blob: bff0e599871099ab78dff2020289d0cad504e88f [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner0f53cf22010-03-18 18:10:56 +000041 return 4;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
48 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
49 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000050 };
Chris Lattner8d31de62010-02-11 21:27:18 +000051
52 if (Kind < FirstTargetFixupKind)
53 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000054
Chris Lattner8d31de62010-02-11 21:27:18 +000055 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000056 "Invalid kind!");
57 return Infos[Kind - FirstTargetFixupKind];
58 }
Chris Lattner45762472010-02-03 21:24:49 +000059
Chris Lattner28249d92010-02-05 01:53:19 +000060 static unsigned GetX86RegNum(const MCOperand &MO) {
61 return X86RegisterInfo::getX86RegNum(MO.getReg());
62 }
63
Chris Lattner37ce80e2010-02-10 06:41:02 +000064 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000065 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000066 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000067 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000068
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
70 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000071 // Output the constant in little endian byte order.
72 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000074 Val >>= 8;
75 }
76 }
Chris Lattner0e73c392010-02-05 06:16:07 +000077
Chris Lattnercf653392010-02-12 22:36:47 +000078 void EmitImmediate(const MCOperand &Disp,
79 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000080 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000081 SmallVectorImpl<MCFixup> &Fixups,
82 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +000083
84 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
85 unsigned RM) {
86 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
87 return RM | (RegOpcode << 3) | (Mod << 6);
88 }
89
90 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 unsigned &CurByte, raw_ostream &OS) const {
92 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000093 }
94
Chris Lattner0e73c392010-02-05 06:16:07 +000095 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000096 unsigned &CurByte, raw_ostream &OS) const {
97 // SIB byte is in the same format as the ModRMByte.
98 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +000099 }
100
101
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000102 void EmitSegmentOverridePrefix(const MCOperand &Op, unsigned TSFlags,
103 unsigned &CurByte, raw_ostream &OS) const;
104
Chris Lattner1ac23b12010-02-05 02:18:40 +0000105 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000106 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000107 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000108 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000109
Daniel Dunbar73c55742010-02-09 22:59:55 +0000110 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
111 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000112
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000113 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
114 const MCInst &MI, const TargetInstrDesc &Desc,
115 raw_ostream &OS) const;
116
117 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
118 const MCInst &MI, const TargetInstrDesc &Desc,
119 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000120};
121
122} // end anonymous namespace
123
124
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000125MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000126 TargetMachine &TM,
127 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000128 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000129}
130
131MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000132 TargetMachine &TM,
133 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000134 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000135}
136
137
Chris Lattner1ac23b12010-02-05 02:18:40 +0000138/// isDisp8 - Return true if this signed displacement fits in a 8-bit
139/// sign-extended field.
140static bool isDisp8(int Value) {
141 return Value == (signed char)Value;
142}
143
Chris Lattnercf653392010-02-12 22:36:47 +0000144/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
145/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000146static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000147 unsigned Size = X86II::getSizeOfImm(TSFlags);
148 bool isPCRel = X86II::isImmPCRel(TSFlags);
149
Chris Lattnercf653392010-02-12 22:36:47 +0000150 switch (Size) {
151 default: assert(0 && "Unknown immediate size");
152 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
153 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
154 case 2: assert(!isPCRel); return FK_Data_2;
155 case 8: assert(!isPCRel); return FK_Data_8;
156 }
157}
158
159
Chris Lattner0e73c392010-02-05 06:16:07 +0000160void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000161EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000162 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000163 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000164 // If this is a simple integer displacement that doesn't require a relocation,
165 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000166 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000167 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
168 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000169 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000170 return;
171 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000172
Chris Lattner835acab2010-02-12 23:00:36 +0000173 // If we have an immoffset, add it to the expression.
174 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000175
176 // If the fixup is pc-relative, we need to bias the value to be relative to
177 // the start of the field, not the end of the field.
178 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000179 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
180 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000181 ImmOffset -= 4;
182 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
183 ImmOffset -= 1;
184
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000185 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000186 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000187 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000188
Chris Lattner5dccfad2010-02-10 06:52:12 +0000189 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000190 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000191 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000192}
193
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000194void X86MCCodeEmitter::EmitSegmentOverridePrefix(const MCOperand &Op,
195 unsigned TSFlags,
196 unsigned &CurByte,
197 raw_ostream &OS) const {
198 // If no segment register is present, we don't need anything.
199 if (Op.getReg() == 0)
200 return;
201
202#if 0
203 // Otherwise, emit an address size prefix if we didn't already emit one.
204 if (Is64BitMode && !(TSFlags & X86II::AdSize))
205 EmitByte(0x67, CurByte, OS);
206#endif
207
208 // Check if we need an override.
209 switch (Op.getReg()) {
210 case X86::CS: EmitByte(0x2E, CurByte, OS); return;
211 case X86::SS: EmitByte(0x36, CurByte, OS); return;
212 case X86::DS: EmitByte(0x3E, CurByte, OS); return;
213 case X86::ES: EmitByte(0x26, CurByte, OS); return;
214 case X86::FS: EmitByte(0x64, CurByte, OS); return;
215 case X86::GS: EmitByte(0x65, CurByte, OS); return;
216 }
217
218 assert(0 && "Invalid segment register!");
219}
Chris Lattner0e73c392010-02-05 06:16:07 +0000220
Chris Lattner1ac23b12010-02-05 02:18:40 +0000221void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
222 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000223 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000224 raw_ostream &OS,
225 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000226 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000227 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000228 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000229 const MCOperand &IndexReg = MI.getOperand(Op+2);
230 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000231
232 // Handle %rip relative addressing.
233 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000234 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
235 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000236 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000237
Chris Lattner0f53cf22010-03-18 18:10:56 +0000238 unsigned FixupKind = X86::reloc_riprel_4byte;
239
240 // movq loads are handled with a special relocation form which allows the
241 // linker to eliminate some loads for GOT references which end up in the
242 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000243 if (MI.getOpcode() == X86::MOV64rm ||
244 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000245 FixupKind = X86::reloc_riprel_4byte_movq_load;
246
Chris Lattner835acab2010-02-12 23:00:36 +0000247 // rip-relative addressing is actually relative to the *next* instruction.
248 // Since an immediate can follow the mod/rm byte for an instruction, this
249 // means that we need to bias the immediate field of the instruction with
250 // the size of the immediate field. If we have this case, add it into the
251 // expression to emit.
252 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000253
Chris Lattner0f53cf22010-03-18 18:10:56 +0000254 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000255 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000256 return;
257 }
258
259 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000260
Chris Lattnera8168ec2010-02-09 21:57:34 +0000261 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000262 // If no BaseReg, issue a RIP relative instruction only if the MCE can
263 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
264 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000265
Chris Lattnera8168ec2010-02-09 21:57:34 +0000266 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000267 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000268 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
269 // encode to an R/M value of 4, which indicates that a SIB byte is
270 // present.
271 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000272 // If there is no base register and we're in 64-bit mode, we need a SIB
273 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
274 (!Is64BitMode || BaseReg != 0)) {
275
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000276 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000277 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000278 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000279 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000280 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000281
Chris Lattnera8168ec2010-02-09 21:57:34 +0000282 // If the base is not EBP/ESP and there is no displacement, use simple
283 // indirect register encoding, this handles addresses like [EAX]. The
284 // encoding for [EBP] with no displacement means [disp32] so we handle it
285 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000286 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000287 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000288 return;
289 }
290
291 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000292 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000293 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000294 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000295 return;
296 }
297
298 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000299 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000300 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000301 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000302 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000303
304 // We need a SIB byte, so start by outputting the ModR/M byte first
305 assert(IndexReg.getReg() != X86::ESP &&
306 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
307
308 bool ForceDisp32 = false;
309 bool ForceDisp8 = false;
310 if (BaseReg == 0) {
311 // If there is no base register, we emit the special case SIB byte with
312 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000313 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000314 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000315 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000316 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000317 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000318 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000319 } else if (Disp.getImm() == 0 &&
320 // Base reg can't be anything that ends up with '5' as the base
321 // reg, it is the magic [*] nomenclature that indicates no base.
322 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000323 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000324 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000325 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000326 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000327 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000328 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
329 } else {
330 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000331 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000332 }
333
334 // Calculate what the SS field value should be...
335 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
336 unsigned SS = SSTable[Scale.getImm()];
337
338 if (BaseReg == 0) {
339 // Handle the SIB byte for the case where there is no base, see Intel
340 // Manual 2A, table 2-7. The displacement has already been output.
341 unsigned IndexRegNo;
342 if (IndexReg.getReg())
343 IndexRegNo = GetX86RegNum(IndexReg);
344 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
345 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000346 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000347 } else {
348 unsigned IndexRegNo;
349 if (IndexReg.getReg())
350 IndexRegNo = GetX86RegNum(IndexReg);
351 else
352 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000353 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000354 }
355
356 // Do we need to output a displacement?
357 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000358 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000359 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000360 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000361}
362
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000363/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
364/// called VEX.
365void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
366 const MCInst &MI, const TargetInstrDesc &Desc,
367 raw_ostream &OS) const {
368
369 // Pseudo instructions never have a VEX prefix.
370 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
371 return;
372
373 // VEX_R: opcode externsion equivalent to REX.R in
374 // 1's complement (inverted) form
375 //
376 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
377 // 0: Same as REX_R=1 (64 bit mode only)
378 //
379 unsigned char VEX_R = 0x1;
380
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000381 // VEX_X: equivalent to REX.X, only used when a
382 // register is used for index in SIB Byte.
383 //
384 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
385 // 0: Same as REX.X=1 (64-bit mode only)
386 unsigned char VEX_X = 0x1;
387
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000388 // VEX_B:
389 //
390 // 1: Same as REX_B=0 (ignored in 32-bit mode)
391 // 0: Same as REX_B=1 (64 bit mode only)
392 //
393 unsigned char VEX_B = 0x1;
394
395 // VEX_W: opcode specific (use like REX.W, or used for
396 // opcode extension, or ignored, depending on the opcode byte)
397 unsigned char VEX_W = 0;
398
399 // VEX_5M (VEX m-mmmmm field):
400 //
401 // 0b00000: Reserved for future use
402 // 0b00001: implied 0F leading opcode
403 // 0b00010: implied 0F 38 leading opcode bytes
404 // 0b00011: implied 0F 3A leading opcode bytes
405 // 0b00100-0b11111: Reserved for future use
406 //
407 unsigned char VEX_5M = 0x1;
408
409 // VEX_4V (VEX vvvv field): a register specifier
410 // (in 1's complement form) or 1111 if unused.
411 unsigned char VEX_4V = 0xf;
412
413 // VEX_L (Vector Length):
414 //
415 // 0: scalar or 128-bit vector
416 // 1: 256-bit vector
417 //
418 unsigned char VEX_L = 0;
419
420 // VEX_PP: opcode extension providing equivalent
421 // functionality of a SIMD prefix
422 //
423 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000424 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000425 // 0b10: F3
426 // 0b11: F2
427 //
428 unsigned char VEX_PP = 0;
429
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000430 // Encode the operand size opcode prefix as needed.
431 if (TSFlags & X86II::OpSize)
432 VEX_PP = 0x01;
433
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000434 switch (TSFlags & X86II::Op0Mask) {
435 default: assert(0 && "Invalid prefix!");
436 case 0: break; // No prefix!
437 case X86II::T8: // 0F 38
438 VEX_5M = 0x2;
439 break;
440 case X86II::TA: // 0F 3A
441 VEX_5M = 0x3;
442 break;
443 case X86II::TF: // F2 0F 38
444 VEX_PP = 0x3;
445 VEX_5M = 0x2;
446 break;
447 case X86II::XS: // F3 0F
448 VEX_PP = 0x2;
449 break;
450 case X86II::XD: // F2 0F
451 VEX_PP = 0x3;
452 break;
453 }
454
455 unsigned NumOps = MI.getNumOperands();
456 unsigned i = 0;
457 unsigned SrcReg = 0, SrcRegNum = 0;
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000458 bool IsSrcMem = false;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000459
460 switch (TSFlags & X86II::FormMask) {
461 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000462 case X86II::MRMSrcMem:
463 IsSrcMem = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000464 case X86II::MRMSrcReg:
465 if (MI.getOperand(0).isReg() &&
466 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
467 VEX_R = 0x0;
468
469 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the
470 // range 0-7 and the difference between the 2 groups is given by the
471 // REX prefix. In the VEX prefix, registers are seen sequencially
472 // from 0-15 and encoded in 1's complement form, example:
473 //
474 // ModRM field => XMM9 => 1
475 // VEX.VVVV => XMM9 => ~9
476 //
477 // See table 4-35 of Intel AVX Programming Reference for details.
478 SrcReg = MI.getOperand(1).getReg();
479 SrcRegNum = GetX86RegNum(MI.getOperand(1));
480 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
481 SrcRegNum += 8;
482
483 // The registers represented through VEX_VVVV should
484 // be encoded in 1's complement form.
485 if ((TSFlags >> 32) & X86II::VEX_4V)
486 VEX_4V = (~SrcRegNum) & 0xf;
487
488 i = 2; // Skip the VEX.VVVV operand.
489 for (; i != NumOps; ++i) {
490 const MCOperand &MO = MI.getOperand(i);
491 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
492 VEX_B = 0x0;
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000493 if (!VEX_B && MO.isReg() && IsSrcMem &&
494 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
495 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000496 }
497 break;
498 default:
499 assert(0 && "Not implemented!");
500 }
501
502 // VEX opcode prefix can have 2 or 3 bytes
503 //
504 // 3 bytes:
505 // +-----+ +--------------+ +-------------------+
506 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
507 // +-----+ +--------------+ +-------------------+
508 // 2 bytes:
509 // +-----+ +-------------------+
510 // | C5h | | R | vvvv | L | pp |
511 // +-----+ +-------------------+
512 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000513 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
514
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000515 if (VEX_B && VEX_X) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000516 EmitByte(0xC5, CurByte, OS);
517 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
518 return;
519 }
520
521 // 3 byte VEX prefix
522 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000523 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000524 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
525}
526
Chris Lattner39a612e2010-02-05 22:10:22 +0000527/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
528/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
529/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000530static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000531 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000532 // Pseudo instructions never have a rex byte.
533 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
534 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000535
Chris Lattner7e851802010-02-11 22:39:10 +0000536 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000537 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000538 REX |= 1 << 3; // set REX.W
Chris Lattner39a612e2010-02-05 22:10:22 +0000539
540 if (MI.getNumOperands() == 0) return REX;
541
542 unsigned NumOps = MI.getNumOperands();
543 // FIXME: MCInst should explicitize the two-addrness.
544 bool isTwoAddr = NumOps > 1 &&
545 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
546
547 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
548 unsigned i = isTwoAddr ? 1 : 0;
549 for (; i != NumOps; ++i) {
550 const MCOperand &MO = MI.getOperand(i);
551 if (!MO.isReg()) continue;
552 unsigned Reg = MO.getReg();
553 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000554 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
555 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000556 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000557 break;
558 }
559
560 switch (TSFlags & X86II::FormMask) {
561 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
562 case X86II::MRMSrcReg:
563 if (MI.getOperand(0).isReg() &&
564 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000565 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000566 i = isTwoAddr ? 2 : 1;
567 for (; i != NumOps; ++i) {
568 const MCOperand &MO = MI.getOperand(i);
569 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000570 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000571 }
572 break;
573 case X86II::MRMSrcMem: {
574 if (MI.getOperand(0).isReg() &&
575 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000576 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000577 unsigned Bit = 0;
578 i = isTwoAddr ? 2 : 1;
579 for (; i != NumOps; ++i) {
580 const MCOperand &MO = MI.getOperand(i);
581 if (MO.isReg()) {
582 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000583 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000584 Bit++;
585 }
586 }
587 break;
588 }
589 case X86II::MRM0m: case X86II::MRM1m:
590 case X86II::MRM2m: case X86II::MRM3m:
591 case X86II::MRM4m: case X86II::MRM5m:
592 case X86II::MRM6m: case X86II::MRM7m:
593 case X86II::MRMDestMem: {
594 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
595 i = isTwoAddr ? 1 : 0;
596 if (NumOps > e && MI.getOperand(e).isReg() &&
597 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000598 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000599 unsigned Bit = 0;
600 for (; i != e; ++i) {
601 const MCOperand &MO = MI.getOperand(i);
602 if (MO.isReg()) {
603 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000604 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000605 Bit++;
606 }
607 }
608 break;
609 }
610 default:
611 if (MI.getOperand(0).isReg() &&
612 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000613 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000614 i = isTwoAddr ? 2 : 1;
615 for (unsigned e = NumOps; i != e; ++i) {
616 const MCOperand &MO = MI.getOperand(i);
617 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000618 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000619 }
620 break;
621 }
622 return REX;
623}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000624
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000625/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
626void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
627 const MCInst &MI, const TargetInstrDesc &Desc,
628 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000629
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000630 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000631 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000632 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000633
634 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000635 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000636 default: assert(0 && "Invalid segment!");
637 case 0: break; // No segment override!
638 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000639 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000640 break;
641 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000642 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000643 break;
644 }
645
Chris Lattner1e80f402010-02-03 21:57:59 +0000646 // Emit the repeat opcode prefix as needed.
647 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000648 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000649
Chris Lattner1e80f402010-02-03 21:57:59 +0000650 // Emit the operand size opcode prefix as needed.
651 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000652 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000653
654 // Emit the address size opcode prefix as needed.
655 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000656 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000657
658 bool Need0FPrefix = false;
659 switch (TSFlags & X86II::Op0Mask) {
660 default: assert(0 && "Invalid prefix!");
661 case 0: break; // No prefix!
662 case X86II::REP: break; // already handled.
663 case X86II::TB: // Two-byte opcode prefix
664 case X86II::T8: // 0F 38
665 case X86II::TA: // 0F 3A
666 Need0FPrefix = true;
667 break;
668 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000669 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000670 Need0FPrefix = true;
671 break;
672 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000673 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000674 Need0FPrefix = true;
675 break;
676 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000677 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000678 Need0FPrefix = true;
679 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000680 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
681 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
682 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
683 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
684 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
685 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
686 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
687 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000688 }
689
690 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000691 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000692 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000693 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000694 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000695 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000696
697 // 0x0F escape code must be emitted just before the opcode.
698 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000699 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000700
701 // FIXME: Pull this up into previous switch if REX can be moved earlier.
702 switch (TSFlags & X86II::Op0Mask) {
703 case X86II::TF: // F2 0F 38
704 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000705 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000706 break;
707 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000708 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000709 break;
710 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000711}
712
713void X86MCCodeEmitter::
714EncodeInstruction(const MCInst &MI, raw_ostream &OS,
715 SmallVectorImpl<MCFixup> &Fixups) const {
716 unsigned Opcode = MI.getOpcode();
717 const TargetInstrDesc &Desc = TII.get(Opcode);
718 uint64_t TSFlags = Desc.TSFlags;
719
720 // Keep track of the current byte being emitted.
721 unsigned CurByte = 0;
722
723 // Is this instruction encoded in AVX form?
724 bool IsAVXForm = false;
725 if ((TSFlags >> 32) & X86II::VEX_4V)
726 IsAVXForm = true;
727
728 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
729 // in order to provide diffability.
730
731 if (!IsAVXForm)
732 EmitOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
733 else
734 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000735
736 // If this is a two-address instruction, skip one of the register operands.
737 unsigned NumOps = Desc.getNumOperands();
738 unsigned CurOp = 0;
739 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
740 ++CurOp;
741 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
742 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
743 --NumOps;
744
Chris Lattner74a21512010-02-05 19:24:13 +0000745 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000746 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000747 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000748 case X86II::MRMInitReg:
749 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000750 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000751 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000752 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000753 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000754 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000755 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000756
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000757 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000758 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000759 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000760
761 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000762 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000763 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000764 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000765 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000766 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000767
768 case X86II::MRMDestMem:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000769 EmitSegmentOverridePrefix(MI.getOperand(CurOp + 4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000770 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000771 EmitMemModRMByte(MI, CurOp,
772 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000773 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000774 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000775 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000776
777 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000778 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000779 SrcRegNum = CurOp + 1;
780
781 if (IsAVXForm) // Skip 1st src (which is encoded in VEX_VVVV)
782 SrcRegNum++;
783
784 EmitRegModRMByte(MI.getOperand(SrcRegNum),
785 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
786 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000787 break;
788
789 case X86II::MRMSrcMem: {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000790 int AddrOperands = X86AddrNumOperands;
791 unsigned FirstMemOp = CurOp+1;
792 if (IsAVXForm) {
793 ++AddrOperands;
794 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
795 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000796
797 // FIXME: Maybe lea should have its own form? This is a horrible hack.
Chris Lattnerdaa45552010-02-05 19:04:37 +0000798 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
799 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000800 --AddrOperands; // No segment register
Chris Lattnerdaa45552010-02-05 19:04:37 +0000801 else
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000802 EmitSegmentOverridePrefix(MI.getOperand(FirstMemOp+4),
803 TSFlags, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000804
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000805 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000806
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000807
808 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000809 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000810 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000811 break;
812 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000813
814 case X86II::MRM0r: case X86II::MRM1r:
815 case X86II::MRM2r: case X86II::MRM3r:
816 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000817 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000818 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000819 EmitRegModRMByte(MI.getOperand(CurOp++),
820 (TSFlags & X86II::FormMask)-X86II::MRM0r,
821 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000822 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000823 case X86II::MRM0m: case X86II::MRM1m:
824 case X86II::MRM2m: case X86II::MRM3m:
825 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000826 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000827 EmitSegmentOverridePrefix(MI.getOperand(CurOp+4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000828 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000829 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000830 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000831 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000832 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000833 case X86II::MRM_C1:
834 EmitByte(BaseOpcode, CurByte, OS);
835 EmitByte(0xC1, CurByte, OS);
836 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000837 case X86II::MRM_C2:
838 EmitByte(BaseOpcode, CurByte, OS);
839 EmitByte(0xC2, CurByte, OS);
840 break;
841 case X86II::MRM_C3:
842 EmitByte(BaseOpcode, CurByte, OS);
843 EmitByte(0xC3, CurByte, OS);
844 break;
845 case X86II::MRM_C4:
846 EmitByte(BaseOpcode, CurByte, OS);
847 EmitByte(0xC4, CurByte, OS);
848 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000849 case X86II::MRM_C8:
850 EmitByte(BaseOpcode, CurByte, OS);
851 EmitByte(0xC8, CurByte, OS);
852 break;
853 case X86II::MRM_C9:
854 EmitByte(BaseOpcode, CurByte, OS);
855 EmitByte(0xC9, CurByte, OS);
856 break;
857 case X86II::MRM_E8:
858 EmitByte(BaseOpcode, CurByte, OS);
859 EmitByte(0xE8, CurByte, OS);
860 break;
861 case X86II::MRM_F0:
862 EmitByte(BaseOpcode, CurByte, OS);
863 EmitByte(0xF0, CurByte, OS);
864 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000865 case X86II::MRM_F8:
866 EmitByte(BaseOpcode, CurByte, OS);
867 EmitByte(0xF8, CurByte, OS);
868 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000869 case X86II::MRM_F9:
870 EmitByte(BaseOpcode, CurByte, OS);
871 EmitByte(0xF9, CurByte, OS);
872 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000873 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000874
875 // If there is a remaining operand, it must be a trailing immediate. Emit it
876 // according to the right size for the instruction.
877 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000878 EmitImmediate(MI.getOperand(CurOp++),
879 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000880 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000881
882#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000883 // FIXME: Verify.
884 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000885 errs() << "Cannot encode all operands of: ";
886 MI.dump();
887 errs() << '\n';
888 abort();
889 }
890#endif
Chris Lattner45762472010-02-03 21:24:49 +0000891}