blob: a2ee339bc0bac83a8b56e332ee21581b867096ec [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000030 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000031 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000032 </ol>
33 </li>
Chris Lattner00950542001-06-06 20:29:01 +000034 <li><a href="#typesystem">Type System</a>
35 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000036 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000037 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000038 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000039 <li><a href="#t_floating">Floating Point Types</a></li>
40 <li><a href="#t_void">Void Type</a></li>
41 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000042 </ol>
43 </li>
Chris Lattner00950542001-06-06 20:29:01 +000044 <li><a href="#t_derived">Derived Types</a>
45 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000046 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000047 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000048 <li><a href="#t_function">Function Type</a></li>
49 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000051 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000052 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000053 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000054 </ol>
55 </li>
56 </ol>
57 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000058 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000059 <ol>
60 <li><a href="#simpleconstants">Simple Constants</a>
61 <li><a href="#aggregateconstants">Aggregate Constants</a>
62 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63 <li><a href="#undefvalues">Undefined Values</a>
64 <li><a href="#constantexprs">Constant Expressions</a>
65 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000066 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000067 <li><a href="#othervalues">Other Values</a>
68 <ol>
69 <li><a href="#inlineasm">Inline Assembler Expressions</a>
70 </ol>
71 </li>
Chris Lattner00950542001-06-06 20:29:01 +000072 <li><a href="#instref">Instruction Reference</a>
73 <ol>
74 <li><a href="#terminators">Terminator Instructions</a>
75 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000076 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000078 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000080 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000081 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000082 </ol>
83 </li>
Chris Lattner00950542001-06-06 20:29:01 +000084 <li><a href="#binaryops">Binary Operations</a>
85 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000086 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000089 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000092 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 </ol>
96 </li>
Chris Lattner00950542001-06-06 20:29:01 +000097 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000099 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000102 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000104 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 </ol>
106 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 <li><a href="#vectorops">Vector Operations</a>
108 <ol>
109 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000112 </ol>
113 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000114 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000115 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000116 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
117 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
118 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000119 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
120 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
121 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 </ol>
123 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000124 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000125 <ol>
126 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
127 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
128 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
129 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
130 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000131 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
132 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
133 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
134 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000135 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
136 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000137 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000138 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000139 <li><a href="#otherops">Other Operations</a>
140 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000141 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
142 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000143 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000144 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000145 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000146 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000147 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000148 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000149 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000150 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000151 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000152 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
154 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000155 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
156 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
157 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </ol>
159 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000160 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
161 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000162 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
163 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
164 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000165 </ol>
166 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000167 <li><a href="#int_codegen">Code Generator Intrinsics</a>
168 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000169 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
170 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
171 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
172 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
173 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
174 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
175 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000176 </ol>
177 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000178 <li><a href="#int_libc">Standard C Library Intrinsics</a>
179 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000180 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
181 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
182 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
183 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
184 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000185 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
186 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
187 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 </ol>
189 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000190 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000191 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000192 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000193 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
194 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
195 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000196 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
197 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000198 </ol>
199 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000200 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000201 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000202 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000203 <ol>
204 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000205 </ol>
206 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000207 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000208 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000209 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000210 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000211 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000212 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000213 <li><a href="#int_trap">
214 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000215 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000216 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000217 </ol>
218 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000219</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000220
221<div class="doc_author">
222 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
223 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000224</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000225
Chris Lattner00950542001-06-06 20:29:01 +0000226<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000227<div class="doc_section"> <a name="abstract">Abstract </a></div>
228<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000229
Misha Brukman9d0919f2003-11-08 01:05:38 +0000230<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000231<p>This document is a reference manual for the LLVM assembly language.
232LLVM is an SSA based representation that provides type safety,
233low-level operations, flexibility, and the capability of representing
234'all' high-level languages cleanly. It is the common code
235representation used throughout all phases of the LLVM compilation
236strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000237</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000238
Chris Lattner00950542001-06-06 20:29:01 +0000239<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000240<div class="doc_section"> <a name="introduction">Introduction</a> </div>
241<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000242
Misha Brukman9d0919f2003-11-08 01:05:38 +0000243<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000244
Chris Lattner261efe92003-11-25 01:02:51 +0000245<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000246different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000247representation (suitable for fast loading by a Just-In-Time compiler),
248and as a human readable assembly language representation. This allows
249LLVM to provide a powerful intermediate representation for efficient
250compiler transformations and analysis, while providing a natural means
251to debug and visualize the transformations. The three different forms
252of LLVM are all equivalent. This document describes the human readable
253representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000254
John Criswellc1f786c2005-05-13 22:25:59 +0000255<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000256while being expressive, typed, and extensible at the same time. It
257aims to be a "universal IR" of sorts, by being at a low enough level
258that high-level ideas may be cleanly mapped to it (similar to how
259microprocessors are "universal IR's", allowing many source languages to
260be mapped to them). By providing type information, LLVM can be used as
261the target of optimizations: for example, through pointer analysis, it
262can be proven that a C automatic variable is never accessed outside of
263the current function... allowing it to be promoted to a simple SSA
264value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Misha Brukman9d0919f2003-11-08 01:05:38 +0000266</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner00950542001-06-06 20:29:01 +0000268<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000269<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Misha Brukman9d0919f2003-11-08 01:05:38 +0000271<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000272
Chris Lattner261efe92003-11-25 01:02:51 +0000273<p>It is important to note that this document describes 'well formed'
274LLVM assembly language. There is a difference between what the parser
275accepts and what is considered 'well formed'. For example, the
276following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000277
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000278<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000279<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000280%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000281</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000282</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000283
Chris Lattner261efe92003-11-25 01:02:51 +0000284<p>...because the definition of <tt>%x</tt> does not dominate all of
285its uses. The LLVM infrastructure provides a verification pass that may
286be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000287automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000288the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000289by the verifier pass indicate bugs in transformation passes or input to
290the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000291</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000292
Chris Lattnercc689392007-10-03 17:34:29 +0000293<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Chris Lattner00950542001-06-06 20:29:01 +0000295<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000296<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000297<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000298
Misha Brukman9d0919f2003-11-08 01:05:38 +0000299<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
Reid Spencer2c452282007-08-07 14:34:28 +0000301 <p>LLVM identifiers come in two basic types: global and local. Global
302 identifiers (functions, global variables) begin with the @ character. Local
303 identifiers (register names, types) begin with the % character. Additionally,
304 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000305
Chris Lattner00950542001-06-06 20:29:01 +0000306<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000307 <li>Named values are represented as a string of characters with their prefix.
308 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
309 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000310 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000311 with quotes. In this way, anything except a <tt>&quot;</tt> character can
312 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000313
Reid Spencer2c452282007-08-07 14:34:28 +0000314 <li>Unnamed values are represented as an unsigned numeric value with their
315 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000316
Reid Spencercc16dc32004-12-09 18:02:53 +0000317 <li>Constants, which are described in a <a href="#constants">section about
318 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000319</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000320
Reid Spencer2c452282007-08-07 14:34:28 +0000321<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000322don't need to worry about name clashes with reserved words, and the set of
323reserved words may be expanded in the future without penalty. Additionally,
324unnamed identifiers allow a compiler to quickly come up with a temporary
325variable without having to avoid symbol table conflicts.</p>
326
Chris Lattner261efe92003-11-25 01:02:51 +0000327<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000328languages. There are keywords for different opcodes
329('<tt><a href="#i_add">add</a></tt>',
330 '<tt><a href="#i_bitcast">bitcast</a></tt>',
331 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000332href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000333and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000334none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000335
336<p>Here is an example of LLVM code to multiply the integer variable
337'<tt>%X</tt>' by 8:</p>
338
Misha Brukman9d0919f2003-11-08 01:05:38 +0000339<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000341<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000342<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000343%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000344</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000345</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Misha Brukman9d0919f2003-11-08 01:05:38 +0000347<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000348
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000349<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000351%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000353</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000354
Misha Brukman9d0919f2003-11-08 01:05:38 +0000355<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000357<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000358<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000359<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
360<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
361%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000363</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364
Chris Lattner261efe92003-11-25 01:02:51 +0000365<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
366important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Chris Lattner00950542001-06-06 20:29:01 +0000368<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369
370 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
371 line.</li>
372
373 <li>Unnamed temporaries are created when the result of a computation is not
374 assigned to a named value.</li>
375
Misha Brukman9d0919f2003-11-08 01:05:38 +0000376 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377
Misha Brukman9d0919f2003-11-08 01:05:38 +0000378</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379
John Criswelle4c57cc2005-05-12 16:52:32 +0000380<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381demonstrating instructions, we will follow an instruction with a comment that
382defines the type and name of value produced. Comments are shown in italic
383text.</p>
384
Misha Brukman9d0919f2003-11-08 01:05:38 +0000385</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000386
387<!-- *********************************************************************** -->
388<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
389<!-- *********************************************************************** -->
390
391<!-- ======================================================================= -->
392<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
393</div>
394
395<div class="doc_text">
396
397<p>LLVM programs are composed of "Module"s, each of which is a
398translation unit of the input programs. Each module consists of
399functions, global variables, and symbol table entries. Modules may be
400combined together with the LLVM linker, which merges function (and
401global variable) definitions, resolves forward declarations, and merges
402symbol table entries. Here is an example of the "hello world" module:</p>
403
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000404<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000405<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000406<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
407 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000408
409<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000410<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000411
412<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000413define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000414 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000415 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000416 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000417
418 <i>; Call puts function to write out the string to stdout...</i>
419 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000420 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000421 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000422 href="#i_ret">ret</a> i32 0<br>}<br>
423</pre>
424</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000425
426<p>This example is made up of a <a href="#globalvars">global variable</a>
427named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
428function, and a <a href="#functionstructure">function definition</a>
429for "<tt>main</tt>".</p>
430
Chris Lattnere5d947b2004-12-09 16:36:40 +0000431<p>In general, a module is made up of a list of global values,
432where both functions and global variables are global values. Global values are
433represented by a pointer to a memory location (in this case, a pointer to an
434array of char, and a pointer to a function), and have one of the following <a
435href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000436
Chris Lattnere5d947b2004-12-09 16:36:40 +0000437</div>
438
439<!-- ======================================================================= -->
440<div class="doc_subsection">
441 <a name="linkage">Linkage Types</a>
442</div>
443
444<div class="doc_text">
445
446<p>
447All Global Variables and Functions have one of the following types of linkage:
448</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000449
450<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000451
Chris Lattnerfa730212004-12-09 16:11:40 +0000452 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000453
454 <dd>Global values with internal linkage are only directly accessible by
455 objects in the current module. In particular, linking code into a module with
456 an internal global value may cause the internal to be renamed as necessary to
457 avoid collisions. Because the symbol is internal to the module, all
458 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000459 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000460 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461
Chris Lattnerfa730212004-12-09 16:11:40 +0000462 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000463
Chris Lattner4887bd82007-01-14 06:51:48 +0000464 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
465 the same name when linkage occurs. This is typically used to implement
466 inline functions, templates, or other code which must be generated in each
467 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
468 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000469 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000470
Chris Lattnerfa730212004-12-09 16:11:40 +0000471 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000472
473 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
474 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattner4887bd82007-01-14 06:51:48 +0000475 used for globals that may be emitted in multiple translation units, but that
476 are not guaranteed to be emitted into every translation unit that uses them.
477 One example of this are common globals in C, such as "<tt>int X;</tt>" at
478 global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000479 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
Chris Lattnerfa730212004-12-09 16:11:40 +0000481 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000482
483 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
484 pointer to array type. When two global variables with appending linkage are
485 linked together, the two global arrays are appended together. This is the
486 LLVM, typesafe, equivalent of having the system linker append together
487 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000488 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000489
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000490 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
491 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
492 until linked, if not linked, the symbol becomes null instead of being an
493 undefined reference.
494 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000495
Chris Lattnerfa730212004-12-09 16:11:40 +0000496 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000497
498 <dd>If none of the above identifiers are used, the global is externally
499 visible, meaning that it participates in linkage and can be used to resolve
500 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000501 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000502</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000503
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000504 <p>
505 The next two types of linkage are targeted for Microsoft Windows platform
506 only. They are designed to support importing (exporting) symbols from (to)
507 DLLs.
508 </p>
509
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000510 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000511 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
512
513 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
514 or variable via a global pointer to a pointer that is set up by the DLL
515 exporting the symbol. On Microsoft Windows targets, the pointer name is
516 formed by combining <code>_imp__</code> and the function or variable name.
517 </dd>
518
519 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
520
521 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
522 pointer to a pointer in a DLL, so that it can be referenced with the
523 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
524 name is formed by combining <code>_imp__</code> and the function or variable
525 name.
526 </dd>
527
Chris Lattnerfa730212004-12-09 16:11:40 +0000528</dl>
529
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000530<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000531variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
532variable and was linked with this one, one of the two would be renamed,
533preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
534external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000535outside of the current module.</p>
536<p>It is illegal for a function <i>declaration</i>
537to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000538or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000539<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
540linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000541</div>
542
543<!-- ======================================================================= -->
544<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000545 <a name="callingconv">Calling Conventions</a>
546</div>
547
548<div class="doc_text">
549
550<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
551and <a href="#i_invoke">invokes</a> can all have an optional calling convention
552specified for the call. The calling convention of any pair of dynamic
553caller/callee must match, or the behavior of the program is undefined. The
554following calling conventions are supported by LLVM, and more may be added in
555the future:</p>
556
557<dl>
558 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
559
560 <dd>This calling convention (the default if no other calling convention is
561 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000562 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000563 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000564 </dd>
565
566 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
567
568 <dd>This calling convention attempts to make calls as fast as possible
569 (e.g. by passing things in registers). This calling convention allows the
570 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000571 without having to conform to an externally specified ABI. Implementations of
572 this convention should allow arbitrary tail call optimization to be supported.
573 This calling convention does not support varargs and requires the prototype of
574 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000575 </dd>
576
577 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
578
579 <dd>This calling convention attempts to make code in the caller as efficient
580 as possible under the assumption that the call is not commonly executed. As
581 such, these calls often preserve all registers so that the call does not break
582 any live ranges in the caller side. This calling convention does not support
583 varargs and requires the prototype of all callees to exactly match the
584 prototype of the function definition.
585 </dd>
586
Chris Lattnercfe6b372005-05-07 01:46:40 +0000587 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000588
589 <dd>Any calling convention may be specified by number, allowing
590 target-specific calling conventions to be used. Target specific calling
591 conventions start at 64.
592 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000593</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000594
595<p>More calling conventions can be added/defined on an as-needed basis, to
596support pascal conventions or any other well-known target-independent
597convention.</p>
598
599</div>
600
601<!-- ======================================================================= -->
602<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000603 <a name="visibility">Visibility Styles</a>
604</div>
605
606<div class="doc_text">
607
608<p>
609All Global Variables and Functions have one of the following visibility styles:
610</p>
611
612<dl>
613 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
614
615 <dd>On ELF, default visibility means that the declaration is visible to other
616 modules and, in shared libraries, means that the declared entity may be
617 overridden. On Darwin, default visibility means that the declaration is
618 visible to other modules. Default visibility corresponds to "external
619 linkage" in the language.
620 </dd>
621
622 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
623
624 <dd>Two declarations of an object with hidden visibility refer to the same
625 object if they are in the same shared object. Usually, hidden visibility
626 indicates that the symbol will not be placed into the dynamic symbol table,
627 so no other module (executable or shared library) can reference it
628 directly.
629 </dd>
630
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000631 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
632
633 <dd>On ELF, protected visibility indicates that the symbol will be placed in
634 the dynamic symbol table, but that references within the defining module will
635 bind to the local symbol. That is, the symbol cannot be overridden by another
636 module.
637 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000638</dl>
639
640</div>
641
642<!-- ======================================================================= -->
643<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000644 <a name="globalvars">Global Variables</a>
645</div>
646
647<div class="doc_text">
648
Chris Lattner3689a342005-02-12 19:30:21 +0000649<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000650instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000651an explicit section to be placed in, and may have an optional explicit alignment
652specified. A variable may be defined as "thread_local", which means that it
653will not be shared by threads (each thread will have a separated copy of the
654variable). A variable may be defined as a global "constant," which indicates
655that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000656optimization, allowing the global data to be placed in the read-only section of
657an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000658cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000659
660<p>
661LLVM explicitly allows <em>declarations</em> of global variables to be marked
662constant, even if the final definition of the global is not. This capability
663can be used to enable slightly better optimization of the program, but requires
664the language definition to guarantee that optimizations based on the
665'constantness' are valid for the translation units that do not include the
666definition.
667</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000668
669<p>As SSA values, global variables define pointer values that are in
670scope (i.e. they dominate) all basic blocks in the program. Global
671variables always define a pointer to their "content" type because they
672describe a region of memory, and all memory objects in LLVM are
673accessed through pointers.</p>
674
Christopher Lamb284d9922007-12-11 09:31:00 +0000675<p>A global variable may be declared to reside in a target-specifc numbered
676address space. For targets that support them, address spaces may affect how
677optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000678the variable. The default address space is zero. The address space qualifier
679must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000680
Chris Lattner88f6c462005-11-12 00:45:07 +0000681<p>LLVM allows an explicit section to be specified for globals. If the target
682supports it, it will emit globals to the section specified.</p>
683
Chris Lattner2cbdc452005-11-06 08:02:57 +0000684<p>An explicit alignment may be specified for a global. If not present, or if
685the alignment is set to zero, the alignment of the global is set by the target
686to whatever it feels convenient. If an explicit alignment is specified, the
687global is forced to have at least that much alignment. All alignments must be
688a power of 2.</p>
689
Christopher Lamb284d9922007-12-11 09:31:00 +0000690<p>For example, the following defines a global in a numbered address space with
691an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000692
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000693<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000694<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000695@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000696</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000697</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000698
Chris Lattnerfa730212004-12-09 16:11:40 +0000699</div>
700
701
702<!-- ======================================================================= -->
703<div class="doc_subsection">
704 <a name="functionstructure">Functions</a>
705</div>
706
707<div class="doc_text">
708
Reid Spencerca86e162006-12-31 07:07:53 +0000709<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
710an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000711<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000712<a href="#callingconv">calling convention</a>, a return type, an optional
713<a href="#paramattrs">parameter attribute</a> for the return type, a function
714name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000715<a href="#paramattrs">parameter attributes</a>), an optional section, an
Gordon Henriksene754abe2007-12-10 03:30:21 +0000716optional alignment, an optional <a href="#gc">garbage collector name</a>, an
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000717opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000718
719LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
720optional <a href="#linkage">linkage type</a>, an optional
721<a href="#visibility">visibility style</a>, an optional
722<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000723<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000724name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000725<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000726
727<p>A function definition contains a list of basic blocks, forming the CFG for
728the function. Each basic block may optionally start with a label (giving the
729basic block a symbol table entry), contains a list of instructions, and ends
730with a <a href="#terminators">terminator</a> instruction (such as a branch or
731function return).</p>
732
Chris Lattner4a3c9012007-06-08 16:52:14 +0000733<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000734executed on entrance to the function, and it is not allowed to have predecessor
735basic blocks (i.e. there can not be any branches to the entry block of a
736function). Because the block can have no predecessors, it also cannot have any
737<a href="#i_phi">PHI nodes</a>.</p>
738
Chris Lattner88f6c462005-11-12 00:45:07 +0000739<p>LLVM allows an explicit section to be specified for functions. If the target
740supports it, it will emit functions to the section specified.</p>
741
Chris Lattner2cbdc452005-11-06 08:02:57 +0000742<p>An explicit alignment may be specified for a function. If not present, or if
743the alignment is set to zero, the alignment of the function is set by the target
744to whatever it feels convenient. If an explicit alignment is specified, the
745function is forced to have at least that much alignment. All alignments must be
746a power of 2.</p>
747
Chris Lattnerfa730212004-12-09 16:11:40 +0000748</div>
749
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000750
751<!-- ======================================================================= -->
752<div class="doc_subsection">
753 <a name="aliasstructure">Aliases</a>
754</div>
755<div class="doc_text">
756 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikova80e1182007-04-28 13:45:00 +0000757 function or global variable or bitcast of global value). Aliases may have an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000758 optional <a href="#linkage">linkage type</a>, and an
759 optional <a href="#visibility">visibility style</a>.</p>
760
761 <h5>Syntax:</h5>
762
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000763<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000764<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000765@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000766</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000767</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000768
769</div>
770
771
772
Chris Lattner4e9aba72006-01-23 23:23:47 +0000773<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000774<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
775<div class="doc_text">
776 <p>The return type and each parameter of a function type may have a set of
777 <i>parameter attributes</i> associated with them. Parameter attributes are
778 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000779 a function. Parameter attributes are considered to be part of the function,
780 not of the function type, so functions with different parameter attributes
781 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000782
Reid Spencer950e9f82007-01-15 18:27:39 +0000783 <p>Parameter attributes are simple keywords that follow the type specified. If
784 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000785 example:</p>
786
787<div class="doc_code">
788<pre>
Duncan Sandsdc024672007-11-27 13:23:08 +0000789declare i32 @printf(i8* noalias , ...) nounwind
790declare i32 @atoi(i8*) nounwind readonly
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000791</pre>
792</div>
793
Duncan Sandsdc024672007-11-27 13:23:08 +0000794 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
795 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000796
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000797 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000798 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000799 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000800 <dd>This indicates that the parameter should be zero extended just before
801 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000802
Reid Spencer9445e9a2007-07-19 23:13:04 +0000803 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000804 <dd>This indicates that the parameter should be sign extended just before
805 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000806
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000807 <dt><tt>inreg</tt></dt>
808 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000809 possible) during assembling function call. Support for this attribute is
810 target-specific</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000811
812 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000813 <dd>This indicates that the pointer parameter should really be passed by
814 value to the function. The attribute implies that a hidden copy of the
815 pointee is made between the caller and the callee, so the callee is unable
816 to modify the value in the callee. This attribute is only valid on llvm
817 pointer arguments. It is generally used to pass structs and arrays by
818 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000819
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000820 <dt><tt>sret</tt></dt>
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000821 <dd>This indicates that the parameter specifies the address of a structure
Reid Spencer67606122007-03-22 02:02:11 +0000822 that is the return value of the function in the source program.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000823
Zhou Shengfebca342007-06-05 05:28:26 +0000824 <dt><tt>noalias</tt></dt>
825 <dd>This indicates that the parameter not alias any other object or any
826 other "noalias" objects during the function call.
Chris Lattner47507de2008-01-11 06:20:47 +0000827
Reid Spencer2dc52012007-03-22 02:18:56 +0000828 <dt><tt>noreturn</tt></dt>
829 <dd>This function attribute indicates that the function never returns. This
830 indicates to LLVM that every call to this function should be treated as if
831 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000832
Reid Spencer67606122007-03-22 02:02:11 +0000833 <dt><tt>nounwind</tt></dt>
834 <dd>This function attribute indicates that the function type does not use
835 the unwind instruction and does not allow stack unwinding to propagate
836 through it.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000837
Duncan Sands50f19f52007-07-27 19:57:41 +0000838 <dt><tt>nest</tt></dt>
839 <dd>This indicates that the parameter can be excised using the
840 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000841 <dt><tt>readonly</tt></dt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000842 <dd>This function attribute indicates that the function has no side-effects
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000843 except for producing a return value or throwing an exception. The value
844 returned must only depend on the function arguments and/or global variables.
845 It may use values obtained by dereferencing pointers.</dd>
846 <dt><tt>readnone</tt></dt>
847 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000848 function, but in addition it is not allowed to dereference any pointer arguments
849 or global variables.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000850 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000851
Reid Spencerca86e162006-12-31 07:07:53 +0000852</div>
853
854<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000855<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000856 <a name="gc">Garbage Collector Names</a>
857</div>
858
859<div class="doc_text">
860<p>Each function may specify a garbage collector name, which is simply a
861string.</p>
862
863<div class="doc_code"><pre
864>define void @f() gc "name" { ...</pre></div>
865
866<p>The compiler declares the supported values of <i>name</i>. Specifying a
867collector which will cause the compiler to alter its output in order to support
868the named garbage collection algorithm.</p>
869</div>
870
871<!-- ======================================================================= -->
872<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000873 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000874</div>
875
876<div class="doc_text">
877<p>
878Modules may contain "module-level inline asm" blocks, which corresponds to the
879GCC "file scope inline asm" blocks. These blocks are internally concatenated by
880LLVM and treated as a single unit, but may be separated in the .ll file if
881desired. The syntax is very simple:
882</p>
883
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000884<div class="doc_code">
885<pre>
886module asm "inline asm code goes here"
887module asm "more can go here"
888</pre>
889</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000890
891<p>The strings can contain any character by escaping non-printable characters.
892 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
893 for the number.
894</p>
895
896<p>
897 The inline asm code is simply printed to the machine code .s file when
898 assembly code is generated.
899</p>
900</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000901
Reid Spencerde151942007-02-19 23:54:10 +0000902<!-- ======================================================================= -->
903<div class="doc_subsection">
904 <a name="datalayout">Data Layout</a>
905</div>
906
907<div class="doc_text">
908<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000909data is to be laid out in memory. The syntax for the data layout is simply:</p>
910<pre> target datalayout = "<i>layout specification</i>"</pre>
911<p>The <i>layout specification</i> consists of a list of specifications
912separated by the minus sign character ('-'). Each specification starts with a
913letter and may include other information after the letter to define some
914aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000915<dl>
916 <dt><tt>E</tt></dt>
917 <dd>Specifies that the target lays out data in big-endian form. That is, the
918 bits with the most significance have the lowest address location.</dd>
919 <dt><tt>e</tt></dt>
920 <dd>Specifies that hte target lays out data in little-endian form. That is,
921 the bits with the least significance have the lowest address location.</dd>
922 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
923 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
924 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
925 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
926 too.</dd>
927 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
928 <dd>This specifies the alignment for an integer type of a given bit
929 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
930 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
931 <dd>This specifies the alignment for a vector type of a given bit
932 <i>size</i>.</dd>
933 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
934 <dd>This specifies the alignment for a floating point type of a given bit
935 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
936 (double).</dd>
937 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
938 <dd>This specifies the alignment for an aggregate type of a given bit
939 <i>size</i>.</dd>
940</dl>
941<p>When constructing the data layout for a given target, LLVM starts with a
942default set of specifications which are then (possibly) overriden by the
943specifications in the <tt>datalayout</tt> keyword. The default specifications
944are given in this list:</p>
945<ul>
946 <li><tt>E</tt> - big endian</li>
947 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
948 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
949 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
950 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
951 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
952 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
953 alignment of 64-bits</li>
954 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
955 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
956 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
957 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
958 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
959</ul>
960<p>When llvm is determining the alignment for a given type, it uses the
961following rules:
962<ol>
963 <li>If the type sought is an exact match for one of the specifications, that
964 specification is used.</li>
965 <li>If no match is found, and the type sought is an integer type, then the
966 smallest integer type that is larger than the bitwidth of the sought type is
967 used. If none of the specifications are larger than the bitwidth then the the
968 largest integer type is used. For example, given the default specifications
969 above, the i7 type will use the alignment of i8 (next largest) while both
970 i65 and i256 will use the alignment of i64 (largest specified).</li>
971 <li>If no match is found, and the type sought is a vector type, then the
972 largest vector type that is smaller than the sought vector type will be used
973 as a fall back. This happens because <128 x double> can be implemented in
974 terms of 64 <2 x double>, for example.</li>
975</ol>
976</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000977
Chris Lattner00950542001-06-06 20:29:01 +0000978<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000979<div class="doc_section"> <a name="typesystem">Type System</a> </div>
980<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000981
Misha Brukman9d0919f2003-11-08 01:05:38 +0000982<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000983
Misha Brukman9d0919f2003-11-08 01:05:38 +0000984<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000985intermediate representation. Being typed enables a number of
986optimizations to be performed on the IR directly, without having to do
987extra analyses on the side before the transformation. A strong type
988system makes it easier to read the generated code and enables novel
989analyses and transformations that are not feasible to perform on normal
990three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000991
992</div>
993
Chris Lattner00950542001-06-06 20:29:01 +0000994<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +0000995<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +0000996Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000997<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +0000998<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +0000999classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001000
1001<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001002 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001003 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001004 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001005 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001006 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001007 </tr>
1008 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001009 <td><a href="#t_floating">floating point</a></td>
1010 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001011 </tr>
1012 <tr>
1013 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001014 <td><a href="#t_integer">integer</a>,
1015 <a href="#t_floating">floating point</a>,
1016 <a href="#t_pointer">pointer</a>,
1017 <a href="#t_vector">vector</a>
Reid Spencerca86e162006-12-31 07:07:53 +00001018 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001019 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001020 <tr>
1021 <td><a href="#t_primitive">primitive</a></td>
1022 <td><a href="#t_label">label</a>,
1023 <a href="#t_void">void</a>,
1024 <a href="#t_integer">integer</a>,
1025 <a href="#t_floating">floating point</a>.</td>
1026 </tr>
1027 <tr>
1028 <td><a href="#t_derived">derived</a></td>
1029 <td><a href="#t_integer">integer</a>,
1030 <a href="#t_array">array</a>,
1031 <a href="#t_function">function</a>,
1032 <a href="#t_pointer">pointer</a>,
1033 <a href="#t_struct">structure</a>,
1034 <a href="#t_pstruct">packed structure</a>,
1035 <a href="#t_vector">vector</a>,
1036 <a href="#t_opaque">opaque</a>.
1037 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001038 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001039</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001040
Chris Lattner261efe92003-11-25 01:02:51 +00001041<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1042most important. Values of these types are the only ones which can be
1043produced by instructions, passed as arguments, or used as operands to
1044instructions. This means that all structures and arrays must be
1045manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001046</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001047
Chris Lattner00950542001-06-06 20:29:01 +00001048<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001049<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001050
Chris Lattner4f69f462008-01-04 04:32:38 +00001051<div class="doc_text">
1052<p>The primitive types are the fundamental building blocks of the LLVM
1053system.</p>
1054
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001055</div>
1056
Chris Lattner4f69f462008-01-04 04:32:38 +00001057<!-- _______________________________________________________________________ -->
1058<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1059
1060<div class="doc_text">
1061 <table>
1062 <tbody>
1063 <tr><th>Type</th><th>Description</th></tr>
1064 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1065 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1066 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1067 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1068 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1069 </tbody>
1070 </table>
1071</div>
1072
1073<!-- _______________________________________________________________________ -->
1074<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1075
1076<div class="doc_text">
1077<h5>Overview:</h5>
1078<p>The void type does not represent any value and has no size.</p>
1079
1080<h5>Syntax:</h5>
1081
1082<pre>
1083 void
1084</pre>
1085</div>
1086
1087<!-- _______________________________________________________________________ -->
1088<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1089
1090<div class="doc_text">
1091<h5>Overview:</h5>
1092<p>The label type represents code labels.</p>
1093
1094<h5>Syntax:</h5>
1095
1096<pre>
1097 label
1098</pre>
1099</div>
1100
1101
1102<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001103<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001104
Misha Brukman9d0919f2003-11-08 01:05:38 +00001105<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001106
Chris Lattner261efe92003-11-25 01:02:51 +00001107<p>The real power in LLVM comes from the derived types in the system.
1108This is what allows a programmer to represent arrays, functions,
1109pointers, and other useful types. Note that these derived types may be
1110recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001111
Misha Brukman9d0919f2003-11-08 01:05:38 +00001112</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001113
Chris Lattner00950542001-06-06 20:29:01 +00001114<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001115<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1116
1117<div class="doc_text">
1118
1119<h5>Overview:</h5>
1120<p>The integer type is a very simple derived type that simply specifies an
1121arbitrary bit width for the integer type desired. Any bit width from 1 bit to
11222^23-1 (about 8 million) can be specified.</p>
1123
1124<h5>Syntax:</h5>
1125
1126<pre>
1127 iN
1128</pre>
1129
1130<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1131value.</p>
1132
1133<h5>Examples:</h5>
1134<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001135 <tbody>
1136 <tr>
1137 <td><tt>i1</tt></td>
1138 <td>a single-bit integer.</td>
1139 </tr><tr>
1140 <td><tt>i32</tt></td>
1141 <td>a 32-bit integer.</td>
1142 </tr><tr>
1143 <td><tt>i1942652</tt></td>
1144 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001145 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001146 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001147</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001148</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001149
1150<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001151<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001152
Misha Brukman9d0919f2003-11-08 01:05:38 +00001153<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001154
Chris Lattner00950542001-06-06 20:29:01 +00001155<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001156
Misha Brukman9d0919f2003-11-08 01:05:38 +00001157<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001158sequentially in memory. The array type requires a size (number of
1159elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001160
Chris Lattner7faa8832002-04-14 06:13:44 +00001161<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001162
1163<pre>
1164 [&lt;# elements&gt; x &lt;elementtype&gt;]
1165</pre>
1166
John Criswelle4c57cc2005-05-12 16:52:32 +00001167<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001168be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001169
Chris Lattner7faa8832002-04-14 06:13:44 +00001170<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001171<table class="layout">
1172 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001173 <td class="left"><tt>[40 x i32]</tt></td>
1174 <td class="left">Array of 40 32-bit integer values.</td>
1175 </tr>
1176 <tr class="layout">
1177 <td class="left"><tt>[41 x i32]</tt></td>
1178 <td class="left">Array of 41 32-bit integer values.</td>
1179 </tr>
1180 <tr class="layout">
1181 <td class="left"><tt>[4 x i8]</tt></td>
1182 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001183 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001184</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001185<p>Here are some examples of multidimensional arrays:</p>
1186<table class="layout">
1187 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001188 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1189 <td class="left">3x4 array of 32-bit integer values.</td>
1190 </tr>
1191 <tr class="layout">
1192 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1193 <td class="left">12x10 array of single precision floating point values.</td>
1194 </tr>
1195 <tr class="layout">
1196 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1197 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001198 </tr>
1199</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001200
John Criswell0ec250c2005-10-24 16:17:18 +00001201<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1202length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001203LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1204As a special case, however, zero length arrays are recognized to be variable
1205length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001206type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001207
Misha Brukman9d0919f2003-11-08 01:05:38 +00001208</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001209
Chris Lattner00950542001-06-06 20:29:01 +00001210<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001211<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001212<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001213<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001214<p>The function type can be thought of as a function signature. It
1215consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +00001216Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +00001217(which are structures of pointers to functions), for indirect function
1218calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +00001219<p>
1220The return type of a function type cannot be an aggregate type.
1221</p>
Chris Lattner00950542001-06-06 20:29:01 +00001222<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001223<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +00001224<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001225specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001226which indicates that the function takes a variable number of arguments.
1227Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +00001228 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001229<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001230<table class="layout">
1231 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001232 <td class="left"><tt>i32 (i32)</tt></td>
1233 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001234 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001235 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001236 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001237 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001238 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1239 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001240 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001241 <tt>float</tt>.
1242 </td>
1243 </tr><tr class="layout">
1244 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1245 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001246 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001247 which returns an integer. This is the signature for <tt>printf</tt> in
1248 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001249 </td>
1250 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001251</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001252
Misha Brukman9d0919f2003-11-08 01:05:38 +00001253</div>
Chris Lattner00950542001-06-06 20:29:01 +00001254<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001255<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001256<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001257<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001258<p>The structure type is used to represent a collection of data members
1259together in memory. The packing of the field types is defined to match
1260the ABI of the underlying processor. The elements of a structure may
1261be any type that has a size.</p>
1262<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1263and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1264field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1265instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001266<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001267<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001268<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001269<table class="layout">
1270 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001271 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1272 <td class="left">A triple of three <tt>i32</tt> values</td>
1273 </tr><tr class="layout">
1274 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1275 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1276 second element is a <a href="#t_pointer">pointer</a> to a
1277 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1278 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001279 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001280</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001281</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001282
Chris Lattner00950542001-06-06 20:29:01 +00001283<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001284<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1285</div>
1286<div class="doc_text">
1287<h5>Overview:</h5>
1288<p>The packed structure type is used to represent a collection of data members
1289together in memory. There is no padding between fields. Further, the alignment
1290of a packed structure is 1 byte. The elements of a packed structure may
1291be any type that has a size.</p>
1292<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1293and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1294field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1295instruction.</p>
1296<h5>Syntax:</h5>
1297<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1298<h5>Examples:</h5>
1299<table class="layout">
1300 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001301 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1302 <td class="left">A triple of three <tt>i32</tt> values</td>
1303 </tr><tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001304 <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001305 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1306 second element is a <a href="#t_pointer">pointer</a> to a
1307 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1308 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001309 </tr>
1310</table>
1311</div>
1312
1313<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001314<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001315<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001316<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001317<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001318reference to another object, which must live in memory. Pointer types may have
1319an optional address space attribute defining the target-specific numbered
1320address space where the pointed-to object resides. The default address space is
1321zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001322<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001323<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001324<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001325<table class="layout">
1326 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001327 <td class="left"><tt>[4x i32]*</tt></td>
1328 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1329 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1330 </tr>
1331 <tr class="layout">
1332 <td class="left"><tt>i32 (i32 *) *</tt></td>
1333 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001334 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001335 <tt>i32</tt>.</td>
1336 </tr>
1337 <tr class="layout">
1338 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1339 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1340 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001341 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001342</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001343</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001344
Chris Lattnera58561b2004-08-12 19:12:28 +00001345<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001346<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001347<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001348
Chris Lattnera58561b2004-08-12 19:12:28 +00001349<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001350
Reid Spencer485bad12007-02-15 03:07:05 +00001351<p>A vector type is a simple derived type that represents a vector
1352of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001353are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001354A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001355elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001356of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001357considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001358
Chris Lattnera58561b2004-08-12 19:12:28 +00001359<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001360
1361<pre>
1362 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1363</pre>
1364
John Criswellc1f786c2005-05-13 22:25:59 +00001365<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001366be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001367
Chris Lattnera58561b2004-08-12 19:12:28 +00001368<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001369
Reid Spencerd3f876c2004-11-01 08:19:36 +00001370<table class="layout">
1371 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001372 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1373 <td class="left">Vector of 4 32-bit integer values.</td>
1374 </tr>
1375 <tr class="layout">
1376 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1377 <td class="left">Vector of 8 32-bit floating-point values.</td>
1378 </tr>
1379 <tr class="layout">
1380 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1381 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001382 </tr>
1383</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001384</div>
1385
Chris Lattner69c11bb2005-04-25 17:34:15 +00001386<!-- _______________________________________________________________________ -->
1387<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1388<div class="doc_text">
1389
1390<h5>Overview:</h5>
1391
1392<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001393corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001394In LLVM, opaque types can eventually be resolved to any type (not just a
1395structure type).</p>
1396
1397<h5>Syntax:</h5>
1398
1399<pre>
1400 opaque
1401</pre>
1402
1403<h5>Examples:</h5>
1404
1405<table class="layout">
1406 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001407 <td class="left"><tt>opaque</tt></td>
1408 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001409 </tr>
1410</table>
1411</div>
1412
1413
Chris Lattnerc3f59762004-12-09 17:30:23 +00001414<!-- *********************************************************************** -->
1415<div class="doc_section"> <a name="constants">Constants</a> </div>
1416<!-- *********************************************************************** -->
1417
1418<div class="doc_text">
1419
1420<p>LLVM has several different basic types of constants. This section describes
1421them all and their syntax.</p>
1422
1423</div>
1424
1425<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001426<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001427
1428<div class="doc_text">
1429
1430<dl>
1431 <dt><b>Boolean constants</b></dt>
1432
1433 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001434 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001435 </dd>
1436
1437 <dt><b>Integer constants</b></dt>
1438
Reid Spencercc16dc32004-12-09 18:02:53 +00001439 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001440 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001441 integer types.
1442 </dd>
1443
1444 <dt><b>Floating point constants</b></dt>
1445
1446 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1447 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001448 notation (see below). Floating point constants must have a <a
1449 href="#t_floating">floating point</a> type. </dd>
1450
1451 <dt><b>Null pointer constants</b></dt>
1452
John Criswell9e2485c2004-12-10 15:51:16 +00001453 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001454 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1455
1456</dl>
1457
John Criswell9e2485c2004-12-10 15:51:16 +00001458<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001459of floating point constants. For example, the form '<tt>double
14600x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
14614.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001462(and the only time that they are generated by the disassembler) is when a
1463floating point constant must be emitted but it cannot be represented as a
1464decimal floating point number. For example, NaN's, infinities, and other
1465special values are represented in their IEEE hexadecimal format so that
1466assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001467
1468</div>
1469
1470<!-- ======================================================================= -->
1471<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1472</div>
1473
1474<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001475<p>Aggregate constants arise from aggregation of simple constants
1476and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001477
1478<dl>
1479 <dt><b>Structure constants</b></dt>
1480
1481 <dd>Structure constants are represented with notation similar to structure
1482 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001483 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1484 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001485 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001486 types of elements must match those specified by the type.
1487 </dd>
1488
1489 <dt><b>Array constants</b></dt>
1490
1491 <dd>Array constants are represented with notation similar to array type
1492 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001493 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001494 constants must have <a href="#t_array">array type</a>, and the number and
1495 types of elements must match those specified by the type.
1496 </dd>
1497
Reid Spencer485bad12007-02-15 03:07:05 +00001498 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001499
Reid Spencer485bad12007-02-15 03:07:05 +00001500 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001501 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001502 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001503 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001504 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001505 match those specified by the type.
1506 </dd>
1507
1508 <dt><b>Zero initialization</b></dt>
1509
1510 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1511 value to zero of <em>any</em> type, including scalar and aggregate types.
1512 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001513 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001514 initializers.
1515 </dd>
1516</dl>
1517
1518</div>
1519
1520<!-- ======================================================================= -->
1521<div class="doc_subsection">
1522 <a name="globalconstants">Global Variable and Function Addresses</a>
1523</div>
1524
1525<div class="doc_text">
1526
1527<p>The addresses of <a href="#globalvars">global variables</a> and <a
1528href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001529constants. These constants are explicitly referenced when the <a
1530href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001531href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1532file:</p>
1533
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001534<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001535<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001536@X = global i32 17
1537@Y = global i32 42
1538@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001539</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001540</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001541
1542</div>
1543
1544<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001545<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001546<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001547 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001548 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001549 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001550
Reid Spencer2dc45b82004-12-09 18:13:12 +00001551 <p>Undefined values indicate to the compiler that the program is well defined
1552 no matter what value is used, giving the compiler more freedom to optimize.
1553 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001554</div>
1555
1556<!-- ======================================================================= -->
1557<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1558</div>
1559
1560<div class="doc_text">
1561
1562<p>Constant expressions are used to allow expressions involving other constants
1563to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001564href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001565that does not have side effects (e.g. load and call are not supported). The
1566following is the syntax for constant expressions:</p>
1567
1568<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001569 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1570 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001571 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001572
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001573 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1574 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001575 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001576
1577 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1578 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001579 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001580
1581 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1582 <dd>Truncate a floating point constant to another floating point type. The
1583 size of CST must be larger than the size of TYPE. Both types must be
1584 floating point.</dd>
1585
1586 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1587 <dd>Floating point extend a constant to another type. The size of CST must be
1588 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1589
Reid Spencer1539a1c2007-07-31 14:40:14 +00001590 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001591 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001592 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1593 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1594 of the same number of elements. If the value won't fit in the integer type,
1595 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001596
Reid Spencerd4448792006-11-09 23:03:26 +00001597 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001598 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001599 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1600 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1601 of the same number of elements. If the value won't fit in the integer type,
1602 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001603
Reid Spencerd4448792006-11-09 23:03:26 +00001604 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001605 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001606 constant. TYPE must be a scalar or vector floating point type. CST must be of
1607 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1608 of the same number of elements. If the value won't fit in the floating point
1609 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001610
Reid Spencerd4448792006-11-09 23:03:26 +00001611 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001612 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001613 constant. TYPE must be a scalar or vector floating point type. CST must be of
1614 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1615 of the same number of elements. If the value won't fit in the floating point
1616 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001617
Reid Spencer5c0ef472006-11-11 23:08:07 +00001618 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1619 <dd>Convert a pointer typed constant to the corresponding integer constant
1620 TYPE must be an integer type. CST must be of pointer type. The CST value is
1621 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1622
1623 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1624 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1625 pointer type. CST must be of integer type. The CST value is zero extended,
1626 truncated, or unchanged to make it fit in a pointer size. This one is
1627 <i>really</i> dangerous!</dd>
1628
1629 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001630 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1631 identical (same number of bits). The conversion is done as if the CST value
1632 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001633 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001634 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001635 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001636 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001637
1638 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1639
1640 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1641 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1642 instruction, the index list may have zero or more indexes, which are required
1643 to make sense for the type of "CSTPTR".</dd>
1644
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001645 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1646
1647 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001648 constants.</dd>
1649
1650 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1651 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1652
1653 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1654 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001655
1656 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1657
1658 <dd>Perform the <a href="#i_extractelement">extractelement
1659 operation</a> on constants.
1660
Robert Bocchino05ccd702006-01-15 20:48:27 +00001661 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1662
1663 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001664 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001665
Chris Lattnerc1989542006-04-08 00:13:41 +00001666
1667 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1668
1669 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001670 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001671
Chris Lattnerc3f59762004-12-09 17:30:23 +00001672 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1673
Reid Spencer2dc45b82004-12-09 18:13:12 +00001674 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1675 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001676 binary</a> operations. The constraints on operands are the same as those for
1677 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001678 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001679</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001680</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001681
Chris Lattner00950542001-06-06 20:29:01 +00001682<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001683<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1684<!-- *********************************************************************** -->
1685
1686<!-- ======================================================================= -->
1687<div class="doc_subsection">
1688<a name="inlineasm">Inline Assembler Expressions</a>
1689</div>
1690
1691<div class="doc_text">
1692
1693<p>
1694LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1695Module-Level Inline Assembly</a>) through the use of a special value. This
1696value represents the inline assembler as a string (containing the instructions
1697to emit), a list of operand constraints (stored as a string), and a flag that
1698indicates whether or not the inline asm expression has side effects. An example
1699inline assembler expression is:
1700</p>
1701
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001702<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001703<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001704i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001705</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001706</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001707
1708<p>
1709Inline assembler expressions may <b>only</b> be used as the callee operand of
1710a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1711</p>
1712
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001713<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001714<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001715%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001716</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001717</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001718
1719<p>
1720Inline asms with side effects not visible in the constraint list must be marked
1721as having side effects. This is done through the use of the
1722'<tt>sideeffect</tt>' keyword, like so:
1723</p>
1724
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001725<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001726<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001727call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001728</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001729</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001730
1731<p>TODO: The format of the asm and constraints string still need to be
1732documented here. Constraints on what can be done (e.g. duplication, moving, etc
1733need to be documented).
1734</p>
1735
1736</div>
1737
1738<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001739<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1740<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001741
Misha Brukman9d0919f2003-11-08 01:05:38 +00001742<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001743
Chris Lattner261efe92003-11-25 01:02:51 +00001744<p>The LLVM instruction set consists of several different
1745classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001746instructions</a>, <a href="#binaryops">binary instructions</a>,
1747<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001748 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1749instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001750
Misha Brukman9d0919f2003-11-08 01:05:38 +00001751</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001752
Chris Lattner00950542001-06-06 20:29:01 +00001753<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001754<div class="doc_subsection"> <a name="terminators">Terminator
1755Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001756
Misha Brukman9d0919f2003-11-08 01:05:38 +00001757<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001758
Chris Lattner261efe92003-11-25 01:02:51 +00001759<p>As mentioned <a href="#functionstructure">previously</a>, every
1760basic block in a program ends with a "Terminator" instruction, which
1761indicates which block should be executed after the current block is
1762finished. These terminator instructions typically yield a '<tt>void</tt>'
1763value: they produce control flow, not values (the one exception being
1764the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001765<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001766 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1767instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001768the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1769 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1770 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001771
Misha Brukman9d0919f2003-11-08 01:05:38 +00001772</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001773
Chris Lattner00950542001-06-06 20:29:01 +00001774<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001775<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1776Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001777<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001778<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001779<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001780 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001781</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001782<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001783<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001784value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001785<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001786returns a value and then causes control flow, and one that just causes
1787control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001788<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001789<p>The '<tt>ret</tt>' instruction may return any '<a
1790 href="#t_firstclass">first class</a>' type. Notice that a function is
1791not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1792instruction inside of the function that returns a value that does not
1793match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001794<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001795<p>When the '<tt>ret</tt>' instruction is executed, control flow
1796returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001797 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001798the instruction after the call. If the caller was an "<a
1799 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001800at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001801returns a value, that value shall set the call or invoke instruction's
1802return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001803<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001804<pre> ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001805 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001806</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001807</div>
Chris Lattner00950542001-06-06 20:29:01 +00001808<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001809<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001810<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001811<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001812<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001813</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001814<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001815<p>The '<tt>br</tt>' instruction is used to cause control flow to
1816transfer to a different basic block in the current function. There are
1817two forms of this instruction, corresponding to a conditional branch
1818and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001819<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001820<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001821single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001822unconditional form of the '<tt>br</tt>' instruction takes a single
1823'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001824<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001825<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001826argument is evaluated. If the value is <tt>true</tt>, control flows
1827to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1828control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001829<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001830<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001831 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001832</div>
Chris Lattner00950542001-06-06 20:29:01 +00001833<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001834<div class="doc_subsubsection">
1835 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1836</div>
1837
Misha Brukman9d0919f2003-11-08 01:05:38 +00001838<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001839<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001840
1841<pre>
1842 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1843</pre>
1844
Chris Lattner00950542001-06-06 20:29:01 +00001845<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001846
1847<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1848several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001849instruction, allowing a branch to occur to one of many possible
1850destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001851
1852
Chris Lattner00950542001-06-06 20:29:01 +00001853<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001854
1855<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1856comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1857an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1858table is not allowed to contain duplicate constant entries.</p>
1859
Chris Lattner00950542001-06-06 20:29:01 +00001860<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001861
Chris Lattner261efe92003-11-25 01:02:51 +00001862<p>The <tt>switch</tt> instruction specifies a table of values and
1863destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001864table is searched for the given value. If the value is found, control flow is
1865transfered to the corresponding destination; otherwise, control flow is
1866transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001867
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001868<h5>Implementation:</h5>
1869
1870<p>Depending on properties of the target machine and the particular
1871<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001872ways. For example, it could be generated as a series of chained conditional
1873branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001874
1875<h5>Example:</h5>
1876
1877<pre>
1878 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001879 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001880 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001881
1882 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001883 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001884
1885 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001886 switch i32 %val, label %otherwise [ i32 0, label %onzero
1887 i32 1, label %onone
1888 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001889</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001890</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001891
Chris Lattner00950542001-06-06 20:29:01 +00001892<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001893<div class="doc_subsubsection">
1894 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1895</div>
1896
Misha Brukman9d0919f2003-11-08 01:05:38 +00001897<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001898
Chris Lattner00950542001-06-06 20:29:01 +00001899<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001900
1901<pre>
1902 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001903 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001904</pre>
1905
Chris Lattner6536cfe2002-05-06 22:08:29 +00001906<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001907
1908<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1909function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001910'<tt>normal</tt>' label or the
1911'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001912"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1913"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001914href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1915continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001916
Chris Lattner00950542001-06-06 20:29:01 +00001917<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001918
Misha Brukman9d0919f2003-11-08 01:05:38 +00001919<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001920
Chris Lattner00950542001-06-06 20:29:01 +00001921<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001922 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00001923 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001924 convention</a> the call should use. If none is specified, the call defaults
1925 to using C calling conventions.
1926 </li>
1927 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1928 function value being invoked. In most cases, this is a direct function
1929 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1930 an arbitrary pointer to function value.
1931 </li>
1932
1933 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1934 function to be invoked. </li>
1935
1936 <li>'<tt>function args</tt>': argument list whose types match the function
1937 signature argument types. If the function signature indicates the function
1938 accepts a variable number of arguments, the extra arguments can be
1939 specified. </li>
1940
1941 <li>'<tt>normal label</tt>': the label reached when the called function
1942 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1943
1944 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1945 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1946
Chris Lattner00950542001-06-06 20:29:01 +00001947</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001948
Chris Lattner00950542001-06-06 20:29:01 +00001949<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001950
Misha Brukman9d0919f2003-11-08 01:05:38 +00001951<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001952href="#i_call">call</a></tt>' instruction in most regards. The primary
1953difference is that it establishes an association with a label, which is used by
1954the runtime library to unwind the stack.</p>
1955
1956<p>This instruction is used in languages with destructors to ensure that proper
1957cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1958exception. Additionally, this is important for implementation of
1959'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1960
Chris Lattner00950542001-06-06 20:29:01 +00001961<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001962<pre>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001963 %retval = invoke i32 %Test(i32 15) to label %Continue
1964 unwind label %TestCleanup <i>; {i32}:retval set</i>
1965 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1966 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001967</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001968</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001969
1970
Chris Lattner27f71f22003-09-03 00:41:47 +00001971<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001972
Chris Lattner261efe92003-11-25 01:02:51 +00001973<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1974Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001975
Misha Brukman9d0919f2003-11-08 01:05:38 +00001976<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001977
Chris Lattner27f71f22003-09-03 00:41:47 +00001978<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001979<pre>
1980 unwind
1981</pre>
1982
Chris Lattner27f71f22003-09-03 00:41:47 +00001983<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001984
1985<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1986at the first callee in the dynamic call stack which used an <a
1987href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1988primarily used to implement exception handling.</p>
1989
Chris Lattner27f71f22003-09-03 00:41:47 +00001990<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001991
1992<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1993immediately halt. The dynamic call stack is then searched for the first <a
1994href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1995execution continues at the "exceptional" destination block specified by the
1996<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1997dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001998</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001999
2000<!-- _______________________________________________________________________ -->
2001
2002<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2003Instruction</a> </div>
2004
2005<div class="doc_text">
2006
2007<h5>Syntax:</h5>
2008<pre>
2009 unreachable
2010</pre>
2011
2012<h5>Overview:</h5>
2013
2014<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2015instruction is used to inform the optimizer that a particular portion of the
2016code is not reachable. This can be used to indicate that the code after a
2017no-return function cannot be reached, and other facts.</p>
2018
2019<h5>Semantics:</h5>
2020
2021<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2022</div>
2023
2024
2025
Chris Lattner00950542001-06-06 20:29:01 +00002026<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002027<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002028<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002029<p>Binary operators are used to do most of the computation in a
2030program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002031produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002032multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnera58561b2004-08-12 19:12:28 +00002033The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00002034necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002035<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002036</div>
Chris Lattner00950542001-06-06 20:29:01 +00002037<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002038<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
2039Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002040<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002041<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002042<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002043</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002044<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002045<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002046<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002047<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00002048 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
Reid Spencer485bad12007-02-15 03:07:05 +00002049 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002050Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002051<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002052<p>The value produced is the integer or floating point sum of the two
2053operands.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002054<p>If an integer sum has unsigned overflow, the result returned is the
2055mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2056the result.</p>
2057<p>Because LLVM integers use a two's complement representation, this
2058instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002059<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002060<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002061</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002062</div>
Chris Lattner00950542001-06-06 20:29:01 +00002063<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002064<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
2065Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002066<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002067<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002068<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002069</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002070<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002071<p>The '<tt>sub</tt>' instruction returns the difference of its two
2072operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002073<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
2074instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002075<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002076<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00002077 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00002078values.
Reid Spencer485bad12007-02-15 03:07:05 +00002079This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002080Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002081<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002082<p>The value produced is the integer or floating point difference of
2083the two operands.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002084<p>If an integer difference has unsigned overflow, the result returned is the
2085mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2086the result.</p>
2087<p>Because LLVM integers use a two's complement representation, this
2088instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002089<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002090<pre>
2091 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002092 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002093</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002094</div>
Chris Lattner00950542001-06-06 20:29:01 +00002095<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002096<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
2097Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002098<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002099<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002100<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002101</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002102<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002103<p>The '<tt>mul</tt>' instruction returns the product of its two
2104operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002105<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002106<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00002107 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00002108values.
Reid Spencer485bad12007-02-15 03:07:05 +00002109This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002110Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002111<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002112<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002113two operands.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002114<p>If the result of an integer multiplication has unsigned overflow,
2115the result returned is the mathematical result modulo
21162<sup>n</sup>, where n is the bit width of the result.</p>
2117<p>Because LLVM integers use a two's complement representation, and the
2118result is the same width as the operands, this instruction returns the
2119correct result for both signed and unsigned integers. If a full product
2120(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2121should be sign-extended or zero-extended as appropriate to the
2122width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002123<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002124<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002125</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002126</div>
Chris Lattner00950542001-06-06 20:29:01 +00002127<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002128<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2129</a></div>
2130<div class="doc_text">
2131<h5>Syntax:</h5>
2132<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2133</pre>
2134<h5>Overview:</h5>
2135<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2136operands.</p>
2137<h5>Arguments:</h5>
2138<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2139<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002140types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002141of the values in which case the elements must be integers.</p>
2142<h5>Semantics:</h5>
Chris Lattner5ec89832008-01-28 00:36:27 +00002143<p>The value produced is the unsigned integer quotient of the two operands.</p>
2144<p>Note that unsigned integer division and signed integer division are distinct
2145operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2146<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002147<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002148<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002149</pre>
2150</div>
2151<!-- _______________________________________________________________________ -->
2152<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2153</a> </div>
2154<div class="doc_text">
2155<h5>Syntax:</h5>
2156<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2157</pre>
2158<h5>Overview:</h5>
2159<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2160operands.</p>
2161<h5>Arguments:</h5>
2162<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2163<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002164types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002165of the values in which case the elements must be integers.</p>
2166<h5>Semantics:</h5>
Chris Lattner5ec89832008-01-28 00:36:27 +00002167<p>The value produced is the signed integer quotient of the two operands.</p>
2168<p>Note that signed integer division and unsigned integer division are distinct
2169operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2170<p>Division by zero leads to undefined behavior. Overflow also leads to
2171undefined behavior; this is a rare case, but can occur, for example,
2172by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002173<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002174<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002175</pre>
2176</div>
2177<!-- _______________________________________________________________________ -->
2178<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002179Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002180<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002181<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002182<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002183</pre>
2184<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002185<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002186operands.</p>
2187<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002188<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Reid Spencer1628cec2006-10-26 06:15:43 +00002189<a href="#t_floating">floating point</a> values. Both arguments must have
Reid Spencer485bad12007-02-15 03:07:05 +00002190identical types. This instruction can also take <a href="#t_vector">vector</a>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002191versions of floating point values.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002192<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002193<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002194<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002195<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002196</pre>
2197</div>
2198<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002199<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2200</div>
2201<div class="doc_text">
2202<h5>Syntax:</h5>
2203<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2204</pre>
2205<h5>Overview:</h5>
2206<p>The '<tt>urem</tt>' instruction returns the remainder from the
2207unsigned division of its two arguments.</p>
2208<h5>Arguments:</h5>
2209<p>The two arguments to the '<tt>urem</tt>' instruction must be
2210<a href="#t_integer">integer</a> values. Both arguments must have identical
Dan Gohman80176312007-11-05 23:35:22 +00002211types. This instruction can also take <a href="#t_vector">vector</a> versions
2212of the values in which case the elements must be integers.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002213<h5>Semantics:</h5>
2214<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2215This instruction always performs an unsigned division to get the remainder,
2216regardless of whether the arguments are unsigned or not.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002217<p>Note that unsigned integer remainder and signed integer remainder are
2218distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2219<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002220<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002221<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002222</pre>
2223
2224</div>
2225<!-- _______________________________________________________________________ -->
2226<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002227Instruction</a> </div>
2228<div class="doc_text">
2229<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002230<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002231</pre>
2232<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002233<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002234signed division of its two operands. This instruction can also take
2235<a href="#t_vector">vector</a> versions of the values in which case
2236the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002237
Chris Lattner261efe92003-11-25 01:02:51 +00002238<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002239<p>The two arguments to the '<tt>srem</tt>' instruction must be
2240<a href="#t_integer">integer</a> values. Both arguments must have identical
2241types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002242<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002243<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002244has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2245operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2246a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002247 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002248Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002249please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002250Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002251<p>Note that signed integer remainder and unsigned integer remainder are
2252distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2253<p>Taking the remainder of a division by zero leads to undefined behavior.
2254Overflow also leads to undefined behavior; this is a rare case, but can occur,
2255for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2256(The remainder doesn't actually overflow, but this rule lets srem be
2257implemented using instructions that return both the result of the division
2258and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002259<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002260<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002261</pre>
2262
2263</div>
2264<!-- _______________________________________________________________________ -->
2265<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2266Instruction</a> </div>
2267<div class="doc_text">
2268<h5>Syntax:</h5>
2269<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2270</pre>
2271<h5>Overview:</h5>
2272<p>The '<tt>frem</tt>' instruction returns the remainder from the
2273division of its two operands.</p>
2274<h5>Arguments:</h5>
2275<p>The two arguments to the '<tt>frem</tt>' instruction must be
2276<a href="#t_floating">floating point</a> values. Both arguments must have
Dan Gohman80176312007-11-05 23:35:22 +00002277identical types. This instruction can also take <a href="#t_vector">vector</a>
2278versions of floating point values.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002279<h5>Semantics:</h5>
2280<p>This instruction returns the <i>remainder</i> of a division.</p>
2281<h5>Example:</h5>
2282<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002283</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002284</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002285
Reid Spencer8e11bf82007-02-02 13:57:07 +00002286<!-- ======================================================================= -->
2287<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2288Operations</a> </div>
2289<div class="doc_text">
2290<p>Bitwise binary operators are used to do various forms of
2291bit-twiddling in a program. They are generally very efficient
2292instructions and can commonly be strength reduced from other
2293instructions. They require two operands, execute an operation on them,
2294and produce a single value. The resulting value of the bitwise binary
2295operators is always the same type as its first operand.</p>
2296</div>
2297
Reid Spencer569f2fa2007-01-31 21:39:12 +00002298<!-- _______________________________________________________________________ -->
2299<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2300Instruction</a> </div>
2301<div class="doc_text">
2302<h5>Syntax:</h5>
2303<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2304</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002305
Reid Spencer569f2fa2007-01-31 21:39:12 +00002306<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002307
Reid Spencer569f2fa2007-01-31 21:39:12 +00002308<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2309the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002310
Reid Spencer569f2fa2007-01-31 21:39:12 +00002311<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002312
Reid Spencer569f2fa2007-01-31 21:39:12 +00002313<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2314 href="#t_integer">integer</a> type.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002315
Reid Spencer569f2fa2007-01-31 21:39:12 +00002316<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002317
2318<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>. If
2319<tt>var2</tt> is (statically or dynamically) equal to or larger than the number
2320of bits in <tt>var1</tt>, the result is undefined.</p>
2321
Reid Spencer569f2fa2007-01-31 21:39:12 +00002322<h5>Example:</h5><pre>
2323 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2324 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2325 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002326 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002327</pre>
2328</div>
2329<!-- _______________________________________________________________________ -->
2330<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2331Instruction</a> </div>
2332<div class="doc_text">
2333<h5>Syntax:</h5>
2334<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2335</pre>
2336
2337<h5>Overview:</h5>
2338<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002339operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002340
2341<h5>Arguments:</h5>
2342<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2343<a href="#t_integer">integer</a> type.</p>
2344
2345<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002346
Reid Spencer569f2fa2007-01-31 21:39:12 +00002347<p>This instruction always performs a logical shift right operation. The most
2348significant bits of the result will be filled with zero bits after the
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002349shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2350the number of bits in <tt>var1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002351
2352<h5>Example:</h5>
2353<pre>
2354 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2355 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2356 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2357 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002358 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002359</pre>
2360</div>
2361
Reid Spencer8e11bf82007-02-02 13:57:07 +00002362<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002363<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2364Instruction</a> </div>
2365<div class="doc_text">
2366
2367<h5>Syntax:</h5>
2368<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2369</pre>
2370
2371<h5>Overview:</h5>
2372<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002373operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002374
2375<h5>Arguments:</h5>
2376<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2377<a href="#t_integer">integer</a> type.</p>
2378
2379<h5>Semantics:</h5>
2380<p>This instruction always performs an arithmetic shift right operation,
2381The most significant bits of the result will be filled with the sign bit
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002382of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2383larger than the number of bits in <tt>var1</tt>, the result is undefined.
2384</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002385
2386<h5>Example:</h5>
2387<pre>
2388 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2389 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2390 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2391 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002392 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002393</pre>
2394</div>
2395
Chris Lattner00950542001-06-06 20:29:01 +00002396<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002397<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2398Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002399<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002400<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002401<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002402</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002403<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002404<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2405its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002406<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002407<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002408 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002409identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002410<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002411<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002412<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002413<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002414<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002415 <tbody>
2416 <tr>
2417 <td>In0</td>
2418 <td>In1</td>
2419 <td>Out</td>
2420 </tr>
2421 <tr>
2422 <td>0</td>
2423 <td>0</td>
2424 <td>0</td>
2425 </tr>
2426 <tr>
2427 <td>0</td>
2428 <td>1</td>
2429 <td>0</td>
2430 </tr>
2431 <tr>
2432 <td>1</td>
2433 <td>0</td>
2434 <td>0</td>
2435 </tr>
2436 <tr>
2437 <td>1</td>
2438 <td>1</td>
2439 <td>1</td>
2440 </tr>
2441 </tbody>
2442</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002443</div>
Chris Lattner00950542001-06-06 20:29:01 +00002444<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002445<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2446 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2447 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002448</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002449</div>
Chris Lattner00950542001-06-06 20:29:01 +00002450<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002451<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002452<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002453<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002454<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002455</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002456<h5>Overview:</h5>
2457<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2458or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002459<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002460<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002461 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002462identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002463<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002464<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002465<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002466<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002467<table border="1" cellspacing="0" cellpadding="4">
2468 <tbody>
2469 <tr>
2470 <td>In0</td>
2471 <td>In1</td>
2472 <td>Out</td>
2473 </tr>
2474 <tr>
2475 <td>0</td>
2476 <td>0</td>
2477 <td>0</td>
2478 </tr>
2479 <tr>
2480 <td>0</td>
2481 <td>1</td>
2482 <td>1</td>
2483 </tr>
2484 <tr>
2485 <td>1</td>
2486 <td>0</td>
2487 <td>1</td>
2488 </tr>
2489 <tr>
2490 <td>1</td>
2491 <td>1</td>
2492 <td>1</td>
2493 </tr>
2494 </tbody>
2495</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002496</div>
Chris Lattner00950542001-06-06 20:29:01 +00002497<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002498<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2499 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2500 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002501</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002502</div>
Chris Lattner00950542001-06-06 20:29:01 +00002503<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002504<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2505Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002506<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002507<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002508<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002509</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002510<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002511<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2512or of its two operands. The <tt>xor</tt> is used to implement the
2513"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002514<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002515<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002516 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002517identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002518<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002519<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002520<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002521<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002522<table border="1" cellspacing="0" cellpadding="4">
2523 <tbody>
2524 <tr>
2525 <td>In0</td>
2526 <td>In1</td>
2527 <td>Out</td>
2528 </tr>
2529 <tr>
2530 <td>0</td>
2531 <td>0</td>
2532 <td>0</td>
2533 </tr>
2534 <tr>
2535 <td>0</td>
2536 <td>1</td>
2537 <td>1</td>
2538 </tr>
2539 <tr>
2540 <td>1</td>
2541 <td>0</td>
2542 <td>1</td>
2543 </tr>
2544 <tr>
2545 <td>1</td>
2546 <td>1</td>
2547 <td>0</td>
2548 </tr>
2549 </tbody>
2550</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002551</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002552<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002553<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002554<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2555 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2556 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2557 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002558</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002559</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002560
Chris Lattner00950542001-06-06 20:29:01 +00002561<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002562<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002563 <a name="vectorops">Vector Operations</a>
2564</div>
2565
2566<div class="doc_text">
2567
2568<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002569target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002570vector-specific operations needed to process vectors effectively. While LLVM
2571does directly support these vector operations, many sophisticated algorithms
2572will want to use target-specific intrinsics to take full advantage of a specific
2573target.</p>
2574
2575</div>
2576
2577<!-- _______________________________________________________________________ -->
2578<div class="doc_subsubsection">
2579 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2580</div>
2581
2582<div class="doc_text">
2583
2584<h5>Syntax:</h5>
2585
2586<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002587 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002588</pre>
2589
2590<h5>Overview:</h5>
2591
2592<p>
2593The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002594element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002595</p>
2596
2597
2598<h5>Arguments:</h5>
2599
2600<p>
2601The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002602value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002603an index indicating the position from which to extract the element.
2604The index may be a variable.</p>
2605
2606<h5>Semantics:</h5>
2607
2608<p>
2609The result is a scalar of the same type as the element type of
2610<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2611<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2612results are undefined.
2613</p>
2614
2615<h5>Example:</h5>
2616
2617<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002618 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002619</pre>
2620</div>
2621
2622
2623<!-- _______________________________________________________________________ -->
2624<div class="doc_subsubsection">
2625 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2626</div>
2627
2628<div class="doc_text">
2629
2630<h5>Syntax:</h5>
2631
2632<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002633 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002634</pre>
2635
2636<h5>Overview:</h5>
2637
2638<p>
2639The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002640element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002641</p>
2642
2643
2644<h5>Arguments:</h5>
2645
2646<p>
2647The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002648value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002649scalar value whose type must equal the element type of the first
2650operand. The third operand is an index indicating the position at
2651which to insert the value. The index may be a variable.</p>
2652
2653<h5>Semantics:</h5>
2654
2655<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002656The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002657element values are those of <tt>val</tt> except at position
2658<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2659exceeds the length of <tt>val</tt>, the results are undefined.
2660</p>
2661
2662<h5>Example:</h5>
2663
2664<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002665 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002666</pre>
2667</div>
2668
2669<!-- _______________________________________________________________________ -->
2670<div class="doc_subsubsection">
2671 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2672</div>
2673
2674<div class="doc_text">
2675
2676<h5>Syntax:</h5>
2677
2678<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002679 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002680</pre>
2681
2682<h5>Overview:</h5>
2683
2684<p>
2685The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2686from two input vectors, returning a vector of the same type.
2687</p>
2688
2689<h5>Arguments:</h5>
2690
2691<p>
2692The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2693with types that match each other and types that match the result of the
2694instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002695of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002696</p>
2697
2698<p>
2699The shuffle mask operand is required to be a constant vector with either
2700constant integer or undef values.
2701</p>
2702
2703<h5>Semantics:</h5>
2704
2705<p>
2706The elements of the two input vectors are numbered from left to right across
2707both of the vectors. The shuffle mask operand specifies, for each element of
2708the result vector, which element of the two input registers the result element
2709gets. The element selector may be undef (meaning "don't care") and the second
2710operand may be undef if performing a shuffle from only one vector.
2711</p>
2712
2713<h5>Example:</h5>
2714
2715<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002716 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002717 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002718 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2719 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002720</pre>
2721</div>
2722
Tanya Lattner09474292006-04-14 19:24:33 +00002723
Chris Lattner3df241e2006-04-08 23:07:04 +00002724<!-- ======================================================================= -->
2725<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002726 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002727</div>
2728
Misha Brukman9d0919f2003-11-08 01:05:38 +00002729<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002730
Chris Lattner261efe92003-11-25 01:02:51 +00002731<p>A key design point of an SSA-based representation is how it
2732represents memory. In LLVM, no memory locations are in SSA form, which
2733makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002734allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002735
Misha Brukman9d0919f2003-11-08 01:05:38 +00002736</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002737
Chris Lattner00950542001-06-06 20:29:01 +00002738<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002739<div class="doc_subsubsection">
2740 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2741</div>
2742
Misha Brukman9d0919f2003-11-08 01:05:38 +00002743<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002744
Chris Lattner00950542001-06-06 20:29:01 +00002745<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002746
2747<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002748 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002749</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002750
Chris Lattner00950542001-06-06 20:29:01 +00002751<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002752
Chris Lattner261efe92003-11-25 01:02:51 +00002753<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00002754heap and returns a pointer to it. The object is always allocated in the generic
2755address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002756
Chris Lattner00950542001-06-06 20:29:01 +00002757<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002758
2759<p>The '<tt>malloc</tt>' instruction allocates
2760<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002761bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002762appropriate type to the program. If "NumElements" is specified, it is the
2763number of elements allocated. If an alignment is specified, the value result
2764of the allocation is guaranteed to be aligned to at least that boundary. If
2765not specified, or if zero, the target can choose to align the allocation on any
2766convenient boundary.</p>
2767
Misha Brukman9d0919f2003-11-08 01:05:38 +00002768<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002769
Chris Lattner00950542001-06-06 20:29:01 +00002770<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002771
Chris Lattner261efe92003-11-25 01:02:51 +00002772<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2773a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002774
Chris Lattner2cbdc452005-11-06 08:02:57 +00002775<h5>Example:</h5>
2776
2777<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002778 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002779
Bill Wendlingaac388b2007-05-29 09:42:13 +00002780 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2781 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2782 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2783 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2784 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002785</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002786</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002787
Chris Lattner00950542001-06-06 20:29:01 +00002788<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002789<div class="doc_subsubsection">
2790 <a name="i_free">'<tt>free</tt>' Instruction</a>
2791</div>
2792
Misha Brukman9d0919f2003-11-08 01:05:38 +00002793<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002794
Chris Lattner00950542001-06-06 20:29:01 +00002795<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002796
2797<pre>
2798 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002799</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002800
Chris Lattner00950542001-06-06 20:29:01 +00002801<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002802
Chris Lattner261efe92003-11-25 01:02:51 +00002803<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002804memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002805
Chris Lattner00950542001-06-06 20:29:01 +00002806<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002807
Chris Lattner261efe92003-11-25 01:02:51 +00002808<p>'<tt>value</tt>' shall be a pointer value that points to a value
2809that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2810instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002811
Chris Lattner00950542001-06-06 20:29:01 +00002812<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002813
John Criswell9e2485c2004-12-10 15:51:16 +00002814<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002815after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002816
Chris Lattner00950542001-06-06 20:29:01 +00002817<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002818
2819<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002820 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2821 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00002822</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002823</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002824
Chris Lattner00950542001-06-06 20:29:01 +00002825<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002826<div class="doc_subsubsection">
2827 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2828</div>
2829
Misha Brukman9d0919f2003-11-08 01:05:38 +00002830<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002831
Chris Lattner00950542001-06-06 20:29:01 +00002832<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002833
2834<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002835 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002836</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002837
Chris Lattner00950542001-06-06 20:29:01 +00002838<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002839
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002840<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2841currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00002842returns to its caller. The object is always allocated in the generic address
2843space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002844
Chris Lattner00950542001-06-06 20:29:01 +00002845<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002846
John Criswell9e2485c2004-12-10 15:51:16 +00002847<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002848bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002849appropriate type to the program. If "NumElements" is specified, it is the
2850number of elements allocated. If an alignment is specified, the value result
2851of the allocation is guaranteed to be aligned to at least that boundary. If
2852not specified, or if zero, the target can choose to align the allocation on any
2853convenient boundary.</p>
2854
Misha Brukman9d0919f2003-11-08 01:05:38 +00002855<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002856
Chris Lattner00950542001-06-06 20:29:01 +00002857<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002858
John Criswellc1f786c2005-05-13 22:25:59 +00002859<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002860memory is automatically released when the function returns. The '<tt>alloca</tt>'
2861instruction is commonly used to represent automatic variables that must
2862have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002863 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002864instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002865
Chris Lattner00950542001-06-06 20:29:01 +00002866<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002867
2868<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002869 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002870 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2871 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002872 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002873</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002874</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002875
Chris Lattner00950542001-06-06 20:29:01 +00002876<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002877<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2878Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002879<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002880<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00002881<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002882<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002883<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002884<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002885<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002886address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002887 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002888marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002889the number or order of execution of this <tt>load</tt> with other
2890volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2891instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00002892<p>
2893The optional "align" argument specifies the alignment of the operation
2894(that is, the alignment of the memory address). A value of 0 or an
2895omitted "align" argument means that the operation has the preferential
2896alignment for the target. It is the responsibility of the code emitter
2897to ensure that the alignment information is correct. Overestimating
2898the alignment results in an undefined behavior. Underestimating the
2899alignment may produce less efficient code. An alignment of 1 is always
2900safe.
2901</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002902<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002903<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002904<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002905<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002906 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002907 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2908 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002909</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002910</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002911<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002912<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2913Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00002914<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002915<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00002916<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2917 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002918</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002919<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002920<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002921<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002922<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002923to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002924operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002925operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002926optimizer is not allowed to modify the number or order of execution of
2927this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2928 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00002929<p>
2930The optional "align" argument specifies the alignment of the operation
2931(that is, the alignment of the memory address). A value of 0 or an
2932omitted "align" argument means that the operation has the preferential
2933alignment for the target. It is the responsibility of the code emitter
2934to ensure that the alignment information is correct. Overestimating
2935the alignment results in an undefined behavior. Underestimating the
2936alignment may produce less efficient code. An alignment of 1 is always
2937safe.
2938</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002939<h5>Semantics:</h5>
2940<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2941at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002942<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002943<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00002944 store i32 3, i32* %ptr <i>; yields {void}</i>
2945 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002946</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00002947</div>
2948
Chris Lattner2b7d3202002-05-06 03:03:22 +00002949<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002950<div class="doc_subsubsection">
2951 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2952</div>
2953
Misha Brukman9d0919f2003-11-08 01:05:38 +00002954<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002955<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002956<pre>
2957 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2958</pre>
2959
Chris Lattner7faa8832002-04-14 06:13:44 +00002960<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002961
2962<p>
2963The '<tt>getelementptr</tt>' instruction is used to get the address of a
2964subelement of an aggregate data structure.</p>
2965
Chris Lattner7faa8832002-04-14 06:13:44 +00002966<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002967
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002968<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002969elements of the aggregate object to index to. The actual types of the arguments
2970provided depend on the type of the first pointer argument. The
2971'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002972levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00002973structure, only <tt>i32</tt> integer constants are allowed. When indexing
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002974into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2975be sign extended to 64-bit values.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002976
Chris Lattner261efe92003-11-25 01:02:51 +00002977<p>For example, let's consider a C code fragment and how it gets
2978compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002979
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002980<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002981<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002982struct RT {
2983 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00002984 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002985 char C;
2986};
2987struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00002988 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002989 double Y;
2990 struct RT Z;
2991};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002992
Chris Lattnercabc8462007-05-29 15:43:56 +00002993int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002994 return &amp;s[1].Z.B[5][13];
2995}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002996</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002997</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002998
Misha Brukman9d0919f2003-11-08 01:05:38 +00002999<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003000
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003001<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003002<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003003%RT = type { i8 , [10 x [20 x i32]], i8 }
3004%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003005
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003006define i32* %foo(%ST* %s) {
3007entry:
3008 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3009 ret i32* %reg
3010}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003011</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003012</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003013
Chris Lattner7faa8832002-04-14 06:13:44 +00003014<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003015
3016<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003017on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003018and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003019<a href="#t_integer">integer</a> type but the value will always be sign extended
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003020to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
Reid Spencer42ddd842006-12-03 16:53:48 +00003021<b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003022
Misha Brukman9d0919f2003-11-08 01:05:38 +00003023<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003024type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003025}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003026the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3027i8 }</tt>' type, another structure. The third index indexes into the second
3028element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003029array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003030'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3031to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003032
Chris Lattner261efe92003-11-25 01:02:51 +00003033<p>Note that it is perfectly legal to index partially through a
3034structure, returning a pointer to an inner element. Because of this,
3035the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003036
3037<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003038 define i32* %foo(%ST* %s) {
3039 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003040 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3041 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003042 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3043 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3044 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003045 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003046</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003047
3048<p>Note that it is undefined to access an array out of bounds: array and
3049pointer indexes must always be within the defined bounds of the array type.
3050The one exception for this rules is zero length arrays. These arrays are
3051defined to be accessible as variable length arrays, which requires access
3052beyond the zero'th element.</p>
3053
Chris Lattner884a9702006-08-15 00:45:58 +00003054<p>The getelementptr instruction is often confusing. For some more insight
3055into how it works, see <a href="GetElementPtr.html">the getelementptr
3056FAQ</a>.</p>
3057
Chris Lattner7faa8832002-04-14 06:13:44 +00003058<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003059
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003060<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003061 <i>; yields [12 x i8]*:aptr</i>
3062 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003063</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003064</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003065
Chris Lattner00950542001-06-06 20:29:01 +00003066<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003067<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003068</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003069<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003070<p>The instructions in this category are the conversion instructions (casting)
3071which all take a single operand and a type. They perform various bit conversions
3072on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003073</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003074
Chris Lattner6536cfe2002-05-06 22:08:29 +00003075<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003076<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003077 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3078</div>
3079<div class="doc_text">
3080
3081<h5>Syntax:</h5>
3082<pre>
3083 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3084</pre>
3085
3086<h5>Overview:</h5>
3087<p>
3088The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3089</p>
3090
3091<h5>Arguments:</h5>
3092<p>
3093The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3094be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003095and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003096type. The bit size of <tt>value</tt> must be larger than the bit size of
3097<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003098
3099<h5>Semantics:</h5>
3100<p>
3101The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003102and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3103larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3104It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003105
3106<h5>Example:</h5>
3107<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003108 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003109 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3110 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003111</pre>
3112</div>
3113
3114<!-- _______________________________________________________________________ -->
3115<div class="doc_subsubsection">
3116 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3117</div>
3118<div class="doc_text">
3119
3120<h5>Syntax:</h5>
3121<pre>
3122 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3123</pre>
3124
3125<h5>Overview:</h5>
3126<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3127<tt>ty2</tt>.</p>
3128
3129
3130<h5>Arguments:</h5>
3131<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003132<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3133also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003134<tt>value</tt> must be smaller than the bit size of the destination type,
3135<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003136
3137<h5>Semantics:</h5>
3138<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003139bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003140
Reid Spencerb5929522007-01-12 15:46:11 +00003141<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003142
3143<h5>Example:</h5>
3144<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003145 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003146 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003147</pre>
3148</div>
3149
3150<!-- _______________________________________________________________________ -->
3151<div class="doc_subsubsection">
3152 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3153</div>
3154<div class="doc_text">
3155
3156<h5>Syntax:</h5>
3157<pre>
3158 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3159</pre>
3160
3161<h5>Overview:</h5>
3162<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3163
3164<h5>Arguments:</h5>
3165<p>
3166The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003167<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3168also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003169<tt>value</tt> must be smaller than the bit size of the destination type,
3170<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003171
3172<h5>Semantics:</h5>
3173<p>
3174The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3175bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003176the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003177
Reid Spencerc78f3372007-01-12 03:35:51 +00003178<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003179
3180<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003181<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003182 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003183 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003184</pre>
3185</div>
3186
3187<!-- _______________________________________________________________________ -->
3188<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003189 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3190</div>
3191
3192<div class="doc_text">
3193
3194<h5>Syntax:</h5>
3195
3196<pre>
3197 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3198</pre>
3199
3200<h5>Overview:</h5>
3201<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3202<tt>ty2</tt>.</p>
3203
3204
3205<h5>Arguments:</h5>
3206<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3207 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3208cast it to. The size of <tt>value</tt> must be larger than the size of
3209<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3210<i>no-op cast</i>.</p>
3211
3212<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003213<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3214<a href="#t_floating">floating point</a> type to a smaller
3215<a href="#t_floating">floating point</a> type. If the value cannot fit within
3216the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003217
3218<h5>Example:</h5>
3219<pre>
3220 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3221 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3222</pre>
3223</div>
3224
3225<!-- _______________________________________________________________________ -->
3226<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003227 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3228</div>
3229<div class="doc_text">
3230
3231<h5>Syntax:</h5>
3232<pre>
3233 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3234</pre>
3235
3236<h5>Overview:</h5>
3237<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3238floating point value.</p>
3239
3240<h5>Arguments:</h5>
3241<p>The '<tt>fpext</tt>' instruction takes a
3242<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003243and a <a href="#t_floating">floating point</a> type to cast it to. The source
3244type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003245
3246<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003247<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003248<a href="#t_floating">floating point</a> type to a larger
3249<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003250used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003251<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003252
3253<h5>Example:</h5>
3254<pre>
3255 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3256 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3257</pre>
3258</div>
3259
3260<!-- _______________________________________________________________________ -->
3261<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003262 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003263</div>
3264<div class="doc_text">
3265
3266<h5>Syntax:</h5>
3267<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003268 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003269</pre>
3270
3271<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003272<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003273unsigned integer equivalent of type <tt>ty2</tt>.
3274</p>
3275
3276<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003277<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003278scalar or vector <a href="#t_floating">floating point</a> value, and a type
3279to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3280type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3281vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003282
3283<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003284<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003285<a href="#t_floating">floating point</a> operand into the nearest (rounding
3286towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3287the results are undefined.</p>
3288
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003289<h5>Example:</h5>
3290<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003291 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003292 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003293 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003294</pre>
3295</div>
3296
3297<!-- _______________________________________________________________________ -->
3298<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003299 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003300</div>
3301<div class="doc_text">
3302
3303<h5>Syntax:</h5>
3304<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003305 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003306</pre>
3307
3308<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003309<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003310<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003311</p>
3312
Chris Lattner6536cfe2002-05-06 22:08:29 +00003313<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003314<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003315scalar or vector <a href="#t_floating">floating point</a> value, and a type
3316to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3317type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3318vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003319
Chris Lattner6536cfe2002-05-06 22:08:29 +00003320<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003321<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003322<a href="#t_floating">floating point</a> operand into the nearest (rounding
3323towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3324the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003325
Chris Lattner33ba0d92001-07-09 00:26:23 +00003326<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003327<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003328 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003329 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003330 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003331</pre>
3332</div>
3333
3334<!-- _______________________________________________________________________ -->
3335<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003336 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003337</div>
3338<div class="doc_text">
3339
3340<h5>Syntax:</h5>
3341<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003342 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003343</pre>
3344
3345<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003346<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003347integer and converts that value to the <tt>ty2</tt> type.</p>
3348
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003349<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003350<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3351scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3352to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3353type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3354floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003355
3356<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003357<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003358integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003359the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003360
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003361<h5>Example:</h5>
3362<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003363 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003364 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003365</pre>
3366</div>
3367
3368<!-- _______________________________________________________________________ -->
3369<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003370 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003371</div>
3372<div class="doc_text">
3373
3374<h5>Syntax:</h5>
3375<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003376 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003377</pre>
3378
3379<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003380<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003381integer and converts that value to the <tt>ty2</tt> type.</p>
3382
3383<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003384<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3385scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3386to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3387type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3388floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003389
3390<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003391<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003392integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003393the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003394
3395<h5>Example:</h5>
3396<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003397 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003398 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003399</pre>
3400</div>
3401
3402<!-- _______________________________________________________________________ -->
3403<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003404 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3405</div>
3406<div class="doc_text">
3407
3408<h5>Syntax:</h5>
3409<pre>
3410 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3411</pre>
3412
3413<h5>Overview:</h5>
3414<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3415the integer type <tt>ty2</tt>.</p>
3416
3417<h5>Arguments:</h5>
3418<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003419must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003420<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3421
3422<h5>Semantics:</h5>
3423<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3424<tt>ty2</tt> by interpreting the pointer value as an integer and either
3425truncating or zero extending that value to the size of the integer type. If
3426<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3427<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003428are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3429change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003430
3431<h5>Example:</h5>
3432<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003433 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3434 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003435</pre>
3436</div>
3437
3438<!-- _______________________________________________________________________ -->
3439<div class="doc_subsubsection">
3440 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3441</div>
3442<div class="doc_text">
3443
3444<h5>Syntax:</h5>
3445<pre>
3446 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3447</pre>
3448
3449<h5>Overview:</h5>
3450<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3451a pointer type, <tt>ty2</tt>.</p>
3452
3453<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003454<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003455value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003456<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003457
3458<h5>Semantics:</h5>
3459<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3460<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3461the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3462size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3463the size of a pointer then a zero extension is done. If they are the same size,
3464nothing is done (<i>no-op cast</i>).</p>
3465
3466<h5>Example:</h5>
3467<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003468 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3469 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3470 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003471</pre>
3472</div>
3473
3474<!-- _______________________________________________________________________ -->
3475<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003476 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003477</div>
3478<div class="doc_text">
3479
3480<h5>Syntax:</h5>
3481<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003482 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003483</pre>
3484
3485<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003486<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003487<tt>ty2</tt> without changing any bits.</p>
3488
3489<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003490<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003491a first class value, and a type to cast it to, which must also be a <a
3492 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003493and the destination type, <tt>ty2</tt>, must be identical. If the source
3494type is a pointer, the destination type must also be a pointer.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003495
3496<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003497<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003498<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3499this conversion. The conversion is done as if the <tt>value</tt> had been
3500stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3501converted to other pointer types with this instruction. To convert pointers to
3502other types, use the <a href="#i_inttoptr">inttoptr</a> or
3503<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003504
3505<h5>Example:</h5>
3506<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003507 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003508 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3509 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003510</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003511</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003512
Reid Spencer2fd21e62006-11-08 01:18:52 +00003513<!-- ======================================================================= -->
3514<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3515<div class="doc_text">
3516<p>The instructions in this category are the "miscellaneous"
3517instructions, which defy better classification.</p>
3518</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003519
3520<!-- _______________________________________________________________________ -->
3521<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3522</div>
3523<div class="doc_text">
3524<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003525<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003526</pre>
3527<h5>Overview:</h5>
3528<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3529of its two integer operands.</p>
3530<h5>Arguments:</h5>
3531<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003532the condition code indicating the kind of comparison to perform. It is not
3533a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003534<ol>
3535 <li><tt>eq</tt>: equal</li>
3536 <li><tt>ne</tt>: not equal </li>
3537 <li><tt>ugt</tt>: unsigned greater than</li>
3538 <li><tt>uge</tt>: unsigned greater or equal</li>
3539 <li><tt>ult</tt>: unsigned less than</li>
3540 <li><tt>ule</tt>: unsigned less or equal</li>
3541 <li><tt>sgt</tt>: signed greater than</li>
3542 <li><tt>sge</tt>: signed greater or equal</li>
3543 <li><tt>slt</tt>: signed less than</li>
3544 <li><tt>sle</tt>: signed less or equal</li>
3545</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003546<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003547<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003548<h5>Semantics:</h5>
3549<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3550the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003551yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003552<ol>
3553 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3554 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3555 </li>
3556 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3557 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3558 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3559 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3560 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3561 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3562 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3563 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3564 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3565 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3566 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3567 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3568 <li><tt>sge</tt>: interprets the operands as signed values and yields
3569 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3570 <li><tt>slt</tt>: interprets the operands as signed values and yields
3571 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3572 <li><tt>sle</tt>: interprets the operands as signed values and yields
3573 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003574</ol>
3575<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003576values are compared as if they were integers.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003577
3578<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003579<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3580 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3581 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3582 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3583 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3584 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003585</pre>
3586</div>
3587
3588<!-- _______________________________________________________________________ -->
3589<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3590</div>
3591<div class="doc_text">
3592<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003593<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003594</pre>
3595<h5>Overview:</h5>
3596<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3597of its floating point operands.</p>
3598<h5>Arguments:</h5>
3599<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003600the condition code indicating the kind of comparison to perform. It is not
3601a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003602<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003603 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003604 <li><tt>oeq</tt>: ordered and equal</li>
3605 <li><tt>ogt</tt>: ordered and greater than </li>
3606 <li><tt>oge</tt>: ordered and greater than or equal</li>
3607 <li><tt>olt</tt>: ordered and less than </li>
3608 <li><tt>ole</tt>: ordered and less than or equal</li>
3609 <li><tt>one</tt>: ordered and not equal</li>
3610 <li><tt>ord</tt>: ordered (no nans)</li>
3611 <li><tt>ueq</tt>: unordered or equal</li>
3612 <li><tt>ugt</tt>: unordered or greater than </li>
3613 <li><tt>uge</tt>: unordered or greater than or equal</li>
3614 <li><tt>ult</tt>: unordered or less than </li>
3615 <li><tt>ule</tt>: unordered or less than or equal</li>
3616 <li><tt>une</tt>: unordered or not equal</li>
3617 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003618 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003619</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003620<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003621<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003622<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3623<a href="#t_floating">floating point</a> typed. They must have identical
3624types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003625<h5>Semantics:</h5>
3626<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3627the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003628yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003629<ol>
3630 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003631 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003632 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003633 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003634 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003635 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003636 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003637 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003638 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003639 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003640 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003641 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003642 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003643 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3644 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003645 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003646 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003647 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003648 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003649 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003650 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003651 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003652 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003653 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003654 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003655 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003656 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003657 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3658</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003659
3660<h5>Example:</h5>
3661<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3662 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3663 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3664 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3665</pre>
3666</div>
3667
Reid Spencer2fd21e62006-11-08 01:18:52 +00003668<!-- _______________________________________________________________________ -->
3669<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3670Instruction</a> </div>
3671<div class="doc_text">
3672<h5>Syntax:</h5>
3673<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3674<h5>Overview:</h5>
3675<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3676the SSA graph representing the function.</p>
3677<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003678<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00003679field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3680as arguments, with one pair for each predecessor basic block of the
3681current block. Only values of <a href="#t_firstclass">first class</a>
3682type may be used as the value arguments to the PHI node. Only labels
3683may be used as the label arguments.</p>
3684<p>There must be no non-phi instructions between the start of a basic
3685block and the PHI instructions: i.e. PHI instructions must be first in
3686a basic block.</p>
3687<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003688<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3689specified by the pair corresponding to the predecessor basic block that executed
3690just prior to the current block.</p>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003691<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003692<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003693</div>
3694
Chris Lattnercc37aae2004-03-12 05:50:16 +00003695<!-- _______________________________________________________________________ -->
3696<div class="doc_subsubsection">
3697 <a name="i_select">'<tt>select</tt>' Instruction</a>
3698</div>
3699
3700<div class="doc_text">
3701
3702<h5>Syntax:</h5>
3703
3704<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003705 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003706</pre>
3707
3708<h5>Overview:</h5>
3709
3710<p>
3711The '<tt>select</tt>' instruction is used to choose one value based on a
3712condition, without branching.
3713</p>
3714
3715
3716<h5>Arguments:</h5>
3717
3718<p>
3719The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3720</p>
3721
3722<h5>Semantics:</h5>
3723
3724<p>
3725If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003726value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003727</p>
3728
3729<h5>Example:</h5>
3730
3731<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003732 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003733</pre>
3734</div>
3735
Robert Bocchino05ccd702006-01-15 20:48:27 +00003736
3737<!-- _______________________________________________________________________ -->
3738<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003739 <a name="i_call">'<tt>call</tt>' Instruction</a>
3740</div>
3741
Misha Brukman9d0919f2003-11-08 01:05:38 +00003742<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003743
Chris Lattner00950542001-06-06 20:29:01 +00003744<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003745<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003746 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003747</pre>
3748
Chris Lattner00950542001-06-06 20:29:01 +00003749<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003750
Misha Brukman9d0919f2003-11-08 01:05:38 +00003751<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003752
Chris Lattner00950542001-06-06 20:29:01 +00003753<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003754
Misha Brukman9d0919f2003-11-08 01:05:38 +00003755<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003756
Chris Lattner6536cfe2002-05-06 22:08:29 +00003757<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003758 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003759 <p>The optional "tail" marker indicates whether the callee function accesses
3760 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003761 function call is eligible for tail call optimization. Note that calls may
3762 be marked "tail" even if they do not occur before a <a
3763 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003764 </li>
3765 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00003766 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003767 convention</a> the call should use. If none is specified, the call defaults
3768 to using C calling conventions.
3769 </li>
3770 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003771 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3772 the type of the return value. Functions that return no value are marked
3773 <tt><a href="#t_void">void</a></tt>.</p>
3774 </li>
3775 <li>
3776 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3777 value being invoked. The argument types must match the types implied by
3778 this signature. This type can be omitted if the function is not varargs
3779 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003780 </li>
3781 <li>
3782 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3783 be invoked. In most cases, this is a direct function invocation, but
3784 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003785 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003786 </li>
3787 <li>
3788 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003789 function signature argument types. All arguments must be of
3790 <a href="#t_firstclass">first class</a> type. If the function signature
3791 indicates the function accepts a variable number of arguments, the extra
3792 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003793 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003794</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003795
Chris Lattner00950542001-06-06 20:29:01 +00003796<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003797
Chris Lattner261efe92003-11-25 01:02:51 +00003798<p>The '<tt>call</tt>' instruction is used to cause control flow to
3799transfer to a specified function, with its incoming arguments bound to
3800the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3801instruction in the called function, control flow continues with the
3802instruction after the function call, and the return value of the
3803function is bound to the result argument. This is a simpler case of
3804the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003805
Chris Lattner00950542001-06-06 20:29:01 +00003806<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003807
3808<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003809 %retval = call i32 @test(i32 %argc)
3810 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3811 %X = tail call i32 @foo()
3812 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3813 %Z = call void %foo(i8 97 signext)
Chris Lattner2bff5242005-05-06 05:47:36 +00003814</pre>
3815
Misha Brukman9d0919f2003-11-08 01:05:38 +00003816</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003817
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003818<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003819<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003820 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003821</div>
3822
Misha Brukman9d0919f2003-11-08 01:05:38 +00003823<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003824
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003825<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003826
3827<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003828 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003829</pre>
3830
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003831<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003832
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003833<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003834the "variable argument" area of a function call. It is used to implement the
3835<tt>va_arg</tt> macro in C.</p>
3836
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003837<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003838
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003839<p>This instruction takes a <tt>va_list*</tt> value and the type of
3840the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00003841increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003842actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003843
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003844<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003845
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003846<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3847type from the specified <tt>va_list</tt> and causes the
3848<tt>va_list</tt> to point to the next argument. For more information,
3849see the variable argument handling <a href="#int_varargs">Intrinsic
3850Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003851
3852<p>It is legal for this instruction to be called in a function which does not
3853take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003854function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003855
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003856<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003857href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003858argument.</p>
3859
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003860<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003861
3862<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3863
Misha Brukman9d0919f2003-11-08 01:05:38 +00003864</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003865
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003866<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003867<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3868<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003869
Misha Brukman9d0919f2003-11-08 01:05:38 +00003870<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003871
3872<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00003873well known names and semantics and are required to follow certain restrictions.
3874Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00003875language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00003876adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003877
John Criswellfc6b8952005-05-16 16:17:45 +00003878<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00003879prefix is reserved in LLVM for intrinsic names; thus, function names may not
3880begin with this prefix. Intrinsic functions must always be external functions:
3881you cannot define the body of intrinsic functions. Intrinsic functions may
3882only be used in call or invoke instructions: it is illegal to take the address
3883of an intrinsic function. Additionally, because intrinsic functions are part
3884of the LLVM language, it is required if any are added that they be documented
3885here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003886
Chandler Carruth69940402007-08-04 01:51:18 +00003887<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3888a family of functions that perform the same operation but on different data
3889types. Because LLVM can represent over 8 million different integer types,
3890overloading is used commonly to allow an intrinsic function to operate on any
3891integer type. One or more of the argument types or the result type can be
3892overloaded to accept any integer type. Argument types may also be defined as
3893exactly matching a previous argument's type or the result type. This allows an
3894intrinsic function which accepts multiple arguments, but needs all of them to
3895be of the same type, to only be overloaded with respect to a single argument or
3896the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003897
Chandler Carruth69940402007-08-04 01:51:18 +00003898<p>Overloaded intrinsics will have the names of its overloaded argument types
3899encoded into its function name, each preceded by a period. Only those types
3900which are overloaded result in a name suffix. Arguments whose type is matched
3901against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3902take an integer of any width and returns an integer of exactly the same integer
3903width. This leads to a family of functions such as
3904<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3905Only one type, the return type, is overloaded, and only one type suffix is
3906required. Because the argument's type is matched against the return type, it
3907does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00003908
3909<p>To learn how to add an intrinsic function, please see the
3910<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003911</p>
3912
Misha Brukman9d0919f2003-11-08 01:05:38 +00003913</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003914
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003915<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003916<div class="doc_subsection">
3917 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3918</div>
3919
Misha Brukman9d0919f2003-11-08 01:05:38 +00003920<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003921
Misha Brukman9d0919f2003-11-08 01:05:38 +00003922<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003923 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003924intrinsic functions. These functions are related to the similarly
3925named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003926
Chris Lattner261efe92003-11-25 01:02:51 +00003927<p>All of these functions operate on arguments that use a
3928target-specific value type "<tt>va_list</tt>". The LLVM assembly
3929language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00003930transformations should be prepared to handle these functions regardless of
3931the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003932
Chris Lattner374ab302006-05-15 17:26:46 +00003933<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003934instruction and the variable argument handling intrinsic functions are
3935used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003936
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003937<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003938<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003939define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00003940 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00003941 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00003942 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003943 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003944
3945 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00003946 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00003947
3948 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00003949 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00003950 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00003951 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003952 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003953
3954 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003955 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00003956 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00003957}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003958
3959declare void @llvm.va_start(i8*)
3960declare void @llvm.va_copy(i8*, i8*)
3961declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003962</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003963</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003964
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003965</div>
3966
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003967<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003968<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003969 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003970</div>
3971
3972
Misha Brukman9d0919f2003-11-08 01:05:38 +00003973<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003974<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003975<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003976<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003977<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3978<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3979href="#i_va_arg">va_arg</a></tt>.</p>
3980
3981<h5>Arguments:</h5>
3982
3983<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3984
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003985<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003986
3987<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3988macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00003989<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003990<tt>va_arg</tt> will produce the first variable argument passed to the function.
3991Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00003992last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003993
Misha Brukman9d0919f2003-11-08 01:05:38 +00003994</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003995
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003996<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003997<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003998 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003999</div>
4000
Misha Brukman9d0919f2003-11-08 01:05:38 +00004001<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004002<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004003<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004004<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004005
Jeff Cohenb627eab2007-04-29 01:07:00 +00004006<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004007which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004008or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004009
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004010<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004011
Jeff Cohenb627eab2007-04-29 01:07:00 +00004012<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004013
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004014<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004015
Misha Brukman9d0919f2003-11-08 01:05:38 +00004016<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004017macro available in C. In a target-dependent way, it destroys the
4018<tt>va_list</tt> element to which the argument points. Calls to <a
4019href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4020<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4021<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004022
Misha Brukman9d0919f2003-11-08 01:05:38 +00004023</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004024
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004025<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004026<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004027 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004028</div>
4029
Misha Brukman9d0919f2003-11-08 01:05:38 +00004030<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004031
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004032<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004033
4034<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004035 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004036</pre>
4037
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004038<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004039
Jeff Cohenb627eab2007-04-29 01:07:00 +00004040<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4041from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004042
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004043<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004044
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004045<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004046The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004047
Chris Lattnerd7923912004-05-23 21:06:01 +00004048
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004049<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004050
Jeff Cohenb627eab2007-04-29 01:07:00 +00004051<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4052macro available in C. In a target-dependent way, it copies the source
4053<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4054intrinsic is necessary because the <tt><a href="#int_va_start">
4055llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4056example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004057
Misha Brukman9d0919f2003-11-08 01:05:38 +00004058</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004059
Chris Lattner33aec9e2004-02-12 17:01:32 +00004060<!-- ======================================================================= -->
4061<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004062 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4063</div>
4064
4065<div class="doc_text">
4066
4067<p>
4068LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4069Collection</a> requires the implementation and generation of these intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004070These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004071stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004072href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004073Front-ends for type-safe garbage collected languages should generate these
4074intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4075href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4076</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004077
4078<p>The garbage collection intrinsics only operate on objects in the generic
4079 address space (address space zero).</p>
4080
Chris Lattnerd7923912004-05-23 21:06:01 +00004081</div>
4082
4083<!-- _______________________________________________________________________ -->
4084<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004085 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004086</div>
4087
4088<div class="doc_text">
4089
4090<h5>Syntax:</h5>
4091
4092<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004093 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004094</pre>
4095
4096<h5>Overview:</h5>
4097
John Criswell9e2485c2004-12-10 15:51:16 +00004098<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004099the code generator, and allows some metadata to be associated with it.</p>
4100
4101<h5>Arguments:</h5>
4102
4103<p>The first argument specifies the address of a stack object that contains the
4104root pointer. The second pointer (which must be either a constant or a global
4105value address) contains the meta-data to be associated with the root.</p>
4106
4107<h5>Semantics:</h5>
4108
4109<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
4110location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004111the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4112intrinsic may only be used in a function which <a href="#gc">specifies a GC
4113algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004114
4115</div>
4116
4117
4118<!-- _______________________________________________________________________ -->
4119<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004120 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004121</div>
4122
4123<div class="doc_text">
4124
4125<h5>Syntax:</h5>
4126
4127<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004128 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004129</pre>
4130
4131<h5>Overview:</h5>
4132
4133<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4134locations, allowing garbage collector implementations that require read
4135barriers.</p>
4136
4137<h5>Arguments:</h5>
4138
Chris Lattner80626e92006-03-14 20:02:51 +00004139<p>The second argument is the address to read from, which should be an address
4140allocated from the garbage collector. The first object is a pointer to the
4141start of the referenced object, if needed by the language runtime (otherwise
4142null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004143
4144<h5>Semantics:</h5>
4145
4146<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4147instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004148garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4149may only be used in a function which <a href="#gc">specifies a GC
4150algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004151
4152</div>
4153
4154
4155<!-- _______________________________________________________________________ -->
4156<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004157 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004158</div>
4159
4160<div class="doc_text">
4161
4162<h5>Syntax:</h5>
4163
4164<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004165 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004166</pre>
4167
4168<h5>Overview:</h5>
4169
4170<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4171locations, allowing garbage collector implementations that require write
4172barriers (such as generational or reference counting collectors).</p>
4173
4174<h5>Arguments:</h5>
4175
Chris Lattner80626e92006-03-14 20:02:51 +00004176<p>The first argument is the reference to store, the second is the start of the
4177object to store it to, and the third is the address of the field of Obj to
4178store to. If the runtime does not require a pointer to the object, Obj may be
4179null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004180
4181<h5>Semantics:</h5>
4182
4183<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4184instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004185garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4186may only be used in a function which <a href="#gc">specifies a GC
4187algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004188
4189</div>
4190
4191
4192
4193<!-- ======================================================================= -->
4194<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004195 <a name="int_codegen">Code Generator Intrinsics</a>
4196</div>
4197
4198<div class="doc_text">
4199<p>
4200These intrinsics are provided by LLVM to expose special features that may only
4201be implemented with code generator support.
4202</p>
4203
4204</div>
4205
4206<!-- _______________________________________________________________________ -->
4207<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004208 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004209</div>
4210
4211<div class="doc_text">
4212
4213<h5>Syntax:</h5>
4214<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004215 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004216</pre>
4217
4218<h5>Overview:</h5>
4219
4220<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004221The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4222target-specific value indicating the return address of the current function
4223or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004224</p>
4225
4226<h5>Arguments:</h5>
4227
4228<p>
4229The argument to this intrinsic indicates which function to return the address
4230for. Zero indicates the calling function, one indicates its caller, etc. The
4231argument is <b>required</b> to be a constant integer value.
4232</p>
4233
4234<h5>Semantics:</h5>
4235
4236<p>
4237The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4238the return address of the specified call frame, or zero if it cannot be
4239identified. The value returned by this intrinsic is likely to be incorrect or 0
4240for arguments other than zero, so it should only be used for debugging purposes.
4241</p>
4242
4243<p>
4244Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004245aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004246source-language caller.
4247</p>
4248</div>
4249
4250
4251<!-- _______________________________________________________________________ -->
4252<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004253 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004254</div>
4255
4256<div class="doc_text">
4257
4258<h5>Syntax:</h5>
4259<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004260 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004261</pre>
4262
4263<h5>Overview:</h5>
4264
4265<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004266The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4267target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004268</p>
4269
4270<h5>Arguments:</h5>
4271
4272<p>
4273The argument to this intrinsic indicates which function to return the frame
4274pointer for. Zero indicates the calling function, one indicates its caller,
4275etc. The argument is <b>required</b> to be a constant integer value.
4276</p>
4277
4278<h5>Semantics:</h5>
4279
4280<p>
4281The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4282the frame address of the specified call frame, or zero if it cannot be
4283identified. The value returned by this intrinsic is likely to be incorrect or 0
4284for arguments other than zero, so it should only be used for debugging purposes.
4285</p>
4286
4287<p>
4288Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004289aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004290source-language caller.
4291</p>
4292</div>
4293
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004294<!-- _______________________________________________________________________ -->
4295<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004296 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004297</div>
4298
4299<div class="doc_text">
4300
4301<h5>Syntax:</h5>
4302<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004303 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004304</pre>
4305
4306<h5>Overview:</h5>
4307
4308<p>
4309The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004310the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004311<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4312features like scoped automatic variable sized arrays in C99.
4313</p>
4314
4315<h5>Semantics:</h5>
4316
4317<p>
4318This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004319href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004320<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4321<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4322state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4323practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4324that were allocated after the <tt>llvm.stacksave</tt> was executed.
4325</p>
4326
4327</div>
4328
4329<!-- _______________________________________________________________________ -->
4330<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004331 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004332</div>
4333
4334<div class="doc_text">
4335
4336<h5>Syntax:</h5>
4337<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004338 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004339</pre>
4340
4341<h5>Overview:</h5>
4342
4343<p>
4344The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4345the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004346href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004347useful for implementing language features like scoped automatic variable sized
4348arrays in C99.
4349</p>
4350
4351<h5>Semantics:</h5>
4352
4353<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004354See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004355</p>
4356
4357</div>
4358
4359
4360<!-- _______________________________________________________________________ -->
4361<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004362 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004363</div>
4364
4365<div class="doc_text">
4366
4367<h5>Syntax:</h5>
4368<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004369 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004370</pre>
4371
4372<h5>Overview:</h5>
4373
4374
4375<p>
4376The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004377a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4378no
4379effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004380characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004381</p>
4382
4383<h5>Arguments:</h5>
4384
4385<p>
4386<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4387determining if the fetch should be for a read (0) or write (1), and
4388<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004389locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004390<tt>locality</tt> arguments must be constant integers.
4391</p>
4392
4393<h5>Semantics:</h5>
4394
4395<p>
4396This intrinsic does not modify the behavior of the program. In particular,
4397prefetches cannot trap and do not produce a value. On targets that support this
4398intrinsic, the prefetch can provide hints to the processor cache for better
4399performance.
4400</p>
4401
4402</div>
4403
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004404<!-- _______________________________________________________________________ -->
4405<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004406 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004407</div>
4408
4409<div class="doc_text">
4410
4411<h5>Syntax:</h5>
4412<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004413 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004414</pre>
4415
4416<h5>Overview:</h5>
4417
4418
4419<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004420The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4421(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004422code to simulators and other tools. The method is target specific, but it is
4423expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004424The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004425after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004426optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004427correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004428</p>
4429
4430<h5>Arguments:</h5>
4431
4432<p>
4433<tt>id</tt> is a numerical id identifying the marker.
4434</p>
4435
4436<h5>Semantics:</h5>
4437
4438<p>
4439This intrinsic does not modify the behavior of the program. Backends that do not
4440support this intrinisic may ignore it.
4441</p>
4442
4443</div>
4444
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004445<!-- _______________________________________________________________________ -->
4446<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004447 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004448</div>
4449
4450<div class="doc_text">
4451
4452<h5>Syntax:</h5>
4453<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004454 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004455</pre>
4456
4457<h5>Overview:</h5>
4458
4459
4460<p>
4461The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4462counter register (or similar low latency, high accuracy clocks) on those targets
4463that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4464As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4465should only be used for small timings.
4466</p>
4467
4468<h5>Semantics:</h5>
4469
4470<p>
4471When directly supported, reading the cycle counter should not modify any memory.
4472Implementations are allowed to either return a application specific value or a
4473system wide value. On backends without support, this is lowered to a constant 0.
4474</p>
4475
4476</div>
4477
Chris Lattner10610642004-02-14 04:08:35 +00004478<!-- ======================================================================= -->
4479<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004480 <a name="int_libc">Standard C Library Intrinsics</a>
4481</div>
4482
4483<div class="doc_text">
4484<p>
Chris Lattner10610642004-02-14 04:08:35 +00004485LLVM provides intrinsics for a few important standard C library functions.
4486These intrinsics allow source-language front-ends to pass information about the
4487alignment of the pointer arguments to the code generator, providing opportunity
4488for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004489</p>
4490
4491</div>
4492
4493<!-- _______________________________________________________________________ -->
4494<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004495 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004496</div>
4497
4498<div class="doc_text">
4499
4500<h5>Syntax:</h5>
4501<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004502 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004503 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004504 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004505 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004506</pre>
4507
4508<h5>Overview:</h5>
4509
4510<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004511The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004512location to the destination location.
4513</p>
4514
4515<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004516Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4517intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004518</p>
4519
4520<h5>Arguments:</h5>
4521
4522<p>
4523The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004524the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004525specifying the number of bytes to copy, and the fourth argument is the alignment
4526of the source and destination locations.
4527</p>
4528
Chris Lattner3301ced2004-02-12 21:18:15 +00004529<p>
4530If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004531the caller guarantees that both the source and destination pointers are aligned
4532to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004533</p>
4534
Chris Lattner33aec9e2004-02-12 17:01:32 +00004535<h5>Semantics:</h5>
4536
4537<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004538The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004539location to the destination location, which are not allowed to overlap. It
4540copies "len" bytes of memory over. If the argument is known to be aligned to
4541some boundary, this can be specified as the fourth argument, otherwise it should
4542be set to 0 or 1.
4543</p>
4544</div>
4545
4546
Chris Lattner0eb51b42004-02-12 18:10:10 +00004547<!-- _______________________________________________________________________ -->
4548<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004549 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00004550</div>
4551
4552<div class="doc_text">
4553
4554<h5>Syntax:</h5>
4555<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004556 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004557 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004558 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004559 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004560</pre>
4561
4562<h5>Overview:</h5>
4563
4564<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004565The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4566location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00004567'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004568</p>
4569
4570<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004571Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4572intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004573</p>
4574
4575<h5>Arguments:</h5>
4576
4577<p>
4578The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004579the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004580specifying the number of bytes to copy, and the fourth argument is the alignment
4581of the source and destination locations.
4582</p>
4583
Chris Lattner3301ced2004-02-12 21:18:15 +00004584<p>
4585If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004586the caller guarantees that the source and destination pointers are aligned to
4587that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004588</p>
4589
Chris Lattner0eb51b42004-02-12 18:10:10 +00004590<h5>Semantics:</h5>
4591
4592<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004593The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004594location to the destination location, which may overlap. It
4595copies "len" bytes of memory over. If the argument is known to be aligned to
4596some boundary, this can be specified as the fourth argument, otherwise it should
4597be set to 0 or 1.
4598</p>
4599</div>
4600
Chris Lattner8ff75902004-01-06 05:31:32 +00004601
Chris Lattner10610642004-02-14 04:08:35 +00004602<!-- _______________________________________________________________________ -->
4603<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004604 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004605</div>
4606
4607<div class="doc_text">
4608
4609<h5>Syntax:</h5>
4610<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004611 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004612 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004613 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004614 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004615</pre>
4616
4617<h5>Overview:</h5>
4618
4619<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004620The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004621byte value.
4622</p>
4623
4624<p>
4625Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4626does not return a value, and takes an extra alignment argument.
4627</p>
4628
4629<h5>Arguments:</h5>
4630
4631<p>
4632The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004633byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004634argument specifying the number of bytes to fill, and the fourth argument is the
4635known alignment of destination location.
4636</p>
4637
4638<p>
4639If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004640the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004641</p>
4642
4643<h5>Semantics:</h5>
4644
4645<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004646The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4647the
Chris Lattner10610642004-02-14 04:08:35 +00004648destination location. If the argument is known to be aligned to some boundary,
4649this can be specified as the fourth argument, otherwise it should be set to 0 or
46501.
4651</p>
4652</div>
4653
4654
Chris Lattner32006282004-06-11 02:28:03 +00004655<!-- _______________________________________________________________________ -->
4656<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004657 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004658</div>
4659
4660<div class="doc_text">
4661
4662<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004663<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00004664floating point or vector of floating point type. Not all targets support all
4665types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00004666<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004667 declare float @llvm.sqrt.f32(float %Val)
4668 declare double @llvm.sqrt.f64(double %Val)
4669 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
4670 declare fp128 @llvm.sqrt.f128(fp128 %Val)
4671 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004672</pre>
4673
4674<h5>Overview:</h5>
4675
4676<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004677The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00004678returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00004679<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4680negative numbers (which allows for better optimization).
4681</p>
4682
4683<h5>Arguments:</h5>
4684
4685<p>
4686The argument and return value are floating point numbers of the same type.
4687</p>
4688
4689<h5>Semantics:</h5>
4690
4691<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00004692This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00004693floating point number.
4694</p>
4695</div>
4696
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004697<!-- _______________________________________________________________________ -->
4698<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004699 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004700</div>
4701
4702<div class="doc_text">
4703
4704<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004705<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00004706floating point or vector of floating point type. Not all targets support all
4707types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004708<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00004709 declare float @llvm.powi.f32(float %Val, i32 %power)
4710 declare double @llvm.powi.f64(double %Val, i32 %power)
4711 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
4712 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
4713 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004714</pre>
4715
4716<h5>Overview:</h5>
4717
4718<p>
4719The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4720specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00004721multiplications is not defined. When a vector of floating point type is
4722used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004723</p>
4724
4725<h5>Arguments:</h5>
4726
4727<p>
4728The second argument is an integer power, and the first is a value to raise to
4729that power.
4730</p>
4731
4732<h5>Semantics:</h5>
4733
4734<p>
4735This function returns the first value raised to the second power with an
4736unspecified sequence of rounding operations.</p>
4737</div>
4738
Dan Gohman91c284c2007-10-15 20:30:11 +00004739<!-- _______________________________________________________________________ -->
4740<div class="doc_subsubsection">
4741 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
4742</div>
4743
4744<div class="doc_text">
4745
4746<h5>Syntax:</h5>
4747<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
4748floating point or vector of floating point type. Not all targets support all
4749types however.
4750<pre>
4751 declare float @llvm.sin.f32(float %Val)
4752 declare double @llvm.sin.f64(double %Val)
4753 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
4754 declare fp128 @llvm.sin.f128(fp128 %Val)
4755 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
4756</pre>
4757
4758<h5>Overview:</h5>
4759
4760<p>
4761The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
4762</p>
4763
4764<h5>Arguments:</h5>
4765
4766<p>
4767The argument and return value are floating point numbers of the same type.
4768</p>
4769
4770<h5>Semantics:</h5>
4771
4772<p>
4773This function returns the sine of the specified operand, returning the
4774same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00004775conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00004776</div>
4777
4778<!-- _______________________________________________________________________ -->
4779<div class="doc_subsubsection">
4780 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
4781</div>
4782
4783<div class="doc_text">
4784
4785<h5>Syntax:</h5>
4786<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
4787floating point or vector of floating point type. Not all targets support all
4788types however.
4789<pre>
4790 declare float @llvm.cos.f32(float %Val)
4791 declare double @llvm.cos.f64(double %Val)
4792 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
4793 declare fp128 @llvm.cos.f128(fp128 %Val)
4794 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
4795</pre>
4796
4797<h5>Overview:</h5>
4798
4799<p>
4800The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
4801</p>
4802
4803<h5>Arguments:</h5>
4804
4805<p>
4806The argument and return value are floating point numbers of the same type.
4807</p>
4808
4809<h5>Semantics:</h5>
4810
4811<p>
4812This function returns the cosine of the specified operand, returning the
4813same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00004814conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00004815</div>
4816
4817<!-- _______________________________________________________________________ -->
4818<div class="doc_subsubsection">
4819 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
4820</div>
4821
4822<div class="doc_text">
4823
4824<h5>Syntax:</h5>
4825<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
4826floating point or vector of floating point type. Not all targets support all
4827types however.
4828<pre>
4829 declare float @llvm.pow.f32(float %Val, float %Power)
4830 declare double @llvm.pow.f64(double %Val, double %Power)
4831 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
4832 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
4833 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
4834</pre>
4835
4836<h5>Overview:</h5>
4837
4838<p>
4839The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
4840specified (positive or negative) power.
4841</p>
4842
4843<h5>Arguments:</h5>
4844
4845<p>
4846The second argument is a floating point power, and the first is a value to
4847raise to that power.
4848</p>
4849
4850<h5>Semantics:</h5>
4851
4852<p>
4853This function returns the first value raised to the second power,
4854returning the
4855same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00004856conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00004857</div>
4858
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004859
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004860<!-- ======================================================================= -->
4861<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004862 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004863</div>
4864
4865<div class="doc_text">
4866<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004867LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004868These allow efficient code generation for some algorithms.
4869</p>
4870
4871</div>
4872
4873<!-- _______________________________________________________________________ -->
4874<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004875 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00004876</div>
4877
4878<div class="doc_text">
4879
4880<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004881<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00004882type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00004883<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004884 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4885 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4886 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004887</pre>
4888
4889<h5>Overview:</h5>
4890
4891<p>
Reid Spencer338ea092007-04-02 02:25:19 +00004892The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00004893values with an even number of bytes (positive multiple of 16 bits). These are
4894useful for performing operations on data that is not in the target's native
4895byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00004896</p>
4897
4898<h5>Semantics:</h5>
4899
4900<p>
Chandler Carruth69940402007-08-04 01:51:18 +00004901The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00004902and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4903intrinsic returns an i32 value that has the four bytes of the input i32
4904swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00004905i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4906<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00004907additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00004908</p>
4909
4910</div>
4911
4912<!-- _______________________________________________________________________ -->
4913<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004914 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004915</div>
4916
4917<div class="doc_text">
4918
4919<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004920<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4921width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004922<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004923 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4924 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004925 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004926 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4927 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004928</pre>
4929
4930<h5>Overview:</h5>
4931
4932<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004933The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4934value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004935</p>
4936
4937<h5>Arguments:</h5>
4938
4939<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004940The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004941integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004942</p>
4943
4944<h5>Semantics:</h5>
4945
4946<p>
4947The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4948</p>
4949</div>
4950
4951<!-- _______________________________________________________________________ -->
4952<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004953 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004954</div>
4955
4956<div class="doc_text">
4957
4958<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004959<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4960integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004961<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004962 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4963 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004964 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004965 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4966 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004967</pre>
4968
4969<h5>Overview:</h5>
4970
4971<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004972The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4973leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004974</p>
4975
4976<h5>Arguments:</h5>
4977
4978<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004979The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004980integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004981</p>
4982
4983<h5>Semantics:</h5>
4984
4985<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004986The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4987in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00004988of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004989</p>
4990</div>
Chris Lattner32006282004-06-11 02:28:03 +00004991
4992
Chris Lattnereff29ab2005-05-15 19:39:26 +00004993
4994<!-- _______________________________________________________________________ -->
4995<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004996 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004997</div>
4998
4999<div class="doc_text">
5000
5001<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005002<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5003integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005004<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005005 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5006 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005007 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005008 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5009 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005010</pre>
5011
5012<h5>Overview:</h5>
5013
5014<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005015The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5016trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005017</p>
5018
5019<h5>Arguments:</h5>
5020
5021<p>
5022The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005023integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005024</p>
5025
5026<h5>Semantics:</h5>
5027
5028<p>
5029The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5030in a variable. If the src == 0 then the result is the size in bits of the type
5031of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5032</p>
5033</div>
5034
Reid Spencer497d93e2007-04-01 08:27:01 +00005035<!-- _______________________________________________________________________ -->
5036<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005037 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005038</div>
5039
5040<div class="doc_text">
5041
5042<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005043<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005044on any integer bit width.
5045<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005046 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5047 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005048</pre>
5049
5050<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005051<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005052range of bits from an integer value and returns them in the same bit width as
5053the original value.</p>
5054
5055<h5>Arguments:</h5>
5056<p>The first argument, <tt>%val</tt> and the result may be integer types of
5057any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005058arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005059
5060<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005061<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005062of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5063<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5064operates in forward mode.</p>
5065<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5066right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005067only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5068<ol>
5069 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5070 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5071 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5072 to determine the number of bits to retain.</li>
5073 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5074 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5075</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005076<p>In reverse mode, a similar computation is made except that the bits are
5077returned in the reverse order. So, for example, if <tt>X</tt> has the value
5078<tt>i16 0x0ACF (101011001111)</tt> and we apply
5079<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5080<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005081</div>
5082
Reid Spencerf86037f2007-04-11 23:23:49 +00005083<div class="doc_subsubsection">
5084 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5085</div>
5086
5087<div class="doc_text">
5088
5089<h5>Syntax:</h5>
5090<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5091on any integer bit width.
5092<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005093 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5094 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005095</pre>
5096
5097<h5>Overview:</h5>
5098<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5099of bits in an integer value with another integer value. It returns the integer
5100with the replaced bits.</p>
5101
5102<h5>Arguments:</h5>
5103<p>The first argument, <tt>%val</tt> and the result may be integer types of
5104any bit width but they must have the same bit width. <tt>%val</tt> is the value
5105whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5106integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5107type since they specify only a bit index.</p>
5108
5109<h5>Semantics:</h5>
5110<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5111of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5112<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5113operates in forward mode.</p>
5114<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5115truncating it down to the size of the replacement area or zero extending it
5116up to that size.</p>
5117<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5118are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5119in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5120to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005121<p>In reverse mode, a similar computation is made except that the bits are
5122reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5123<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005124<h5>Examples:</h5>
5125<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005126 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005127 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5128 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5129 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005130 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005131</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005132</div>
5133
Chris Lattner8ff75902004-01-06 05:31:32 +00005134<!-- ======================================================================= -->
5135<div class="doc_subsection">
5136 <a name="int_debugger">Debugger Intrinsics</a>
5137</div>
5138
5139<div class="doc_text">
5140<p>
5141The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5142are described in the <a
5143href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5144Debugging</a> document.
5145</p>
5146</div>
5147
5148
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005149<!-- ======================================================================= -->
5150<div class="doc_subsection">
5151 <a name="int_eh">Exception Handling Intrinsics</a>
5152</div>
5153
5154<div class="doc_text">
5155<p> The LLVM exception handling intrinsics (which all start with
5156<tt>llvm.eh.</tt> prefix), are described in the <a
5157href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5158Handling</a> document. </p>
5159</div>
5160
Tanya Lattner6d806e92007-06-15 20:50:54 +00005161<!-- ======================================================================= -->
5162<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005163 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005164</div>
5165
5166<div class="doc_text">
5167<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005168 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005169 the <tt>nest</tt> attribute, from a function. The result is a callable
5170 function pointer lacking the nest parameter - the caller does not need
5171 to provide a value for it. Instead, the value to use is stored in
5172 advance in a "trampoline", a block of memory usually allocated
5173 on the stack, which also contains code to splice the nest value into the
5174 argument list. This is used to implement the GCC nested function address
5175 extension.
5176</p>
5177<p>
5178 For example, if the function is
5179 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005180 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005181<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005182 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5183 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5184 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5185 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005186</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005187 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5188 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005189</div>
5190
5191<!-- _______________________________________________________________________ -->
5192<div class="doc_subsubsection">
5193 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5194</div>
5195<div class="doc_text">
5196<h5>Syntax:</h5>
5197<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005198declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005199</pre>
5200<h5>Overview:</h5>
5201<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005202 This fills the memory pointed to by <tt>tramp</tt> with code
5203 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005204</p>
5205<h5>Arguments:</h5>
5206<p>
5207 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5208 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5209 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005210 intrinsic. Note that the size and the alignment are target-specific - LLVM
5211 currently provides no portable way of determining them, so a front-end that
5212 generates this intrinsic needs to have some target-specific knowledge.
5213 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005214</p>
5215<h5>Semantics:</h5>
5216<p>
5217 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005218 dependent code, turning it into a function. A pointer to this function is
5219 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005220 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005221 before being called. The new function's signature is the same as that of
5222 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5223 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5224 of pointer type. Calling the new function is equivalent to calling
5225 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5226 missing <tt>nest</tt> argument. If, after calling
5227 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5228 modified, then the effect of any later call to the returned function pointer is
5229 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005230</p>
5231</div>
5232
5233<!-- ======================================================================= -->
5234<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00005235 <a name="int_general">General Intrinsics</a>
5236</div>
5237
5238<div class="doc_text">
5239<p> This class of intrinsics is designed to be generic and has
5240no specific purpose. </p>
5241</div>
5242
5243<!-- _______________________________________________________________________ -->
5244<div class="doc_subsubsection">
5245 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5246</div>
5247
5248<div class="doc_text">
5249
5250<h5>Syntax:</h5>
5251<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005252 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00005253</pre>
5254
5255<h5>Overview:</h5>
5256
5257<p>
5258The '<tt>llvm.var.annotation</tt>' intrinsic
5259</p>
5260
5261<h5>Arguments:</h5>
5262
5263<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005264The first argument is a pointer to a value, the second is a pointer to a
5265global string, the third is a pointer to a global string which is the source
5266file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005267</p>
5268
5269<h5>Semantics:</h5>
5270
5271<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005272This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005273This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005274annotations. These have no other defined use, they are ignored by code
5275generation and optimization.
5276</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00005277</div>
5278
Tanya Lattnerb6367882007-09-21 22:59:12 +00005279<!-- _______________________________________________________________________ -->
5280<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00005281 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005282</div>
5283
5284<div class="doc_text">
5285
5286<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00005287<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
5288any integer bit width.
5289</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005290<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00005291 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5292 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5293 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5294 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5295 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00005296</pre>
5297
5298<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00005299
5300<p>
5301The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00005302</p>
5303
5304<h5>Arguments:</h5>
5305
5306<p>
5307The first argument is an integer value (result of some expression),
5308the second is a pointer to a global string, the third is a pointer to a global
5309string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00005310It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00005311</p>
5312
5313<h5>Semantics:</h5>
5314
5315<p>
5316This intrinsic allows annotations to be put on arbitrary expressions
5317with arbitrary strings. This can be useful for special purpose optimizations
5318that want to look for these annotations. These have no other defined use, they
5319are ignored by code generation and optimization.
5320</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005321
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005322<!-- _______________________________________________________________________ -->
5323<div class="doc_subsubsection">
5324 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
5325</div>
5326
5327<div class="doc_text">
5328
5329<h5>Syntax:</h5>
5330<pre>
5331 declare void @llvm.trap()
5332</pre>
5333
5334<h5>Overview:</h5>
5335
5336<p>
5337The '<tt>llvm.trap</tt>' intrinsic
5338</p>
5339
5340<h5>Arguments:</h5>
5341
5342<p>
5343None
5344</p>
5345
5346<h5>Semantics:</h5>
5347
5348<p>
5349This intrinsics is lowered to the target dependent trap instruction. If the
5350target does not have a trap instruction, this intrinsic will be lowered to the
5351call of the abort() function.
5352</p>
5353</div>
5354
Chris Lattner00950542001-06-06 20:29:01 +00005355<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00005356<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005357<address>
5358 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5359 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5360 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00005361 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005362
5363 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00005364 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005365 Last modified: $Date$
5366</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00005367
Misha Brukman9d0919f2003-11-08 01:05:38 +00005368</body>
5369</html>