blob: 8adc4d7a0f60157385817809bb16f279342cbc3d [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000030 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000031 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000032 </ol>
33 </li>
Chris Lattner00950542001-06-06 20:29:01 +000034 <li><a href="#typesystem">Type System</a>
35 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000036 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000037 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000038 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000039 <li><a href="#t_floating">Floating Point Types</a></li>
40 <li><a href="#t_void">Void Type</a></li>
41 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000042 </ol>
43 </li>
Chris Lattner00950542001-06-06 20:29:01 +000044 <li><a href="#t_derived">Derived Types</a>
45 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000046 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000047 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000048 <li><a href="#t_function">Function Type</a></li>
49 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000051 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000052 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000053 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000054 </ol>
55 </li>
56 </ol>
57 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000058 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000059 <ol>
60 <li><a href="#simpleconstants">Simple Constants</a>
61 <li><a href="#aggregateconstants">Aggregate Constants</a>
62 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63 <li><a href="#undefvalues">Undefined Values</a>
64 <li><a href="#constantexprs">Constant Expressions</a>
65 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000066 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000067 <li><a href="#othervalues">Other Values</a>
68 <ol>
69 <li><a href="#inlineasm">Inline Assembler Expressions</a>
70 </ol>
71 </li>
Chris Lattner00950542001-06-06 20:29:01 +000072 <li><a href="#instref">Instruction Reference</a>
73 <ol>
74 <li><a href="#terminators">Terminator Instructions</a>
75 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000076 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000078 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000080 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000081 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000082 </ol>
83 </li>
Chris Lattner00950542001-06-06 20:29:01 +000084 <li><a href="#binaryops">Binary Operations</a>
85 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000086 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000089 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000092 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 </ol>
96 </li>
Chris Lattner00950542001-06-06 20:29:01 +000097 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000099 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000102 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000104 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 </ol>
106 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 <li><a href="#vectorops">Vector Operations</a>
108 <ol>
109 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000112 </ol>
113 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000114 <li><a href="#aggregateops">Aggregate Operations</a>
115 <ol>
116 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
117 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
118 </ol>
119 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000120 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000121 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
123 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
124 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000125 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
126 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
127 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000128 </ol>
129 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000130 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000131 <ol>
132 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
133 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
134 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000137 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
139 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
140 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000141 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
142 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000143 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000144 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000145 <li><a href="#otherops">Other Operations</a>
146 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000147 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
148 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000149 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
150 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000151 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000152 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000154 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patelc3fc6df2008-03-10 20:49:15 +0000155 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000156 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000158 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000160 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
163 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000164 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
165 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </ol>
168 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000169 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
170 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000171 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
172 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000174 </ol>
175 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000176 <li><a href="#int_codegen">Code Generator Intrinsics</a>
177 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000178 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
179 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
181 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
182 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
183 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
184 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000185 </ol>
186 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000187 <li><a href="#int_libc">Standard C Library Intrinsics</a>
188 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000189 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
190 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000194 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000197 </ol>
198 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000199 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000200 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000201 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000202 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
203 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000205 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000207 </ol>
208 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000210 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000211 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000212 <ol>
213 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000214 </ol>
215 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000216 <li><a href="#int_atomics">Atomic intrinsics</a>
217 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000218 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
219 <li><a href="#int_atomic_lcs"><tt>llvm.atomic.lcs</tt></a></li>
220 <li><a href="#int_atomic_las"><tt>llvm.atomic.las</tt></a></li>
221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000222 </ol>
223 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000224 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000225 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000226 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000227 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000228 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000229 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000230 <li><a href="#int_trap">
231 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000232 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000233 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000234 </ol>
235 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000236</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000237
238<div class="doc_author">
239 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
240 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000241</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000242
Chris Lattner00950542001-06-06 20:29:01 +0000243<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000244<div class="doc_section"> <a name="abstract">Abstract </a></div>
245<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000246
Misha Brukman9d0919f2003-11-08 01:05:38 +0000247<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000248<p>This document is a reference manual for the LLVM assembly language.
249LLVM is an SSA based representation that provides type safety,
250low-level operations, flexibility, and the capability of representing
251'all' high-level languages cleanly. It is the common code
252representation used throughout all phases of the LLVM compilation
253strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000254</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000255
Chris Lattner00950542001-06-06 20:29:01 +0000256<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000257<div class="doc_section"> <a name="introduction">Introduction</a> </div>
258<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000259
Misha Brukman9d0919f2003-11-08 01:05:38 +0000260<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000261
Chris Lattner261efe92003-11-25 01:02:51 +0000262<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000263different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000264representation (suitable for fast loading by a Just-In-Time compiler),
265and as a human readable assembly language representation. This allows
266LLVM to provide a powerful intermediate representation for efficient
267compiler transformations and analysis, while providing a natural means
268to debug and visualize the transformations. The three different forms
269of LLVM are all equivalent. This document describes the human readable
270representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
John Criswellc1f786c2005-05-13 22:25:59 +0000272<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000273while being expressive, typed, and extensible at the same time. It
274aims to be a "universal IR" of sorts, by being at a low enough level
275that high-level ideas may be cleanly mapped to it (similar to how
276microprocessors are "universal IR's", allowing many source languages to
277be mapped to them). By providing type information, LLVM can be used as
278the target of optimizations: for example, through pointer analysis, it
279can be proven that a C automatic variable is never accessed outside of
280the current function... allowing it to be promoted to a simple SSA
281value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000282
Misha Brukman9d0919f2003-11-08 01:05:38 +0000283</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Chris Lattner00950542001-06-06 20:29:01 +0000285<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000286<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000287
Misha Brukman9d0919f2003-11-08 01:05:38 +0000288<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000289
Chris Lattner261efe92003-11-25 01:02:51 +0000290<p>It is important to note that this document describes 'well formed'
291LLVM assembly language. There is a difference between what the parser
292accepts and what is considered 'well formed'. For example, the
293following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000295<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000296<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000297%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000298</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000299</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
Chris Lattner261efe92003-11-25 01:02:51 +0000301<p>...because the definition of <tt>%x</tt> does not dominate all of
302its uses. The LLVM infrastructure provides a verification pass that may
303be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000304automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000305the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000306by the verifier pass indicate bugs in transformation passes or input to
307the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000308</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000309
Chris Lattnercc689392007-10-03 17:34:29 +0000310<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Chris Lattner00950542001-06-06 20:29:01 +0000312<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000313<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000314<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000315
Misha Brukman9d0919f2003-11-08 01:05:38 +0000316<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000317
Reid Spencer2c452282007-08-07 14:34:28 +0000318 <p>LLVM identifiers come in two basic types: global and local. Global
319 identifiers (functions, global variables) begin with the @ character. Local
320 identifiers (register names, types) begin with the % character. Additionally,
321 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000322
Chris Lattner00950542001-06-06 20:29:01 +0000323<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000324 <li>Named values are represented as a string of characters with their prefix.
325 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
326 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000327 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000328 with quotes. In this way, anything except a <tt>&quot;</tt> character can
329 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000330
Reid Spencer2c452282007-08-07 14:34:28 +0000331 <li>Unnamed values are represented as an unsigned numeric value with their
332 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000333
Reid Spencercc16dc32004-12-09 18:02:53 +0000334 <li>Constants, which are described in a <a href="#constants">section about
335 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000336</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337
Reid Spencer2c452282007-08-07 14:34:28 +0000338<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339don't need to worry about name clashes with reserved words, and the set of
340reserved words may be expanded in the future without penalty. Additionally,
341unnamed identifiers allow a compiler to quickly come up with a temporary
342variable without having to avoid symbol table conflicts.</p>
343
Chris Lattner261efe92003-11-25 01:02:51 +0000344<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000345languages. There are keywords for different opcodes
346('<tt><a href="#i_add">add</a></tt>',
347 '<tt><a href="#i_bitcast">bitcast</a></tt>',
348 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000349href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000351none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352
353<p>Here is an example of LLVM code to multiply the integer variable
354'<tt>%X</tt>' by 8:</p>
355
Misha Brukman9d0919f2003-11-08 01:05:38 +0000356<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000357
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000358<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000360%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000362</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Misha Brukman9d0919f2003-11-08 01:05:38 +0000364<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000366<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000368%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000370</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371
Misha Brukman9d0919f2003-11-08 01:05:38 +0000372<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000374<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
377<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
378%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381
Chris Lattner261efe92003-11-25 01:02:51 +0000382<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
383important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384
Chris Lattner00950542001-06-06 20:29:01 +0000385<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386
387 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
388 line.</li>
389
390 <li>Unnamed temporaries are created when the result of a computation is not
391 assigned to a named value.</li>
392
Misha Brukman9d0919f2003-11-08 01:05:38 +0000393 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Misha Brukman9d0919f2003-11-08 01:05:38 +0000395</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
John Criswelle4c57cc2005-05-12 16:52:32 +0000397<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398demonstrating instructions, we will follow an instruction with a comment that
399defines the type and name of value produced. Comments are shown in italic
400text.</p>
401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000403
404<!-- *********************************************************************** -->
405<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
406<!-- *********************************************************************** -->
407
408<!-- ======================================================================= -->
409<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
410</div>
411
412<div class="doc_text">
413
414<p>LLVM programs are composed of "Module"s, each of which is a
415translation unit of the input programs. Each module consists of
416functions, global variables, and symbol table entries. Modules may be
417combined together with the LLVM linker, which merges function (and
418global variable) definitions, resolves forward declarations, and merges
419symbol table entries. Here is an example of the "hello world" module:</p>
420
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000421<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000422<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000423<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
424 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000425
426<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000427<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000428
429<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000430define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000431 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000432 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000433 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000434
435 <i>; Call puts function to write out the string to stdout...</i>
436 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000439 href="#i_ret">ret</a> i32 0<br>}<br>
440</pre>
441</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442
443<p>This example is made up of a <a href="#globalvars">global variable</a>
444named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
445function, and a <a href="#functionstructure">function definition</a>
446for "<tt>main</tt>".</p>
447
Chris Lattnere5d947b2004-12-09 16:36:40 +0000448<p>In general, a module is made up of a list of global values,
449where both functions and global variables are global values. Global values are
450represented by a pointer to a memory location (in this case, a pointer to an
451array of char, and a pointer to a function), and have one of the following <a
452href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000453
Chris Lattnere5d947b2004-12-09 16:36:40 +0000454</div>
455
456<!-- ======================================================================= -->
457<div class="doc_subsection">
458 <a name="linkage">Linkage Types</a>
459</div>
460
461<div class="doc_text">
462
463<p>
464All Global Variables and Functions have one of the following types of linkage:
465</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000466
467<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000468
Chris Lattnerfa730212004-12-09 16:11:40 +0000469 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000470
471 <dd>Global values with internal linkage are only directly accessible by
472 objects in the current module. In particular, linking code into a module with
473 an internal global value may cause the internal to be renamed as necessary to
474 avoid collisions. Because the symbol is internal to the module, all
475 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000476 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000477 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478
Chris Lattnerfa730212004-12-09 16:11:40 +0000479 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
Chris Lattner4887bd82007-01-14 06:51:48 +0000481 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
482 the same name when linkage occurs. This is typically used to implement
483 inline functions, templates, or other code which must be generated in each
484 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
485 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000486 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000487
Chris Lattnerfa730212004-12-09 16:11:40 +0000488 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000489
490 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
491 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattner4887bd82007-01-14 06:51:48 +0000492 used for globals that may be emitted in multiple translation units, but that
493 are not guaranteed to be emitted into every translation unit that uses them.
494 One example of this are common globals in C, such as "<tt>int X;</tt>" at
495 global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000496 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000497
Chris Lattnerfa730212004-12-09 16:11:40 +0000498 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000499
500 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
501 pointer to array type. When two global variables with appending linkage are
502 linked together, the two global arrays are appended together. This is the
503 LLVM, typesafe, equivalent of having the system linker append together
504 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000505 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000506
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000507 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
508 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
509 until linked, if not linked, the symbol becomes null instead of being an
510 undefined reference.
511 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000512
Chris Lattnerfa730212004-12-09 16:11:40 +0000513 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000514
515 <dd>If none of the above identifiers are used, the global is externally
516 visible, meaning that it participates in linkage and can be used to resolve
517 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000518 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000519</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000520
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000521 <p>
522 The next two types of linkage are targeted for Microsoft Windows platform
523 only. They are designed to support importing (exporting) symbols from (to)
524 DLLs.
525 </p>
526
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000527 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000528 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
529
530 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
531 or variable via a global pointer to a pointer that is set up by the DLL
532 exporting the symbol. On Microsoft Windows targets, the pointer name is
533 formed by combining <code>_imp__</code> and the function or variable name.
534 </dd>
535
536 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
537
538 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
539 pointer to a pointer in a DLL, so that it can be referenced with the
540 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
541 name is formed by combining <code>_imp__</code> and the function or variable
542 name.
543 </dd>
544
Chris Lattnerfa730212004-12-09 16:11:40 +0000545</dl>
546
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000547<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000548variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
549variable and was linked with this one, one of the two would be renamed,
550preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
551external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000552outside of the current module.</p>
553<p>It is illegal for a function <i>declaration</i>
554to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000555or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000556<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
557linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000558</div>
559
560<!-- ======================================================================= -->
561<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000562 <a name="callingconv">Calling Conventions</a>
563</div>
564
565<div class="doc_text">
566
567<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
568and <a href="#i_invoke">invokes</a> can all have an optional calling convention
569specified for the call. The calling convention of any pair of dynamic
570caller/callee must match, or the behavior of the program is undefined. The
571following calling conventions are supported by LLVM, and more may be added in
572the future:</p>
573
574<dl>
575 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
576
577 <dd>This calling convention (the default if no other calling convention is
578 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000579 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000580 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000581 </dd>
582
583 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
584
585 <dd>This calling convention attempts to make calls as fast as possible
586 (e.g. by passing things in registers). This calling convention allows the
587 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000588 without having to conform to an externally specified ABI. Implementations of
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000589 this convention should allow arbitrary
590 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
591 supported. This calling convention does not support varargs and requires the
592 prototype of all callees to exactly match the prototype of the function
593 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000594 </dd>
595
596 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
597
598 <dd>This calling convention attempts to make code in the caller as efficient
599 as possible under the assumption that the call is not commonly executed. As
600 such, these calls often preserve all registers so that the call does not break
601 any live ranges in the caller side. This calling convention does not support
602 varargs and requires the prototype of all callees to exactly match the
603 prototype of the function definition.
604 </dd>
605
Chris Lattnercfe6b372005-05-07 01:46:40 +0000606 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000607
608 <dd>Any calling convention may be specified by number, allowing
609 target-specific calling conventions to be used. Target specific calling
610 conventions start at 64.
611 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000612</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000613
614<p>More calling conventions can be added/defined on an as-needed basis, to
615support pascal conventions or any other well-known target-independent
616convention.</p>
617
618</div>
619
620<!-- ======================================================================= -->
621<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000622 <a name="visibility">Visibility Styles</a>
623</div>
624
625<div class="doc_text">
626
627<p>
628All Global Variables and Functions have one of the following visibility styles:
629</p>
630
631<dl>
632 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
633
634 <dd>On ELF, default visibility means that the declaration is visible to other
635 modules and, in shared libraries, means that the declared entity may be
636 overridden. On Darwin, default visibility means that the declaration is
637 visible to other modules. Default visibility corresponds to "external
638 linkage" in the language.
639 </dd>
640
641 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
642
643 <dd>Two declarations of an object with hidden visibility refer to the same
644 object if they are in the same shared object. Usually, hidden visibility
645 indicates that the symbol will not be placed into the dynamic symbol table,
646 so no other module (executable or shared library) can reference it
647 directly.
648 </dd>
649
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000650 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
651
652 <dd>On ELF, protected visibility indicates that the symbol will be placed in
653 the dynamic symbol table, but that references within the defining module will
654 bind to the local symbol. That is, the symbol cannot be overridden by another
655 module.
656 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000657</dl>
658
659</div>
660
661<!-- ======================================================================= -->
662<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000663 <a name="globalvars">Global Variables</a>
664</div>
665
666<div class="doc_text">
667
Chris Lattner3689a342005-02-12 19:30:21 +0000668<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000669instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000670an explicit section to be placed in, and may have an optional explicit alignment
671specified. A variable may be defined as "thread_local", which means that it
672will not be shared by threads (each thread will have a separated copy of the
673variable). A variable may be defined as a global "constant," which indicates
674that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000675optimization, allowing the global data to be placed in the read-only section of
676an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000677cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000678
679<p>
680LLVM explicitly allows <em>declarations</em> of global variables to be marked
681constant, even if the final definition of the global is not. This capability
682can be used to enable slightly better optimization of the program, but requires
683the language definition to guarantee that optimizations based on the
684'constantness' are valid for the translation units that do not include the
685definition.
686</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000687
688<p>As SSA values, global variables define pointer values that are in
689scope (i.e. they dominate) all basic blocks in the program. Global
690variables always define a pointer to their "content" type because they
691describe a region of memory, and all memory objects in LLVM are
692accessed through pointers.</p>
693
Christopher Lamb284d9922007-12-11 09:31:00 +0000694<p>A global variable may be declared to reside in a target-specifc numbered
695address space. For targets that support them, address spaces may affect how
696optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000697the variable. The default address space is zero. The address space qualifier
698must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000699
Chris Lattner88f6c462005-11-12 00:45:07 +0000700<p>LLVM allows an explicit section to be specified for globals. If the target
701supports it, it will emit globals to the section specified.</p>
702
Chris Lattner2cbdc452005-11-06 08:02:57 +0000703<p>An explicit alignment may be specified for a global. If not present, or if
704the alignment is set to zero, the alignment of the global is set by the target
705to whatever it feels convenient. If an explicit alignment is specified, the
706global is forced to have at least that much alignment. All alignments must be
707a power of 2.</p>
708
Christopher Lamb284d9922007-12-11 09:31:00 +0000709<p>For example, the following defines a global in a numbered address space with
710an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000711
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000712<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000713<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000714@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000715</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000716</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000717
Chris Lattnerfa730212004-12-09 16:11:40 +0000718</div>
719
720
721<!-- ======================================================================= -->
722<div class="doc_subsection">
723 <a name="functionstructure">Functions</a>
724</div>
725
726<div class="doc_text">
727
Reid Spencerca86e162006-12-31 07:07:53 +0000728<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
729an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000730<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000731<a href="#callingconv">calling convention</a>, a return type, an optional
732<a href="#paramattrs">parameter attribute</a> for the return type, a function
733name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000734<a href="#paramattrs">parameter attributes</a>), an optional section, an
Gordon Henriksene754abe2007-12-10 03:30:21 +0000735optional alignment, an optional <a href="#gc">garbage collector name</a>, an
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000736opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000737
738LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
739optional <a href="#linkage">linkage type</a>, an optional
740<a href="#visibility">visibility style</a>, an optional
741<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000742<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000743name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000744<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000745
746<p>A function definition contains a list of basic blocks, forming the CFG for
747the function. Each basic block may optionally start with a label (giving the
748basic block a symbol table entry), contains a list of instructions, and ends
749with a <a href="#terminators">terminator</a> instruction (such as a branch or
750function return).</p>
751
Chris Lattner4a3c9012007-06-08 16:52:14 +0000752<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000753executed on entrance to the function, and it is not allowed to have predecessor
754basic blocks (i.e. there can not be any branches to the entry block of a
755function). Because the block can have no predecessors, it also cannot have any
756<a href="#i_phi">PHI nodes</a>.</p>
757
Chris Lattner88f6c462005-11-12 00:45:07 +0000758<p>LLVM allows an explicit section to be specified for functions. If the target
759supports it, it will emit functions to the section specified.</p>
760
Chris Lattner2cbdc452005-11-06 08:02:57 +0000761<p>An explicit alignment may be specified for a function. If not present, or if
762the alignment is set to zero, the alignment of the function is set by the target
763to whatever it feels convenient. If an explicit alignment is specified, the
764function is forced to have at least that much alignment. All alignments must be
765a power of 2.</p>
766
Chris Lattnerfa730212004-12-09 16:11:40 +0000767</div>
768
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000769
770<!-- ======================================================================= -->
771<div class="doc_subsection">
772 <a name="aliasstructure">Aliases</a>
773</div>
774<div class="doc_text">
775 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000776 function, global variable, another alias or bitcast of global value). Aliases
777 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000778 optional <a href="#visibility">visibility style</a>.</p>
779
780 <h5>Syntax:</h5>
781
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000782<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000783<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000784@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000785</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000786</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000787
788</div>
789
790
791
Chris Lattner4e9aba72006-01-23 23:23:47 +0000792<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000793<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
794<div class="doc_text">
795 <p>The return type and each parameter of a function type may have a set of
796 <i>parameter attributes</i> associated with them. Parameter attributes are
797 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000798 a function. Parameter attributes are considered to be part of the function,
799 not of the function type, so functions with different parameter attributes
800 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000801
Reid Spencer950e9f82007-01-15 18:27:39 +0000802 <p>Parameter attributes are simple keywords that follow the type specified. If
803 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000804 example:</p>
805
806<div class="doc_code">
807<pre>
Duncan Sandsdc024672007-11-27 13:23:08 +0000808declare i32 @printf(i8* noalias , ...) nounwind
809declare i32 @atoi(i8*) nounwind readonly
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000810</pre>
811</div>
812
Duncan Sandsdc024672007-11-27 13:23:08 +0000813 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
814 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000815
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000816 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000817 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000818 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000819 <dd>This indicates that the parameter should be zero extended just before
820 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000821
Reid Spencer9445e9a2007-07-19 23:13:04 +0000822 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000823 <dd>This indicates that the parameter should be sign extended just before
824 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000825
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000826 <dt><tt>inreg</tt></dt>
827 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000828 possible) during assembling function call. Support for this attribute is
829 target-specific</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000830
831 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000832 <dd>This indicates that the pointer parameter should really be passed by
833 value to the function. The attribute implies that a hidden copy of the
834 pointee is made between the caller and the callee, so the callee is unable
835 to modify the value in the callee. This attribute is only valid on llvm
836 pointer arguments. It is generally used to pass structs and arrays by
837 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000838
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000839 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000840 <dd>This indicates that the pointer parameter specifies the address of a
841 structure that is the return value of the function in the source program.
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000842 Loads and stores to the structure are assumed not to trap.
Duncan Sandse26dec62008-02-18 04:19:38 +0000843 May only be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000844
Zhou Shengfebca342007-06-05 05:28:26 +0000845 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000846 <dd>This indicates that the parameter does not alias any global or any other
847 parameter. The caller is responsible for ensuring that this is the case,
848 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000849
Reid Spencer2dc52012007-03-22 02:18:56 +0000850 <dt><tt>noreturn</tt></dt>
851 <dd>This function attribute indicates that the function never returns. This
852 indicates to LLVM that every call to this function should be treated as if
853 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000854
Reid Spencer67606122007-03-22 02:02:11 +0000855 <dt><tt>nounwind</tt></dt>
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000856 <dd>This function attribute indicates that no exceptions unwind out of the
857 function. Usually this is because the function makes no use of exceptions,
858 but it may also be that the function catches any exceptions thrown when
859 executing it.</dd>
860
Duncan Sands50f19f52007-07-27 19:57:41 +0000861 <dt><tt>nest</tt></dt>
862 <dd>This indicates that the parameter can be excised using the
863 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000864 <dt><tt>readonly</tt></dt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000865 <dd>This function attribute indicates that the function has no side-effects
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000866 except for producing a return value or throwing an exception. The value
867 returned must only depend on the function arguments and/or global variables.
868 It may use values obtained by dereferencing pointers.</dd>
869 <dt><tt>readnone</tt></dt>
870 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000871 function, but in addition it is not allowed to dereference any pointer arguments
872 or global variables.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000873 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000874
Reid Spencerca86e162006-12-31 07:07:53 +0000875</div>
876
877<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000878<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000879 <a name="gc">Garbage Collector Names</a>
880</div>
881
882<div class="doc_text">
883<p>Each function may specify a garbage collector name, which is simply a
884string.</p>
885
886<div class="doc_code"><pre
887>define void @f() gc "name" { ...</pre></div>
888
889<p>The compiler declares the supported values of <i>name</i>. Specifying a
890collector which will cause the compiler to alter its output in order to support
891the named garbage collection algorithm.</p>
892</div>
893
894<!-- ======================================================================= -->
895<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000896 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000897</div>
898
899<div class="doc_text">
900<p>
901Modules may contain "module-level inline asm" blocks, which corresponds to the
902GCC "file scope inline asm" blocks. These blocks are internally concatenated by
903LLVM and treated as a single unit, but may be separated in the .ll file if
904desired. The syntax is very simple:
905</p>
906
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000907<div class="doc_code">
908<pre>
909module asm "inline asm code goes here"
910module asm "more can go here"
911</pre>
912</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000913
914<p>The strings can contain any character by escaping non-printable characters.
915 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
916 for the number.
917</p>
918
919<p>
920 The inline asm code is simply printed to the machine code .s file when
921 assembly code is generated.
922</p>
923</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000924
Reid Spencerde151942007-02-19 23:54:10 +0000925<!-- ======================================================================= -->
926<div class="doc_subsection">
927 <a name="datalayout">Data Layout</a>
928</div>
929
930<div class="doc_text">
931<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000932data is to be laid out in memory. The syntax for the data layout is simply:</p>
933<pre> target datalayout = "<i>layout specification</i>"</pre>
934<p>The <i>layout specification</i> consists of a list of specifications
935separated by the minus sign character ('-'). Each specification starts with a
936letter and may include other information after the letter to define some
937aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000938<dl>
939 <dt><tt>E</tt></dt>
940 <dd>Specifies that the target lays out data in big-endian form. That is, the
941 bits with the most significance have the lowest address location.</dd>
942 <dt><tt>e</tt></dt>
943 <dd>Specifies that hte target lays out data in little-endian form. That is,
944 the bits with the least significance have the lowest address location.</dd>
945 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
946 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
947 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
948 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
949 too.</dd>
950 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
951 <dd>This specifies the alignment for an integer type of a given bit
952 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
953 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
954 <dd>This specifies the alignment for a vector type of a given bit
955 <i>size</i>.</dd>
956 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
957 <dd>This specifies the alignment for a floating point type of a given bit
958 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
959 (double).</dd>
960 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
961 <dd>This specifies the alignment for an aggregate type of a given bit
962 <i>size</i>.</dd>
963</dl>
964<p>When constructing the data layout for a given target, LLVM starts with a
965default set of specifications which are then (possibly) overriden by the
966specifications in the <tt>datalayout</tt> keyword. The default specifications
967are given in this list:</p>
968<ul>
969 <li><tt>E</tt> - big endian</li>
970 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
971 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
972 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
973 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
974 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
975 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
976 alignment of 64-bits</li>
977 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
978 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
979 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
980 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
981 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
982</ul>
983<p>When llvm is determining the alignment for a given type, it uses the
984following rules:
985<ol>
986 <li>If the type sought is an exact match for one of the specifications, that
987 specification is used.</li>
988 <li>If no match is found, and the type sought is an integer type, then the
989 smallest integer type that is larger than the bitwidth of the sought type is
990 used. If none of the specifications are larger than the bitwidth then the the
991 largest integer type is used. For example, given the default specifications
992 above, the i7 type will use the alignment of i8 (next largest) while both
993 i65 and i256 will use the alignment of i64 (largest specified).</li>
994 <li>If no match is found, and the type sought is a vector type, then the
995 largest vector type that is smaller than the sought vector type will be used
996 as a fall back. This happens because <128 x double> can be implemented in
997 terms of 64 <2 x double>, for example.</li>
998</ol>
999</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001000
Chris Lattner00950542001-06-06 20:29:01 +00001001<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001002<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1003<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001004
Misha Brukman9d0919f2003-11-08 01:05:38 +00001005<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001006
Misha Brukman9d0919f2003-11-08 01:05:38 +00001007<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001008intermediate representation. Being typed enables a number of
1009optimizations to be performed on the IR directly, without having to do
1010extra analyses on the side before the transformation. A strong type
1011system makes it easier to read the generated code and enables novel
1012analyses and transformations that are not feasible to perform on normal
1013three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001014
1015</div>
1016
Chris Lattner00950542001-06-06 20:29:01 +00001017<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001018<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001019Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001020<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001021<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001022classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001023
1024<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001025 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001026 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001027 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001028 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001029 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001030 </tr>
1031 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001032 <td><a href="#t_floating">floating point</a></td>
1033 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001034 </tr>
1035 <tr>
1036 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001037 <td><a href="#t_integer">integer</a>,
1038 <a href="#t_floating">floating point</a>,
1039 <a href="#t_pointer">pointer</a>,
1040 <a href="#t_vector">vector</a>
Dan Gohmana334d5f2008-05-12 23:51:09 +00001041 <a href="#t_struct">structure</a>,
1042 <a href="#t_array">array</a>,
Reid Spencerca86e162006-12-31 07:07:53 +00001043 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001044 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001045 <tr>
1046 <td><a href="#t_primitive">primitive</a></td>
1047 <td><a href="#t_label">label</a>,
1048 <a href="#t_void">void</a>,
1049 <a href="#t_integer">integer</a>,
1050 <a href="#t_floating">floating point</a>.</td>
1051 </tr>
1052 <tr>
1053 <td><a href="#t_derived">derived</a></td>
1054 <td><a href="#t_integer">integer</a>,
1055 <a href="#t_array">array</a>,
1056 <a href="#t_function">function</a>,
1057 <a href="#t_pointer">pointer</a>,
1058 <a href="#t_struct">structure</a>,
1059 <a href="#t_pstruct">packed structure</a>,
1060 <a href="#t_vector">vector</a>,
1061 <a href="#t_opaque">opaque</a>.
1062 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001063 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001064</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001065
Chris Lattner261efe92003-11-25 01:02:51 +00001066<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1067most important. Values of these types are the only ones which can be
1068produced by instructions, passed as arguments, or used as operands to
1069instructions. This means that all structures and arrays must be
1070manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001071</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001072
Chris Lattner00950542001-06-06 20:29:01 +00001073<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001074<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001075
Chris Lattner4f69f462008-01-04 04:32:38 +00001076<div class="doc_text">
1077<p>The primitive types are the fundamental building blocks of the LLVM
1078system.</p>
1079
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001080</div>
1081
Chris Lattner4f69f462008-01-04 04:32:38 +00001082<!-- _______________________________________________________________________ -->
1083<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1084
1085<div class="doc_text">
1086 <table>
1087 <tbody>
1088 <tr><th>Type</th><th>Description</th></tr>
1089 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1090 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1091 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1092 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1093 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1094 </tbody>
1095 </table>
1096</div>
1097
1098<!-- _______________________________________________________________________ -->
1099<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1100
1101<div class="doc_text">
1102<h5>Overview:</h5>
1103<p>The void type does not represent any value and has no size.</p>
1104
1105<h5>Syntax:</h5>
1106
1107<pre>
1108 void
1109</pre>
1110</div>
1111
1112<!-- _______________________________________________________________________ -->
1113<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1114
1115<div class="doc_text">
1116<h5>Overview:</h5>
1117<p>The label type represents code labels.</p>
1118
1119<h5>Syntax:</h5>
1120
1121<pre>
1122 label
1123</pre>
1124</div>
1125
1126
1127<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001128<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001129
Misha Brukman9d0919f2003-11-08 01:05:38 +00001130<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001131
Chris Lattner261efe92003-11-25 01:02:51 +00001132<p>The real power in LLVM comes from the derived types in the system.
1133This is what allows a programmer to represent arrays, functions,
1134pointers, and other useful types. Note that these derived types may be
1135recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001136
Misha Brukman9d0919f2003-11-08 01:05:38 +00001137</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001138
Chris Lattner00950542001-06-06 20:29:01 +00001139<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001140<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1141
1142<div class="doc_text">
1143
1144<h5>Overview:</h5>
1145<p>The integer type is a very simple derived type that simply specifies an
1146arbitrary bit width for the integer type desired. Any bit width from 1 bit to
11472^23-1 (about 8 million) can be specified.</p>
1148
1149<h5>Syntax:</h5>
1150
1151<pre>
1152 iN
1153</pre>
1154
1155<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1156value.</p>
1157
1158<h5>Examples:</h5>
1159<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001160 <tbody>
1161 <tr>
1162 <td><tt>i1</tt></td>
1163 <td>a single-bit integer.</td>
1164 </tr><tr>
1165 <td><tt>i32</tt></td>
1166 <td>a 32-bit integer.</td>
1167 </tr><tr>
1168 <td><tt>i1942652</tt></td>
1169 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001170 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001171 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001172</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001173</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001174
1175<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001176<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001177
Misha Brukman9d0919f2003-11-08 01:05:38 +00001178<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001179
Chris Lattner00950542001-06-06 20:29:01 +00001180<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001181
Misha Brukman9d0919f2003-11-08 01:05:38 +00001182<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001183sequentially in memory. The array type requires a size (number of
1184elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001185
Chris Lattner7faa8832002-04-14 06:13:44 +00001186<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001187
1188<pre>
1189 [&lt;# elements&gt; x &lt;elementtype&gt;]
1190</pre>
1191
John Criswelle4c57cc2005-05-12 16:52:32 +00001192<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001193be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001194
Chris Lattner7faa8832002-04-14 06:13:44 +00001195<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001196<table class="layout">
1197 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001198 <td class="left"><tt>[40 x i32]</tt></td>
1199 <td class="left">Array of 40 32-bit integer values.</td>
1200 </tr>
1201 <tr class="layout">
1202 <td class="left"><tt>[41 x i32]</tt></td>
1203 <td class="left">Array of 41 32-bit integer values.</td>
1204 </tr>
1205 <tr class="layout">
1206 <td class="left"><tt>[4 x i8]</tt></td>
1207 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001208 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001209</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001210<p>Here are some examples of multidimensional arrays:</p>
1211<table class="layout">
1212 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001213 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1214 <td class="left">3x4 array of 32-bit integer values.</td>
1215 </tr>
1216 <tr class="layout">
1217 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1218 <td class="left">12x10 array of single precision floating point values.</td>
1219 </tr>
1220 <tr class="layout">
1221 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1222 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001223 </tr>
1224</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001225
John Criswell0ec250c2005-10-24 16:17:18 +00001226<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1227length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001228LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1229As a special case, however, zero length arrays are recognized to be variable
1230length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001231type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001232
Misha Brukman9d0919f2003-11-08 01:05:38 +00001233</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001234
Chris Lattner00950542001-06-06 20:29:01 +00001235<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001236<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001237<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001238
Chris Lattner00950542001-06-06 20:29:01 +00001239<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001240
Chris Lattner261efe92003-11-25 01:02:51 +00001241<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001242consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001243return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001244If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001245class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001246
Chris Lattner00950542001-06-06 20:29:01 +00001247<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001248
1249<pre>
1250 &lt;returntype list&gt; (&lt;parameter list&gt;)
1251</pre>
1252
John Criswell0ec250c2005-10-24 16:17:18 +00001253<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001254specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001255which indicates that the function takes a variable number of arguments.
1256Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001257 href="#int_varargs">variable argument handling intrinsic</a> functions.
1258'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1259<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001260
Chris Lattner00950542001-06-06 20:29:01 +00001261<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001262<table class="layout">
1263 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001264 <td class="left"><tt>i32 (i32)</tt></td>
1265 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001266 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001267 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001268 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001269 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001270 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1271 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001272 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001273 <tt>float</tt>.
1274 </td>
1275 </tr><tr class="layout">
1276 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1277 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001278 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001279 which returns an integer. This is the signature for <tt>printf</tt> in
1280 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001281 </td>
Devang Patela582f402008-03-24 05:35:41 +00001282 </tr><tr class="layout">
1283 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001284 <td class="left">A function taking an <tt>i32></tt>, returning two
1285 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001286 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001287 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001288</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001289
Misha Brukman9d0919f2003-11-08 01:05:38 +00001290</div>
Chris Lattner00950542001-06-06 20:29:01 +00001291<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001292<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001293<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001294<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001295<p>The structure type is used to represent a collection of data members
1296together in memory. The packing of the field types is defined to match
1297the ABI of the underlying processor. The elements of a structure may
1298be any type that has a size.</p>
1299<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1300and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1301field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1302instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001303<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001304<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001305<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001306<table class="layout">
1307 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001308 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1309 <td class="left">A triple of three <tt>i32</tt> values</td>
1310 </tr><tr class="layout">
1311 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1312 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1313 second element is a <a href="#t_pointer">pointer</a> to a
1314 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1315 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001316 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001317</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001318</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001319
Chris Lattner00950542001-06-06 20:29:01 +00001320<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001321<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1322</div>
1323<div class="doc_text">
1324<h5>Overview:</h5>
1325<p>The packed structure type is used to represent a collection of data members
1326together in memory. There is no padding between fields. Further, the alignment
1327of a packed structure is 1 byte. The elements of a packed structure may
1328be any type that has a size.</p>
1329<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1330and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1331field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1332instruction.</p>
1333<h5>Syntax:</h5>
1334<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1335<h5>Examples:</h5>
1336<table class="layout">
1337 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001338 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1339 <td class="left">A triple of three <tt>i32</tt> values</td>
1340 </tr><tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001341 <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001342 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1343 second element is a <a href="#t_pointer">pointer</a> to a
1344 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1345 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001346 </tr>
1347</table>
1348</div>
1349
1350<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001351<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001352<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001353<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001354<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001355reference to another object, which must live in memory. Pointer types may have
1356an optional address space attribute defining the target-specific numbered
1357address space where the pointed-to object resides. The default address space is
1358zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001359<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001360<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001361<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001362<table class="layout">
1363 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001364 <td class="left"><tt>[4x i32]*</tt></td>
1365 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1366 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1367 </tr>
1368 <tr class="layout">
1369 <td class="left"><tt>i32 (i32 *) *</tt></td>
1370 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001371 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001372 <tt>i32</tt>.</td>
1373 </tr>
1374 <tr class="layout">
1375 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1376 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1377 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001378 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001379</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001380</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001381
Chris Lattnera58561b2004-08-12 19:12:28 +00001382<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001383<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001384<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001385
Chris Lattnera58561b2004-08-12 19:12:28 +00001386<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001387
Reid Spencer485bad12007-02-15 03:07:05 +00001388<p>A vector type is a simple derived type that represents a vector
1389of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001390are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001391A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001392elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001393of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001394considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001395
Chris Lattnera58561b2004-08-12 19:12:28 +00001396<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001397
1398<pre>
1399 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1400</pre>
1401
John Criswellc1f786c2005-05-13 22:25:59 +00001402<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001403be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001404
Chris Lattnera58561b2004-08-12 19:12:28 +00001405<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001406
Reid Spencerd3f876c2004-11-01 08:19:36 +00001407<table class="layout">
1408 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001409 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1410 <td class="left">Vector of 4 32-bit integer values.</td>
1411 </tr>
1412 <tr class="layout">
1413 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1414 <td class="left">Vector of 8 32-bit floating-point values.</td>
1415 </tr>
1416 <tr class="layout">
1417 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1418 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001419 </tr>
1420</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001421</div>
1422
Chris Lattner69c11bb2005-04-25 17:34:15 +00001423<!-- _______________________________________________________________________ -->
1424<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1425<div class="doc_text">
1426
1427<h5>Overview:</h5>
1428
1429<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001430corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001431In LLVM, opaque types can eventually be resolved to any type (not just a
1432structure type).</p>
1433
1434<h5>Syntax:</h5>
1435
1436<pre>
1437 opaque
1438</pre>
1439
1440<h5>Examples:</h5>
1441
1442<table class="layout">
1443 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001444 <td class="left"><tt>opaque</tt></td>
1445 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001446 </tr>
1447</table>
1448</div>
1449
1450
Chris Lattnerc3f59762004-12-09 17:30:23 +00001451<!-- *********************************************************************** -->
1452<div class="doc_section"> <a name="constants">Constants</a> </div>
1453<!-- *********************************************************************** -->
1454
1455<div class="doc_text">
1456
1457<p>LLVM has several different basic types of constants. This section describes
1458them all and their syntax.</p>
1459
1460</div>
1461
1462<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001463<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001464
1465<div class="doc_text">
1466
1467<dl>
1468 <dt><b>Boolean constants</b></dt>
1469
1470 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001471 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001472 </dd>
1473
1474 <dt><b>Integer constants</b></dt>
1475
Reid Spencercc16dc32004-12-09 18:02:53 +00001476 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001477 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001478 integer types.
1479 </dd>
1480
1481 <dt><b>Floating point constants</b></dt>
1482
1483 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1484 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001485 notation (see below). The assembler requires the exact decimal value of
1486 a floating-point constant. For example, the assembler accepts 1.25 but
1487 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1488 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001489
1490 <dt><b>Null pointer constants</b></dt>
1491
John Criswell9e2485c2004-12-10 15:51:16 +00001492 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001493 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1494
1495</dl>
1496
John Criswell9e2485c2004-12-10 15:51:16 +00001497<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001498of floating point constants. For example, the form '<tt>double
14990x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15004.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001501(and the only time that they are generated by the disassembler) is when a
1502floating point constant must be emitted but it cannot be represented as a
1503decimal floating point number. For example, NaN's, infinities, and other
1504special values are represented in their IEEE hexadecimal format so that
1505assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001506
1507</div>
1508
1509<!-- ======================================================================= -->
1510<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1511</div>
1512
1513<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001514<p>Aggregate constants arise from aggregation of simple constants
1515and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001516
1517<dl>
1518 <dt><b>Structure constants</b></dt>
1519
1520 <dd>Structure constants are represented with notation similar to structure
1521 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001522 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1523 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001524 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001525 types of elements must match those specified by the type.
1526 </dd>
1527
1528 <dt><b>Array constants</b></dt>
1529
1530 <dd>Array constants are represented with notation similar to array type
1531 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001532 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001533 constants must have <a href="#t_array">array type</a>, and the number and
1534 types of elements must match those specified by the type.
1535 </dd>
1536
Reid Spencer485bad12007-02-15 03:07:05 +00001537 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001538
Reid Spencer485bad12007-02-15 03:07:05 +00001539 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001540 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001541 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001542 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001543 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001544 match those specified by the type.
1545 </dd>
1546
1547 <dt><b>Zero initialization</b></dt>
1548
1549 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1550 value to zero of <em>any</em> type, including scalar and aggregate types.
1551 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001552 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001553 initializers.
1554 </dd>
1555</dl>
1556
1557</div>
1558
1559<!-- ======================================================================= -->
1560<div class="doc_subsection">
1561 <a name="globalconstants">Global Variable and Function Addresses</a>
1562</div>
1563
1564<div class="doc_text">
1565
1566<p>The addresses of <a href="#globalvars">global variables</a> and <a
1567href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001568constants. These constants are explicitly referenced when the <a
1569href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001570href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1571file:</p>
1572
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001573<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001574<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001575@X = global i32 17
1576@Y = global i32 42
1577@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001578</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001579</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001580
1581</div>
1582
1583<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001584<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001585<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001586 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001587 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001588 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001589
Reid Spencer2dc45b82004-12-09 18:13:12 +00001590 <p>Undefined values indicate to the compiler that the program is well defined
1591 no matter what value is used, giving the compiler more freedom to optimize.
1592 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001593</div>
1594
1595<!-- ======================================================================= -->
1596<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1597</div>
1598
1599<div class="doc_text">
1600
1601<p>Constant expressions are used to allow expressions involving other constants
1602to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001603href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001604that does not have side effects (e.g. load and call are not supported). The
1605following is the syntax for constant expressions:</p>
1606
1607<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001608 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1609 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001610 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001611
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001612 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1613 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001614 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001615
1616 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1617 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001618 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001619
1620 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1621 <dd>Truncate a floating point constant to another floating point type. The
1622 size of CST must be larger than the size of TYPE. Both types must be
1623 floating point.</dd>
1624
1625 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1626 <dd>Floating point extend a constant to another type. The size of CST must be
1627 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1628
Reid Spencer1539a1c2007-07-31 14:40:14 +00001629 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001630 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001631 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1632 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1633 of the same number of elements. If the value won't fit in the integer type,
1634 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001635
Reid Spencerd4448792006-11-09 23:03:26 +00001636 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001637 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001638 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1639 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1640 of the same number of elements. If the value won't fit in the integer type,
1641 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001642
Reid Spencerd4448792006-11-09 23:03:26 +00001643 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001644 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001645 constant. TYPE must be a scalar or vector floating point type. CST must be of
1646 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1647 of the same number of elements. If the value won't fit in the floating point
1648 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001649
Reid Spencerd4448792006-11-09 23:03:26 +00001650 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001651 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001652 constant. TYPE must be a scalar or vector floating point type. CST must be of
1653 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1654 of the same number of elements. If the value won't fit in the floating point
1655 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001656
Reid Spencer5c0ef472006-11-11 23:08:07 +00001657 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1658 <dd>Convert a pointer typed constant to the corresponding integer constant
1659 TYPE must be an integer type. CST must be of pointer type. The CST value is
1660 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1661
1662 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1663 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1664 pointer type. CST must be of integer type. The CST value is zero extended,
1665 truncated, or unchanged to make it fit in a pointer size. This one is
1666 <i>really</i> dangerous!</dd>
1667
1668 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001669 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1670 identical (same number of bits). The conversion is done as if the CST value
1671 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001672 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001673 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001674 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001675 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001676
1677 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1678
1679 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1680 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1681 instruction, the index list may have zero or more indexes, which are required
1682 to make sense for the type of "CSTPTR".</dd>
1683
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001684 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1685
1686 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001687 constants.</dd>
1688
1689 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1690 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1691
1692 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1693 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001694
Nate Begemanac80ade2008-05-12 19:01:56 +00001695 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1696 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1697
1698 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1699 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1700
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001701 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1702
1703 <dd>Perform the <a href="#i_extractelement">extractelement
1704 operation</a> on constants.
1705
Robert Bocchino05ccd702006-01-15 20:48:27 +00001706 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1707
1708 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001709 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001710
Chris Lattnerc1989542006-04-08 00:13:41 +00001711
1712 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1713
1714 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001715 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001716
Chris Lattnerc3f59762004-12-09 17:30:23 +00001717 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1718
Reid Spencer2dc45b82004-12-09 18:13:12 +00001719 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1720 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001721 binary</a> operations. The constraints on operands are the same as those for
1722 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001723 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001724</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001725</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001726
Chris Lattner00950542001-06-06 20:29:01 +00001727<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001728<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1729<!-- *********************************************************************** -->
1730
1731<!-- ======================================================================= -->
1732<div class="doc_subsection">
1733<a name="inlineasm">Inline Assembler Expressions</a>
1734</div>
1735
1736<div class="doc_text">
1737
1738<p>
1739LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1740Module-Level Inline Assembly</a>) through the use of a special value. This
1741value represents the inline assembler as a string (containing the instructions
1742to emit), a list of operand constraints (stored as a string), and a flag that
1743indicates whether or not the inline asm expression has side effects. An example
1744inline assembler expression is:
1745</p>
1746
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001747<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001748<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001749i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001750</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001751</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001752
1753<p>
1754Inline assembler expressions may <b>only</b> be used as the callee operand of
1755a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1756</p>
1757
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001758<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001759<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001760%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001761</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001762</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001763
1764<p>
1765Inline asms with side effects not visible in the constraint list must be marked
1766as having side effects. This is done through the use of the
1767'<tt>sideeffect</tt>' keyword, like so:
1768</p>
1769
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001770<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001771<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001772call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001773</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001774</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001775
1776<p>TODO: The format of the asm and constraints string still need to be
1777documented here. Constraints on what can be done (e.g. duplication, moving, etc
1778need to be documented).
1779</p>
1780
1781</div>
1782
1783<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001784<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1785<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001786
Misha Brukman9d0919f2003-11-08 01:05:38 +00001787<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001788
Chris Lattner261efe92003-11-25 01:02:51 +00001789<p>The LLVM instruction set consists of several different
1790classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001791instructions</a>, <a href="#binaryops">binary instructions</a>,
1792<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001793 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1794instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001795
Misha Brukman9d0919f2003-11-08 01:05:38 +00001796</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001797
Chris Lattner00950542001-06-06 20:29:01 +00001798<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001799<div class="doc_subsection"> <a name="terminators">Terminator
1800Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001801
Misha Brukman9d0919f2003-11-08 01:05:38 +00001802<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001803
Chris Lattner261efe92003-11-25 01:02:51 +00001804<p>As mentioned <a href="#functionstructure">previously</a>, every
1805basic block in a program ends with a "Terminator" instruction, which
1806indicates which block should be executed after the current block is
1807finished. These terminator instructions typically yield a '<tt>void</tt>'
1808value: they produce control flow, not values (the one exception being
1809the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001810<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001811 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1812instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001813the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1814 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1815 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001816
Misha Brukman9d0919f2003-11-08 01:05:38 +00001817</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001818
Chris Lattner00950542001-06-06 20:29:01 +00001819<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001820<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1821Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001822<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001823<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001824<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001825 ret void <i>; Return from void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001826 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Chris Lattner00950542001-06-06 20:29:01 +00001827</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001828
Chris Lattner00950542001-06-06 20:29:01 +00001829<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001830
Chris Lattner261efe92003-11-25 01:02:51 +00001831<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001832value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001833<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001834returns value(s) and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001835control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001836
Chris Lattner00950542001-06-06 20:29:01 +00001837<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001838
1839<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1840The type of each return value must be a '<a href="#t_firstclass">first
1841class</a>' type. Note that a function is not <a href="#wellformed">well
1842formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1843function that returns values that do not match the return type of the
1844function.</p>
1845
Chris Lattner00950542001-06-06 20:29:01 +00001846<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001847
Chris Lattner261efe92003-11-25 01:02:51 +00001848<p>When the '<tt>ret</tt>' instruction is executed, control flow
1849returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001850 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001851the instruction after the call. If the caller was an "<a
1852 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001853at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001854returns a value, that value shall set the call or invoke instruction's
Devang Patelc3fc6df2008-03-10 20:49:15 +00001855return value. If the instruction returns multiple values then these
Devang Patel0dbb4a12008-03-11 05:51:59 +00001856values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1857</a>' instruction.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001858
Chris Lattner00950542001-06-06 20:29:01 +00001859<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001860
1861<pre>
1862 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001863 ret void <i>; Return from a void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001864 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Chris Lattner00950542001-06-06 20:29:01 +00001865</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001866</div>
Chris Lattner00950542001-06-06 20:29:01 +00001867<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001868<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001869<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001870<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001871<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001872</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001873<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001874<p>The '<tt>br</tt>' instruction is used to cause control flow to
1875transfer to a different basic block in the current function. There are
1876two forms of this instruction, corresponding to a conditional branch
1877and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001878<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001879<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001880single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001881unconditional form of the '<tt>br</tt>' instruction takes a single
1882'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001883<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001884<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001885argument is evaluated. If the value is <tt>true</tt>, control flows
1886to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1887control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001888<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001889<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001890 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001891</div>
Chris Lattner00950542001-06-06 20:29:01 +00001892<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001893<div class="doc_subsubsection">
1894 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1895</div>
1896
Misha Brukman9d0919f2003-11-08 01:05:38 +00001897<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001898<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001899
1900<pre>
1901 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1902</pre>
1903
Chris Lattner00950542001-06-06 20:29:01 +00001904<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001905
1906<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1907several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001908instruction, allowing a branch to occur to one of many possible
1909destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001910
1911
Chris Lattner00950542001-06-06 20:29:01 +00001912<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001913
1914<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1915comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1916an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1917table is not allowed to contain duplicate constant entries.</p>
1918
Chris Lattner00950542001-06-06 20:29:01 +00001919<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001920
Chris Lattner261efe92003-11-25 01:02:51 +00001921<p>The <tt>switch</tt> instruction specifies a table of values and
1922destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001923table is searched for the given value. If the value is found, control flow is
1924transfered to the corresponding destination; otherwise, control flow is
1925transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001926
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001927<h5>Implementation:</h5>
1928
1929<p>Depending on properties of the target machine and the particular
1930<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001931ways. For example, it could be generated as a series of chained conditional
1932branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001933
1934<h5>Example:</h5>
1935
1936<pre>
1937 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001938 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001939 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001940
1941 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001942 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001943
1944 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001945 switch i32 %val, label %otherwise [ i32 0, label %onzero
1946 i32 1, label %onone
1947 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001948</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001949</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001950
Chris Lattner00950542001-06-06 20:29:01 +00001951<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001952<div class="doc_subsubsection">
1953 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1954</div>
1955
Misha Brukman9d0919f2003-11-08 01:05:38 +00001956<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001957
Chris Lattner00950542001-06-06 20:29:01 +00001958<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001959
1960<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00001961 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001962 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001963</pre>
1964
Chris Lattner6536cfe2002-05-06 22:08:29 +00001965<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001966
1967<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1968function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001969'<tt>normal</tt>' label or the
1970'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001971"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1972"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001973href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patelc3fc6df2008-03-10 20:49:15 +00001974continued at the dynamically nearest "exception" label. If the callee function
Devang Patel0dbb4a12008-03-11 05:51:59 +00001975returns multiple values then individual return values are only accessible through
1976a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001977
Chris Lattner00950542001-06-06 20:29:01 +00001978<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001979
Misha Brukman9d0919f2003-11-08 01:05:38 +00001980<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001981
Chris Lattner00950542001-06-06 20:29:01 +00001982<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001983 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00001984 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001985 convention</a> the call should use. If none is specified, the call defaults
1986 to using C calling conventions.
1987 </li>
1988 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1989 function value being invoked. In most cases, this is a direct function
1990 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1991 an arbitrary pointer to function value.
1992 </li>
1993
1994 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1995 function to be invoked. </li>
1996
1997 <li>'<tt>function args</tt>': argument list whose types match the function
1998 signature argument types. If the function signature indicates the function
1999 accepts a variable number of arguments, the extra arguments can be
2000 specified. </li>
2001
2002 <li>'<tt>normal label</tt>': the label reached when the called function
2003 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2004
2005 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2006 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2007
Chris Lattner00950542001-06-06 20:29:01 +00002008</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002009
Chris Lattner00950542001-06-06 20:29:01 +00002010<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002011
Misha Brukman9d0919f2003-11-08 01:05:38 +00002012<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002013href="#i_call">call</a></tt>' instruction in most regards. The primary
2014difference is that it establishes an association with a label, which is used by
2015the runtime library to unwind the stack.</p>
2016
2017<p>This instruction is used in languages with destructors to ensure that proper
2018cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2019exception. Additionally, this is important for implementation of
2020'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2021
Chris Lattner00950542001-06-06 20:29:01 +00002022<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002023<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002024 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002025 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002026 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002027 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002028</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002029</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002030
2031
Chris Lattner27f71f22003-09-03 00:41:47 +00002032<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002033
Chris Lattner261efe92003-11-25 01:02:51 +00002034<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2035Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002036
Misha Brukman9d0919f2003-11-08 01:05:38 +00002037<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002038
Chris Lattner27f71f22003-09-03 00:41:47 +00002039<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002040<pre>
2041 unwind
2042</pre>
2043
Chris Lattner27f71f22003-09-03 00:41:47 +00002044<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002045
2046<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2047at the first callee in the dynamic call stack which used an <a
2048href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2049primarily used to implement exception handling.</p>
2050
Chris Lattner27f71f22003-09-03 00:41:47 +00002051<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002052
Chris Lattner72ed2002008-04-19 21:01:16 +00002053<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002054immediately halt. The dynamic call stack is then searched for the first <a
2055href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2056execution continues at the "exceptional" destination block specified by the
2057<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2058dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002059</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002060
2061<!-- _______________________________________________________________________ -->
2062
2063<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2064Instruction</a> </div>
2065
2066<div class="doc_text">
2067
2068<h5>Syntax:</h5>
2069<pre>
2070 unreachable
2071</pre>
2072
2073<h5>Overview:</h5>
2074
2075<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2076instruction is used to inform the optimizer that a particular portion of the
2077code is not reachable. This can be used to indicate that the code after a
2078no-return function cannot be reached, and other facts.</p>
2079
2080<h5>Semantics:</h5>
2081
2082<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2083</div>
2084
2085
2086
Chris Lattner00950542001-06-06 20:29:01 +00002087<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002088<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002089<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002090<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002091program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002092produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002093multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002094The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002095<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002096</div>
Chris Lattner00950542001-06-06 20:29:01 +00002097<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002098<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
2099Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002100<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002101<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002102<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002103</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002104<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002105<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002106<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002107<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00002108 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
Reid Spencer485bad12007-02-15 03:07:05 +00002109 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002110Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002111<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002112<p>The value produced is the integer or floating point sum of the two
2113operands.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002114<p>If an integer sum has unsigned overflow, the result returned is the
2115mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2116the result.</p>
2117<p>Because LLVM integers use a two's complement representation, this
2118instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002119<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002120<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002121</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002122</div>
Chris Lattner00950542001-06-06 20:29:01 +00002123<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002124<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
2125Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002126<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002127<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002128<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002129</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002130<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002131<p>The '<tt>sub</tt>' instruction returns the difference of its two
2132operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002133<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
2134instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002135<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002136<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00002137 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00002138values.
Reid Spencer485bad12007-02-15 03:07:05 +00002139This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002140Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002141<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002142<p>The value produced is the integer or floating point difference of
2143the two operands.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002144<p>If an integer difference has unsigned overflow, the result returned is the
2145mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2146the result.</p>
2147<p>Because LLVM integers use a two's complement representation, this
2148instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002149<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002150<pre>
2151 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002152 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002153</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002154</div>
Chris Lattner00950542001-06-06 20:29:01 +00002155<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002156<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
2157Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002158<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002159<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002160<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002161</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002162<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002163<p>The '<tt>mul</tt>' instruction returns the product of its two
2164operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002165<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002166<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00002167 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00002168values.
Reid Spencer485bad12007-02-15 03:07:05 +00002169This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002170Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002171<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002172<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002173two operands.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002174<p>If the result of an integer multiplication has unsigned overflow,
2175the result returned is the mathematical result modulo
21762<sup>n</sup>, where n is the bit width of the result.</p>
2177<p>Because LLVM integers use a two's complement representation, and the
2178result is the same width as the operands, this instruction returns the
2179correct result for both signed and unsigned integers. If a full product
2180(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2181should be sign-extended or zero-extended as appropriate to the
2182width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002183<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002184<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002185</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002186</div>
Chris Lattner00950542001-06-06 20:29:01 +00002187<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002188<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2189</a></div>
2190<div class="doc_text">
2191<h5>Syntax:</h5>
2192<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2193</pre>
2194<h5>Overview:</h5>
2195<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2196operands.</p>
2197<h5>Arguments:</h5>
2198<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2199<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002200types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002201of the values in which case the elements must be integers.</p>
2202<h5>Semantics:</h5>
Chris Lattner5ec89832008-01-28 00:36:27 +00002203<p>The value produced is the unsigned integer quotient of the two operands.</p>
2204<p>Note that unsigned integer division and signed integer division are distinct
2205operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2206<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002207<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002208<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002209</pre>
2210</div>
2211<!-- _______________________________________________________________________ -->
2212<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2213</a> </div>
2214<div class="doc_text">
2215<h5>Syntax:</h5>
2216<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2217</pre>
2218<h5>Overview:</h5>
2219<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2220operands.</p>
2221<h5>Arguments:</h5>
2222<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2223<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002224types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002225of the values in which case the elements must be integers.</p>
2226<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002227<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002228<p>Note that signed integer division and unsigned integer division are distinct
2229operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2230<p>Division by zero leads to undefined behavior. Overflow also leads to
2231undefined behavior; this is a rare case, but can occur, for example,
2232by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002233<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002234<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002235</pre>
2236</div>
2237<!-- _______________________________________________________________________ -->
2238<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002239Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002240<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002241<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002242<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002243</pre>
2244<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002245<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002246operands.</p>
2247<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002248<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Reid Spencer1628cec2006-10-26 06:15:43 +00002249<a href="#t_floating">floating point</a> values. Both arguments must have
Reid Spencer485bad12007-02-15 03:07:05 +00002250identical types. This instruction can also take <a href="#t_vector">vector</a>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002251versions of floating point values.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002252<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002253<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002254<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002255<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002256</pre>
2257</div>
2258<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002259<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2260</div>
2261<div class="doc_text">
2262<h5>Syntax:</h5>
2263<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2264</pre>
2265<h5>Overview:</h5>
2266<p>The '<tt>urem</tt>' instruction returns the remainder from the
2267unsigned division of its two arguments.</p>
2268<h5>Arguments:</h5>
2269<p>The two arguments to the '<tt>urem</tt>' instruction must be
2270<a href="#t_integer">integer</a> values. Both arguments must have identical
Dan Gohman80176312007-11-05 23:35:22 +00002271types. This instruction can also take <a href="#t_vector">vector</a> versions
2272of the values in which case the elements must be integers.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002273<h5>Semantics:</h5>
2274<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002275This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002276<p>Note that unsigned integer remainder and signed integer remainder are
2277distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2278<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002279<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002280<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002281</pre>
2282
2283</div>
2284<!-- _______________________________________________________________________ -->
2285<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002286Instruction</a> </div>
2287<div class="doc_text">
2288<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002289<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002290</pre>
2291<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002292<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002293signed division of its two operands. This instruction can also take
2294<a href="#t_vector">vector</a> versions of the values in which case
2295the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002296
Chris Lattner261efe92003-11-25 01:02:51 +00002297<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002298<p>The two arguments to the '<tt>srem</tt>' instruction must be
2299<a href="#t_integer">integer</a> values. Both arguments must have identical
2300types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002301<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002302<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002303has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2304operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2305a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002306 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002307Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002308please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002309Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002310<p>Note that signed integer remainder and unsigned integer remainder are
2311distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2312<p>Taking the remainder of a division by zero leads to undefined behavior.
2313Overflow also leads to undefined behavior; this is a rare case, but can occur,
2314for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2315(The remainder doesn't actually overflow, but this rule lets srem be
2316implemented using instructions that return both the result of the division
2317and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002318<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002319<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002320</pre>
2321
2322</div>
2323<!-- _______________________________________________________________________ -->
2324<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2325Instruction</a> </div>
2326<div class="doc_text">
2327<h5>Syntax:</h5>
2328<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2329</pre>
2330<h5>Overview:</h5>
2331<p>The '<tt>frem</tt>' instruction returns the remainder from the
2332division of its two operands.</p>
2333<h5>Arguments:</h5>
2334<p>The two arguments to the '<tt>frem</tt>' instruction must be
2335<a href="#t_floating">floating point</a> values. Both arguments must have
Dan Gohman80176312007-11-05 23:35:22 +00002336identical types. This instruction can also take <a href="#t_vector">vector</a>
2337versions of floating point values.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002338<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002339<p>This instruction returns the <i>remainder</i> of a division.
2340The remainder has the same sign as the dividend.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002341<h5>Example:</h5>
2342<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002343</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002344</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002345
Reid Spencer8e11bf82007-02-02 13:57:07 +00002346<!-- ======================================================================= -->
2347<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2348Operations</a> </div>
2349<div class="doc_text">
2350<p>Bitwise binary operators are used to do various forms of
2351bit-twiddling in a program. They are generally very efficient
2352instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002353instructions. They require two operands of the same type, execute an operation on them,
2354and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002355</div>
2356
Reid Spencer569f2fa2007-01-31 21:39:12 +00002357<!-- _______________________________________________________________________ -->
2358<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2359Instruction</a> </div>
2360<div class="doc_text">
2361<h5>Syntax:</h5>
2362<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2363</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002364
Reid Spencer569f2fa2007-01-31 21:39:12 +00002365<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002366
Reid Spencer569f2fa2007-01-31 21:39:12 +00002367<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2368the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002369
Reid Spencer569f2fa2007-01-31 21:39:12 +00002370<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002371
Reid Spencer569f2fa2007-01-31 21:39:12 +00002372<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Chris Lattner72ed2002008-04-19 21:01:16 +00002373 href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
2374unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002375
Reid Spencer569f2fa2007-01-31 21:39:12 +00002376<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002377
Chris Lattnera73afe02008-04-01 18:45:27 +00002378<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup> mod 2<sup>n</sup>,
2379where n is the width of the result. If <tt>var2</tt> is (statically or dynamically) negative or
2380equal to or larger than the number of bits in <tt>var1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002381
Reid Spencer569f2fa2007-01-31 21:39:12 +00002382<h5>Example:</h5><pre>
2383 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2384 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2385 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002386 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002387</pre>
2388</div>
2389<!-- _______________________________________________________________________ -->
2390<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2391Instruction</a> </div>
2392<div class="doc_text">
2393<h5>Syntax:</h5>
2394<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2395</pre>
2396
2397<h5>Overview:</h5>
2398<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002399operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002400
2401<h5>Arguments:</h5>
2402<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Chris Lattner72ed2002008-04-19 21:01:16 +00002403<a href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
2404unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002405
2406<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002407
Reid Spencer569f2fa2007-01-31 21:39:12 +00002408<p>This instruction always performs a logical shift right operation. The most
2409significant bits of the result will be filled with zero bits after the
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002410shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2411the number of bits in <tt>var1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002412
2413<h5>Example:</h5>
2414<pre>
2415 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2416 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2417 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2418 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002419 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002420</pre>
2421</div>
2422
Reid Spencer8e11bf82007-02-02 13:57:07 +00002423<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002424<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2425Instruction</a> </div>
2426<div class="doc_text">
2427
2428<h5>Syntax:</h5>
2429<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2430</pre>
2431
2432<h5>Overview:</h5>
2433<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002434operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002435
2436<h5>Arguments:</h5>
2437<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Chris Lattner72ed2002008-04-19 21:01:16 +00002438<a href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
2439unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002440
2441<h5>Semantics:</h5>
2442<p>This instruction always performs an arithmetic shift right operation,
2443The most significant bits of the result will be filled with the sign bit
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002444of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2445larger than the number of bits in <tt>var1</tt>, the result is undefined.
2446</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002447
2448<h5>Example:</h5>
2449<pre>
2450 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2451 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2452 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2453 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002454 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002455</pre>
2456</div>
2457
Chris Lattner00950542001-06-06 20:29:01 +00002458<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002459<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2460Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002461<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002462<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002463<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002464</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002465<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002466<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2467its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002468<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002469<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002470 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002471identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002472<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002473<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002474<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002475<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002476<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002477 <tbody>
2478 <tr>
2479 <td>In0</td>
2480 <td>In1</td>
2481 <td>Out</td>
2482 </tr>
2483 <tr>
2484 <td>0</td>
2485 <td>0</td>
2486 <td>0</td>
2487 </tr>
2488 <tr>
2489 <td>0</td>
2490 <td>1</td>
2491 <td>0</td>
2492 </tr>
2493 <tr>
2494 <td>1</td>
2495 <td>0</td>
2496 <td>0</td>
2497 </tr>
2498 <tr>
2499 <td>1</td>
2500 <td>1</td>
2501 <td>1</td>
2502 </tr>
2503 </tbody>
2504</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002505</div>
Chris Lattner00950542001-06-06 20:29:01 +00002506<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002507<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2508 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2509 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002510</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002511</div>
Chris Lattner00950542001-06-06 20:29:01 +00002512<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002513<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002514<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002515<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002516<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002517</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002518<h5>Overview:</h5>
2519<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2520or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002521<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002522<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002523 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002524identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002525<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002526<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002527<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002528<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002529<table border="1" cellspacing="0" cellpadding="4">
2530 <tbody>
2531 <tr>
2532 <td>In0</td>
2533 <td>In1</td>
2534 <td>Out</td>
2535 </tr>
2536 <tr>
2537 <td>0</td>
2538 <td>0</td>
2539 <td>0</td>
2540 </tr>
2541 <tr>
2542 <td>0</td>
2543 <td>1</td>
2544 <td>1</td>
2545 </tr>
2546 <tr>
2547 <td>1</td>
2548 <td>0</td>
2549 <td>1</td>
2550 </tr>
2551 <tr>
2552 <td>1</td>
2553 <td>1</td>
2554 <td>1</td>
2555 </tr>
2556 </tbody>
2557</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002558</div>
Chris Lattner00950542001-06-06 20:29:01 +00002559<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002560<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2561 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2562 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002563</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002564</div>
Chris Lattner00950542001-06-06 20:29:01 +00002565<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002566<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2567Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002568<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002569<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002570<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002571</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002572<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002573<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2574or of its two operands. The <tt>xor</tt> is used to implement the
2575"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002576<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002577<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002578 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002579identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002580<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002581<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002582<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002583<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002584<table border="1" cellspacing="0" cellpadding="4">
2585 <tbody>
2586 <tr>
2587 <td>In0</td>
2588 <td>In1</td>
2589 <td>Out</td>
2590 </tr>
2591 <tr>
2592 <td>0</td>
2593 <td>0</td>
2594 <td>0</td>
2595 </tr>
2596 <tr>
2597 <td>0</td>
2598 <td>1</td>
2599 <td>1</td>
2600 </tr>
2601 <tr>
2602 <td>1</td>
2603 <td>0</td>
2604 <td>1</td>
2605 </tr>
2606 <tr>
2607 <td>1</td>
2608 <td>1</td>
2609 <td>0</td>
2610 </tr>
2611 </tbody>
2612</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002613</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002614<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002615<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002616<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2617 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2618 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2619 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002620</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002621</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002622
Chris Lattner00950542001-06-06 20:29:01 +00002623<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002624<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002625 <a name="vectorops">Vector Operations</a>
2626</div>
2627
2628<div class="doc_text">
2629
2630<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002631target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002632vector-specific operations needed to process vectors effectively. While LLVM
2633does directly support these vector operations, many sophisticated algorithms
2634will want to use target-specific intrinsics to take full advantage of a specific
2635target.</p>
2636
2637</div>
2638
2639<!-- _______________________________________________________________________ -->
2640<div class="doc_subsubsection">
2641 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2642</div>
2643
2644<div class="doc_text">
2645
2646<h5>Syntax:</h5>
2647
2648<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002649 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002650</pre>
2651
2652<h5>Overview:</h5>
2653
2654<p>
2655The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002656element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002657</p>
2658
2659
2660<h5>Arguments:</h5>
2661
2662<p>
2663The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002664value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002665an index indicating the position from which to extract the element.
2666The index may be a variable.</p>
2667
2668<h5>Semantics:</h5>
2669
2670<p>
2671The result is a scalar of the same type as the element type of
2672<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2673<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2674results are undefined.
2675</p>
2676
2677<h5>Example:</h5>
2678
2679<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002680 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002681</pre>
2682</div>
2683
2684
2685<!-- _______________________________________________________________________ -->
2686<div class="doc_subsubsection">
2687 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2688</div>
2689
2690<div class="doc_text">
2691
2692<h5>Syntax:</h5>
2693
2694<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002695 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002696</pre>
2697
2698<h5>Overview:</h5>
2699
2700<p>
2701The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002702element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002703</p>
2704
2705
2706<h5>Arguments:</h5>
2707
2708<p>
2709The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002710value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002711scalar value whose type must equal the element type of the first
2712operand. The third operand is an index indicating the position at
2713which to insert the value. The index may be a variable.</p>
2714
2715<h5>Semantics:</h5>
2716
2717<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002718The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002719element values are those of <tt>val</tt> except at position
2720<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2721exceeds the length of <tt>val</tt>, the results are undefined.
2722</p>
2723
2724<h5>Example:</h5>
2725
2726<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002727 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002728</pre>
2729</div>
2730
2731<!-- _______________________________________________________________________ -->
2732<div class="doc_subsubsection">
2733 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2734</div>
2735
2736<div class="doc_text">
2737
2738<h5>Syntax:</h5>
2739
2740<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002741 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002742</pre>
2743
2744<h5>Overview:</h5>
2745
2746<p>
2747The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2748from two input vectors, returning a vector of the same type.
2749</p>
2750
2751<h5>Arguments:</h5>
2752
2753<p>
2754The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2755with types that match each other and types that match the result of the
2756instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002757of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002758</p>
2759
2760<p>
2761The shuffle mask operand is required to be a constant vector with either
2762constant integer or undef values.
2763</p>
2764
2765<h5>Semantics:</h5>
2766
2767<p>
2768The elements of the two input vectors are numbered from left to right across
2769both of the vectors. The shuffle mask operand specifies, for each element of
2770the result vector, which element of the two input registers the result element
2771gets. The element selector may be undef (meaning "don't care") and the second
2772operand may be undef if performing a shuffle from only one vector.
2773</p>
2774
2775<h5>Example:</h5>
2776
2777<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002778 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002779 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002780 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2781 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002782</pre>
2783</div>
2784
Tanya Lattner09474292006-04-14 19:24:33 +00002785
Chris Lattner3df241e2006-04-08 23:07:04 +00002786<!-- ======================================================================= -->
2787<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002788 <a name="aggregateops">Aggregate Operations</a>
2789</div>
2790
2791<div class="doc_text">
2792
2793<p>LLVM supports several instructions for working with aggregate values.
2794</p>
2795
2796</div>
2797
2798<!-- _______________________________________________________________________ -->
2799<div class="doc_subsubsection">
2800 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2801</div>
2802
2803<div class="doc_text">
2804
2805<h5>Syntax:</h5>
2806
2807<pre>
2808 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2809</pre>
2810
2811<h5>Overview:</h5>
2812
2813<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002814The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2815or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002816</p>
2817
2818
2819<h5>Arguments:</h5>
2820
2821<p>
2822The first operand of an '<tt>extractvalue</tt>' instruction is a
2823value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002824type. The operands are constant indices to specify which value to extract
2825in the same manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002826'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2827</p>
2828
2829<h5>Semantics:</h5>
2830
2831<p>
2832The result is the value at the position in the aggregate specified by
2833the index operands.
2834</p>
2835
2836<h5>Example:</h5>
2837
2838<pre>
2839 %result = extractvalue {i32, float} %agg, i32 0 <i>; yields i32</i>
2840</pre>
2841</div>
2842
2843
2844<!-- _______________________________________________________________________ -->
2845<div class="doc_subsubsection">
2846 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2847</div>
2848
2849<div class="doc_text">
2850
2851<h5>Syntax:</h5>
2852
2853<pre>
2854 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2855</pre>
2856
2857<h5>Overview:</h5>
2858
2859<p>
2860The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002861into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002862</p>
2863
2864
2865<h5>Arguments:</h5>
2866
2867<p>
2868The first operand of an '<tt>insertvalue</tt>' instruction is a
2869value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
2870The second operand is a first-class value to insert.
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002871type of the first operand. The following operands are constant indices
Dan Gohmana334d5f2008-05-12 23:51:09 +00002872indicating the position at which to insert the value in the same manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002873indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002874'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2875The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002876by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002877
2878<h5>Semantics:</h5>
2879
2880<p>
2881The result is an aggregate of the same type as <tt>val</tt>. Its
2882value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002883specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002884</p>
2885
2886<h5>Example:</h5>
2887
2888<pre>
2889 %result = insertvalue {i32, float} %agg, i32 1, i32 0 <i>; yields {i32, float}</i>
2890</pre>
2891</div>
2892
2893
2894<!-- ======================================================================= -->
2895<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002896 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002897</div>
2898
Misha Brukman9d0919f2003-11-08 01:05:38 +00002899<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002900
Chris Lattner261efe92003-11-25 01:02:51 +00002901<p>A key design point of an SSA-based representation is how it
2902represents memory. In LLVM, no memory locations are in SSA form, which
2903makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002904allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002905
Misha Brukman9d0919f2003-11-08 01:05:38 +00002906</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002907
Chris Lattner00950542001-06-06 20:29:01 +00002908<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002909<div class="doc_subsubsection">
2910 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2911</div>
2912
Misha Brukman9d0919f2003-11-08 01:05:38 +00002913<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002914
Chris Lattner00950542001-06-06 20:29:01 +00002915<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002916
2917<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002918 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002919</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002920
Chris Lattner00950542001-06-06 20:29:01 +00002921<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002922
Chris Lattner261efe92003-11-25 01:02:51 +00002923<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00002924heap and returns a pointer to it. The object is always allocated in the generic
2925address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002926
Chris Lattner00950542001-06-06 20:29:01 +00002927<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002928
2929<p>The '<tt>malloc</tt>' instruction allocates
2930<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002931bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002932appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00002933number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00002934If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00002935be aligned to at least that boundary. If not specified, or if zero, the target can
2936choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002937
Misha Brukman9d0919f2003-11-08 01:05:38 +00002938<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002939
Chris Lattner00950542001-06-06 20:29:01 +00002940<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002941
Chris Lattner261efe92003-11-25 01:02:51 +00002942<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00002943a pointer is returned. The result of a zero byte allocattion is undefined. The
2944result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002945
Chris Lattner2cbdc452005-11-06 08:02:57 +00002946<h5>Example:</h5>
2947
2948<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002949 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002950
Bill Wendlingaac388b2007-05-29 09:42:13 +00002951 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2952 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2953 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2954 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2955 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002956</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002957</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002958
Chris Lattner00950542001-06-06 20:29:01 +00002959<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002960<div class="doc_subsubsection">
2961 <a name="i_free">'<tt>free</tt>' Instruction</a>
2962</div>
2963
Misha Brukman9d0919f2003-11-08 01:05:38 +00002964<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002965
Chris Lattner00950542001-06-06 20:29:01 +00002966<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002967
2968<pre>
2969 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002970</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002971
Chris Lattner00950542001-06-06 20:29:01 +00002972<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002973
Chris Lattner261efe92003-11-25 01:02:51 +00002974<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002975memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002976
Chris Lattner00950542001-06-06 20:29:01 +00002977<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002978
Chris Lattner261efe92003-11-25 01:02:51 +00002979<p>'<tt>value</tt>' shall be a pointer value that points to a value
2980that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2981instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002982
Chris Lattner00950542001-06-06 20:29:01 +00002983<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002984
John Criswell9e2485c2004-12-10 15:51:16 +00002985<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00002986after this instruction executes. If the pointer is null, the operation
2987is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002988
Chris Lattner00950542001-06-06 20:29:01 +00002989<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002990
2991<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002992 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2993 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00002994</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002995</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002996
Chris Lattner00950542001-06-06 20:29:01 +00002997<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002998<div class="doc_subsubsection">
2999 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3000</div>
3001
Misha Brukman9d0919f2003-11-08 01:05:38 +00003002<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003003
Chris Lattner00950542001-06-06 20:29:01 +00003004<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003005
3006<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003007 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003008</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003009
Chris Lattner00950542001-06-06 20:29:01 +00003010<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003011
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003012<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3013currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003014returns to its caller. The object is always allocated in the generic address
3015space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003016
Chris Lattner00950542001-06-06 20:29:01 +00003017<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003018
John Criswell9e2485c2004-12-10 15:51:16 +00003019<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003020bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003021appropriate type to the program. If "NumElements" is specified, it is the
3022number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003023If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003024to be aligned to at least that boundary. If not specified, or if zero, the target
3025can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003026
Misha Brukman9d0919f2003-11-08 01:05:38 +00003027<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003028
Chris Lattner00950542001-06-06 20:29:01 +00003029<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003030
Chris Lattner72ed2002008-04-19 21:01:16 +00003031<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3032there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003033memory is automatically released when the function returns. The '<tt>alloca</tt>'
3034instruction is commonly used to represent automatic variables that must
3035have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003036 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003037instructions), the memory is reclaimed. Allocating zero bytes
3038is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003039
Chris Lattner00950542001-06-06 20:29:01 +00003040<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003041
3042<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003043 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003044 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3045 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003046 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003047</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003048</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003049
Chris Lattner00950542001-06-06 20:29:01 +00003050<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003051<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3052Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003053<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003054<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003055<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003056<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003057<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003058<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003059<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003060address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003061 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003062marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003063the number or order of execution of this <tt>load</tt> with other
3064volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3065instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003066<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003067The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003068(that is, the alignment of the memory address). A value of 0 or an
3069omitted "align" argument means that the operation has the preferential
3070alignment for the target. It is the responsibility of the code emitter
3071to ensure that the alignment information is correct. Overestimating
3072the alignment results in an undefined behavior. Underestimating the
3073alignment may produce less efficient code. An alignment of 1 is always
3074safe.
3075</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003076<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003077<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003078<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003079<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003080 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003081 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3082 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003083</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003084</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003085<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003086<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3087Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003088<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003089<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003090<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3091 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003092</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003093<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003094<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003095<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003096<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003097to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003098operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3099of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003100operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003101optimizer is not allowed to modify the number or order of execution of
3102this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3103 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003104<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003105The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003106(that is, the alignment of the memory address). A value of 0 or an
3107omitted "align" argument means that the operation has the preferential
3108alignment for the target. It is the responsibility of the code emitter
3109to ensure that the alignment information is correct. Overestimating
3110the alignment results in an undefined behavior. Underestimating the
3111alignment may produce less efficient code. An alignment of 1 is always
3112safe.
3113</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003114<h5>Semantics:</h5>
3115<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3116at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003117<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003118<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003119 store i32 3, i32* %ptr <i>; yields {void}</i>
3120 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003121</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003122</div>
3123
Chris Lattner2b7d3202002-05-06 03:03:22 +00003124<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003125<div class="doc_subsubsection">
3126 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3127</div>
3128
Misha Brukman9d0919f2003-11-08 01:05:38 +00003129<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003130<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003131<pre>
3132 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3133</pre>
3134
Chris Lattner7faa8832002-04-14 06:13:44 +00003135<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003136
3137<p>
3138The '<tt>getelementptr</tt>' instruction is used to get the address of a
3139subelement of an aggregate data structure.</p>
3140
Chris Lattner7faa8832002-04-14 06:13:44 +00003141<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003142
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003143<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003144elements of the aggregate object to index to. The actual types of the arguments
3145provided depend on the type of the first pointer argument. The
3146'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003147levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003148structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003149into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3150values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003151
Chris Lattner261efe92003-11-25 01:02:51 +00003152<p>For example, let's consider a C code fragment and how it gets
3153compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003154
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003155<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003156<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003157struct RT {
3158 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003159 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003160 char C;
3161};
3162struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003163 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003164 double Y;
3165 struct RT Z;
3166};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003167
Chris Lattnercabc8462007-05-29 15:43:56 +00003168int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003169 return &amp;s[1].Z.B[5][13];
3170}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003171</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003172</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003173
Misha Brukman9d0919f2003-11-08 01:05:38 +00003174<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003175
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003176<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003177<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003178%RT = type { i8 , [10 x [20 x i32]], i8 }
3179%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003180
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003181define i32* %foo(%ST* %s) {
3182entry:
3183 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3184 ret i32* %reg
3185}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003186</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003187</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003188
Chris Lattner7faa8832002-04-14 06:13:44 +00003189<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003190
3191<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003192on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003193and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003194<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003195to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3196structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003197
Misha Brukman9d0919f2003-11-08 01:05:38 +00003198<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003199type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003200}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003201the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3202i8 }</tt>' type, another structure. The third index indexes into the second
3203element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003204array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003205'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3206to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003207
Chris Lattner261efe92003-11-25 01:02:51 +00003208<p>Note that it is perfectly legal to index partially through a
3209structure, returning a pointer to an inner element. Because of this,
3210the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003211
3212<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003213 define i32* %foo(%ST* %s) {
3214 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003215 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3216 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003217 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3218 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3219 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003220 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003221</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003222
3223<p>Note that it is undefined to access an array out of bounds: array and
3224pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003225The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003226defined to be accessible as variable length arrays, which requires access
3227beyond the zero'th element.</p>
3228
Chris Lattner884a9702006-08-15 00:45:58 +00003229<p>The getelementptr instruction is often confusing. For some more insight
3230into how it works, see <a href="GetElementPtr.html">the getelementptr
3231FAQ</a>.</p>
3232
Chris Lattner7faa8832002-04-14 06:13:44 +00003233<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003234
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003235<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003236 <i>; yields [12 x i8]*:aptr</i>
3237 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003238</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003239</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003240
Chris Lattner00950542001-06-06 20:29:01 +00003241<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003242<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003243</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003244<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003245<p>The instructions in this category are the conversion instructions (casting)
3246which all take a single operand and a type. They perform various bit conversions
3247on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003248</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003249
Chris Lattner6536cfe2002-05-06 22:08:29 +00003250<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003251<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003252 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3253</div>
3254<div class="doc_text">
3255
3256<h5>Syntax:</h5>
3257<pre>
3258 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3259</pre>
3260
3261<h5>Overview:</h5>
3262<p>
3263The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3264</p>
3265
3266<h5>Arguments:</h5>
3267<p>
3268The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3269be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003270and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003271type. The bit size of <tt>value</tt> must be larger than the bit size of
3272<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003273
3274<h5>Semantics:</h5>
3275<p>
3276The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003277and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3278larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3279It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003280
3281<h5>Example:</h5>
3282<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003283 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003284 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3285 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003286</pre>
3287</div>
3288
3289<!-- _______________________________________________________________________ -->
3290<div class="doc_subsubsection">
3291 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3292</div>
3293<div class="doc_text">
3294
3295<h5>Syntax:</h5>
3296<pre>
3297 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3298</pre>
3299
3300<h5>Overview:</h5>
3301<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3302<tt>ty2</tt>.</p>
3303
3304
3305<h5>Arguments:</h5>
3306<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003307<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3308also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003309<tt>value</tt> must be smaller than the bit size of the destination type,
3310<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003311
3312<h5>Semantics:</h5>
3313<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003314bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003315
Reid Spencerb5929522007-01-12 15:46:11 +00003316<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003317
3318<h5>Example:</h5>
3319<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003320 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003321 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003322</pre>
3323</div>
3324
3325<!-- _______________________________________________________________________ -->
3326<div class="doc_subsubsection">
3327 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3328</div>
3329<div class="doc_text">
3330
3331<h5>Syntax:</h5>
3332<pre>
3333 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3334</pre>
3335
3336<h5>Overview:</h5>
3337<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3338
3339<h5>Arguments:</h5>
3340<p>
3341The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003342<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3343also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003344<tt>value</tt> must be smaller than the bit size of the destination type,
3345<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003346
3347<h5>Semantics:</h5>
3348<p>
3349The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3350bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003351the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003352
Reid Spencerc78f3372007-01-12 03:35:51 +00003353<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003354
3355<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003356<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003357 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003358 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003359</pre>
3360</div>
3361
3362<!-- _______________________________________________________________________ -->
3363<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003364 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3365</div>
3366
3367<div class="doc_text">
3368
3369<h5>Syntax:</h5>
3370
3371<pre>
3372 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3373</pre>
3374
3375<h5>Overview:</h5>
3376<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3377<tt>ty2</tt>.</p>
3378
3379
3380<h5>Arguments:</h5>
3381<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3382 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3383cast it to. The size of <tt>value</tt> must be larger than the size of
3384<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3385<i>no-op cast</i>.</p>
3386
3387<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003388<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3389<a href="#t_floating">floating point</a> type to a smaller
3390<a href="#t_floating">floating point</a> type. If the value cannot fit within
3391the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003392
3393<h5>Example:</h5>
3394<pre>
3395 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3396 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3397</pre>
3398</div>
3399
3400<!-- _______________________________________________________________________ -->
3401<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003402 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3403</div>
3404<div class="doc_text">
3405
3406<h5>Syntax:</h5>
3407<pre>
3408 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3409</pre>
3410
3411<h5>Overview:</h5>
3412<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3413floating point value.</p>
3414
3415<h5>Arguments:</h5>
3416<p>The '<tt>fpext</tt>' instruction takes a
3417<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003418and a <a href="#t_floating">floating point</a> type to cast it to. The source
3419type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003420
3421<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003422<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003423<a href="#t_floating">floating point</a> type to a larger
3424<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003425used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003426<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003427
3428<h5>Example:</h5>
3429<pre>
3430 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3431 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3432</pre>
3433</div>
3434
3435<!-- _______________________________________________________________________ -->
3436<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003437 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003438</div>
3439<div class="doc_text">
3440
3441<h5>Syntax:</h5>
3442<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003443 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003444</pre>
3445
3446<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003447<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003448unsigned integer equivalent of type <tt>ty2</tt>.
3449</p>
3450
3451<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003452<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003453scalar or vector <a href="#t_floating">floating point</a> value, and a type
3454to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3455type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3456vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003457
3458<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003459<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003460<a href="#t_floating">floating point</a> operand into the nearest (rounding
3461towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3462the results are undefined.</p>
3463
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003464<h5>Example:</h5>
3465<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003466 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003467 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003468 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003469</pre>
3470</div>
3471
3472<!-- _______________________________________________________________________ -->
3473<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003474 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003475</div>
3476<div class="doc_text">
3477
3478<h5>Syntax:</h5>
3479<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003480 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003481</pre>
3482
3483<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003484<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003485<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003486</p>
3487
Chris Lattner6536cfe2002-05-06 22:08:29 +00003488<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003489<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003490scalar or vector <a href="#t_floating">floating point</a> value, and a type
3491to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3492type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3493vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003494
Chris Lattner6536cfe2002-05-06 22:08:29 +00003495<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003496<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003497<a href="#t_floating">floating point</a> operand into the nearest (rounding
3498towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3499the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003500
Chris Lattner33ba0d92001-07-09 00:26:23 +00003501<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003502<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003503 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003504 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003505 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003506</pre>
3507</div>
3508
3509<!-- _______________________________________________________________________ -->
3510<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003511 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003512</div>
3513<div class="doc_text">
3514
3515<h5>Syntax:</h5>
3516<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003517 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003518</pre>
3519
3520<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003521<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003522integer and converts that value to the <tt>ty2</tt> type.</p>
3523
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003524<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003525<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3526scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3527to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3528type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3529floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003530
3531<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003532<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003533integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003534the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003535
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003536<h5>Example:</h5>
3537<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003538 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003539 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003540</pre>
3541</div>
3542
3543<!-- _______________________________________________________________________ -->
3544<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003545 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003546</div>
3547<div class="doc_text">
3548
3549<h5>Syntax:</h5>
3550<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003551 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003552</pre>
3553
3554<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003555<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003556integer and converts that value to the <tt>ty2</tt> type.</p>
3557
3558<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003559<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3560scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3561to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3562type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3563floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003564
3565<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003566<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003567integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003568the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003569
3570<h5>Example:</h5>
3571<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003572 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003573 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003574</pre>
3575</div>
3576
3577<!-- _______________________________________________________________________ -->
3578<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003579 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3580</div>
3581<div class="doc_text">
3582
3583<h5>Syntax:</h5>
3584<pre>
3585 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3586</pre>
3587
3588<h5>Overview:</h5>
3589<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3590the integer type <tt>ty2</tt>.</p>
3591
3592<h5>Arguments:</h5>
3593<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003594must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003595<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3596
3597<h5>Semantics:</h5>
3598<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3599<tt>ty2</tt> by interpreting the pointer value as an integer and either
3600truncating or zero extending that value to the size of the integer type. If
3601<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3602<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003603are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3604change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003605
3606<h5>Example:</h5>
3607<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003608 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3609 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003610</pre>
3611</div>
3612
3613<!-- _______________________________________________________________________ -->
3614<div class="doc_subsubsection">
3615 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3616</div>
3617<div class="doc_text">
3618
3619<h5>Syntax:</h5>
3620<pre>
3621 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3622</pre>
3623
3624<h5>Overview:</h5>
3625<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3626a pointer type, <tt>ty2</tt>.</p>
3627
3628<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003629<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003630value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003631<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003632
3633<h5>Semantics:</h5>
3634<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3635<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3636the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3637size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3638the size of a pointer then a zero extension is done. If they are the same size,
3639nothing is done (<i>no-op cast</i>).</p>
3640
3641<h5>Example:</h5>
3642<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003643 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3644 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3645 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003646</pre>
3647</div>
3648
3649<!-- _______________________________________________________________________ -->
3650<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003651 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003652</div>
3653<div class="doc_text">
3654
3655<h5>Syntax:</h5>
3656<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003657 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003658</pre>
3659
3660<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003661<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003662<tt>ty2</tt> without changing any bits.</p>
3663
3664<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003665<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003666a first class value, and a type to cast it to, which must also be a <a
3667 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003668and the destination type, <tt>ty2</tt>, must be identical. If the source
3669type is a pointer, the destination type must also be a pointer.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003670
3671<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003672<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003673<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3674this conversion. The conversion is done as if the <tt>value</tt> had been
3675stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3676converted to other pointer types with this instruction. To convert pointers to
3677other types, use the <a href="#i_inttoptr">inttoptr</a> or
3678<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003679
3680<h5>Example:</h5>
3681<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003682 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003683 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3684 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003685</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003686</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003687
Reid Spencer2fd21e62006-11-08 01:18:52 +00003688<!-- ======================================================================= -->
3689<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3690<div class="doc_text">
3691<p>The instructions in this category are the "miscellaneous"
3692instructions, which defy better classification.</p>
3693</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003694
3695<!-- _______________________________________________________________________ -->
3696<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3697</div>
3698<div class="doc_text">
3699<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003700<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003701</pre>
3702<h5>Overview:</h5>
3703<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
Chris Lattner4316dec2008-04-02 00:38:26 +00003704of its two integer or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003705<h5>Arguments:</h5>
3706<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003707the condition code indicating the kind of comparison to perform. It is not
3708a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003709<ol>
3710 <li><tt>eq</tt>: equal</li>
3711 <li><tt>ne</tt>: not equal </li>
3712 <li><tt>ugt</tt>: unsigned greater than</li>
3713 <li><tt>uge</tt>: unsigned greater or equal</li>
3714 <li><tt>ult</tt>: unsigned less than</li>
3715 <li><tt>ule</tt>: unsigned less or equal</li>
3716 <li><tt>sgt</tt>: signed greater than</li>
3717 <li><tt>sge</tt>: signed greater or equal</li>
3718 <li><tt>slt</tt>: signed less than</li>
3719 <li><tt>sle</tt>: signed less or equal</li>
3720</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003721<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003722<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003723<h5>Semantics:</h5>
3724<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3725the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003726yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003727<ol>
3728 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3729 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3730 </li>
3731 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3732 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3733 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3734 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3735 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3736 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3737 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3738 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3739 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3740 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3741 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3742 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3743 <li><tt>sge</tt>: interprets the operands as signed values and yields
3744 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3745 <li><tt>slt</tt>: interprets the operands as signed values and yields
3746 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3747 <li><tt>sle</tt>: interprets the operands as signed values and yields
3748 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003749</ol>
3750<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003751values are compared as if they were integers.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003752
3753<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003754<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3755 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3756 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3757 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3758 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3759 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003760</pre>
3761</div>
3762
3763<!-- _______________________________________________________________________ -->
3764<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3765</div>
3766<div class="doc_text">
3767<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003768<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003769</pre>
3770<h5>Overview:</h5>
3771<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3772of its floating point operands.</p>
3773<h5>Arguments:</h5>
3774<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003775the condition code indicating the kind of comparison to perform. It is not
3776a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003777<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003778 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003779 <li><tt>oeq</tt>: ordered and equal</li>
3780 <li><tt>ogt</tt>: ordered and greater than </li>
3781 <li><tt>oge</tt>: ordered and greater than or equal</li>
3782 <li><tt>olt</tt>: ordered and less than </li>
3783 <li><tt>ole</tt>: ordered and less than or equal</li>
3784 <li><tt>one</tt>: ordered and not equal</li>
3785 <li><tt>ord</tt>: ordered (no nans)</li>
3786 <li><tt>ueq</tt>: unordered or equal</li>
3787 <li><tt>ugt</tt>: unordered or greater than </li>
3788 <li><tt>uge</tt>: unordered or greater than or equal</li>
3789 <li><tt>ult</tt>: unordered or less than </li>
3790 <li><tt>ule</tt>: unordered or less than or equal</li>
3791 <li><tt>une</tt>: unordered or not equal</li>
3792 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003793 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003794</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003795<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003796<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003797<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3798<a href="#t_floating">floating point</a> typed. They must have identical
3799types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003800<h5>Semantics:</h5>
Nate Begemanac80ade2008-05-12 19:01:56 +00003801<p>The '<tt>fcmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
3802according to the condition code given as <tt>cond</tt>. The comparison performed
3803always yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003804<ol>
3805 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003806 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003807 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003808 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003809 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003810 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003811 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003812 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003813 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003814 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003815 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003816 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003817 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003818 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3819 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003820 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003821 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003822 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003823 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003824 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003825 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003826 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003827 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003828 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003829 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003830 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003831 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003832 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3833</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003834
3835<h5>Example:</h5>
3836<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3837 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3838 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3839 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3840</pre>
3841</div>
3842
Reid Spencer2fd21e62006-11-08 01:18:52 +00003843<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00003844<div class="doc_subsubsection">
3845 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
3846</div>
3847<div class="doc_text">
3848<h5>Syntax:</h5>
3849<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
3850</pre>
3851<h5>Overview:</h5>
3852<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
3853element-wise comparison of its two integer vector operands.</p>
3854<h5>Arguments:</h5>
3855<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
3856the condition code indicating the kind of comparison to perform. It is not
3857a value, just a keyword. The possible condition code are:
3858<ol>
3859 <li><tt>eq</tt>: equal</li>
3860 <li><tt>ne</tt>: not equal </li>
3861 <li><tt>ugt</tt>: unsigned greater than</li>
3862 <li><tt>uge</tt>: unsigned greater or equal</li>
3863 <li><tt>ult</tt>: unsigned less than</li>
3864 <li><tt>ule</tt>: unsigned less or equal</li>
3865 <li><tt>sgt</tt>: signed greater than</li>
3866 <li><tt>sge</tt>: signed greater or equal</li>
3867 <li><tt>slt</tt>: signed less than</li>
3868 <li><tt>sle</tt>: signed less or equal</li>
3869</ol>
3870<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
3871<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
3872<h5>Semantics:</h5>
3873<p>The '<tt>vicmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
3874according to the condition code given as <tt>cond</tt>. The comparison yields a
3875<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
3876identical type as the values being compared. The most significant bit in each
3877element is 1 if the element-wise comparison evaluates to true, and is 0
3878otherwise. All other bits of the result are undefined. The condition codes
3879are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
3880instruction</a>.
3881
3882<h5>Example:</h5>
3883<pre>
3884 &lt;result&gt; = vicmp eq <2 x i32> < i32 4, i32 0 >, < i32 5, i32 0 > <i>; yields: result=<2 x i32> < i32 0, i32 -1 ></i>
3885 &lt;result&gt; = vicmp ult <2 x i8> < i8 1, i8 2 >, < i8 2, i8 2> <i>; yields: result=<2 x i8> < i8 -1, i8 0 ></i>
3886</pre>
3887</div>
3888
3889<!-- _______________________________________________________________________ -->
3890<div class="doc_subsubsection">
3891 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
3892</div>
3893<div class="doc_text">
3894<h5>Syntax:</h5>
3895<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;</pre>
3896<h5>Overview:</h5>
3897<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
3898element-wise comparison of its two floating point vector operands. The output
3899elements have the same width as the input elements.</p>
3900<h5>Arguments:</h5>
3901<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
3902the condition code indicating the kind of comparison to perform. It is not
3903a value, just a keyword. The possible condition code are:
3904<ol>
3905 <li><tt>false</tt>: no comparison, always returns false</li>
3906 <li><tt>oeq</tt>: ordered and equal</li>
3907 <li><tt>ogt</tt>: ordered and greater than </li>
3908 <li><tt>oge</tt>: ordered and greater than or equal</li>
3909 <li><tt>olt</tt>: ordered and less than </li>
3910 <li><tt>ole</tt>: ordered and less than or equal</li>
3911 <li><tt>one</tt>: ordered and not equal</li>
3912 <li><tt>ord</tt>: ordered (no nans)</li>
3913 <li><tt>ueq</tt>: unordered or equal</li>
3914 <li><tt>ugt</tt>: unordered or greater than </li>
3915 <li><tt>uge</tt>: unordered or greater than or equal</li>
3916 <li><tt>ult</tt>: unordered or less than </li>
3917 <li><tt>ule</tt>: unordered or less than or equal</li>
3918 <li><tt>une</tt>: unordered or not equal</li>
3919 <li><tt>uno</tt>: unordered (either nans)</li>
3920 <li><tt>true</tt>: no comparison, always returns true</li>
3921</ol>
3922<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
3923<a href="#t_floating">floating point</a> typed. They must also be identical
3924types.</p>
3925<h5>Semantics:</h5>
3926<p>The '<tt>vfcmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
3927according to the condition code given as <tt>cond</tt>. The comparison yields a
3928<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
3929an identical number of elements as the values being compared, and each element
3930having identical with to the width of the floating point elements. The most
3931significant bit in each element is 1 if the element-wise comparison evaluates to
3932true, and is 0 otherwise. All other bits of the result are undefined. The
3933condition codes are evaluated identically to the
3934<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
3935
3936<h5>Example:</h5>
3937<pre>
3938 &lt;result&gt; = vfcmp oeq <2 x float> < float 4, float 0 >, < float 5, float 0 > <i>; yields: result=<2 x i32> < i32 0, i32 -1 ></i>
3939 &lt;result&gt; = vfcmp ult <2 x double> < double 1, double 2 >, < double 2, double 2> <i>; yields: result=<2 x i64> < i64 -1, i64 0 ></i>
3940</pre>
3941</div>
3942
3943<!-- _______________________________________________________________________ -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003944<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3945Instruction</a> </div>
3946<div class="doc_text">
3947<h5>Syntax:</h5>
3948<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3949<h5>Overview:</h5>
3950<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3951the SSA graph representing the function.</p>
3952<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003953<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00003954field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3955as arguments, with one pair for each predecessor basic block of the
3956current block. Only values of <a href="#t_firstclass">first class</a>
3957type may be used as the value arguments to the PHI node. Only labels
3958may be used as the label arguments.</p>
3959<p>There must be no non-phi instructions between the start of a basic
3960block and the PHI instructions: i.e. PHI instructions must be first in
3961a basic block.</p>
3962<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003963<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3964specified by the pair corresponding to the predecessor basic block that executed
3965just prior to the current block.</p>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003966<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003967<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003968</div>
3969
Chris Lattnercc37aae2004-03-12 05:50:16 +00003970<!-- _______________________________________________________________________ -->
3971<div class="doc_subsubsection">
3972 <a name="i_select">'<tt>select</tt>' Instruction</a>
3973</div>
3974
3975<div class="doc_text">
3976
3977<h5>Syntax:</h5>
3978
3979<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003980 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003981</pre>
3982
3983<h5>Overview:</h5>
3984
3985<p>
3986The '<tt>select</tt>' instruction is used to choose one value based on a
3987condition, without branching.
3988</p>
3989
3990
3991<h5>Arguments:</h5>
3992
3993<p>
3994The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3995</p>
3996
3997<h5>Semantics:</h5>
3998
3999<p>
4000If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004001value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004002</p>
4003
4004<h5>Example:</h5>
4005
4006<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004007 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004008</pre>
4009</div>
4010
Robert Bocchino05ccd702006-01-15 20:48:27 +00004011
4012<!-- _______________________________________________________________________ -->
4013<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004014 <a name="i_call">'<tt>call</tt>' Instruction</a>
4015</div>
4016
Misha Brukman9d0919f2003-11-08 01:05:38 +00004017<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004018
Chris Lattner00950542001-06-06 20:29:01 +00004019<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004020<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004021 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004022</pre>
4023
Chris Lattner00950542001-06-06 20:29:01 +00004024<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004025
Misha Brukman9d0919f2003-11-08 01:05:38 +00004026<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004027
Chris Lattner00950542001-06-06 20:29:01 +00004028<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004029
Misha Brukman9d0919f2003-11-08 01:05:38 +00004030<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004031
Chris Lattner6536cfe2002-05-06 22:08:29 +00004032<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004033 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004034 <p>The optional "tail" marker indicates whether the callee function accesses
4035 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004036 function call is eligible for tail call optimization. Note that calls may
4037 be marked "tail" even if they do not occur before a <a
4038 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004039 </li>
4040 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004041 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004042 convention</a> the call should use. If none is specified, the call defaults
4043 to using C calling conventions.
4044 </li>
4045 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004046 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4047 the type of the return value. Functions that return no value are marked
4048 <tt><a href="#t_void">void</a></tt>.</p>
4049 </li>
4050 <li>
4051 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4052 value being invoked. The argument types must match the types implied by
4053 this signature. This type can be omitted if the function is not varargs
4054 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004055 </li>
4056 <li>
4057 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4058 be invoked. In most cases, this is a direct function invocation, but
4059 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004060 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004061 </li>
4062 <li>
4063 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004064 function signature argument types. All arguments must be of
4065 <a href="#t_firstclass">first class</a> type. If the function signature
4066 indicates the function accepts a variable number of arguments, the extra
4067 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004068 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004069</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004070
Chris Lattner00950542001-06-06 20:29:01 +00004071<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004072
Chris Lattner261efe92003-11-25 01:02:51 +00004073<p>The '<tt>call</tt>' instruction is used to cause control flow to
4074transfer to a specified function, with its incoming arguments bound to
4075the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4076instruction in the called function, control flow continues with the
4077instruction after the function call, and the return value of the
Chris Lattner772fccf2008-03-21 17:24:17 +00004078function is bound to the result argument. If the callee returns multiple
4079values then the return values of the function are only accessible through
4080the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004081
Chris Lattner00950542001-06-06 20:29:01 +00004082<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004083
4084<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004085 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004086 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4087 %X = tail call i32 @foo() <i>; yields i32</i>
4088 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4089 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004090
4091 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004092 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4093 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4094 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004095</pre>
4096
Misha Brukman9d0919f2003-11-08 01:05:38 +00004097</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004098
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004099<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004100<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004101 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004102</div>
4103
Misha Brukman9d0919f2003-11-08 01:05:38 +00004104<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004105
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004106<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004107
4108<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004109 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004110</pre>
4111
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004112<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004113
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004114<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004115the "variable argument" area of a function call. It is used to implement the
4116<tt>va_arg</tt> macro in C.</p>
4117
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004118<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004119
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004120<p>This instruction takes a <tt>va_list*</tt> value and the type of
4121the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004122increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004123actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004124
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004125<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004126
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004127<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4128type from the specified <tt>va_list</tt> and causes the
4129<tt>va_list</tt> to point to the next argument. For more information,
4130see the variable argument handling <a href="#int_varargs">Intrinsic
4131Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004132
4133<p>It is legal for this instruction to be called in a function which does not
4134take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004135function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004136
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004137<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004138href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004139argument.</p>
4140
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004141<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004142
4143<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4144
Misha Brukman9d0919f2003-11-08 01:05:38 +00004145</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004146
Devang Patelc3fc6df2008-03-10 20:49:15 +00004147<!-- _______________________________________________________________________ -->
4148<div class="doc_subsubsection">
4149 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4150</div>
4151
4152<div class="doc_text">
4153
4154<h5>Syntax:</h5>
4155<pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004156 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patelc3fc6df2008-03-10 20:49:15 +00004157</pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004158
Devang Patelc3fc6df2008-03-10 20:49:15 +00004159<h5>Overview:</h5>
4160
4161<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004162from a '<tt><a href="#i_call">call</a></tt>'
4163or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4164results.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004165
4166<h5>Arguments:</h5>
4167
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004168<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattner1c406d72008-04-23 04:06:52 +00004169first argument, or an undef value. The value must have <a
4170href="#t_struct">structure type</a>. The second argument is a constant
4171unsigned index value which must be in range for the number of values returned
4172by the call.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004173
4174<h5>Semantics:</h5>
4175
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004176<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4177'<tt>index</tt>' from the aggregate value.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004178
4179<h5>Example:</h5>
4180
4181<pre>
4182 %struct.A = type { i32, i8 }
4183
4184 %r = call %struct.A @foo()
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004185 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4186 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004187 add i32 %gr, 42
4188 add i8 %gr1, 41
4189</pre>
4190
4191</div>
4192
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004193<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004194<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4195<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004196
Misha Brukman9d0919f2003-11-08 01:05:38 +00004197<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004198
4199<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004200well known names and semantics and are required to follow certain restrictions.
4201Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004202language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004203adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004204
John Criswellfc6b8952005-05-16 16:17:45 +00004205<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004206prefix is reserved in LLVM for intrinsic names; thus, function names may not
4207begin with this prefix. Intrinsic functions must always be external functions:
4208you cannot define the body of intrinsic functions. Intrinsic functions may
4209only be used in call or invoke instructions: it is illegal to take the address
4210of an intrinsic function. Additionally, because intrinsic functions are part
4211of the LLVM language, it is required if any are added that they be documented
4212here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004213
Chandler Carruth69940402007-08-04 01:51:18 +00004214<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4215a family of functions that perform the same operation but on different data
4216types. Because LLVM can represent over 8 million different integer types,
4217overloading is used commonly to allow an intrinsic function to operate on any
4218integer type. One or more of the argument types or the result type can be
4219overloaded to accept any integer type. Argument types may also be defined as
4220exactly matching a previous argument's type or the result type. This allows an
4221intrinsic function which accepts multiple arguments, but needs all of them to
4222be of the same type, to only be overloaded with respect to a single argument or
4223the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004224
Chandler Carruth69940402007-08-04 01:51:18 +00004225<p>Overloaded intrinsics will have the names of its overloaded argument types
4226encoded into its function name, each preceded by a period. Only those types
4227which are overloaded result in a name suffix. Arguments whose type is matched
4228against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4229take an integer of any width and returns an integer of exactly the same integer
4230width. This leads to a family of functions such as
4231<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4232Only one type, the return type, is overloaded, and only one type suffix is
4233required. Because the argument's type is matched against the return type, it
4234does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004235
4236<p>To learn how to add an intrinsic function, please see the
4237<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004238</p>
4239
Misha Brukman9d0919f2003-11-08 01:05:38 +00004240</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004241
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004242<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004243<div class="doc_subsection">
4244 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4245</div>
4246
Misha Brukman9d0919f2003-11-08 01:05:38 +00004247<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004248
Misha Brukman9d0919f2003-11-08 01:05:38 +00004249<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004250 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004251intrinsic functions. These functions are related to the similarly
4252named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004253
Chris Lattner261efe92003-11-25 01:02:51 +00004254<p>All of these functions operate on arguments that use a
4255target-specific value type "<tt>va_list</tt>". The LLVM assembly
4256language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004257transformations should be prepared to handle these functions regardless of
4258the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004259
Chris Lattner374ab302006-05-15 17:26:46 +00004260<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004261instruction and the variable argument handling intrinsic functions are
4262used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004263
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004264<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004265<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004266define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004267 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004268 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004269 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004270 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004271
4272 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004273 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004274
4275 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004276 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004277 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004278 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004279 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004280
4281 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004282 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004283 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004284}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004285
4286declare void @llvm.va_start(i8*)
4287declare void @llvm.va_copy(i8*, i8*)
4288declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004289</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004290</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004291
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004292</div>
4293
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004294<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004295<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004296 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004297</div>
4298
4299
Misha Brukman9d0919f2003-11-08 01:05:38 +00004300<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004301<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004302<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004303<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004304<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4305<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4306href="#i_va_arg">va_arg</a></tt>.</p>
4307
4308<h5>Arguments:</h5>
4309
4310<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4311
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004312<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004313
4314<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4315macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004316<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004317<tt>va_arg</tt> will produce the first variable argument passed to the function.
4318Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004319last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004320
Misha Brukman9d0919f2003-11-08 01:05:38 +00004321</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004322
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004323<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004324<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004325 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004326</div>
4327
Misha Brukman9d0919f2003-11-08 01:05:38 +00004328<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004329<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004330<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004331<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004332
Jeff Cohenb627eab2007-04-29 01:07:00 +00004333<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004334which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004335or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004336
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004337<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004338
Jeff Cohenb627eab2007-04-29 01:07:00 +00004339<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004340
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004341<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004342
Misha Brukman9d0919f2003-11-08 01:05:38 +00004343<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004344macro available in C. In a target-dependent way, it destroys the
4345<tt>va_list</tt> element to which the argument points. Calls to <a
4346href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4347<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4348<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004349
Misha Brukman9d0919f2003-11-08 01:05:38 +00004350</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004351
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004352<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004353<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004354 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004355</div>
4356
Misha Brukman9d0919f2003-11-08 01:05:38 +00004357<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004358
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004359<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004360
4361<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004362 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004363</pre>
4364
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004365<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004366
Jeff Cohenb627eab2007-04-29 01:07:00 +00004367<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4368from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004369
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004370<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004371
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004372<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004373The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004374
Chris Lattnerd7923912004-05-23 21:06:01 +00004375
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004376<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004377
Jeff Cohenb627eab2007-04-29 01:07:00 +00004378<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4379macro available in C. In a target-dependent way, it copies the source
4380<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4381intrinsic is necessary because the <tt><a href="#int_va_start">
4382llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4383example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004384
Misha Brukman9d0919f2003-11-08 01:05:38 +00004385</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004386
Chris Lattner33aec9e2004-02-12 17:01:32 +00004387<!-- ======================================================================= -->
4388<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004389 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4390</div>
4391
4392<div class="doc_text">
4393
4394<p>
4395LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4396Collection</a> requires the implementation and generation of these intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004397These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004398stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004399href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004400Front-ends for type-safe garbage collected languages should generate these
4401intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4402href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4403</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004404
4405<p>The garbage collection intrinsics only operate on objects in the generic
4406 address space (address space zero).</p>
4407
Chris Lattnerd7923912004-05-23 21:06:01 +00004408</div>
4409
4410<!-- _______________________________________________________________________ -->
4411<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004412 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004413</div>
4414
4415<div class="doc_text">
4416
4417<h5>Syntax:</h5>
4418
4419<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004420 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004421</pre>
4422
4423<h5>Overview:</h5>
4424
John Criswell9e2485c2004-12-10 15:51:16 +00004425<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004426the code generator, and allows some metadata to be associated with it.</p>
4427
4428<h5>Arguments:</h5>
4429
4430<p>The first argument specifies the address of a stack object that contains the
4431root pointer. The second pointer (which must be either a constant or a global
4432value address) contains the meta-data to be associated with the root.</p>
4433
4434<h5>Semantics:</h5>
4435
Chris Lattner05d67092008-04-24 05:59:56 +00004436<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004437location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004438the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4439intrinsic may only be used in a function which <a href="#gc">specifies a GC
4440algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004441
4442</div>
4443
4444
4445<!-- _______________________________________________________________________ -->
4446<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004447 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004448</div>
4449
4450<div class="doc_text">
4451
4452<h5>Syntax:</h5>
4453
4454<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004455 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004456</pre>
4457
4458<h5>Overview:</h5>
4459
4460<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4461locations, allowing garbage collector implementations that require read
4462barriers.</p>
4463
4464<h5>Arguments:</h5>
4465
Chris Lattner80626e92006-03-14 20:02:51 +00004466<p>The second argument is the address to read from, which should be an address
4467allocated from the garbage collector. The first object is a pointer to the
4468start of the referenced object, if needed by the language runtime (otherwise
4469null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004470
4471<h5>Semantics:</h5>
4472
4473<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4474instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004475garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4476may only be used in a function which <a href="#gc">specifies a GC
4477algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004478
4479</div>
4480
4481
4482<!-- _______________________________________________________________________ -->
4483<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004484 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004485</div>
4486
4487<div class="doc_text">
4488
4489<h5>Syntax:</h5>
4490
4491<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004492 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004493</pre>
4494
4495<h5>Overview:</h5>
4496
4497<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4498locations, allowing garbage collector implementations that require write
4499barriers (such as generational or reference counting collectors).</p>
4500
4501<h5>Arguments:</h5>
4502
Chris Lattner80626e92006-03-14 20:02:51 +00004503<p>The first argument is the reference to store, the second is the start of the
4504object to store it to, and the third is the address of the field of Obj to
4505store to. If the runtime does not require a pointer to the object, Obj may be
4506null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004507
4508<h5>Semantics:</h5>
4509
4510<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4511instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004512garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4513may only be used in a function which <a href="#gc">specifies a GC
4514algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004515
4516</div>
4517
4518
4519
4520<!-- ======================================================================= -->
4521<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004522 <a name="int_codegen">Code Generator Intrinsics</a>
4523</div>
4524
4525<div class="doc_text">
4526<p>
4527These intrinsics are provided by LLVM to expose special features that may only
4528be implemented with code generator support.
4529</p>
4530
4531</div>
4532
4533<!-- _______________________________________________________________________ -->
4534<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004535 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004536</div>
4537
4538<div class="doc_text">
4539
4540<h5>Syntax:</h5>
4541<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004542 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004543</pre>
4544
4545<h5>Overview:</h5>
4546
4547<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004548The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4549target-specific value indicating the return address of the current function
4550or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004551</p>
4552
4553<h5>Arguments:</h5>
4554
4555<p>
4556The argument to this intrinsic indicates which function to return the address
4557for. Zero indicates the calling function, one indicates its caller, etc. The
4558argument is <b>required</b> to be a constant integer value.
4559</p>
4560
4561<h5>Semantics:</h5>
4562
4563<p>
4564The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4565the return address of the specified call frame, or zero if it cannot be
4566identified. The value returned by this intrinsic is likely to be incorrect or 0
4567for arguments other than zero, so it should only be used for debugging purposes.
4568</p>
4569
4570<p>
4571Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004572aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004573source-language caller.
4574</p>
4575</div>
4576
4577
4578<!-- _______________________________________________________________________ -->
4579<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004580 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004581</div>
4582
4583<div class="doc_text">
4584
4585<h5>Syntax:</h5>
4586<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004587 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004588</pre>
4589
4590<h5>Overview:</h5>
4591
4592<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004593The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4594target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004595</p>
4596
4597<h5>Arguments:</h5>
4598
4599<p>
4600The argument to this intrinsic indicates which function to return the frame
4601pointer for. Zero indicates the calling function, one indicates its caller,
4602etc. The argument is <b>required</b> to be a constant integer value.
4603</p>
4604
4605<h5>Semantics:</h5>
4606
4607<p>
4608The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4609the frame address of the specified call frame, or zero if it cannot be
4610identified. The value returned by this intrinsic is likely to be incorrect or 0
4611for arguments other than zero, so it should only be used for debugging purposes.
4612</p>
4613
4614<p>
4615Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004616aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004617source-language caller.
4618</p>
4619</div>
4620
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004621<!-- _______________________________________________________________________ -->
4622<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004623 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004624</div>
4625
4626<div class="doc_text">
4627
4628<h5>Syntax:</h5>
4629<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004630 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004631</pre>
4632
4633<h5>Overview:</h5>
4634
4635<p>
4636The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004637the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004638<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4639features like scoped automatic variable sized arrays in C99.
4640</p>
4641
4642<h5>Semantics:</h5>
4643
4644<p>
4645This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004646href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004647<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4648<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4649state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4650practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4651that were allocated after the <tt>llvm.stacksave</tt> was executed.
4652</p>
4653
4654</div>
4655
4656<!-- _______________________________________________________________________ -->
4657<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004658 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004659</div>
4660
4661<div class="doc_text">
4662
4663<h5>Syntax:</h5>
4664<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004665 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004666</pre>
4667
4668<h5>Overview:</h5>
4669
4670<p>
4671The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4672the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004673href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004674useful for implementing language features like scoped automatic variable sized
4675arrays in C99.
4676</p>
4677
4678<h5>Semantics:</h5>
4679
4680<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004681See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004682</p>
4683
4684</div>
4685
4686
4687<!-- _______________________________________________________________________ -->
4688<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004689 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004690</div>
4691
4692<div class="doc_text">
4693
4694<h5>Syntax:</h5>
4695<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004696 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004697</pre>
4698
4699<h5>Overview:</h5>
4700
4701
4702<p>
4703The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004704a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4705no
4706effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004707characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004708</p>
4709
4710<h5>Arguments:</h5>
4711
4712<p>
4713<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4714determining if the fetch should be for a read (0) or write (1), and
4715<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004716locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004717<tt>locality</tt> arguments must be constant integers.
4718</p>
4719
4720<h5>Semantics:</h5>
4721
4722<p>
4723This intrinsic does not modify the behavior of the program. In particular,
4724prefetches cannot trap and do not produce a value. On targets that support this
4725intrinsic, the prefetch can provide hints to the processor cache for better
4726performance.
4727</p>
4728
4729</div>
4730
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004731<!-- _______________________________________________________________________ -->
4732<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004733 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004734</div>
4735
4736<div class="doc_text">
4737
4738<h5>Syntax:</h5>
4739<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004740 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004741</pre>
4742
4743<h5>Overview:</h5>
4744
4745
4746<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004747The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4748(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004749code to simulators and other tools. The method is target specific, but it is
4750expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004751The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004752after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004753optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004754correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004755</p>
4756
4757<h5>Arguments:</h5>
4758
4759<p>
4760<tt>id</tt> is a numerical id identifying the marker.
4761</p>
4762
4763<h5>Semantics:</h5>
4764
4765<p>
4766This intrinsic does not modify the behavior of the program. Backends that do not
4767support this intrinisic may ignore it.
4768</p>
4769
4770</div>
4771
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004772<!-- _______________________________________________________________________ -->
4773<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004774 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004775</div>
4776
4777<div class="doc_text">
4778
4779<h5>Syntax:</h5>
4780<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004781 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004782</pre>
4783
4784<h5>Overview:</h5>
4785
4786
4787<p>
4788The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4789counter register (or similar low latency, high accuracy clocks) on those targets
4790that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4791As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4792should only be used for small timings.
4793</p>
4794
4795<h5>Semantics:</h5>
4796
4797<p>
4798When directly supported, reading the cycle counter should not modify any memory.
4799Implementations are allowed to either return a application specific value or a
4800system wide value. On backends without support, this is lowered to a constant 0.
4801</p>
4802
4803</div>
4804
Chris Lattner10610642004-02-14 04:08:35 +00004805<!-- ======================================================================= -->
4806<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004807 <a name="int_libc">Standard C Library Intrinsics</a>
4808</div>
4809
4810<div class="doc_text">
4811<p>
Chris Lattner10610642004-02-14 04:08:35 +00004812LLVM provides intrinsics for a few important standard C library functions.
4813These intrinsics allow source-language front-ends to pass information about the
4814alignment of the pointer arguments to the code generator, providing opportunity
4815for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004816</p>
4817
4818</div>
4819
4820<!-- _______________________________________________________________________ -->
4821<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004822 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004823</div>
4824
4825<div class="doc_text">
4826
4827<h5>Syntax:</h5>
4828<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004829 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004830 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004831 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004832 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004833</pre>
4834
4835<h5>Overview:</h5>
4836
4837<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004838The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004839location to the destination location.
4840</p>
4841
4842<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004843Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4844intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004845</p>
4846
4847<h5>Arguments:</h5>
4848
4849<p>
4850The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004851the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004852specifying the number of bytes to copy, and the fourth argument is the alignment
4853of the source and destination locations.
4854</p>
4855
Chris Lattner3301ced2004-02-12 21:18:15 +00004856<p>
4857If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004858the caller guarantees that both the source and destination pointers are aligned
4859to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004860</p>
4861
Chris Lattner33aec9e2004-02-12 17:01:32 +00004862<h5>Semantics:</h5>
4863
4864<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004865The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004866location to the destination location, which are not allowed to overlap. It
4867copies "len" bytes of memory over. If the argument is known to be aligned to
4868some boundary, this can be specified as the fourth argument, otherwise it should
4869be set to 0 or 1.
4870</p>
4871</div>
4872
4873
Chris Lattner0eb51b42004-02-12 18:10:10 +00004874<!-- _______________________________________________________________________ -->
4875<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004876 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00004877</div>
4878
4879<div class="doc_text">
4880
4881<h5>Syntax:</h5>
4882<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004883 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004884 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004885 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004886 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004887</pre>
4888
4889<h5>Overview:</h5>
4890
4891<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004892The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4893location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00004894'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004895</p>
4896
4897<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004898Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4899intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004900</p>
4901
4902<h5>Arguments:</h5>
4903
4904<p>
4905The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004906the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004907specifying the number of bytes to copy, and the fourth argument is the alignment
4908of the source and destination locations.
4909</p>
4910
Chris Lattner3301ced2004-02-12 21:18:15 +00004911<p>
4912If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004913the caller guarantees that the source and destination pointers are aligned to
4914that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004915</p>
4916
Chris Lattner0eb51b42004-02-12 18:10:10 +00004917<h5>Semantics:</h5>
4918
4919<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004920The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004921location to the destination location, which may overlap. It
4922copies "len" bytes of memory over. If the argument is known to be aligned to
4923some boundary, this can be specified as the fourth argument, otherwise it should
4924be set to 0 or 1.
4925</p>
4926</div>
4927
Chris Lattner8ff75902004-01-06 05:31:32 +00004928
Chris Lattner10610642004-02-14 04:08:35 +00004929<!-- _______________________________________________________________________ -->
4930<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004931 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004932</div>
4933
4934<div class="doc_text">
4935
4936<h5>Syntax:</h5>
4937<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004938 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004939 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004940 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004941 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004942</pre>
4943
4944<h5>Overview:</h5>
4945
4946<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004947The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004948byte value.
4949</p>
4950
4951<p>
4952Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4953does not return a value, and takes an extra alignment argument.
4954</p>
4955
4956<h5>Arguments:</h5>
4957
4958<p>
4959The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004960byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004961argument specifying the number of bytes to fill, and the fourth argument is the
4962known alignment of destination location.
4963</p>
4964
4965<p>
4966If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004967the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004968</p>
4969
4970<h5>Semantics:</h5>
4971
4972<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004973The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4974the
Chris Lattner10610642004-02-14 04:08:35 +00004975destination location. If the argument is known to be aligned to some boundary,
4976this can be specified as the fourth argument, otherwise it should be set to 0 or
49771.
4978</p>
4979</div>
4980
4981
Chris Lattner32006282004-06-11 02:28:03 +00004982<!-- _______________________________________________________________________ -->
4983<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004984 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004985</div>
4986
4987<div class="doc_text">
4988
4989<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004990<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00004991floating point or vector of floating point type. Not all targets support all
4992types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00004993<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004994 declare float @llvm.sqrt.f32(float %Val)
4995 declare double @llvm.sqrt.f64(double %Val)
4996 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
4997 declare fp128 @llvm.sqrt.f128(fp128 %Val)
4998 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004999</pre>
5000
5001<h5>Overview:</h5>
5002
5003<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005004The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005005returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005006<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005007negative numbers other than -0.0 (which allows for better optimization, because
5008there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5009defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005010</p>
5011
5012<h5>Arguments:</h5>
5013
5014<p>
5015The argument and return value are floating point numbers of the same type.
5016</p>
5017
5018<h5>Semantics:</h5>
5019
5020<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005021This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005022floating point number.
5023</p>
5024</div>
5025
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005026<!-- _______________________________________________________________________ -->
5027<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005028 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005029</div>
5030
5031<div class="doc_text">
5032
5033<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005034<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005035floating point or vector of floating point type. Not all targets support all
5036types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005037<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005038 declare float @llvm.powi.f32(float %Val, i32 %power)
5039 declare double @llvm.powi.f64(double %Val, i32 %power)
5040 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5041 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5042 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005043</pre>
5044
5045<h5>Overview:</h5>
5046
5047<p>
5048The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5049specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005050multiplications is not defined. When a vector of floating point type is
5051used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005052</p>
5053
5054<h5>Arguments:</h5>
5055
5056<p>
5057The second argument is an integer power, and the first is a value to raise to
5058that power.
5059</p>
5060
5061<h5>Semantics:</h5>
5062
5063<p>
5064This function returns the first value raised to the second power with an
5065unspecified sequence of rounding operations.</p>
5066</div>
5067
Dan Gohman91c284c2007-10-15 20:30:11 +00005068<!-- _______________________________________________________________________ -->
5069<div class="doc_subsubsection">
5070 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5071</div>
5072
5073<div class="doc_text">
5074
5075<h5>Syntax:</h5>
5076<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5077floating point or vector of floating point type. Not all targets support all
5078types however.
5079<pre>
5080 declare float @llvm.sin.f32(float %Val)
5081 declare double @llvm.sin.f64(double %Val)
5082 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5083 declare fp128 @llvm.sin.f128(fp128 %Val)
5084 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5085</pre>
5086
5087<h5>Overview:</h5>
5088
5089<p>
5090The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5091</p>
5092
5093<h5>Arguments:</h5>
5094
5095<p>
5096The argument and return value are floating point numbers of the same type.
5097</p>
5098
5099<h5>Semantics:</h5>
5100
5101<p>
5102This function returns the sine of the specified operand, returning the
5103same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005104conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005105</div>
5106
5107<!-- _______________________________________________________________________ -->
5108<div class="doc_subsubsection">
5109 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5110</div>
5111
5112<div class="doc_text">
5113
5114<h5>Syntax:</h5>
5115<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5116floating point or vector of floating point type. Not all targets support all
5117types however.
5118<pre>
5119 declare float @llvm.cos.f32(float %Val)
5120 declare double @llvm.cos.f64(double %Val)
5121 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5122 declare fp128 @llvm.cos.f128(fp128 %Val)
5123 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5124</pre>
5125
5126<h5>Overview:</h5>
5127
5128<p>
5129The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5130</p>
5131
5132<h5>Arguments:</h5>
5133
5134<p>
5135The argument and return value are floating point numbers of the same type.
5136</p>
5137
5138<h5>Semantics:</h5>
5139
5140<p>
5141This function returns the cosine of the specified operand, returning the
5142same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005143conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005144</div>
5145
5146<!-- _______________________________________________________________________ -->
5147<div class="doc_subsubsection">
5148 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5149</div>
5150
5151<div class="doc_text">
5152
5153<h5>Syntax:</h5>
5154<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5155floating point or vector of floating point type. Not all targets support all
5156types however.
5157<pre>
5158 declare float @llvm.pow.f32(float %Val, float %Power)
5159 declare double @llvm.pow.f64(double %Val, double %Power)
5160 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5161 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5162 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5163</pre>
5164
5165<h5>Overview:</h5>
5166
5167<p>
5168The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5169specified (positive or negative) power.
5170</p>
5171
5172<h5>Arguments:</h5>
5173
5174<p>
5175The second argument is a floating point power, and the first is a value to
5176raise to that power.
5177</p>
5178
5179<h5>Semantics:</h5>
5180
5181<p>
5182This function returns the first value raised to the second power,
5183returning the
5184same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005185conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005186</div>
5187
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005188
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005189<!-- ======================================================================= -->
5190<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005191 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005192</div>
5193
5194<div class="doc_text">
5195<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005196LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005197These allow efficient code generation for some algorithms.
5198</p>
5199
5200</div>
5201
5202<!-- _______________________________________________________________________ -->
5203<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005204 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005205</div>
5206
5207<div class="doc_text">
5208
5209<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005210<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005211type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005212<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005213 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5214 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5215 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005216</pre>
5217
5218<h5>Overview:</h5>
5219
5220<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005221The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005222values with an even number of bytes (positive multiple of 16 bits). These are
5223useful for performing operations on data that is not in the target's native
5224byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005225</p>
5226
5227<h5>Semantics:</h5>
5228
5229<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005230The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005231and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5232intrinsic returns an i32 value that has the four bytes of the input i32
5233swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005234i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5235<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005236additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005237</p>
5238
5239</div>
5240
5241<!-- _______________________________________________________________________ -->
5242<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005243 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005244</div>
5245
5246<div class="doc_text">
5247
5248<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005249<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5250width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005251<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005252 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5253 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005254 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005255 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5256 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005257</pre>
5258
5259<h5>Overview:</h5>
5260
5261<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005262The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5263value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005264</p>
5265
5266<h5>Arguments:</h5>
5267
5268<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005269The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005270integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005271</p>
5272
5273<h5>Semantics:</h5>
5274
5275<p>
5276The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5277</p>
5278</div>
5279
5280<!-- _______________________________________________________________________ -->
5281<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005282 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005283</div>
5284
5285<div class="doc_text">
5286
5287<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005288<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5289integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005290<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005291 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5292 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005293 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005294 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5295 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005296</pre>
5297
5298<h5>Overview:</h5>
5299
5300<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005301The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5302leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005303</p>
5304
5305<h5>Arguments:</h5>
5306
5307<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005308The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005309integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005310</p>
5311
5312<h5>Semantics:</h5>
5313
5314<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005315The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5316in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005317of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005318</p>
5319</div>
Chris Lattner32006282004-06-11 02:28:03 +00005320
5321
Chris Lattnereff29ab2005-05-15 19:39:26 +00005322
5323<!-- _______________________________________________________________________ -->
5324<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005325 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005326</div>
5327
5328<div class="doc_text">
5329
5330<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005331<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5332integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005333<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005334 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5335 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005336 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005337 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5338 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005339</pre>
5340
5341<h5>Overview:</h5>
5342
5343<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005344The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5345trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005346</p>
5347
5348<h5>Arguments:</h5>
5349
5350<p>
5351The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005352integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005353</p>
5354
5355<h5>Semantics:</h5>
5356
5357<p>
5358The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5359in a variable. If the src == 0 then the result is the size in bits of the type
5360of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5361</p>
5362</div>
5363
Reid Spencer497d93e2007-04-01 08:27:01 +00005364<!-- _______________________________________________________________________ -->
5365<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005366 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005367</div>
5368
5369<div class="doc_text">
5370
5371<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005372<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005373on any integer bit width.
5374<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005375 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5376 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005377</pre>
5378
5379<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005380<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005381range of bits from an integer value and returns them in the same bit width as
5382the original value.</p>
5383
5384<h5>Arguments:</h5>
5385<p>The first argument, <tt>%val</tt> and the result may be integer types of
5386any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005387arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005388
5389<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005390<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005391of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5392<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5393operates in forward mode.</p>
5394<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5395right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005396only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5397<ol>
5398 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5399 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5400 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5401 to determine the number of bits to retain.</li>
5402 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5403 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5404</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005405<p>In reverse mode, a similar computation is made except that the bits are
5406returned in the reverse order. So, for example, if <tt>X</tt> has the value
5407<tt>i16 0x0ACF (101011001111)</tt> and we apply
5408<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5409<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005410</div>
5411
Reid Spencerf86037f2007-04-11 23:23:49 +00005412<div class="doc_subsubsection">
5413 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5414</div>
5415
5416<div class="doc_text">
5417
5418<h5>Syntax:</h5>
5419<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5420on any integer bit width.
5421<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005422 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5423 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005424</pre>
5425
5426<h5>Overview:</h5>
5427<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5428of bits in an integer value with another integer value. It returns the integer
5429with the replaced bits.</p>
5430
5431<h5>Arguments:</h5>
5432<p>The first argument, <tt>%val</tt> and the result may be integer types of
5433any bit width but they must have the same bit width. <tt>%val</tt> is the value
5434whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5435integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5436type since they specify only a bit index.</p>
5437
5438<h5>Semantics:</h5>
5439<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5440of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5441<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5442operates in forward mode.</p>
5443<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5444truncating it down to the size of the replacement area or zero extending it
5445up to that size.</p>
5446<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5447are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5448in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5449to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005450<p>In reverse mode, a similar computation is made except that the bits are
5451reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5452<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005453<h5>Examples:</h5>
5454<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005455 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005456 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5457 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5458 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005459 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005460</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005461</div>
5462
Chris Lattner8ff75902004-01-06 05:31:32 +00005463<!-- ======================================================================= -->
5464<div class="doc_subsection">
5465 <a name="int_debugger">Debugger Intrinsics</a>
5466</div>
5467
5468<div class="doc_text">
5469<p>
5470The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5471are described in the <a
5472href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5473Debugging</a> document.
5474</p>
5475</div>
5476
5477
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005478<!-- ======================================================================= -->
5479<div class="doc_subsection">
5480 <a name="int_eh">Exception Handling Intrinsics</a>
5481</div>
5482
5483<div class="doc_text">
5484<p> The LLVM exception handling intrinsics (which all start with
5485<tt>llvm.eh.</tt> prefix), are described in the <a
5486href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5487Handling</a> document. </p>
5488</div>
5489
Tanya Lattner6d806e92007-06-15 20:50:54 +00005490<!-- ======================================================================= -->
5491<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005492 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005493</div>
5494
5495<div class="doc_text">
5496<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005497 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005498 the <tt>nest</tt> attribute, from a function. The result is a callable
5499 function pointer lacking the nest parameter - the caller does not need
5500 to provide a value for it. Instead, the value to use is stored in
5501 advance in a "trampoline", a block of memory usually allocated
5502 on the stack, which also contains code to splice the nest value into the
5503 argument list. This is used to implement the GCC nested function address
5504 extension.
5505</p>
5506<p>
5507 For example, if the function is
5508 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005509 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005510<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005511 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5512 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5513 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5514 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005515</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005516 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5517 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005518</div>
5519
5520<!-- _______________________________________________________________________ -->
5521<div class="doc_subsubsection">
5522 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5523</div>
5524<div class="doc_text">
5525<h5>Syntax:</h5>
5526<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005527declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005528</pre>
5529<h5>Overview:</h5>
5530<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005531 This fills the memory pointed to by <tt>tramp</tt> with code
5532 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005533</p>
5534<h5>Arguments:</h5>
5535<p>
5536 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5537 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5538 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005539 intrinsic. Note that the size and the alignment are target-specific - LLVM
5540 currently provides no portable way of determining them, so a front-end that
5541 generates this intrinsic needs to have some target-specific knowledge.
5542 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005543</p>
5544<h5>Semantics:</h5>
5545<p>
5546 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005547 dependent code, turning it into a function. A pointer to this function is
5548 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005549 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005550 before being called. The new function's signature is the same as that of
5551 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5552 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5553 of pointer type. Calling the new function is equivalent to calling
5554 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5555 missing <tt>nest</tt> argument. If, after calling
5556 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5557 modified, then the effect of any later call to the returned function pointer is
5558 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005559</p>
5560</div>
5561
5562<!-- ======================================================================= -->
5563<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005564 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5565</div>
5566
5567<div class="doc_text">
5568<p>
5569 These intrinsic functions expand the "universal IR" of LLVM to represent
5570 hardware constructs for atomic operations and memory synchronization. This
5571 provides an interface to the hardware, not an interface to the programmer. It
5572 is aimed at a low enough level to allow any programming models or APIs which
5573 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5574 hardware behavior. Just as hardware provides a "universal IR" for source
5575 languages, it also provides a starting point for developing a "universal"
5576 atomic operation and synchronization IR.
5577</p>
5578<p>
5579 These do <em>not</em> form an API such as high-level threading libraries,
5580 software transaction memory systems, atomic primitives, and intrinsic
5581 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5582 application libraries. The hardware interface provided by LLVM should allow
5583 a clean implementation of all of these APIs and parallel programming models.
5584 No one model or paradigm should be selected above others unless the hardware
5585 itself ubiquitously does so.
5586
5587</p>
5588</div>
5589
5590<!-- _______________________________________________________________________ -->
5591<div class="doc_subsubsection">
5592 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5593</div>
5594<div class="doc_text">
5595<h5>Syntax:</h5>
5596<pre>
5597declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5598i1 &lt;device&gt; )
5599
5600</pre>
5601<h5>Overview:</h5>
5602<p>
5603 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5604 specific pairs of memory access types.
5605</p>
5606<h5>Arguments:</h5>
5607<p>
5608 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5609 The first four arguments enables a specific barrier as listed below. The fith
5610 argument specifies that the barrier applies to io or device or uncached memory.
5611
5612</p>
5613 <ul>
5614 <li><tt>ll</tt>: load-load barrier</li>
5615 <li><tt>ls</tt>: load-store barrier</li>
5616 <li><tt>sl</tt>: store-load barrier</li>
5617 <li><tt>ss</tt>: store-store barrier</li>
5618 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5619 </ul>
5620<h5>Semantics:</h5>
5621<p>
5622 This intrinsic causes the system to enforce some ordering constraints upon
5623 the loads and stores of the program. This barrier does not indicate
5624 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5625 which they occur. For any of the specified pairs of load and store operations
5626 (f.ex. load-load, or store-load), all of the first operations preceding the
5627 barrier will complete before any of the second operations succeeding the
5628 barrier begin. Specifically the semantics for each pairing is as follows:
5629</p>
5630 <ul>
5631 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5632 after the barrier begins.</li>
5633
5634 <li><tt>ls</tt>: All loads before the barrier must complete before any
5635 store after the barrier begins.</li>
5636 <li><tt>ss</tt>: All stores before the barrier must complete before any
5637 store after the barrier begins.</li>
5638 <li><tt>sl</tt>: All stores before the barrier must complete before any
5639 load after the barrier begins.</li>
5640 </ul>
5641<p>
5642 These semantics are applied with a logical "and" behavior when more than one
5643 is enabled in a single memory barrier intrinsic.
5644</p>
5645<p>
5646 Backends may implement stronger barriers than those requested when they do not
5647 support as fine grained a barrier as requested. Some architectures do not
5648 need all types of barriers and on such architectures, these become noops.
5649</p>
5650<h5>Example:</h5>
5651<pre>
5652%ptr = malloc i32
5653 store i32 4, %ptr
5654
5655%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5656 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5657 <i>; guarantee the above finishes</i>
5658 store i32 8, %ptr <i>; before this begins</i>
5659</pre>
5660</div>
5661
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005662<!-- _______________________________________________________________________ -->
5663<div class="doc_subsubsection">
5664 <a name="int_atomic_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
5665</div>
5666<div class="doc_text">
5667<h5>Syntax:</h5>
5668<p>
5669 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
5670 integer bit width. Not all targets support all bit widths however.</p>
5671
5672<pre>
5673declare i8 @llvm.atomic.lcs.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5674declare i16 @llvm.atomic.lcs.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5675declare i32 @llvm.atomic.lcs.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5676declare i64 @llvm.atomic.lcs.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
5677
5678</pre>
5679<h5>Overview:</h5>
5680<p>
5681 This loads a value in memory and compares it to a given value. If they are
5682 equal, it stores a new value into the memory.
5683</p>
5684<h5>Arguments:</h5>
5685<p>
5686 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
5687 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5688 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5689 this integer type. While any bit width integer may be used, targets may only
5690 lower representations they support in hardware.
5691
5692</p>
5693<h5>Semantics:</h5>
5694<p>
5695 This entire intrinsic must be executed atomically. It first loads the value
5696 in memory pointed to by <tt>ptr</tt> and compares it with the value
5697 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5698 loaded value is yielded in all cases. This provides the equivalent of an
5699 atomic compare-and-swap operation within the SSA framework.
5700</p>
5701<h5>Examples:</h5>
5702
5703<pre>
5704%ptr = malloc i32
5705 store i32 4, %ptr
5706
5707%val1 = add i32 4, 4
5708%result1 = call i32 @llvm.atomic.lcs.i32( i32* %ptr, i32 4, %val1 )
5709 <i>; yields {i32}:result1 = 4</i>
5710%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5711%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5712
5713%val2 = add i32 1, 1
5714%result2 = call i32 @llvm.atomic.lcs.i32( i32* %ptr, i32 5, %val2 )
5715 <i>; yields {i32}:result2 = 8</i>
5716%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5717
5718%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5719</pre>
5720</div>
5721
5722<!-- _______________________________________________________________________ -->
5723<div class="doc_subsubsection">
5724 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5725</div>
5726<div class="doc_text">
5727<h5>Syntax:</h5>
5728
5729<p>
5730 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5731 integer bit width. Not all targets support all bit widths however.</p>
5732<pre>
5733declare i8 @llvm.atomic.swap.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5734declare i16 @llvm.atomic.swap.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5735declare i32 @llvm.atomic.swap.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5736declare i64 @llvm.atomic.swap.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
5737
5738</pre>
5739<h5>Overview:</h5>
5740<p>
5741 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5742 the value from memory. It then stores the value in <tt>val</tt> in the memory
5743 at <tt>ptr</tt>.
5744</p>
5745<h5>Arguments:</h5>
5746
5747<p>
5748 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
5749 <tt>val</tt> argument and the result must be integers of the same bit width.
5750 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5751 integer type. The targets may only lower integer representations they
5752 support.
5753</p>
5754<h5>Semantics:</h5>
5755<p>
5756 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5757 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5758 equivalent of an atomic swap operation within the SSA framework.
5759
5760</p>
5761<h5>Examples:</h5>
5762<pre>
5763%ptr = malloc i32
5764 store i32 4, %ptr
5765
5766%val1 = add i32 4, 4
5767%result1 = call i32 @llvm.atomic.swap.i32( i32* %ptr, i32 %val1 )
5768 <i>; yields {i32}:result1 = 4</i>
5769%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5770%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5771
5772%val2 = add i32 1, 1
5773%result2 = call i32 @llvm.atomic.swap.i32( i32* %ptr, i32 %val2 )
5774 <i>; yields {i32}:result2 = 8</i>
5775
5776%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5777%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5778</pre>
5779</div>
5780
5781<!-- _______________________________________________________________________ -->
5782<div class="doc_subsubsection">
5783 <a name="int_atomic_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
5784
5785</div>
5786<div class="doc_text">
5787<h5>Syntax:</h5>
5788<p>
5789 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
5790 integer bit width. Not all targets support all bit widths however.</p>
5791<pre>
5792declare i8 @llvm.atomic.las.i8.( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5793declare i16 @llvm.atomic.las.i16.( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5794declare i32 @llvm.atomic.las.i32.( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5795declare i64 @llvm.atomic.las.i64.( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5796
5797</pre>
5798<h5>Overview:</h5>
5799<p>
5800 This intrinsic adds <tt>delta</tt> to the value stored in memory at
5801 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5802</p>
5803<h5>Arguments:</h5>
5804<p>
5805
5806 The intrinsic takes two arguments, the first a pointer to an integer value
5807 and the second an integer value. The result is also an integer value. These
5808 integer types can have any bit width, but they must all have the same bit
5809 width. The targets may only lower integer representations they support.
5810</p>
5811<h5>Semantics:</h5>
5812<p>
5813 This intrinsic does a series of operations atomically. It first loads the
5814 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5815 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5816</p>
5817
5818<h5>Examples:</h5>
5819<pre>
5820%ptr = malloc i32
5821 store i32 4, %ptr
5822%result1 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 4 )
5823 <i>; yields {i32}:result1 = 4</i>
5824%result2 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 2 )
5825 <i>; yields {i32}:result2 = 8</i>
5826%result3 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 5 )
5827 <i>; yields {i32}:result3 = 10</i>
5828%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5829</pre>
5830</div>
5831
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005832
5833<!-- ======================================================================= -->
5834<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00005835 <a name="int_general">General Intrinsics</a>
5836</div>
5837
5838<div class="doc_text">
5839<p> This class of intrinsics is designed to be generic and has
5840no specific purpose. </p>
5841</div>
5842
5843<!-- _______________________________________________________________________ -->
5844<div class="doc_subsubsection">
5845 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5846</div>
5847
5848<div class="doc_text">
5849
5850<h5>Syntax:</h5>
5851<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005852 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00005853</pre>
5854
5855<h5>Overview:</h5>
5856
5857<p>
5858The '<tt>llvm.var.annotation</tt>' intrinsic
5859</p>
5860
5861<h5>Arguments:</h5>
5862
5863<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005864The first argument is a pointer to a value, the second is a pointer to a
5865global string, the third is a pointer to a global string which is the source
5866file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005867</p>
5868
5869<h5>Semantics:</h5>
5870
5871<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005872This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005873This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005874annotations. These have no other defined use, they are ignored by code
5875generation and optimization.
5876</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00005877</div>
5878
Tanya Lattnerb6367882007-09-21 22:59:12 +00005879<!-- _______________________________________________________________________ -->
5880<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00005881 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005882</div>
5883
5884<div class="doc_text">
5885
5886<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00005887<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
5888any integer bit width.
5889</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005890<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00005891 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5892 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5893 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5894 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5895 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00005896</pre>
5897
5898<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00005899
5900<p>
5901The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00005902</p>
5903
5904<h5>Arguments:</h5>
5905
5906<p>
5907The first argument is an integer value (result of some expression),
5908the second is a pointer to a global string, the third is a pointer to a global
5909string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00005910It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00005911</p>
5912
5913<h5>Semantics:</h5>
5914
5915<p>
5916This intrinsic allows annotations to be put on arbitrary expressions
5917with arbitrary strings. This can be useful for special purpose optimizations
5918that want to look for these annotations. These have no other defined use, they
5919are ignored by code generation and optimization.
5920</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005921
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005922<!-- _______________________________________________________________________ -->
5923<div class="doc_subsubsection">
5924 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
5925</div>
5926
5927<div class="doc_text">
5928
5929<h5>Syntax:</h5>
5930<pre>
5931 declare void @llvm.trap()
5932</pre>
5933
5934<h5>Overview:</h5>
5935
5936<p>
5937The '<tt>llvm.trap</tt>' intrinsic
5938</p>
5939
5940<h5>Arguments:</h5>
5941
5942<p>
5943None
5944</p>
5945
5946<h5>Semantics:</h5>
5947
5948<p>
5949This intrinsics is lowered to the target dependent trap instruction. If the
5950target does not have a trap instruction, this intrinsic will be lowered to the
5951call of the abort() function.
5952</p>
5953</div>
5954
Chris Lattner00950542001-06-06 20:29:01 +00005955<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00005956<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005957<address>
5958 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5959 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5960 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00005961 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005962
5963 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00005964 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005965 Last modified: $Date$
5966</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00005967
Misha Brukman9d0919f2003-11-08 01:05:38 +00005968</body>
5969</html>