blob: 176de3a2b9e82bc70d1e8ecfa432b901877a1c21 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Andersond13db2c2010-07-21 22:09:45 +0000106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000254 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000261 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000263 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000264 return true;
265}
266
Dan Gohman6e70e312009-09-27 15:26:03 +0000267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000268 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000270 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000271 return true;
272}
273
Dan Gohman2f199f92010-08-16 16:21:27 +0000274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276 if (!(*I)->isLoopInvariant(L))
277 return false;
278 return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285 bool HasVarying = false;
286 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287 const SCEV *S = *I;
288 if (!S->isLoopInvariant(L)) {
289 if (S->hasComputableLoopEvolution(L))
290 HasVarying = true;
291 else
292 return false;
293 }
294 }
295 return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300 const SCEV *S = *I;
301 if (O == S || S->hasOperand(O))
302 return true;
303 }
304 return false;
305}
306
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
Dan Gohman6e70e312009-09-27 15:26:03 +0000311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000315void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000316 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317}
318
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000319const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000320 // In most cases the types of LHS and RHS will be the same, but in some
321 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322 // depend on the type for correctness, but handling types carefully can
323 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324 // a pointer type than the RHS, so use the RHS' type here.
325 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000326}
327
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000329 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000330 if (!QueryLoop)
331 return false;
332
333 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000334 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000335 return false;
336
Dan Gohman71c41442010-08-13 20:11:39 +0000337 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338 if (L->contains(QueryLoop))
339 return true;
340
Dan Gohmane890eea2009-06-26 22:17:21 +0000341 // This recurrence is variant w.r.t. QueryLoop if any of its operands
342 // are variant.
Dan Gohman7e1fee72010-08-29 14:52:02 +0000343 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
344 if (!(*I)->isLoopInvariant(QueryLoop))
Dan Gohmane890eea2009-06-26 22:17:21 +0000345 return false;
346
347 // Otherwise it's loop-invariant.
348 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000349}
350
Dan Gohman39125d82010-02-13 00:19:39 +0000351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353 return DT->dominates(L->getHeader(), BB) &&
354 SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359 // This uses a "dominates" query instead of "properly dominates" query because
360 // the instruction which produces the addrec's value is a PHI, and a PHI
361 // effectively properly dominates its entire containing block.
362 return DT->dominates(L->getHeader(), BB) &&
363 SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000366void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000367 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000368 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000369 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000370 OS << "}<";
371 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000373}
Chris Lattner53e677a2004-04-02 20:23:17 +0000374
Dan Gohmanab37f502010-08-02 23:49:30 +0000375void SCEVUnknown::deleted() {
376 // Clear this SCEVUnknown from ValuesAtScopes.
377 SE->ValuesAtScopes.erase(this);
378
379 // Remove this SCEVUnknown from the uniquing map.
380 SE->UniqueSCEVs.RemoveNode(this);
381
382 // Release the value.
383 setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387 // Clear this SCEVUnknown from ValuesAtScopes.
388 SE->ValuesAtScopes.erase(this);
389
390 // Remove this SCEVUnknown from the uniquing map.
391 SE->UniqueSCEVs.RemoveNode(this);
392
393 // Update this SCEVUnknown to point to the new value. This is needed
394 // because there may still be outstanding SCEVs which still point to
395 // this SCEVUnknown.
396 setValPtr(New);
397}
398
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400 // All non-instruction values are loop invariant. All instructions are loop
401 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000402 // Instructions are never considered invariant in the function body
403 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000404 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000405 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000406 return true;
407}
Chris Lattner53e677a2004-04-02 20:23:17 +0000408
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410 if (Instruction *I = dyn_cast<Instruction>(getValue()))
411 return DT->dominates(I->getParent(), BB);
412 return true;
413}
414
Dan Gohman6e70e312009-09-27 15:26:03 +0000415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416 if (Instruction *I = dyn_cast<Instruction>(getValue()))
417 return DT->properlyDominates(I->getParent(), BB);
418 return true;
419}
420
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000421const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000423}
Chris Lattner53e677a2004-04-02 20:23:17 +0000424
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000426 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000427 if (VCE->getOpcode() == Instruction::PtrToInt)
428 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000429 if (CE->getOpcode() == Instruction::GetElementPtr &&
430 CE->getOperand(0)->isNullValue() &&
431 CE->getNumOperands() == 2)
432 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433 if (CI->isOne()) {
434 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435 ->getElementType();
436 return true;
437 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000438
439 return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000443 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000444 if (VCE->getOpcode() == Instruction::PtrToInt)
445 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000446 if (CE->getOpcode() == Instruction::GetElementPtr &&
447 CE->getOperand(0)->isNullValue()) {
448 const Type *Ty =
449 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450 if (const StructType *STy = dyn_cast<StructType>(Ty))
451 if (!STy->isPacked() &&
452 CE->getNumOperands() == 3 &&
453 CE->getOperand(1)->isNullValue()) {
454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455 if (CI->isOne() &&
456 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000457 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000458 AllocTy = STy->getElementType(1);
459 return true;
460 }
461 }
462 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000463
464 return false;
465}
466
Dan Gohman4f8eea82010-02-01 18:27:38 +0000467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000468 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000469 if (VCE->getOpcode() == Instruction::PtrToInt)
470 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471 if (CE->getOpcode() == Instruction::GetElementPtr &&
472 CE->getNumOperands() == 3 &&
473 CE->getOperand(0)->isNullValue() &&
474 CE->getOperand(1)->isNullValue()) {
475 const Type *Ty =
476 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477 // Ignore vector types here so that ScalarEvolutionExpander doesn't
478 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000479 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000480 CTy = Ty;
481 FieldNo = CE->getOperand(2);
482 return true;
483 }
484 }
485
486 return false;
487}
488
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000489void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000490 const Type *AllocTy;
491 if (isSizeOf(AllocTy)) {
492 OS << "sizeof(" << *AllocTy << ")";
493 return;
494 }
495 if (isAlignOf(AllocTy)) {
496 OS << "alignof(" << *AllocTy << ")";
497 return;
498 }
499
Dan Gohman4f8eea82010-02-01 18:27:38 +0000500 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000501 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000502 if (isOffsetOf(CTy, FieldNo)) {
503 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000504 WriteAsOperand(OS, FieldNo, false);
505 OS << ")";
506 return;
507 }
508
509 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000510 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000511}
512
Chris Lattner8d741b82004-06-20 06:23:15 +0000513//===----------------------------------------------------------------------===//
514// SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519 /// than the complexity of the RHS. This comparator is used to canonicalize
520 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000521 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000522 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000523 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000524 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000525
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000527 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return compare(LHS, RHS) < 0;
529 }
530
531 // Return negative, zero, or positive, if LHS is less than, equal to, or
532 // greater than RHS, respectively. A three-way result allows recursive
533 // comparisons to be more efficient.
534 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000535 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000537 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000538
Dan Gohman72861302009-05-07 14:39:04 +0000539 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000540 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000542 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000543
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 // Aside from the getSCEVType() ordering, the particular ordering
545 // isn't very important except that it's beneficial to be consistent,
546 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 switch (LType) {
548 case scUnknown: {
549 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000550 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551
552 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000555
556 // Order pointer values after integer values. This helps SCEVExpander
557 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000558 bool LIsPointer = LV->getType()->isPointerTy(),
559 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000560 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000562
563 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000564 unsigned LID = LV->getValueID(),
565 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000566 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000567 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000568
569 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000570 if (const Argument *LA = dyn_cast<Argument>(LV)) {
571 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000572 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 // For instructions, compare their loop depth, and their operand
577 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000578 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580
581 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000582 const BasicBlock *LParent = LInst->getParent(),
583 *RParent = RInst->getParent();
584 if (LParent != RParent) {
585 unsigned LDepth = LI->getLoopDepth(LParent),
586 RDepth = LI->getLoopDepth(RParent);
587 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000588 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000589 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000590
591 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000592 unsigned LNumOps = LInst->getNumOperands(),
593 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000595 }
596
Dan Gohman67ef74e2010-08-27 15:26:01 +0000597 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000598 }
599
Dan Gohman67ef74e2010-08-27 15:26:01 +0000600 case scConstant: {
601 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000602 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603
604 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000605 const APInt &LA = LC->getValue()->getValue();
606 const APInt &RA = RC->getValue()->getValue();
607 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000608 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000609 return (int)LBitWidth - (int)RBitWidth;
610 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000611 }
612
Dan Gohman67ef74e2010-08-27 15:26:01 +0000613 case scAddRecExpr: {
614 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000616
617 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000618 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619 if (LLoop != RLoop) {
620 unsigned LDepth = LLoop->getLoopDepth(),
621 RDepth = RLoop->getLoopDepth();
622 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000623 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000624 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000625
626 // Addrec complexity grows with operand count.
627 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628 if (LNumOps != RNumOps)
629 return (int)LNumOps - (int)RNumOps;
630
631 // Lexicographically compare.
632 for (unsigned i = 0; i != LNumOps; ++i) {
633 long X = compare(LA->getOperand(i), RA->getOperand(i));
634 if (X != 0)
635 return X;
636 }
637
638 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000639 }
640
Dan Gohman67ef74e2010-08-27 15:26:01 +0000641 case scAddExpr:
642 case scMulExpr:
643 case scSMaxExpr:
644 case scUMaxExpr: {
645 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000646 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000647
648 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000649 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650 for (unsigned i = 0; i != LNumOps; ++i) {
651 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000652 return 1;
653 long X = compare(LC->getOperand(i), RC->getOperand(i));
654 if (X != 0)
655 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000656 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000657 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000658 }
659
Dan Gohman67ef74e2010-08-27 15:26:01 +0000660 case scUDivExpr: {
661 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000662 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000663
664 // Lexicographically compare udiv expressions.
665 long X = compare(LC->getLHS(), RC->getLHS());
666 if (X != 0)
667 return X;
668 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000669 }
670
Dan Gohman67ef74e2010-08-27 15:26:01 +0000671 case scTruncate:
672 case scZeroExtend:
673 case scSignExtend: {
674 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000675 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000676
677 // Compare cast expressions by operand.
678 return compare(LC->getOperand(), RC->getOperand());
679 }
680
681 default:
682 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000683 }
684
685 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000686 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000687 }
688 };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000696/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000697/// results from this routine. In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000702 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000703 if (Ops.size() < 2) return; // Noop
704 if (Ops.size() == 2) {
705 // This is the common case, which also happens to be trivially simple.
706 // Special case it.
Dan Gohman3bf63762010-06-18 19:54:20 +0000707 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000708 std::swap(Ops[0], Ops[1]);
709 return;
710 }
711
Dan Gohman3bf63762010-06-18 19:54:20 +0000712 // Do the rough sort by complexity.
713 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
714
715 // Now that we are sorted by complexity, group elements of the same
716 // complexity. Note that this is, at worst, N^2, but the vector is likely to
717 // be extremely short in practice. Note that we take this approach because we
718 // do not want to depend on the addresses of the objects we are grouping.
719 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
720 const SCEV *S = Ops[i];
721 unsigned Complexity = S->getSCEVType();
722
723 // If there are any objects of the same complexity and same value as this
724 // one, group them.
725 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
726 if (Ops[j] == S) { // Found a duplicate.
727 // Move it to immediately after i'th element.
728 std::swap(Ops[i+1], Ops[j]);
729 ++i; // no need to rescan it.
730 if (i == e-2) return; // Done!
731 }
732 }
733 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000734}
735
Chris Lattner53e677a2004-04-02 20:23:17 +0000736
Chris Lattner53e677a2004-04-02 20:23:17 +0000737
738//===----------------------------------------------------------------------===//
739// Simple SCEV method implementations
740//===----------------------------------------------------------------------===//
741
Eli Friedmanb42a6262008-08-04 23:49:06 +0000742/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000743/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000745 ScalarEvolution &SE,
746 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 // Handle the simplest case efficiently.
748 if (K == 1)
749 return SE.getTruncateOrZeroExtend(It, ResultTy);
750
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000751 // We are using the following formula for BC(It, K):
752 //
753 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
754 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000755 // Suppose, W is the bitwidth of the return value. We must be prepared for
756 // overflow. Hence, we must assure that the result of our computation is
757 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
758 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000759 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000760 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000761 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000762 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
763 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000764 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000766 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000767 // This formula is trivially equivalent to the previous formula. However,
768 // this formula can be implemented much more efficiently. The trick is that
769 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
770 // arithmetic. To do exact division in modular arithmetic, all we have
771 // to do is multiply by the inverse. Therefore, this step can be done at
772 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000773 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000774 // The next issue is how to safely do the division by 2^T. The way this
775 // is done is by doing the multiplication step at a width of at least W + T
776 // bits. This way, the bottom W+T bits of the product are accurate. Then,
777 // when we perform the division by 2^T (which is equivalent to a right shift
778 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
779 // truncated out after the division by 2^T.
780 //
781 // In comparison to just directly using the first formula, this technique
782 // is much more efficient; using the first formula requires W * K bits,
783 // but this formula less than W + K bits. Also, the first formula requires
784 // a division step, whereas this formula only requires multiplies and shifts.
785 //
786 // It doesn't matter whether the subtraction step is done in the calculation
787 // width or the input iteration count's width; if the subtraction overflows,
788 // the result must be zero anyway. We prefer here to do it in the width of
789 // the induction variable because it helps a lot for certain cases; CodeGen
790 // isn't smart enough to ignore the overflow, which leads to much less
791 // efficient code if the width of the subtraction is wider than the native
792 // register width.
793 //
794 // (It's possible to not widen at all by pulling out factors of 2 before
795 // the multiplication; for example, K=2 can be calculated as
796 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
797 // extra arithmetic, so it's not an obvious win, and it gets
798 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000799
Eli Friedmanb42a6262008-08-04 23:49:06 +0000800 // Protection from insane SCEVs; this bound is conservative,
801 // but it probably doesn't matter.
802 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000803 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000804
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000805 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000806
Eli Friedmanb42a6262008-08-04 23:49:06 +0000807 // Calculate K! / 2^T and T; we divide out the factors of two before
808 // multiplying for calculating K! / 2^T to avoid overflow.
809 // Other overflow doesn't matter because we only care about the bottom
810 // W bits of the result.
811 APInt OddFactorial(W, 1);
812 unsigned T = 1;
813 for (unsigned i = 3; i <= K; ++i) {
814 APInt Mult(W, i);
815 unsigned TwoFactors = Mult.countTrailingZeros();
816 T += TwoFactors;
817 Mult = Mult.lshr(TwoFactors);
818 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000819 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000820
Eli Friedmanb42a6262008-08-04 23:49:06 +0000821 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000822 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000823
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000824 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000825 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
826
827 // Calculate the multiplicative inverse of K! / 2^T;
828 // this multiplication factor will perform the exact division by
829 // K! / 2^T.
830 APInt Mod = APInt::getSignedMinValue(W+1);
831 APInt MultiplyFactor = OddFactorial.zext(W+1);
832 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
833 MultiplyFactor = MultiplyFactor.trunc(W);
834
835 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000836 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
837 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000838 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000839 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000840 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000841 Dividend = SE.getMulExpr(Dividend,
842 SE.getTruncateOrZeroExtend(S, CalculationTy));
843 }
844
845 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000846 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000847
848 // Truncate the result, and divide by K! / 2^T.
849
850 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
851 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000852}
853
Chris Lattner53e677a2004-04-02 20:23:17 +0000854/// evaluateAtIteration - Return the value of this chain of recurrences at
855/// the specified iteration number. We can evaluate this recurrence by
856/// multiplying each element in the chain by the binomial coefficient
857/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
858///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000859/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000860///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000861/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000862///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000863const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000864 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000865 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000866 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000867 // The computation is correct in the face of overflow provided that the
868 // multiplication is performed _after_ the evaluation of the binomial
869 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000870 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000871 if (isa<SCEVCouldNotCompute>(Coeff))
872 return Coeff;
873
874 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000875 }
876 return Result;
877}
878
Chris Lattner53e677a2004-04-02 20:23:17 +0000879//===----------------------------------------------------------------------===//
880// SCEV Expression folder implementations
881//===----------------------------------------------------------------------===//
882
Dan Gohman0bba49c2009-07-07 17:06:11 +0000883const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000884 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000885 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000886 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000887 assert(isSCEVable(Ty) &&
888 "This is not a conversion to a SCEVable type!");
889 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000890
Dan Gohmanc050fd92009-07-13 20:50:19 +0000891 FoldingSetNodeID ID;
892 ID.AddInteger(scTruncate);
893 ID.AddPointer(Op);
894 ID.AddPointer(Ty);
895 void *IP = 0;
896 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
897
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000898 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000899 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000900 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000901 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
902 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000903
Dan Gohman20900ca2009-04-22 16:20:48 +0000904 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000905 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000906 return getTruncateExpr(ST->getOperand(), Ty);
907
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000908 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000909 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000910 return getTruncateOrSignExtend(SS->getOperand(), Ty);
911
912 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000914 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
915
Dan Gohman6864db62009-06-18 16:24:47 +0000916 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000917 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000919 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000920 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
921 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000922 }
923
Dan Gohmanf53462d2010-07-15 20:02:11 +0000924 // As a special case, fold trunc(undef) to undef. We don't want to
925 // know too much about SCEVUnknowns, but this special case is handy
926 // and harmless.
927 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
928 if (isa<UndefValue>(U->getValue()))
929 return getSCEV(UndefValue::get(Ty));
930
Dan Gohman420ab912010-06-25 18:47:08 +0000931 // The cast wasn't folded; create an explicit cast node. We can reuse
932 // the existing insert position since if we get here, we won't have
933 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000934 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
935 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000936 UniqueSCEVs.InsertNode(S, IP);
937 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000938}
939
Dan Gohman0bba49c2009-07-07 17:06:11 +0000940const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000941 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000942 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000943 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000944 assert(isSCEVable(Ty) &&
945 "This is not a conversion to a SCEVable type!");
946 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000947
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000948 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000949 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
950 return getConstant(
951 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
952 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000953
Dan Gohman20900ca2009-04-22 16:20:48 +0000954 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000955 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000956 return getZeroExtendExpr(SZ->getOperand(), Ty);
957
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000958 // Before doing any expensive analysis, check to see if we've already
959 // computed a SCEV for this Op and Ty.
960 FoldingSetNodeID ID;
961 ID.AddInteger(scZeroExtend);
962 ID.AddPointer(Op);
963 ID.AddPointer(Ty);
964 void *IP = 0;
965 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
966
Dan Gohman01ecca22009-04-27 20:16:15 +0000967 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000968 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000969 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000970 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000971 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000972 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000973 const SCEV *Start = AR->getStart();
974 const SCEV *Step = AR->getStepRecurrence(*this);
975 unsigned BitWidth = getTypeSizeInBits(AR->getType());
976 const Loop *L = AR->getLoop();
977
Dan Gohmaneb490a72009-07-25 01:22:26 +0000978 // If we have special knowledge that this addrec won't overflow,
979 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000980 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000981 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
982 getZeroExtendExpr(Step, Ty),
983 L);
984
Dan Gohman01ecca22009-04-27 20:16:15 +0000985 // Check whether the backedge-taken count is SCEVCouldNotCompute.
986 // Note that this serves two purposes: It filters out loops that are
987 // simply not analyzable, and it covers the case where this code is
988 // being called from within backedge-taken count analysis, such that
989 // attempting to ask for the backedge-taken count would likely result
990 // in infinite recursion. In the later case, the analysis code will
991 // cope with a conservative value, and it will take care to purge
992 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000993 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000994 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000995 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000996 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000997
998 // Check whether the backedge-taken count can be losslessly casted to
999 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001000 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001001 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001002 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001003 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1004 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001005 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001006 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001007 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001008 const SCEV *Add = getAddExpr(Start, ZMul);
1009 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001010 getAddExpr(getZeroExtendExpr(Start, WideTy),
1011 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1012 getZeroExtendExpr(Step, WideTy)));
1013 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001014 // Return the expression with the addrec on the outside.
1015 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1016 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001017 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001018
1019 // Similar to above, only this time treat the step value as signed.
1020 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +00001021 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001022 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001023 OperandExtendedAdd =
1024 getAddExpr(getZeroExtendExpr(Start, WideTy),
1025 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1026 getSignExtendExpr(Step, WideTy)));
1027 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001028 // Return the expression with the addrec on the outside.
1029 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1030 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001031 L);
1032 }
1033
1034 // If the backedge is guarded by a comparison with the pre-inc value
1035 // the addrec is safe. Also, if the entry is guarded by a comparison
1036 // with the start value and the backedge is guarded by a comparison
1037 // with the post-inc value, the addrec is safe.
1038 if (isKnownPositive(Step)) {
1039 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1040 getUnsignedRange(Step).getUnsignedMax());
1041 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001042 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001043 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1044 AR->getPostIncExpr(*this), N)))
1045 // Return the expression with the addrec on the outside.
1046 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1047 getZeroExtendExpr(Step, Ty),
1048 L);
1049 } else if (isKnownNegative(Step)) {
1050 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1051 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001052 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1053 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001054 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1055 AR->getPostIncExpr(*this), N)))
1056 // Return the expression with the addrec on the outside.
1057 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1058 getSignExtendExpr(Step, Ty),
1059 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001060 }
1061 }
1062 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001063
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001064 // The cast wasn't folded; create an explicit cast node.
1065 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001066 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001067 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1068 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001069 UniqueSCEVs.InsertNode(S, IP);
1070 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001071}
1072
Dan Gohman0bba49c2009-07-07 17:06:11 +00001073const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001074 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001075 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001076 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001077 assert(isSCEVable(Ty) &&
1078 "This is not a conversion to a SCEVable type!");
1079 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001080
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001081 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001082 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1083 return getConstant(
1084 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1085 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001086
Dan Gohman20900ca2009-04-22 16:20:48 +00001087 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001088 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001089 return getSignExtendExpr(SS->getOperand(), Ty);
1090
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001091 // Before doing any expensive analysis, check to see if we've already
1092 // computed a SCEV for this Op and Ty.
1093 FoldingSetNodeID ID;
1094 ID.AddInteger(scSignExtend);
1095 ID.AddPointer(Op);
1096 ID.AddPointer(Ty);
1097 void *IP = 0;
1098 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1099
Dan Gohman01ecca22009-04-27 20:16:15 +00001100 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001101 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001102 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001103 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001104 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001105 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001106 const SCEV *Start = AR->getStart();
1107 const SCEV *Step = AR->getStepRecurrence(*this);
1108 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1109 const Loop *L = AR->getLoop();
1110
Dan Gohmaneb490a72009-07-25 01:22:26 +00001111 // If we have special knowledge that this addrec won't overflow,
1112 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001113 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001114 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1115 getSignExtendExpr(Step, Ty),
1116 L);
1117
Dan Gohman01ecca22009-04-27 20:16:15 +00001118 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1119 // Note that this serves two purposes: It filters out loops that are
1120 // simply not analyzable, and it covers the case where this code is
1121 // being called from within backedge-taken count analysis, such that
1122 // attempting to ask for the backedge-taken count would likely result
1123 // in infinite recursion. In the later case, the analysis code will
1124 // cope with a conservative value, and it will take care to purge
1125 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001126 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001127 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001128 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001129 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001130
1131 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001132 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001133 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001134 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001135 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001136 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1137 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001138 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001139 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001140 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001141 const SCEV *Add = getAddExpr(Start, SMul);
1142 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001143 getAddExpr(getSignExtendExpr(Start, WideTy),
1144 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1145 getSignExtendExpr(Step, WideTy)));
1146 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001147 // Return the expression with the addrec on the outside.
1148 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1149 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001150 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001151
1152 // Similar to above, only this time treat the step value as unsigned.
1153 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001154 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001155 Add = getAddExpr(Start, UMul);
1156 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001157 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001158 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1159 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001160 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001161 // Return the expression with the addrec on the outside.
1162 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1163 getZeroExtendExpr(Step, Ty),
1164 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001165 }
1166
1167 // If the backedge is guarded by a comparison with the pre-inc value
1168 // the addrec is safe. Also, if the entry is guarded by a comparison
1169 // with the start value and the backedge is guarded by a comparison
1170 // with the post-inc value, the addrec is safe.
1171 if (isKnownPositive(Step)) {
1172 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1173 getSignedRange(Step).getSignedMax());
1174 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001175 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001176 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1177 AR->getPostIncExpr(*this), N)))
1178 // Return the expression with the addrec on the outside.
1179 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1180 getSignExtendExpr(Step, Ty),
1181 L);
1182 } else if (isKnownNegative(Step)) {
1183 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1184 getSignedRange(Step).getSignedMin());
1185 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001186 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001187 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1188 AR->getPostIncExpr(*this), N)))
1189 // Return the expression with the addrec on the outside.
1190 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1191 getSignExtendExpr(Step, Ty),
1192 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001193 }
1194 }
1195 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001196
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001197 // The cast wasn't folded; create an explicit cast node.
1198 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001199 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001200 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1201 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001202 UniqueSCEVs.InsertNode(S, IP);
1203 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001204}
1205
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001206/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1207/// unspecified bits out to the given type.
1208///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001209const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001210 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001211 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1212 "This is not an extending conversion!");
1213 assert(isSCEVable(Ty) &&
1214 "This is not a conversion to a SCEVable type!");
1215 Ty = getEffectiveSCEVType(Ty);
1216
1217 // Sign-extend negative constants.
1218 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1219 if (SC->getValue()->getValue().isNegative())
1220 return getSignExtendExpr(Op, Ty);
1221
1222 // Peel off a truncate cast.
1223 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001224 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001225 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1226 return getAnyExtendExpr(NewOp, Ty);
1227 return getTruncateOrNoop(NewOp, Ty);
1228 }
1229
1230 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001231 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001232 if (!isa<SCEVZeroExtendExpr>(ZExt))
1233 return ZExt;
1234
1235 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001236 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001237 if (!isa<SCEVSignExtendExpr>(SExt))
1238 return SExt;
1239
Dan Gohmana10756e2010-01-21 02:09:26 +00001240 // Force the cast to be folded into the operands of an addrec.
1241 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1242 SmallVector<const SCEV *, 4> Ops;
1243 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1244 I != E; ++I)
1245 Ops.push_back(getAnyExtendExpr(*I, Ty));
1246 return getAddRecExpr(Ops, AR->getLoop());
1247 }
1248
Dan Gohmanf53462d2010-07-15 20:02:11 +00001249 // As a special case, fold anyext(undef) to undef. We don't want to
1250 // know too much about SCEVUnknowns, but this special case is handy
1251 // and harmless.
1252 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1253 if (isa<UndefValue>(U->getValue()))
1254 return getSCEV(UndefValue::get(Ty));
1255
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001256 // If the expression is obviously signed, use the sext cast value.
1257 if (isa<SCEVSMaxExpr>(Op))
1258 return SExt;
1259
1260 // Absent any other information, use the zext cast value.
1261 return ZExt;
1262}
1263
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001264/// CollectAddOperandsWithScales - Process the given Ops list, which is
1265/// a list of operands to be added under the given scale, update the given
1266/// map. This is a helper function for getAddRecExpr. As an example of
1267/// what it does, given a sequence of operands that would form an add
1268/// expression like this:
1269///
1270/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1271///
1272/// where A and B are constants, update the map with these values:
1273///
1274/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1275///
1276/// and add 13 + A*B*29 to AccumulatedConstant.
1277/// This will allow getAddRecExpr to produce this:
1278///
1279/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1280///
1281/// This form often exposes folding opportunities that are hidden in
1282/// the original operand list.
1283///
1284/// Return true iff it appears that any interesting folding opportunities
1285/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1286/// the common case where no interesting opportunities are present, and
1287/// is also used as a check to avoid infinite recursion.
1288///
1289static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001290CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1291 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001292 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001293 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001294 const APInt &Scale,
1295 ScalarEvolution &SE) {
1296 bool Interesting = false;
1297
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001298 // Iterate over the add operands. They are sorted, with constants first.
1299 unsigned i = 0;
1300 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1301 ++i;
1302 // Pull a buried constant out to the outside.
1303 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1304 Interesting = true;
1305 AccumulatedConstant += Scale * C->getValue()->getValue();
1306 }
1307
1308 // Next comes everything else. We're especially interested in multiplies
1309 // here, but they're in the middle, so just visit the rest with one loop.
1310 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001311 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1312 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1313 APInt NewScale =
1314 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1315 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1316 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001317 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001318 Interesting |=
1319 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001320 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001321 NewScale, SE);
1322 } else {
1323 // A multiplication of a constant with some other value. Update
1324 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001325 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1326 const SCEV *Key = SE.getMulExpr(MulOps);
1327 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001328 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001329 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001330 NewOps.push_back(Pair.first->first);
1331 } else {
1332 Pair.first->second += NewScale;
1333 // The map already had an entry for this value, which may indicate
1334 // a folding opportunity.
1335 Interesting = true;
1336 }
1337 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001338 } else {
1339 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001340 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001341 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001342 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001343 NewOps.push_back(Pair.first->first);
1344 } else {
1345 Pair.first->second += Scale;
1346 // The map already had an entry for this value, which may indicate
1347 // a folding opportunity.
1348 Interesting = true;
1349 }
1350 }
1351 }
1352
1353 return Interesting;
1354}
1355
1356namespace {
1357 struct APIntCompare {
1358 bool operator()(const APInt &LHS, const APInt &RHS) const {
1359 return LHS.ult(RHS);
1360 }
1361 };
1362}
1363
Dan Gohman6c0866c2009-05-24 23:45:28 +00001364/// getAddExpr - Get a canonical add expression, or something simpler if
1365/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001366const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1367 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001368 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001369 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001370#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001371 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001372 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001373 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001374 "SCEVAddExpr operand types don't match!");
1375#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001376
Dan Gohmana10756e2010-01-21 02:09:26 +00001377 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1378 if (!HasNUW && HasNSW) {
1379 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001380 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1381 E = Ops.end(); I != E; ++I)
1382 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001383 All = false;
1384 break;
1385 }
1386 if (All) HasNUW = true;
1387 }
1388
Chris Lattner53e677a2004-04-02 20:23:17 +00001389 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001390 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001391
1392 // If there are any constants, fold them together.
1393 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001395 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001396 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001397 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001399 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1400 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001401 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001402 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001403 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 }
1405
1406 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001407 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 Ops.erase(Ops.begin());
1409 --Idx;
1410 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001411
Dan Gohmanbca091d2010-04-12 23:08:18 +00001412 if (Ops.size() == 1) return Ops[0];
1413 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001414
Dan Gohman68ff7762010-08-27 21:39:59 +00001415 // Okay, check to see if the same value occurs in the operand list more than
1416 // once. If so, merge them together into an multiply expression. Since we
1417 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001419 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001420 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001421 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001422 // Scan ahead to count how many equal operands there are.
1423 unsigned Count = 2;
1424 while (i+Count != e && Ops[i+Count] == Ops[i])
1425 ++Count;
1426 // Merge the values into a multiply.
1427 const SCEV *Scale = getConstant(Ty, Count);
1428 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1429 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001430 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001431 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001432 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001433 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001434 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001435 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001436 if (FoundMatch)
1437 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001438
Dan Gohman728c7f32009-05-08 21:03:19 +00001439 // Check for truncates. If all the operands are truncated from the same
1440 // type, see if factoring out the truncate would permit the result to be
1441 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1442 // if the contents of the resulting outer trunc fold to something simple.
1443 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1444 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1445 const Type *DstType = Trunc->getType();
1446 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001447 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001448 bool Ok = true;
1449 // Check all the operands to see if they can be represented in the
1450 // source type of the truncate.
1451 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1452 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1453 if (T->getOperand()->getType() != SrcType) {
1454 Ok = false;
1455 break;
1456 }
1457 LargeOps.push_back(T->getOperand());
1458 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001459 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001460 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001461 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001462 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1463 if (const SCEVTruncateExpr *T =
1464 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1465 if (T->getOperand()->getType() != SrcType) {
1466 Ok = false;
1467 break;
1468 }
1469 LargeMulOps.push_back(T->getOperand());
1470 } else if (const SCEVConstant *C =
1471 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001472 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001473 } else {
1474 Ok = false;
1475 break;
1476 }
1477 }
1478 if (Ok)
1479 LargeOps.push_back(getMulExpr(LargeMulOps));
1480 } else {
1481 Ok = false;
1482 break;
1483 }
1484 }
1485 if (Ok) {
1486 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001487 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001488 // If it folds to something simple, use it. Otherwise, don't.
1489 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1490 return getTruncateExpr(Fold, DstType);
1491 }
1492 }
1493
1494 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001495 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1496 ++Idx;
1497
1498 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001499 if (Idx < Ops.size()) {
1500 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001501 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001502 // If we have an add, expand the add operands onto the end of the operands
1503 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001505 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001506 DeletedAdd = true;
1507 }
1508
1509 // If we deleted at least one add, we added operands to the end of the list,
1510 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001511 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001513 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001514 }
1515
1516 // Skip over the add expression until we get to a multiply.
1517 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1518 ++Idx;
1519
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001520 // Check to see if there are any folding opportunities present with
1521 // operands multiplied by constant values.
1522 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1523 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001524 DenseMap<const SCEV *, APInt> M;
1525 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001526 APInt AccumulatedConstant(BitWidth, 0);
1527 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001528 Ops.data(), Ops.size(),
1529 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001530 // Some interesting folding opportunity is present, so its worthwhile to
1531 // re-generate the operands list. Group the operands by constant scale,
1532 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001533 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001534 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001535 E = NewOps.end(); I != E; ++I)
1536 MulOpLists[M.find(*I)->second].push_back(*I);
1537 // Re-generate the operands list.
1538 Ops.clear();
1539 if (AccumulatedConstant != 0)
1540 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001541 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1542 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001543 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001544 Ops.push_back(getMulExpr(getConstant(I->first),
1545 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001546 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001547 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001548 if (Ops.size() == 1)
1549 return Ops[0];
1550 return getAddExpr(Ops);
1551 }
1552 }
1553
Chris Lattner53e677a2004-04-02 20:23:17 +00001554 // If we are adding something to a multiply expression, make sure the
1555 // something is not already an operand of the multiply. If so, merge it into
1556 // the multiply.
1557 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001558 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001559 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001560 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001561 if (isa<SCEVConstant>(MulOpSCEV))
1562 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001564 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001565 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001566 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001567 if (Mul->getNumOperands() != 2) {
1568 // If the multiply has more than two operands, we must get the
1569 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001570 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1571 Mul->op_begin()+MulOp);
1572 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001573 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001574 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001575 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001576 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001577 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001578 if (Ops.size() == 2) return OuterMul;
1579 if (AddOp < Idx) {
1580 Ops.erase(Ops.begin()+AddOp);
1581 Ops.erase(Ops.begin()+Idx-1);
1582 } else {
1583 Ops.erase(Ops.begin()+Idx);
1584 Ops.erase(Ops.begin()+AddOp-1);
1585 }
1586 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001587 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001588 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001589
Chris Lattner53e677a2004-04-02 20:23:17 +00001590 // Check this multiply against other multiplies being added together.
Dan Gohman727356f2010-08-12 15:00:23 +00001591 bool AnyFold = false;
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 for (unsigned OtherMulIdx = Idx+1;
1593 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1594 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001595 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 // If MulOp occurs in OtherMul, we can fold the two multiplies
1597 // together.
1598 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1599 OMulOp != e; ++OMulOp)
1600 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1601 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001602 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001604 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001605 Mul->op_begin()+MulOp);
1606 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001607 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001608 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001609 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001611 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001612 OtherMul->op_begin()+OMulOp);
1613 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001614 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001616 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1617 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001618 if (Ops.size() == 2) return OuterMul;
Dan Gohman727356f2010-08-12 15:00:23 +00001619 Ops[Idx] = OuterMul;
1620 Ops.erase(Ops.begin()+OtherMulIdx);
1621 OtherMulIdx = Idx;
1622 AnyFold = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001623 }
1624 }
Dan Gohman727356f2010-08-12 15:00:23 +00001625 if (AnyFold)
1626 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 }
1628 }
1629
1630 // If there are any add recurrences in the operands list, see if any other
1631 // added values are loop invariant. If so, we can fold them into the
1632 // recurrence.
1633 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1634 ++Idx;
1635
1636 // Scan over all recurrences, trying to fold loop invariants into them.
1637 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1638 // Scan all of the other operands to this add and add them to the vector if
1639 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001640 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001641 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001642 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001643 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001644 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001645 LIOps.push_back(Ops[i]);
1646 Ops.erase(Ops.begin()+i);
1647 --i; --e;
1648 }
1649
1650 // If we found some loop invariants, fold them into the recurrence.
1651 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001652 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001653 LIOps.push_back(AddRec->getStart());
1654
Dan Gohman0bba49c2009-07-07 17:06:11 +00001655 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001656 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001657 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001658
Dan Gohmanb9f96512010-06-30 07:16:37 +00001659 // Build the new addrec. Propagate the NUW and NSW flags if both the
1660 // outer add and the inner addrec are guaranteed to have no overflow.
1661 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1662 HasNUW && AddRec->hasNoUnsignedWrap(),
1663 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001664
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // If all of the other operands were loop invariant, we are done.
1666 if (Ops.size() == 1) return NewRec;
1667
1668 // Otherwise, add the folded AddRec by the non-liv parts.
1669 for (unsigned i = 0;; ++i)
1670 if (Ops[i] == AddRec) {
1671 Ops[i] = NewRec;
1672 break;
1673 }
Dan Gohman246b2562007-10-22 18:31:58 +00001674 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 }
1676
1677 // Okay, if there weren't any loop invariants to be folded, check to see if
1678 // there are multiple AddRec's with the same loop induction variable being
1679 // added together. If so, we can fold them.
1680 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001681 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1682 ++OtherIdx)
1683 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1684 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1685 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1686 AddRec->op_end());
1687 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1688 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001689 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001690 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001691 if (OtherAddRec->getLoop() == AddRecLoop) {
1692 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1693 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001694 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001695 AddRecOps.append(OtherAddRec->op_begin()+i,
1696 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001697 break;
1698 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001699 AddRecOps[i] = getAddExpr(AddRecOps[i],
1700 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001701 }
1702 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001703 }
Dan Gohman32527152010-08-27 20:45:56 +00001704 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1705 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001706 }
1707
1708 // Otherwise couldn't fold anything into this recurrence. Move onto the
1709 // next one.
1710 }
1711
1712 // Okay, it looks like we really DO need an add expr. Check to see if we
1713 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001714 FoldingSetNodeID ID;
1715 ID.AddInteger(scAddExpr);
1716 ID.AddInteger(Ops.size());
1717 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1718 ID.AddPointer(Ops[i]);
1719 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001720 SCEVAddExpr *S =
1721 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1722 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001723 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1724 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001725 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1726 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001727 UniqueSCEVs.InsertNode(S, IP);
1728 }
Dan Gohman3645b012009-10-09 00:10:36 +00001729 if (HasNUW) S->setHasNoUnsignedWrap(true);
1730 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001731 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001732}
1733
Dan Gohman6c0866c2009-05-24 23:45:28 +00001734/// getMulExpr - Get a canonical multiply expression, or something simpler if
1735/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001736const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1737 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001738 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001739 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001740#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001741 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001742 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001743 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001744 "SCEVMulExpr operand types don't match!");
1745#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001746
Dan Gohmana10756e2010-01-21 02:09:26 +00001747 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1748 if (!HasNUW && HasNSW) {
1749 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001750 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1751 E = Ops.end(); I != E; ++I)
1752 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001753 All = false;
1754 break;
1755 }
1756 if (All) HasNUW = true;
1757 }
1758
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001760 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001761
1762 // If there are any constants, fold them together.
1763 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001764 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001765
1766 // C1*(C2+V) -> C1*C2 + C1*V
1767 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001768 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001769 if (Add->getNumOperands() == 2 &&
1770 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001771 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1772 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001773
Chris Lattner53e677a2004-04-02 20:23:17 +00001774 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001775 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001776 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001777 ConstantInt *Fold = ConstantInt::get(getContext(),
1778 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001779 RHSC->getValue()->getValue());
1780 Ops[0] = getConstant(Fold);
1781 Ops.erase(Ops.begin()+1); // Erase the folded element
1782 if (Ops.size() == 1) return Ops[0];
1783 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001784 }
1785
1786 // If we are left with a constant one being multiplied, strip it off.
1787 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1788 Ops.erase(Ops.begin());
1789 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001790 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 // If we have a multiply of zero, it will always be zero.
1792 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001793 } else if (Ops[0]->isAllOnesValue()) {
1794 // If we have a mul by -1 of an add, try distributing the -1 among the
1795 // add operands.
1796 if (Ops.size() == 2)
1797 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1798 SmallVector<const SCEV *, 4> NewOps;
1799 bool AnyFolded = false;
1800 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1801 I != E; ++I) {
1802 const SCEV *Mul = getMulExpr(Ops[0], *I);
1803 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1804 NewOps.push_back(Mul);
1805 }
1806 if (AnyFolded)
1807 return getAddExpr(NewOps);
1808 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001809 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001810
1811 if (Ops.size() == 1)
1812 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001813 }
1814
1815 // Skip over the add expression until we get to a multiply.
1816 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1817 ++Idx;
1818
Chris Lattner53e677a2004-04-02 20:23:17 +00001819 // If there are mul operands inline them all into this expression.
1820 if (Idx < Ops.size()) {
1821 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001822 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001823 // If we have an mul, expand the mul operands onto the end of the operands
1824 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001825 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001826 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001827 DeletedMul = true;
1828 }
1829
1830 // If we deleted at least one mul, we added operands to the end of the list,
1831 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001832 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001834 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001835 }
1836
1837 // If there are any add recurrences in the operands list, see if any other
1838 // added values are loop invariant. If so, we can fold them into the
1839 // recurrence.
1840 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1841 ++Idx;
1842
1843 // Scan over all recurrences, trying to fold loop invariants into them.
1844 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1845 // Scan all of the other operands to this mul and add them to the vector if
1846 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001847 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001848 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001849 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman0f32ae32010-08-29 14:55:19 +00001851 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001852 LIOps.push_back(Ops[i]);
1853 Ops.erase(Ops.begin()+i);
1854 --i; --e;
1855 }
1856
1857 // If we found some loop invariants, fold them into the recurrence.
1858 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001859 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001860 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001861 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001862 const SCEV *Scale = getMulExpr(LIOps);
1863 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1864 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001865
Dan Gohmanb9f96512010-06-30 07:16:37 +00001866 // Build the new addrec. Propagate the NUW and NSW flags if both the
1867 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001868 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001869 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001870 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001871
1872 // If all of the other operands were loop invariant, we are done.
1873 if (Ops.size() == 1) return NewRec;
1874
1875 // Otherwise, multiply the folded AddRec by the non-liv parts.
1876 for (unsigned i = 0;; ++i)
1877 if (Ops[i] == AddRec) {
1878 Ops[i] = NewRec;
1879 break;
1880 }
Dan Gohman246b2562007-10-22 18:31:58 +00001881 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001882 }
1883
1884 // Okay, if there weren't any loop invariants to be folded, check to see if
1885 // there are multiple AddRec's with the same loop induction variable being
1886 // multiplied together. If so, we can fold them.
1887 for (unsigned OtherIdx = Idx+1;
1888 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1889 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001890 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001891 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001892 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001893 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0c5e95d2010-08-16 16:34:09 +00001894 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001895 const SCEV *B = F->getStepRecurrence(*this);
1896 const SCEV *D = G->getStepRecurrence(*this);
1897 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman0c5e95d2010-08-16 16:34:09 +00001898 getMulExpr(G, B),
1899 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001900 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman0c5e95d2010-08-16 16:34:09 +00001901 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001902 if (Ops.size() == 2) return NewAddRec;
1903
1904 Ops.erase(Ops.begin()+Idx);
1905 Ops.erase(Ops.begin()+OtherIdx-1);
1906 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001907 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001908 }
1909 }
1910
1911 // Otherwise couldn't fold anything into this recurrence. Move onto the
1912 // next one.
1913 }
1914
1915 // Okay, it looks like we really DO need an mul expr. Check to see if we
1916 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001917 FoldingSetNodeID ID;
1918 ID.AddInteger(scMulExpr);
1919 ID.AddInteger(Ops.size());
1920 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1921 ID.AddPointer(Ops[i]);
1922 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001923 SCEVMulExpr *S =
1924 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1925 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001926 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1927 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001928 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1929 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001930 UniqueSCEVs.InsertNode(S, IP);
1931 }
Dan Gohman3645b012009-10-09 00:10:36 +00001932 if (HasNUW) S->setHasNoUnsignedWrap(true);
1933 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001934 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001935}
1936
Andreas Bolka8a11c982009-08-07 22:55:26 +00001937/// getUDivExpr - Get a canonical unsigned division expression, or something
1938/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001939const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1940 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001941 assert(getEffectiveSCEVType(LHS->getType()) ==
1942 getEffectiveSCEVType(RHS->getType()) &&
1943 "SCEVUDivExpr operand types don't match!");
1944
Dan Gohman622ed672009-05-04 22:02:23 +00001945 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001946 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001947 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001948 // If the denominator is zero, the result of the udiv is undefined. Don't
1949 // try to analyze it, because the resolution chosen here may differ from
1950 // the resolution chosen in other parts of the compiler.
1951 if (!RHSC->getValue()->isZero()) {
1952 // Determine if the division can be folded into the operands of
1953 // its operands.
1954 // TODO: Generalize this to non-constants by using known-bits information.
1955 const Type *Ty = LHS->getType();
1956 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001957 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001958 // For non-power-of-two values, effectively round the value up to the
1959 // nearest power of two.
1960 if (!RHSC->getValue()->getValue().isPowerOf2())
1961 ++MaxShiftAmt;
1962 const IntegerType *ExtTy =
1963 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1964 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1965 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1966 if (const SCEVConstant *Step =
1967 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1968 if (!Step->getValue()->getValue()
1969 .urem(RHSC->getValue()->getValue()) &&
1970 getZeroExtendExpr(AR, ExtTy) ==
1971 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1972 getZeroExtendExpr(Step, ExtTy),
1973 AR->getLoop())) {
1974 SmallVector<const SCEV *, 4> Operands;
1975 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1976 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1977 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001978 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001979 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1980 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1981 SmallVector<const SCEV *, 4> Operands;
1982 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1983 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1984 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1985 // Find an operand that's safely divisible.
1986 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1987 const SCEV *Op = M->getOperand(i);
1988 const SCEV *Div = getUDivExpr(Op, RHSC);
1989 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1990 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1991 M->op_end());
1992 Operands[i] = Div;
1993 return getMulExpr(Operands);
1994 }
1995 }
Dan Gohman185cf032009-05-08 20:18:49 +00001996 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001997 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1998 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1999 SmallVector<const SCEV *, 4> Operands;
2000 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2001 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2002 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2003 Operands.clear();
2004 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2005 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2006 if (isa<SCEVUDivExpr>(Op) ||
2007 getMulExpr(Op, RHS) != A->getOperand(i))
2008 break;
2009 Operands.push_back(Op);
2010 }
2011 if (Operands.size() == A->getNumOperands())
2012 return getAddExpr(Operands);
2013 }
2014 }
Dan Gohman185cf032009-05-08 20:18:49 +00002015
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002016 // Fold if both operands are constant.
2017 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2018 Constant *LHSCV = LHSC->getValue();
2019 Constant *RHSCV = RHSC->getValue();
2020 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2021 RHSCV)));
2022 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002023 }
2024 }
2025
Dan Gohman1c343752009-06-27 21:21:31 +00002026 FoldingSetNodeID ID;
2027 ID.AddInteger(scUDivExpr);
2028 ID.AddPointer(LHS);
2029 ID.AddPointer(RHS);
2030 void *IP = 0;
2031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002032 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2033 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002034 UniqueSCEVs.InsertNode(S, IP);
2035 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002036}
2037
2038
Dan Gohman6c0866c2009-05-24 23:45:28 +00002039/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2040/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002041const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002042 const SCEV *Step, const Loop *L,
2043 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002044 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002045 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002046 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002047 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002048 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002049 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002050 }
2051
2052 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002053 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002054}
2055
Dan Gohman6c0866c2009-05-24 23:45:28 +00002056/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2057/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002058const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002059ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002060 const Loop *L,
2061 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002062 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002063#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002064 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002065 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002066 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002067 "SCEVAddRecExpr operand types don't match!");
2068#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002069
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002070 if (Operands.back()->isZero()) {
2071 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002072 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002073 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002074
Dan Gohmanbc028532010-02-19 18:49:22 +00002075 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2076 // use that information to infer NUW and NSW flags. However, computing a
2077 // BE count requires calling getAddRecExpr, so we may not yet have a
2078 // meaningful BE count at this point (and if we don't, we'd be stuck
2079 // with a SCEVCouldNotCompute as the cached BE count).
2080
Dan Gohmana10756e2010-01-21 02:09:26 +00002081 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2082 if (!HasNUW && HasNSW) {
2083 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002084 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2085 E = Operands.end(); I != E; ++I)
2086 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002087 All = false;
2088 break;
2089 }
2090 if (All) HasNUW = true;
2091 }
2092
Dan Gohmand9cc7492008-08-08 18:33:12 +00002093 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002094 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002095 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002096 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002097 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002098 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002099 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002100 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002101 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002102 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002103 // AddRecs require their operands be loop-invariant with respect to their
2104 // loops. Don't perform this transformation if it would break this
2105 // requirement.
2106 bool AllInvariant = true;
2107 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2108 if (!Operands[i]->isLoopInvariant(L)) {
2109 AllInvariant = false;
2110 break;
2111 }
2112 if (AllInvariant) {
2113 NestedOperands[0] = getAddRecExpr(Operands, L);
2114 AllInvariant = true;
2115 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2116 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2117 AllInvariant = false;
2118 break;
2119 }
2120 if (AllInvariant)
2121 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002122 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002123 }
2124 // Reset Operands to its original state.
2125 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002126 }
2127 }
2128
Dan Gohman67847532010-01-19 22:27:22 +00002129 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2130 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002131 FoldingSetNodeID ID;
2132 ID.AddInteger(scAddRecExpr);
2133 ID.AddInteger(Operands.size());
2134 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2135 ID.AddPointer(Operands[i]);
2136 ID.AddPointer(L);
2137 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002138 SCEVAddRecExpr *S =
2139 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2140 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002141 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2142 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002143 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2144 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002145 UniqueSCEVs.InsertNode(S, IP);
2146 }
Dan Gohman3645b012009-10-09 00:10:36 +00002147 if (HasNUW) S->setHasNoUnsignedWrap(true);
2148 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002149 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002150}
2151
Dan Gohman9311ef62009-06-24 14:49:00 +00002152const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2153 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002154 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002155 Ops.push_back(LHS);
2156 Ops.push_back(RHS);
2157 return getSMaxExpr(Ops);
2158}
2159
Dan Gohman0bba49c2009-07-07 17:06:11 +00002160const SCEV *
2161ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002162 assert(!Ops.empty() && "Cannot get empty smax!");
2163 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002164#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002165 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002166 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002167 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002168 "SCEVSMaxExpr operand types don't match!");
2169#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002170
2171 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002172 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002173
2174 // If there are any constants, fold them together.
2175 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002176 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002177 ++Idx;
2178 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002179 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002180 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002181 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002182 APIntOps::smax(LHSC->getValue()->getValue(),
2183 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002184 Ops[0] = getConstant(Fold);
2185 Ops.erase(Ops.begin()+1); // Erase the folded element
2186 if (Ops.size() == 1) return Ops[0];
2187 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002188 }
2189
Dan Gohmane5aceed2009-06-24 14:46:22 +00002190 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002191 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2192 Ops.erase(Ops.begin());
2193 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002194 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2195 // If we have an smax with a constant maximum-int, it will always be
2196 // maximum-int.
2197 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002198 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002199
Dan Gohman3ab13122010-04-13 16:49:23 +00002200 if (Ops.size() == 1) return Ops[0];
2201 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002202
2203 // Find the first SMax
2204 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2205 ++Idx;
2206
2207 // Check to see if one of the operands is an SMax. If so, expand its operands
2208 // onto our operand list, and recurse to simplify.
2209 if (Idx < Ops.size()) {
2210 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002211 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002212 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002213 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002214 DeletedSMax = true;
2215 }
2216
2217 if (DeletedSMax)
2218 return getSMaxExpr(Ops);
2219 }
2220
2221 // Okay, check to see if the same value occurs in the operand list twice. If
2222 // so, delete one. Since we sorted the list, these values are required to
2223 // be adjacent.
2224 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002225 // X smax Y smax Y --> X smax Y
2226 // X smax Y --> X, if X is always greater than Y
2227 if (Ops[i] == Ops[i+1] ||
2228 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2229 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2230 --i; --e;
2231 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002232 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2233 --i; --e;
2234 }
2235
2236 if (Ops.size() == 1) return Ops[0];
2237
2238 assert(!Ops.empty() && "Reduced smax down to nothing!");
2239
Nick Lewycky3e630762008-02-20 06:48:22 +00002240 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002241 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002242 FoldingSetNodeID ID;
2243 ID.AddInteger(scSMaxExpr);
2244 ID.AddInteger(Ops.size());
2245 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2246 ID.AddPointer(Ops[i]);
2247 void *IP = 0;
2248 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002249 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2250 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002251 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2252 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002253 UniqueSCEVs.InsertNode(S, IP);
2254 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002255}
2256
Dan Gohman9311ef62009-06-24 14:49:00 +00002257const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2258 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002259 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002260 Ops.push_back(LHS);
2261 Ops.push_back(RHS);
2262 return getUMaxExpr(Ops);
2263}
2264
Dan Gohman0bba49c2009-07-07 17:06:11 +00002265const SCEV *
2266ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002267 assert(!Ops.empty() && "Cannot get empty umax!");
2268 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002269#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002270 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002271 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002272 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002273 "SCEVUMaxExpr operand types don't match!");
2274#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002275
2276 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002277 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002278
2279 // If there are any constants, fold them together.
2280 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002281 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002282 ++Idx;
2283 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002284 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002285 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002286 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002287 APIntOps::umax(LHSC->getValue()->getValue(),
2288 RHSC->getValue()->getValue()));
2289 Ops[0] = getConstant(Fold);
2290 Ops.erase(Ops.begin()+1); // Erase the folded element
2291 if (Ops.size() == 1) return Ops[0];
2292 LHSC = cast<SCEVConstant>(Ops[0]);
2293 }
2294
Dan Gohmane5aceed2009-06-24 14:46:22 +00002295 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002296 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2297 Ops.erase(Ops.begin());
2298 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002299 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2300 // If we have an umax with a constant maximum-int, it will always be
2301 // maximum-int.
2302 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002303 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002304
Dan Gohman3ab13122010-04-13 16:49:23 +00002305 if (Ops.size() == 1) return Ops[0];
2306 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002307
2308 // Find the first UMax
2309 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2310 ++Idx;
2311
2312 // Check to see if one of the operands is a UMax. If so, expand its operands
2313 // onto our operand list, and recurse to simplify.
2314 if (Idx < Ops.size()) {
2315 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002316 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002317 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002318 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002319 DeletedUMax = true;
2320 }
2321
2322 if (DeletedUMax)
2323 return getUMaxExpr(Ops);
2324 }
2325
2326 // Okay, check to see if the same value occurs in the operand list twice. If
2327 // so, delete one. Since we sorted the list, these values are required to
2328 // be adjacent.
2329 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002330 // X umax Y umax Y --> X umax Y
2331 // X umax Y --> X, if X is always greater than Y
2332 if (Ops[i] == Ops[i+1] ||
2333 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2334 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2335 --i; --e;
2336 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002337 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2338 --i; --e;
2339 }
2340
2341 if (Ops.size() == 1) return Ops[0];
2342
2343 assert(!Ops.empty() && "Reduced umax down to nothing!");
2344
2345 // Okay, it looks like we really DO need a umax expr. Check to see if we
2346 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002347 FoldingSetNodeID ID;
2348 ID.AddInteger(scUMaxExpr);
2349 ID.AddInteger(Ops.size());
2350 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2351 ID.AddPointer(Ops[i]);
2352 void *IP = 0;
2353 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002354 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2355 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002356 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2357 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002358 UniqueSCEVs.InsertNode(S, IP);
2359 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002360}
2361
Dan Gohman9311ef62009-06-24 14:49:00 +00002362const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2363 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002364 // ~smax(~x, ~y) == smin(x, y).
2365 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2366}
2367
Dan Gohman9311ef62009-06-24 14:49:00 +00002368const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2369 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002370 // ~umax(~x, ~y) == umin(x, y)
2371 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2372}
2373
Dan Gohman4f8eea82010-02-01 18:27:38 +00002374const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002375 // If we have TargetData, we can bypass creating a target-independent
2376 // constant expression and then folding it back into a ConstantInt.
2377 // This is just a compile-time optimization.
2378 if (TD)
2379 return getConstant(TD->getIntPtrType(getContext()),
2380 TD->getTypeAllocSize(AllocTy));
2381
Dan Gohman4f8eea82010-02-01 18:27:38 +00002382 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002384 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2385 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002386 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2387 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2388}
2389
2390const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2391 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002393 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2394 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002395 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2396 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2397}
2398
2399const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2400 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002401 // If we have TargetData, we can bypass creating a target-independent
2402 // constant expression and then folding it back into a ConstantInt.
2403 // This is just a compile-time optimization.
2404 if (TD)
2405 return getConstant(TD->getIntPtrType(getContext()),
2406 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2407
Dan Gohman0f5efe52010-01-28 02:15:55 +00002408 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002410 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2411 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002412 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002413 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002414}
2415
Dan Gohman4f8eea82010-02-01 18:27:38 +00002416const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2417 Constant *FieldNo) {
2418 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002420 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2421 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002422 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002423 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002424}
2425
Dan Gohman0bba49c2009-07-07 17:06:11 +00002426const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002427 // Don't attempt to do anything other than create a SCEVUnknown object
2428 // here. createSCEV only calls getUnknown after checking for all other
2429 // interesting possibilities, and any other code that calls getUnknown
2430 // is doing so in order to hide a value from SCEV canonicalization.
2431
Dan Gohman1c343752009-06-27 21:21:31 +00002432 FoldingSetNodeID ID;
2433 ID.AddInteger(scUnknown);
2434 ID.AddPointer(V);
2435 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002436 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2437 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2438 "Stale SCEVUnknown in uniquing map!");
2439 return S;
2440 }
2441 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2442 FirstUnknown);
2443 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002444 UniqueSCEVs.InsertNode(S, IP);
2445 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002446}
2447
Chris Lattner53e677a2004-04-02 20:23:17 +00002448//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002449// Basic SCEV Analysis and PHI Idiom Recognition Code
2450//
2451
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002452/// isSCEVable - Test if values of the given type are analyzable within
2453/// the SCEV framework. This primarily includes integer types, and it
2454/// can optionally include pointer types if the ScalarEvolution class
2455/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002456bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002457 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002458 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002459}
2460
2461/// getTypeSizeInBits - Return the size in bits of the specified type,
2462/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002463uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002464 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2465
2466 // If we have a TargetData, use it!
2467 if (TD)
2468 return TD->getTypeSizeInBits(Ty);
2469
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002470 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002471 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002472 return Ty->getPrimitiveSizeInBits();
2473
2474 // The only other support type is pointer. Without TargetData, conservatively
2475 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002476 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002477 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002478}
2479
2480/// getEffectiveSCEVType - Return a type with the same bitwidth as
2481/// the given type and which represents how SCEV will treat the given
2482/// type, for which isSCEVable must return true. For pointer types,
2483/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002484const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002485 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2486
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002487 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002488 return Ty;
2489
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002490 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002491 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002492 if (TD) return TD->getIntPtrType(getContext());
2493
2494 // Without TargetData, conservatively assume pointers are 64-bit.
2495 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002496}
Chris Lattner53e677a2004-04-02 20:23:17 +00002497
Dan Gohman0bba49c2009-07-07 17:06:11 +00002498const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002499 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002500}
2501
Chris Lattner53e677a2004-04-02 20:23:17 +00002502/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2503/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002504const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002505 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002506
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002507 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2508 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002509 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002510
2511 // The process of creating a SCEV for V may have caused other SCEVs
2512 // to have been created, so it's necessary to insert the new entry
2513 // from scratch, rather than trying to remember the insert position
2514 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002515 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002516 return S;
2517}
2518
Dan Gohman2d1be872009-04-16 03:18:22 +00002519/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2520///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002521const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002522 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002523 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002524 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002525
2526 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002527 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002528 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002529 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002530}
2531
2532/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002533const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002534 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002535 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002536 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002537
2538 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002539 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002540 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002541 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002542 return getMinusSCEV(AllOnes, V);
2543}
2544
2545/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2546///
Dan Gohman9311ef62009-06-24 14:49:00 +00002547const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2548 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002549 // Fast path: X - X --> 0.
2550 if (LHS == RHS)
2551 return getConstant(LHS->getType(), 0);
2552
Dan Gohman2d1be872009-04-16 03:18:22 +00002553 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002554 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002555}
2556
2557/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2558/// input value to the specified type. If the type must be extended, it is zero
2559/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002560const SCEV *
2561ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002562 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002563 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002564 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2565 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002566 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002567 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002568 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002569 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002570 return getTruncateExpr(V, Ty);
2571 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002572}
2573
2574/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2575/// input value to the specified type. If the type must be extended, it is sign
2576/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002577const SCEV *
2578ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002579 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002580 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002581 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2582 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002583 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002584 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002585 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002586 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002587 return getTruncateExpr(V, Ty);
2588 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002589}
2590
Dan Gohman467c4302009-05-13 03:46:30 +00002591/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2592/// input value to the specified type. If the type must be extended, it is zero
2593/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002594const SCEV *
2595ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002596 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002597 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2598 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002599 "Cannot noop or zero extend with non-integer arguments!");
2600 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2601 "getNoopOrZeroExtend cannot truncate!");
2602 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2603 return V; // No conversion
2604 return getZeroExtendExpr(V, Ty);
2605}
2606
2607/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2608/// input value to the specified type. If the type must be extended, it is sign
2609/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002610const SCEV *
2611ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002612 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002613 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2614 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002615 "Cannot noop or sign extend with non-integer arguments!");
2616 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2617 "getNoopOrSignExtend cannot truncate!");
2618 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2619 return V; // No conversion
2620 return getSignExtendExpr(V, Ty);
2621}
2622
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002623/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2624/// the input value to the specified type. If the type must be extended,
2625/// it is extended with unspecified bits. The conversion must not be
2626/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002627const SCEV *
2628ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002629 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002630 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2631 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002632 "Cannot noop or any extend with non-integer arguments!");
2633 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2634 "getNoopOrAnyExtend cannot truncate!");
2635 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2636 return V; // No conversion
2637 return getAnyExtendExpr(V, Ty);
2638}
2639
Dan Gohman467c4302009-05-13 03:46:30 +00002640/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2641/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002642const SCEV *
2643ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002644 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002645 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2646 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002647 "Cannot truncate or noop with non-integer arguments!");
2648 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2649 "getTruncateOrNoop cannot extend!");
2650 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2651 return V; // No conversion
2652 return getTruncateExpr(V, Ty);
2653}
2654
Dan Gohmana334aa72009-06-22 00:31:57 +00002655/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2656/// the types using zero-extension, and then perform a umax operation
2657/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002658const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2659 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002660 const SCEV *PromotedLHS = LHS;
2661 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002662
2663 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2664 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2665 else
2666 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2667
2668 return getUMaxExpr(PromotedLHS, PromotedRHS);
2669}
2670
Dan Gohmanc9759e82009-06-22 15:03:27 +00002671/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2672/// the types using zero-extension, and then perform a umin operation
2673/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002674const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2675 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002676 const SCEV *PromotedLHS = LHS;
2677 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002678
2679 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2680 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2681 else
2682 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2683
2684 return getUMinExpr(PromotedLHS, PromotedRHS);
2685}
2686
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002687/// PushDefUseChildren - Push users of the given Instruction
2688/// onto the given Worklist.
2689static void
2690PushDefUseChildren(Instruction *I,
2691 SmallVectorImpl<Instruction *> &Worklist) {
2692 // Push the def-use children onto the Worklist stack.
2693 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2694 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002695 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002696}
2697
2698/// ForgetSymbolicValue - This looks up computed SCEV values for all
2699/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002700/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002701/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002702void
Dan Gohman85669632010-02-25 06:57:05 +00002703ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002704 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002705 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002706
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002707 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002708 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002709 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002710 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002711 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002712
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002713 ValueExprMapType::iterator It =
2714 ValueExprMap.find(static_cast<Value *>(I));
2715 if (It != ValueExprMap.end()) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002716 // Short-circuit the def-use traversal if the symbolic name
2717 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002718 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002719 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002720
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002721 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002722 // structure, it's a PHI that's in the progress of being computed
2723 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2724 // additional loop trip count information isn't going to change anything.
2725 // In the second case, createNodeForPHI will perform the necessary
2726 // updates on its own when it gets to that point. In the third, we do
2727 // want to forget the SCEVUnknown.
2728 if (!isa<PHINode>(I) ||
2729 !isa<SCEVUnknown>(It->second) ||
2730 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002731 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002732 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002733 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002734 }
2735
2736 PushDefUseChildren(I, Worklist);
2737 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002738}
Chris Lattner53e677a2004-04-02 20:23:17 +00002739
2740/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2741/// a loop header, making it a potential recurrence, or it doesn't.
2742///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002743const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002744 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2745 if (L->getHeader() == PN->getParent()) {
2746 // The loop may have multiple entrances or multiple exits; we can analyze
2747 // this phi as an addrec if it has a unique entry value and a unique
2748 // backedge value.
2749 Value *BEValueV = 0, *StartValueV = 0;
2750 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2751 Value *V = PN->getIncomingValue(i);
2752 if (L->contains(PN->getIncomingBlock(i))) {
2753 if (!BEValueV) {
2754 BEValueV = V;
2755 } else if (BEValueV != V) {
2756 BEValueV = 0;
2757 break;
2758 }
2759 } else if (!StartValueV) {
2760 StartValueV = V;
2761 } else if (StartValueV != V) {
2762 StartValueV = 0;
2763 break;
2764 }
2765 }
2766 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002767 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002768 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002769 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002770 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002771 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002772
2773 // Using this symbolic name for the PHI, analyze the value coming around
2774 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002775 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002776
2777 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2778 // has a special value for the first iteration of the loop.
2779
2780 // If the value coming around the backedge is an add with the symbolic
2781 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002782 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002783 // If there is a single occurrence of the symbolic value, replace it
2784 // with a recurrence.
2785 unsigned FoundIndex = Add->getNumOperands();
2786 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2787 if (Add->getOperand(i) == SymbolicName)
2788 if (FoundIndex == e) {
2789 FoundIndex = i;
2790 break;
2791 }
2792
2793 if (FoundIndex != Add->getNumOperands()) {
2794 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002795 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002796 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2797 if (i != FoundIndex)
2798 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002799 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002800
2801 // This is not a valid addrec if the step amount is varying each
2802 // loop iteration, but is not itself an addrec in this loop.
2803 if (Accum->isLoopInvariant(L) ||
2804 (isa<SCEVAddRecExpr>(Accum) &&
2805 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002806 bool HasNUW = false;
2807 bool HasNSW = false;
2808
2809 // If the increment doesn't overflow, then neither the addrec nor
2810 // the post-increment will overflow.
2811 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2812 if (OBO->hasNoUnsignedWrap())
2813 HasNUW = true;
2814 if (OBO->hasNoSignedWrap())
2815 HasNSW = true;
2816 }
2817
Dan Gohman27dead42010-04-12 07:49:36 +00002818 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002819 const SCEV *PHISCEV =
2820 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002821
Dan Gohmana10756e2010-01-21 02:09:26 +00002822 // Since the no-wrap flags are on the increment, they apply to the
2823 // post-incremented value as well.
2824 if (Accum->isLoopInvariant(L))
2825 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2826 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002827
2828 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002829 // to be symbolic. We now need to go back and purge all of the
2830 // entries for the scalars that use the symbolic expression.
2831 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002832 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002833 return PHISCEV;
2834 }
2835 }
Dan Gohman622ed672009-05-04 22:02:23 +00002836 } else if (const SCEVAddRecExpr *AddRec =
2837 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002838 // Otherwise, this could be a loop like this:
2839 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2840 // In this case, j = {1,+,1} and BEValue is j.
2841 // Because the other in-value of i (0) fits the evolution of BEValue
2842 // i really is an addrec evolution.
2843 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002844 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002845
2846 // If StartVal = j.start - j.stride, we can use StartVal as the
2847 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002848 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002849 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002850 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002851 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002852
2853 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002854 // to be symbolic. We now need to go back and purge all of the
2855 // entries for the scalars that use the symbolic expression.
2856 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002857 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002858 return PHISCEV;
2859 }
2860 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002861 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002862 }
Dan Gohman27dead42010-04-12 07:49:36 +00002863 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002864
Dan Gohman85669632010-02-25 06:57:05 +00002865 // If the PHI has a single incoming value, follow that value, unless the
2866 // PHI's incoming blocks are in a different loop, in which case doing so
2867 // risks breaking LCSSA form. Instcombine would normally zap these, but
2868 // it doesn't have DominatorTree information, so it may miss cases.
2869 if (Value *V = PN->hasConstantValue(DT)) {
2870 bool AllSameLoop = true;
2871 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2872 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2873 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2874 AllSameLoop = false;
2875 break;
2876 }
2877 if (AllSameLoop)
2878 return getSCEV(V);
2879 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002880
Chris Lattner53e677a2004-04-02 20:23:17 +00002881 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002882 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002883}
2884
Dan Gohman26466c02009-05-08 20:26:55 +00002885/// createNodeForGEP - Expand GEP instructions into add and multiply
2886/// operations. This allows them to be analyzed by regular SCEV code.
2887///
Dan Gohmand281ed22009-12-18 02:09:29 +00002888const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002889
Dan Gohmanb9f96512010-06-30 07:16:37 +00002890 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2891 // Add expression, because the Instruction may be guarded by control flow
2892 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002893 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002894
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002895 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002896 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002897 // Don't attempt to analyze GEPs over unsized objects.
2898 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2899 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002900 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002901 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002902 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002903 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002904 I != E; ++I) {
2905 Value *Index = *I;
2906 // Compute the (potentially symbolic) offset in bytes for this index.
2907 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2908 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002909 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002910 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2911
Dan Gohmanb9f96512010-06-30 07:16:37 +00002912 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002913 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002914 } else {
2915 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002916 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2917 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002918 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002919 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2920
Dan Gohmanb9f96512010-06-30 07:16:37 +00002921 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002922 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002923
2924 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002925 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002926 }
2927 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002928
2929 // Get the SCEV for the GEP base.
2930 const SCEV *BaseS = getSCEV(Base);
2931
Dan Gohmanb9f96512010-06-30 07:16:37 +00002932 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002933 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002934}
2935
Nick Lewycky83bb0052007-11-22 07:59:40 +00002936/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2937/// guaranteed to end in (at every loop iteration). It is, at the same time,
2938/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2939/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002940uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002941ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002942 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002943 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002944
Dan Gohman622ed672009-05-04 22:02:23 +00002945 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002946 return std::min(GetMinTrailingZeros(T->getOperand()),
2947 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002948
Dan Gohman622ed672009-05-04 22:02:23 +00002949 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002950 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2951 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2952 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002953 }
2954
Dan Gohman622ed672009-05-04 22:02:23 +00002955 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002956 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2957 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2958 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002959 }
2960
Dan Gohman622ed672009-05-04 22:02:23 +00002961 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002962 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002963 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002964 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002965 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002966 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002967 }
2968
Dan Gohman622ed672009-05-04 22:02:23 +00002969 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002970 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002971 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2972 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002973 for (unsigned i = 1, e = M->getNumOperands();
2974 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002975 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002976 BitWidth);
2977 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002978 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002979
Dan Gohman622ed672009-05-04 22:02:23 +00002980 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002981 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002982 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002983 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002984 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002985 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002986 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002987
Dan Gohman622ed672009-05-04 22:02:23 +00002988 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002989 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002990 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002991 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002992 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002993 return MinOpRes;
2994 }
2995
Dan Gohman622ed672009-05-04 22:02:23 +00002996 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002997 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002998 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002999 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003000 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003001 return MinOpRes;
3002 }
3003
Dan Gohman2c364ad2009-06-19 23:29:04 +00003004 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3005 // For a SCEVUnknown, ask ValueTracking.
3006 unsigned BitWidth = getTypeSizeInBits(U->getType());
3007 APInt Mask = APInt::getAllOnesValue(BitWidth);
3008 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3009 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3010 return Zeros.countTrailingOnes();
3011 }
3012
3013 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003014 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003015}
Chris Lattner53e677a2004-04-02 20:23:17 +00003016
Dan Gohman85b05a22009-07-13 21:35:55 +00003017/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3018///
3019ConstantRange
3020ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003021
3022 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00003023 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003024
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003025 unsigned BitWidth = getTypeSizeInBits(S->getType());
3026 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3027
3028 // If the value has known zeros, the maximum unsigned value will have those
3029 // known zeros as well.
3030 uint32_t TZ = GetMinTrailingZeros(S);
3031 if (TZ != 0)
3032 ConservativeResult =
3033 ConstantRange(APInt::getMinValue(BitWidth),
3034 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3035
Dan Gohman85b05a22009-07-13 21:35:55 +00003036 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3037 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3038 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3039 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003040 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003041 }
3042
3043 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3044 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3045 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3046 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003047 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003048 }
3049
3050 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3051 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3052 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3053 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003054 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003055 }
3056
3057 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3058 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3059 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3060 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003061 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003062 }
3063
3064 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3065 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3066 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003067 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003068 }
3069
3070 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3071 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003072 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003073 }
3074
3075 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3076 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003077 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003078 }
3079
3080 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3081 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003082 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003083 }
3084
Dan Gohman85b05a22009-07-13 21:35:55 +00003085 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003086 // If there's no unsigned wrap, the value will never be less than its
3087 // initial value.
3088 if (AddRec->hasNoUnsignedWrap())
3089 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003090 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003091 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003092 ConservativeResult.intersectWith(
3093 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003094
3095 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003096 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003097 const Type *Ty = AddRec->getType();
3098 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003099 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3100 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003101 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3102
3103 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003104 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003105
3106 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003107 ConstantRange StepRange = getSignedRange(Step);
3108 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3109 ConstantRange EndRange =
3110 StartRange.add(MaxBECountRange.multiply(StepRange));
3111
3112 // Check for overflow. This must be done with ConstantRange arithmetic
3113 // because we could be called from within the ScalarEvolution overflow
3114 // checking code.
3115 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3116 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3117 ConstantRange ExtMaxBECountRange =
3118 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3119 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3120 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3121 ExtEndRange)
3122 return ConservativeResult;
3123
Dan Gohman85b05a22009-07-13 21:35:55 +00003124 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3125 EndRange.getUnsignedMin());
3126 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3127 EndRange.getUnsignedMax());
3128 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003129 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003130 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003131 }
3132 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003133
3134 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003135 }
3136
3137 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3138 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003139 APInt Mask = APInt::getAllOnesValue(BitWidth);
3140 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3141 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003142 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003143 return ConservativeResult;
3144 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003145 }
3146
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003147 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003148}
3149
Dan Gohman85b05a22009-07-13 21:35:55 +00003150/// getSignedRange - Determine the signed range for a particular SCEV.
3151///
3152ConstantRange
3153ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003154
Dan Gohman85b05a22009-07-13 21:35:55 +00003155 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3156 return ConstantRange(C->getValue()->getValue());
3157
Dan Gohman52fddd32010-01-26 04:40:18 +00003158 unsigned BitWidth = getTypeSizeInBits(S->getType());
3159 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3160
3161 // If the value has known zeros, the maximum signed value will have those
3162 // known zeros as well.
3163 uint32_t TZ = GetMinTrailingZeros(S);
3164 if (TZ != 0)
3165 ConservativeResult =
3166 ConstantRange(APInt::getSignedMinValue(BitWidth),
3167 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3168
Dan Gohman85b05a22009-07-13 21:35:55 +00003169 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3170 ConstantRange X = getSignedRange(Add->getOperand(0));
3171 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3172 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003173 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003174 }
3175
Dan Gohman85b05a22009-07-13 21:35:55 +00003176 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3177 ConstantRange X = getSignedRange(Mul->getOperand(0));
3178 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3179 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003180 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003181 }
3182
Dan Gohman85b05a22009-07-13 21:35:55 +00003183 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3184 ConstantRange X = getSignedRange(SMax->getOperand(0));
3185 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3186 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003187 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003188 }
Dan Gohman62849c02009-06-24 01:05:09 +00003189
Dan Gohman85b05a22009-07-13 21:35:55 +00003190 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3191 ConstantRange X = getSignedRange(UMax->getOperand(0));
3192 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3193 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003194 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003195 }
Dan Gohman62849c02009-06-24 01:05:09 +00003196
Dan Gohman85b05a22009-07-13 21:35:55 +00003197 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3198 ConstantRange X = getSignedRange(UDiv->getLHS());
3199 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003200 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003201 }
Dan Gohman62849c02009-06-24 01:05:09 +00003202
Dan Gohman85b05a22009-07-13 21:35:55 +00003203 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3204 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003205 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003206 }
3207
3208 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3209 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003210 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003211 }
3212
3213 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3214 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003215 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003216 }
3217
Dan Gohman85b05a22009-07-13 21:35:55 +00003218 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003219 // If there's no signed wrap, and all the operands have the same sign or
3220 // zero, the value won't ever change sign.
3221 if (AddRec->hasNoSignedWrap()) {
3222 bool AllNonNeg = true;
3223 bool AllNonPos = true;
3224 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3225 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3226 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3227 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003228 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003229 ConservativeResult = ConservativeResult.intersectWith(
3230 ConstantRange(APInt(BitWidth, 0),
3231 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003232 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003233 ConservativeResult = ConservativeResult.intersectWith(
3234 ConstantRange(APInt::getSignedMinValue(BitWidth),
3235 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003236 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003237
3238 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003239 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003240 const Type *Ty = AddRec->getType();
3241 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003242 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3243 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003244 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3245
3246 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003247 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003248
3249 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003250 ConstantRange StepRange = getSignedRange(Step);
3251 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3252 ConstantRange EndRange =
3253 StartRange.add(MaxBECountRange.multiply(StepRange));
3254
3255 // Check for overflow. This must be done with ConstantRange arithmetic
3256 // because we could be called from within the ScalarEvolution overflow
3257 // checking code.
3258 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3259 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3260 ConstantRange ExtMaxBECountRange =
3261 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3262 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3263 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3264 ExtEndRange)
3265 return ConservativeResult;
3266
Dan Gohman85b05a22009-07-13 21:35:55 +00003267 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3268 EndRange.getSignedMin());
3269 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3270 EndRange.getSignedMax());
3271 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003272 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003273 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003274 }
Dan Gohman62849c02009-06-24 01:05:09 +00003275 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003276
3277 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003278 }
3279
Dan Gohman2c364ad2009-06-19 23:29:04 +00003280 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3281 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003282 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003283 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003284 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3285 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003286 return ConservativeResult;
3287 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003288 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003289 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003290 }
3291
Dan Gohman52fddd32010-01-26 04:40:18 +00003292 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003293}
3294
Chris Lattner53e677a2004-04-02 20:23:17 +00003295/// createSCEV - We know that there is no SCEV for the specified value.
3296/// Analyze the expression.
3297///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003298const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003299 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003300 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003301
Dan Gohman6c459a22008-06-22 19:56:46 +00003302 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003303 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003304 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003305
3306 // Don't attempt to analyze instructions in blocks that aren't
3307 // reachable. Such instructions don't matter, and they aren't required
3308 // to obey basic rules for definitions dominating uses which this
3309 // analysis depends on.
3310 if (!DT->isReachableFromEntry(I->getParent()))
3311 return getUnknown(V);
3312 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003313 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003314 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3315 return getConstant(CI);
3316 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003317 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003318 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3319 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003320 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003321 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003322
Dan Gohmanca178902009-07-17 20:47:02 +00003323 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003324 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003325 case Instruction::Add: {
3326 // The simple thing to do would be to just call getSCEV on both operands
3327 // and call getAddExpr with the result. However if we're looking at a
3328 // bunch of things all added together, this can be quite inefficient,
3329 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3330 // Instead, gather up all the operands and make a single getAddExpr call.
3331 // LLVM IR canonical form means we need only traverse the left operands.
3332 SmallVector<const SCEV *, 4> AddOps;
3333 AddOps.push_back(getSCEV(U->getOperand(1)));
3334 for (Value *Op = U->getOperand(0);
3335 Op->getValueID() == Instruction::Add + Value::InstructionVal;
3336 Op = U->getOperand(0)) {
3337 U = cast<Operator>(Op);
3338 AddOps.push_back(getSCEV(U->getOperand(1)));
3339 }
3340 AddOps.push_back(getSCEV(U->getOperand(0)));
3341 return getAddExpr(AddOps);
3342 }
3343 case Instruction::Mul: {
3344 // See the Add code above.
3345 SmallVector<const SCEV *, 4> MulOps;
3346 MulOps.push_back(getSCEV(U->getOperand(1)));
3347 for (Value *Op = U->getOperand(0);
3348 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3349 Op = U->getOperand(0)) {
3350 U = cast<Operator>(Op);
3351 MulOps.push_back(getSCEV(U->getOperand(1)));
3352 }
3353 MulOps.push_back(getSCEV(U->getOperand(0)));
3354 return getMulExpr(MulOps);
3355 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003356 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003357 return getUDivExpr(getSCEV(U->getOperand(0)),
3358 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003359 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003360 return getMinusSCEV(getSCEV(U->getOperand(0)),
3361 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003362 case Instruction::And:
3363 // For an expression like x&255 that merely masks off the high bits,
3364 // use zext(trunc(x)) as the SCEV expression.
3365 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003366 if (CI->isNullValue())
3367 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003368 if (CI->isAllOnesValue())
3369 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003370 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003371
3372 // Instcombine's ShrinkDemandedConstant may strip bits out of
3373 // constants, obscuring what would otherwise be a low-bits mask.
3374 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3375 // knew about to reconstruct a low-bits mask value.
3376 unsigned LZ = A.countLeadingZeros();
3377 unsigned BitWidth = A.getBitWidth();
3378 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3379 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3380 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3381
3382 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3383
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003384 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003385 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003386 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003387 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003388 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003389 }
3390 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003391
Dan Gohman6c459a22008-06-22 19:56:46 +00003392 case Instruction::Or:
3393 // If the RHS of the Or is a constant, we may have something like:
3394 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3395 // optimizations will transparently handle this case.
3396 //
3397 // In order for this transformation to be safe, the LHS must be of the
3398 // form X*(2^n) and the Or constant must be less than 2^n.
3399 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003400 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003401 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003402 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003403 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3404 // Build a plain add SCEV.
3405 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3406 // If the LHS of the add was an addrec and it has no-wrap flags,
3407 // transfer the no-wrap flags, since an or won't introduce a wrap.
3408 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3409 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3410 if (OldAR->hasNoUnsignedWrap())
3411 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3412 if (OldAR->hasNoSignedWrap())
3413 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3414 }
3415 return S;
3416 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003417 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003418 break;
3419 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003420 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003421 // If the RHS of the xor is a signbit, then this is just an add.
3422 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003423 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003424 return getAddExpr(getSCEV(U->getOperand(0)),
3425 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003426
3427 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003428 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003429 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003430
3431 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3432 // This is a variant of the check for xor with -1, and it handles
3433 // the case where instcombine has trimmed non-demanded bits out
3434 // of an xor with -1.
3435 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3436 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3437 if (BO->getOpcode() == Instruction::And &&
3438 LCI->getValue() == CI->getValue())
3439 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003440 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003441 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003442 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003443 const Type *Z0Ty = Z0->getType();
3444 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3445
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003446 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003447 // mask off the high bits. Complement the operand and
3448 // re-apply the zext.
3449 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3450 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3451
3452 // If C is a single bit, it may be in the sign-bit position
3453 // before the zero-extend. In this case, represent the xor
3454 // using an add, which is equivalent, and re-apply the zext.
3455 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3456 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3457 Trunc.isSignBit())
3458 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3459 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003460 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003461 }
3462 break;
3463
3464 case Instruction::Shl:
3465 // Turn shift left of a constant amount into a multiply.
3466 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003467 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003468
3469 // If the shift count is not less than the bitwidth, the result of
3470 // the shift is undefined. Don't try to analyze it, because the
3471 // resolution chosen here may differ from the resolution chosen in
3472 // other parts of the compiler.
3473 if (SA->getValue().uge(BitWidth))
3474 break;
3475
Owen Andersoneed707b2009-07-24 23:12:02 +00003476 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003477 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003478 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003479 }
3480 break;
3481
Nick Lewycky01eaf802008-07-07 06:15:49 +00003482 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003483 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003484 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003485 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003486
3487 // If the shift count is not less than the bitwidth, the result of
3488 // the shift is undefined. Don't try to analyze it, because the
3489 // resolution chosen here may differ from the resolution chosen in
3490 // other parts of the compiler.
3491 if (SA->getValue().uge(BitWidth))
3492 break;
3493
Owen Andersoneed707b2009-07-24 23:12:02 +00003494 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003495 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003496 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003497 }
3498 break;
3499
Dan Gohman4ee29af2009-04-21 02:26:00 +00003500 case Instruction::AShr:
3501 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3502 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003503 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003504 if (L->getOpcode() == Instruction::Shl &&
3505 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003506 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3507
3508 // If the shift count is not less than the bitwidth, the result of
3509 // the shift is undefined. Don't try to analyze it, because the
3510 // resolution chosen here may differ from the resolution chosen in
3511 // other parts of the compiler.
3512 if (CI->getValue().uge(BitWidth))
3513 break;
3514
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003515 uint64_t Amt = BitWidth - CI->getZExtValue();
3516 if (Amt == BitWidth)
3517 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003518 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003519 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003520 IntegerType::get(getContext(),
3521 Amt)),
3522 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003523 }
3524 break;
3525
Dan Gohman6c459a22008-06-22 19:56:46 +00003526 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003527 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003528
3529 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003530 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003531
3532 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003533 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003534
3535 case Instruction::BitCast:
3536 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003537 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003538 return getSCEV(U->getOperand(0));
3539 break;
3540
Dan Gohman4f8eea82010-02-01 18:27:38 +00003541 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3542 // lead to pointer expressions which cannot safely be expanded to GEPs,
3543 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3544 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003545
Dan Gohman26466c02009-05-08 20:26:55 +00003546 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003547 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003548
Dan Gohman6c459a22008-06-22 19:56:46 +00003549 case Instruction::PHI:
3550 return createNodeForPHI(cast<PHINode>(U));
3551
3552 case Instruction::Select:
3553 // This could be a smax or umax that was lowered earlier.
3554 // Try to recover it.
3555 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3556 Value *LHS = ICI->getOperand(0);
3557 Value *RHS = ICI->getOperand(1);
3558 switch (ICI->getPredicate()) {
3559 case ICmpInst::ICMP_SLT:
3560 case ICmpInst::ICMP_SLE:
3561 std::swap(LHS, RHS);
3562 // fall through
3563 case ICmpInst::ICMP_SGT:
3564 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003565 // a >s b ? a+x : b+x -> smax(a, b)+x
3566 // a >s b ? b+x : a+x -> smin(a, b)+x
3567 if (LHS->getType() == U->getType()) {
3568 const SCEV *LS = getSCEV(LHS);
3569 const SCEV *RS = getSCEV(RHS);
3570 const SCEV *LA = getSCEV(U->getOperand(1));
3571 const SCEV *RA = getSCEV(U->getOperand(2));
3572 const SCEV *LDiff = getMinusSCEV(LA, LS);
3573 const SCEV *RDiff = getMinusSCEV(RA, RS);
3574 if (LDiff == RDiff)
3575 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3576 LDiff = getMinusSCEV(LA, RS);
3577 RDiff = getMinusSCEV(RA, LS);
3578 if (LDiff == RDiff)
3579 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3580 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003581 break;
3582 case ICmpInst::ICMP_ULT:
3583 case ICmpInst::ICMP_ULE:
3584 std::swap(LHS, RHS);
3585 // fall through
3586 case ICmpInst::ICMP_UGT:
3587 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003588 // a >u b ? a+x : b+x -> umax(a, b)+x
3589 // a >u b ? b+x : a+x -> umin(a, b)+x
3590 if (LHS->getType() == U->getType()) {
3591 const SCEV *LS = getSCEV(LHS);
3592 const SCEV *RS = getSCEV(RHS);
3593 const SCEV *LA = getSCEV(U->getOperand(1));
3594 const SCEV *RA = getSCEV(U->getOperand(2));
3595 const SCEV *LDiff = getMinusSCEV(LA, LS);
3596 const SCEV *RDiff = getMinusSCEV(RA, RS);
3597 if (LDiff == RDiff)
3598 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3599 LDiff = getMinusSCEV(LA, RS);
3600 RDiff = getMinusSCEV(RA, LS);
3601 if (LDiff == RDiff)
3602 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3603 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003604 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003605 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003606 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3607 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003608 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003609 cast<ConstantInt>(RHS)->isZero()) {
3610 const SCEV *One = getConstant(LHS->getType(), 1);
3611 const SCEV *LS = getSCEV(LHS);
3612 const SCEV *LA = getSCEV(U->getOperand(1));
3613 const SCEV *RA = getSCEV(U->getOperand(2));
3614 const SCEV *LDiff = getMinusSCEV(LA, LS);
3615 const SCEV *RDiff = getMinusSCEV(RA, One);
3616 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003617 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003618 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003619 break;
3620 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003621 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3622 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003623 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003624 cast<ConstantInt>(RHS)->isZero()) {
3625 const SCEV *One = getConstant(LHS->getType(), 1);
3626 const SCEV *LS = getSCEV(LHS);
3627 const SCEV *LA = getSCEV(U->getOperand(1));
3628 const SCEV *RA = getSCEV(U->getOperand(2));
3629 const SCEV *LDiff = getMinusSCEV(LA, One);
3630 const SCEV *RDiff = getMinusSCEV(RA, LS);
3631 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003632 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003633 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003634 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003635 default:
3636 break;
3637 }
3638 }
3639
3640 default: // We cannot analyze this expression.
3641 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003642 }
3643
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003644 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003645}
3646
3647
3648
3649//===----------------------------------------------------------------------===//
3650// Iteration Count Computation Code
3651//
3652
Dan Gohman46bdfb02009-02-24 18:55:53 +00003653/// getBackedgeTakenCount - If the specified loop has a predictable
3654/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3655/// object. The backedge-taken count is the number of times the loop header
3656/// will be branched to from within the loop. This is one less than the
3657/// trip count of the loop, since it doesn't count the first iteration,
3658/// when the header is branched to from outside the loop.
3659///
3660/// Note that it is not valid to call this method on a loop without a
3661/// loop-invariant backedge-taken count (see
3662/// hasLoopInvariantBackedgeTakenCount).
3663///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003664const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003665 return getBackedgeTakenInfo(L).Exact;
3666}
3667
3668/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3669/// return the least SCEV value that is known never to be less than the
3670/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003671const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003672 return getBackedgeTakenInfo(L).Max;
3673}
3674
Dan Gohman59ae6b92009-07-08 19:23:34 +00003675/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3676/// onto the given Worklist.
3677static void
3678PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3679 BasicBlock *Header = L->getHeader();
3680
3681 // Push all Loop-header PHIs onto the Worklist stack.
3682 for (BasicBlock::iterator I = Header->begin();
3683 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3684 Worklist.push_back(PN);
3685}
3686
Dan Gohmana1af7572009-04-30 20:47:05 +00003687const ScalarEvolution::BackedgeTakenInfo &
3688ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003689 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003690 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003691 // update the value. The temporary CouldNotCompute value tells SCEV
3692 // code elsewhere that it shouldn't attempt to request a new
3693 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003694 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003695 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3696 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003697 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3698 if (BECount.Exact != getCouldNotCompute()) {
3699 assert(BECount.Exact->isLoopInvariant(L) &&
3700 BECount.Max->isLoopInvariant(L) &&
3701 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003702 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003703
Dan Gohman01ecca22009-04-27 20:16:15 +00003704 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003705 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003706 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003707 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003708 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003709 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003710 if (isa<PHINode>(L->getHeader()->begin()))
3711 // Only count loops that have phi nodes as not being computable.
3712 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003713 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003714
3715 // Now that we know more about the trip count for this loop, forget any
3716 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003717 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003718 // information. This is similar to the code in forgetLoop, except that
3719 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003720 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003721 SmallVector<Instruction *, 16> Worklist;
3722 PushLoopPHIs(L, Worklist);
3723
3724 SmallPtrSet<Instruction *, 8> Visited;
3725 while (!Worklist.empty()) {
3726 Instruction *I = Worklist.pop_back_val();
3727 if (!Visited.insert(I)) continue;
3728
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003729 ValueExprMapType::iterator It =
3730 ValueExprMap.find(static_cast<Value *>(I));
3731 if (It != ValueExprMap.end()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003732 // SCEVUnknown for a PHI either means that it has an unrecognized
3733 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003734 // by createNodeForPHI. In the former case, additional loop trip
3735 // count information isn't going to change anything. In the later
3736 // case, createNodeForPHI will perform the necessary updates on its
3737 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003738 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3739 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003740 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003741 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003742 if (PHINode *PN = dyn_cast<PHINode>(I))
3743 ConstantEvolutionLoopExitValue.erase(PN);
3744 }
3745
3746 PushDefUseChildren(I, Worklist);
3747 }
3748 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003749 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003750 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003751}
3752
Dan Gohman4c7279a2009-10-31 15:04:55 +00003753/// forgetLoop - This method should be called by the client when it has
3754/// changed a loop in a way that may effect ScalarEvolution's ability to
3755/// compute a trip count, or if the loop is deleted.
3756void ScalarEvolution::forgetLoop(const Loop *L) {
3757 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003758 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003759
Dan Gohman4c7279a2009-10-31 15:04:55 +00003760 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003761 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003762 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003763
Dan Gohman59ae6b92009-07-08 19:23:34 +00003764 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003765 while (!Worklist.empty()) {
3766 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003767 if (!Visited.insert(I)) continue;
3768
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003769 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3770 if (It != ValueExprMap.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003771 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003772 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003773 if (PHINode *PN = dyn_cast<PHINode>(I))
3774 ConstantEvolutionLoopExitValue.erase(PN);
3775 }
3776
3777 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003778 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003779}
3780
Eric Christophere6cbfa62010-07-29 01:25:38 +00003781/// forgetValue - This method should be called by the client when it has
3782/// changed a value in a way that may effect its value, or which may
3783/// disconnect it from a def-use chain linking it to a loop.
3784void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003785 Instruction *I = dyn_cast<Instruction>(V);
3786 if (!I) return;
3787
3788 // Drop information about expressions based on loop-header PHIs.
3789 SmallVector<Instruction *, 16> Worklist;
3790 Worklist.push_back(I);
3791
3792 SmallPtrSet<Instruction *, 8> Visited;
3793 while (!Worklist.empty()) {
3794 I = Worklist.pop_back_val();
3795 if (!Visited.insert(I)) continue;
3796
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003797 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3798 if (It != ValueExprMap.end()) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003799 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003800 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003801 if (PHINode *PN = dyn_cast<PHINode>(I))
3802 ConstantEvolutionLoopExitValue.erase(PN);
3803 }
3804
3805 PushDefUseChildren(I, Worklist);
3806 }
3807}
3808
Dan Gohman46bdfb02009-02-24 18:55:53 +00003809/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3810/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003811ScalarEvolution::BackedgeTakenInfo
3812ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003813 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003814 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003815
Dan Gohmana334aa72009-06-22 00:31:57 +00003816 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003817 const SCEV *BECount = getCouldNotCompute();
3818 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003819 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3821 BackedgeTakenInfo NewBTI =
3822 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003823
Dan Gohman1c343752009-06-27 21:21:31 +00003824 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003825 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003826 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003827 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003828 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003830 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003831 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003832 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003833 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003834 }
Dan Gohman1c343752009-06-27 21:21:31 +00003835 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003836 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003837 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003838 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003839 }
3840
3841 return BackedgeTakenInfo(BECount, MaxBECount);
3842}
3843
3844/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3845/// of the specified loop will execute if it exits via the specified block.
3846ScalarEvolution::BackedgeTakenInfo
3847ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3848 BasicBlock *ExitingBlock) {
3849
3850 // Okay, we've chosen an exiting block. See what condition causes us to
3851 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003852 //
3853 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003854 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003855 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003856 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003857
Chris Lattner8b0e3602007-01-07 02:24:26 +00003858 // At this point, we know we have a conditional branch that determines whether
3859 // the loop is exited. However, we don't know if the branch is executed each
3860 // time through the loop. If not, then the execution count of the branch will
3861 // not be equal to the trip count of the loop.
3862 //
3863 // Currently we check for this by checking to see if the Exit branch goes to
3864 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003865 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003866 // loop header. This is common for un-rotated loops.
3867 //
3868 // If both of those tests fail, walk up the unique predecessor chain to the
3869 // header, stopping if there is an edge that doesn't exit the loop. If the
3870 // header is reached, the execution count of the branch will be equal to the
3871 // trip count of the loop.
3872 //
3873 // More extensive analysis could be done to handle more cases here.
3874 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003875 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003876 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003877 ExitBr->getParent() != L->getHeader()) {
3878 // The simple checks failed, try climbing the unique predecessor chain
3879 // up to the header.
3880 bool Ok = false;
3881 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3882 BasicBlock *Pred = BB->getUniquePredecessor();
3883 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003884 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003885 TerminatorInst *PredTerm = Pred->getTerminator();
3886 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3887 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3888 if (PredSucc == BB)
3889 continue;
3890 // If the predecessor has a successor that isn't BB and isn't
3891 // outside the loop, assume the worst.
3892 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003893 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003894 }
3895 if (Pred == L->getHeader()) {
3896 Ok = true;
3897 break;
3898 }
3899 BB = Pred;
3900 }
3901 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003902 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003903 }
3904
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003905 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003906 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3907 ExitBr->getSuccessor(0),
3908 ExitBr->getSuccessor(1));
3909}
3910
3911/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3912/// backedge of the specified loop will execute if its exit condition
3913/// were a conditional branch of ExitCond, TBB, and FBB.
3914ScalarEvolution::BackedgeTakenInfo
3915ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3916 Value *ExitCond,
3917 BasicBlock *TBB,
3918 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003919 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003920 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3921 if (BO->getOpcode() == Instruction::And) {
3922 // Recurse on the operands of the and.
3923 BackedgeTakenInfo BTI0 =
3924 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3925 BackedgeTakenInfo BTI1 =
3926 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003927 const SCEV *BECount = getCouldNotCompute();
3928 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003929 if (L->contains(TBB)) {
3930 // Both conditions must be true for the loop to continue executing.
3931 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003932 if (BTI0.Exact == getCouldNotCompute() ||
3933 BTI1.Exact == getCouldNotCompute())
3934 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003935 else
3936 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003937 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003938 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003939 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003940 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003941 else
3942 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003943 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003944 // Both conditions must be true at the same time for the loop to exit.
3945 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003946 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003947 if (BTI0.Max == BTI1.Max)
3948 MaxBECount = BTI0.Max;
3949 if (BTI0.Exact == BTI1.Exact)
3950 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003951 }
3952
3953 return BackedgeTakenInfo(BECount, MaxBECount);
3954 }
3955 if (BO->getOpcode() == Instruction::Or) {
3956 // Recurse on the operands of the or.
3957 BackedgeTakenInfo BTI0 =
3958 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3959 BackedgeTakenInfo BTI1 =
3960 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003961 const SCEV *BECount = getCouldNotCompute();
3962 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003963 if (L->contains(FBB)) {
3964 // Both conditions must be false for the loop to continue executing.
3965 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003966 if (BTI0.Exact == getCouldNotCompute() ||
3967 BTI1.Exact == getCouldNotCompute())
3968 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003969 else
3970 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003971 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003972 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003973 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003974 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003975 else
3976 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003977 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003978 // Both conditions must be false at the same time for the loop to exit.
3979 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003980 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003981 if (BTI0.Max == BTI1.Max)
3982 MaxBECount = BTI0.Max;
3983 if (BTI0.Exact == BTI1.Exact)
3984 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003985 }
3986
3987 return BackedgeTakenInfo(BECount, MaxBECount);
3988 }
3989 }
3990
3991 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003992 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003993 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3994 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003995
Dan Gohman00cb5b72010-02-19 18:12:07 +00003996 // Check for a constant condition. These are normally stripped out by
3997 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3998 // preserve the CFG and is temporarily leaving constant conditions
3999 // in place.
4000 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4001 if (L->contains(FBB) == !CI->getZExtValue())
4002 // The backedge is always taken.
4003 return getCouldNotCompute();
4004 else
4005 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004006 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004007 }
4008
Eli Friedman361e54d2009-05-09 12:32:42 +00004009 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004010 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4011}
4012
4013/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4014/// backedge of the specified loop will execute if its exit condition
4015/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4016ScalarEvolution::BackedgeTakenInfo
4017ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4018 ICmpInst *ExitCond,
4019 BasicBlock *TBB,
4020 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004021
Reid Spencere4d87aa2006-12-23 06:05:41 +00004022 // If the condition was exit on true, convert the condition to exit on false
4023 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004024 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004025 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004026 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004027 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004028
4029 // Handle common loops like: for (X = "string"; *X; ++X)
4030 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4031 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004032 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004033 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004034 if (ItCnt.hasAnyInfo())
4035 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004036 }
4037
Dan Gohman0bba49c2009-07-07 17:06:11 +00004038 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4039 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004040
4041 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004042 LHS = getSCEVAtScope(LHS, L);
4043 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004044
Dan Gohman64a845e2009-06-24 04:48:43 +00004045 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004046 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004047 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4048 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004049 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004050 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004051 }
4052
Dan Gohman03557dc2010-05-03 16:35:17 +00004053 // Simplify the operands before analyzing them.
4054 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4055
Chris Lattner53e677a2004-04-02 20:23:17 +00004056 // If we have a comparison of a chrec against a constant, try to use value
4057 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004058 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4059 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004060 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004061 // Form the constant range.
4062 ConstantRange CompRange(
4063 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004064
Dan Gohman0bba49c2009-07-07 17:06:11 +00004065 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004066 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004067 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004068
Chris Lattner53e677a2004-04-02 20:23:17 +00004069 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004070 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004071 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004072 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4073 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004074 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004075 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004076 case ICmpInst::ICMP_EQ: { // while (X == Y)
4077 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004078 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4079 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004080 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004081 }
4082 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004083 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4084 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004085 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004086 }
4087 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004088 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4089 getNotSCEV(RHS), L, true);
4090 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004091 break;
4092 }
4093 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004094 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4095 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004096 break;
4097 }
4098 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004099 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4100 getNotSCEV(RHS), L, false);
4101 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004102 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004103 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004104 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004105#if 0
David Greene25e0e872009-12-23 22:18:14 +00004106 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004107 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004108 dbgs() << "[unsigned] ";
4109 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004110 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004111 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004112#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004113 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004114 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004115 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004116 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004117}
4118
Chris Lattner673e02b2004-10-12 01:49:27 +00004119static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004120EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4121 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004122 const SCEV *InVal = SE.getConstant(C);
4123 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004124 assert(isa<SCEVConstant>(Val) &&
4125 "Evaluation of SCEV at constant didn't fold correctly?");
4126 return cast<SCEVConstant>(Val)->getValue();
4127}
4128
4129/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4130/// and a GEP expression (missing the pointer index) indexing into it, return
4131/// the addressed element of the initializer or null if the index expression is
4132/// invalid.
4133static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004134GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004135 const std::vector<ConstantInt*> &Indices) {
4136 Constant *Init = GV->getInitializer();
4137 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004138 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004139 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4140 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4141 Init = cast<Constant>(CS->getOperand(Idx));
4142 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4143 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4144 Init = cast<Constant>(CA->getOperand(Idx));
4145 } else if (isa<ConstantAggregateZero>(Init)) {
4146 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4147 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004148 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004149 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4150 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004151 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004152 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004153 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004154 }
4155 return 0;
4156 } else {
4157 return 0; // Unknown initializer type
4158 }
4159 }
4160 return Init;
4161}
4162
Dan Gohman46bdfb02009-02-24 18:55:53 +00004163/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4164/// 'icmp op load X, cst', try to see if we can compute the backedge
4165/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004166ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004167ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4168 LoadInst *LI,
4169 Constant *RHS,
4170 const Loop *L,
4171 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004172 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004173
4174 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004175 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004176 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004177 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004178
4179 // Make sure that it is really a constant global we are gepping, with an
4180 // initializer, and make sure the first IDX is really 0.
4181 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004182 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004183 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4184 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004185 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004186
4187 // Okay, we allow one non-constant index into the GEP instruction.
4188 Value *VarIdx = 0;
4189 std::vector<ConstantInt*> Indexes;
4190 unsigned VarIdxNum = 0;
4191 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4192 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4193 Indexes.push_back(CI);
4194 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004195 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004196 VarIdx = GEP->getOperand(i);
4197 VarIdxNum = i-2;
4198 Indexes.push_back(0);
4199 }
4200
4201 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4202 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004203 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004204 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004205
4206 // We can only recognize very limited forms of loop index expressions, in
4207 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004208 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004209 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4210 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4211 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004212 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004213
4214 unsigned MaxSteps = MaxBruteForceIterations;
4215 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004216 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004217 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004218 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004219
4220 // Form the GEP offset.
4221 Indexes[VarIdxNum] = Val;
4222
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004223 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004224 if (Result == 0) break; // Cannot compute!
4225
4226 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004227 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004228 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004229 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004230#if 0
David Greene25e0e872009-12-23 22:18:14 +00004231 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004232 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4233 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004234#endif
4235 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004236 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004237 }
4238 }
Dan Gohman1c343752009-06-27 21:21:31 +00004239 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004240}
4241
4242
Chris Lattner3221ad02004-04-17 22:58:41 +00004243/// CanConstantFold - Return true if we can constant fold an instruction of the
4244/// specified type, assuming that all operands were constants.
4245static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004246 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004247 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4248 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004249
Chris Lattner3221ad02004-04-17 22:58:41 +00004250 if (const CallInst *CI = dyn_cast<CallInst>(I))
4251 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004252 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004253 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004254}
4255
Chris Lattner3221ad02004-04-17 22:58:41 +00004256/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4257/// in the loop that V is derived from. We allow arbitrary operations along the
4258/// way, but the operands of an operation must either be constants or a value
4259/// derived from a constant PHI. If this expression does not fit with these
4260/// constraints, return null.
4261static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4262 // If this is not an instruction, or if this is an instruction outside of the
4263 // loop, it can't be derived from a loop PHI.
4264 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004265 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004266
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004267 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004268 if (L->getHeader() == I->getParent())
4269 return PN;
4270 else
4271 // We don't currently keep track of the control flow needed to evaluate
4272 // PHIs, so we cannot handle PHIs inside of loops.
4273 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004274 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004275
4276 // If we won't be able to constant fold this expression even if the operands
4277 // are constants, return early.
4278 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004279
Chris Lattner3221ad02004-04-17 22:58:41 +00004280 // Otherwise, we can evaluate this instruction if all of its operands are
4281 // constant or derived from a PHI node themselves.
4282 PHINode *PHI = 0;
4283 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004284 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004285 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4286 if (P == 0) return 0; // Not evolving from PHI
4287 if (PHI == 0)
4288 PHI = P;
4289 else if (PHI != P)
4290 return 0; // Evolving from multiple different PHIs.
4291 }
4292
4293 // This is a expression evolving from a constant PHI!
4294 return PHI;
4295}
4296
4297/// EvaluateExpression - Given an expression that passes the
4298/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4299/// in the loop has the value PHIVal. If we can't fold this expression for some
4300/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004301static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4302 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004303 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004304 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004305 Instruction *I = cast<Instruction>(V);
4306
Dan Gohman9d4588f2010-06-22 13:15:46 +00004307 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004308
4309 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004310 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004311 if (Operands[i] == 0) return 0;
4312 }
4313
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004314 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004315 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004316 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004317 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004318 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004319}
4320
4321/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4322/// in the header of its containing loop, we know the loop executes a
4323/// constant number of times, and the PHI node is just a recurrence
4324/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004325Constant *
4326ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004327 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004328 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004329 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004330 ConstantEvolutionLoopExitValue.find(PN);
4331 if (I != ConstantEvolutionLoopExitValue.end())
4332 return I->second;
4333
Dan Gohmane0567812010-04-08 23:03:40 +00004334 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004335 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4336
4337 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4338
4339 // Since the loop is canonicalized, the PHI node must have two entries. One
4340 // entry must be a constant (coming in from outside of the loop), and the
4341 // second must be derived from the same PHI.
4342 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4343 Constant *StartCST =
4344 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4345 if (StartCST == 0)
4346 return RetVal = 0; // Must be a constant.
4347
4348 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004349 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4350 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004351 return RetVal = 0; // Not derived from same PHI.
4352
4353 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004354 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004355 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004356
Dan Gohman46bdfb02009-02-24 18:55:53 +00004357 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004358 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004359 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4360 if (IterationNum == NumIterations)
4361 return RetVal = PHIVal; // Got exit value!
4362
4363 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004364 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004365 if (NextPHI == PHIVal)
4366 return RetVal = NextPHI; // Stopped evolving!
4367 if (NextPHI == 0)
4368 return 0; // Couldn't evaluate!
4369 PHIVal = NextPHI;
4370 }
4371}
4372
Dan Gohman07ad19b2009-07-27 16:09:48 +00004373/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004374/// constant number of times (the condition evolves only from constants),
4375/// try to evaluate a few iterations of the loop until we get the exit
4376/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004377/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004378const SCEV *
4379ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4380 Value *Cond,
4381 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004382 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004383 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004384
Dan Gohmanb92654d2010-06-19 14:17:24 +00004385 // If the loop is canonicalized, the PHI will have exactly two entries.
4386 // That's the only form we support here.
4387 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4388
4389 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004390 // second must be derived from the same PHI.
4391 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4392 Constant *StartCST =
4393 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004394 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004395
4396 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004397 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4398 !isa<Constant>(BEValue))
4399 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004400
4401 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4402 // the loop symbolically to determine when the condition gets a value of
4403 // "ExitWhen".
4404 unsigned IterationNum = 0;
4405 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4406 for (Constant *PHIVal = StartCST;
4407 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004408 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004409 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004410
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004411 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004412 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004413
Reid Spencere8019bb2007-03-01 07:25:48 +00004414 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004415 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004416 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004417 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004418
Chris Lattner3221ad02004-04-17 22:58:41 +00004419 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004420 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004421 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004422 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004423 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004424 }
4425
4426 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004427 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004428}
4429
Dan Gohmane7125f42009-09-03 15:00:26 +00004430/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004431/// at the specified scope in the program. The L value specifies a loop
4432/// nest to evaluate the expression at, where null is the top-level or a
4433/// specified loop is immediately inside of the loop.
4434///
4435/// This method can be used to compute the exit value for a variable defined
4436/// in a loop by querying what the value will hold in the parent loop.
4437///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004438/// In the case that a relevant loop exit value cannot be computed, the
4439/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004440const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004441 // Check to see if we've folded this expression at this loop before.
4442 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4443 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4444 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4445 if (!Pair.second)
4446 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004447
Dan Gohman42214892009-08-31 21:15:23 +00004448 // Otherwise compute it.
4449 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004450 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004451 return C;
4452}
4453
4454const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004455 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004456
Nick Lewycky3e630762008-02-20 06:48:22 +00004457 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004458 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004459 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004460 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004461 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004462 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4463 if (PHINode *PN = dyn_cast<PHINode>(I))
4464 if (PN->getParent() == LI->getHeader()) {
4465 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004466 // to see if the loop that contains it has a known backedge-taken
4467 // count. If so, we may be able to force computation of the exit
4468 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004469 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004470 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004471 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004472 // Okay, we know how many times the containing loop executes. If
4473 // this is a constant evolving PHI node, get the final value at
4474 // the specified iteration number.
4475 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004476 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004477 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004478 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004479 }
4480 }
4481
Reid Spencer09906f32006-12-04 21:33:23 +00004482 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004483 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004484 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004485 // result. This is particularly useful for computing loop exit values.
4486 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004487 SmallVector<Constant *, 4> Operands;
4488 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004489 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4490 Value *Op = I->getOperand(i);
4491 if (Constant *C = dyn_cast<Constant>(Op)) {
4492 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004493 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004494 }
Dan Gohman11046452010-06-29 23:43:06 +00004495
4496 // If any of the operands is non-constant and if they are
4497 // non-integer and non-pointer, don't even try to analyze them
4498 // with scev techniques.
4499 if (!isSCEVable(Op->getType()))
4500 return V;
4501
4502 const SCEV *OrigV = getSCEV(Op);
4503 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4504 MadeImprovement |= OrigV != OpV;
4505
4506 Constant *C = 0;
4507 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4508 C = SC->getValue();
4509 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4510 C = dyn_cast<Constant>(SU->getValue());
4511 if (!C) return V;
4512 if (C->getType() != Op->getType())
4513 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4514 Op->getType(),
4515 false),
4516 C, Op->getType());
4517 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004518 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004519
Dan Gohman11046452010-06-29 23:43:06 +00004520 // Check to see if getSCEVAtScope actually made an improvement.
4521 if (MadeImprovement) {
4522 Constant *C = 0;
4523 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4524 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4525 Operands[0], Operands[1], TD);
4526 else
4527 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4528 &Operands[0], Operands.size(), TD);
4529 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004530 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004531 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004532 }
4533 }
4534
4535 // This is some other type of SCEVUnknown, just return it.
4536 return V;
4537 }
4538
Dan Gohman622ed672009-05-04 22:02:23 +00004539 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004540 // Avoid performing the look-up in the common case where the specified
4541 // expression has no loop-variant portions.
4542 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004543 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004544 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004545 // Okay, at least one of these operands is loop variant but might be
4546 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004547 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4548 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004549 NewOps.push_back(OpAtScope);
4550
4551 for (++i; i != e; ++i) {
4552 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004553 NewOps.push_back(OpAtScope);
4554 }
4555 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004556 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004557 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004558 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004559 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004560 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004561 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004562 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004563 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004564 }
4565 }
4566 // If we got here, all operands are loop invariant.
4567 return Comm;
4568 }
4569
Dan Gohman622ed672009-05-04 22:02:23 +00004570 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004571 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4572 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004573 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4574 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004575 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004576 }
4577
4578 // If this is a loop recurrence for a loop that does not contain L, then we
4579 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004580 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004581 // First, attempt to evaluate each operand.
4582 // Avoid performing the look-up in the common case where the specified
4583 // expression has no loop-variant portions.
4584 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4585 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4586 if (OpAtScope == AddRec->getOperand(i))
4587 continue;
4588
4589 // Okay, at least one of these operands is loop variant but might be
4590 // foldable. Build a new instance of the folded commutative expression.
4591 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4592 AddRec->op_begin()+i);
4593 NewOps.push_back(OpAtScope);
4594 for (++i; i != e; ++i)
4595 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4596
4597 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4598 break;
4599 }
4600
4601 // If the scope is outside the addrec's loop, evaluate it by using the
4602 // loop exit value of the addrec.
4603 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004604 // To evaluate this recurrence, we need to know how many times the AddRec
4605 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004606 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004607 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004608
Eli Friedmanb42a6262008-08-04 23:49:06 +00004609 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004610 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004611 }
Dan Gohman11046452010-06-29 23:43:06 +00004612
Dan Gohmand594e6f2009-05-24 23:25:42 +00004613 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004614 }
4615
Dan Gohman622ed672009-05-04 22:02:23 +00004616 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004617 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004618 if (Op == Cast->getOperand())
4619 return Cast; // must be loop invariant
4620 return getZeroExtendExpr(Op, Cast->getType());
4621 }
4622
Dan Gohman622ed672009-05-04 22:02:23 +00004623 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004624 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004625 if (Op == Cast->getOperand())
4626 return Cast; // must be loop invariant
4627 return getSignExtendExpr(Op, Cast->getType());
4628 }
4629
Dan Gohman622ed672009-05-04 22:02:23 +00004630 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004631 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004632 if (Op == Cast->getOperand())
4633 return Cast; // must be loop invariant
4634 return getTruncateExpr(Op, Cast->getType());
4635 }
4636
Torok Edwinc23197a2009-07-14 16:55:14 +00004637 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004638 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004639}
4640
Dan Gohman66a7e852009-05-08 20:38:54 +00004641/// getSCEVAtScope - This is a convenience function which does
4642/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004643const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004644 return getSCEVAtScope(getSCEV(V), L);
4645}
4646
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004647/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4648/// following equation:
4649///
4650/// A * X = B (mod N)
4651///
4652/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4653/// A and B isn't important.
4654///
4655/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004656static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004657 ScalarEvolution &SE) {
4658 uint32_t BW = A.getBitWidth();
4659 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4660 assert(A != 0 && "A must be non-zero.");
4661
4662 // 1. D = gcd(A, N)
4663 //
4664 // The gcd of A and N may have only one prime factor: 2. The number of
4665 // trailing zeros in A is its multiplicity
4666 uint32_t Mult2 = A.countTrailingZeros();
4667 // D = 2^Mult2
4668
4669 // 2. Check if B is divisible by D.
4670 //
4671 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4672 // is not less than multiplicity of this prime factor for D.
4673 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004674 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004675
4676 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4677 // modulo (N / D).
4678 //
4679 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4680 // bit width during computations.
4681 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4682 APInt Mod(BW + 1, 0);
4683 Mod.set(BW - Mult2); // Mod = N / D
4684 APInt I = AD.multiplicativeInverse(Mod);
4685
4686 // 4. Compute the minimum unsigned root of the equation:
4687 // I * (B / D) mod (N / D)
4688 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4689
4690 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4691 // bits.
4692 return SE.getConstant(Result.trunc(BW));
4693}
Chris Lattner53e677a2004-04-02 20:23:17 +00004694
4695/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4696/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4697/// might be the same) or two SCEVCouldNotCompute objects.
4698///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004699static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004700SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004701 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004702 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4703 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4704 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004705
Chris Lattner53e677a2004-04-02 20:23:17 +00004706 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004707 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004708 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004709 return std::make_pair(CNC, CNC);
4710 }
4711
Reid Spencere8019bb2007-03-01 07:25:48 +00004712 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004713 const APInt &L = LC->getValue()->getValue();
4714 const APInt &M = MC->getValue()->getValue();
4715 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004716 APInt Two(BitWidth, 2);
4717 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004718
Dan Gohman64a845e2009-06-24 04:48:43 +00004719 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004720 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004721 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004722 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4723 // The B coefficient is M-N/2
4724 APInt B(M);
4725 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004726
Reid Spencere8019bb2007-03-01 07:25:48 +00004727 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004728 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004729
Reid Spencere8019bb2007-03-01 07:25:48 +00004730 // Compute the B^2-4ac term.
4731 APInt SqrtTerm(B);
4732 SqrtTerm *= B;
4733 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004734
Reid Spencere8019bb2007-03-01 07:25:48 +00004735 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4736 // integer value or else APInt::sqrt() will assert.
4737 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004738
Dan Gohman64a845e2009-06-24 04:48:43 +00004739 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004740 // The divisions must be performed as signed divisions.
4741 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004742 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004743 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004744 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004745 return std::make_pair(CNC, CNC);
4746 }
4747
Owen Andersone922c022009-07-22 00:24:57 +00004748 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004749
4750 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004751 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004752 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004753 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004754
Dan Gohman64a845e2009-06-24 04:48:43 +00004755 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004756 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004757 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004758}
4759
4760/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004761/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004762ScalarEvolution::BackedgeTakenInfo
4763ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004764 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004765 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004766 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004767 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004768 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004769 }
4770
Dan Gohman35738ac2009-05-04 22:30:44 +00004771 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004772 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004773 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004774
4775 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004776 // If this is an affine expression, the execution count of this branch is
4777 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004778 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004779 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004780 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004781 // equivalent to:
4782 //
4783 // Step*N = -Start (mod 2^BW)
4784 //
4785 // where BW is the common bit width of Start and Step.
4786
Chris Lattner53e677a2004-04-02 20:23:17 +00004787 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004788 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4789 L->getParentLoop());
4790 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4791 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004792
Dan Gohman622ed672009-05-04 22:02:23 +00004793 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004794 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004795
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004796 // First, handle unitary steps.
4797 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004798 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004799 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4800 return Start; // N = Start (as unsigned)
4801
4802 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004803 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004804 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004805 -StartC->getValue()->getValue(),
4806 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004807 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004808 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004809 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4810 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004811 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004812 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004813 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4814 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004815 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004816#if 0
David Greene25e0e872009-12-23 22:18:14 +00004817 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004818 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004819#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004820 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004821 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004822 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004823 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004824 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004825 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004826
Chris Lattner53e677a2004-04-02 20:23:17 +00004827 // We can only use this value if the chrec ends up with an exact zero
4828 // value at this index. When solving for "X*X != 5", for example, we
4829 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004830 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004831 if (Val->isZero())
4832 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004833 }
4834 }
4835 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004836
Dan Gohman1c343752009-06-27 21:21:31 +00004837 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004838}
4839
4840/// HowFarToNonZero - Return the number of times a backedge checking the
4841/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004842/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004843ScalarEvolution::BackedgeTakenInfo
4844ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004845 // Loops that look like: while (X == 0) are very strange indeed. We don't
4846 // handle them yet except for the trivial case. This could be expanded in the
4847 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004848
Chris Lattner53e677a2004-04-02 20:23:17 +00004849 // If the value is a constant, check to see if it is known to be non-zero
4850 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004851 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004852 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004853 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004854 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004855 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004856
Chris Lattner53e677a2004-04-02 20:23:17 +00004857 // We could implement others, but I really doubt anyone writes loops like
4858 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004859 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004860}
4861
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004862/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4863/// (which may not be an immediate predecessor) which has exactly one
4864/// successor from which BB is reachable, or null if no such block is
4865/// found.
4866///
Dan Gohman005752b2010-04-15 16:19:08 +00004867std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004868ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004869 // If the block has a unique predecessor, then there is no path from the
4870 // predecessor to the block that does not go through the direct edge
4871 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004872 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004873 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004874
4875 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004876 // If the header has a unique predecessor outside the loop, it must be
4877 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004878 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004879 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004880
Dan Gohman005752b2010-04-15 16:19:08 +00004881 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004882}
4883
Dan Gohman763bad12009-06-20 00:35:32 +00004884/// HasSameValue - SCEV structural equivalence is usually sufficient for
4885/// testing whether two expressions are equal, however for the purposes of
4886/// looking for a condition guarding a loop, it can be useful to be a little
4887/// more general, since a front-end may have replicated the controlling
4888/// expression.
4889///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004890static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004891 // Quick check to see if they are the same SCEV.
4892 if (A == B) return true;
4893
4894 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4895 // two different instructions with the same value. Check for this case.
4896 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4897 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4898 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4899 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004900 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004901 return true;
4902
4903 // Otherwise assume they may have a different value.
4904 return false;
4905}
4906
Dan Gohmane9796502010-04-24 01:28:42 +00004907/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4908/// predicate Pred. Return true iff any changes were made.
4909///
4910bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4911 const SCEV *&LHS, const SCEV *&RHS) {
4912 bool Changed = false;
4913
4914 // Canonicalize a constant to the right side.
4915 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4916 // Check for both operands constant.
4917 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4918 if (ConstantExpr::getICmp(Pred,
4919 LHSC->getValue(),
4920 RHSC->getValue())->isNullValue())
4921 goto trivially_false;
4922 else
4923 goto trivially_true;
4924 }
4925 // Otherwise swap the operands to put the constant on the right.
4926 std::swap(LHS, RHS);
4927 Pred = ICmpInst::getSwappedPredicate(Pred);
4928 Changed = true;
4929 }
4930
4931 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004932 // addrec's loop, put the addrec on the left. Also make a dominance check,
4933 // as both operands could be addrecs loop-invariant in each other's loop.
4934 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4935 const Loop *L = AR->getLoop();
4936 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004937 std::swap(LHS, RHS);
4938 Pred = ICmpInst::getSwappedPredicate(Pred);
4939 Changed = true;
4940 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004941 }
Dan Gohmane9796502010-04-24 01:28:42 +00004942
4943 // If there's a constant operand, canonicalize comparisons with boundary
4944 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4945 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4946 const APInt &RA = RC->getValue()->getValue();
4947 switch (Pred) {
4948 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4949 case ICmpInst::ICMP_EQ:
4950 case ICmpInst::ICMP_NE:
4951 break;
4952 case ICmpInst::ICMP_UGE:
4953 if ((RA - 1).isMinValue()) {
4954 Pred = ICmpInst::ICMP_NE;
4955 RHS = getConstant(RA - 1);
4956 Changed = true;
4957 break;
4958 }
4959 if (RA.isMaxValue()) {
4960 Pred = ICmpInst::ICMP_EQ;
4961 Changed = true;
4962 break;
4963 }
4964 if (RA.isMinValue()) goto trivially_true;
4965
4966 Pred = ICmpInst::ICMP_UGT;
4967 RHS = getConstant(RA - 1);
4968 Changed = true;
4969 break;
4970 case ICmpInst::ICMP_ULE:
4971 if ((RA + 1).isMaxValue()) {
4972 Pred = ICmpInst::ICMP_NE;
4973 RHS = getConstant(RA + 1);
4974 Changed = true;
4975 break;
4976 }
4977 if (RA.isMinValue()) {
4978 Pred = ICmpInst::ICMP_EQ;
4979 Changed = true;
4980 break;
4981 }
4982 if (RA.isMaxValue()) goto trivially_true;
4983
4984 Pred = ICmpInst::ICMP_ULT;
4985 RHS = getConstant(RA + 1);
4986 Changed = true;
4987 break;
4988 case ICmpInst::ICMP_SGE:
4989 if ((RA - 1).isMinSignedValue()) {
4990 Pred = ICmpInst::ICMP_NE;
4991 RHS = getConstant(RA - 1);
4992 Changed = true;
4993 break;
4994 }
4995 if (RA.isMaxSignedValue()) {
4996 Pred = ICmpInst::ICMP_EQ;
4997 Changed = true;
4998 break;
4999 }
5000 if (RA.isMinSignedValue()) goto trivially_true;
5001
5002 Pred = ICmpInst::ICMP_SGT;
5003 RHS = getConstant(RA - 1);
5004 Changed = true;
5005 break;
5006 case ICmpInst::ICMP_SLE:
5007 if ((RA + 1).isMaxSignedValue()) {
5008 Pred = ICmpInst::ICMP_NE;
5009 RHS = getConstant(RA + 1);
5010 Changed = true;
5011 break;
5012 }
5013 if (RA.isMinSignedValue()) {
5014 Pred = ICmpInst::ICMP_EQ;
5015 Changed = true;
5016 break;
5017 }
5018 if (RA.isMaxSignedValue()) goto trivially_true;
5019
5020 Pred = ICmpInst::ICMP_SLT;
5021 RHS = getConstant(RA + 1);
5022 Changed = true;
5023 break;
5024 case ICmpInst::ICMP_UGT:
5025 if (RA.isMinValue()) {
5026 Pred = ICmpInst::ICMP_NE;
5027 Changed = true;
5028 break;
5029 }
5030 if ((RA + 1).isMaxValue()) {
5031 Pred = ICmpInst::ICMP_EQ;
5032 RHS = getConstant(RA + 1);
5033 Changed = true;
5034 break;
5035 }
5036 if (RA.isMaxValue()) goto trivially_false;
5037 break;
5038 case ICmpInst::ICMP_ULT:
5039 if (RA.isMaxValue()) {
5040 Pred = ICmpInst::ICMP_NE;
5041 Changed = true;
5042 break;
5043 }
5044 if ((RA - 1).isMinValue()) {
5045 Pred = ICmpInst::ICMP_EQ;
5046 RHS = getConstant(RA - 1);
5047 Changed = true;
5048 break;
5049 }
5050 if (RA.isMinValue()) goto trivially_false;
5051 break;
5052 case ICmpInst::ICMP_SGT:
5053 if (RA.isMinSignedValue()) {
5054 Pred = ICmpInst::ICMP_NE;
5055 Changed = true;
5056 break;
5057 }
5058 if ((RA + 1).isMaxSignedValue()) {
5059 Pred = ICmpInst::ICMP_EQ;
5060 RHS = getConstant(RA + 1);
5061 Changed = true;
5062 break;
5063 }
5064 if (RA.isMaxSignedValue()) goto trivially_false;
5065 break;
5066 case ICmpInst::ICMP_SLT:
5067 if (RA.isMaxSignedValue()) {
5068 Pred = ICmpInst::ICMP_NE;
5069 Changed = true;
5070 break;
5071 }
5072 if ((RA - 1).isMinSignedValue()) {
5073 Pred = ICmpInst::ICMP_EQ;
5074 RHS = getConstant(RA - 1);
5075 Changed = true;
5076 break;
5077 }
5078 if (RA.isMinSignedValue()) goto trivially_false;
5079 break;
5080 }
5081 }
5082
5083 // Check for obvious equality.
5084 if (HasSameValue(LHS, RHS)) {
5085 if (ICmpInst::isTrueWhenEqual(Pred))
5086 goto trivially_true;
5087 if (ICmpInst::isFalseWhenEqual(Pred))
5088 goto trivially_false;
5089 }
5090
Dan Gohman03557dc2010-05-03 16:35:17 +00005091 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5092 // adding or subtracting 1 from one of the operands.
5093 switch (Pred) {
5094 case ICmpInst::ICMP_SLE:
5095 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5096 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5097 /*HasNUW=*/false, /*HasNSW=*/true);
5098 Pred = ICmpInst::ICMP_SLT;
5099 Changed = true;
5100 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005101 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005102 /*HasNUW=*/false, /*HasNSW=*/true);
5103 Pred = ICmpInst::ICMP_SLT;
5104 Changed = true;
5105 }
5106 break;
5107 case ICmpInst::ICMP_SGE:
5108 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005109 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005110 /*HasNUW=*/false, /*HasNSW=*/true);
5111 Pred = ICmpInst::ICMP_SGT;
5112 Changed = true;
5113 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5114 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5115 /*HasNUW=*/false, /*HasNSW=*/true);
5116 Pred = ICmpInst::ICMP_SGT;
5117 Changed = true;
5118 }
5119 break;
5120 case ICmpInst::ICMP_ULE:
5121 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005122 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005123 /*HasNUW=*/true, /*HasNSW=*/false);
5124 Pred = ICmpInst::ICMP_ULT;
5125 Changed = true;
5126 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005127 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005128 /*HasNUW=*/true, /*HasNSW=*/false);
5129 Pred = ICmpInst::ICMP_ULT;
5130 Changed = true;
5131 }
5132 break;
5133 case ICmpInst::ICMP_UGE:
5134 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005135 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005136 /*HasNUW=*/true, /*HasNSW=*/false);
5137 Pred = ICmpInst::ICMP_UGT;
5138 Changed = true;
5139 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005140 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005141 /*HasNUW=*/true, /*HasNSW=*/false);
5142 Pred = ICmpInst::ICMP_UGT;
5143 Changed = true;
5144 }
5145 break;
5146 default:
5147 break;
5148 }
5149
Dan Gohmane9796502010-04-24 01:28:42 +00005150 // TODO: More simplifications are possible here.
5151
5152 return Changed;
5153
5154trivially_true:
5155 // Return 0 == 0.
5156 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5157 Pred = ICmpInst::ICMP_EQ;
5158 return true;
5159
5160trivially_false:
5161 // Return 0 != 0.
5162 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5163 Pred = ICmpInst::ICMP_NE;
5164 return true;
5165}
5166
Dan Gohman85b05a22009-07-13 21:35:55 +00005167bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5168 return getSignedRange(S).getSignedMax().isNegative();
5169}
5170
5171bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5172 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5173}
5174
5175bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5176 return !getSignedRange(S).getSignedMin().isNegative();
5177}
5178
5179bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5180 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5181}
5182
5183bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5184 return isKnownNegative(S) || isKnownPositive(S);
5185}
5186
5187bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5188 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005189 // Canonicalize the inputs first.
5190 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5191
Dan Gohman53c66ea2010-04-11 22:16:48 +00005192 // If LHS or RHS is an addrec, check to see if the condition is true in
5193 // every iteration of the loop.
5194 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5195 if (isLoopEntryGuardedByCond(
5196 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5197 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005198 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005199 return true;
5200 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5201 if (isLoopEntryGuardedByCond(
5202 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5203 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005204 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005205 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005206
Dan Gohman53c66ea2010-04-11 22:16:48 +00005207 // Otherwise see what can be done with known constant ranges.
5208 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5209}
5210
5211bool
5212ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5213 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005214 if (HasSameValue(LHS, RHS))
5215 return ICmpInst::isTrueWhenEqual(Pred);
5216
Dan Gohman53c66ea2010-04-11 22:16:48 +00005217 // This code is split out from isKnownPredicate because it is called from
5218 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005219 switch (Pred) {
5220 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005221 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005222 break;
5223 case ICmpInst::ICMP_SGT:
5224 Pred = ICmpInst::ICMP_SLT;
5225 std::swap(LHS, RHS);
5226 case ICmpInst::ICMP_SLT: {
5227 ConstantRange LHSRange = getSignedRange(LHS);
5228 ConstantRange RHSRange = getSignedRange(RHS);
5229 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5230 return true;
5231 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5232 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005233 break;
5234 }
5235 case ICmpInst::ICMP_SGE:
5236 Pred = ICmpInst::ICMP_SLE;
5237 std::swap(LHS, RHS);
5238 case ICmpInst::ICMP_SLE: {
5239 ConstantRange LHSRange = getSignedRange(LHS);
5240 ConstantRange RHSRange = getSignedRange(RHS);
5241 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5242 return true;
5243 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5244 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005245 break;
5246 }
5247 case ICmpInst::ICMP_UGT:
5248 Pred = ICmpInst::ICMP_ULT;
5249 std::swap(LHS, RHS);
5250 case ICmpInst::ICMP_ULT: {
5251 ConstantRange LHSRange = getUnsignedRange(LHS);
5252 ConstantRange RHSRange = getUnsignedRange(RHS);
5253 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5254 return true;
5255 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5256 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005257 break;
5258 }
5259 case ICmpInst::ICMP_UGE:
5260 Pred = ICmpInst::ICMP_ULE;
5261 std::swap(LHS, RHS);
5262 case ICmpInst::ICMP_ULE: {
5263 ConstantRange LHSRange = getUnsignedRange(LHS);
5264 ConstantRange RHSRange = getUnsignedRange(RHS);
5265 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5266 return true;
5267 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5268 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005269 break;
5270 }
5271 case ICmpInst::ICMP_NE: {
5272 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5273 return true;
5274 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5275 return true;
5276
5277 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5278 if (isKnownNonZero(Diff))
5279 return true;
5280 break;
5281 }
5282 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005283 // The check at the top of the function catches the case where
5284 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005285 break;
5286 }
5287 return false;
5288}
5289
5290/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5291/// protected by a conditional between LHS and RHS. This is used to
5292/// to eliminate casts.
5293bool
5294ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5295 ICmpInst::Predicate Pred,
5296 const SCEV *LHS, const SCEV *RHS) {
5297 // Interpret a null as meaning no loop, where there is obviously no guard
5298 // (interprocedural conditions notwithstanding).
5299 if (!L) return true;
5300
5301 BasicBlock *Latch = L->getLoopLatch();
5302 if (!Latch)
5303 return false;
5304
5305 BranchInst *LoopContinuePredicate =
5306 dyn_cast<BranchInst>(Latch->getTerminator());
5307 if (!LoopContinuePredicate ||
5308 LoopContinuePredicate->isUnconditional())
5309 return false;
5310
Dan Gohmanaf08a362010-08-10 23:46:30 +00005311 return isImpliedCond(Pred, LHS, RHS,
5312 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005313 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005314}
5315
Dan Gohman3948d0b2010-04-11 19:27:13 +00005316/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005317/// by a conditional between LHS and RHS. This is used to help avoid max
5318/// expressions in loop trip counts, and to eliminate casts.
5319bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005320ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5321 ICmpInst::Predicate Pred,
5322 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005323 // Interpret a null as meaning no loop, where there is obviously no guard
5324 // (interprocedural conditions notwithstanding).
5325 if (!L) return false;
5326
Dan Gohman859b4822009-05-18 15:36:09 +00005327 // Starting at the loop predecessor, climb up the predecessor chain, as long
5328 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005329 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005330 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005331 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005332 Pair.first;
5333 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005334
5335 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005336 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005337 if (!LoopEntryPredicate ||
5338 LoopEntryPredicate->isUnconditional())
5339 continue;
5340
Dan Gohmanaf08a362010-08-10 23:46:30 +00005341 if (isImpliedCond(Pred, LHS, RHS,
5342 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005343 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005344 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005345 }
5346
Dan Gohman38372182008-08-12 20:17:31 +00005347 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005348}
5349
Dan Gohman0f4b2852009-07-21 23:03:19 +00005350/// isImpliedCond - Test whether the condition described by Pred, LHS,
5351/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005352bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005353 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005354 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005355 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005356 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005357 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005358 if (BO->getOpcode() == Instruction::And) {
5359 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005360 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5361 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005362 } else if (BO->getOpcode() == Instruction::Or) {
5363 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005364 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5365 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005366 }
5367 }
5368
Dan Gohmanaf08a362010-08-10 23:46:30 +00005369 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005370 if (!ICI) return false;
5371
Dan Gohman85b05a22009-07-13 21:35:55 +00005372 // Bail if the ICmp's operands' types are wider than the needed type
5373 // before attempting to call getSCEV on them. This avoids infinite
5374 // recursion, since the analysis of widening casts can require loop
5375 // exit condition information for overflow checking, which would
5376 // lead back here.
5377 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005378 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005379 return false;
5380
Dan Gohman0f4b2852009-07-21 23:03:19 +00005381 // Now that we found a conditional branch that dominates the loop, check to
5382 // see if it is the comparison we are looking for.
5383 ICmpInst::Predicate FoundPred;
5384 if (Inverse)
5385 FoundPred = ICI->getInversePredicate();
5386 else
5387 FoundPred = ICI->getPredicate();
5388
5389 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5390 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005391
5392 // Balance the types. The case where FoundLHS' type is wider than
5393 // LHS' type is checked for above.
5394 if (getTypeSizeInBits(LHS->getType()) >
5395 getTypeSizeInBits(FoundLHS->getType())) {
5396 if (CmpInst::isSigned(Pred)) {
5397 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5398 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5399 } else {
5400 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5401 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5402 }
5403 }
5404
Dan Gohman0f4b2852009-07-21 23:03:19 +00005405 // Canonicalize the query to match the way instcombine will have
5406 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005407 if (SimplifyICmpOperands(Pred, LHS, RHS))
5408 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005409 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005410 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5411 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005412 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005413
5414 // Check to see if we can make the LHS or RHS match.
5415 if (LHS == FoundRHS || RHS == FoundLHS) {
5416 if (isa<SCEVConstant>(RHS)) {
5417 std::swap(FoundLHS, FoundRHS);
5418 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5419 } else {
5420 std::swap(LHS, RHS);
5421 Pred = ICmpInst::getSwappedPredicate(Pred);
5422 }
5423 }
5424
5425 // Check whether the found predicate is the same as the desired predicate.
5426 if (FoundPred == Pred)
5427 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5428
5429 // Check whether swapping the found predicate makes it the same as the
5430 // desired predicate.
5431 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5432 if (isa<SCEVConstant>(RHS))
5433 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5434 else
5435 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5436 RHS, LHS, FoundLHS, FoundRHS);
5437 }
5438
5439 // Check whether the actual condition is beyond sufficient.
5440 if (FoundPred == ICmpInst::ICMP_EQ)
5441 if (ICmpInst::isTrueWhenEqual(Pred))
5442 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5443 return true;
5444 if (Pred == ICmpInst::ICMP_NE)
5445 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5446 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5447 return true;
5448
5449 // Otherwise assume the worst.
5450 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005451}
5452
Dan Gohman0f4b2852009-07-21 23:03:19 +00005453/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005454/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005455/// and FoundRHS is true.
5456bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5457 const SCEV *LHS, const SCEV *RHS,
5458 const SCEV *FoundLHS,
5459 const SCEV *FoundRHS) {
5460 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5461 FoundLHS, FoundRHS) ||
5462 // ~x < ~y --> x > y
5463 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5464 getNotSCEV(FoundRHS),
5465 getNotSCEV(FoundLHS));
5466}
5467
5468/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005469/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005470/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005471bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005472ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5473 const SCEV *LHS, const SCEV *RHS,
5474 const SCEV *FoundLHS,
5475 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005476 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005477 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5478 case ICmpInst::ICMP_EQ:
5479 case ICmpInst::ICMP_NE:
5480 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5481 return true;
5482 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005483 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005484 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005485 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5486 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005487 return true;
5488 break;
5489 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005490 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005491 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5492 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005493 return true;
5494 break;
5495 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005496 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005497 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5498 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005499 return true;
5500 break;
5501 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005502 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005503 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5504 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005505 return true;
5506 break;
5507 }
5508
5509 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005510}
5511
Dan Gohman51f53b72009-06-21 23:46:38 +00005512/// getBECount - Subtract the end and start values and divide by the step,
5513/// rounding up, to get the number of times the backedge is executed. Return
5514/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005515const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005516 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005517 const SCEV *Step,
5518 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005519 assert(!isKnownNegative(Step) &&
5520 "This code doesn't handle negative strides yet!");
5521
Dan Gohman51f53b72009-06-21 23:46:38 +00005522 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005523 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005524 const SCEV *Diff = getMinusSCEV(End, Start);
5525 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005526
5527 // Add an adjustment to the difference between End and Start so that
5528 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005529 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005530
Dan Gohman1f96e672009-09-17 18:05:20 +00005531 if (!NoWrap) {
5532 // Check Add for unsigned overflow.
5533 // TODO: More sophisticated things could be done here.
5534 const Type *WideTy = IntegerType::get(getContext(),
5535 getTypeSizeInBits(Ty) + 1);
5536 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5537 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5538 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5539 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5540 return getCouldNotCompute();
5541 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005542
5543 return getUDivExpr(Add, Step);
5544}
5545
Chris Lattnerdb25de42005-08-15 23:33:51 +00005546/// HowManyLessThans - Return the number of times a backedge containing the
5547/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005548/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005549ScalarEvolution::BackedgeTakenInfo
5550ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5551 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005552 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005553 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005554
Dan Gohman35738ac2009-05-04 22:30:44 +00005555 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005556 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005557 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005558
Dan Gohman1f96e672009-09-17 18:05:20 +00005559 // Check to see if we have a flag which makes analysis easy.
5560 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5561 AddRec->hasNoUnsignedWrap();
5562
Chris Lattnerdb25de42005-08-15 23:33:51 +00005563 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005564 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005565 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005566
Dan Gohman52fddd32010-01-26 04:40:18 +00005567 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005568 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005569 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005570 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005571 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005572 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005573 // value and past the maximum value for its type in a single step.
5574 // Note that it's not sufficient to check NoWrap here, because even
5575 // though the value after a wrap is undefined, it's not undefined
5576 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005577 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005578 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005579 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005580 if (isSigned) {
5581 APInt Max = APInt::getSignedMaxValue(BitWidth);
5582 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5583 .slt(getSignedRange(RHS).getSignedMax()))
5584 return getCouldNotCompute();
5585 } else {
5586 APInt Max = APInt::getMaxValue(BitWidth);
5587 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5588 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5589 return getCouldNotCompute();
5590 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005591 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005592 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005593 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005594
Dan Gohmana1af7572009-04-30 20:47:05 +00005595 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5596 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5597 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005598 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005599
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005600 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005601 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005602
Dan Gohmana1af7572009-04-30 20:47:05 +00005603 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005604 const SCEV *MinStart = getConstant(isSigned ?
5605 getSignedRange(Start).getSignedMin() :
5606 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005607
Dan Gohmana1af7572009-04-30 20:47:05 +00005608 // If we know that the condition is true in order to enter the loop,
5609 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005610 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5611 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005612 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005613 if (!isLoopEntryGuardedByCond(L,
5614 isSigned ? ICmpInst::ICMP_SLT :
5615 ICmpInst::ICMP_ULT,
5616 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005617 End = isSigned ? getSMaxExpr(RHS, Start)
5618 : getUMaxExpr(RHS, Start);
5619
5620 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005621 const SCEV *MaxEnd = getConstant(isSigned ?
5622 getSignedRange(End).getSignedMax() :
5623 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005624
Dan Gohman52fddd32010-01-26 04:40:18 +00005625 // If MaxEnd is within a step of the maximum integer value in its type,
5626 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005627 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005628 // compute the correct value.
5629 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005630 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005631 MaxEnd = isSigned ?
5632 getSMinExpr(MaxEnd,
5633 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5634 StepMinusOne)) :
5635 getUMinExpr(MaxEnd,
5636 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5637 StepMinusOne));
5638
Dan Gohmana1af7572009-04-30 20:47:05 +00005639 // Finally, we subtract these two values and divide, rounding up, to get
5640 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005641 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005642
5643 // The maximum backedge count is similar, except using the minimum start
5644 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005645 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005646
5647 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005648 }
5649
Dan Gohman1c343752009-06-27 21:21:31 +00005650 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005651}
5652
Chris Lattner53e677a2004-04-02 20:23:17 +00005653/// getNumIterationsInRange - Return the number of iterations of this loop that
5654/// produce values in the specified constant range. Another way of looking at
5655/// this is that it returns the first iteration number where the value is not in
5656/// the condition, thus computing the exit count. If the iteration count can't
5657/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005658const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005659 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005660 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005661 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005662
5663 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005664 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005665 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005666 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005667 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005668 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005669 if (const SCEVAddRecExpr *ShiftedAddRec =
5670 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005671 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005672 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005673 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005674 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005675 }
5676
5677 // The only time we can solve this is when we have all constant indices.
5678 // Otherwise, we cannot determine the overflow conditions.
5679 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5680 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005681 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005682
5683
5684 // Okay at this point we know that all elements of the chrec are constants and
5685 // that the start element is zero.
5686
5687 // First check to see if the range contains zero. If not, the first
5688 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005689 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005690 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005691 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005692
Chris Lattner53e677a2004-04-02 20:23:17 +00005693 if (isAffine()) {
5694 // If this is an affine expression then we have this situation:
5695 // Solve {0,+,A} in Range === Ax in Range
5696
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005697 // We know that zero is in the range. If A is positive then we know that
5698 // the upper value of the range must be the first possible exit value.
5699 // If A is negative then the lower of the range is the last possible loop
5700 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005701 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005702 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5703 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005704
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005705 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005706 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005707 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005708
5709 // Evaluate at the exit value. If we really did fall out of the valid
5710 // range, then we computed our trip count, otherwise wrap around or other
5711 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005712 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005713 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005714 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005715
5716 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005717 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005718 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005719 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005720 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005721 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005722 } else if (isQuadratic()) {
5723 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5724 // quadratic equation to solve it. To do this, we must frame our problem in
5725 // terms of figuring out when zero is crossed, instead of when
5726 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005727 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005728 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005729 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005730
5731 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005732 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005733 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005734 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5735 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005736 if (R1) {
5737 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005738 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005739 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005740 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005741 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005742 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005743
Chris Lattner53e677a2004-04-02 20:23:17 +00005744 // Make sure the root is not off by one. The returned iteration should
5745 // not be in the range, but the previous one should be. When solving
5746 // for "X*X < 5", for example, we should not return a root of 2.
5747 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005748 R1->getValue(),
5749 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005750 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005751 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005752 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005753 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005754
Dan Gohman246b2562007-10-22 18:31:58 +00005755 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005756 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005757 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005758 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005759 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005760
Chris Lattner53e677a2004-04-02 20:23:17 +00005761 // If R1 was not in the range, then it is a good return value. Make
5762 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005763 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005764 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005765 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005766 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005767 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005768 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005769 }
5770 }
5771 }
5772
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005773 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005774}
5775
5776
5777
5778//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005779// SCEVCallbackVH Class Implementation
5780//===----------------------------------------------------------------------===//
5781
Dan Gohman1959b752009-05-19 19:22:47 +00005782void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005783 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005784 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5785 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005786 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005787 // this now dangles!
5788}
5789
Dan Gohman81f91212010-07-28 01:09:07 +00005790void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005791 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005792
Dan Gohman35738ac2009-05-04 22:30:44 +00005793 // Forget all the expressions associated with users of the old value,
5794 // so that future queries will recompute the expressions using the new
5795 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005796 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005797 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005798 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005799 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5800 UI != UE; ++UI)
5801 Worklist.push_back(*UI);
5802 while (!Worklist.empty()) {
5803 User *U = Worklist.pop_back_val();
5804 // Deleting the Old value will cause this to dangle. Postpone
5805 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005806 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005807 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005808 if (!Visited.insert(U))
5809 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005810 if (PHINode *PN = dyn_cast<PHINode>(U))
5811 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005812 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005813 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5814 UI != UE; ++UI)
5815 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005816 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005817 // Delete the Old value.
5818 if (PHINode *PN = dyn_cast<PHINode>(Old))
5819 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005820 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005821 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005822}
5823
Dan Gohman1959b752009-05-19 19:22:47 +00005824ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005825 : CallbackVH(V), SE(se) {}
5826
5827//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005828// ScalarEvolution Class Implementation
5829//===----------------------------------------------------------------------===//
5830
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005831ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005832 : FunctionPass(ID), FirstUnknown(0) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005833}
5834
Chris Lattner53e677a2004-04-02 20:23:17 +00005835bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005836 this->F = &F;
5837 LI = &getAnalysis<LoopInfo>();
5838 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005839 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005840 return false;
5841}
5842
5843void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005844 // Iterate through all the SCEVUnknown instances and call their
5845 // destructors, so that they release their references to their values.
5846 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5847 U->~SCEVUnknown();
5848 FirstUnknown = 0;
5849
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005850 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005851 BackedgeTakenCounts.clear();
5852 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005853 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005854 UniqueSCEVs.clear();
5855 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005856}
5857
5858void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5859 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005860 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005861 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005862}
5863
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005864bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005865 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005866}
5867
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005868static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005869 const Loop *L) {
5870 // Print all inner loops first
5871 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5872 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005873
Dan Gohman30733292010-01-09 18:17:45 +00005874 OS << "Loop ";
5875 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5876 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005877
Dan Gohman5d984912009-12-18 01:14:11 +00005878 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005879 L->getExitBlocks(ExitBlocks);
5880 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005881 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005882
Dan Gohman46bdfb02009-02-24 18:55:53 +00005883 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5884 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005885 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005886 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005887 }
5888
Dan Gohman30733292010-01-09 18:17:45 +00005889 OS << "\n"
5890 "Loop ";
5891 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5892 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005893
5894 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5895 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5896 } else {
5897 OS << "Unpredictable max backedge-taken count. ";
5898 }
5899
5900 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005901}
5902
Dan Gohman5d984912009-12-18 01:14:11 +00005903void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005904 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005905 // out SCEV values of all instructions that are interesting. Doing
5906 // this potentially causes it to create new SCEV objects though,
5907 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005908 // observable from outside the class though, so casting away the
5909 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005910 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005911
Dan Gohman30733292010-01-09 18:17:45 +00005912 OS << "Classifying expressions for: ";
5913 WriteAsOperand(OS, F, /*PrintType=*/false);
5914 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005915 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005916 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005917 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005918 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005919 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005920 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005921
Dan Gohman0c689c52009-06-19 17:49:54 +00005922 const Loop *L = LI->getLoopFor((*I).getParent());
5923
Dan Gohman0bba49c2009-07-07 17:06:11 +00005924 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005925 if (AtUse != SV) {
5926 OS << " --> ";
5927 AtUse->print(OS);
5928 }
5929
5930 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005931 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005932 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005933 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005934 OS << "<<Unknown>>";
5935 } else {
5936 OS << *ExitValue;
5937 }
5938 }
5939
Chris Lattner53e677a2004-04-02 20:23:17 +00005940 OS << "\n";
5941 }
5942
Dan Gohman30733292010-01-09 18:17:45 +00005943 OS << "Determining loop execution counts for: ";
5944 WriteAsOperand(OS, F, /*PrintType=*/false);
5945 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005946 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5947 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005948}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005949