blob: 38853478c0604963cf209d26a138d0154a519ae1 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
122static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
125void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Jingyue Wuca321902015-05-14 23:53:19 +0000133bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146}
147
Hal Finkel60db0582014-09-07 18:57:58 +0000148static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000149 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000150
151void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000152 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000153 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000154 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000157}
158
159static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000161
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const Instruction *CxtI,
165 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168}
169
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171
172bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Jingyue Wu10fcea52015-08-20 18:27:04 +0000178bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184}
185
Philip Reames8f12eba2016-03-09 21:31:47 +0000186bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000191
Philip Reames8f12eba2016-03-09 21:31:47 +0000192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196}
197
Nick Lewycky762f8a82016-04-21 00:53:14 +0000198bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199 AssumptionCache *AC, const Instruction *CxtI,
200 const DominatorTree *DT) {
201 bool NonNegative, Negative;
202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203 return Negative;
204}
205
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000206static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000207
208bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209 AssumptionCache *AC, const Instruction *CxtI,
210 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000211 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212 safeCxtI(V1, safeCxtI(V2, CxtI)),
213 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000214}
215
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000216static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000218
219bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 return ::MaskedValueIsZero(V, Mask, Depth,
223 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000224}
225
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000226static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227
228unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229 unsigned Depth, AssumptionCache *AC,
230 const Instruction *CxtI,
231 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000233}
234
Jay Foada0653a32014-05-14 21:14:37 +0000235static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236 APInt &KnownZero, APInt &KnownOne,
237 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000239 if (!Add) {
240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241 // We know that the top bits of C-X are clear if X contains less bits
242 // than C (i.e. no wrap-around can happen). For example, 20-X is
243 // positive if we can prove that X is >= 0 and < 16.
244 if (!CLHS->getValue().isNegative()) {
245 unsigned BitWidth = KnownZero.getBitWidth();
246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247 // NLZ can't be BitWidth with no sign bit
248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000250
251 // If all of the MaskV bits are known to be zero, then we know the
252 // output top bits are zero, because we now know that the output is
253 // from [0-C].
254 if ((KnownZero2 & MaskV) == MaskV) {
255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256 // Top bits known zero.
257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258 }
259 }
260 }
261 }
262
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000263 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // If an initial sequence of bits in the result is not needed, the
266 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000270
David Majnemer97ddca32014-08-22 00:40:43 +0000271 // Carry in a 1 for a subtract, rather than a 0.
272 APInt CarryIn(BitWidth, 0);
273 if (!Add) {
274 // Sum = LHS + ~RHS + 1
275 std::swap(KnownZero2, KnownOne2);
276 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277 }
278
David Majnemer97ddca32014-08-22 00:40:43 +0000279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281
282 // Compute known bits of the carry.
283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285
286 // Compute set of known bits (where all three relevant bits are known).
287 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288 APInt RHSKnown = KnownZero2 | KnownOne2;
289 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290 APInt Known = LHSKnown & RHSKnown & CarryKnown;
291
292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293 "known bits of sum differ");
294
295 // Compute known bits of the result.
296 KnownZero = ~PossibleSumOne & Known;
297 KnownOne = PossibleSumOne & Known;
298
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000299 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000300 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000301 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000302 // Adding two non-negative numbers, or subtracting a negative number from
303 // a non-negative one, can't wrap into negative.
304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305 KnownZero |= APInt::getSignBit(BitWidth);
306 // Adding two negative numbers, or subtracting a non-negative number from
307 // a negative one, can't wrap into non-negative.
308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000310 }
311 }
312}
313
Jay Foada0653a32014-05-14 21:14:37 +0000314static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315 APInt &KnownZero, APInt &KnownOne,
316 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000318 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
330 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332 bool isKnownNegativeOp1 = KnownOne.isNegative();
333 bool isKnownNegativeOp0 = KnownOne2.isNegative();
334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000348 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
351 KnownOne.clearAllBits();
352 unsigned TrailZ = KnownZero.countTrailingOnes() +
353 KnownZero2.countTrailingOnes();
354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
355 KnownZero2.countLeadingOnes(),
356 BitWidth) - BitWidth;
357
358 TrailZ = std::min(TrailZ, BitWidth);
359 LeadZ = std::min(LeadZ, BitWidth);
360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
368 if (isKnownNonNegative && !KnownOne.isNegative())
369 KnownZero.setBit(BitWidth - 1);
370 else if (isKnownNegative && !KnownZero.isNegative())
371 KnownOne.setBit(BitWidth - 1);
372}
373
Jingyue Wu37fcb592014-06-19 16:50:16 +0000374void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000375 APInt &KnownZero,
376 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000378 unsigned NumRanges = Ranges.getNumOperands() / 2;
379 assert(NumRanges >= 1);
380
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000381 KnownZero.setAllBits();
382 KnownOne.setAllBits();
383
Rafael Espindola53190532012-03-30 15:52:11 +0000384 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000385 ConstantInt *Lower =
386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387 ConstantInt *Upper =
388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000389 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000390
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000391 // The first CommonPrefixBits of all values in Range are equal.
392 unsigned CommonPrefixBits =
393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394
395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396 KnownOne &= Range.getUnsignedMax() & Mask;
397 KnownZero &= ~Range.getUnsignedMax() & Mask;
398 }
Rafael Espindola53190532012-03-30 15:52:11 +0000399}
Jay Foad5a29c362014-05-15 12:12:55 +0000400
Hal Finkel60db0582014-09-07 18:57:58 +0000401static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402 SmallVector<const Value *, 16> WorkSet(1, I);
403 SmallPtrSet<const Value *, 32> Visited;
404 SmallPtrSet<const Value *, 16> EphValues;
405
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 // The instruction defining an assumption's condition itself is always
407 // considered ephemeral to that assumption (even if it has other
408 // non-ephemeral users). See r246696's test case for an example.
409 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410 return true;
411
Hal Finkel60db0582014-09-07 18:57:58 +0000412 while (!WorkSet.empty()) {
413 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000414 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000415 continue;
416
417 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000418 if (std::all_of(V->user_begin(), V->user_end(),
419 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000420 if (V == E)
421 return true;
422
423 EphValues.insert(V);
424 if (const User *U = dyn_cast<User>(V))
425 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426 J != JE; ++J) {
427 if (isSafeToSpeculativelyExecute(*J))
428 WorkSet.push_back(*J);
429 }
430 }
431 }
432
433 return false;
434}
435
436// Is this an intrinsic that cannot be speculated but also cannot trap?
437static bool isAssumeLikeIntrinsic(const Instruction *I) {
438 if (const CallInst *CI = dyn_cast<CallInst>(I))
439 if (Function *F = CI->getCalledFunction())
440 switch (F->getIntrinsicID()) {
441 default: break;
442 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443 case Intrinsic::assume:
444 case Intrinsic::dbg_declare:
445 case Intrinsic::dbg_value:
446 case Intrinsic::invariant_start:
447 case Intrinsic::invariant_end:
448 case Intrinsic::lifetime_start:
449 case Intrinsic::lifetime_end:
450 case Intrinsic::objectsize:
451 case Intrinsic::ptr_annotation:
452 case Intrinsic::var_annotation:
453 return true;
454 }
455
456 return false;
457}
458
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000459static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000461 Instruction *Inv = cast<Instruction>(V);
462
463 // There are two restrictions on the use of an assume:
464 // 1. The assume must dominate the context (or the control flow must
465 // reach the assume whenever it reaches the context).
466 // 2. The context must not be in the assume's set of ephemeral values
467 // (otherwise we will use the assume to prove that the condition
468 // feeding the assume is trivially true, thus causing the removal of
469 // the assume).
470
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000471 if (DT) {
472 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000473 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000474 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000475 // The context comes first, but they're both in the same block. Make sure
476 // there is nothing in between that might interrupt the control flow.
477 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000478 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000479 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000480 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000481 return false;
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000484 }
485
486 return false;
487 }
488
489 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000490 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000491 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000492 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000493 // Search forward from the assume until we reach the context (or the end
494 // of the block); the common case is that the assume will come first.
495 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000497 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000498 return true;
499
500 // The context must come first...
501 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000502 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000504 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return false;
506
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000507 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000508 }
509
510 return false;
511}
512
513bool llvm::isValidAssumeForContext(const Instruction *I,
514 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000515 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000516 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Hal Finkel60db0582014-09-07 18:57:58 +0000519static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Chandler Carruth66b31302015-01-04 12:03:27 +0000529 for (auto &AssumeVH : Q.AC->assumptions()) {
530 if (!AssumeVH)
531 continue;
532 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000535 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000536 continue;
537
Philip Reames00d3b272014-11-24 23:44:28 +0000538 // Warning: This loop can end up being somewhat performance sensetive.
539 // We're running this loop for once for each value queried resulting in a
540 // runtime of ~O(#assumes * #values).
541
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000543 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000544
Philip Reames00d3b272014-11-24 23:44:28 +0000545 Value *Arg = I->getArgOperand(0);
546
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000548 assert(BitWidth == 1 && "assume operand is not i1?");
549 KnownZero.clearAllBits();
550 KnownOne.setAllBits();
551 return;
552 }
553
David Majnemer9b609752014-12-12 23:59:29 +0000554 // The remaining tests are all recursive, so bail out if we hit the limit.
555 if (Depth == MaxDepth)
556 continue;
557
Hal Finkel60db0582014-09-07 18:57:58 +0000558 Value *A, *B;
559 auto m_V = m_CombineOr(m_Specific(V),
560 m_CombineOr(m_PtrToInt(m_Specific(V)),
561 m_BitCast(m_Specific(V))));
562
563 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000564 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000565 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000570 KnownZero |= RHSKnownZero;
571 KnownOne |= RHSKnownOne;
572 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000573 } else if (match(Arg,
574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 Pred == ICmpInst::ICMP_EQ &&
576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000581
582 // For those bits in the mask that are known to be one, we can propagate
583 // known bits from the RHS to V.
584 KnownZero |= RHSKnownZero & MaskKnownOne;
585 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 Pred == ICmpInst::ICMP_EQ &&
590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000595
596 // For those bits in the mask that are known to be one, we can propagate
597 // inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownOne & MaskKnownOne;
599 KnownOne |= RHSKnownZero & MaskKnownOne;
600 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000601 } else if (match(Arg,
602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000603 Pred == ICmpInst::ICMP_EQ &&
604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609
610 // For those bits in B that are known to be zero, we can propagate known
611 // bits from the RHS to V.
612 KnownZero |= RHSKnownZero & BKnownZero;
613 KnownOne |= RHSKnownOne & BKnownZero;
614 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000617 Pred == ICmpInst::ICMP_EQ &&
618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623
624 // For those bits in B that are known to be zero, we can propagate
625 // inverted known bits from the RHS to V.
626 KnownZero |= RHSKnownOne & BKnownZero;
627 KnownOne |= RHSKnownZero & BKnownZero;
628 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000629 } else if (match(Arg,
630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000631 Pred == ICmpInst::ICMP_EQ &&
632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637
638 // For those bits in B that are known to be zero, we can propagate known
639 // bits from the RHS to V. For those bits in B that are known to be one,
640 // we can propagate inverted known bits from the RHS to V.
641 KnownZero |= RHSKnownZero & BKnownZero;
642 KnownOne |= RHSKnownOne & BKnownZero;
643 KnownZero |= RHSKnownOne & BKnownOne;
644 KnownOne |= RHSKnownZero & BKnownOne;
645 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000648 Pred == ICmpInst::ICMP_EQ &&
649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654
655 // For those bits in B that are known to be zero, we can propagate
656 // inverted known bits from the RHS to V. For those bits in B that are
657 // known to be one, we can propagate known bits from the RHS to V.
658 KnownZero |= RHSKnownOne & BKnownZero;
659 KnownOne |= RHSKnownZero & BKnownZero;
660 KnownZero |= RHSKnownZero & BKnownOne;
661 KnownOne |= RHSKnownOne & BKnownOne;
662 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 // For those bits in RHS that are known, we can propagate them to known
670 // bits in V shifted to the right by C.
671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
673 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them inverted
681 // to known bits in V shifted to the right by C.
682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
684 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg,
686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000687 m_AShr(m_V, m_ConstantInt(C))),
688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 KnownZero |= RHSKnownZero << C->getZExtValue();
696 KnownOne |= RHSKnownOne << C->getZExtValue();
697 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000699 m_LShr(m_V, m_ConstantInt(C)),
700 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000701 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 Pred == ICmpInst::ICMP_EQ &&
703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
708 KnownZero |= RHSKnownOne << C->getZExtValue();
709 KnownOne |= RHSKnownZero << C->getZExtValue();
710 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_SGE &&
713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
717 if (RHSKnownZero.isNegative()) {
718 // We know that the sign bit is zero.
719 KnownZero |= APInt::getSignBit(BitWidth);
720 }
721 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_SGT &&
724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727
728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729 // We know that the sign bit is zero.
730 KnownZero |= APInt::getSignBit(BitWidth);
731 }
732 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 Pred == ICmpInst::ICMP_SLE &&
735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738
739 if (RHSKnownOne.isNegative()) {
740 // We know that the sign bit is one.
741 KnownOne |= APInt::getSignBit(BitWidth);
742 }
743 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 Pred == ICmpInst::ICMP_SLT &&
746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749
750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751 // We know that the sign bit is one.
752 KnownOne |= APInt::getSignBit(BitWidth);
753 }
754 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_ULE &&
757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760
761 // Whatever high bits in c are zero are known to be zero.
762 KnownZero |=
763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULT &&
767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero (if c is a power
772 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 KnownZero |=
775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776 else
777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
781}
782
Hal Finkelf2199b22015-10-23 20:37:08 +0000783// Compute known bits from a shift operator, including those with a
784// non-constant shift amount. KnownZero and KnownOne are the outputs of this
785// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787// functors that, given the known-zero or known-one bits respectively, and a
788// shift amount, compute the implied known-zero or known-one bits of the shift
789// operator's result respectively for that shift amount. The results from calling
790// KZF and KOF are conservatively combined for all permitted shift amounts.
791template <typename KZFunctor, typename KOFunctor>
792static void computeKnownBitsFromShiftOperator(Operator *I,
793 APInt &KnownZero, APInt &KnownOne,
794 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000795 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 unsigned BitWidth = KnownZero.getBitWidth();
797
798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000802 KnownZero = KZF(KnownZero, ShiftAmt);
803 KnownOne = KOF(KnownOne, ShiftAmt);
804 return;
805 }
806
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000807 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000808
809 // Note: We cannot use KnownZero.getLimitedValue() here, because if
810 // BitWidth > 64 and any upper bits are known, we'll end up returning the
811 // limit value (which implies all bits are known).
812 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814
815 // It would be more-clearly correct to use the two temporaries for this
816 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000817 KnownZero.clearAllBits();
818 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000819
James Molloy493e57d2015-10-26 14:10:46 +0000820 // If we know the shifter operand is nonzero, we can sometimes infer more
821 // known bits. However this is expensive to compute, so be lazy about it and
822 // only compute it when absolutely necessary.
823 Optional<bool> ShifterOperandIsNonZero;
824
Hal Finkelf2199b22015-10-23 20:37:08 +0000825 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000826 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000828 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000829 if (!*ShifterOperandIsNonZero)
830 return;
831 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000832
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000833 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000834
835 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837 // Combine the shifted known input bits only for those shift amounts
838 // compatible with its known constraints.
839 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840 continue;
841 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000843 // If we know the shifter is nonzero, we may be able to infer more known
844 // bits. This check is sunk down as far as possible to avoid the expensive
845 // call to isKnownNonZero if the cheaper checks above fail.
846 if (ShiftAmt == 0) {
847 if (!ShifterOperandIsNonZero.hasValue())
848 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000849 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000850 if (*ShifterOperandIsNonZero)
851 continue;
852 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000853
854 KnownZero &= KZF(KnownZero2, ShiftAmt);
855 KnownOne &= KOF(KnownOne2, ShiftAmt);
856 }
857
858 // If there are no compatible shift amounts, then we've proven that the shift
859 // amount must be >= the BitWidth, and the result is undefined. We could
860 // return anything we'd like, but we need to make sure the sets of known bits
861 // stay disjoint (it should be better for some other code to actually
862 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000863 if ((KnownZero & KnownOne) != 0) {
864 KnownZero.clearAllBits();
865 KnownOne.clearAllBits();
866 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000867}
868
Jingyue Wu12b0c282015-06-15 05:46:29 +0000869static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000870 APInt &KnownOne, unsigned Depth,
871 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000872 unsigned BitWidth = KnownZero.getBitWidth();
873
Chris Lattner965c7692008-06-02 01:18:21 +0000874 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000875 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000876 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000877 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000878 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000879 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000880 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000881 case Instruction::And: {
882 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000883 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000885
Chris Lattner965c7692008-06-02 01:18:21 +0000886 // Output known-1 bits are only known if set in both the LHS & RHS.
887 KnownOne &= KnownOne2;
888 // Output known-0 are known to be clear if zero in either the LHS | RHS.
889 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000890
891 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892 // here we handle the more general case of adding any odd number by
893 // matching the form add(x, add(x, y)) where y is odd.
894 // TODO: This could be generalized to clearing any bit set in y where the
895 // following bit is known to be unset in y.
896 Value *Y = nullptr;
897 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898 m_Value(Y))) ||
899 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900 m_Value(Y)))) {
901 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000902 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000903 if (KnownOne3.countTrailingOnes() > 0)
904 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905 }
Jay Foad5a29c362014-05-15 12:12:55 +0000906 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000907 }
908 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000909 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000911
Chris Lattner965c7692008-06-02 01:18:21 +0000912 // Output known-0 bits are only known if clear in both the LHS & RHS.
913 KnownZero &= KnownZero2;
914 // Output known-1 are known to be set if set in either the LHS | RHS.
915 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000916 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000917 }
918 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000919 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000921
Chris Lattner965c7692008-06-02 01:18:21 +0000922 // Output known-0 bits are known if clear or set in both the LHS & RHS.
923 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924 // Output known-1 are known to be set if set in only one of the LHS, RHS.
925 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000927 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000928 }
929 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000930 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000931 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000932 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000933 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000934 }
935 case Instruction::UDiv: {
936 // For the purposes of computing leading zeros we can conservatively
937 // treat a udiv as a logical right shift by the power of 2 known to
938 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000940 unsigned LeadZ = KnownZero2.countLeadingOnes();
941
Jay Foad25a5e4c2010-12-01 08:53:58 +0000942 KnownOne2.clearAllBits();
943 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000945 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946 if (RHSUnknownLeadingOnes != BitWidth)
947 LeadZ = std::min(BitWidth,
948 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000950 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000951 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 }
James Molloyc5eded52016-01-14 15:49:32 +0000953 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000954 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000956
957 // Only known if known in both the LHS and RHS.
958 KnownOne &= KnownOne2;
959 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000960 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000961 case Instruction::FPTrunc:
962 case Instruction::FPExt:
963 case Instruction::FPToUI:
964 case Instruction::FPToSI:
965 case Instruction::SIToFP:
966 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000967 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000968 case Instruction::PtrToInt:
969 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000970 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000971 // FALL THROUGH and handle them the same as zext/trunc.
972 case Instruction::ZExt:
973 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000974 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000975
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000976 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000977 // Note that we handle pointer operands here because of inttoptr/ptrtoint
978 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000979 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +0000980
981 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000982 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000984 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000985 KnownZero = KnownZero.zextOrTrunc(BitWidth);
986 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000987 // Any top bits are known to be zero.
988 if (BitWidth > SrcBitWidth)
989 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000990 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000991 }
992 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000993 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +0000994 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
995 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000996 // TODO: For now, not handling conversions like:
997 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000998 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000999 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001000 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001001 }
1002 break;
1003 }
1004 case Instruction::SExt: {
1005 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001006 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001007
Jay Foad583abbc2010-12-07 08:25:19 +00001008 KnownZero = KnownZero.trunc(SrcBitWidth);
1009 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001010 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001011 KnownZero = KnownZero.zext(BitWidth);
1012 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001013
1014 // If the sign bit of the input is known set or clear, then we know the
1015 // top bits of the result.
1016 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1017 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1018 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1019 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001020 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001021 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001022 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001023 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001024 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1025 return (KnownZero << ShiftAmt) |
1026 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1027 };
1028
1029 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1030 return KnownOne << ShiftAmt;
1031 };
1032
1033 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001034 KnownZero2, KnownOne2, Depth, Q, KZF,
1035 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001036 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001037 }
1038 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001039 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001040 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1041 return APIntOps::lshr(KnownZero, ShiftAmt) |
1042 // High bits known zero.
1043 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1044 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001045
Hal Finkelf2199b22015-10-23 20:37:08 +00001046 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1047 return APIntOps::lshr(KnownOne, ShiftAmt);
1048 };
1049
1050 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001051 KnownZero2, KnownOne2, Depth, Q, KZF,
1052 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001053 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001054 }
1055 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001056 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001057 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1058 return APIntOps::ashr(KnownZero, ShiftAmt);
1059 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001060
Hal Finkelf2199b22015-10-23 20:37:08 +00001061 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1062 return APIntOps::ashr(KnownOne, ShiftAmt);
1063 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001064
Hal Finkelf2199b22015-10-23 20:37:08 +00001065 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001066 KnownZero2, KnownOne2, Depth, Q, KZF,
1067 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001068 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001069 }
Chris Lattner965c7692008-06-02 01:18:21 +00001070 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001071 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001072 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001073 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1074 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001075 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001076 }
Chris Lattner965c7692008-06-02 01:18:21 +00001077 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001078 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001079 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001080 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1081 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001082 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001083 }
1084 case Instruction::SRem:
1085 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001086 APInt RA = Rem->getValue().abs();
1087 if (RA.isPowerOf2()) {
1088 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001089 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001090 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001091
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001092 // The low bits of the first operand are unchanged by the srem.
1093 KnownZero = KnownZero2 & LowBits;
1094 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001095
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001096 // If the first operand is non-negative or has all low bits zero, then
1097 // the upper bits are all zero.
1098 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1099 KnownZero |= ~LowBits;
1100
1101 // If the first operand is negative and not all low bits are zero, then
1102 // the upper bits are all one.
1103 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1104 KnownOne |= ~LowBits;
1105
Craig Topper1bef2c82012-12-22 19:15:35 +00001106 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001107 }
1108 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001109
1110 // The sign bit is the LHS's sign bit, except when the result of the
1111 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001112 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001113 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001114 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1115 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001116 // If it's known zero, our sign bit is also zero.
1117 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001118 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001119 }
1120
Chris Lattner965c7692008-06-02 01:18:21 +00001121 break;
1122 case Instruction::URem: {
1123 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1124 APInt RA = Rem->getValue();
1125 if (RA.isPowerOf2()) {
1126 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001127 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001128 KnownZero |= ~LowBits;
1129 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001130 break;
1131 }
1132 }
1133
1134 // Since the result is less than or equal to either operand, any leading
1135 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001136 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1137 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001138
Chris Lattner4612ae12009-01-20 18:22:57 +00001139 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001140 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001141 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001142 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001143 break;
1144 }
1145
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001146 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001147 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001148 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001149 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001150 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001151
Chris Lattner965c7692008-06-02 01:18:21 +00001152 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001153 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001154 break;
1155 }
1156 case Instruction::GetElementPtr: {
1157 // Analyze all of the subscripts of this getelementptr instruction
1158 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001159 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001160 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1161 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001162 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1163
1164 gep_type_iterator GTI = gep_type_begin(I);
1165 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1166 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001167 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001168 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001169
1170 // Handle case when index is vector zeroinitializer
1171 Constant *CIndex = cast<Constant>(Index);
1172 if (CIndex->isZeroValue())
1173 continue;
1174
1175 if (CIndex->getType()->isVectorTy())
1176 Index = CIndex->getSplatValue();
1177
Chris Lattner965c7692008-06-02 01:18:21 +00001178 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001179 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001180 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001181 TrailZ = std::min<unsigned>(TrailZ,
1182 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001183 } else {
1184 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001185 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001186 if (!IndexedTy->isSized()) {
1187 TrailZ = 0;
1188 break;
1189 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001190 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001191 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001192 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001193 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001194 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001195 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001196 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001197 }
1198 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001199
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001200 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001201 break;
1202 }
1203 case Instruction::PHI: {
1204 PHINode *P = cast<PHINode>(I);
1205 // Handle the case of a simple two-predecessor recurrence PHI.
1206 // There's a lot more that could theoretically be done here, but
1207 // this is sufficient to catch some interesting cases.
1208 if (P->getNumIncomingValues() == 2) {
1209 for (unsigned i = 0; i != 2; ++i) {
1210 Value *L = P->getIncomingValue(i);
1211 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001212 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001213 if (!LU)
1214 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001215 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001216 // Check for operations that have the property that if
1217 // both their operands have low zero bits, the result
1218 // will have low zero bits.
1219 if (Opcode == Instruction::Add ||
1220 Opcode == Instruction::Sub ||
1221 Opcode == Instruction::And ||
1222 Opcode == Instruction::Or ||
1223 Opcode == Instruction::Mul) {
1224 Value *LL = LU->getOperand(0);
1225 Value *LR = LU->getOperand(1);
1226 // Find a recurrence.
1227 if (LL == I)
1228 L = LR;
1229 else if (LR == I)
1230 L = LL;
1231 else
1232 break;
1233 // Ok, we have a PHI of the form L op= R. Check for low
1234 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001235 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001236
1237 // We need to take the minimum number of known bits
1238 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001239 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001240
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001241 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001242 std::min(KnownZero2.countTrailingOnes(),
1243 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001244 break;
1245 }
1246 }
1247 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001248
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001249 // Unreachable blocks may have zero-operand PHI nodes.
1250 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001251 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001252
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001253 // Otherwise take the unions of the known bit sets of the operands,
1254 // taking conservative care to avoid excessive recursion.
1255 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001256 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001257 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001258 break;
1259
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001260 KnownZero = APInt::getAllOnesValue(BitWidth);
1261 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001262 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001263 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001264 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001265
1266 KnownZero2 = APInt(BitWidth, 0);
1267 KnownOne2 = APInt(BitWidth, 0);
1268 // Recurse, but cap the recursion to one level, because we don't
1269 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001270 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001271 KnownZero &= KnownZero2;
1272 KnownOne &= KnownOne2;
1273 // If all bits have been ruled out, there's no need to check
1274 // more operands.
1275 if (!KnownZero && !KnownOne)
1276 break;
1277 }
1278 }
Chris Lattner965c7692008-06-02 01:18:21 +00001279 break;
1280 }
1281 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001282 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001283 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001284 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001285 // If a range metadata is attached to this IntrinsicInst, intersect the
1286 // explicit range specified by the metadata and the implicit range of
1287 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001288 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1289 switch (II->getIntrinsicID()) {
1290 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001291 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001292 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001293 KnownZero |= KnownZero2.byteSwap();
1294 KnownOne |= KnownOne2.byteSwap();
1295 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001296 case Intrinsic::ctlz:
1297 case Intrinsic::cttz: {
1298 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001299 // If this call is undefined for 0, the result will be less than 2^n.
1300 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1301 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001302 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001303 break;
1304 }
1305 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001306 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001307 // We can bound the space the count needs. Also, bits known to be zero
1308 // can't contribute to the population.
1309 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1310 unsigned LeadingZeros =
1311 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001312 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001313 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1314 KnownOne &= ~KnownZero;
1315 // TODO: we could bound KnownOne using the lower bound on the number
1316 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001317 break;
1318 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001319 case Intrinsic::fabs: {
1320 Type *Ty = II->getType();
1321 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1322 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1323 break;
1324 }
Chad Rosierb3628842011-05-26 23:13:19 +00001325 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001326 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001327 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001328 }
1329 }
1330 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001331 case Instruction::ExtractValue:
1332 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1333 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1334 if (EVI->getNumIndices() != 1) break;
1335 if (EVI->getIndices()[0] == 0) {
1336 switch (II->getIntrinsicID()) {
1337 default: break;
1338 case Intrinsic::uadd_with_overflow:
1339 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001340 computeKnownBitsAddSub(true, II->getArgOperand(0),
1341 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001342 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001343 break;
1344 case Intrinsic::usub_with_overflow:
1345 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001346 computeKnownBitsAddSub(false, II->getArgOperand(0),
1347 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001348 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001349 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001350 case Intrinsic::umul_with_overflow:
1351 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001352 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001353 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1354 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001355 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001356 }
1357 }
1358 }
Chris Lattner965c7692008-06-02 01:18:21 +00001359 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001360}
1361
1362/// Determine which bits of V are known to be either zero or one and return
1363/// them in the KnownZero/KnownOne bit sets.
1364///
1365/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1366/// we cannot optimize based on the assumption that it is zero without changing
1367/// it to be an explicit zero. If we don't change it to zero, other code could
1368/// optimized based on the contradictory assumption that it is non-zero.
1369/// Because instcombine aggressively folds operations with undef args anyway,
1370/// this won't lose us code quality.
1371///
1372/// This function is defined on values with integer type, values with pointer
1373/// type, and vectors of integers. In the case
1374/// where V is a vector, known zero, and known one values are the
1375/// same width as the vector element, and the bit is set only if it is true
1376/// for all of the elements in the vector.
1377void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001378 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001379 assert(V && "No Value?");
1380 assert(Depth <= MaxDepth && "Limit Search Depth");
1381 unsigned BitWidth = KnownZero.getBitWidth();
1382
1383 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001384 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001385 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001386 "Not integer, floating point, or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001387 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001388 (!V->getType()->isIntOrIntVectorTy() ||
1389 V->getType()->getScalarSizeInBits() == BitWidth) &&
1390 KnownZero.getBitWidth() == BitWidth &&
1391 KnownOne.getBitWidth() == BitWidth &&
1392 "V, KnownOne and KnownZero should have same BitWidth");
1393
1394 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1395 // We know all of the bits for a constant!
1396 KnownOne = CI->getValue();
1397 KnownZero = ~KnownOne;
1398 return;
1399 }
1400 // Null and aggregate-zero are all-zeros.
1401 if (isa<ConstantPointerNull>(V) ||
1402 isa<ConstantAggregateZero>(V)) {
1403 KnownOne.clearAllBits();
1404 KnownZero = APInt::getAllOnesValue(BitWidth);
1405 return;
1406 }
1407 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001408 // each element.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001409 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1410 // We know that CDS must be a vector of integers. Take the intersection of
1411 // each element.
1412 KnownZero.setAllBits(); KnownOne.setAllBits();
1413 APInt Elt(KnownZero.getBitWidth(), 0);
1414 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1415 Elt = CDS->getElementAsInteger(i);
1416 KnownZero &= ~Elt;
1417 KnownOne &= Elt;
1418 }
1419 return;
1420 }
1421
David Majnemer3918cdd2016-05-04 06:13:33 +00001422 if (auto *CV = dyn_cast<ConstantVector>(V)) {
1423 // We know that CV must be a vector of integers. Take the intersection of
1424 // each element.
1425 KnownZero.setAllBits(); KnownOne.setAllBits();
1426 APInt Elt(KnownZero.getBitWidth(), 0);
1427 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1428 Constant *Element = CV->getAggregateElement(i);
1429 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1430 if (!ElementCI) {
1431 KnownZero.clearAllBits();
1432 KnownOne.clearAllBits();
1433 return;
1434 }
1435 Elt = ElementCI->getValue();
1436 KnownZero &= ~Elt;
1437 KnownOne &= Elt;
1438 }
1439 return;
1440 }
1441
Jingyue Wu12b0c282015-06-15 05:46:29 +00001442 // Start out not knowing anything.
1443 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1444
1445 // Limit search depth.
1446 // All recursive calls that increase depth must come after this.
1447 if (Depth == MaxDepth)
1448 return;
1449
1450 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1451 // the bits of its aliasee.
1452 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001453 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001454 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001455 return;
1456 }
1457
1458 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001459 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001460
Artur Pilipenko029d8532015-09-30 11:55:45 +00001461 // Aligned pointers have trailing zeros - refine KnownZero set
1462 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001463 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001464 if (Align)
1465 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1466 }
1467
Philip Reames146307e2016-03-03 19:44:06 +00001468 // computeKnownBitsFromAssume strictly refines KnownZero and
1469 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001470
1471 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001472 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001473
Jay Foad5a29c362014-05-15 12:12:55 +00001474 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001475}
1476
Sanjay Patelaee84212014-11-04 16:27:42 +00001477/// Determine whether the sign bit is known to be zero or one.
1478/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001479void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001480 unsigned Depth, const Query &Q) {
1481 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001482 if (!BitWidth) {
1483 KnownZero = false;
1484 KnownOne = false;
1485 return;
1486 }
1487 APInt ZeroBits(BitWidth, 0);
1488 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001489 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001490 KnownOne = OneBits[BitWidth - 1];
1491 KnownZero = ZeroBits[BitWidth - 1];
1492}
1493
Sanjay Patelaee84212014-11-04 16:27:42 +00001494/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001495/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001496/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001497/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001498bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001499 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001500 if (Constant *C = dyn_cast<Constant>(V)) {
1501 if (C->isNullValue())
1502 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001503
1504 const APInt *ConstIntOrConstSplatInt;
1505 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1506 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001507 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001508
1509 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1510 // it is shifted off the end then the result is undefined.
1511 if (match(V, m_Shl(m_One(), m_Value())))
1512 return true;
1513
1514 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1515 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001516 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001517 return true;
1518
1519 // The remaining tests are all recursive, so bail out if we hit the limit.
1520 if (Depth++ == MaxDepth)
1521 return false;
1522
Craig Topper9f008862014-04-15 04:59:12 +00001523 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001524 // A shift left or a logical shift right of a power of two is a power of two
1525 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001526 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001527 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001528 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001529
Duncan Sandsd3951082011-01-25 09:38:29 +00001530 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001531 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001532
1533 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001534 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1535 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001536
Duncan Sandsba286d72011-10-26 20:55:21 +00001537 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1538 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001539 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1540 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001541 return true;
1542 // X & (-X) is always a power of two or zero.
1543 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1544 return true;
1545 return false;
1546 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001547
David Majnemerb7d54092013-07-30 21:01:36 +00001548 // Adding a power-of-two or zero to the same power-of-two or zero yields
1549 // either the original power-of-two, a larger power-of-two or zero.
1550 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1551 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1552 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1553 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1554 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001555 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001556 return true;
1557 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1558 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001559 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001560 return true;
1561
1562 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1563 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001564 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001565
1566 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001567 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001568 // If i8 V is a power of two or zero:
1569 // ZeroBits: 1 1 1 0 1 1 1 1
1570 // ~ZeroBits: 0 0 0 1 0 0 0 0
1571 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1572 // If OrZero isn't set, we cannot give back a zero result.
1573 // Make sure either the LHS or RHS has a bit set.
1574 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1575 return true;
1576 }
1577 }
David Majnemerbeab5672013-05-18 19:30:37 +00001578
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001579 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001580 // is a power of two only if the first operand is a power of two and not
1581 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001582 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1583 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001584 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001585 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001586 }
1587
Duncan Sandsd3951082011-01-25 09:38:29 +00001588 return false;
1589}
1590
Chandler Carruth80d3e562012-12-07 02:08:58 +00001591/// \brief Test whether a GEP's result is known to be non-null.
1592///
1593/// Uses properties inherent in a GEP to try to determine whether it is known
1594/// to be non-null.
1595///
1596/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001597static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1598 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001599 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1600 return false;
1601
1602 // FIXME: Support vector-GEPs.
1603 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1604
1605 // If the base pointer is non-null, we cannot walk to a null address with an
1606 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001607 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001608 return true;
1609
Chandler Carruth80d3e562012-12-07 02:08:58 +00001610 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1611 // If so, then the GEP cannot produce a null pointer, as doing so would
1612 // inherently violate the inbounds contract within address space zero.
1613 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1614 GTI != GTE; ++GTI) {
1615 // Struct types are easy -- they must always be indexed by a constant.
1616 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1617 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1618 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001619 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001620 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1621 if (ElementOffset > 0)
1622 return true;
1623 continue;
1624 }
1625
1626 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001627 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001628 continue;
1629
1630 // Fast path the constant operand case both for efficiency and so we don't
1631 // increment Depth when just zipping down an all-constant GEP.
1632 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1633 if (!OpC->isZero())
1634 return true;
1635 continue;
1636 }
1637
1638 // We post-increment Depth here because while isKnownNonZero increments it
1639 // as well, when we pop back up that increment won't persist. We don't want
1640 // to recurse 10k times just because we have 10k GEP operands. We don't
1641 // bail completely out because we want to handle constant GEPs regardless
1642 // of depth.
1643 if (Depth++ >= MaxDepth)
1644 continue;
1645
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001646 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001647 return true;
1648 }
1649
1650 return false;
1651}
1652
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001653/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1654/// ensure that the value it's attached to is never Value? 'RangeType' is
1655/// is the type of the value described by the range.
1656static bool rangeMetadataExcludesValue(MDNode* Ranges,
1657 const APInt& Value) {
1658 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1659 assert(NumRanges >= 1);
1660 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001661 ConstantInt *Lower =
1662 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1663 ConstantInt *Upper =
1664 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001665 ConstantRange Range(Lower->getValue(), Upper->getValue());
1666 if (Range.contains(Value))
1667 return false;
1668 }
1669 return true;
1670}
1671
Sanjay Patelaee84212014-11-04 16:27:42 +00001672/// Return true if the given value is known to be non-zero when defined.
1673/// For vectors return true if every element is known to be non-zero when
1674/// defined. Supports values with integer or pointer type and vectors of
1675/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001676bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001677 if (Constant *C = dyn_cast<Constant>(V)) {
1678 if (C->isNullValue())
1679 return false;
1680 if (isa<ConstantInt>(C))
1681 // Must be non-zero due to null test above.
1682 return true;
1683 // TODO: Handle vectors
1684 return false;
1685 }
1686
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001687 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001688 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001689 // If the possible ranges don't contain zero, then the value is
1690 // definitely non-zero.
1691 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1692 const APInt ZeroValue(Ty->getBitWidth(), 0);
1693 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1694 return true;
1695 }
1696 }
1697 }
1698
Duncan Sandsd3951082011-01-25 09:38:29 +00001699 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001700 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001701 return false;
1702
Chandler Carruth80d3e562012-12-07 02:08:58 +00001703 // Check for pointer simplifications.
1704 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001705 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001706 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001707 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001708 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709 return true;
1710 }
1711
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001712 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001713
1714 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001715 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001716 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001717 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001718
1719 // ext X != 0 if X != 0.
1720 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001721 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001722
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001723 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001724 // if the lowest bit is shifted off the end.
1725 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001726 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001727 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001728 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001729 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001730
Duncan Sandsd3951082011-01-25 09:38:29 +00001731 APInt KnownZero(BitWidth, 0);
1732 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001733 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001734 if (KnownOne[0])
1735 return true;
1736 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001737 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001738 // defined if the sign bit is shifted off the end.
1739 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001740 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001741 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001742 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001743 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001744
Duncan Sandsd3951082011-01-25 09:38:29 +00001745 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001746 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001747 if (XKnownNegative)
1748 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001749
1750 // If the shifter operand is a constant, and all of the bits shifted
1751 // out are known to be zero, and X is known non-zero then at least one
1752 // non-zero bit must remain.
1753 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1754 APInt KnownZero(BitWidth, 0);
1755 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001756 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001757
James Molloyb6be1eb2015-09-24 16:06:32 +00001758 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1759 // Is there a known one in the portion not shifted out?
1760 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1761 return true;
1762 // Are all the bits to be shifted out known zero?
1763 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001764 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001765 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001766 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001767 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001768 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001769 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001770 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001771 // X + Y.
1772 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1773 bool XKnownNonNegative, XKnownNegative;
1774 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001775 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1776 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001777
1778 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001779 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001780 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001781 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001782 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001783
1784 // If X and Y are both negative (as signed values) then their sum is not
1785 // zero unless both X and Y equal INT_MIN.
1786 if (BitWidth && XKnownNegative && YKnownNegative) {
1787 APInt KnownZero(BitWidth, 0);
1788 APInt KnownOne(BitWidth, 0);
1789 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1790 // The sign bit of X is set. If some other bit is set then X is not equal
1791 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001792 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001793 if ((KnownOne & Mask) != 0)
1794 return true;
1795 // The sign bit of Y is set. If some other bit is set then Y is not equal
1796 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001797 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001798 if ((KnownOne & Mask) != 0)
1799 return true;
1800 }
1801
1802 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001803 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001804 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001805 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001806 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001807 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001808 return true;
1809 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001810 // X * Y.
1811 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1812 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1813 // If X and Y are non-zero then so is X * Y as long as the multiplication
1814 // does not overflow.
1815 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001816 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001817 return true;
1818 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001819 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1820 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001821 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1822 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001823 return true;
1824 }
James Molloy897048b2015-09-29 14:08:45 +00001825 // PHI
1826 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1827 // Try and detect a recurrence that monotonically increases from a
1828 // starting value, as these are common as induction variables.
1829 if (PN->getNumIncomingValues() == 2) {
1830 Value *Start = PN->getIncomingValue(0);
1831 Value *Induction = PN->getIncomingValue(1);
1832 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1833 std::swap(Start, Induction);
1834 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1835 if (!C->isZero() && !C->isNegative()) {
1836 ConstantInt *X;
1837 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1838 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1839 !X->isNegative())
1840 return true;
1841 }
1842 }
1843 }
Jun Bum Limca832662016-02-01 17:03:07 +00001844 // Check if all incoming values are non-zero constant.
1845 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1846 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1847 });
1848 if (AllNonZeroConstants)
1849 return true;
James Molloy897048b2015-09-29 14:08:45 +00001850 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001851
1852 if (!BitWidth) return false;
1853 APInt KnownZero(BitWidth, 0);
1854 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001855 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001856 return KnownOne != 0;
1857}
1858
James Molloy1d88d6f2015-10-22 13:18:42 +00001859/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001860static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001861 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1862 if (!BO || BO->getOpcode() != Instruction::Add)
1863 return false;
1864 Value *Op = nullptr;
1865 if (V2 == BO->getOperand(0))
1866 Op = BO->getOperand(1);
1867 else if (V2 == BO->getOperand(1))
1868 Op = BO->getOperand(0);
1869 else
1870 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001871 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001872}
1873
1874/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001875static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001876 if (V1->getType()->isVectorTy() || V1 == V2)
1877 return false;
1878 if (V1->getType() != V2->getType())
1879 // We can't look through casts yet.
1880 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001881 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001882 return true;
1883
1884 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1885 // Are any known bits in V1 contradictory to known bits in V2? If V1
1886 // has a known zero where V2 has a known one, they must not be equal.
1887 auto BitWidth = Ty->getBitWidth();
1888 APInt KnownZero1(BitWidth, 0);
1889 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001890 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001891 APInt KnownZero2(BitWidth, 0);
1892 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001893 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001894
1895 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1896 if (OppositeBits.getBoolValue())
1897 return true;
1898 }
1899 return false;
1900}
1901
Sanjay Patelaee84212014-11-04 16:27:42 +00001902/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1903/// simplify operations downstream. Mask is known to be zero for bits that V
1904/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001905///
1906/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001907/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001908/// where V is a vector, the mask, known zero, and known one values are the
1909/// same width as the vector element, and the bit is set only if it is true
1910/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001911bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1912 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001913 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001914 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001915 return (KnownZero & Mask) == Mask;
1916}
1917
1918
1919
Sanjay Patelaee84212014-11-04 16:27:42 +00001920/// Return the number of times the sign bit of the register is replicated into
1921/// the other bits. We know that at least 1 bit is always equal to the sign bit
1922/// (itself), but other cases can give us information. For example, immediately
1923/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1924/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001925///
1926/// 'Op' must have a scalar integer type.
1927///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001928unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1929 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001930 unsigned Tmp, Tmp2;
1931 unsigned FirstAnswer = 1;
1932
Jay Foada0653a32014-05-14 21:14:37 +00001933 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001934 // below.
1935
Chris Lattner965c7692008-06-02 01:18:21 +00001936 if (Depth == 6)
1937 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001938
Dan Gohman80ca01c2009-07-17 20:47:02 +00001939 Operator *U = dyn_cast<Operator>(V);
1940 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001941 default: break;
1942 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001943 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001944 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001945
Nadav Rotemc99a3872015-03-06 00:23:58 +00001946 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001947 const APInt *Denominator;
1948 // sdiv X, C -> adds log(C) sign bits.
1949 if (match(U->getOperand(1), m_APInt(Denominator))) {
1950
1951 // Ignore non-positive denominator.
1952 if (!Denominator->isStrictlyPositive())
1953 break;
1954
1955 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001956 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001957
1958 // Add floor(log(C)) bits to the numerator bits.
1959 return std::min(TyBits, NumBits + Denominator->logBase2());
1960 }
1961 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001962 }
1963
1964 case Instruction::SRem: {
1965 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001966 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1967 // positive constant. This let us put a lower bound on the number of sign
1968 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001969 if (match(U->getOperand(1), m_APInt(Denominator))) {
1970
1971 // Ignore non-positive denominator.
1972 if (!Denominator->isStrictlyPositive())
1973 break;
1974
1975 // Calculate the incoming numerator bits. SRem by a positive constant
1976 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001977 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001978 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00001979
1980 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00001981 // denominator. Given that the denominator is positive, there are two
1982 // cases:
1983 //
1984 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
1985 // (1 << ceilLogBase2(C)).
1986 //
1987 // 2. the numerator is negative. Then the result range is (-C,0] and
1988 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1989 //
1990 // Thus a lower bound on the number of sign bits is `TyBits -
1991 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001992
Sanjoy Dase561fee2015-03-25 22:33:53 +00001993 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00001994 return std::max(NumrBits, ResBits);
1995 }
1996 break;
1997 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00001998
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001999 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002000 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002001 // ashr X, C -> adds C sign bits. Vectors too.
2002 const APInt *ShAmt;
2003 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2004 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002005 if (Tmp > TyBits) Tmp = TyBits;
2006 }
2007 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002008 }
2009 case Instruction::Shl: {
2010 const APInt *ShAmt;
2011 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002012 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002013 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002014 Tmp2 = ShAmt->getZExtValue();
2015 if (Tmp2 >= TyBits || // Bad shift.
2016 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2017 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002018 }
2019 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002020 }
Chris Lattner965c7692008-06-02 01:18:21 +00002021 case Instruction::And:
2022 case Instruction::Or:
2023 case Instruction::Xor: // NOT is handled here.
2024 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002025 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002026 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002027 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002028 FirstAnswer = std::min(Tmp, Tmp2);
2029 // We computed what we know about the sign bits as our first
2030 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002031 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002032 }
2033 break;
2034
2035 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002036 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002037 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002038 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002039 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002040
Chris Lattner965c7692008-06-02 01:18:21 +00002041 case Instruction::Add:
2042 // Add can have at most one carry bit. Thus we know that the output
2043 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002044 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002045 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002046
Chris Lattner965c7692008-06-02 01:18:21 +00002047 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002048 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002049 if (CRHS->isAllOnesValue()) {
2050 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002052
Chris Lattner965c7692008-06-02 01:18:21 +00002053 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2054 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002055 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002056 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002057
Chris Lattner965c7692008-06-02 01:18:21 +00002058 // If we are subtracting one from a positive number, there is no carry
2059 // out of the result.
2060 if (KnownZero.isNegative())
2061 return Tmp;
2062 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002063
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002064 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002065 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002066 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002067
Chris Lattner965c7692008-06-02 01:18:21 +00002068 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002069 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002070 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002071
Chris Lattner965c7692008-06-02 01:18:21 +00002072 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002073 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002074 if (CLHS->isNullValue()) {
2075 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002076 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002077 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2078 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002079 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002080 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002081
Chris Lattner965c7692008-06-02 01:18:21 +00002082 // If the input is known to be positive (the sign bit is known clear),
2083 // the output of the NEG has the same number of sign bits as the input.
2084 if (KnownZero.isNegative())
2085 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002086
Chris Lattner965c7692008-06-02 01:18:21 +00002087 // Otherwise, we treat this like a SUB.
2088 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002089
Chris Lattner965c7692008-06-02 01:18:21 +00002090 // Sub can have at most one carry bit. Thus we know that the output
2091 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002092 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002093 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002094 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002095
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002096 case Instruction::PHI: {
2097 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002098 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002099 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002100 if (NumIncomingValues > 4) break;
2101 // Unreachable blocks may have zero-operand PHI nodes.
2102 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002103
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002104 // Take the minimum of all incoming values. This can't infinitely loop
2105 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002106 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002107 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002108 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002109 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002110 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002111 }
2112 return Tmp;
2113 }
2114
Chris Lattner965c7692008-06-02 01:18:21 +00002115 case Instruction::Trunc:
2116 // FIXME: it's tricky to do anything useful for this, but it is an important
2117 // case for targets like X86.
2118 break;
2119 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002120
Chris Lattner965c7692008-06-02 01:18:21 +00002121 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2122 // use this information.
2123 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002124 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002125 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002126
Chris Lattner965c7692008-06-02 01:18:21 +00002127 if (KnownZero.isNegative()) { // sign bit is 0
2128 Mask = KnownZero;
2129 } else if (KnownOne.isNegative()) { // sign bit is 1;
2130 Mask = KnownOne;
2131 } else {
2132 // Nothing known.
2133 return FirstAnswer;
2134 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002135
Chris Lattner965c7692008-06-02 01:18:21 +00002136 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2137 // the number of identical bits in the top of the input value.
2138 Mask = ~Mask;
2139 Mask <<= Mask.getBitWidth()-TyBits;
2140 // Return # leading zeros. We use 'min' here in case Val was zero before
2141 // shifting. We don't want to return '64' as for an i32 "0".
2142 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2143}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002144
Sanjay Patelaee84212014-11-04 16:27:42 +00002145/// This function computes the integer multiple of Base that equals V.
2146/// If successful, it returns true and returns the multiple in
2147/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002148/// through SExt instructions only if LookThroughSExt is true.
2149bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002150 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002151 const unsigned MaxDepth = 6;
2152
Dan Gohman6a976bb2009-11-18 00:58:27 +00002153 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002154 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002155 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002156
Chris Lattner229907c2011-07-18 04:54:35 +00002157 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002158
Dan Gohman6a976bb2009-11-18 00:58:27 +00002159 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002160
2161 if (Base == 0)
2162 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002163
Victor Hernandez47444882009-11-10 08:28:35 +00002164 if (Base == 1) {
2165 Multiple = V;
2166 return true;
2167 }
2168
2169 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2170 Constant *BaseVal = ConstantInt::get(T, Base);
2171 if (CO && CO == BaseVal) {
2172 // Multiple is 1.
2173 Multiple = ConstantInt::get(T, 1);
2174 return true;
2175 }
2176
2177 if (CI && CI->getZExtValue() % Base == 0) {
2178 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002179 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002180 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002181
Victor Hernandez47444882009-11-10 08:28:35 +00002182 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002183
Victor Hernandez47444882009-11-10 08:28:35 +00002184 Operator *I = dyn_cast<Operator>(V);
2185 if (!I) return false;
2186
2187 switch (I->getOpcode()) {
2188 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002189 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002190 if (!LookThroughSExt) return false;
2191 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002192 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002193 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2194 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002195 case Instruction::Shl:
2196 case Instruction::Mul: {
2197 Value *Op0 = I->getOperand(0);
2198 Value *Op1 = I->getOperand(1);
2199
2200 if (I->getOpcode() == Instruction::Shl) {
2201 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2202 if (!Op1CI) return false;
2203 // Turn Op0 << Op1 into Op0 * 2^Op1
2204 APInt Op1Int = Op1CI->getValue();
2205 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002206 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002207 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002208 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002209 }
2210
Craig Topper9f008862014-04-15 04:59:12 +00002211 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002212 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2213 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2214 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002215 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002216 MulC->getType()->getPrimitiveSizeInBits())
2217 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002218 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002219 MulC->getType()->getPrimitiveSizeInBits())
2220 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002221
Chris Lattner72d283c2010-09-05 17:20:46 +00002222 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2223 Multiple = ConstantExpr::getMul(MulC, Op1C);
2224 return true;
2225 }
Victor Hernandez47444882009-11-10 08:28:35 +00002226
2227 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2228 if (Mul0CI->getValue() == 1) {
2229 // V == Base * Op1, so return Op1
2230 Multiple = Op1;
2231 return true;
2232 }
2233 }
2234
Craig Topper9f008862014-04-15 04:59:12 +00002235 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002236 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2237 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2238 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002239 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002240 MulC->getType()->getPrimitiveSizeInBits())
2241 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002242 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002243 MulC->getType()->getPrimitiveSizeInBits())
2244 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002245
Chris Lattner72d283c2010-09-05 17:20:46 +00002246 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2247 Multiple = ConstantExpr::getMul(MulC, Op0C);
2248 return true;
2249 }
Victor Hernandez47444882009-11-10 08:28:35 +00002250
2251 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2252 if (Mul1CI->getValue() == 1) {
2253 // V == Base * Op0, so return Op0
2254 Multiple = Op0;
2255 return true;
2256 }
2257 }
Victor Hernandez47444882009-11-10 08:28:35 +00002258 }
2259 }
2260
2261 // We could not determine if V is a multiple of Base.
2262 return false;
2263}
2264
David Majnemerb4b27232016-04-19 19:10:21 +00002265Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2266 const TargetLibraryInfo *TLI) {
2267 const Function *F = ICS.getCalledFunction();
2268 if (!F)
2269 return Intrinsic::not_intrinsic;
2270
2271 if (F->isIntrinsic())
2272 return F->getIntrinsicID();
2273
2274 if (!TLI)
2275 return Intrinsic::not_intrinsic;
2276
2277 LibFunc::Func Func;
2278 // We're going to make assumptions on the semantics of the functions, check
2279 // that the target knows that it's available in this environment and it does
2280 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002281 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2282 return Intrinsic::not_intrinsic;
2283
2284 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002285 return Intrinsic::not_intrinsic;
2286
2287 // Otherwise check if we have a call to a function that can be turned into a
2288 // vector intrinsic.
2289 switch (Func) {
2290 default:
2291 break;
2292 case LibFunc::sin:
2293 case LibFunc::sinf:
2294 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002295 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002296 case LibFunc::cos:
2297 case LibFunc::cosf:
2298 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002299 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002300 case LibFunc::exp:
2301 case LibFunc::expf:
2302 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002303 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002304 case LibFunc::exp2:
2305 case LibFunc::exp2f:
2306 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002307 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002308 case LibFunc::log:
2309 case LibFunc::logf:
2310 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002311 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002312 case LibFunc::log10:
2313 case LibFunc::log10f:
2314 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002315 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002316 case LibFunc::log2:
2317 case LibFunc::log2f:
2318 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002319 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002320 case LibFunc::fabs:
2321 case LibFunc::fabsf:
2322 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002323 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002324 case LibFunc::fmin:
2325 case LibFunc::fminf:
2326 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002327 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002328 case LibFunc::fmax:
2329 case LibFunc::fmaxf:
2330 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002331 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002332 case LibFunc::copysign:
2333 case LibFunc::copysignf:
2334 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002335 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002336 case LibFunc::floor:
2337 case LibFunc::floorf:
2338 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002339 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002340 case LibFunc::ceil:
2341 case LibFunc::ceilf:
2342 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002343 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002344 case LibFunc::trunc:
2345 case LibFunc::truncf:
2346 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002347 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002348 case LibFunc::rint:
2349 case LibFunc::rintf:
2350 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002351 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002352 case LibFunc::nearbyint:
2353 case LibFunc::nearbyintf:
2354 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002355 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002356 case LibFunc::round:
2357 case LibFunc::roundf:
2358 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002359 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002360 case LibFunc::pow:
2361 case LibFunc::powf:
2362 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002363 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002364 case LibFunc::sqrt:
2365 case LibFunc::sqrtf:
2366 case LibFunc::sqrtl:
2367 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002368 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002369 return Intrinsic::not_intrinsic;
2370 }
2371
2372 return Intrinsic::not_intrinsic;
2373}
2374
Sanjay Patelaee84212014-11-04 16:27:42 +00002375/// Return true if we can prove that the specified FP value is never equal to
2376/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002377///
2378/// NOTE: this function will need to be revisited when we support non-default
2379/// rounding modes!
2380///
David Majnemer3ee5f342016-04-13 06:55:52 +00002381bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2382 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002383 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2384 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002385
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002386 // FIXME: Magic number! At the least, this should be given a name because it's
2387 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2388 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002389 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002390 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002391
Dan Gohman80ca01c2009-07-17 20:47:02 +00002392 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002393 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002394
2395 // Check if the nsz fast-math flag is set
2396 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2397 if (FPO->hasNoSignedZeros())
2398 return true;
2399
Chris Lattnera12a6de2008-06-02 01:29:46 +00002400 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002401 if (I->getOpcode() == Instruction::FAdd)
2402 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2403 if (CFP->isNullValue())
2404 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002405
Chris Lattnera12a6de2008-06-02 01:29:46 +00002406 // sitofp and uitofp turn into +0.0 for zero.
2407 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2408 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002409
David Majnemer3ee5f342016-04-13 06:55:52 +00002410 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002411 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002412 switch (IID) {
2413 default:
2414 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002415 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002416 case Intrinsic::sqrt:
2417 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2418 // fabs(x) != -0.0
2419 case Intrinsic::fabs:
2420 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002421 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002422 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002423
Chris Lattnera12a6de2008-06-02 01:29:46 +00002424 return false;
2425}
2426
David Majnemer3ee5f342016-04-13 06:55:52 +00002427bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2428 const TargetLibraryInfo *TLI,
2429 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002430 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2431 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2432
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002433 // FIXME: Magic number! At the least, this should be given a name because it's
2434 // used similarly in CannotBeNegativeZero(). A better fix may be to
2435 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002436 if (Depth == 6)
2437 return false; // Limit search depth.
2438
2439 const Operator *I = dyn_cast<Operator>(V);
2440 if (!I) return false;
2441
2442 switch (I->getOpcode()) {
2443 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002444 // Unsigned integers are always nonnegative.
2445 case Instruction::UIToFP:
2446 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002447 case Instruction::FMul:
2448 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002449 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002450 return true;
2451 // Fall through
2452 case Instruction::FAdd:
2453 case Instruction::FDiv:
2454 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002455 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2456 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002457 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002458 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2459 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002460 case Instruction::FPExt:
2461 case Instruction::FPTrunc:
2462 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002463 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2464 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002465 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002466 switch (IID) {
2467 default:
2468 break;
2469 case Intrinsic::maxnum:
2470 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2471 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2472 case Intrinsic::minnum:
2473 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2474 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2475 case Intrinsic::exp:
2476 case Intrinsic::exp2:
2477 case Intrinsic::fabs:
2478 case Intrinsic::sqrt:
2479 return true;
2480 case Intrinsic::powi:
2481 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2482 // powi(x,n) is non-negative if n is even.
2483 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2484 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002485 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002486 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2487 case Intrinsic::fma:
2488 case Intrinsic::fmuladd:
2489 // x*x+y is non-negative if y is non-negative.
2490 return I->getOperand(0) == I->getOperand(1) &&
2491 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2492 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002493 break;
2494 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002495 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002496}
2497
Sanjay Patelaee84212014-11-04 16:27:42 +00002498/// If the specified value can be set by repeating the same byte in memory,
2499/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002500/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2501/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2502/// byte store (e.g. i16 0x1234), return null.
2503Value *llvm::isBytewiseValue(Value *V) {
2504 // All byte-wide stores are splatable, even of arbitrary variables.
2505 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002506
2507 // Handle 'null' ConstantArrayZero etc.
2508 if (Constant *C = dyn_cast<Constant>(V))
2509 if (C->isNullValue())
2510 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002511
Chris Lattner9cb10352010-12-26 20:15:01 +00002512 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002513 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002514 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2515 if (CFP->getType()->isFloatTy())
2516 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2517 if (CFP->getType()->isDoubleTy())
2518 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2519 // Don't handle long double formats, which have strange constraints.
2520 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002521
Benjamin Kramer17d90152015-02-07 19:29:02 +00002522 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002523 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002524 if (CI->getBitWidth() % 8 == 0) {
2525 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002526
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002527 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002528 return nullptr;
2529 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002530 }
2531 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002532
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002533 // A ConstantDataArray/Vector is splatable if all its members are equal and
2534 // also splatable.
2535 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2536 Value *Elt = CA->getElementAsConstant(0);
2537 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002538 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002539 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002540
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002541 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2542 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002543 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002544
Chris Lattner9cb10352010-12-26 20:15:01 +00002545 return Val;
2546 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002547
Chris Lattner9cb10352010-12-26 20:15:01 +00002548 // Conceptually, we could handle things like:
2549 // %a = zext i8 %X to i16
2550 // %b = shl i16 %a, 8
2551 // %c = or i16 %a, %b
2552 // but until there is an example that actually needs this, it doesn't seem
2553 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002554 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002555}
2556
2557
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002558// This is the recursive version of BuildSubAggregate. It takes a few different
2559// arguments. Idxs is the index within the nested struct From that we are
2560// looking at now (which is of type IndexedType). IdxSkip is the number of
2561// indices from Idxs that should be left out when inserting into the resulting
2562// struct. To is the result struct built so far, new insertvalue instructions
2563// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002564static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002565 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002566 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002567 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002568 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002569 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002570 // Save the original To argument so we can modify it
2571 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002572 // General case, the type indexed by Idxs is a struct
2573 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2574 // Process each struct element recursively
2575 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002576 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002577 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002578 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002579 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002580 if (!To) {
2581 // Couldn't find any inserted value for this index? Cleanup
2582 while (PrevTo != OrigTo) {
2583 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2584 PrevTo = Del->getAggregateOperand();
2585 Del->eraseFromParent();
2586 }
2587 // Stop processing elements
2588 break;
2589 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002590 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002591 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002592 if (To)
2593 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002594 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002595 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2596 // the struct's elements had a value that was inserted directly. In the latter
2597 // case, perhaps we can't determine each of the subelements individually, but
2598 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002599
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002600 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002601 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002602
2603 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002604 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002605
2606 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002607 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002608 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002609}
2610
2611// This helper takes a nested struct and extracts a part of it (which is again a
2612// struct) into a new value. For example, given the struct:
2613// { a, { b, { c, d }, e } }
2614// and the indices "1, 1" this returns
2615// { c, d }.
2616//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002617// It does this by inserting an insertvalue for each element in the resulting
2618// struct, as opposed to just inserting a single struct. This will only work if
2619// each of the elements of the substruct are known (ie, inserted into From by an
2620// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002621//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002622// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002623static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002624 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002625 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002626 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002627 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002628 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002629 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002630 unsigned IdxSkip = Idxs.size();
2631
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002632 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002633}
2634
Sanjay Patelaee84212014-11-04 16:27:42 +00002635/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002636/// the scalar value indexed is already around as a register, for example if it
2637/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002638///
2639/// If InsertBefore is not null, this function will duplicate (modified)
2640/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002641Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2642 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002643 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002644 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002645 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002646 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002647 // We have indices, so V should have an indexable type.
2648 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2649 "Not looking at a struct or array?");
2650 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2651 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002652
Chris Lattner67058832012-01-25 06:48:06 +00002653 if (Constant *C = dyn_cast<Constant>(V)) {
2654 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002655 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002656 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2657 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002658
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002659 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002660 // Loop the indices for the insertvalue instruction in parallel with the
2661 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002662 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002663 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2664 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002665 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002666 // We can't handle this without inserting insertvalues
2667 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002668 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002669
2670 // The requested index identifies a part of a nested aggregate. Handle
2671 // this specially. For example,
2672 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2673 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2674 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2675 // This can be changed into
2676 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2677 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2678 // which allows the unused 0,0 element from the nested struct to be
2679 // removed.
2680 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2681 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002682 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002683
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002684 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002685 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002686 // looking for, then.
2687 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002688 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002689 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002690 }
2691 // If we end up here, the indices of the insertvalue match with those
2692 // requested (though possibly only partially). Now we recursively look at
2693 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002694 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002695 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002696 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002697 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002698
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002699 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002700 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002701 // something else, we can extract from that something else directly instead.
2702 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002703
2704 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002705 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002706 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002707 SmallVector<unsigned, 5> Idxs;
2708 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002709 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002710 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002711
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002712 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002713 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002714
Craig Topper1bef2c82012-12-22 19:15:35 +00002715 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002716 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002717
Jay Foad57aa6362011-07-13 10:26:04 +00002718 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002719 }
2720 // Otherwise, we don't know (such as, extracting from a function return value
2721 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002722 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002723}
Evan Chengda3db112008-06-30 07:31:25 +00002724
Sanjay Patelaee84212014-11-04 16:27:42 +00002725/// Analyze the specified pointer to see if it can be expressed as a base
2726/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002727Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002728 const DataLayout &DL) {
2729 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002730 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002731
2732 // We walk up the defs but use a visited set to handle unreachable code. In
2733 // that case, we stop after accumulating the cycle once (not that it
2734 // matters).
2735 SmallPtrSet<Value *, 16> Visited;
2736 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002737 if (Ptr->getType()->isVectorTy())
2738 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002739
Nuno Lopes368c4d02012-12-31 20:48:35 +00002740 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002741 APInt GEPOffset(BitWidth, 0);
2742 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2743 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002744
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002745 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002746
Nuno Lopes368c4d02012-12-31 20:48:35 +00002747 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002748 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2749 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002750 Ptr = cast<Operator>(Ptr)->getOperand(0);
2751 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002752 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002753 break;
2754 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002755 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002756 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002757 }
2758 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002759 Offset = ByteOffset.getSExtValue();
2760 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002761}
2762
David L Kreitzer752c1442016-04-13 14:31:06 +00002763bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2764 // Make sure the GEP has exactly three arguments.
2765 if (GEP->getNumOperands() != 3)
2766 return false;
2767
2768 // Make sure the index-ee is a pointer to array of i8.
2769 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2770 if (!AT || !AT->getElementType()->isIntegerTy(8))
2771 return false;
2772
2773 // Check to make sure that the first operand of the GEP is an integer and
2774 // has value 0 so that we are sure we're indexing into the initializer.
2775 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2776 if (!FirstIdx || !FirstIdx->isZero())
2777 return false;
2778
2779 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002780}
Chris Lattnere28618d2010-11-30 22:25:26 +00002781
Sanjay Patelaee84212014-11-04 16:27:42 +00002782/// This function computes the length of a null-terminated C string pointed to
2783/// by V. If successful, it returns true and returns the string in Str.
2784/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002785bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2786 uint64_t Offset, bool TrimAtNul) {
2787 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002788
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002789 // Look through bitcast instructions and geps.
2790 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002791
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002792 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002793 // offset.
2794 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002795 // The GEP operator should be based on a pointer to string constant, and is
2796 // indexing into the string constant.
2797 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002798 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002799
Evan Chengda3db112008-06-30 07:31:25 +00002800 // If the second index isn't a ConstantInt, then this is a variable index
2801 // into the array. If this occurs, we can't say anything meaningful about
2802 // the string.
2803 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002804 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002805 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002806 else
2807 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002808 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2809 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002810 }
Nick Lewycky46209882011-10-20 00:34:35 +00002811
Evan Chengda3db112008-06-30 07:31:25 +00002812 // The GEP instruction, constant or instruction, must reference a global
2813 // variable that is a constant and is initialized. The referenced constant
2814 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002815 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002816 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002817 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002818
Nick Lewycky46209882011-10-20 00:34:35 +00002819 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002820 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002821 // This is a degenerate case. The initializer is constant zero so the
2822 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002823 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002824 return true;
2825 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002826
Evan Chengda3db112008-06-30 07:31:25 +00002827 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002828 const ConstantDataArray *Array =
2829 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002830 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002831 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002832
Evan Chengda3db112008-06-30 07:31:25 +00002833 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002834 uint64_t NumElts = Array->getType()->getArrayNumElements();
2835
2836 // Start out with the entire array in the StringRef.
2837 Str = Array->getAsString();
2838
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002839 if (Offset > NumElts)
2840 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002841
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002842 // Skip over 'offset' bytes.
2843 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002844
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002845 if (TrimAtNul) {
2846 // Trim off the \0 and anything after it. If the array is not nul
2847 // terminated, we just return the whole end of string. The client may know
2848 // some other way that the string is length-bound.
2849 Str = Str.substr(0, Str.find('\0'));
2850 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002851 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002852}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002853
2854// These next two are very similar to the above, but also look through PHI
2855// nodes.
2856// TODO: See if we can integrate these two together.
2857
Sanjay Patelaee84212014-11-04 16:27:42 +00002858/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002859/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002860static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002861 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002862 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002863
2864 // If this is a PHI node, there are two cases: either we have already seen it
2865 // or we haven't.
2866 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002867 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002868 return ~0ULL; // already in the set.
2869
2870 // If it was new, see if all the input strings are the same length.
2871 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002872 for (Value *IncValue : PN->incoming_values()) {
2873 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002874 if (Len == 0) return 0; // Unknown length -> unknown.
2875
2876 if (Len == ~0ULL) continue;
2877
2878 if (Len != LenSoFar && LenSoFar != ~0ULL)
2879 return 0; // Disagree -> unknown.
2880 LenSoFar = Len;
2881 }
2882
2883 // Success, all agree.
2884 return LenSoFar;
2885 }
2886
2887 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2888 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2889 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2890 if (Len1 == 0) return 0;
2891 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2892 if (Len2 == 0) return 0;
2893 if (Len1 == ~0ULL) return Len2;
2894 if (Len2 == ~0ULL) return Len1;
2895 if (Len1 != Len2) return 0;
2896 return Len1;
2897 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002898
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002899 // Otherwise, see if we can read the string.
2900 StringRef StrData;
2901 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002902 return 0;
2903
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002904 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002905}
2906
Sanjay Patelaee84212014-11-04 16:27:42 +00002907/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002908/// the specified pointer, return 'len+1'. If we can't, return 0.
2909uint64_t llvm::GetStringLength(Value *V) {
2910 if (!V->getType()->isPointerTy()) return 0;
2911
2912 SmallPtrSet<PHINode*, 32> PHIs;
2913 uint64_t Len = GetStringLengthH(V, PHIs);
2914 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2915 // an empty string as a length.
2916 return Len == ~0ULL ? 1 : Len;
2917}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002918
Adam Nemete2b885c2015-04-23 20:09:20 +00002919/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2920/// previous iteration of the loop was referring to the same object as \p PN.
2921static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2922 // Find the loop-defined value.
2923 Loop *L = LI->getLoopFor(PN->getParent());
2924 if (PN->getNumIncomingValues() != 2)
2925 return true;
2926
2927 // Find the value from previous iteration.
2928 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2929 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2930 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2931 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2932 return true;
2933
2934 // If a new pointer is loaded in the loop, the pointer references a different
2935 // object in every iteration. E.g.:
2936 // for (i)
2937 // int *p = a[i];
2938 // ...
2939 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2940 if (!L->isLoopInvariant(Load->getPointerOperand()))
2941 return false;
2942 return true;
2943}
2944
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002945Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2946 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002947 if (!V->getType()->isPointerTy())
2948 return V;
2949 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2950 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2951 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002952 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2953 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002954 V = cast<Operator>(V)->getOperand(0);
2955 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002956 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00002957 return V;
2958 V = GA->getAliasee();
2959 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002960 // See if InstructionSimplify knows any relevant tricks.
2961 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002962 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002963 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002964 V = Simplified;
2965 continue;
2966 }
2967
Dan Gohmana4fcd242010-12-15 20:02:24 +00002968 return V;
2969 }
2970 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2971 }
2972 return V;
2973}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002974
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002975void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002976 const DataLayout &DL, LoopInfo *LI,
2977 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002978 SmallPtrSet<Value *, 4> Visited;
2979 SmallVector<Value *, 4> Worklist;
2980 Worklist.push_back(V);
2981 do {
2982 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002983 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002984
David Blaikie70573dc2014-11-19 07:49:26 +00002985 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002986 continue;
2987
2988 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2989 Worklist.push_back(SI->getTrueValue());
2990 Worklist.push_back(SI->getFalseValue());
2991 continue;
2992 }
2993
2994 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002995 // If this PHI changes the underlying object in every iteration of the
2996 // loop, don't look through it. Consider:
2997 // int **A;
2998 // for (i) {
2999 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3000 // Curr = A[i];
3001 // *Prev, *Curr;
3002 //
3003 // Prev is tracking Curr one iteration behind so they refer to different
3004 // underlying objects.
3005 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3006 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003007 for (Value *IncValue : PN->incoming_values())
3008 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003009 continue;
3010 }
3011
3012 Objects.push_back(P);
3013 } while (!Worklist.empty());
3014}
3015
Sanjay Patelaee84212014-11-04 16:27:42 +00003016/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003017bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003018 for (const User *U : V->users()) {
3019 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003020 if (!II) return false;
3021
3022 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3023 II->getIntrinsicID() != Intrinsic::lifetime_end)
3024 return false;
3025 }
3026 return true;
3027}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003028
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003029bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3030 const Instruction *CtxI,
3031 const DominatorTree *DT,
3032 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003033 const Operator *Inst = dyn_cast<Operator>(V);
3034 if (!Inst)
3035 return false;
3036
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003037 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3038 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3039 if (C->canTrap())
3040 return false;
3041
3042 switch (Inst->getOpcode()) {
3043 default:
3044 return true;
3045 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003046 case Instruction::URem: {
3047 // x / y is undefined if y == 0.
3048 const APInt *V;
3049 if (match(Inst->getOperand(1), m_APInt(V)))
3050 return *V != 0;
3051 return false;
3052 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003053 case Instruction::SDiv:
3054 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003055 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003056 const APInt *Numerator, *Denominator;
3057 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3058 return false;
3059 // We cannot hoist this division if the denominator is 0.
3060 if (*Denominator == 0)
3061 return false;
3062 // It's safe to hoist if the denominator is not 0 or -1.
3063 if (*Denominator != -1)
3064 return true;
3065 // At this point we know that the denominator is -1. It is safe to hoist as
3066 // long we know that the numerator is not INT_MIN.
3067 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3068 return !Numerator->isMinSignedValue();
3069 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003070 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003071 }
3072 case Instruction::Load: {
3073 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003074 if (!LI->isUnordered() ||
3075 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003076 LI->getParent()->getParent()->hasFnAttribute(
3077 Attribute::SanitizeThread) ||
3078 // Speculative load may load data from dirty regions.
3079 LI->getParent()->getParent()->hasFnAttribute(
3080 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003081 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003082 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003083 return isDereferenceableAndAlignedPointer(
3084 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003085 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003086 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003087 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3088 switch (II->getIntrinsicID()) {
3089 // These synthetic intrinsics have no side-effects and just mark
3090 // information about their operands.
3091 // FIXME: There are other no-op synthetic instructions that potentially
3092 // should be considered at least *safe* to speculate...
3093 case Intrinsic::dbg_declare:
3094 case Intrinsic::dbg_value:
3095 return true;
3096
3097 case Intrinsic::bswap:
3098 case Intrinsic::ctlz:
3099 case Intrinsic::ctpop:
3100 case Intrinsic::cttz:
3101 case Intrinsic::objectsize:
3102 case Intrinsic::sadd_with_overflow:
3103 case Intrinsic::smul_with_overflow:
3104 case Intrinsic::ssub_with_overflow:
3105 case Intrinsic::uadd_with_overflow:
3106 case Intrinsic::umul_with_overflow:
3107 case Intrinsic::usub_with_overflow:
3108 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003109 // These intrinsics are defined to have the same behavior as libm
3110 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003111 case Intrinsic::sqrt:
3112 case Intrinsic::fma:
3113 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003114 return true;
3115 // These intrinsics are defined to have the same behavior as libm
3116 // functions, and the corresponding libm functions never set errno.
3117 case Intrinsic::trunc:
3118 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003119 case Intrinsic::fabs:
3120 case Intrinsic::minnum:
3121 case Intrinsic::maxnum:
3122 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003123 // These intrinsics are defined to have the same behavior as libm
3124 // functions, which never overflow when operating on the IEEE754 types
3125 // that we support, and never set errno otherwise.
3126 case Intrinsic::ceil:
3127 case Intrinsic::floor:
3128 case Intrinsic::nearbyint:
3129 case Intrinsic::rint:
3130 case Intrinsic::round:
3131 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003132 // TODO: are convert_{from,to}_fp16 safe?
3133 // TODO: can we list target-specific intrinsics here?
3134 default: break;
3135 }
3136 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003137 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003138 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003139 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003140 case Instruction::VAArg:
3141 case Instruction::Alloca:
3142 case Instruction::Invoke:
3143 case Instruction::PHI:
3144 case Instruction::Store:
3145 case Instruction::Ret:
3146 case Instruction::Br:
3147 case Instruction::IndirectBr:
3148 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003149 case Instruction::Unreachable:
3150 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003151 case Instruction::AtomicRMW:
3152 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003153 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003154 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003155 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003156 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003157 case Instruction::CatchRet:
3158 case Instruction::CleanupPad:
3159 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003160 return false; // Misc instructions which have effects
3161 }
3162}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003163
Quentin Colombet6443cce2015-08-06 18:44:34 +00003164bool llvm::mayBeMemoryDependent(const Instruction &I) {
3165 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3166}
3167
Sanjay Patelaee84212014-11-04 16:27:42 +00003168/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003169bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003170 assert(V->getType()->isPointerTy() && "V must be pointer type");
3171
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003172 // Alloca never returns null, malloc might.
3173 if (isa<AllocaInst>(V)) return true;
3174
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003175 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003176 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003177 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003178
Pete Cooper6b716212015-08-27 03:16:29 +00003179 // A global variable in address space 0 is non null unless extern weak.
3180 // Other address spaces may have null as a valid address for a global,
3181 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003182 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003183 return !GV->hasExternalWeakLinkage() &&
3184 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003185
Sanjoy Das5056e192016-05-07 02:08:22 +00003186 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003187 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003188 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003189
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003190 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003191 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003192 return true;
3193
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003194 return false;
3195}
David Majnemer491331a2015-01-02 07:29:43 +00003196
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003197static bool isKnownNonNullFromDominatingCondition(const Value *V,
3198 const Instruction *CtxI,
3199 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003200 assert(V->getType()->isPointerTy() && "V must be pointer type");
3201
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003202 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003203 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003204 // Avoid massive lists
3205 if (NumUsesExplored >= DomConditionsMaxUses)
3206 break;
3207 NumUsesExplored++;
3208 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003209 CmpInst::Predicate Pred;
3210 if (!match(const_cast<User *>(U),
3211 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3212 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003213 continue;
3214
Sanjoy Das987aaa12016-05-07 02:08:24 +00003215 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003216 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3217 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003218
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003219 BasicBlock *NonNullSuccessor =
3220 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3221 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3222 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3223 return true;
3224 } else if (Pred == ICmpInst::ICMP_NE &&
3225 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3226 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003227 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003228 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003229 }
3230 }
3231
3232 return false;
3233}
3234
3235bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3236 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3237 if (isKnownNonNull(V, TLI))
3238 return true;
3239
3240 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3241}
3242
David Majnemer491331a2015-01-02 07:29:43 +00003243OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003244 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003245 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003246 const Instruction *CxtI,
3247 const DominatorTree *DT) {
3248 // Multiplying n * m significant bits yields a result of n + m significant
3249 // bits. If the total number of significant bits does not exceed the
3250 // result bit width (minus 1), there is no overflow.
3251 // This means if we have enough leading zero bits in the operands
3252 // we can guarantee that the result does not overflow.
3253 // Ref: "Hacker's Delight" by Henry Warren
3254 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3255 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003256 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003257 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003258 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003259 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3260 DT);
3261 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3262 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003263 // Note that underestimating the number of zero bits gives a more
3264 // conservative answer.
3265 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3266 RHSKnownZero.countLeadingOnes();
3267 // First handle the easy case: if we have enough zero bits there's
3268 // definitely no overflow.
3269 if (ZeroBits >= BitWidth)
3270 return OverflowResult::NeverOverflows;
3271
3272 // Get the largest possible values for each operand.
3273 APInt LHSMax = ~LHSKnownZero;
3274 APInt RHSMax = ~RHSKnownZero;
3275
3276 // We know the multiply operation doesn't overflow if the maximum values for
3277 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003278 bool MaxOverflow;
3279 LHSMax.umul_ov(RHSMax, MaxOverflow);
3280 if (!MaxOverflow)
3281 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003282
David Majnemerc8a576b2015-01-02 07:29:47 +00003283 // We know it always overflows if multiplying the smallest possible values for
3284 // the operands also results in overflow.
3285 bool MinOverflow;
3286 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3287 if (MinOverflow)
3288 return OverflowResult::AlwaysOverflows;
3289
3290 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003291}
David Majnemer5310c1e2015-01-07 00:39:50 +00003292
3293OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003294 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003295 AssumptionCache *AC,
3296 const Instruction *CxtI,
3297 const DominatorTree *DT) {
3298 bool LHSKnownNonNegative, LHSKnownNegative;
3299 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3300 AC, CxtI, DT);
3301 if (LHSKnownNonNegative || LHSKnownNegative) {
3302 bool RHSKnownNonNegative, RHSKnownNegative;
3303 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3304 AC, CxtI, DT);
3305
3306 if (LHSKnownNegative && RHSKnownNegative) {
3307 // The sign bit is set in both cases: this MUST overflow.
3308 // Create a simple add instruction, and insert it into the struct.
3309 return OverflowResult::AlwaysOverflows;
3310 }
3311
3312 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3313 // The sign bit is clear in both cases: this CANNOT overflow.
3314 // Create a simple add instruction, and insert it into the struct.
3315 return OverflowResult::NeverOverflows;
3316 }
3317 }
3318
3319 return OverflowResult::MayOverflow;
3320}
James Molloy71b91c22015-05-11 14:42:20 +00003321
Jingyue Wu10fcea52015-08-20 18:27:04 +00003322static OverflowResult computeOverflowForSignedAdd(
3323 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3324 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3325 if (Add && Add->hasNoSignedWrap()) {
3326 return OverflowResult::NeverOverflows;
3327 }
3328
3329 bool LHSKnownNonNegative, LHSKnownNegative;
3330 bool RHSKnownNonNegative, RHSKnownNegative;
3331 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3332 AC, CxtI, DT);
3333 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3334 AC, CxtI, DT);
3335
3336 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3337 (LHSKnownNegative && RHSKnownNonNegative)) {
3338 // The sign bits are opposite: this CANNOT overflow.
3339 return OverflowResult::NeverOverflows;
3340 }
3341
3342 // The remaining code needs Add to be available. Early returns if not so.
3343 if (!Add)
3344 return OverflowResult::MayOverflow;
3345
3346 // If the sign of Add is the same as at least one of the operands, this add
3347 // CANNOT overflow. This is particularly useful when the sum is
3348 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3349 // operands.
3350 bool LHSOrRHSKnownNonNegative =
3351 (LHSKnownNonNegative || RHSKnownNonNegative);
3352 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3353 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3354 bool AddKnownNonNegative, AddKnownNegative;
3355 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3356 /*Depth=*/0, AC, CxtI, DT);
3357 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3358 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3359 return OverflowResult::NeverOverflows;
3360 }
3361 }
3362
3363 return OverflowResult::MayOverflow;
3364}
3365
3366OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3367 const DataLayout &DL,
3368 AssumptionCache *AC,
3369 const Instruction *CxtI,
3370 const DominatorTree *DT) {
3371 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3372 Add, DL, AC, CxtI, DT);
3373}
3374
3375OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3376 const DataLayout &DL,
3377 AssumptionCache *AC,
3378 const Instruction *CxtI,
3379 const DominatorTree *DT) {
3380 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3381}
3382
Jingyue Wu42f1d672015-07-28 18:22:40 +00003383bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3384 // FIXME: This conservative implementation can be relaxed. E.g. most
3385 // atomic operations are guaranteed to terminate on most platforms
3386 // and most functions terminate.
3387
3388 return !I->isAtomic() && // atomics may never succeed on some platforms
3389 !isa<CallInst>(I) && // could throw and might not terminate
3390 !isa<InvokeInst>(I) && // might not terminate and could throw to
3391 // non-successor (see bug 24185 for details).
3392 !isa<ResumeInst>(I) && // has no successors
3393 !isa<ReturnInst>(I); // has no successors
3394}
3395
3396bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3397 const Loop *L) {
3398 // The loop header is guaranteed to be executed for every iteration.
3399 //
3400 // FIXME: Relax this constraint to cover all basic blocks that are
3401 // guaranteed to be executed at every iteration.
3402 if (I->getParent() != L->getHeader()) return false;
3403
3404 for (const Instruction &LI : *L->getHeader()) {
3405 if (&LI == I) return true;
3406 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3407 }
3408 llvm_unreachable("Instruction not contained in its own parent basic block.");
3409}
3410
3411bool llvm::propagatesFullPoison(const Instruction *I) {
3412 switch (I->getOpcode()) {
3413 case Instruction::Add:
3414 case Instruction::Sub:
3415 case Instruction::Xor:
3416 case Instruction::Trunc:
3417 case Instruction::BitCast:
3418 case Instruction::AddrSpaceCast:
3419 // These operations all propagate poison unconditionally. Note that poison
3420 // is not any particular value, so xor or subtraction of poison with
3421 // itself still yields poison, not zero.
3422 return true;
3423
3424 case Instruction::AShr:
3425 case Instruction::SExt:
3426 // For these operations, one bit of the input is replicated across
3427 // multiple output bits. A replicated poison bit is still poison.
3428 return true;
3429
3430 case Instruction::Shl: {
3431 // Left shift *by* a poison value is poison. The number of
3432 // positions to shift is unsigned, so no negative values are
3433 // possible there. Left shift by zero places preserves poison. So
3434 // it only remains to consider left shift of poison by a positive
3435 // number of places.
3436 //
3437 // A left shift by a positive number of places leaves the lowest order bit
3438 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3439 // make the poison operand violate that flag, yielding a fresh full-poison
3440 // value.
3441 auto *OBO = cast<OverflowingBinaryOperator>(I);
3442 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3443 }
3444
3445 case Instruction::Mul: {
3446 // A multiplication by zero yields a non-poison zero result, so we need to
3447 // rule out zero as an operand. Conservatively, multiplication by a
3448 // non-zero constant is not multiplication by zero.
3449 //
3450 // Multiplication by a non-zero constant can leave some bits
3451 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3452 // order bit unpoisoned. So we need to consider that.
3453 //
3454 // Multiplication by 1 preserves poison. If the multiplication has a
3455 // no-wrap flag, then we can make the poison operand violate that flag
3456 // when multiplied by any integer other than 0 and 1.
3457 auto *OBO = cast<OverflowingBinaryOperator>(I);
3458 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3459 for (Value *V : OBO->operands()) {
3460 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3461 // A ConstantInt cannot yield poison, so we can assume that it is
3462 // the other operand that is poison.
3463 return !CI->isZero();
3464 }
3465 }
3466 }
3467 return false;
3468 }
3469
3470 case Instruction::GetElementPtr:
3471 // A GEP implicitly represents a sequence of additions, subtractions,
3472 // truncations, sign extensions and multiplications. The multiplications
3473 // are by the non-zero sizes of some set of types, so we do not have to be
3474 // concerned with multiplication by zero. If the GEP is in-bounds, then
3475 // these operations are implicitly no-signed-wrap so poison is propagated
3476 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3477 return cast<GEPOperator>(I)->isInBounds();
3478
3479 default:
3480 return false;
3481 }
3482}
3483
3484const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3485 switch (I->getOpcode()) {
3486 case Instruction::Store:
3487 return cast<StoreInst>(I)->getPointerOperand();
3488
3489 case Instruction::Load:
3490 return cast<LoadInst>(I)->getPointerOperand();
3491
3492 case Instruction::AtomicCmpXchg:
3493 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3494
3495 case Instruction::AtomicRMW:
3496 return cast<AtomicRMWInst>(I)->getPointerOperand();
3497
3498 case Instruction::UDiv:
3499 case Instruction::SDiv:
3500 case Instruction::URem:
3501 case Instruction::SRem:
3502 return I->getOperand(1);
3503
3504 default:
3505 return nullptr;
3506 }
3507}
3508
3509bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3510 // We currently only look for uses of poison values within the same basic
3511 // block, as that makes it easier to guarantee that the uses will be
3512 // executed given that PoisonI is executed.
3513 //
3514 // FIXME: Expand this to consider uses beyond the same basic block. To do
3515 // this, look out for the distinction between post-dominance and strong
3516 // post-dominance.
3517 const BasicBlock *BB = PoisonI->getParent();
3518
3519 // Set of instructions that we have proved will yield poison if PoisonI
3520 // does.
3521 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003522 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003523 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003524 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003525
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003526 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003527
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003528 unsigned Iter = 0;
3529 while (Iter++ < MaxDepth) {
3530 for (auto &I : make_range(Begin, End)) {
3531 if (&I != PoisonI) {
3532 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3533 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3534 return true;
3535 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3536 return false;
3537 }
3538
3539 // Mark poison that propagates from I through uses of I.
3540 if (YieldsPoison.count(&I)) {
3541 for (const User *User : I.users()) {
3542 const Instruction *UserI = cast<Instruction>(User);
3543 if (propagatesFullPoison(UserI))
3544 YieldsPoison.insert(User);
3545 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003546 }
3547 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003548
3549 if (auto *NextBB = BB->getSingleSuccessor()) {
3550 if (Visited.insert(NextBB).second) {
3551 BB = NextBB;
3552 Begin = BB->getFirstNonPHI()->getIterator();
3553 End = BB->end();
3554 continue;
3555 }
3556 }
3557
3558 break;
3559 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003560 return false;
3561}
3562
James Molloy134bec22015-08-11 09:12:57 +00003563static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3564 if (FMF.noNaNs())
3565 return true;
3566
3567 if (auto *C = dyn_cast<ConstantFP>(V))
3568 return !C->isNaN();
3569 return false;
3570}
3571
3572static bool isKnownNonZero(Value *V) {
3573 if (auto *C = dyn_cast<ConstantFP>(V))
3574 return !C->isZero();
3575 return false;
3576}
3577
3578static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3579 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003580 Value *CmpLHS, Value *CmpRHS,
3581 Value *TrueVal, Value *FalseVal,
3582 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003583 LHS = CmpLHS;
3584 RHS = CmpRHS;
3585
James Molloy134bec22015-08-11 09:12:57 +00003586 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3587 // return inconsistent results between implementations.
3588 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3589 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3590 // Therefore we behave conservatively and only proceed if at least one of the
3591 // operands is known to not be zero, or if we don't care about signed zeroes.
3592 switch (Pred) {
3593 default: break;
3594 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3595 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3596 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3597 !isKnownNonZero(CmpRHS))
3598 return {SPF_UNKNOWN, SPNB_NA, false};
3599 }
3600
3601 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3602 bool Ordered = false;
3603
3604 // When given one NaN and one non-NaN input:
3605 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3606 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3607 // ordered comparison fails), which could be NaN or non-NaN.
3608 // so here we discover exactly what NaN behavior is required/accepted.
3609 if (CmpInst::isFPPredicate(Pred)) {
3610 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3611 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3612
3613 if (LHSSafe && RHSSafe) {
3614 // Both operands are known non-NaN.
3615 NaNBehavior = SPNB_RETURNS_ANY;
3616 } else if (CmpInst::isOrdered(Pred)) {
3617 // An ordered comparison will return false when given a NaN, so it
3618 // returns the RHS.
3619 Ordered = true;
3620 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003621 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003622 NaNBehavior = SPNB_RETURNS_NAN;
3623 else if (RHSSafe)
3624 NaNBehavior = SPNB_RETURNS_OTHER;
3625 else
3626 // Completely unsafe.
3627 return {SPF_UNKNOWN, SPNB_NA, false};
3628 } else {
3629 Ordered = false;
3630 // An unordered comparison will return true when given a NaN, so it
3631 // returns the LHS.
3632 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003633 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003634 NaNBehavior = SPNB_RETURNS_OTHER;
3635 else if (RHSSafe)
3636 NaNBehavior = SPNB_RETURNS_NAN;
3637 else
3638 // Completely unsafe.
3639 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003640 }
3641 }
3642
James Molloy71b91c22015-05-11 14:42:20 +00003643 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003644 std::swap(CmpLHS, CmpRHS);
3645 Pred = CmpInst::getSwappedPredicate(Pred);
3646 if (NaNBehavior == SPNB_RETURNS_NAN)
3647 NaNBehavior = SPNB_RETURNS_OTHER;
3648 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3649 NaNBehavior = SPNB_RETURNS_NAN;
3650 Ordered = !Ordered;
3651 }
3652
3653 // ([if]cmp X, Y) ? X : Y
3654 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003655 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003656 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003657 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003658 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003659 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003660 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003661 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003662 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003663 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003664 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3665 case FCmpInst::FCMP_UGT:
3666 case FCmpInst::FCMP_UGE:
3667 case FCmpInst::FCMP_OGT:
3668 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3669 case FCmpInst::FCMP_ULT:
3670 case FCmpInst::FCMP_ULE:
3671 case FCmpInst::FCMP_OLT:
3672 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003673 }
3674 }
3675
3676 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3677 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3678 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3679
3680 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3681 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3682 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003683 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003684 }
3685
3686 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3687 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3688 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003689 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003690 }
3691 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003692
James Molloy71b91c22015-05-11 14:42:20 +00003693 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3694 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003695 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3696 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003697 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3698 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3699 LHS = TrueVal;
3700 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003701 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003702 }
3703 }
3704 }
3705
3706 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3707
James Molloy134bec22015-08-11 09:12:57 +00003708 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003709}
James Molloy270ef8c2015-05-15 16:04:50 +00003710
James Molloy569cea62015-09-02 17:25:25 +00003711static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3712 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003713 CastInst *CI = dyn_cast<CastInst>(V1);
3714 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003715 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003716 return nullptr;
3717 *CastOp = CI->getOpcode();
3718
David Majnemerd2a074b2016-04-29 18:40:34 +00003719 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003720 // If V1 and V2 are both the same cast from the same type, we can look
3721 // through V1.
3722 if (CI2->getOpcode() == CI->getOpcode() &&
3723 CI2->getSrcTy() == CI->getSrcTy())
3724 return CI2->getOperand(0);
3725 return nullptr;
3726 } else if (!C) {
3727 return nullptr;
3728 }
3729
David Majnemerd2a074b2016-04-29 18:40:34 +00003730 Constant *CastedTo = nullptr;
3731
David Majnemer826e9832016-04-29 21:22:04 +00003732 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3733 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3734
David Majnemerd2a074b2016-04-29 18:40:34 +00003735 if (isa<SExtInst>(CI) && CmpI->isSigned())
3736 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3737
David Majnemer826e9832016-04-29 21:22:04 +00003738 if (isa<TruncInst>(CI))
3739 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3740
3741 if (isa<FPTruncInst>(CI))
3742 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3743
3744 if (isa<FPExtInst>(CI))
3745 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3746
David Majnemerd2a074b2016-04-29 18:40:34 +00003747 if (isa<FPToUIInst>(CI))
3748 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3749
3750 if (isa<FPToSIInst>(CI))
3751 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3752
3753 if (isa<UIToFPInst>(CI))
3754 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3755
3756 if (isa<SIToFPInst>(CI))
3757 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3758
3759 if (!CastedTo)
3760 return nullptr;
3761
3762 Constant *CastedBack =
3763 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3764 // Make sure the cast doesn't lose any information.
3765 if (CastedBack != C)
3766 return nullptr;
3767
3768 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003769}
3770
James Molloy134bec22015-08-11 09:12:57 +00003771SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003772 Value *&LHS, Value *&RHS,
3773 Instruction::CastOps *CastOp) {
3774 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003775 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003776
James Molloy134bec22015-08-11 09:12:57 +00003777 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3778 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003779
James Molloy134bec22015-08-11 09:12:57 +00003780 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003781 Value *CmpLHS = CmpI->getOperand(0);
3782 Value *CmpRHS = CmpI->getOperand(1);
3783 Value *TrueVal = SI->getTrueValue();
3784 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003785 FastMathFlags FMF;
3786 if (isa<FPMathOperator>(CmpI))
3787 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003788
3789 // Bail out early.
3790 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003791 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003792
3793 // Deal with type mismatches.
3794 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003795 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003796 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003797 cast<CastInst>(TrueVal)->getOperand(0), C,
3798 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003799 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003800 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003801 C, cast<CastInst>(FalseVal)->getOperand(0),
3802 LHS, RHS);
3803 }
James Molloy134bec22015-08-11 09:12:57 +00003804 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003805 LHS, RHS);
3806}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00003807
3808ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3809 const unsigned NumRanges = Ranges.getNumOperands() / 2;
3810 assert(NumRanges >= 1 && "Must have at least one range!");
3811 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3812
3813 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3814 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3815
3816 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3817
3818 for (unsigned i = 1; i < NumRanges; ++i) {
3819 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3820 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3821
3822 // Note: unionWith will potentially create a range that contains values not
3823 // contained in any of the original N ranges.
3824 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3825 }
3826
3827 return CR;
3828}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003829
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003830/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003831static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3832 const DataLayout &DL, unsigned Depth,
3833 AssumptionCache *AC, const Instruction *CxtI,
3834 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003835 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003836 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3837 return true;
3838
3839 switch (Pred) {
3840 default:
3841 return false;
3842
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003843 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003844 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003845
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003846 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003847 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003848 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003849 return false;
3850 }
3851
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003852 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003853 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003854
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003855 // LHS u<= LHS +_{nuw} C for any C
3856 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00003857 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00003858
3859 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3860 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3861 const APInt *&CA, const APInt *&CB) {
3862 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3863 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3864 return true;
3865
3866 // If X & C == 0 then (X | C) == X +_{nuw} C
3867 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3868 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3869 unsigned BitWidth = CA->getBitWidth();
3870 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3871 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3872
3873 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3874 return true;
3875 }
3876
3877 return false;
3878 };
3879
3880 Value *X;
3881 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003882 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3883 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00003884
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003885 return false;
3886 }
3887 }
3888}
3889
3890/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00003891/// ALHS ARHS" is true. Otherwise, return None.
3892static Optional<bool>
3893isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3894 Value *BLHS, Value *BRHS, const DataLayout &DL,
3895 unsigned Depth, AssumptionCache *AC,
3896 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003897 switch (Pred) {
3898 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003899 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003900
3901 case CmpInst::ICMP_SLT:
3902 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003903 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3904 DT) &&
3905 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3906 return true;
3907 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003908
3909 case CmpInst::ICMP_ULT:
3910 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003911 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3912 DT) &&
3913 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3914 return true;
3915 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003916 }
3917}
3918
Chad Rosier226a7342016-05-05 17:41:19 +00003919/// Return true if the operands of the two compares match. IsSwappedOps is true
3920/// when the operands match, but are swapped.
3921static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
3922 bool &IsSwappedOps) {
3923
3924 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
3925 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
3926 return IsMatchingOps || IsSwappedOps;
3927}
3928
Chad Rosier41dd31f2016-04-20 19:15:26 +00003929/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
3930/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
3931/// BRHS" is false. Otherwise, return None if we can't infer anything.
3932static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
3933 Value *ALHS, Value *ARHS,
3934 CmpInst::Predicate BPred,
Chad Rosier226a7342016-05-05 17:41:19 +00003935 Value *BLHS, Value *BRHS,
3936 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003937 // Canonicalize the operands so they're matching.
3938 if (IsSwappedOps) {
3939 std::swap(BLHS, BRHS);
3940 BPred = ICmpInst::getSwappedPredicate(BPred);
3941 }
Chad Rosier99bc4802016-04-21 16:18:02 +00003942 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003943 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00003944 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00003945 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003946
Chad Rosier41dd31f2016-04-20 19:15:26 +00003947 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003948}
3949
Chad Rosier25cfb7d2016-05-05 15:39:18 +00003950/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
3951/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
3952/// C2" is false. Otherwise, return None if we can't infer anything.
3953static Optional<bool>
3954isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
3955 ConstantInt *C1, CmpInst::Predicate BPred,
3956 Value *BLHS, ConstantInt *C2) {
3957 assert(ALHS == BLHS && "LHS operands must match.");
3958 ConstantRange DomCR =
3959 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
3960 ConstantRange CR =
3961 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
3962 ConstantRange Intersection = DomCR.intersectWith(CR);
3963 ConstantRange Difference = DomCR.difference(CR);
3964 if (Intersection.isEmptySet())
3965 return false;
3966 if (Difference.isEmptySet())
3967 return true;
3968 return None;
3969}
3970
Chad Rosier41dd31f2016-04-20 19:15:26 +00003971Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00003972 const DataLayout &DL, bool InvertAPred,
3973 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00003974 const Instruction *CxtI,
3975 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00003976 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
3977 if (LHS->getType() != RHS->getType())
3978 return None;
3979
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003980 Type *OpTy = LHS->getType();
3981 assert(OpTy->getScalarType()->isIntegerTy(1));
3982
3983 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00003984 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003985 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003986
3987 if (OpTy->isVectorTy())
3988 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00003989 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003990 assert(OpTy->isIntegerTy(1) && "implied by above");
3991
3992 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003993 Value *ALHS, *ARHS;
3994 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003995
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003996 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
3997 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00003998 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003999
Chad Rosiere2cbd132016-04-25 17:23:36 +00004000 if (InvertAPred)
4001 APred = CmpInst::getInversePredicate(APred);
4002
Chad Rosier226a7342016-05-05 17:41:19 +00004003 // Can we infer anything when the two compares have matching operands?
4004 bool IsSwappedOps;
4005 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4006 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4007 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004008 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004009 // No amount of additional analysis will infer the second condition, so
4010 // early exit.
4011 return None;
4012 }
4013
4014 // Can we infer anything when the LHS operands match and the RHS operands are
4015 // constants (not necessarily matching)?
4016 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4017 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4018 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4019 cast<ConstantInt>(BRHS)))
4020 return Implication;
4021 // No amount of additional analysis will infer the second condition, so
4022 // early exit.
4023 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004024 }
4025
Chad Rosier41dd31f2016-04-20 19:15:26 +00004026 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004027 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4028 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004029
Chad Rosier41dd31f2016-04-20 19:15:26 +00004030 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004031}