExitingBlock)
5177 return getCouldNotCompute();
5178
5179 assert(L->contains(Switch->getDefaultDest()) &&
5180 "Default case must not exit the loop!");
5181 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5182 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5183
5184 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005185 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005186 if (EL.hasAnyInfo())
5187 return EL;
5188
5189 return getCouldNotCompute();
5190}
5191
Chris Lattnerec901cc2004-10-12 01:49:27 +00005192static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005193EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5194 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005195 const SCEV *InVal = SE.getConstant(C);
5196 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005197 assert(isa<SCEVConstant>(Val) &&
5198 "Evaluation of SCEV at constant didn't fold correctly?");
5199 return cast<SCEVConstant>(Val)->getValue();
5200}
5201
Andrew Trick3ca3f982011-07-26 17:19:55 +00005202/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005203/// 'icmp op load X, cst', try to see if we can compute the backedge
5204/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005205ScalarEvolution::ExitLimit
5206ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5207 LoadInst *LI,
5208 Constant *RHS,
5209 const Loop *L,
5210 ICmpInst::Predicate predicate) {
5211
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005212 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005213
5214 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005215 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005216 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005217 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005218
5219 // Make sure that it is really a constant global we are gepping, with an
5220 // initializer, and make sure the first IDX is really 0.
5221 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005222 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005223 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5224 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005225 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005226
5227 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005228 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005229 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005230 unsigned VarIdxNum = 0;
5231 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5232 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5233 Indexes.push_back(CI);
5234 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005235 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005236 VarIdx = GEP->getOperand(i);
5237 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005238 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005239 }
5240
Andrew Trick7004e4b2012-03-26 22:33:59 +00005241 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5242 if (!VarIdx)
5243 return getCouldNotCompute();
5244
Chris Lattnerec901cc2004-10-12 01:49:27 +00005245 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5246 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005247 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005248 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005249
5250 // We can only recognize very limited forms of loop index expressions, in
5251 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005252 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005253 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005254 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5255 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005256 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005257
5258 unsigned MaxSteps = MaxBruteForceIterations;
5259 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005260 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005261 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005262 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005263
5264 // Form the GEP offset.
5265 Indexes[VarIdxNum] = Val;
5266
Chris Lattnere166a852012-01-24 05:49:24 +00005267 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5268 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005269 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005270
5271 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005272 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005273 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005274 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005275#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005276 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005277 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5278 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005279#endif
5280 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005281 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005282 }
5283 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005284 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005285}
5286
5287
Chris Lattnerdd730472004-04-17 22:58:41 +00005288/// CanConstantFold - Return true if we can constant fold an instruction of the
5289/// specified type, assuming that all operands were constants.
5290static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005291 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005292 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5293 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005294 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005295
Chris Lattnerdd730472004-04-17 22:58:41 +00005296 if (const CallInst *CI = dyn_cast<CallInst>(I))
5297 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005298 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005299 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005300}
5301
Andrew Trick3a86ba72011-10-05 03:25:31 +00005302/// Determine whether this instruction can constant evolve within this loop
5303/// assuming its operands can all constant evolve.
5304static bool canConstantEvolve(Instruction *I, const Loop *L) {
5305 // An instruction outside of the loop can't be derived from a loop PHI.
5306 if (!L->contains(I)) return false;
5307
5308 if (isa<PHINode>(I)) {
5309 if (L->getHeader() == I->getParent())
5310 return true;
5311 else
5312 // We don't currently keep track of the control flow needed to evaluate
5313 // PHIs, so we cannot handle PHIs inside of loops.
5314 return false;
5315 }
5316
5317 // If we won't be able to constant fold this expression even if the operands
5318 // are constants, bail early.
5319 return CanConstantFold(I);
5320}
5321
5322/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5323/// recursing through each instruction operand until reaching a loop header phi.
5324static PHINode *
5325getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005326 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005327
5328 // Otherwise, we can evaluate this instruction if all of its operands are
5329 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005330 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005331 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5332 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5333
5334 if (isa<Constant>(*OpI)) continue;
5335
5336 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005337 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005338
5339 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005340 if (!P)
5341 // If this operand is already visited, reuse the prior result.
5342 // We may have P != PHI if this is the deepest point at which the
5343 // inconsistent paths meet.
5344 P = PHIMap.lookup(OpInst);
5345 if (!P) {
5346 // Recurse and memoize the results, whether a phi is found or not.
5347 // This recursive call invalidates pointers into PHIMap.
5348 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5349 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005350 }
Craig Topper9f008862014-04-15 04:59:12 +00005351 if (!P)
5352 return nullptr; // Not evolving from PHI
5353 if (PHI && PHI != P)
5354 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005355 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005356 }
5357 // This is a expression evolving from a constant PHI!
5358 return PHI;
5359}
5360
Chris Lattnerdd730472004-04-17 22:58:41 +00005361/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5362/// in the loop that V is derived from. We allow arbitrary operations along the
5363/// way, but the operands of an operation must either be constants or a value
5364/// derived from a constant PHI. If this expression does not fit with these
5365/// constraints, return null.
5366static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005367 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005368 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005369
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005370 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005371 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005372 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005373
Andrew Trick3a86ba72011-10-05 03:25:31 +00005374 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005375 DenseMap<Instruction *, PHINode *> PHIMap;
5376 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005377}
5378
5379/// EvaluateExpression - Given an expression that passes the
5380/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5381/// in the loop has the value PHIVal. If we can't fold this expression for some
5382/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005383static Constant *EvaluateExpression(Value *V, const Loop *L,
5384 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005385 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005386 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005387 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005388 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005389 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005390 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005391
Andrew Trick3a86ba72011-10-05 03:25:31 +00005392 if (Constant *C = Vals.lookup(I)) return C;
5393
Nick Lewyckya6674c72011-10-22 19:58:20 +00005394 // An instruction inside the loop depends on a value outside the loop that we
5395 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005396 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005397
5398 // An unmapped PHI can be due to a branch or another loop inside this loop,
5399 // or due to this not being the initial iteration through a loop where we
5400 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005401 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005402
Dan Gohmanf820bd32010-06-22 13:15:46 +00005403 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005404
5405 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005406 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5407 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005408 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005409 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005410 continue;
5411 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005412 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005413 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005414 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005415 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005416 }
5417
Nick Lewyckya6674c72011-10-22 19:58:20 +00005418 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005419 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005420 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005421 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5422 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005423 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005424 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005425 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005426 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005427}
5428
5429/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5430/// in the header of its containing loop, we know the loop executes a
5431/// constant number of times, and the PHI node is just a recurrence
5432/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005433Constant *
5434ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005435 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005436 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005437 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005438 ConstantEvolutionLoopExitValue.find(PN);
5439 if (I != ConstantEvolutionLoopExitValue.end())
5440 return I->second;
5441
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005442 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005443 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005444
5445 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5446
Andrew Trick3a86ba72011-10-05 03:25:31 +00005447 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005448 BasicBlock *Header = L->getHeader();
5449 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005450
Chris Lattnerdd730472004-04-17 22:58:41 +00005451 // Since the loop is canonicalized, the PHI node must have two entries. One
5452 // entry must be a constant (coming in from outside of the loop), and the
5453 // second must be derived from the same PHI.
5454 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005455 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005456 for (BasicBlock::iterator I = Header->begin();
5457 (PHI = dyn_cast<PHINode>(I)); ++I) {
5458 Constant *StartCST =
5459 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005460 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005461 CurrentIterVals[PHI] = StartCST;
5462 }
5463 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005464 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005465
5466 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005467
5468 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005469 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005470 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005471
Dan Gohman0bddac12009-02-24 18:55:53 +00005472 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005473 unsigned IterationNum = 0;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005474 const DataLayout &DL = F->getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005475 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005476 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005477 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005478
Nick Lewyckya6674c72011-10-22 19:58:20 +00005479 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005480 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005481 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005482 Constant *NextPHI =
5483 EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005484 if (!NextPHI)
5485 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005486 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005487
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005488 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5489
Nick Lewyckya6674c72011-10-22 19:58:20 +00005490 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5491 // cease to be able to evaluate one of them or if they stop evolving,
5492 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005493 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005494 for (DenseMap<Instruction *, Constant *>::const_iterator
5495 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5496 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005497 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005498 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5499 }
5500 // We use two distinct loops because EvaluateExpression may invalidate any
5501 // iterators into CurrentIterVals.
5502 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5503 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5504 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005505 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005506 if (!NextPHI) { // Not already computed.
5507 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005508 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005509 }
5510 if (NextPHI != I->second)
5511 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005512 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005513
5514 // If all entries in CurrentIterVals == NextIterVals then we can stop
5515 // iterating, the loop can't continue to change.
5516 if (StoppedEvolving)
5517 return RetVal = CurrentIterVals[PN];
5518
Andrew Trick3a86ba72011-10-05 03:25:31 +00005519 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005520 }
5521}
5522
Andrew Trick3ca3f982011-07-26 17:19:55 +00005523/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005524/// constant number of times (the condition evolves only from constants),
5525/// try to evaluate a few iterations of the loop until we get the exit
5526/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005527/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005528const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5529 Value *Cond,
5530 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005531 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005532 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005533
Dan Gohman866971e2010-06-19 14:17:24 +00005534 // If the loop is canonicalized, the PHI will have exactly two entries.
5535 // That's the only form we support here.
5536 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5537
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005538 DenseMap<Instruction *, Constant *> CurrentIterVals;
5539 BasicBlock *Header = L->getHeader();
5540 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5541
Dan Gohman866971e2010-06-19 14:17:24 +00005542 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005543 // second must be derived from the same PHI.
5544 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005545 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005546 for (BasicBlock::iterator I = Header->begin();
5547 (PHI = dyn_cast<PHINode>(I)); ++I) {
5548 Constant *StartCST =
5549 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005550 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005551 CurrentIterVals[PHI] = StartCST;
5552 }
5553 if (!CurrentIterVals.count(PN))
5554 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005555
5556 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5557 // the loop symbolically to determine when the condition gets a value of
5558 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005559 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005560 const DataLayout &DL = F->getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005561 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005562 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
5563 EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005564
Zhou Sheng75b871f2007-01-11 12:24:14 +00005565 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005566 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005567
Reid Spencer983e3b32007-03-01 07:25:48 +00005568 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005569 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005570 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005571 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005572
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005573 // Update all the PHI nodes for the next iteration.
5574 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005575
5576 // Create a list of which PHIs we need to compute. We want to do this before
5577 // calling EvaluateExpression on them because that may invalidate iterators
5578 // into CurrentIterVals.
5579 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005580 for (DenseMap<Instruction *, Constant *>::const_iterator
5581 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5582 PHINode *PHI = dyn_cast<PHINode>(I->first);
5583 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005584 PHIsToCompute.push_back(PHI);
5585 }
5586 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5587 E = PHIsToCompute.end(); I != E; ++I) {
5588 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005589 Constant *&NextPHI = NextIterVals[PHI];
5590 if (NextPHI) continue; // Already computed!
5591
5592 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005593 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005594 }
5595 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005596 }
5597
5598 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005599 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005600}
5601
Dan Gohman237d9e52009-09-03 15:00:26 +00005602/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005603/// at the specified scope in the program. The L value specifies a loop
5604/// nest to evaluate the expression at, where null is the top-level or a
5605/// specified loop is immediately inside of the loop.
5606///
5607/// This method can be used to compute the exit value for a variable defined
5608/// in a loop by querying what the value will hold in the parent loop.
5609///
Dan Gohman8ca08852009-05-24 23:25:42 +00005610/// In the case that a relevant loop exit value cannot be computed, the
5611/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005612const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005613 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005614 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5615 for (unsigned u = 0; u < Values.size(); u++) {
5616 if (Values[u].first == L)
5617 return Values[u].second ? Values[u].second : V;
5618 }
Craig Topper9f008862014-04-15 04:59:12 +00005619 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005620 // Otherwise compute it.
5621 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005622 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5623 for (unsigned u = Values2.size(); u > 0; u--) {
5624 if (Values2[u - 1].first == L) {
5625 Values2[u - 1].second = C;
5626 break;
5627 }
5628 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005629 return C;
5630}
5631
Nick Lewyckya6674c72011-10-22 19:58:20 +00005632/// This builds up a Constant using the ConstantExpr interface. That way, we
5633/// will return Constants for objects which aren't represented by a
5634/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5635/// Returns NULL if the SCEV isn't representable as a Constant.
5636static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005637 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005638 case scCouldNotCompute:
5639 case scAddRecExpr:
5640 break;
5641 case scConstant:
5642 return cast<SCEVConstant>(V)->getValue();
5643 case scUnknown:
5644 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5645 case scSignExtend: {
5646 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5647 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5648 return ConstantExpr::getSExt(CastOp, SS->getType());
5649 break;
5650 }
5651 case scZeroExtend: {
5652 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5653 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5654 return ConstantExpr::getZExt(CastOp, SZ->getType());
5655 break;
5656 }
5657 case scTruncate: {
5658 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5659 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5660 return ConstantExpr::getTrunc(CastOp, ST->getType());
5661 break;
5662 }
5663 case scAddExpr: {
5664 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5665 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005666 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5667 unsigned AS = PTy->getAddressSpace();
5668 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5669 C = ConstantExpr::getBitCast(C, DestPtrTy);
5670 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005671 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5672 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005673 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005674
5675 // First pointer!
5676 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005677 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005678 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005679 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005680 // The offsets have been converted to bytes. We can add bytes to an
5681 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005682 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005683 }
5684
5685 // Don't bother trying to sum two pointers. We probably can't
5686 // statically compute a load that results from it anyway.
5687 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005688 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005689
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005690 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5691 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005692 C2 = ConstantExpr::getIntegerCast(
5693 C2, Type::getInt32Ty(C->getContext()), true);
5694 C = ConstantExpr::getGetElementPtr(C, C2);
5695 } else
5696 C = ConstantExpr::getAdd(C, C2);
5697 }
5698 return C;
5699 }
5700 break;
5701 }
5702 case scMulExpr: {
5703 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5704 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5705 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005706 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005707 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5708 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005709 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005710 C = ConstantExpr::getMul(C, C2);
5711 }
5712 return C;
5713 }
5714 break;
5715 }
5716 case scUDivExpr: {
5717 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5718 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5719 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5720 if (LHS->getType() == RHS->getType())
5721 return ConstantExpr::getUDiv(LHS, RHS);
5722 break;
5723 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005724 case scSMaxExpr:
5725 case scUMaxExpr:
5726 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005727 }
Craig Topper9f008862014-04-15 04:59:12 +00005728 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005729}
5730
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005731const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005732 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005733
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005734 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005735 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005736 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005737 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005738 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005739 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5740 if (PHINode *PN = dyn_cast<PHINode>(I))
5741 if (PN->getParent() == LI->getHeader()) {
5742 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005743 // to see if the loop that contains it has a known backedge-taken
5744 // count. If so, we may be able to force computation of the exit
5745 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005746 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005747 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005748 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005749 // Okay, we know how many times the containing loop executes. If
5750 // this is a constant evolving PHI node, get the final value at
5751 // the specified iteration number.
5752 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005753 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005754 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005755 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005756 }
5757 }
5758
Reid Spencere6328ca2006-12-04 21:33:23 +00005759 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005760 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005761 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005762 // result. This is particularly useful for computing loop exit values.
5763 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005764 SmallVector<Constant *, 4> Operands;
5765 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005766 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5767 Value *Op = I->getOperand(i);
5768 if (Constant *C = dyn_cast<Constant>(Op)) {
5769 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005770 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005771 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005772
5773 // If any of the operands is non-constant and if they are
5774 // non-integer and non-pointer, don't even try to analyze them
5775 // with scev techniques.
5776 if (!isSCEVable(Op->getType()))
5777 return V;
5778
5779 const SCEV *OrigV = getSCEV(Op);
5780 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5781 MadeImprovement |= OrigV != OpV;
5782
Nick Lewyckya6674c72011-10-22 19:58:20 +00005783 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005784 if (!C) return V;
5785 if (C->getType() != Op->getType())
5786 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5787 Op->getType(),
5788 false),
5789 C, Op->getType());
5790 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005791 }
Dan Gohmance973df2009-06-24 04:48:43 +00005792
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005793 // Check to see if getSCEVAtScope actually made an improvement.
5794 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005795 Constant *C = nullptr;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005796 const DataLayout &DL = F->getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005797 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005798 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5799 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005800 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5801 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005802 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005803 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005804 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
5805 DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005806 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005807 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005808 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005809 }
5810 }
5811
5812 // This is some other type of SCEVUnknown, just return it.
5813 return V;
5814 }
5815
Dan Gohmana30370b2009-05-04 22:02:23 +00005816 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005817 // Avoid performing the look-up in the common case where the specified
5818 // expression has no loop-variant portions.
5819 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005820 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005821 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005822 // Okay, at least one of these operands is loop variant but might be
5823 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005824 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5825 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005826 NewOps.push_back(OpAtScope);
5827
5828 for (++i; i != e; ++i) {
5829 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005830 NewOps.push_back(OpAtScope);
5831 }
5832 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005833 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005834 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005835 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005836 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005837 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005838 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005839 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005840 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005841 }
5842 }
5843 // If we got here, all operands are loop invariant.
5844 return Comm;
5845 }
5846
Dan Gohmana30370b2009-05-04 22:02:23 +00005847 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005848 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5849 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005850 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5851 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005852 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005853 }
5854
5855 // If this is a loop recurrence for a loop that does not contain L, then we
5856 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005857 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005858 // First, attempt to evaluate each operand.
5859 // Avoid performing the look-up in the common case where the specified
5860 // expression has no loop-variant portions.
5861 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5862 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5863 if (OpAtScope == AddRec->getOperand(i))
5864 continue;
5865
5866 // Okay, at least one of these operands is loop variant but might be
5867 // foldable. Build a new instance of the folded commutative expression.
5868 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5869 AddRec->op_begin()+i);
5870 NewOps.push_back(OpAtScope);
5871 for (++i; i != e; ++i)
5872 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5873
Andrew Trick759ba082011-04-27 01:21:25 +00005874 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005875 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005876 AddRec->getNoWrapFlags(SCEV::FlagNW));
5877 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005878 // The addrec may be folded to a nonrecurrence, for example, if the
5879 // induction variable is multiplied by zero after constant folding. Go
5880 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005881 if (!AddRec)
5882 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005883 break;
5884 }
5885
5886 // If the scope is outside the addrec's loop, evaluate it by using the
5887 // loop exit value of the addrec.
5888 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005889 // To evaluate this recurrence, we need to know how many times the AddRec
5890 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005891 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005892 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005893
Eli Friedman61f67622008-08-04 23:49:06 +00005894 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005895 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005896 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005897
Dan Gohman8ca08852009-05-24 23:25:42 +00005898 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005899 }
5900
Dan Gohmana30370b2009-05-04 22:02:23 +00005901 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005902 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005903 if (Op == Cast->getOperand())
5904 return Cast; // must be loop invariant
5905 return getZeroExtendExpr(Op, Cast->getType());
5906 }
5907
Dan Gohmana30370b2009-05-04 22:02:23 +00005908 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005909 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005910 if (Op == Cast->getOperand())
5911 return Cast; // must be loop invariant
5912 return getSignExtendExpr(Op, Cast->getType());
5913 }
5914
Dan Gohmana30370b2009-05-04 22:02:23 +00005915 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005916 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005917 if (Op == Cast->getOperand())
5918 return Cast; // must be loop invariant
5919 return getTruncateExpr(Op, Cast->getType());
5920 }
5921
Torok Edwinfbcc6632009-07-14 16:55:14 +00005922 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005923}
5924
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005925/// getSCEVAtScope - This is a convenience function which does
5926/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005927const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005928 return getSCEVAtScope(getSCEV(V), L);
5929}
5930
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005931/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5932/// following equation:
5933///
5934/// A * X = B (mod N)
5935///
5936/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5937/// A and B isn't important.
5938///
5939/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005940static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005941 ScalarEvolution &SE) {
5942 uint32_t BW = A.getBitWidth();
5943 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5944 assert(A != 0 && "A must be non-zero.");
5945
5946 // 1. D = gcd(A, N)
5947 //
5948 // The gcd of A and N may have only one prime factor: 2. The number of
5949 // trailing zeros in A is its multiplicity
5950 uint32_t Mult2 = A.countTrailingZeros();
5951 // D = 2^Mult2
5952
5953 // 2. Check if B is divisible by D.
5954 //
5955 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5956 // is not less than multiplicity of this prime factor for D.
5957 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005958 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005959
5960 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5961 // modulo (N / D).
5962 //
5963 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5964 // bit width during computations.
5965 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5966 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005967 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005968 APInt I = AD.multiplicativeInverse(Mod);
5969
5970 // 4. Compute the minimum unsigned root of the equation:
5971 // I * (B / D) mod (N / D)
5972 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5973
5974 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5975 // bits.
5976 return SE.getConstant(Result.trunc(BW));
5977}
Chris Lattnerd934c702004-04-02 20:23:17 +00005978
5979/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5980/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5981/// might be the same) or two SCEVCouldNotCompute objects.
5982///
Dan Gohmanaf752342009-07-07 17:06:11 +00005983static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005984SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005985 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005986 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5987 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5988 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005989
Chris Lattnerd934c702004-04-02 20:23:17 +00005990 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005991 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005992 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005993 return std::make_pair(CNC, CNC);
5994 }
5995
Reid Spencer983e3b32007-03-01 07:25:48 +00005996 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005997 const APInt &L = LC->getValue()->getValue();
5998 const APInt &M = MC->getValue()->getValue();
5999 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006000 APInt Two(BitWidth, 2);
6001 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006002
Dan Gohmance973df2009-06-24 04:48:43 +00006003 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006004 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006005 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006006 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6007 // The B coefficient is M-N/2
6008 APInt B(M);
6009 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006010
Reid Spencer983e3b32007-03-01 07:25:48 +00006011 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006012 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006013
Reid Spencer983e3b32007-03-01 07:25:48 +00006014 // Compute the B^2-4ac term.
6015 APInt SqrtTerm(B);
6016 SqrtTerm *= B;
6017 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006018
Nick Lewyckyfb780832012-08-01 09:14:36 +00006019 if (SqrtTerm.isNegative()) {
6020 // The loop is provably infinite.
6021 const SCEV *CNC = SE.getCouldNotCompute();
6022 return std::make_pair(CNC, CNC);
6023 }
6024
Reid Spencer983e3b32007-03-01 07:25:48 +00006025 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6026 // integer value or else APInt::sqrt() will assert.
6027 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006028
Dan Gohmance973df2009-06-24 04:48:43 +00006029 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006030 // The divisions must be performed as signed divisions.
6031 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006032 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006033 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006034 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006035 return std::make_pair(CNC, CNC);
6036 }
6037
Owen Anderson47db9412009-07-22 00:24:57 +00006038 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006039
6040 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006041 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006042 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006043 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006044
Dan Gohmance973df2009-06-24 04:48:43 +00006045 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006046 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006047 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006048}
6049
6050/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006051/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006052///
6053/// This is only used for loops with a "x != y" exit test. The exit condition is
6054/// now expressed as a single expression, V = x-y. So the exit test is
6055/// effectively V != 0. We know and take advantage of the fact that this
6056/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006057ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006058ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006059 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006060 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006061 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006062 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006063 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006064 }
6065
Dan Gohman48f82222009-05-04 22:30:44 +00006066 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006067 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006068 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006069
Chris Lattnerdff679f2011-01-09 22:39:48 +00006070 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6071 // the quadratic equation to solve it.
6072 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6073 std::pair<const SCEV *,const SCEV *> Roots =
6074 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006075 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6076 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006077 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006078#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006079 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006080 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006081#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006082 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006083 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006084 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6085 R1->getValue(),
6086 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006087 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006088 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006089
Chris Lattnerd934c702004-04-02 20:23:17 +00006090 // We can only use this value if the chrec ends up with an exact zero
6091 // value at this index. When solving for "X*X != 5", for example, we
6092 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006093 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006094 if (Val->isZero())
6095 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006096 }
6097 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006098 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006099 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006100
Chris Lattnerdff679f2011-01-09 22:39:48 +00006101 // Otherwise we can only handle this if it is affine.
6102 if (!AddRec->isAffine())
6103 return getCouldNotCompute();
6104
6105 // If this is an affine expression, the execution count of this branch is
6106 // the minimum unsigned root of the following equation:
6107 //
6108 // Start + Step*N = 0 (mod 2^BW)
6109 //
6110 // equivalent to:
6111 //
6112 // Step*N = -Start (mod 2^BW)
6113 //
6114 // where BW is the common bit width of Start and Step.
6115
6116 // Get the initial value for the loop.
6117 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6118 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6119
6120 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006121 //
6122 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6123 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6124 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6125 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006126 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006127 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006128 return getCouldNotCompute();
6129
Andrew Trick8b55b732011-03-14 16:50:06 +00006130 // For positive steps (counting up until unsigned overflow):
6131 // N = -Start/Step (as unsigned)
6132 // For negative steps (counting down to zero):
6133 // N = Start/-Step
6134 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006135 bool CountDown = StepC->getValue()->getValue().isNegative();
6136 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006137
6138 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006139 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6140 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006141 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6142 ConstantRange CR = getUnsignedRange(Start);
6143 const SCEV *MaxBECount;
6144 if (!CountDown && CR.getUnsignedMin().isMinValue())
6145 // When counting up, the worst starting value is 1, not 0.
6146 MaxBECount = CR.getUnsignedMax().isMinValue()
6147 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6148 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6149 else
6150 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6151 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006152 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006153 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006154
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006155 // As a special case, handle the instance where Step is a positive power of
6156 // two. In this case, determining whether Step divides Distance evenly can be
6157 // done by counting and comparing the number of trailing zeros of Step and
6158 // Distance.
6159 if (!CountDown) {
6160 const APInt &StepV = StepC->getValue()->getValue();
6161 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6162 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6163 // case is not handled as this code is guarded by !CountDown.
6164 if (StepV.isPowerOf2() &&
6165 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6166 return getUDivExactExpr(Distance, Step);
6167 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006168
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006169 // If the condition controls loop exit (the loop exits only if the expression
6170 // is true) and the addition is no-wrap we can use unsigned divide to
6171 // compute the backedge count. In this case, the step may not divide the
6172 // distance, but we don't care because if the condition is "missed" the loop
6173 // will have undefined behavior due to wrapping.
6174 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6175 const SCEV *Exact =
6176 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6177 return ExitLimit(Exact, Exact);
6178 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006179
Chris Lattnerdff679f2011-01-09 22:39:48 +00006180 // Then, try to solve the above equation provided that Start is constant.
6181 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6182 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6183 -StartC->getValue()->getValue(),
6184 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006185 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006186}
6187
6188/// HowFarToNonZero - Return the number of times a backedge checking the
6189/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006190/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006191ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006192ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006193 // Loops that look like: while (X == 0) are very strange indeed. We don't
6194 // handle them yet except for the trivial case. This could be expanded in the
6195 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006196
Chris Lattnerd934c702004-04-02 20:23:17 +00006197 // If the value is a constant, check to see if it is known to be non-zero
6198 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006199 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006200 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006201 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006202 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006203 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006204
Chris Lattnerd934c702004-04-02 20:23:17 +00006205 // We could implement others, but I really doubt anyone writes loops like
6206 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006207 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006208}
6209
Dan Gohmanf9081a22008-09-15 22:18:04 +00006210/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6211/// (which may not be an immediate predecessor) which has exactly one
6212/// successor from which BB is reachable, or null if no such block is
6213/// found.
6214///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006215std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006216ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006217 // If the block has a unique predecessor, then there is no path from the
6218 // predecessor to the block that does not go through the direct edge
6219 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006220 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006221 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006222
6223 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006224 // If the header has a unique predecessor outside the loop, it must be
6225 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006226 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006227 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006228
Dan Gohman4e3c1132010-04-15 16:19:08 +00006229 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006230}
6231
Dan Gohman450f4e02009-06-20 00:35:32 +00006232/// HasSameValue - SCEV structural equivalence is usually sufficient for
6233/// testing whether two expressions are equal, however for the purposes of
6234/// looking for a condition guarding a loop, it can be useful to be a little
6235/// more general, since a front-end may have replicated the controlling
6236/// expression.
6237///
Dan Gohmanaf752342009-07-07 17:06:11 +00006238static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006239 // Quick check to see if they are the same SCEV.
6240 if (A == B) return true;
6241
6242 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6243 // two different instructions with the same value. Check for this case.
6244 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6245 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6246 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6247 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006248 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006249 return true;
6250
6251 // Otherwise assume they may have a different value.
6252 return false;
6253}
6254
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006255/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006256/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006257///
6258bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006259 const SCEV *&LHS, const SCEV *&RHS,
6260 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006261 bool Changed = false;
6262
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006263 // If we hit the max recursion limit bail out.
6264 if (Depth >= 3)
6265 return false;
6266
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006267 // Canonicalize a constant to the right side.
6268 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6269 // Check for both operands constant.
6270 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6271 if (ConstantExpr::getICmp(Pred,
6272 LHSC->getValue(),
6273 RHSC->getValue())->isNullValue())
6274 goto trivially_false;
6275 else
6276 goto trivially_true;
6277 }
6278 // Otherwise swap the operands to put the constant on the right.
6279 std::swap(LHS, RHS);
6280 Pred = ICmpInst::getSwappedPredicate(Pred);
6281 Changed = true;
6282 }
6283
6284 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006285 // addrec's loop, put the addrec on the left. Also make a dominance check,
6286 // as both operands could be addrecs loop-invariant in each other's loop.
6287 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6288 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006289 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006290 std::swap(LHS, RHS);
6291 Pred = ICmpInst::getSwappedPredicate(Pred);
6292 Changed = true;
6293 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006294 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006295
6296 // If there's a constant operand, canonicalize comparisons with boundary
6297 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6298 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6299 const APInt &RA = RC->getValue()->getValue();
6300 switch (Pred) {
6301 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6302 case ICmpInst::ICMP_EQ:
6303 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006304 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6305 if (!RA)
6306 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6307 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006308 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6309 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006310 RHS = AE->getOperand(1);
6311 LHS = ME->getOperand(1);
6312 Changed = true;
6313 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006314 break;
6315 case ICmpInst::ICMP_UGE:
6316 if ((RA - 1).isMinValue()) {
6317 Pred = ICmpInst::ICMP_NE;
6318 RHS = getConstant(RA - 1);
6319 Changed = true;
6320 break;
6321 }
6322 if (RA.isMaxValue()) {
6323 Pred = ICmpInst::ICMP_EQ;
6324 Changed = true;
6325 break;
6326 }
6327 if (RA.isMinValue()) goto trivially_true;
6328
6329 Pred = ICmpInst::ICMP_UGT;
6330 RHS = getConstant(RA - 1);
6331 Changed = true;
6332 break;
6333 case ICmpInst::ICMP_ULE:
6334 if ((RA + 1).isMaxValue()) {
6335 Pred = ICmpInst::ICMP_NE;
6336 RHS = getConstant(RA + 1);
6337 Changed = true;
6338 break;
6339 }
6340 if (RA.isMinValue()) {
6341 Pred = ICmpInst::ICMP_EQ;
6342 Changed = true;
6343 break;
6344 }
6345 if (RA.isMaxValue()) goto trivially_true;
6346
6347 Pred = ICmpInst::ICMP_ULT;
6348 RHS = getConstant(RA + 1);
6349 Changed = true;
6350 break;
6351 case ICmpInst::ICMP_SGE:
6352 if ((RA - 1).isMinSignedValue()) {
6353 Pred = ICmpInst::ICMP_NE;
6354 RHS = getConstant(RA - 1);
6355 Changed = true;
6356 break;
6357 }
6358 if (RA.isMaxSignedValue()) {
6359 Pred = ICmpInst::ICMP_EQ;
6360 Changed = true;
6361 break;
6362 }
6363 if (RA.isMinSignedValue()) goto trivially_true;
6364
6365 Pred = ICmpInst::ICMP_SGT;
6366 RHS = getConstant(RA - 1);
6367 Changed = true;
6368 break;
6369 case ICmpInst::ICMP_SLE:
6370 if ((RA + 1).isMaxSignedValue()) {
6371 Pred = ICmpInst::ICMP_NE;
6372 RHS = getConstant(RA + 1);
6373 Changed = true;
6374 break;
6375 }
6376 if (RA.isMinSignedValue()) {
6377 Pred = ICmpInst::ICMP_EQ;
6378 Changed = true;
6379 break;
6380 }
6381 if (RA.isMaxSignedValue()) goto trivially_true;
6382
6383 Pred = ICmpInst::ICMP_SLT;
6384 RHS = getConstant(RA + 1);
6385 Changed = true;
6386 break;
6387 case ICmpInst::ICMP_UGT:
6388 if (RA.isMinValue()) {
6389 Pred = ICmpInst::ICMP_NE;
6390 Changed = true;
6391 break;
6392 }
6393 if ((RA + 1).isMaxValue()) {
6394 Pred = ICmpInst::ICMP_EQ;
6395 RHS = getConstant(RA + 1);
6396 Changed = true;
6397 break;
6398 }
6399 if (RA.isMaxValue()) goto trivially_false;
6400 break;
6401 case ICmpInst::ICMP_ULT:
6402 if (RA.isMaxValue()) {
6403 Pred = ICmpInst::ICMP_NE;
6404 Changed = true;
6405 break;
6406 }
6407 if ((RA - 1).isMinValue()) {
6408 Pred = ICmpInst::ICMP_EQ;
6409 RHS = getConstant(RA - 1);
6410 Changed = true;
6411 break;
6412 }
6413 if (RA.isMinValue()) goto trivially_false;
6414 break;
6415 case ICmpInst::ICMP_SGT:
6416 if (RA.isMinSignedValue()) {
6417 Pred = ICmpInst::ICMP_NE;
6418 Changed = true;
6419 break;
6420 }
6421 if ((RA + 1).isMaxSignedValue()) {
6422 Pred = ICmpInst::ICMP_EQ;
6423 RHS = getConstant(RA + 1);
6424 Changed = true;
6425 break;
6426 }
6427 if (RA.isMaxSignedValue()) goto trivially_false;
6428 break;
6429 case ICmpInst::ICMP_SLT:
6430 if (RA.isMaxSignedValue()) {
6431 Pred = ICmpInst::ICMP_NE;
6432 Changed = true;
6433 break;
6434 }
6435 if ((RA - 1).isMinSignedValue()) {
6436 Pred = ICmpInst::ICMP_EQ;
6437 RHS = getConstant(RA - 1);
6438 Changed = true;
6439 break;
6440 }
6441 if (RA.isMinSignedValue()) goto trivially_false;
6442 break;
6443 }
6444 }
6445
6446 // Check for obvious equality.
6447 if (HasSameValue(LHS, RHS)) {
6448 if (ICmpInst::isTrueWhenEqual(Pred))
6449 goto trivially_true;
6450 if (ICmpInst::isFalseWhenEqual(Pred))
6451 goto trivially_false;
6452 }
6453
Dan Gohman81585c12010-05-03 16:35:17 +00006454 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6455 // adding or subtracting 1 from one of the operands.
6456 switch (Pred) {
6457 case ICmpInst::ICMP_SLE:
6458 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6459 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006460 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006461 Pred = ICmpInst::ICMP_SLT;
6462 Changed = true;
6463 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006464 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006465 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006466 Pred = ICmpInst::ICMP_SLT;
6467 Changed = true;
6468 }
6469 break;
6470 case ICmpInst::ICMP_SGE:
6471 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006472 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006473 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006474 Pred = ICmpInst::ICMP_SGT;
6475 Changed = true;
6476 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6477 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006478 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006479 Pred = ICmpInst::ICMP_SGT;
6480 Changed = true;
6481 }
6482 break;
6483 case ICmpInst::ICMP_ULE:
6484 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006485 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006486 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006487 Pred = ICmpInst::ICMP_ULT;
6488 Changed = true;
6489 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006490 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006491 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006492 Pred = ICmpInst::ICMP_ULT;
6493 Changed = true;
6494 }
6495 break;
6496 case ICmpInst::ICMP_UGE:
6497 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006498 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006499 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006500 Pred = ICmpInst::ICMP_UGT;
6501 Changed = true;
6502 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006503 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006504 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006505 Pred = ICmpInst::ICMP_UGT;
6506 Changed = true;
6507 }
6508 break;
6509 default:
6510 break;
6511 }
6512
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006513 // TODO: More simplifications are possible here.
6514
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006515 // Recursively simplify until we either hit a recursion limit or nothing
6516 // changes.
6517 if (Changed)
6518 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6519
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006520 return Changed;
6521
6522trivially_true:
6523 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006524 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006525 Pred = ICmpInst::ICMP_EQ;
6526 return true;
6527
6528trivially_false:
6529 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006530 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006531 Pred = ICmpInst::ICMP_NE;
6532 return true;
6533}
6534
Dan Gohmane65c9172009-07-13 21:35:55 +00006535bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6536 return getSignedRange(S).getSignedMax().isNegative();
6537}
6538
6539bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6540 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6541}
6542
6543bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6544 return !getSignedRange(S).getSignedMin().isNegative();
6545}
6546
6547bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6548 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6549}
6550
6551bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6552 return isKnownNegative(S) || isKnownPositive(S);
6553}
6554
6555bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6556 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006557 // Canonicalize the inputs first.
6558 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6559
Dan Gohman07591692010-04-11 22:16:48 +00006560 // If LHS or RHS is an addrec, check to see if the condition is true in
6561 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006562 // If LHS and RHS are both addrec, both conditions must be true in
6563 // every iteration of the loop.
6564 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6565 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6566 bool LeftGuarded = false;
6567 bool RightGuarded = false;
6568 if (LAR) {
6569 const Loop *L = LAR->getLoop();
6570 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6571 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6572 if (!RAR) return true;
6573 LeftGuarded = true;
6574 }
6575 }
6576 if (RAR) {
6577 const Loop *L = RAR->getLoop();
6578 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6579 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6580 if (!LAR) return true;
6581 RightGuarded = true;
6582 }
6583 }
6584 if (LeftGuarded && RightGuarded)
6585 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006586
Dan Gohman07591692010-04-11 22:16:48 +00006587 // Otherwise see what can be done with known constant ranges.
6588 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6589}
6590
6591bool
6592ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6593 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006594 if (HasSameValue(LHS, RHS))
6595 return ICmpInst::isTrueWhenEqual(Pred);
6596
Dan Gohman07591692010-04-11 22:16:48 +00006597 // This code is split out from isKnownPredicate because it is called from
6598 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006599 switch (Pred) {
6600 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006601 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006602 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006603 std::swap(LHS, RHS);
6604 case ICmpInst::ICMP_SLT: {
6605 ConstantRange LHSRange = getSignedRange(LHS);
6606 ConstantRange RHSRange = getSignedRange(RHS);
6607 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6608 return true;
6609 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6610 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006611 break;
6612 }
6613 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006614 std::swap(LHS, RHS);
6615 case ICmpInst::ICMP_SLE: {
6616 ConstantRange LHSRange = getSignedRange(LHS);
6617 ConstantRange RHSRange = getSignedRange(RHS);
6618 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6619 return true;
6620 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6621 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006622 break;
6623 }
6624 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006625 std::swap(LHS, RHS);
6626 case ICmpInst::ICMP_ULT: {
6627 ConstantRange LHSRange = getUnsignedRange(LHS);
6628 ConstantRange RHSRange = getUnsignedRange(RHS);
6629 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6630 return true;
6631 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6632 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006633 break;
6634 }
6635 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006636 std::swap(LHS, RHS);
6637 case ICmpInst::ICMP_ULE: {
6638 ConstantRange LHSRange = getUnsignedRange(LHS);
6639 ConstantRange RHSRange = getUnsignedRange(RHS);
6640 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6641 return true;
6642 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6643 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006644 break;
6645 }
6646 case ICmpInst::ICMP_NE: {
6647 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6648 return true;
6649 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6650 return true;
6651
6652 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6653 if (isKnownNonZero(Diff))
6654 return true;
6655 break;
6656 }
6657 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006658 // The check at the top of the function catches the case where
6659 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006660 break;
6661 }
6662 return false;
6663}
6664
6665/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6666/// protected by a conditional between LHS and RHS. This is used to
6667/// to eliminate casts.
6668bool
6669ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6670 ICmpInst::Predicate Pred,
6671 const SCEV *LHS, const SCEV *RHS) {
6672 // Interpret a null as meaning no loop, where there is obviously no guard
6673 // (interprocedural conditions notwithstanding).
6674 if (!L) return true;
6675
Sanjoy Das1f05c512014-10-10 21:22:34 +00006676 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6677
Dan Gohmane65c9172009-07-13 21:35:55 +00006678 BasicBlock *Latch = L->getLoopLatch();
6679 if (!Latch)
6680 return false;
6681
6682 BranchInst *LoopContinuePredicate =
6683 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006684 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6685 isImpliedCond(Pred, LHS, RHS,
6686 LoopContinuePredicate->getCondition(),
6687 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6688 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006689
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006690 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006691 for (auto &AssumeVH : AC->assumptions()) {
6692 if (!AssumeVH)
6693 continue;
6694 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006695 if (!DT->dominates(CI, Latch->getTerminator()))
6696 continue;
6697
6698 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6699 return true;
6700 }
6701
6702 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006703}
6704
Dan Gohmanb50349a2010-04-11 19:27:13 +00006705/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006706/// by a conditional between LHS and RHS. This is used to help avoid max
6707/// expressions in loop trip counts, and to eliminate casts.
6708bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006709ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6710 ICmpInst::Predicate Pred,
6711 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006712 // Interpret a null as meaning no loop, where there is obviously no guard
6713 // (interprocedural conditions notwithstanding).
6714 if (!L) return false;
6715
Sanjoy Das1f05c512014-10-10 21:22:34 +00006716 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6717
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006718 // Starting at the loop predecessor, climb up the predecessor chain, as long
6719 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006720 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006721 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006722 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006723 Pair.first;
6724 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006725
6726 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006727 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006728 if (!LoopEntryPredicate ||
6729 LoopEntryPredicate->isUnconditional())
6730 continue;
6731
Dan Gohmane18c2d62010-08-10 23:46:30 +00006732 if (isImpliedCond(Pred, LHS, RHS,
6733 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006734 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006735 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006736 }
6737
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006738 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006739 for (auto &AssumeVH : AC->assumptions()) {
6740 if (!AssumeVH)
6741 continue;
6742 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006743 if (!DT->dominates(CI, L->getHeader()))
6744 continue;
6745
6746 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6747 return true;
6748 }
6749
Dan Gohman2a62fd92008-08-12 20:17:31 +00006750 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006751}
6752
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006753/// RAII wrapper to prevent recursive application of isImpliedCond.
6754/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6755/// currently evaluating isImpliedCond.
6756struct MarkPendingLoopPredicate {
6757 Value *Cond;
6758 DenseSet<Value*> &LoopPreds;
6759 bool Pending;
6760
6761 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6762 : Cond(C), LoopPreds(LP) {
6763 Pending = !LoopPreds.insert(Cond).second;
6764 }
6765 ~MarkPendingLoopPredicate() {
6766 if (!Pending)
6767 LoopPreds.erase(Cond);
6768 }
6769};
6770
Dan Gohman430f0cc2009-07-21 23:03:19 +00006771/// isImpliedCond - Test whether the condition described by Pred, LHS,
6772/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006773bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006774 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006775 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006776 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006777 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6778 if (Mark.Pending)
6779 return false;
6780
Dan Gohman8b0a4192010-03-01 17:49:51 +00006781 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006782 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006783 if (BO->getOpcode() == Instruction::And) {
6784 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006785 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6786 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006787 } else if (BO->getOpcode() == Instruction::Or) {
6788 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006789 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6790 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006791 }
6792 }
6793
Dan Gohmane18c2d62010-08-10 23:46:30 +00006794 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006795 if (!ICI) return false;
6796
Dan Gohmane65c9172009-07-13 21:35:55 +00006797 // Bail if the ICmp's operands' types are wider than the needed type
6798 // before attempting to call getSCEV on them. This avoids infinite
6799 // recursion, since the analysis of widening casts can require loop
6800 // exit condition information for overflow checking, which would
6801 // lead back here.
6802 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006803 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006804 return false;
6805
Andrew Trickfa594032012-11-29 18:35:13 +00006806 // Now that we found a conditional branch that dominates the loop or controls
6807 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006808 ICmpInst::Predicate FoundPred;
6809 if (Inverse)
6810 FoundPred = ICI->getInversePredicate();
6811 else
6812 FoundPred = ICI->getPredicate();
6813
6814 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6815 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006816
6817 // Balance the types. The case where FoundLHS' type is wider than
6818 // LHS' type is checked for above.
6819 if (getTypeSizeInBits(LHS->getType()) >
6820 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006821 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006822 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6823 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6824 } else {
6825 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6826 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6827 }
6828 }
6829
Dan Gohman430f0cc2009-07-21 23:03:19 +00006830 // Canonicalize the query to match the way instcombine will have
6831 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006832 if (SimplifyICmpOperands(Pred, LHS, RHS))
6833 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006834 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006835 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6836 if (FoundLHS == FoundRHS)
6837 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006838
6839 // Check to see if we can make the LHS or RHS match.
6840 if (LHS == FoundRHS || RHS == FoundLHS) {
6841 if (isa<SCEVConstant>(RHS)) {
6842 std::swap(FoundLHS, FoundRHS);
6843 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6844 } else {
6845 std::swap(LHS, RHS);
6846 Pred = ICmpInst::getSwappedPredicate(Pred);
6847 }
6848 }
6849
6850 // Check whether the found predicate is the same as the desired predicate.
6851 if (FoundPred == Pred)
6852 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6853
6854 // Check whether swapping the found predicate makes it the same as the
6855 // desired predicate.
6856 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6857 if (isa<SCEVConstant>(RHS))
6858 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6859 else
6860 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6861 RHS, LHS, FoundLHS, FoundRHS);
6862 }
6863
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006864 // Check if we can make progress by sharpening ranges.
6865 if (FoundPred == ICmpInst::ICMP_NE &&
6866 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6867
6868 const SCEVConstant *C = nullptr;
6869 const SCEV *V = nullptr;
6870
6871 if (isa<SCEVConstant>(FoundLHS)) {
6872 C = cast<SCEVConstant>(FoundLHS);
6873 V = FoundRHS;
6874 } else {
6875 C = cast<SCEVConstant>(FoundRHS);
6876 V = FoundLHS;
6877 }
6878
6879 // The guarding predicate tells us that C != V. If the known range
6880 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6881 // range we consider has to correspond to same signedness as the
6882 // predicate we're interested in folding.
6883
6884 APInt Min = ICmpInst::isSigned(Pred) ?
6885 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6886
6887 if (Min == C->getValue()->getValue()) {
6888 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6889 // This is true even if (Min + 1) wraps around -- in case of
6890 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6891
6892 APInt SharperMin = Min + 1;
6893
6894 switch (Pred) {
6895 case ICmpInst::ICMP_SGE:
6896 case ICmpInst::ICMP_UGE:
6897 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6898 // RHS, we're done.
6899 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6900 getConstant(SharperMin)))
6901 return true;
6902
6903 case ICmpInst::ICMP_SGT:
6904 case ICmpInst::ICMP_UGT:
6905 // We know from the range information that (V `Pred` Min ||
6906 // V == Min). We know from the guarding condition that !(V
6907 // == Min). This gives us
6908 //
6909 // V `Pred` Min || V == Min && !(V == Min)
6910 // => V `Pred` Min
6911 //
6912 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6913
6914 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6915 return true;
6916
6917 default:
6918 // No change
6919 break;
6920 }
6921 }
6922 }
6923
Dan Gohman430f0cc2009-07-21 23:03:19 +00006924 // Check whether the actual condition is beyond sufficient.
6925 if (FoundPred == ICmpInst::ICMP_EQ)
6926 if (ICmpInst::isTrueWhenEqual(Pred))
6927 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6928 return true;
6929 if (Pred == ICmpInst::ICMP_NE)
6930 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6931 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6932 return true;
6933
6934 // Otherwise assume the worst.
6935 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006936}
6937
Dan Gohman430f0cc2009-07-21 23:03:19 +00006938/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006939/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006940/// and FoundRHS is true.
6941bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6942 const SCEV *LHS, const SCEV *RHS,
6943 const SCEV *FoundLHS,
6944 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00006945 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
6946 return true;
6947
Dan Gohman430f0cc2009-07-21 23:03:19 +00006948 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6949 FoundLHS, FoundRHS) ||
6950 // ~x < ~y --> x > y
6951 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6952 getNotSCEV(FoundRHS),
6953 getNotSCEV(FoundLHS));
6954}
6955
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006956
6957/// If Expr computes ~A, return A else return nullptr
6958static const SCEV *MatchNotExpr(const SCEV *Expr) {
6959 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6960 if (!Add || Add->getNumOperands() != 2) return nullptr;
6961
6962 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6963 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6964 return nullptr;
6965
6966 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6967 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6968
6969 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6970 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6971 return nullptr;
6972
6973 return AddRHS->getOperand(1);
6974}
6975
6976
6977/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
6978template<typename MaxExprType>
6979static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
6980 const SCEV *Candidate) {
6981 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
6982 if (!MaxExpr) return false;
6983
6984 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
6985 return It != MaxExpr->op_end();
6986}
6987
6988
6989/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
6990template<typename MaxExprType>
6991static bool IsMinConsistingOf(ScalarEvolution &SE,
6992 const SCEV *MaybeMinExpr,
6993 const SCEV *Candidate) {
6994 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
6995 if (!MaybeMaxExpr)
6996 return false;
6997
6998 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
6999}
7000
7001
7002/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7003/// expression?
7004static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7005 ICmpInst::Predicate Pred,
7006 const SCEV *LHS, const SCEV *RHS) {
7007 switch (Pred) {
7008 default:
7009 return false;
7010
7011 case ICmpInst::ICMP_SGE:
7012 std::swap(LHS, RHS);
7013 // fall through
7014 case ICmpInst::ICMP_SLE:
7015 return
7016 // min(A, ...) <= A
7017 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7018 // A <= max(A, ...)
7019 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7020
7021 case ICmpInst::ICMP_UGE:
7022 std::swap(LHS, RHS);
7023 // fall through
7024 case ICmpInst::ICMP_ULE:
7025 return
7026 // min(A, ...) <= A
7027 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7028 // A <= max(A, ...)
7029 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7030 }
7031
7032 llvm_unreachable("covered switch fell through?!");
7033}
7034
Dan Gohman430f0cc2009-07-21 23:03:19 +00007035/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007036/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007037/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007038bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007039ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7040 const SCEV *LHS, const SCEV *RHS,
7041 const SCEV *FoundLHS,
7042 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007043 auto IsKnownPredicateFull =
7044 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7045 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
7046 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
7047 };
7048
Dan Gohmane65c9172009-07-13 21:35:55 +00007049 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007050 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7051 case ICmpInst::ICMP_EQ:
7052 case ICmpInst::ICMP_NE:
7053 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7054 return true;
7055 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007056 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007057 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007058 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7059 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007060 return true;
7061 break;
7062 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007063 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007064 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7065 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007066 return true;
7067 break;
7068 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007069 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007070 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7071 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007072 return true;
7073 break;
7074 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007075 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007076 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7077 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007078 return true;
7079 break;
7080 }
7081
7082 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007083}
7084
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007085/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7086/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7087bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7088 const SCEV *LHS,
7089 const SCEV *RHS,
7090 const SCEV *FoundLHS,
7091 const SCEV *FoundRHS) {
7092 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7093 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7094 // reduce the compile time impact of this optimization.
7095 return false;
7096
7097 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7098 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7099 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7100 return false;
7101
7102 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7103
7104 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7105 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7106 ConstantRange FoundLHSRange =
7107 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7108
7109 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7110 // for `LHS`:
7111 APInt Addend =
7112 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7113 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7114
7115 // We can also compute the range of values for `LHS` that satisfy the
7116 // consequent, "`LHS` `Pred` `RHS`":
7117 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7118 ConstantRange SatisfyingLHSRange =
7119 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7120
7121 // The antecedent implies the consequent if every value of `LHS` that
7122 // satisfies the antecedent also satisfies the consequent.
7123 return SatisfyingLHSRange.contains(LHSRange);
7124}
7125
Johannes Doerfert2683e562015-02-09 12:34:23 +00007126// Verify if an linear IV with positive stride can overflow when in a
7127// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007128// stride and the knowledge of NSW/NUW flags on the recurrence.
7129bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7130 bool IsSigned, bool NoWrap) {
7131 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007132
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007133 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7134 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007135
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007136 if (IsSigned) {
7137 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7138 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7139 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7140 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007141
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007142 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7143 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007144 }
Dan Gohman01048422009-06-21 23:46:38 +00007145
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007146 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7147 APInt MaxValue = APInt::getMaxValue(BitWidth);
7148 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7149 .getUnsignedMax();
7150
7151 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7152 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7153}
7154
Johannes Doerfert2683e562015-02-09 12:34:23 +00007155// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007156// greater-than comparison, knowing the invariant term of the comparison,
7157// the stride and the knowledge of NSW/NUW flags on the recurrence.
7158bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7159 bool IsSigned, bool NoWrap) {
7160 if (NoWrap) return false;
7161
7162 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7163 const SCEV *One = getConstant(Stride->getType(), 1);
7164
7165 if (IsSigned) {
7166 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7167 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7168 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7169 .getSignedMax();
7170
7171 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7172 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7173 }
7174
7175 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7176 APInt MinValue = APInt::getMinValue(BitWidth);
7177 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7178 .getUnsignedMax();
7179
7180 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7181 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7182}
7183
7184// Compute the backedge taken count knowing the interval difference, the
7185// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007186const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007187 bool Equality) {
7188 const SCEV *One = getConstant(Step->getType(), 1);
7189 Delta = Equality ? getAddExpr(Delta, Step)
7190 : getAddExpr(Delta, getMinusSCEV(Step, One));
7191 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007192}
7193
Chris Lattner587a75b2005-08-15 23:33:51 +00007194/// HowManyLessThans - Return the number of times a backedge containing the
7195/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007196/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007197///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007198/// @param ControlsExit is true when the LHS < RHS condition directly controls
7199/// the branch (loops exits only if condition is true). In this case, we can use
7200/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007201ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007202ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007203 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007204 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007205 // We handle only IV < Invariant
7206 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007207 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007208
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007209 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007210
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007211 // Avoid weird loops
7212 if (!IV || IV->getLoop() != L || !IV->isAffine())
7213 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007214
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007215 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007216 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007217
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007218 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007219
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007220 // Avoid negative or zero stride values
7221 if (!isKnownPositive(Stride))
7222 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007223
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007224 // Avoid proven overflow cases: this will ensure that the backedge taken count
7225 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007226 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007227 // behaviors like the case of C language.
7228 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7229 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007230
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007231 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7232 : ICmpInst::ICMP_ULT;
7233 const SCEV *Start = IV->getStart();
7234 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007235 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7236 const SCEV *Diff = getMinusSCEV(RHS, Start);
7237 // If we have NoWrap set, then we can assume that the increment won't
7238 // overflow, in which case if RHS - Start is a constant, we don't need to
7239 // do a max operation since we can just figure it out statically
7240 if (NoWrap && isa<SCEVConstant>(Diff)) {
7241 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7242 if (D.isNegative())
7243 End = Start;
7244 } else
7245 End = IsSigned ? getSMaxExpr(RHS, Start)
7246 : getUMaxExpr(RHS, Start);
7247 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007248
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007249 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007250
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007251 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7252 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007253
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007254 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7255 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007256
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007257 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7258 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7259 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007260
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007261 // Although End can be a MAX expression we estimate MaxEnd considering only
7262 // the case End = RHS. This is safe because in the other case (End - Start)
7263 // is zero, leading to a zero maximum backedge taken count.
7264 APInt MaxEnd =
7265 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7266 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7267
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007268 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007269 if (isa<SCEVConstant>(BECount))
7270 MaxBECount = BECount;
7271 else
7272 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7273 getConstant(MinStride), false);
7274
7275 if (isa<SCEVCouldNotCompute>(MaxBECount))
7276 MaxBECount = BECount;
7277
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007278 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007279}
7280
7281ScalarEvolution::ExitLimit
7282ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7283 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007284 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007285 // We handle only IV > Invariant
7286 if (!isLoopInvariant(RHS, L))
7287 return getCouldNotCompute();
7288
7289 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7290
7291 // Avoid weird loops
7292 if (!IV || IV->getLoop() != L || !IV->isAffine())
7293 return getCouldNotCompute();
7294
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007295 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007296 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7297
7298 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7299
7300 // Avoid negative or zero stride values
7301 if (!isKnownPositive(Stride))
7302 return getCouldNotCompute();
7303
7304 // Avoid proven overflow cases: this will ensure that the backedge taken count
7305 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007306 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007307 // behaviors like the case of C language.
7308 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7309 return getCouldNotCompute();
7310
7311 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7312 : ICmpInst::ICMP_UGT;
7313
7314 const SCEV *Start = IV->getStart();
7315 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007316 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7317 const SCEV *Diff = getMinusSCEV(RHS, Start);
7318 // If we have NoWrap set, then we can assume that the increment won't
7319 // overflow, in which case if RHS - Start is a constant, we don't need to
7320 // do a max operation since we can just figure it out statically
7321 if (NoWrap && isa<SCEVConstant>(Diff)) {
7322 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7323 if (!D.isNegative())
7324 End = Start;
7325 } else
7326 End = IsSigned ? getSMinExpr(RHS, Start)
7327 : getUMinExpr(RHS, Start);
7328 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007329
7330 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7331
7332 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7333 : getUnsignedRange(Start).getUnsignedMax();
7334
7335 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7336 : getUnsignedRange(Stride).getUnsignedMin();
7337
7338 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7339 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7340 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7341
7342 // Although End can be a MIN expression we estimate MinEnd considering only
7343 // the case End = RHS. This is safe because in the other case (Start - End)
7344 // is zero, leading to a zero maximum backedge taken count.
7345 APInt MinEnd =
7346 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7347 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7348
7349
7350 const SCEV *MaxBECount = getCouldNotCompute();
7351 if (isa<SCEVConstant>(BECount))
7352 MaxBECount = BECount;
7353 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00007354 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007355 getConstant(MinStride), false);
7356
7357 if (isa<SCEVCouldNotCompute>(MaxBECount))
7358 MaxBECount = BECount;
7359
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007360 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007361}
7362
Chris Lattnerd934c702004-04-02 20:23:17 +00007363/// getNumIterationsInRange - Return the number of iterations of this loop that
7364/// produce values in the specified constant range. Another way of looking at
7365/// this is that it returns the first iteration number where the value is not in
7366/// the condition, thus computing the exit count. If the iteration count can't
7367/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007368const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007369 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007370 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007371 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007372
7373 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007374 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007375 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007376 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007377 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007378 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007379 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007380 if (const SCEVAddRecExpr *ShiftedAddRec =
7381 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007382 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007383 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007384 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007385 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007386 }
7387
7388 // The only time we can solve this is when we have all constant indices.
7389 // Otherwise, we cannot determine the overflow conditions.
7390 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7391 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007392 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007393
7394
7395 // Okay at this point we know that all elements of the chrec are constants and
7396 // that the start element is zero.
7397
7398 // First check to see if the range contains zero. If not, the first
7399 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007400 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007401 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007402 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007403
Chris Lattnerd934c702004-04-02 20:23:17 +00007404 if (isAffine()) {
7405 // If this is an affine expression then we have this situation:
7406 // Solve {0,+,A} in Range === Ax in Range
7407
Nick Lewycky52460262007-07-16 02:08:00 +00007408 // We know that zero is in the range. If A is positive then we know that
7409 // the upper value of the range must be the first possible exit value.
7410 // If A is negative then the lower of the range is the last possible loop
7411 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007412 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007413 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7414 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007415
Nick Lewycky52460262007-07-16 02:08:00 +00007416 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007417 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007418 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007419
7420 // Evaluate at the exit value. If we really did fall out of the valid
7421 // range, then we computed our trip count, otherwise wrap around or other
7422 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007423 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007424 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007425 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007426
7427 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007428 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007429 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007430 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007431 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007432 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007433 } else if (isQuadratic()) {
7434 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7435 // quadratic equation to solve it. To do this, we must frame our problem in
7436 // terms of figuring out when zero is crossed, instead of when
7437 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007438 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007439 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007440 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7441 // getNoWrapFlags(FlagNW)
7442 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007443
7444 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007445 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007446 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007447 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7448 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007449 if (R1) {
7450 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007451 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007452 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007453 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007454 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00007455 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007456
Chris Lattnerd934c702004-04-02 20:23:17 +00007457 // Make sure the root is not off by one. The returned iteration should
7458 // not be in the range, but the previous one should be. When solving
7459 // for "X*X < 5", for example, we should not return a root of 2.
7460 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007461 R1->getValue(),
7462 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007463 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007464 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007465 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007466 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007467
Dan Gohmana37eaf22007-10-22 18:31:58 +00007468 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007469 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007470 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007471 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007472 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007473
Chris Lattnerd934c702004-04-02 20:23:17 +00007474 // If R1 was not in the range, then it is a good return value. Make
7475 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007476 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007477 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007478 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007479 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007480 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007481 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007482 }
7483 }
7484 }
7485
Dan Gohman31efa302009-04-18 17:58:19 +00007486 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007487}
7488
Sebastian Pop448712b2014-05-07 18:01:20 +00007489namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007490struct FindUndefs {
7491 bool Found;
7492 FindUndefs() : Found(false) {}
7493
7494 bool follow(const SCEV *S) {
7495 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7496 if (isa<UndefValue>(C->getValue()))
7497 Found = true;
7498 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7499 if (isa<UndefValue>(C->getValue()))
7500 Found = true;
7501 }
7502
7503 // Keep looking if we haven't found it yet.
7504 return !Found;
7505 }
7506 bool isDone() const {
7507 // Stop recursion if we have found an undef.
7508 return Found;
7509 }
7510};
7511}
7512
7513// Return true when S contains at least an undef value.
7514static inline bool
7515containsUndefs(const SCEV *S) {
7516 FindUndefs F;
7517 SCEVTraversal<FindUndefs> ST(F);
7518 ST.visitAll(S);
7519
7520 return F.Found;
7521}
7522
7523namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007524// Collect all steps of SCEV expressions.
7525struct SCEVCollectStrides {
7526 ScalarEvolution &SE;
7527 SmallVectorImpl<const SCEV *> &Strides;
7528
7529 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7530 : SE(SE), Strides(S) {}
7531
7532 bool follow(const SCEV *S) {
7533 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7534 Strides.push_back(AR->getStepRecurrence(SE));
7535 return true;
7536 }
7537 bool isDone() const { return false; }
7538};
7539
7540// Collect all SCEVUnknown and SCEVMulExpr expressions.
7541struct SCEVCollectTerms {
7542 SmallVectorImpl<const SCEV *> &Terms;
7543
7544 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7545 : Terms(T) {}
7546
7547 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007548 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007549 if (!containsUndefs(S))
7550 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007551
7552 // Stop recursion: once we collected a term, do not walk its operands.
7553 return false;
7554 }
7555
7556 // Keep looking.
7557 return true;
7558 }
7559 bool isDone() const { return false; }
7560};
7561}
7562
7563/// Find parametric terms in this SCEVAddRecExpr.
7564void SCEVAddRecExpr::collectParametricTerms(
7565 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7566 SmallVector<const SCEV *, 4> Strides;
7567 SCEVCollectStrides StrideCollector(SE, Strides);
7568 visitAll(this, StrideCollector);
7569
7570 DEBUG({
7571 dbgs() << "Strides:\n";
7572 for (const SCEV *S : Strides)
7573 dbgs() << *S << "\n";
7574 });
7575
7576 for (const SCEV *S : Strides) {
7577 SCEVCollectTerms TermCollector(Terms);
7578 visitAll(S, TermCollector);
7579 }
7580
7581 DEBUG({
7582 dbgs() << "Terms:\n";
7583 for (const SCEV *T : Terms)
7584 dbgs() << *T << "\n";
7585 });
7586}
7587
Sebastian Popb1a548f2014-05-12 19:01:53 +00007588static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007589 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007590 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007591 int Last = Terms.size() - 1;
7592 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007593
Sebastian Pop448712b2014-05-07 18:01:20 +00007594 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007595 if (Last == 0) {
7596 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007597 SmallVector<const SCEV *, 2> Qs;
7598 for (const SCEV *Op : M->operands())
7599 if (!isa<SCEVConstant>(Op))
7600 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007601
Sebastian Pope30bd352014-05-27 22:41:56 +00007602 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007603 }
7604
Sebastian Pope30bd352014-05-27 22:41:56 +00007605 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007606 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007607 }
7608
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007609 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007610 // Normalize the terms before the next call to findArrayDimensionsRec.
7611 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007612 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007613
7614 // Bail out when GCD does not evenly divide one of the terms.
7615 if (!R->isZero())
7616 return false;
7617
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007618 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007619 }
7620
Tobias Grosser3080cf12014-05-08 07:55:34 +00007621 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007622 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7623 return isa<SCEVConstant>(E);
7624 }),
7625 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007626
Sebastian Pop448712b2014-05-07 18:01:20 +00007627 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007628 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7629 return false;
7630
Sebastian Pope30bd352014-05-27 22:41:56 +00007631 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007632 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007633}
Sebastian Popc62c6792013-11-12 22:47:20 +00007634
Sebastian Pop448712b2014-05-07 18:01:20 +00007635namespace {
7636struct FindParameter {
7637 bool FoundParameter;
7638 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007639
Sebastian Pop448712b2014-05-07 18:01:20 +00007640 bool follow(const SCEV *S) {
7641 if (isa<SCEVUnknown>(S)) {
7642 FoundParameter = true;
7643 // Stop recursion: we found a parameter.
7644 return false;
7645 }
7646 // Keep looking.
7647 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007648 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007649 bool isDone() const {
7650 // Stop recursion if we have found a parameter.
7651 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007652 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007653};
7654}
7655
Sebastian Pop448712b2014-05-07 18:01:20 +00007656// Returns true when S contains at least a SCEVUnknown parameter.
7657static inline bool
7658containsParameters(const SCEV *S) {
7659 FindParameter F;
7660 SCEVTraversal<FindParameter> ST(F);
7661 ST.visitAll(S);
7662
7663 return F.FoundParameter;
7664}
7665
7666// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7667static inline bool
7668containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7669 for (const SCEV *T : Terms)
7670 if (containsParameters(T))
7671 return true;
7672 return false;
7673}
7674
7675// Return the number of product terms in S.
7676static inline int numberOfTerms(const SCEV *S) {
7677 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7678 return Expr->getNumOperands();
7679 return 1;
7680}
7681
Sebastian Popa6e58602014-05-27 22:41:45 +00007682static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7683 if (isa<SCEVConstant>(T))
7684 return nullptr;
7685
7686 if (isa<SCEVUnknown>(T))
7687 return T;
7688
7689 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7690 SmallVector<const SCEV *, 2> Factors;
7691 for (const SCEV *Op : M->operands())
7692 if (!isa<SCEVConstant>(Op))
7693 Factors.push_back(Op);
7694
7695 return SE.getMulExpr(Factors);
7696 }
7697
7698 return T;
7699}
7700
7701/// Return the size of an element read or written by Inst.
7702const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7703 Type *Ty;
7704 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7705 Ty = Store->getValueOperand()->getType();
7706 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007707 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007708 else
7709 return nullptr;
7710
7711 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7712 return getSizeOfExpr(ETy, Ty);
7713}
7714
Sebastian Pop448712b2014-05-07 18:01:20 +00007715/// Second step of delinearization: compute the array dimensions Sizes from the
7716/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007717void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7718 SmallVectorImpl<const SCEV *> &Sizes,
7719 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007720
Sebastian Pop53524082014-05-29 19:44:05 +00007721 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007722 return;
7723
7724 // Early return when Terms do not contain parameters: we do not delinearize
7725 // non parametric SCEVs.
7726 if (!containsParameters(Terms))
7727 return;
7728
7729 DEBUG({
7730 dbgs() << "Terms:\n";
7731 for (const SCEV *T : Terms)
7732 dbgs() << *T << "\n";
7733 });
7734
7735 // Remove duplicates.
7736 std::sort(Terms.begin(), Terms.end());
7737 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7738
7739 // Put larger terms first.
7740 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7741 return numberOfTerms(LHS) > numberOfTerms(RHS);
7742 });
7743
Sebastian Popa6e58602014-05-27 22:41:45 +00007744 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7745
7746 // Divide all terms by the element size.
7747 for (const SCEV *&Term : Terms) {
7748 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007749 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007750 Term = Q;
7751 }
7752
7753 SmallVector<const SCEV *, 4> NewTerms;
7754
7755 // Remove constant factors.
7756 for (const SCEV *T : Terms)
7757 if (const SCEV *NewT = removeConstantFactors(SE, T))
7758 NewTerms.push_back(NewT);
7759
Sebastian Pop448712b2014-05-07 18:01:20 +00007760 DEBUG({
7761 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007762 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007763 dbgs() << *T << "\n";
7764 });
7765
Sebastian Popa6e58602014-05-27 22:41:45 +00007766 if (NewTerms.empty() ||
7767 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007768 Sizes.clear();
7769 return;
7770 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007771
Sebastian Popa6e58602014-05-27 22:41:45 +00007772 // The last element to be pushed into Sizes is the size of an element.
7773 Sizes.push_back(ElementSize);
7774
Sebastian Pop448712b2014-05-07 18:01:20 +00007775 DEBUG({
7776 dbgs() << "Sizes:\n";
7777 for (const SCEV *S : Sizes)
7778 dbgs() << *S << "\n";
7779 });
7780}
7781
7782/// Third step of delinearization: compute the access functions for the
7783/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007784void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007785 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7786 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007787
Sebastian Popb1a548f2014-05-12 19:01:53 +00007788 // Early exit in case this SCEV is not an affine multivariate function.
7789 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007790 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007791
Sebastian Pop28e6b972014-05-27 22:41:51 +00007792 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007793 int Last = Sizes.size() - 1;
7794 for (int i = Last; i >= 0; i--) {
7795 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007796 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007797
7798 DEBUG({
7799 dbgs() << "Res: " << *Res << "\n";
7800 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7801 dbgs() << "Res divided by Sizes[i]:\n";
7802 dbgs() << "Quotient: " << *Q << "\n";
7803 dbgs() << "Remainder: " << *R << "\n";
7804 });
7805
7806 Res = Q;
7807
Sebastian Popa6e58602014-05-27 22:41:45 +00007808 // Do not record the last subscript corresponding to the size of elements in
7809 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007810 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007811
7812 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007813 if (isa<SCEVAddRecExpr>(R)) {
7814 Subscripts.clear();
7815 Sizes.clear();
7816 return;
7817 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007818
Sebastian Pop448712b2014-05-07 18:01:20 +00007819 continue;
7820 }
7821
7822 // Record the access function for the current subscript.
7823 Subscripts.push_back(R);
7824 }
7825
7826 // Also push in last position the remainder of the last division: it will be
7827 // the access function of the innermost dimension.
7828 Subscripts.push_back(Res);
7829
7830 std::reverse(Subscripts.begin(), Subscripts.end());
7831
7832 DEBUG({
7833 dbgs() << "Subscripts:\n";
7834 for (const SCEV *S : Subscripts)
7835 dbgs() << *S << "\n";
7836 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007837}
7838
Sebastian Popc62c6792013-11-12 22:47:20 +00007839/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7840/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007841/// is the offset start of the array. The SCEV->delinearize algorithm computes
7842/// the multiples of SCEV coefficients: that is a pattern matching of sub
7843/// expressions in the stride and base of a SCEV corresponding to the
7844/// computation of a GCD (greatest common divisor) of base and stride. When
7845/// SCEV->delinearize fails, it returns the SCEV unchanged.
7846///
7847/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7848///
7849/// void foo(long n, long m, long o, double A[n][m][o]) {
7850///
7851/// for (long i = 0; i < n; i++)
7852/// for (long j = 0; j < m; j++)
7853/// for (long k = 0; k < o; k++)
7854/// A[i][j][k] = 1.0;
7855/// }
7856///
7857/// the delinearization input is the following AddRec SCEV:
7858///
7859/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7860///
7861/// From this SCEV, we are able to say that the base offset of the access is %A
7862/// because it appears as an offset that does not divide any of the strides in
7863/// the loops:
7864///
7865/// CHECK: Base offset: %A
7866///
7867/// and then SCEV->delinearize determines the size of some of the dimensions of
7868/// the array as these are the multiples by which the strides are happening:
7869///
7870/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7871///
7872/// Note that the outermost dimension remains of UnknownSize because there are
7873/// no strides that would help identifying the size of the last dimension: when
7874/// the array has been statically allocated, one could compute the size of that
7875/// dimension by dividing the overall size of the array by the size of the known
7876/// dimensions: %m * %o * 8.
7877///
7878/// Finally delinearize provides the access functions for the array reference
7879/// that does correspond to A[i][j][k] of the above C testcase:
7880///
7881/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7882///
7883/// The testcases are checking the output of a function pass:
7884/// DelinearizationPass that walks through all loads and stores of a function
7885/// asking for the SCEV of the memory access with respect to all enclosing
7886/// loops, calling SCEV->delinearize on that and printing the results.
7887
Sebastian Pop28e6b972014-05-27 22:41:51 +00007888void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7889 SmallVectorImpl<const SCEV *> &Subscripts,
7890 SmallVectorImpl<const SCEV *> &Sizes,
7891 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007892 // First step: collect parametric terms.
7893 SmallVector<const SCEV *, 4> Terms;
7894 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007895
Sebastian Popb1a548f2014-05-12 19:01:53 +00007896 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007897 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007898
Sebastian Pop448712b2014-05-07 18:01:20 +00007899 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007900 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007901
Sebastian Popb1a548f2014-05-12 19:01:53 +00007902 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007903 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007904
Sebastian Pop448712b2014-05-07 18:01:20 +00007905 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007906 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007907
Sebastian Pop28e6b972014-05-27 22:41:51 +00007908 if (Subscripts.empty())
7909 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007910
Sebastian Pop448712b2014-05-07 18:01:20 +00007911 DEBUG({
7912 dbgs() << "succeeded to delinearize " << *this << "\n";
7913 dbgs() << "ArrayDecl[UnknownSize]";
7914 for (const SCEV *S : Sizes)
7915 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007916
Sebastian Pop444621a2014-05-09 22:45:02 +00007917 dbgs() << "\nArrayRef";
7918 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007919 dbgs() << "[" << *S << "]";
7920 dbgs() << "\n";
7921 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007922}
Chris Lattnerd934c702004-04-02 20:23:17 +00007923
7924//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007925// SCEVCallbackVH Class Implementation
7926//===----------------------------------------------------------------------===//
7927
Dan Gohmand33a0902009-05-19 19:22:47 +00007928void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007929 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007930 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7931 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007932 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007933 // this now dangles!
7934}
7935
Dan Gohman7a066722010-07-28 01:09:07 +00007936void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007937 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007938
Dan Gohman48f82222009-05-04 22:30:44 +00007939 // Forget all the expressions associated with users of the old value,
7940 // so that future queries will recompute the expressions using the new
7941 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007942 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007943 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007944 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007945 while (!Worklist.empty()) {
7946 User *U = Worklist.pop_back_val();
7947 // Deleting the Old value will cause this to dangle. Postpone
7948 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007949 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007950 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00007951 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00007952 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007953 if (PHINode *PN = dyn_cast<PHINode>(U))
7954 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007955 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007956 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007957 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007958 // Delete the Old value.
7959 if (PHINode *PN = dyn_cast<PHINode>(Old))
7960 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007961 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007962 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007963}
7964
Dan Gohmand33a0902009-05-19 19:22:47 +00007965ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007966 : CallbackVH(V), SE(se) {}
7967
7968//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007969// ScalarEvolution Class Implementation
7970//===----------------------------------------------------------------------===//
7971
Dan Gohmanc8e23622009-04-21 23:15:49 +00007972ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007973 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7974 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007975 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007976}
7977
Chris Lattnerd934c702004-04-02 20:23:17 +00007978bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007979 this->F = &F;
Chandler Carruth66b31302015-01-04 12:03:27 +00007980 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth4f8f3072015-01-17 14:16:18 +00007981 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00007982 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Chandler Carruth73523022014-01-13 13:07:17 +00007983 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007984 return false;
7985}
7986
7987void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007988 // Iterate through all the SCEVUnknown instances and call their
7989 // destructors, so that they release their references to their values.
7990 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7991 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007992 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007993
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007994 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007995
7996 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7997 // that a loop had multiple computable exits.
7998 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7999 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
8000 I != E; ++I) {
8001 I->second.clear();
8002 }
8003
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008004 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
8005
Dan Gohmanc8e23622009-04-21 23:15:49 +00008006 BackedgeTakenCounts.clear();
8007 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00008008 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008009 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008010 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00008011 UnsignedRanges.clear();
8012 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008013 UniqueSCEVs.clear();
8014 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00008015}
8016
8017void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
8018 AU.setPreservesAll();
Chandler Carruth66b31302015-01-04 12:03:27 +00008019 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +00008020 AU.addRequiredTransitive<LoopInfoWrapperPass>();
Chandler Carruth73523022014-01-13 13:07:17 +00008021 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00008022 AU.addRequired<TargetLibraryInfoWrapperPass>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00008023}
8024
Dan Gohmanc8e23622009-04-21 23:15:49 +00008025bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008026 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008027}
8028
Dan Gohmanc8e23622009-04-21 23:15:49 +00008029static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008030 const Loop *L) {
8031 // Print all inner loops first
8032 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8033 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008034
Dan Gohmanbc694912010-01-09 18:17:45 +00008035 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008036 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008037 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008038
Dan Gohmancb0efec2009-12-18 01:14:11 +00008039 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008040 L->getExitBlocks(ExitBlocks);
8041 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008042 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008043
Dan Gohman0bddac12009-02-24 18:55:53 +00008044 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8045 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008046 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008047 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008048 }
8049
Dan Gohmanbc694912010-01-09 18:17:45 +00008050 OS << "\n"
8051 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008052 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008053 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008054
8055 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8056 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8057 } else {
8058 OS << "Unpredictable max backedge-taken count. ";
8059 }
8060
8061 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008062}
8063
Dan Gohmancb0efec2009-12-18 01:14:11 +00008064void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008065 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008066 // out SCEV values of all instructions that are interesting. Doing
8067 // this potentially causes it to create new SCEV objects though,
8068 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008069 // observable from outside the class though, so casting away the
8070 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008071 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008072
Dan Gohmanbc694912010-01-09 18:17:45 +00008073 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008074 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008075 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008076 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00008077 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00008078 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008079 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008080 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008081 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008082 if (!isa<SCEVCouldNotCompute>(SV)) {
8083 OS << " U: ";
8084 SE.getUnsignedRange(SV).print(OS);
8085 OS << " S: ";
8086 SE.getSignedRange(SV).print(OS);
8087 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008088
Dan Gohmanb9063a82009-06-19 17:49:54 +00008089 const Loop *L = LI->getLoopFor((*I).getParent());
8090
Dan Gohmanaf752342009-07-07 17:06:11 +00008091 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008092 if (AtUse != SV) {
8093 OS << " --> ";
8094 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008095 if (!isa<SCEVCouldNotCompute>(AtUse)) {
8096 OS << " U: ";
8097 SE.getUnsignedRange(AtUse).print(OS);
8098 OS << " S: ";
8099 SE.getSignedRange(AtUse).print(OS);
8100 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00008101 }
8102
8103 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008104 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008105 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008106 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008107 OS << "<<Unknown>>";
8108 } else {
8109 OS << *ExitValue;
8110 }
8111 }
8112
Chris Lattnerd934c702004-04-02 20:23:17 +00008113 OS << "\n";
8114 }
8115
Dan Gohmanbc694912010-01-09 18:17:45 +00008116 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008117 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008118 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00008119 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8120 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008121}
Dan Gohmane20f8242009-04-21 00:47:46 +00008122
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008123ScalarEvolution::LoopDisposition
8124ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008125 auto &Values = LoopDispositions[S];
8126 for (auto &V : Values) {
8127 if (V.getPointer() == L)
8128 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008129 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008130 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008131 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008132 auto &Values2 = LoopDispositions[S];
8133 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8134 if (V.getPointer() == L) {
8135 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008136 break;
8137 }
8138 }
8139 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008140}
8141
8142ScalarEvolution::LoopDisposition
8143ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008144 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008145 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008146 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008147 case scTruncate:
8148 case scZeroExtend:
8149 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008150 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008151 case scAddRecExpr: {
8152 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8153
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008154 // If L is the addrec's loop, it's computable.
8155 if (AR->getLoop() == L)
8156 return LoopComputable;
8157
Dan Gohmanafd6db92010-11-17 21:23:15 +00008158 // Add recurrences are never invariant in the function-body (null loop).
8159 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008160 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008161
8162 // This recurrence is variant w.r.t. L if L contains AR's loop.
8163 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008164 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008165
8166 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8167 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008168 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008169
8170 // This recurrence is variant w.r.t. L if any of its operands
8171 // are variant.
8172 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8173 I != E; ++I)
8174 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008175 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008176
8177 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008178 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008179 }
8180 case scAddExpr:
8181 case scMulExpr:
8182 case scUMaxExpr:
8183 case scSMaxExpr: {
8184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008185 bool HasVarying = false;
8186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8187 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008188 LoopDisposition D = getLoopDisposition(*I, L);
8189 if (D == LoopVariant)
8190 return LoopVariant;
8191 if (D == LoopComputable)
8192 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008193 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008194 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008195 }
8196 case scUDivExpr: {
8197 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008198 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8199 if (LD == LoopVariant)
8200 return LoopVariant;
8201 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8202 if (RD == LoopVariant)
8203 return LoopVariant;
8204 return (LD == LoopInvariant && RD == LoopInvariant) ?
8205 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008206 }
8207 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008208 // All non-instruction values are loop invariant. All instructions are loop
8209 // invariant if they are not contained in the specified loop.
8210 // Instructions are never considered invariant in the function body
8211 // (null loop) because they are defined within the "loop".
8212 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8213 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8214 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008215 case scCouldNotCompute:
8216 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008217 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008218 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008219}
8220
8221bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8222 return getLoopDisposition(S, L) == LoopInvariant;
8223}
8224
8225bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8226 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008227}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008228
Dan Gohman8ea83d82010-11-18 00:34:22 +00008229ScalarEvolution::BlockDisposition
8230ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008231 auto &Values = BlockDispositions[S];
8232 for (auto &V : Values) {
8233 if (V.getPointer() == BB)
8234 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008235 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008236 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008237 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008238 auto &Values2 = BlockDispositions[S];
8239 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8240 if (V.getPointer() == BB) {
8241 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008242 break;
8243 }
8244 }
8245 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008246}
8247
Dan Gohman8ea83d82010-11-18 00:34:22 +00008248ScalarEvolution::BlockDisposition
8249ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008250 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008251 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008252 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008253 case scTruncate:
8254 case scZeroExtend:
8255 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008256 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008257 case scAddRecExpr: {
8258 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008259 // to test for proper dominance too, because the instruction which
8260 // produces the addrec's value is a PHI, and a PHI effectively properly
8261 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008262 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8263 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008264 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008265 }
8266 // FALL THROUGH into SCEVNAryExpr handling.
8267 case scAddExpr:
8268 case scMulExpr:
8269 case scUMaxExpr:
8270 case scSMaxExpr: {
8271 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008272 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008273 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008274 I != E; ++I) {
8275 BlockDisposition D = getBlockDisposition(*I, BB);
8276 if (D == DoesNotDominateBlock)
8277 return DoesNotDominateBlock;
8278 if (D == DominatesBlock)
8279 Proper = false;
8280 }
8281 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008282 }
8283 case scUDivExpr: {
8284 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008285 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8286 BlockDisposition LD = getBlockDisposition(LHS, BB);
8287 if (LD == DoesNotDominateBlock)
8288 return DoesNotDominateBlock;
8289 BlockDisposition RD = getBlockDisposition(RHS, BB);
8290 if (RD == DoesNotDominateBlock)
8291 return DoesNotDominateBlock;
8292 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8293 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008294 }
8295 case scUnknown:
8296 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008297 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8298 if (I->getParent() == BB)
8299 return DominatesBlock;
8300 if (DT->properlyDominates(I->getParent(), BB))
8301 return ProperlyDominatesBlock;
8302 return DoesNotDominateBlock;
8303 }
8304 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008305 case scCouldNotCompute:
8306 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008307 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008308 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008309}
8310
8311bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8312 return getBlockDisposition(S, BB) >= DominatesBlock;
8313}
8314
8315bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8316 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008317}
Dan Gohman534749b2010-11-17 22:27:42 +00008318
Andrew Trick365e31c2012-07-13 23:33:03 +00008319namespace {
8320// Search for a SCEV expression node within an expression tree.
8321// Implements SCEVTraversal::Visitor.
8322struct SCEVSearch {
8323 const SCEV *Node;
8324 bool IsFound;
8325
8326 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8327
8328 bool follow(const SCEV *S) {
8329 IsFound |= (S == Node);
8330 return !IsFound;
8331 }
8332 bool isDone() const { return IsFound; }
8333};
8334}
8335
Dan Gohman534749b2010-11-17 22:27:42 +00008336bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008337 SCEVSearch Search(Op);
8338 visitAll(S, Search);
8339 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008340}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008341
8342void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8343 ValuesAtScopes.erase(S);
8344 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008345 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008346 UnsignedRanges.erase(S);
8347 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008348
8349 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8350 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8351 BackedgeTakenInfo &BEInfo = I->second;
8352 if (BEInfo.hasOperand(S, this)) {
8353 BEInfo.clear();
8354 BackedgeTakenCounts.erase(I++);
8355 }
8356 else
8357 ++I;
8358 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008359}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008360
8361typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008362
Alp Tokercb402912014-01-24 17:20:08 +00008363/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008364static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8365 size_t Pos = 0;
8366 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8367 Str.replace(Pos, From.size(), To.data(), To.size());
8368 Pos += To.size();
8369 }
8370}
8371
Benjamin Kramer214935e2012-10-26 17:31:32 +00008372/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8373static void
8374getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8375 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8376 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8377
8378 std::string &S = Map[L];
8379 if (S.empty()) {
8380 raw_string_ostream OS(S);
8381 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008382
8383 // false and 0 are semantically equivalent. This can happen in dead loops.
8384 replaceSubString(OS.str(), "false", "0");
8385 // Remove wrap flags, their use in SCEV is highly fragile.
8386 // FIXME: Remove this when SCEV gets smarter about them.
8387 replaceSubString(OS.str(), "<nw>", "");
8388 replaceSubString(OS.str(), "<nsw>", "");
8389 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008390 }
8391 }
8392}
8393
8394void ScalarEvolution::verifyAnalysis() const {
8395 if (!VerifySCEV)
8396 return;
8397
8398 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8399
8400 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8401 // FIXME: It would be much better to store actual values instead of strings,
8402 // but SCEV pointers will change if we drop the caches.
8403 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8404 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8405 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8406
8407 // Gather stringified backedge taken counts for all loops without using
8408 // SCEV's caches.
8409 SE.releaseMemory();
8410 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8411 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8412
8413 // Now compare whether they're the same with and without caches. This allows
8414 // verifying that no pass changed the cache.
8415 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8416 "New loops suddenly appeared!");
8417
8418 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8419 OldE = BackedgeDumpsOld.end(),
8420 NewI = BackedgeDumpsNew.begin();
8421 OldI != OldE; ++OldI, ++NewI) {
8422 assert(OldI->first == NewI->first && "Loop order changed!");
8423
8424 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8425 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008426 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008427 // means that a pass is buggy or SCEV has to learn a new pattern but is
8428 // usually not harmful.
8429 if (OldI->second != NewI->second &&
8430 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008431 NewI->second.find("undef") == std::string::npos &&
8432 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008433 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008434 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008435 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008436 << "' changed from '" << OldI->second
8437 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008438 std::abort();
8439 }
8440 }
8441
8442 // TODO: Verify more things.
8443}