blob: 810455cbc3a7f3728438eaef28aa5590027c534b [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Bill Wendling3be4b1d2013-12-01 03:07:11 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvaf722b002012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liao2faa0f32013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000156
Michael Liao2faa0f32013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvaf722b002012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
277The next two types of linkage are targeted for Microsoft Windows
278platform only. They are designed to support importing (exporting)
279symbols from (to) DLLs (Dynamic Link Libraries).
280
281``dllimport``
282 "``dllimport``" linkage causes the compiler to reference a function
283 or variable via a global pointer to a pointer that is set up by the
284 DLL exporting the symbol. On Microsoft Windows targets, the pointer
285 name is formed by combining ``__imp_`` and the function or variable
286 name.
287``dllexport``
288 "``dllexport``" linkage causes the compiler to provide a global
289 pointer to a pointer in a DLL, so that it can be referenced with the
290 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
291 name is formed by combining ``__imp_`` and the function or variable
292 name.
293
294For example, since the "``.LC0``" variable is defined to be internal, if
295another module defined a "``.LC0``" variable and was linked with this
296one, one of the two would be renamed, preventing a collision. Since
297"``main``" and "``puts``" are external (i.e., lacking any linkage
298declarations), they are accessible outside of the current module.
299
300It is illegal for a function *declaration* to have any linkage type
301other than ``external``, ``dllimport`` or ``extern_weak``.
302
Sean Silvaf722b002012-12-07 10:36:55 +0000303.. _callingconv:
304
305Calling Conventions
306-------------------
307
308LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
309:ref:`invokes <i_invoke>` can all have an optional calling convention
310specified for the call. The calling convention of any pair of dynamic
311caller/callee must match, or the behavior of the program is undefined.
312The following calling conventions are supported by LLVM, and more may be
313added in the future:
314
315"``ccc``" - The C calling convention
316 This calling convention (the default if no other calling convention
317 is specified) matches the target C calling conventions. This calling
318 convention supports varargs function calls and tolerates some
319 mismatch in the declared prototype and implemented declaration of
320 the function (as does normal C).
321"``fastcc``" - The fast calling convention
322 This calling convention attempts to make calls as fast as possible
323 (e.g. by passing things in registers). This calling convention
324 allows the target to use whatever tricks it wants to produce fast
325 code for the target, without having to conform to an externally
326 specified ABI (Application Binary Interface). `Tail calls can only
327 be optimized when this, the GHC or the HiPE convention is
328 used. <CodeGenerator.html#id80>`_ This calling convention does not
329 support varargs and requires the prototype of all callees to exactly
330 match the prototype of the function definition.
331"``coldcc``" - The cold calling convention
332 This calling convention attempts to make code in the caller as
333 efficient as possible under the assumption that the call is not
334 commonly executed. As such, these calls often preserve all registers
335 so that the call does not break any live ranges in the caller side.
336 This calling convention does not support varargs and requires the
337 prototype of all callees to exactly match the prototype of the
338 function definition.
339"``cc 10``" - GHC convention
340 This calling convention has been implemented specifically for use by
341 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
342 It passes everything in registers, going to extremes to achieve this
343 by disabling callee save registers. This calling convention should
344 not be used lightly but only for specific situations such as an
345 alternative to the *register pinning* performance technique often
346 used when implementing functional programming languages. At the
347 moment only X86 supports this convention and it has the following
348 limitations:
349
350 - On *X86-32* only supports up to 4 bit type parameters. No
351 floating point types are supported.
352 - On *X86-64* only supports up to 10 bit type parameters and 6
353 floating point parameters.
354
355 This calling convention supports `tail call
356 optimization <CodeGenerator.html#id80>`_ but requires both the
357 caller and callee are using it.
358"``cc 11``" - The HiPE calling convention
359 This calling convention has been implemented specifically for use by
360 the `High-Performance Erlang
361 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
362 native code compiler of the `Ericsson's Open Source Erlang/OTP
363 system <http://www.erlang.org/download.shtml>`_. It uses more
364 registers for argument passing than the ordinary C calling
365 convention and defines no callee-saved registers. The calling
366 convention properly supports `tail call
367 optimization <CodeGenerator.html#id80>`_ but requires that both the
368 caller and the callee use it. It uses a *register pinning*
369 mechanism, similar to GHC's convention, for keeping frequently
370 accessed runtime components pinned to specific hardware registers.
371 At the moment only X86 supports this convention (both 32 and 64
372 bit).
373"``cc <n>``" - Numbered convention
374 Any calling convention may be specified by number, allowing
375 target-specific calling conventions to be used. Target specific
376 calling conventions start at 64.
377
378More calling conventions can be added/defined on an as-needed basis, to
379support Pascal conventions or any other well-known target-independent
380convention.
381
Eli Bendersky1de14102013-06-07 19:40:08 +0000382.. _visibilitystyles:
383
Sean Silvaf722b002012-12-07 10:36:55 +0000384Visibility Styles
385-----------------
386
387All Global Variables and Functions have one of the following visibility
388styles:
389
390"``default``" - Default style
391 On targets that use the ELF object file format, default visibility
392 means that the declaration is visible to other modules and, in
393 shared libraries, means that the declared entity may be overridden.
394 On Darwin, default visibility means that the declaration is visible
395 to other modules. Default visibility corresponds to "external
396 linkage" in the language.
397"``hidden``" - Hidden style
398 Two declarations of an object with hidden visibility refer to the
399 same object if they are in the same shared object. Usually, hidden
400 visibility indicates that the symbol will not be placed into the
401 dynamic symbol table, so no other module (executable or shared
402 library) can reference it directly.
403"``protected``" - Protected style
404 On ELF, protected visibility indicates that the symbol will be
405 placed in the dynamic symbol table, but that references within the
406 defining module will bind to the local symbol. That is, the symbol
407 cannot be overridden by another module.
408
Eli Bendersky1de14102013-06-07 19:40:08 +0000409.. _namedtypes:
410
Sean Silvaf722b002012-12-07 10:36:55 +0000411Named Types
412-----------
413
414LLVM IR allows you to specify name aliases for certain types. This can
415make it easier to read the IR and make the IR more condensed
416(particularly when recursive types are involved). An example of a name
417specification is:
418
419.. code-block:: llvm
420
421 %mytype = type { %mytype*, i32 }
422
423You may give a name to any :ref:`type <typesystem>` except
424":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
425expected with the syntax "%mytype".
426
427Note that type names are aliases for the structural type that they
428indicate, and that you can therefore specify multiple names for the same
429type. This often leads to confusing behavior when dumping out a .ll
430file. Since LLVM IR uses structural typing, the name is not part of the
431type. When printing out LLVM IR, the printer will pick *one name* to
432render all types of a particular shape. This means that if you have code
433where two different source types end up having the same LLVM type, that
434the dumper will sometimes print the "wrong" or unexpected type. This is
435an important design point and isn't going to change.
436
437.. _globalvars:
438
439Global Variables
440----------------
441
442Global variables define regions of memory allocated at compilation time
Rafael Espindola1313a222013-10-29 13:44:11 +0000443instead of run-time.
444
445Global variables definitions must be initialized, may have an explicit section
446to be placed in, and may have an optional explicit alignment specified.
447
448Global variables in other translation units can also be declared, in which
449case they don't have an initializer.
Sean Silvaf722b002012-12-07 10:36:55 +0000450
451A variable may be defined as ``thread_local``, which means that it will
452not be shared by threads (each thread will have a separated copy of the
453variable). Not all targets support thread-local variables. Optionally, a
454TLS model may be specified:
455
456``localdynamic``
457 For variables that are only used within the current shared library.
458``initialexec``
459 For variables in modules that will not be loaded dynamically.
460``localexec``
461 For variables defined in the executable and only used within it.
462
463The models correspond to the ELF TLS models; see `ELF Handling For
464Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
465more information on under which circumstances the different models may
466be used. The target may choose a different TLS model if the specified
467model is not supported, or if a better choice of model can be made.
468
Michael Gottesmanf5735882013-01-31 05:48:48 +0000469A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000470the contents of the variable will **never** be modified (enabling better
471optimization, allowing the global data to be placed in the read-only
472section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000473initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000474variable.
475
476LLVM explicitly allows *declarations* of global variables to be marked
477constant, even if the final definition of the global is not. This
478capability can be used to enable slightly better optimization of the
479program, but requires the language definition to guarantee that
480optimizations based on the 'constantness' are valid for the translation
481units that do not include the definition.
482
483As SSA values, global variables define pointer values that are in scope
484(i.e. they dominate) all basic blocks in the program. Global variables
485always define a pointer to their "content" type because they describe a
486region of memory, and all memory objects in LLVM are accessed through
487pointers.
488
489Global variables can be marked with ``unnamed_addr`` which indicates
490that the address is not significant, only the content. Constants marked
491like this can be merged with other constants if they have the same
492initializer. Note that a constant with significant address *can* be
493merged with a ``unnamed_addr`` constant, the result being a constant
494whose address is significant.
495
496A global variable may be declared to reside in a target-specific
497numbered address space. For targets that support them, address spaces
498may affect how optimizations are performed and/or what target
499instructions are used to access the variable. The default address space
500is zero. The address space qualifier must precede any other attributes.
501
502LLVM allows an explicit section to be specified for globals. If the
503target supports it, it will emit globals to the section specified.
504
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000505By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000506variables defined within the module are not modified from their
507initial values before the start of the global initializer. This is
508true even for variables potentially accessible from outside the
509module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000510``@llvm.used``. This assumption may be suppressed by marking the
511variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000512
Sean Silvaf722b002012-12-07 10:36:55 +0000513An explicit alignment may be specified for a global, which must be a
514power of 2. If not present, or if the alignment is set to zero, the
515alignment of the global is set by the target to whatever it feels
516convenient. If an explicit alignment is specified, the global is forced
517to have exactly that alignment. Targets and optimizers are not allowed
518to over-align the global if the global has an assigned section. In this
519case, the extra alignment could be observable: for example, code could
520assume that the globals are densely packed in their section and try to
521iterate over them as an array, alignment padding would break this
522iteration.
523
524For example, the following defines a global in a numbered address space
525with an initializer, section, and alignment:
526
527.. code-block:: llvm
528
529 @G = addrspace(5) constant float 1.0, section "foo", align 4
530
Rafael Espindola1313a222013-10-29 13:44:11 +0000531The following example just declares a global variable
532
533.. code-block:: llvm
534
535 @G = external global i32
536
Sean Silvaf722b002012-12-07 10:36:55 +0000537The following example defines a thread-local global with the
538``initialexec`` TLS model:
539
540.. code-block:: llvm
541
542 @G = thread_local(initialexec) global i32 0, align 4
543
544.. _functionstructure:
545
546Functions
547---------
548
549LLVM function definitions consist of the "``define``" keyword, an
550optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
551style <visibility>`, an optional :ref:`calling convention <callingconv>`,
552an optional ``unnamed_addr`` attribute, a return type, an optional
553:ref:`parameter attribute <paramattrs>` for the return type, a function
554name, a (possibly empty) argument list (each with optional :ref:`parameter
555attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
556an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000557collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
558curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000559
560LLVM function declarations consist of the "``declare``" keyword, an
561optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
562style <visibility>`, an optional :ref:`calling convention <callingconv>`,
563an optional ``unnamed_addr`` attribute, a return type, an optional
564:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000565name, a possibly empty list of arguments, an optional alignment, an optional
566:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000567
Bill Wendlingcba7d7d2013-10-27 05:09:12 +0000568A function definition contains a list of basic blocks, forming the CFG (Control
569Flow Graph) for the function. Each basic block may optionally start with a label
570(giving the basic block a symbol table entry), contains a list of instructions,
571and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
572function return). If an explicit label is not provided, a block is assigned an
573implicit numbered label, using the next value from the same counter as used for
574unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
575entry block does not have an explicit label, it will be assigned label "%0",
576then the first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000577
578The first basic block in a function is special in two ways: it is
579immediately executed on entrance to the function, and it is not allowed
580to have predecessor basic blocks (i.e. there can not be any branches to
581the entry block of a function). Because the block can have no
582predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
583
584LLVM allows an explicit section to be specified for functions. If the
585target supports it, it will emit functions to the section specified.
586
587An explicit alignment may be specified for a function. If not present,
588or if the alignment is set to zero, the alignment of the function is set
589by the target to whatever it feels convenient. If an explicit alignment
590is specified, the function is forced to have at least that much
591alignment. All alignments must be a power of 2.
592
593If the ``unnamed_addr`` attribute is given, the address is know to not
594be significant and two identical functions can be merged.
595
596Syntax::
597
598 define [linkage] [visibility]
599 [cconv] [ret attrs]
600 <ResultType> @<FunctionName> ([argument list])
601 [fn Attrs] [section "name"] [align N]
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000602 [gc] [prefix Constant] { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000603
Eli Bendersky1de14102013-06-07 19:40:08 +0000604.. _langref_aliases:
605
Sean Silvaf722b002012-12-07 10:36:55 +0000606Aliases
607-------
608
609Aliases act as "second name" for the aliasee value (which can be either
610function, global variable, another alias or bitcast of global value).
611Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
612:ref:`visibility style <visibility>`.
613
614Syntax::
615
616 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
617
Rafael Espindolacfa7d812013-10-07 13:57:59 +0000618The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola2def1792013-10-06 15:10:43 +0000619``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola19794da2013-11-01 17:09:14 +0000620``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
621might not correctly handle dropping a weak symbol that is aliased by a non weak
622alias.
Rafael Espindola2def1792013-10-06 15:10:43 +0000623
Sean Silvaf722b002012-12-07 10:36:55 +0000624.. _namedmetadatastructure:
625
626Named Metadata
627--------------
628
629Named metadata is a collection of metadata. :ref:`Metadata
630nodes <metadata>` (but not metadata strings) are the only valid
631operands for a named metadata.
632
633Syntax::
634
635 ; Some unnamed metadata nodes, which are referenced by the named metadata.
636 !0 = metadata !{metadata !"zero"}
637 !1 = metadata !{metadata !"one"}
638 !2 = metadata !{metadata !"two"}
639 ; A named metadata.
640 !name = !{!0, !1, !2}
641
642.. _paramattrs:
643
644Parameter Attributes
645--------------------
646
647The return type and each parameter of a function type may have a set of
648*parameter attributes* associated with them. Parameter attributes are
649used to communicate additional information about the result or
650parameters of a function. Parameter attributes are considered to be part
651of the function, not of the function type, so functions with different
652parameter attributes can have the same function type.
653
654Parameter attributes are simple keywords that follow the type specified.
655If multiple parameter attributes are needed, they are space separated.
656For example:
657
658.. code-block:: llvm
659
660 declare i32 @printf(i8* noalias nocapture, ...)
661 declare i32 @atoi(i8 zeroext)
662 declare signext i8 @returns_signed_char()
663
664Note that any attributes for the function result (``nounwind``,
665``readonly``) come immediately after the argument list.
666
667Currently, only the following parameter attributes are defined:
668
669``zeroext``
670 This indicates to the code generator that the parameter or return
671 value should be zero-extended to the extent required by the target's
672 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
673 the caller (for a parameter) or the callee (for a return value).
674``signext``
675 This indicates to the code generator that the parameter or return
676 value should be sign-extended to the extent required by the target's
677 ABI (which is usually 32-bits) by the caller (for a parameter) or
678 the callee (for a return value).
679``inreg``
680 This indicates that this parameter or return value should be treated
681 in a special target-dependent fashion during while emitting code for
682 a function call or return (usually, by putting it in a register as
683 opposed to memory, though some targets use it to distinguish between
684 two different kinds of registers). Use of this attribute is
685 target-specific.
686``byval``
687 This indicates that the pointer parameter should really be passed by
688 value to the function. The attribute implies that a hidden copy of
689 the pointee is made between the caller and the callee, so the callee
690 is unable to modify the value in the caller. This attribute is only
691 valid on LLVM pointer arguments. It is generally used to pass
692 structs and arrays by value, but is also valid on pointers to
693 scalars. The copy is considered to belong to the caller not the
694 callee (for example, ``readonly`` functions should not write to
695 ``byval`` parameters). This is not a valid attribute for return
696 values.
697
698 The byval attribute also supports specifying an alignment with the
699 align attribute. It indicates the alignment of the stack slot to
700 form and the known alignment of the pointer specified to the call
701 site. If the alignment is not specified, then the code generator
702 makes a target-specific assumption.
703
704``sret``
705 This indicates that the pointer parameter specifies the address of a
706 structure that is the return value of the function in the source
707 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000708 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000709 not to trap and to be properly aligned. This may only be applied to
710 the first parameter. This is not a valid attribute for return
711 values.
712``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000713 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000714 the argument or return value do not alias pointer values which are
715 not *based* on it, ignoring certain "irrelevant" dependencies. For a
716 call to the parent function, dependencies between memory references
717 from before or after the call and from those during the call are
718 "irrelevant" to the ``noalias`` keyword for the arguments and return
719 value used in that call. The caller shares the responsibility with
720 the callee for ensuring that these requirements are met. For further
721 details, please see the discussion of the NoAlias response in `alias
722 analysis <AliasAnalysis.html#MustMayNo>`_.
723
724 Note that this definition of ``noalias`` is intentionally similar
725 to the definition of ``restrict`` in C99 for function arguments,
726 though it is slightly weaker.
727
728 For function return values, C99's ``restrict`` is not meaningful,
729 while LLVM's ``noalias`` is.
730``nocapture``
731 This indicates that the callee does not make any copies of the
732 pointer that outlive the callee itself. This is not a valid
733 attribute for return values.
734
735.. _nest:
736
737``nest``
738 This indicates that the pointer parameter can be excised using the
739 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000740 attribute for return values and can only be applied to one parameter.
741
742``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000743 This indicates that the function always returns the argument as its return
744 value. This is an optimization hint to the code generator when generating
745 the caller, allowing tail call optimization and omission of register saves
746 and restores in some cases; it is not checked or enforced when generating
747 the callee. The parameter and the function return type must be valid
748 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
749 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000750
751.. _gc:
752
753Garbage Collector Names
754-----------------------
755
756Each function may specify a garbage collector name, which is simply a
757string:
758
759.. code-block:: llvm
760
761 define void @f() gc "name" { ... }
762
763The compiler declares the supported values of *name*. Specifying a
764collector which will cause the compiler to alter its output in order to
765support the named garbage collection algorithm.
766
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000767.. _prefixdata:
768
769Prefix Data
770-----------
771
772Prefix data is data associated with a function which the code generator
773will emit immediately before the function body. The purpose of this feature
774is to allow frontends to associate language-specific runtime metadata with
775specific functions and make it available through the function pointer while
776still allowing the function pointer to be called. To access the data for a
777given function, a program may bitcast the function pointer to a pointer to
778the constant's type. This implies that the IR symbol points to the start
779of the prefix data.
780
781To maintain the semantics of ordinary function calls, the prefix data must
782have a particular format. Specifically, it must begin with a sequence of
783bytes which decode to a sequence of machine instructions, valid for the
784module's target, which transfer control to the point immediately succeeding
785the prefix data, without performing any other visible action. This allows
786the inliner and other passes to reason about the semantics of the function
787definition without needing to reason about the prefix data. Obviously this
788makes the format of the prefix data highly target dependent.
789
Peter Collingbournea4ae4052013-09-23 20:14:21 +0000790Prefix data is laid out as if it were an initializer for a global variable
791of the prefix data's type. No padding is automatically placed between the
792prefix data and the function body. If padding is required, it must be part
793of the prefix data.
794
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000795A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
796which encodes the ``nop`` instruction:
797
798.. code-block:: llvm
799
800 define void @f() prefix i8 144 { ... }
801
802Generally prefix data can be formed by encoding a relative branch instruction
803which skips the metadata, as in this example of valid prefix data for the
804x86_64 architecture, where the first two bytes encode ``jmp .+10``:
805
806.. code-block:: llvm
807
808 %0 = type <{ i8, i8, i8* }>
809
810 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
811
812A function may have prefix data but no body. This has similar semantics
813to the ``available_externally`` linkage in that the data may be used by the
814optimizers but will not be emitted in the object file.
815
Bill Wendling95ce4c22013-02-06 06:52:58 +0000816.. _attrgrp:
817
818Attribute Groups
819----------------
820
821Attribute groups are groups of attributes that are referenced by objects within
822the IR. They are important for keeping ``.ll`` files readable, because a lot of
823functions will use the same set of attributes. In the degenerative case of a
824``.ll`` file that corresponds to a single ``.c`` file, the single attribute
825group will capture the important command line flags used to build that file.
826
827An attribute group is a module-level object. To use an attribute group, an
828object references the attribute group's ID (e.g. ``#37``). An object may refer
829to more than one attribute group. In that situation, the attributes from the
830different groups are merged.
831
832Here is an example of attribute groups for a function that should always be
833inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
834
835.. code-block:: llvm
836
837 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000838 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000839
840 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000841 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000842
843 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
844 define void @f() #0 #1 { ... }
845
Sean Silvaf722b002012-12-07 10:36:55 +0000846.. _fnattrs:
847
848Function Attributes
849-------------------
850
851Function attributes are set to communicate additional information about
852a function. Function attributes are considered to be part of the
853function, not of the function type, so functions with different function
854attributes can have the same function type.
855
856Function attributes are simple keywords that follow the type specified.
857If multiple attributes are needed, they are space separated. For
858example:
859
860.. code-block:: llvm
861
862 define void @f() noinline { ... }
863 define void @f() alwaysinline { ... }
864 define void @f() alwaysinline optsize { ... }
865 define void @f() optsize { ... }
866
Sean Silvaf722b002012-12-07 10:36:55 +0000867``alignstack(<n>)``
868 This attribute indicates that, when emitting the prologue and
869 epilogue, the backend should forcibly align the stack pointer.
870 Specify the desired alignment, which must be a power of two, in
871 parentheses.
872``alwaysinline``
873 This attribute indicates that the inliner should attempt to inline
874 this function into callers whenever possible, ignoring any active
875 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000876``builtin``
877 This indicates that the callee function at a call site should be
878 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000879 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000880 direct calls to functions which are declared with the ``nobuiltin``
881 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000882``cold``
883 This attribute indicates that this function is rarely called. When
884 computing edge weights, basic blocks post-dominated by a cold
885 function call are also considered to be cold; and, thus, given low
886 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000887``inlinehint``
888 This attribute indicates that the source code contained a hint that
889 inlining this function is desirable (such as the "inline" keyword in
890 C/C++). It is just a hint; it imposes no requirements on the
891 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000892``minsize``
893 This attribute suggests that optimization passes and code generator
894 passes make choices that keep the code size of this function as small
Andrew Trickcf940ce2013-10-31 17:18:07 +0000895 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000896 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000897``naked``
898 This attribute disables prologue / epilogue emission for the
899 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000900``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000901 This indicates that the callee function at a call site is not recognized as
902 a built-in function. LLVM will retain the original call and not replace it
903 with equivalent code based on the semantics of the built-in function, unless
904 the call site uses the ``builtin`` attribute. This is valid at call sites
905 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000906``noduplicate``
907 This attribute indicates that calls to the function cannot be
908 duplicated. A call to a ``noduplicate`` function may be moved
909 within its parent function, but may not be duplicated within
910 its parent function.
911
912 A function containing a ``noduplicate`` call may still
913 be an inlining candidate, provided that the call is not
914 duplicated by inlining. That implies that the function has
915 internal linkage and only has one call site, so the original
916 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000917``noimplicitfloat``
918 This attributes disables implicit floating point instructions.
919``noinline``
920 This attribute indicates that the inliner should never inline this
921 function in any situation. This attribute may not be used together
922 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000923``nonlazybind``
924 This attribute suppresses lazy symbol binding for the function. This
925 may make calls to the function faster, at the cost of extra program
926 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000927``noredzone``
928 This attribute indicates that the code generator should not use a
929 red zone, even if the target-specific ABI normally permits it.
930``noreturn``
931 This function attribute indicates that the function never returns
932 normally. This produces undefined behavior at runtime if the
933 function ever does dynamically return.
934``nounwind``
935 This function attribute indicates that the function never returns
936 with an unwind or exceptional control flow. If the function does
937 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000938``optnone``
939 This function attribute indicates that the function is not optimized
Andrew Trickcf940ce2013-10-31 17:18:07 +0000940 by any optimization or code generator passes with the
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000941 exception of interprocedural optimization passes.
942 This attribute cannot be used together with the ``alwaysinline``
943 attribute; this attribute is also incompatible
944 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000945
Paul Robinsonfe45fd02013-11-18 21:44:03 +0000946 This attribute requires the ``noinline`` attribute to be specified on
947 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000948 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsonfe45fd02013-11-18 21:44:03 +0000949 candidates for inlining into the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000950``optsize``
951 This attribute suggests that optimization passes and code generator
952 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000953 and otherwise do optimizations specifically to reduce code size as
954 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000955``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000956 On a function, this attribute indicates that the function computes its
957 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000958 without dereferencing any pointer arguments or otherwise accessing
959 any mutable state (e.g. memory, control registers, etc) visible to
960 caller functions. It does not write through any pointer arguments
961 (including ``byval`` arguments) and never changes any state visible
962 to callers. This means that it cannot unwind exceptions by calling
963 the ``C++`` exception throwing methods.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000964
Nick Lewyckydc897372013-07-06 00:29:58 +0000965 On an argument, this attribute indicates that the function does not
966 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000967 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000968``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000969 On a function, this attribute indicates that the function does not write
970 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000971 modify any state (e.g. memory, control registers, etc) visible to
972 caller functions. It may dereference pointer arguments and read
973 state that may be set in the caller. A readonly function always
974 returns the same value (or unwinds an exception identically) when
975 called with the same set of arguments and global state. It cannot
976 unwind an exception by calling the ``C++`` exception throwing
977 methods.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000978
Nick Lewyckydc897372013-07-06 00:29:58 +0000979 On an argument, this attribute indicates that the function does not write
980 through this pointer argument, even though it may write to the memory that
981 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000982``returns_twice``
983 This attribute indicates that this function can return twice. The C
984 ``setjmp`` is an example of such a function. The compiler disables
985 some optimizations (like tail calls) in the caller of these
986 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000987``sanitize_address``
988 This attribute indicates that AddressSanitizer checks
989 (dynamic address safety analysis) are enabled for this function.
990``sanitize_memory``
991 This attribute indicates that MemorySanitizer checks (dynamic detection
992 of accesses to uninitialized memory) are enabled for this function.
993``sanitize_thread``
994 This attribute indicates that ThreadSanitizer checks
995 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000996``ssp``
997 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000998 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000999 placed on the stack before the local variables that's checked upon
1000 return from the function to see if it has been overwritten. A
1001 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001002 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001003
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001004 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1005 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1006 - Calls to alloca() with variable sizes or constant sizes greater than
1007 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +00001008
1009 If a function that has an ``ssp`` attribute is inlined into a
1010 function that doesn't have an ``ssp`` attribute, then the resulting
1011 function will have an ``ssp`` attribute.
1012``sspreq``
1013 This attribute indicates that the function should *always* emit a
1014 stack smashing protector. This overrides the ``ssp`` function
1015 attribute.
1016
1017 If a function that has an ``sspreq`` attribute is inlined into a
1018 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001019 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1020 an ``sspreq`` attribute.
1021``sspstrong``
1022 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001023 protector. This attribute causes a strong heuristic to be used when
1024 determining if a function needs stack protectors. The strong heuristic
1025 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001026
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001027 - Arrays of any size and type
1028 - Aggregates containing an array of any size and type.
1029 - Calls to alloca().
1030 - Local variables that have had their address taken.
1031
1032 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001033
1034 If a function that has an ``sspstrong`` attribute is inlined into a
1035 function that doesn't have an ``sspstrong`` attribute, then the
1036 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00001037``uwtable``
1038 This attribute indicates that the ABI being targeted requires that
1039 an unwind table entry be produce for this function even if we can
1040 show that no exceptions passes by it. This is normally the case for
1041 the ELF x86-64 abi, but it can be disabled for some compilation
1042 units.
Sean Silvaf722b002012-12-07 10:36:55 +00001043
1044.. _moduleasm:
1045
1046Module-Level Inline Assembly
1047----------------------------
1048
1049Modules may contain "module-level inline asm" blocks, which corresponds
1050to the GCC "file scope inline asm" blocks. These blocks are internally
1051concatenated by LLVM and treated as a single unit, but may be separated
1052in the ``.ll`` file if desired. The syntax is very simple:
1053
1054.. code-block:: llvm
1055
1056 module asm "inline asm code goes here"
1057 module asm "more can go here"
1058
1059The strings can contain any character by escaping non-printable
1060characters. The escape sequence used is simply "\\xx" where "xx" is the
1061two digit hex code for the number.
1062
1063The inline asm code is simply printed to the machine code .s file when
1064assembly code is generated.
1065
Eli Bendersky1de14102013-06-07 19:40:08 +00001066.. _langref_datalayout:
1067
Sean Silvaf722b002012-12-07 10:36:55 +00001068Data Layout
1069-----------
1070
1071A module may specify a target specific data layout string that specifies
1072how data is to be laid out in memory. The syntax for the data layout is
1073simply:
1074
1075.. code-block:: llvm
1076
1077 target datalayout = "layout specification"
1078
1079The *layout specification* consists of a list of specifications
1080separated by the minus sign character ('-'). Each specification starts
1081with a letter and may include other information after the letter to
1082define some aspect of the data layout. The specifications accepted are
1083as follows:
1084
1085``E``
1086 Specifies that the target lays out data in big-endian form. That is,
1087 the bits with the most significance have the lowest address
1088 location.
1089``e``
1090 Specifies that the target lays out data in little-endian form. That
1091 is, the bits with the least significance have the lowest address
1092 location.
1093``S<size>``
1094 Specifies the natural alignment of the stack in bits. Alignment
1095 promotion of stack variables is limited to the natural stack
1096 alignment to avoid dynamic stack realignment. The stack alignment
1097 must be a multiple of 8-bits. If omitted, the natural stack
1098 alignment defaults to "unspecified", which does not prevent any
1099 alignment promotions.
1100``p[n]:<size>:<abi>:<pref>``
1101 This specifies the *size* of a pointer and its ``<abi>`` and
1102 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1103 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1104 preceding ``:`` should be omitted too. The address space, ``n`` is
1105 optional, and if not specified, denotes the default address space 0.
1106 The value of ``n`` must be in the range [1,2^23).
1107``i<size>:<abi>:<pref>``
1108 This specifies the alignment for an integer type of a given bit
1109 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1110``v<size>:<abi>:<pref>``
1111 This specifies the alignment for a vector type of a given bit
1112 ``<size>``.
1113``f<size>:<abi>:<pref>``
1114 This specifies the alignment for a floating point type of a given bit
1115 ``<size>``. Only values of ``<size>`` that are supported by the target
1116 will work. 32 (float) and 64 (double) are supported on all targets; 80
1117 or 128 (different flavors of long double) are also supported on some
1118 targets.
1119``a<size>:<abi>:<pref>``
1120 This specifies the alignment for an aggregate type of a given bit
1121 ``<size>``.
1122``s<size>:<abi>:<pref>``
1123 This specifies the alignment for a stack object of a given bit
1124 ``<size>``.
1125``n<size1>:<size2>:<size3>...``
1126 This specifies a set of native integer widths for the target CPU in
1127 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1128 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1129 this set are considered to support most general arithmetic operations
1130 efficiently.
1131
1132When constructing the data layout for a given target, LLVM starts with a
1133default set of specifications which are then (possibly) overridden by
1134the specifications in the ``datalayout`` keyword. The default
1135specifications are given in this list:
1136
1137- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001138- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1139- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1140 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001141- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001142- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1143- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1144- ``i16:16:16`` - i16 is 16-bit aligned
1145- ``i32:32:32`` - i32 is 32-bit aligned
1146- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1147 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001148- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001149- ``f32:32:32`` - float is 32-bit aligned
1150- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001151- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001152- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1153- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001154- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001155
1156When LLVM is determining the alignment for a given type, it uses the
1157following rules:
1158
1159#. If the type sought is an exact match for one of the specifications,
1160 that specification is used.
1161#. If no match is found, and the type sought is an integer type, then
1162 the smallest integer type that is larger than the bitwidth of the
1163 sought type is used. If none of the specifications are larger than
1164 the bitwidth then the largest integer type is used. For example,
1165 given the default specifications above, the i7 type will use the
1166 alignment of i8 (next largest) while both i65 and i256 will use the
1167 alignment of i64 (largest specified).
1168#. If no match is found, and the type sought is a vector type, then the
1169 largest vector type that is smaller than the sought vector type will
1170 be used as a fall back. This happens because <128 x double> can be
1171 implemented in terms of 64 <2 x double>, for example.
1172
1173The function of the data layout string may not be what you expect.
1174Notably, this is not a specification from the frontend of what alignment
1175the code generator should use.
1176
1177Instead, if specified, the target data layout is required to match what
1178the ultimate *code generator* expects. This string is used by the
1179mid-level optimizers to improve code, and this only works if it matches
1180what the ultimate code generator uses. If you would like to generate IR
1181that does not embed this target-specific detail into the IR, then you
1182don't have to specify the string. This will disable some optimizations
1183that require precise layout information, but this also prevents those
1184optimizations from introducing target specificity into the IR.
1185
Bill Wendling4216b992013-10-18 23:41:25 +00001186.. _langref_triple:
1187
1188Target Triple
1189-------------
1190
1191A module may specify a target triple string that describes the target
1192host. The syntax for the target triple is simply:
1193
1194.. code-block:: llvm
1195
1196 target triple = "x86_64-apple-macosx10.7.0"
1197
1198The *target triple* string consists of a series of identifiers delimited
1199by the minus sign character ('-'). The canonical forms are:
1200
1201::
1202
1203 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1204 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1205
1206This information is passed along to the backend so that it generates
1207code for the proper architecture. It's possible to override this on the
1208command line with the ``-mtriple`` command line option.
1209
Sean Silvaf722b002012-12-07 10:36:55 +00001210.. _pointeraliasing:
1211
1212Pointer Aliasing Rules
1213----------------------
1214
1215Any memory access must be done through a pointer value associated with
1216an address range of the memory access, otherwise the behavior is
1217undefined. Pointer values are associated with address ranges according
1218to the following rules:
1219
1220- A pointer value is associated with the addresses associated with any
1221 value it is *based* on.
1222- An address of a global variable is associated with the address range
1223 of the variable's storage.
1224- The result value of an allocation instruction is associated with the
1225 address range of the allocated storage.
1226- A null pointer in the default address-space is associated with no
1227 address.
1228- An integer constant other than zero or a pointer value returned from
1229 a function not defined within LLVM may be associated with address
1230 ranges allocated through mechanisms other than those provided by
1231 LLVM. Such ranges shall not overlap with any ranges of addresses
1232 allocated by mechanisms provided by LLVM.
1233
1234A pointer value is *based* on another pointer value according to the
1235following rules:
1236
1237- A pointer value formed from a ``getelementptr`` operation is *based*
1238 on the first operand of the ``getelementptr``.
1239- The result value of a ``bitcast`` is *based* on the operand of the
1240 ``bitcast``.
1241- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1242 values that contribute (directly or indirectly) to the computation of
1243 the pointer's value.
1244- The "*based* on" relationship is transitive.
1245
1246Note that this definition of *"based"* is intentionally similar to the
1247definition of *"based"* in C99, though it is slightly weaker.
1248
1249LLVM IR does not associate types with memory. The result type of a
1250``load`` merely indicates the size and alignment of the memory from
1251which to load, as well as the interpretation of the value. The first
1252operand type of a ``store`` similarly only indicates the size and
1253alignment of the store.
1254
1255Consequently, type-based alias analysis, aka TBAA, aka
1256``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1257:ref:`Metadata <metadata>` may be used to encode additional information
1258which specialized optimization passes may use to implement type-based
1259alias analysis.
1260
1261.. _volatile:
1262
1263Volatile Memory Accesses
1264------------------------
1265
1266Certain memory accesses, such as :ref:`load <i_load>`'s,
1267:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1268marked ``volatile``. The optimizers must not change the number of
1269volatile operations or change their order of execution relative to other
1270volatile operations. The optimizers *may* change the order of volatile
1271operations relative to non-volatile operations. This is not Java's
1272"volatile" and has no cross-thread synchronization behavior.
1273
Andrew Trick9a6dd022013-01-30 21:19:35 +00001274IR-level volatile loads and stores cannot safely be optimized into
1275llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1276flagged volatile. Likewise, the backend should never split or merge
1277target-legal volatile load/store instructions.
1278
Andrew Trick946317d2013-01-31 00:49:39 +00001279.. admonition:: Rationale
1280
1281 Platforms may rely on volatile loads and stores of natively supported
1282 data width to be executed as single instruction. For example, in C
1283 this holds for an l-value of volatile primitive type with native
1284 hardware support, but not necessarily for aggregate types. The
1285 frontend upholds these expectations, which are intentionally
1286 unspecified in the IR. The rules above ensure that IR transformation
1287 do not violate the frontend's contract with the language.
1288
Sean Silvaf722b002012-12-07 10:36:55 +00001289.. _memmodel:
1290
1291Memory Model for Concurrent Operations
1292--------------------------------------
1293
1294The LLVM IR does not define any way to start parallel threads of
1295execution or to register signal handlers. Nonetheless, there are
1296platform-specific ways to create them, and we define LLVM IR's behavior
1297in their presence. This model is inspired by the C++0x memory model.
1298
1299For a more informal introduction to this model, see the :doc:`Atomics`.
1300
1301We define a *happens-before* partial order as the least partial order
1302that
1303
1304- Is a superset of single-thread program order, and
1305- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1306 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1307 techniques, like pthread locks, thread creation, thread joining,
1308 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1309 Constraints <ordering>`).
1310
1311Note that program order does not introduce *happens-before* edges
1312between a thread and signals executing inside that thread.
1313
1314Every (defined) read operation (load instructions, memcpy, atomic
1315loads/read-modify-writes, etc.) R reads a series of bytes written by
1316(defined) write operations (store instructions, atomic
1317stores/read-modify-writes, memcpy, etc.). For the purposes of this
1318section, initialized globals are considered to have a write of the
1319initializer which is atomic and happens before any other read or write
1320of the memory in question. For each byte of a read R, R\ :sub:`byte`
1321may see any write to the same byte, except:
1322
1323- If write\ :sub:`1` happens before write\ :sub:`2`, and
1324 write\ :sub:`2` happens before R\ :sub:`byte`, then
1325 R\ :sub:`byte` does not see write\ :sub:`1`.
1326- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1327 R\ :sub:`byte` does not see write\ :sub:`3`.
1328
1329Given that definition, R\ :sub:`byte` is defined as follows:
1330
1331- If R is volatile, the result is target-dependent. (Volatile is
1332 supposed to give guarantees which can support ``sig_atomic_t`` in
1333 C/C++, and may be used for accesses to addresses which do not behave
1334 like normal memory. It does not generally provide cross-thread
1335 synchronization.)
1336- Otherwise, if there is no write to the same byte that happens before
1337 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1338- Otherwise, if R\ :sub:`byte` may see exactly one write,
1339 R\ :sub:`byte` returns the value written by that write.
1340- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1341 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1342 Memory Ordering Constraints <ordering>` section for additional
1343 constraints on how the choice is made.
1344- Otherwise R\ :sub:`byte` returns ``undef``.
1345
1346R returns the value composed of the series of bytes it read. This
1347implies that some bytes within the value may be ``undef`` **without**
1348the entire value being ``undef``. Note that this only defines the
1349semantics of the operation; it doesn't mean that targets will emit more
1350than one instruction to read the series of bytes.
1351
1352Note that in cases where none of the atomic intrinsics are used, this
1353model places only one restriction on IR transformations on top of what
1354is required for single-threaded execution: introducing a store to a byte
1355which might not otherwise be stored is not allowed in general.
1356(Specifically, in the case where another thread might write to and read
1357from an address, introducing a store can change a load that may see
1358exactly one write into a load that may see multiple writes.)
1359
1360.. _ordering:
1361
1362Atomic Memory Ordering Constraints
1363----------------------------------
1364
1365Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1366:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1367:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1368an ordering parameter that determines which other atomic instructions on
1369the same address they *synchronize with*. These semantics are borrowed
1370from Java and C++0x, but are somewhat more colloquial. If these
1371descriptions aren't precise enough, check those specs (see spec
1372references in the :doc:`atomics guide <Atomics>`).
1373:ref:`fence <i_fence>` instructions treat these orderings somewhat
1374differently since they don't take an address. See that instruction's
1375documentation for details.
1376
1377For a simpler introduction to the ordering constraints, see the
1378:doc:`Atomics`.
1379
1380``unordered``
1381 The set of values that can be read is governed by the happens-before
1382 partial order. A value cannot be read unless some operation wrote
1383 it. This is intended to provide a guarantee strong enough to model
1384 Java's non-volatile shared variables. This ordering cannot be
1385 specified for read-modify-write operations; it is not strong enough
1386 to make them atomic in any interesting way.
1387``monotonic``
1388 In addition to the guarantees of ``unordered``, there is a single
1389 total order for modifications by ``monotonic`` operations on each
1390 address. All modification orders must be compatible with the
1391 happens-before order. There is no guarantee that the modification
1392 orders can be combined to a global total order for the whole program
1393 (and this often will not be possible). The read in an atomic
1394 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1395 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1396 order immediately before the value it writes. If one atomic read
1397 happens before another atomic read of the same address, the later
1398 read must see the same value or a later value in the address's
1399 modification order. This disallows reordering of ``monotonic`` (or
1400 stronger) operations on the same address. If an address is written
1401 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1402 read that address repeatedly, the other threads must eventually see
1403 the write. This corresponds to the C++0x/C1x
1404 ``memory_order_relaxed``.
1405``acquire``
1406 In addition to the guarantees of ``monotonic``, a
1407 *synchronizes-with* edge may be formed with a ``release`` operation.
1408 This is intended to model C++'s ``memory_order_acquire``.
1409``release``
1410 In addition to the guarantees of ``monotonic``, if this operation
1411 writes a value which is subsequently read by an ``acquire``
1412 operation, it *synchronizes-with* that operation. (This isn't a
1413 complete description; see the C++0x definition of a release
1414 sequence.) This corresponds to the C++0x/C1x
1415 ``memory_order_release``.
1416``acq_rel`` (acquire+release)
1417 Acts as both an ``acquire`` and ``release`` operation on its
1418 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1419``seq_cst`` (sequentially consistent)
1420 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1421 operation which only reads, ``release`` for an operation which only
1422 writes), there is a global total order on all
1423 sequentially-consistent operations on all addresses, which is
1424 consistent with the *happens-before* partial order and with the
1425 modification orders of all the affected addresses. Each
1426 sequentially-consistent read sees the last preceding write to the
1427 same address in this global order. This corresponds to the C++0x/C1x
1428 ``memory_order_seq_cst`` and Java volatile.
1429
1430.. _singlethread:
1431
1432If an atomic operation is marked ``singlethread``, it only *synchronizes
1433with* or participates in modification and seq\_cst total orderings with
1434other operations running in the same thread (for example, in signal
1435handlers).
1436
1437.. _fastmath:
1438
1439Fast-Math Flags
1440---------------
1441
1442LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1443:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1444:ref:`frem <i_frem>`) have the following flags that can set to enable
1445otherwise unsafe floating point operations
1446
1447``nnan``
1448 No NaNs - Allow optimizations to assume the arguments and result are not
1449 NaN. Such optimizations are required to retain defined behavior over
1450 NaNs, but the value of the result is undefined.
1451
1452``ninf``
1453 No Infs - Allow optimizations to assume the arguments and result are not
1454 +/-Inf. Such optimizations are required to retain defined behavior over
1455 +/-Inf, but the value of the result is undefined.
1456
1457``nsz``
1458 No Signed Zeros - Allow optimizations to treat the sign of a zero
1459 argument or result as insignificant.
1460
1461``arcp``
1462 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1463 argument rather than perform division.
1464
1465``fast``
1466 Fast - Allow algebraically equivalent transformations that may
1467 dramatically change results in floating point (e.g. reassociate). This
1468 flag implies all the others.
1469
1470.. _typesystem:
1471
1472Type System
1473===========
1474
1475The LLVM type system is one of the most important features of the
1476intermediate representation. Being typed enables a number of
1477optimizations to be performed on the intermediate representation
1478directly, without having to do extra analyses on the side before the
1479transformation. A strong type system makes it easier to read the
1480generated code and enables novel analyses and transformations that are
1481not feasible to perform on normal three address code representations.
1482
Eli Bendersky88fe6822013-06-07 20:24:43 +00001483.. _typeclassifications:
1484
Sean Silvaf722b002012-12-07 10:36:55 +00001485Type Classifications
1486--------------------
1487
1488The types fall into a few useful classifications:
1489
1490
1491.. list-table::
1492 :header-rows: 1
1493
1494 * - Classification
1495 - Types
1496
1497 * - :ref:`integer <t_integer>`
1498 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1499 ``i64``, ...
1500
1501 * - :ref:`floating point <t_floating>`
1502 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1503 ``ppc_fp128``
1504
1505
1506 * - first class
1507
1508 .. _t_firstclass:
1509
1510 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1511 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1512 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1513 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1514
1515 * - :ref:`primitive <t_primitive>`
1516 - :ref:`label <t_label>`,
1517 :ref:`void <t_void>`,
1518 :ref:`integer <t_integer>`,
1519 :ref:`floating point <t_floating>`,
1520 :ref:`x86mmx <t_x86mmx>`,
1521 :ref:`metadata <t_metadata>`.
1522
1523 * - :ref:`derived <t_derived>`
1524 - :ref:`array <t_array>`,
1525 :ref:`function <t_function>`,
1526 :ref:`pointer <t_pointer>`,
1527 :ref:`structure <t_struct>`,
1528 :ref:`vector <t_vector>`,
1529 :ref:`opaque <t_opaque>`.
1530
1531The :ref:`first class <t_firstclass>` types are perhaps the most important.
1532Values of these types are the only ones which can be produced by
1533instructions.
1534
1535.. _t_primitive:
1536
1537Primitive Types
1538---------------
1539
1540The primitive types are the fundamental building blocks of the LLVM
1541system.
1542
1543.. _t_integer:
1544
1545Integer Type
1546^^^^^^^^^^^^
1547
1548Overview:
1549"""""""""
1550
1551The integer type is a very simple type that simply specifies an
1552arbitrary bit width for the integer type desired. Any bit width from 1
1553bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1554
1555Syntax:
1556"""""""
1557
1558::
1559
1560 iN
1561
1562The number of bits the integer will occupy is specified by the ``N``
1563value.
1564
1565Examples:
1566"""""""""
1567
1568+----------------+------------------------------------------------+
1569| ``i1`` | a single-bit integer. |
1570+----------------+------------------------------------------------+
1571| ``i32`` | a 32-bit integer. |
1572+----------------+------------------------------------------------+
1573| ``i1942652`` | a really big integer of over 1 million bits. |
1574+----------------+------------------------------------------------+
1575
1576.. _t_floating:
1577
1578Floating Point Types
1579^^^^^^^^^^^^^^^^^^^^
1580
1581.. list-table::
1582 :header-rows: 1
1583
1584 * - Type
1585 - Description
1586
1587 * - ``half``
1588 - 16-bit floating point value
1589
1590 * - ``float``
1591 - 32-bit floating point value
1592
1593 * - ``double``
1594 - 64-bit floating point value
1595
1596 * - ``fp128``
1597 - 128-bit floating point value (112-bit mantissa)
1598
1599 * - ``x86_fp80``
1600 - 80-bit floating point value (X87)
1601
1602 * - ``ppc_fp128``
1603 - 128-bit floating point value (two 64-bits)
1604
1605.. _t_x86mmx:
1606
1607X86mmx Type
1608^^^^^^^^^^^
1609
1610Overview:
1611"""""""""
1612
1613The x86mmx type represents a value held in an MMX register on an x86
1614machine. The operations allowed on it are quite limited: parameters and
1615return values, load and store, and bitcast. User-specified MMX
1616instructions are represented as intrinsic or asm calls with arguments
1617and/or results of this type. There are no arrays, vectors or constants
1618of this type.
1619
1620Syntax:
1621"""""""
1622
1623::
1624
1625 x86mmx
1626
1627.. _t_void:
1628
1629Void Type
1630^^^^^^^^^
1631
1632Overview:
1633"""""""""
1634
1635The void type does not represent any value and has no size.
1636
1637Syntax:
1638"""""""
1639
1640::
1641
1642 void
1643
1644.. _t_label:
1645
1646Label Type
1647^^^^^^^^^^
1648
1649Overview:
1650"""""""""
1651
1652The label type represents code labels.
1653
1654Syntax:
1655"""""""
1656
1657::
1658
1659 label
1660
1661.. _t_metadata:
1662
1663Metadata Type
1664^^^^^^^^^^^^^
1665
1666Overview:
1667"""""""""
1668
1669The metadata type represents embedded metadata. No derived types may be
1670created from metadata except for :ref:`function <t_function>` arguments.
1671
1672Syntax:
1673"""""""
1674
1675::
1676
1677 metadata
1678
1679.. _t_derived:
1680
1681Derived Types
1682-------------
1683
1684The real power in LLVM comes from the derived types in the system. This
1685is what allows a programmer to represent arrays, functions, pointers,
1686and other useful types. Each of these types contain one or more element
1687types which may be a primitive type, or another derived type. For
1688example, it is possible to have a two dimensional array, using an array
1689as the element type of another array.
1690
1691.. _t_aggregate:
1692
1693Aggregate Types
1694^^^^^^^^^^^^^^^
1695
1696Aggregate Types are a subset of derived types that can contain multiple
1697member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1698aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1699aggregate types.
1700
1701.. _t_array:
1702
1703Array Type
1704^^^^^^^^^^
1705
1706Overview:
1707"""""""""
1708
1709The array type is a very simple derived type that arranges elements
1710sequentially in memory. The array type requires a size (number of
1711elements) and an underlying data type.
1712
1713Syntax:
1714"""""""
1715
1716::
1717
1718 [<# elements> x <elementtype>]
1719
1720The number of elements is a constant integer value; ``elementtype`` may
1721be any type with a size.
1722
1723Examples:
1724"""""""""
1725
1726+------------------+--------------------------------------+
1727| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1728+------------------+--------------------------------------+
1729| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1730+------------------+--------------------------------------+
1731| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1732+------------------+--------------------------------------+
1733
1734Here are some examples of multidimensional arrays:
1735
1736+-----------------------------+----------------------------------------------------------+
1737| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1738+-----------------------------+----------------------------------------------------------+
1739| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1740+-----------------------------+----------------------------------------------------------+
1741| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1742+-----------------------------+----------------------------------------------------------+
1743
1744There is no restriction on indexing beyond the end of the array implied
1745by a static type (though there are restrictions on indexing beyond the
1746bounds of an allocated object in some cases). This means that
1747single-dimension 'variable sized array' addressing can be implemented in
1748LLVM with a zero length array type. An implementation of 'pascal style
1749arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1750example.
1751
1752.. _t_function:
1753
1754Function Type
1755^^^^^^^^^^^^^
1756
1757Overview:
1758"""""""""
1759
Bill Wendling09f8e132013-10-27 04:19:29 +00001760The function type can be thought of as a function signature. It consists of a
1761return type and a list of formal parameter types. The return type of a function
1762type is a void type or first class type --- except for :ref:`label <t_label>`
1763and :ref:`metadata <t_metadata>` types.
Sean Silvaf722b002012-12-07 10:36:55 +00001764
1765Syntax:
1766"""""""
1767
1768::
1769
1770 <returntype> (<parameter list>)
1771
1772...where '``<parameter list>``' is a comma-separated list of type
Bill Wendling09f8e132013-10-27 04:19:29 +00001773specifiers. Optionally, the parameter list may include a type ``...``, which
1774indicates that the function takes a variable number of arguments. Variable
1775argument functions can access their arguments with the :ref:`variable argument
1776handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1777except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvaf722b002012-12-07 10:36:55 +00001778
1779Examples:
1780"""""""""
1781
1782+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1783| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1784+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001785| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001786+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1787| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1788+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1789| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1790+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1791
1792.. _t_struct:
1793
1794Structure Type
1795^^^^^^^^^^^^^^
1796
1797Overview:
1798"""""""""
1799
1800The structure type is used to represent a collection of data members
1801together in memory. The elements of a structure may be any type that has
1802a size.
1803
1804Structures in memory are accessed using '``load``' and '``store``' by
1805getting a pointer to a field with the '``getelementptr``' instruction.
1806Structures in registers are accessed using the '``extractvalue``' and
1807'``insertvalue``' instructions.
1808
1809Structures may optionally be "packed" structures, which indicate that
1810the alignment of the struct is one byte, and that there is no padding
1811between the elements. In non-packed structs, padding between field types
1812is inserted as defined by the DataLayout string in the module, which is
1813required to match what the underlying code generator expects.
1814
1815Structures can either be "literal" or "identified". A literal structure
1816is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1817identified types are always defined at the top level with a name.
1818Literal types are uniqued by their contents and can never be recursive
1819or opaque since there is no way to write one. Identified types can be
1820recursive, can be opaqued, and are never uniqued.
1821
1822Syntax:
1823"""""""
1824
1825::
1826
1827 %T1 = type { <type list> } ; Identified normal struct type
1828 %T2 = type <{ <type list> }> ; Identified packed struct type
1829
1830Examples:
1831"""""""""
1832
1833+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1834| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1835+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001836| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001837+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1838| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1839+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1840
1841.. _t_opaque:
1842
1843Opaque Structure Types
1844^^^^^^^^^^^^^^^^^^^^^^
1845
1846Overview:
1847"""""""""
1848
1849Opaque structure types are used to represent named structure types that
1850do not have a body specified. This corresponds (for example) to the C
1851notion of a forward declared structure.
1852
1853Syntax:
1854"""""""
1855
1856::
1857
1858 %X = type opaque
1859 %52 = type opaque
1860
1861Examples:
1862"""""""""
1863
1864+--------------+-------------------+
1865| ``opaque`` | An opaque type. |
1866+--------------+-------------------+
1867
1868.. _t_pointer:
1869
1870Pointer Type
1871^^^^^^^^^^^^
1872
1873Overview:
1874"""""""""
1875
1876The pointer type is used to specify memory locations. Pointers are
1877commonly used to reference objects in memory.
1878
1879Pointer types may have an optional address space attribute defining the
1880numbered address space where the pointed-to object resides. The default
1881address space is number zero. The semantics of non-zero address spaces
1882are target-specific.
1883
1884Note that LLVM does not permit pointers to void (``void*``) nor does it
1885permit pointers to labels (``label*``). Use ``i8*`` instead.
1886
1887Syntax:
1888"""""""
1889
1890::
1891
1892 <type> *
1893
1894Examples:
1895"""""""""
1896
1897+-------------------------+--------------------------------------------------------------------------------------------------------------+
1898| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1899+-------------------------+--------------------------------------------------------------------------------------------------------------+
1900| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1901+-------------------------+--------------------------------------------------------------------------------------------------------------+
1902| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1903+-------------------------+--------------------------------------------------------------------------------------------------------------+
1904
1905.. _t_vector:
1906
1907Vector Type
1908^^^^^^^^^^^
1909
1910Overview:
1911"""""""""
1912
1913A vector type is a simple derived type that represents a vector of
1914elements. Vector types are used when multiple primitive data are
1915operated in parallel using a single instruction (SIMD). A vector type
1916requires a size (number of elements) and an underlying primitive data
1917type. Vector types are considered :ref:`first class <t_firstclass>`.
1918
1919Syntax:
1920"""""""
1921
1922::
1923
1924 < <# elements> x <elementtype> >
1925
1926The number of elements is a constant integer value larger than 0;
1927elementtype may be any integer or floating point type, or a pointer to
1928these types. Vectors of size zero are not allowed.
1929
1930Examples:
1931"""""""""
1932
1933+-------------------+--------------------------------------------------+
1934| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1935+-------------------+--------------------------------------------------+
1936| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1937+-------------------+--------------------------------------------------+
1938| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1939+-------------------+--------------------------------------------------+
1940| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1941+-------------------+--------------------------------------------------+
1942
1943Constants
1944=========
1945
1946LLVM has several different basic types of constants. This section
1947describes them all and their syntax.
1948
1949Simple Constants
1950----------------
1951
1952**Boolean constants**
1953 The two strings '``true``' and '``false``' are both valid constants
1954 of the ``i1`` type.
1955**Integer constants**
1956 Standard integers (such as '4') are constants of the
1957 :ref:`integer <t_integer>` type. Negative numbers may be used with
1958 integer types.
1959**Floating point constants**
1960 Floating point constants use standard decimal notation (e.g.
1961 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1962 hexadecimal notation (see below). The assembler requires the exact
1963 decimal value of a floating-point constant. For example, the
1964 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1965 decimal in binary. Floating point constants must have a :ref:`floating
1966 point <t_floating>` type.
1967**Null pointer constants**
1968 The identifier '``null``' is recognized as a null pointer constant
1969 and must be of :ref:`pointer type <t_pointer>`.
1970
1971The one non-intuitive notation for constants is the hexadecimal form of
1972floating point constants. For example, the form
1973'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1974than) '``double 4.5e+15``'. The only time hexadecimal floating point
1975constants are required (and the only time that they are generated by the
1976disassembler) is when a floating point constant must be emitted but it
1977cannot be represented as a decimal floating point number in a reasonable
1978number of digits. For example, NaN's, infinities, and other special
1979values are represented in their IEEE hexadecimal format so that assembly
1980and disassembly do not cause any bits to change in the constants.
1981
1982When using the hexadecimal form, constants of types half, float, and
1983double are represented using the 16-digit form shown above (which
1984matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001985must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001986precision, respectively. Hexadecimal format is always used for long
1987double, and there are three forms of long double. The 80-bit format used
1988by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1989128-bit format used by PowerPC (two adjacent doubles) is represented by
1990``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001991represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1992will only work if they match the long double format on your target.
1993The IEEE 16-bit format (half precision) is represented by ``0xH``
1994followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1995(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001996
1997There are no constants of type x86mmx.
1998
Eli Bendersky88fe6822013-06-07 20:24:43 +00001999.. _complexconstants:
2000
Sean Silvaf722b002012-12-07 10:36:55 +00002001Complex Constants
2002-----------------
2003
2004Complex constants are a (potentially recursive) combination of simple
2005constants and smaller complex constants.
2006
2007**Structure constants**
2008 Structure constants are represented with notation similar to
2009 structure type definitions (a comma separated list of elements,
2010 surrounded by braces (``{}``)). For example:
2011 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2012 "``@G = external global i32``". Structure constants must have
2013 :ref:`structure type <t_struct>`, and the number and types of elements
2014 must match those specified by the type.
2015**Array constants**
2016 Array constants are represented with notation similar to array type
2017 definitions (a comma separated list of elements, surrounded by
2018 square brackets (``[]``)). For example:
2019 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2020 :ref:`array type <t_array>`, and the number and types of elements must
2021 match those specified by the type.
2022**Vector constants**
2023 Vector constants are represented with notation similar to vector
2024 type definitions (a comma separated list of elements, surrounded by
2025 less-than/greater-than's (``<>``)). For example:
2026 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2027 must have :ref:`vector type <t_vector>`, and the number and types of
2028 elements must match those specified by the type.
2029**Zero initialization**
2030 The string '``zeroinitializer``' can be used to zero initialize a
2031 value to zero of *any* type, including scalar and
2032 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2033 having to print large zero initializers (e.g. for large arrays) and
2034 is always exactly equivalent to using explicit zero initializers.
2035**Metadata node**
2036 A metadata node is a structure-like constant with :ref:`metadata
2037 type <t_metadata>`. For example:
2038 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2039 constants that are meant to be interpreted as part of the
2040 instruction stream, metadata is a place to attach additional
2041 information such as debug info.
2042
2043Global Variable and Function Addresses
2044--------------------------------------
2045
2046The addresses of :ref:`global variables <globalvars>` and
2047:ref:`functions <functionstructure>` are always implicitly valid
2048(link-time) constants. These constants are explicitly referenced when
2049the :ref:`identifier for the global <identifiers>` is used and always have
2050:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2051file:
2052
2053.. code-block:: llvm
2054
2055 @X = global i32 17
2056 @Y = global i32 42
2057 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2058
2059.. _undefvalues:
2060
2061Undefined Values
2062----------------
2063
2064The string '``undef``' can be used anywhere a constant is expected, and
2065indicates that the user of the value may receive an unspecified
2066bit-pattern. Undefined values may be of any type (other than '``label``'
2067or '``void``') and be used anywhere a constant is permitted.
2068
2069Undefined values are useful because they indicate to the compiler that
2070the program is well defined no matter what value is used. This gives the
2071compiler more freedom to optimize. Here are some examples of
2072(potentially surprising) transformations that are valid (in pseudo IR):
2073
2074.. code-block:: llvm
2075
2076 %A = add %X, undef
2077 %B = sub %X, undef
2078 %C = xor %X, undef
2079 Safe:
2080 %A = undef
2081 %B = undef
2082 %C = undef
2083
2084This is safe because all of the output bits are affected by the undef
2085bits. Any output bit can have a zero or one depending on the input bits.
2086
2087.. code-block:: llvm
2088
2089 %A = or %X, undef
2090 %B = and %X, undef
2091 Safe:
2092 %A = -1
2093 %B = 0
2094 Unsafe:
2095 %A = undef
2096 %B = undef
2097
2098These logical operations have bits that are not always affected by the
2099input. For example, if ``%X`` has a zero bit, then the output of the
2100'``and``' operation will always be a zero for that bit, no matter what
2101the corresponding bit from the '``undef``' is. As such, it is unsafe to
2102optimize or assume that the result of the '``and``' is '``undef``'.
2103However, it is safe to assume that all bits of the '``undef``' could be
21040, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2105all the bits of the '``undef``' operand to the '``or``' could be set,
2106allowing the '``or``' to be folded to -1.
2107
2108.. code-block:: llvm
2109
2110 %A = select undef, %X, %Y
2111 %B = select undef, 42, %Y
2112 %C = select %X, %Y, undef
2113 Safe:
2114 %A = %X (or %Y)
2115 %B = 42 (or %Y)
2116 %C = %Y
2117 Unsafe:
2118 %A = undef
2119 %B = undef
2120 %C = undef
2121
2122This set of examples shows that undefined '``select``' (and conditional
2123branch) conditions can go *either way*, but they have to come from one
2124of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2125both known to have a clear low bit, then ``%A`` would have to have a
2126cleared low bit. However, in the ``%C`` example, the optimizer is
2127allowed to assume that the '``undef``' operand could be the same as
2128``%Y``, allowing the whole '``select``' to be eliminated.
2129
2130.. code-block:: llvm
2131
2132 %A = xor undef, undef
2133
2134 %B = undef
2135 %C = xor %B, %B
2136
2137 %D = undef
2138 %E = icmp lt %D, 4
2139 %F = icmp gte %D, 4
2140
2141 Safe:
2142 %A = undef
2143 %B = undef
2144 %C = undef
2145 %D = undef
2146 %E = undef
2147 %F = undef
2148
2149This example points out that two '``undef``' operands are not
2150necessarily the same. This can be surprising to people (and also matches
2151C semantics) where they assume that "``X^X``" is always zero, even if
2152``X`` is undefined. This isn't true for a number of reasons, but the
2153short answer is that an '``undef``' "variable" can arbitrarily change
2154its value over its "live range". This is true because the variable
2155doesn't actually *have a live range*. Instead, the value is logically
2156read from arbitrary registers that happen to be around when needed, so
2157the value is not necessarily consistent over time. In fact, ``%A`` and
2158``%C`` need to have the same semantics or the core LLVM "replace all
2159uses with" concept would not hold.
2160
2161.. code-block:: llvm
2162
2163 %A = fdiv undef, %X
2164 %B = fdiv %X, undef
2165 Safe:
2166 %A = undef
2167 b: unreachable
2168
2169These examples show the crucial difference between an *undefined value*
2170and *undefined behavior*. An undefined value (like '``undef``') is
2171allowed to have an arbitrary bit-pattern. This means that the ``%A``
2172operation can be constant folded to '``undef``', because the '``undef``'
2173could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2174However, in the second example, we can make a more aggressive
2175assumption: because the ``undef`` is allowed to be an arbitrary value,
2176we are allowed to assume that it could be zero. Since a divide by zero
2177has *undefined behavior*, we are allowed to assume that the operation
2178does not execute at all. This allows us to delete the divide and all
2179code after it. Because the undefined operation "can't happen", the
2180optimizer can assume that it occurs in dead code.
2181
2182.. code-block:: llvm
2183
2184 a: store undef -> %X
2185 b: store %X -> undef
2186 Safe:
2187 a: <deleted>
2188 b: unreachable
2189
2190These examples reiterate the ``fdiv`` example: a store *of* an undefined
2191value can be assumed to not have any effect; we can assume that the
2192value is overwritten with bits that happen to match what was already
2193there. However, a store *to* an undefined location could clobber
2194arbitrary memory, therefore, it has undefined behavior.
2195
2196.. _poisonvalues:
2197
2198Poison Values
2199-------------
2200
2201Poison values are similar to :ref:`undef values <undefvalues>`, however
2202they also represent the fact that an instruction or constant expression
2203which cannot evoke side effects has nevertheless detected a condition
2204which results in undefined behavior.
2205
2206There is currently no way of representing a poison value in the IR; they
2207only exist when produced by operations such as :ref:`add <i_add>` with
2208the ``nsw`` flag.
2209
2210Poison value behavior is defined in terms of value *dependence*:
2211
2212- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2213- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2214 their dynamic predecessor basic block.
2215- Function arguments depend on the corresponding actual argument values
2216 in the dynamic callers of their functions.
2217- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2218 instructions that dynamically transfer control back to them.
2219- :ref:`Invoke <i_invoke>` instructions depend on the
2220 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2221 call instructions that dynamically transfer control back to them.
2222- Non-volatile loads and stores depend on the most recent stores to all
2223 of the referenced memory addresses, following the order in the IR
2224 (including loads and stores implied by intrinsics such as
2225 :ref:`@llvm.memcpy <int_memcpy>`.)
2226- An instruction with externally visible side effects depends on the
2227 most recent preceding instruction with externally visible side
2228 effects, following the order in the IR. (This includes :ref:`volatile
2229 operations <volatile>`.)
2230- An instruction *control-depends* on a :ref:`terminator
2231 instruction <terminators>` if the terminator instruction has
2232 multiple successors and the instruction is always executed when
2233 control transfers to one of the successors, and may not be executed
2234 when control is transferred to another.
2235- Additionally, an instruction also *control-depends* on a terminator
2236 instruction if the set of instructions it otherwise depends on would
2237 be different if the terminator had transferred control to a different
2238 successor.
2239- Dependence is transitive.
2240
2241Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2242with the additional affect that any instruction which has a *dependence*
2243on a poison value has undefined behavior.
2244
2245Here are some examples:
2246
2247.. code-block:: llvm
2248
2249 entry:
2250 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2251 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2252 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2253 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2254
2255 store i32 %poison, i32* @g ; Poison value stored to memory.
2256 %poison2 = load i32* @g ; Poison value loaded back from memory.
2257
2258 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2259
2260 %narrowaddr = bitcast i32* @g to i16*
2261 %wideaddr = bitcast i32* @g to i64*
2262 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2263 %poison4 = load i64* %wideaddr ; Returns a poison value.
2264
2265 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2266 br i1 %cmp, label %true, label %end ; Branch to either destination.
2267
2268 true:
2269 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2270 ; it has undefined behavior.
2271 br label %end
2272
2273 end:
2274 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2275 ; Both edges into this PHI are
2276 ; control-dependent on %cmp, so this
2277 ; always results in a poison value.
2278
2279 store volatile i32 0, i32* @g ; This would depend on the store in %true
2280 ; if %cmp is true, or the store in %entry
2281 ; otherwise, so this is undefined behavior.
2282
2283 br i1 %cmp, label %second_true, label %second_end
2284 ; The same branch again, but this time the
2285 ; true block doesn't have side effects.
2286
2287 second_true:
2288 ; No side effects!
2289 ret void
2290
2291 second_end:
2292 store volatile i32 0, i32* @g ; This time, the instruction always depends
2293 ; on the store in %end. Also, it is
2294 ; control-equivalent to %end, so this is
2295 ; well-defined (ignoring earlier undefined
2296 ; behavior in this example).
2297
2298.. _blockaddress:
2299
2300Addresses of Basic Blocks
2301-------------------------
2302
2303``blockaddress(@function, %block)``
2304
2305The '``blockaddress``' constant computes the address of the specified
2306basic block in the specified function, and always has an ``i8*`` type.
2307Taking the address of the entry block is illegal.
2308
2309This value only has defined behavior when used as an operand to the
2310':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2311against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002312undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002313no label is equal to the null pointer. This may be passed around as an
2314opaque pointer sized value as long as the bits are not inspected. This
2315allows ``ptrtoint`` and arithmetic to be performed on these values so
2316long as the original value is reconstituted before the ``indirectbr``
2317instruction.
2318
2319Finally, some targets may provide defined semantics when using the value
2320as the operand to an inline assembly, but that is target specific.
2321
Eli Bendersky88fe6822013-06-07 20:24:43 +00002322.. _constantexprs:
2323
Sean Silvaf722b002012-12-07 10:36:55 +00002324Constant Expressions
2325--------------------
2326
2327Constant expressions are used to allow expressions involving other
2328constants to be used as constants. Constant expressions may be of any
2329:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2330that does not have side effects (e.g. load and call are not supported).
2331The following is the syntax for constant expressions:
2332
2333``trunc (CST to TYPE)``
2334 Truncate a constant to another type. The bit size of CST must be
2335 larger than the bit size of TYPE. Both types must be integers.
2336``zext (CST to TYPE)``
2337 Zero extend a constant to another type. The bit size of CST must be
2338 smaller than the bit size of TYPE. Both types must be integers.
2339``sext (CST to TYPE)``
2340 Sign extend a constant to another type. The bit size of CST must be
2341 smaller than the bit size of TYPE. Both types must be integers.
2342``fptrunc (CST to TYPE)``
2343 Truncate a floating point constant to another floating point type.
2344 The size of CST must be larger than the size of TYPE. Both types
2345 must be floating point.
2346``fpext (CST to TYPE)``
2347 Floating point extend a constant to another type. The size of CST
2348 must be smaller or equal to the size of TYPE. Both types must be
2349 floating point.
2350``fptoui (CST to TYPE)``
2351 Convert a floating point constant to the corresponding unsigned
2352 integer constant. TYPE must be a scalar or vector integer type. CST
2353 must be of scalar or vector floating point type. Both CST and TYPE
2354 must be scalars, or vectors of the same number of elements. If the
2355 value won't fit in the integer type, the results are undefined.
2356``fptosi (CST to TYPE)``
2357 Convert a floating point constant to the corresponding signed
2358 integer constant. TYPE must be a scalar or vector integer type. CST
2359 must be of scalar or vector floating point type. Both CST and TYPE
2360 must be scalars, or vectors of the same number of elements. If the
2361 value won't fit in the integer type, the results are undefined.
2362``uitofp (CST to TYPE)``
2363 Convert an unsigned integer constant to the corresponding floating
2364 point constant. TYPE must be a scalar or vector floating point type.
2365 CST must be of scalar or vector integer type. Both CST and TYPE must
2366 be scalars, or vectors of the same number of elements. If the value
2367 won't fit in the floating point type, the results are undefined.
2368``sitofp (CST to TYPE)``
2369 Convert a signed integer constant to the corresponding floating
2370 point constant. TYPE must be a scalar or vector floating point type.
2371 CST must be of scalar or vector integer type. Both CST and TYPE must
2372 be scalars, or vectors of the same number of elements. If the value
2373 won't fit in the floating point type, the results are undefined.
2374``ptrtoint (CST to TYPE)``
2375 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002376 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002377 pointer type. The ``CST`` value is zero extended, truncated, or
2378 unchanged to make it fit in ``TYPE``.
2379``inttoptr (CST to TYPE)``
2380 Convert an integer constant to a pointer constant. TYPE must be a
2381 pointer type. CST must be of integer type. The CST value is zero
2382 extended, truncated, or unchanged to make it fit in a pointer size.
2383 This one is *really* dangerous!
2384``bitcast (CST to TYPE)``
2385 Convert a constant, CST, to another TYPE. The constraints of the
2386 operands are the same as those for the :ref:`bitcast
2387 instruction <i_bitcast>`.
Matt Arsenault59d3ae62013-11-15 01:34:59 +00002388``addrspacecast (CST to TYPE)``
2389 Convert a constant pointer or constant vector of pointer, CST, to another
2390 TYPE in a different address space. The constraints of the operands are the
2391 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvaf722b002012-12-07 10:36:55 +00002392``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2393 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2394 constants. As with the :ref:`getelementptr <i_getelementptr>`
2395 instruction, the index list may have zero or more indexes, which are
2396 required to make sense for the type of "CSTPTR".
2397``select (COND, VAL1, VAL2)``
2398 Perform the :ref:`select operation <i_select>` on constants.
2399``icmp COND (VAL1, VAL2)``
2400 Performs the :ref:`icmp operation <i_icmp>` on constants.
2401``fcmp COND (VAL1, VAL2)``
2402 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2403``extractelement (VAL, IDX)``
2404 Perform the :ref:`extractelement operation <i_extractelement>` on
2405 constants.
2406``insertelement (VAL, ELT, IDX)``
2407 Perform the :ref:`insertelement operation <i_insertelement>` on
2408 constants.
2409``shufflevector (VEC1, VEC2, IDXMASK)``
2410 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2411 constants.
2412``extractvalue (VAL, IDX0, IDX1, ...)``
2413 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2414 constants. The index list is interpreted in a similar manner as
2415 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2416 least one index value must be specified.
2417``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2418 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2419 The index list is interpreted in a similar manner as indices in a
2420 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2421 value must be specified.
2422``OPCODE (LHS, RHS)``
2423 Perform the specified operation of the LHS and RHS constants. OPCODE
2424 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2425 binary <bitwiseops>` operations. The constraints on operands are
2426 the same as those for the corresponding instruction (e.g. no bitwise
2427 operations on floating point values are allowed).
2428
2429Other Values
2430============
2431
Eli Bendersky88fe6822013-06-07 20:24:43 +00002432.. _inlineasmexprs:
2433
Sean Silvaf722b002012-12-07 10:36:55 +00002434Inline Assembler Expressions
2435----------------------------
2436
2437LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2438Inline Assembly <moduleasm>`) through the use of a special value. This
2439value represents the inline assembler as a string (containing the
2440instructions to emit), a list of operand constraints (stored as a
2441string), a flag that indicates whether or not the inline asm expression
2442has side effects, and a flag indicating whether the function containing
2443the asm needs to align its stack conservatively. An example inline
2444assembler expression is:
2445
2446.. code-block:: llvm
2447
2448 i32 (i32) asm "bswap $0", "=r,r"
2449
2450Inline assembler expressions may **only** be used as the callee operand
2451of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2452Thus, typically we have:
2453
2454.. code-block:: llvm
2455
2456 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2457
2458Inline asms with side effects not visible in the constraint list must be
2459marked as having side effects. This is done through the use of the
2460'``sideeffect``' keyword, like so:
2461
2462.. code-block:: llvm
2463
2464 call void asm sideeffect "eieio", ""()
2465
2466In some cases inline asms will contain code that will not work unless
2467the stack is aligned in some way, such as calls or SSE instructions on
2468x86, yet will not contain code that does that alignment within the asm.
2469The compiler should make conservative assumptions about what the asm
2470might contain and should generate its usual stack alignment code in the
2471prologue if the '``alignstack``' keyword is present:
2472
2473.. code-block:: llvm
2474
2475 call void asm alignstack "eieio", ""()
2476
2477Inline asms also support using non-standard assembly dialects. The
2478assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2479the inline asm is using the Intel dialect. Currently, ATT and Intel are
2480the only supported dialects. An example is:
2481
2482.. code-block:: llvm
2483
2484 call void asm inteldialect "eieio", ""()
2485
2486If multiple keywords appear the '``sideeffect``' keyword must come
2487first, the '``alignstack``' keyword second and the '``inteldialect``'
2488keyword last.
2489
2490Inline Asm Metadata
2491^^^^^^^^^^^^^^^^^^^
2492
2493The call instructions that wrap inline asm nodes may have a
2494"``!srcloc``" MDNode attached to it that contains a list of constant
2495integers. If present, the code generator will use the integer as the
2496location cookie value when report errors through the ``LLVMContext``
2497error reporting mechanisms. This allows a front-end to correlate backend
2498errors that occur with inline asm back to the source code that produced
2499it. For example:
2500
2501.. code-block:: llvm
2502
2503 call void asm sideeffect "something bad", ""(), !srcloc !42
2504 ...
2505 !42 = !{ i32 1234567 }
2506
2507It is up to the front-end to make sense of the magic numbers it places
2508in the IR. If the MDNode contains multiple constants, the code generator
2509will use the one that corresponds to the line of the asm that the error
2510occurs on.
2511
2512.. _metadata:
2513
2514Metadata Nodes and Metadata Strings
2515-----------------------------------
2516
2517LLVM IR allows metadata to be attached to instructions in the program
2518that can convey extra information about the code to the optimizers and
2519code generator. One example application of metadata is source-level
2520debug information. There are two metadata primitives: strings and nodes.
2521All metadata has the ``metadata`` type and is identified in syntax by a
2522preceding exclamation point ('``!``').
2523
2524A metadata string is a string surrounded by double quotes. It can
2525contain any character by escaping non-printable characters with
2526"``\xx``" where "``xx``" is the two digit hex code. For example:
2527"``!"test\00"``".
2528
2529Metadata nodes are represented with notation similar to structure
2530constants (a comma separated list of elements, surrounded by braces and
2531preceded by an exclamation point). Metadata nodes can have any values as
2532their operand. For example:
2533
2534.. code-block:: llvm
2535
2536 !{ metadata !"test\00", i32 10}
2537
2538A :ref:`named metadata <namedmetadatastructure>` is a collection of
2539metadata nodes, which can be looked up in the module symbol table. For
2540example:
2541
2542.. code-block:: llvm
2543
2544 !foo = metadata !{!4, !3}
2545
2546Metadata can be used as function arguments. Here ``llvm.dbg.value``
2547function is using two metadata arguments:
2548
2549.. code-block:: llvm
2550
2551 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2552
2553Metadata can be attached with an instruction. Here metadata ``!21`` is
2554attached to the ``add`` instruction using the ``!dbg`` identifier:
2555
2556.. code-block:: llvm
2557
2558 %indvar.next = add i64 %indvar, 1, !dbg !21
2559
2560More information about specific metadata nodes recognized by the
2561optimizers and code generator is found below.
2562
2563'``tbaa``' Metadata
2564^^^^^^^^^^^^^^^^^^^
2565
2566In LLVM IR, memory does not have types, so LLVM's own type system is not
2567suitable for doing TBAA. Instead, metadata is added to the IR to
2568describe a type system of a higher level language. This can be used to
2569implement typical C/C++ TBAA, but it can also be used to implement
2570custom alias analysis behavior for other languages.
2571
2572The current metadata format is very simple. TBAA metadata nodes have up
2573to three fields, e.g.:
2574
2575.. code-block:: llvm
2576
2577 !0 = metadata !{ metadata !"an example type tree" }
2578 !1 = metadata !{ metadata !"int", metadata !0 }
2579 !2 = metadata !{ metadata !"float", metadata !0 }
2580 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2581
2582The first field is an identity field. It can be any value, usually a
2583metadata string, which uniquely identifies the type. The most important
2584name in the tree is the name of the root node. Two trees with different
2585root node names are entirely disjoint, even if they have leaves with
2586common names.
2587
2588The second field identifies the type's parent node in the tree, or is
2589null or omitted for a root node. A type is considered to alias all of
2590its descendants and all of its ancestors in the tree. Also, a type is
2591considered to alias all types in other trees, so that bitcode produced
2592from multiple front-ends is handled conservatively.
2593
2594If the third field is present, it's an integer which if equal to 1
2595indicates that the type is "constant" (meaning
2596``pointsToConstantMemory`` should return true; see `other useful
2597AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2598
2599'``tbaa.struct``' Metadata
2600^^^^^^^^^^^^^^^^^^^^^^^^^^
2601
2602The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2603aggregate assignment operations in C and similar languages, however it
2604is defined to copy a contiguous region of memory, which is more than
2605strictly necessary for aggregate types which contain holes due to
2606padding. Also, it doesn't contain any TBAA information about the fields
2607of the aggregate.
2608
2609``!tbaa.struct`` metadata can describe which memory subregions in a
2610memcpy are padding and what the TBAA tags of the struct are.
2611
2612The current metadata format is very simple. ``!tbaa.struct`` metadata
2613nodes are a list of operands which are in conceptual groups of three.
2614For each group of three, the first operand gives the byte offset of a
2615field in bytes, the second gives its size in bytes, and the third gives
2616its tbaa tag. e.g.:
2617
2618.. code-block:: llvm
2619
2620 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2621
2622This describes a struct with two fields. The first is at offset 0 bytes
2623with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2624and has size 4 bytes and has tbaa tag !2.
2625
2626Note that the fields need not be contiguous. In this example, there is a
26274 byte gap between the two fields. This gap represents padding which
2628does not carry useful data and need not be preserved.
2629
2630'``fpmath``' Metadata
2631^^^^^^^^^^^^^^^^^^^^^
2632
2633``fpmath`` metadata may be attached to any instruction of floating point
2634type. It can be used to express the maximum acceptable error in the
2635result of that instruction, in ULPs, thus potentially allowing the
2636compiler to use a more efficient but less accurate method of computing
2637it. ULP is defined as follows:
2638
2639 If ``x`` is a real number that lies between two finite consecutive
2640 floating-point numbers ``a`` and ``b``, without being equal to one
2641 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2642 distance between the two non-equal finite floating-point numbers
2643 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2644
2645The metadata node shall consist of a single positive floating point
2646number representing the maximum relative error, for example:
2647
2648.. code-block:: llvm
2649
2650 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2651
2652'``range``' Metadata
2653^^^^^^^^^^^^^^^^^^^^
2654
2655``range`` metadata may be attached only to loads of integer types. It
2656expresses the possible ranges the loaded value is in. The ranges are
2657represented with a flattened list of integers. The loaded value is known
2658to be in the union of the ranges defined by each consecutive pair. Each
2659pair has the following properties:
2660
2661- The type must match the type loaded by the instruction.
2662- The pair ``a,b`` represents the range ``[a,b)``.
2663- Both ``a`` and ``b`` are constants.
2664- The range is allowed to wrap.
2665- The range should not represent the full or empty set. That is,
2666 ``a!=b``.
2667
2668In addition, the pairs must be in signed order of the lower bound and
2669they must be non-contiguous.
2670
2671Examples:
2672
2673.. code-block:: llvm
2674
2675 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2676 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2677 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2678 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2679 ...
2680 !0 = metadata !{ i8 0, i8 2 }
2681 !1 = metadata !{ i8 255, i8 2 }
2682 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2683 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2684
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002685'``llvm.loop``'
2686^^^^^^^^^^^^^^^
2687
2688It is sometimes useful to attach information to loop constructs. Currently,
2689loop metadata is implemented as metadata attached to the branch instruction
2690in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002691guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002692specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002693
2694The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002695itself to avoid merging it with any other identifier metadata, e.g.,
2696during module linkage or function inlining. That is, each loop should refer
2697to their own identification metadata even if they reside in separate functions.
2698The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002699constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002700
2701.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002702
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002703 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002704 !1 = metadata !{ metadata !1 }
2705
Paul Redmondee21b6f2013-05-28 20:00:34 +00002706The loop identifier metadata can be used to specify additional per-loop
2707metadata. Any operands after the first operand can be treated as user-defined
2708metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2709by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002710
Paul Redmondee21b6f2013-05-28 20:00:34 +00002711.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002712
Paul Redmondee21b6f2013-05-28 20:00:34 +00002713 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2714 ...
2715 !0 = metadata !{ metadata !0, metadata !1 }
2716 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002717
2718'``llvm.mem``'
2719^^^^^^^^^^^^^^^
2720
2721Metadata types used to annotate memory accesses with information helpful
2722for optimizations are prefixed with ``llvm.mem``.
2723
2724'``llvm.mem.parallel_loop_access``' Metadata
2725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2726
2727For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002728the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002729also all of the memory accessing instructions in the loop body need to be
2730marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2731is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002732the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002733converted to sequential loops due to optimization passes that are unaware of
2734the parallel semantics and that insert new memory instructions to the loop
2735body.
2736
2737Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002738both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002739metadata types that refer to the same loop identifier metadata.
2740
2741.. code-block:: llvm
2742
2743 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002744 ...
2745 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2746 ...
2747 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2748 ...
2749 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002750
2751 for.end:
2752 ...
2753 !0 = metadata !{ metadata !0 }
2754
2755It is also possible to have nested parallel loops. In that case the
2756memory accesses refer to a list of loop identifier metadata nodes instead of
2757the loop identifier metadata node directly:
2758
2759.. code-block:: llvm
2760
2761 outer.for.body:
2762 ...
2763
2764 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002765 ...
2766 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2767 ...
2768 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2769 ...
2770 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002771
2772 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002773 ...
2774 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2775 ...
2776 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2777 ...
2778 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002779
2780 outer.for.end: ; preds = %for.body
2781 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002782 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2783 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2784 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002785
Paul Redmondee21b6f2013-05-28 20:00:34 +00002786'``llvm.vectorizer``'
2787^^^^^^^^^^^^^^^^^^^^^
2788
2789Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2790vectorization parameters such as vectorization factor and unroll factor.
2791
2792``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2793loop identification metadata.
2794
2795'``llvm.vectorizer.unroll``' Metadata
2796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2797
2798This metadata instructs the loop vectorizer to unroll the specified
2799loop exactly ``N`` times.
2800
2801The first operand is the string ``llvm.vectorizer.unroll`` and the second
2802operand is an integer specifying the unroll factor. For example:
2803
2804.. code-block:: llvm
2805
2806 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2807
2808Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2809loop.
2810
2811If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2812determined automatically.
2813
2814'``llvm.vectorizer.width``' Metadata
2815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2816
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002817This metadata sets the target width of the vectorizer to ``N``. Without
2818this metadata, the vectorizer will choose a width automatically.
2819Regardless of this metadata, the vectorizer will only vectorize loops if
2820it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002821
2822The first operand is the string ``llvm.vectorizer.width`` and the second
2823operand is an integer specifying the width. For example:
2824
2825.. code-block:: llvm
2826
2827 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2828
2829Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2830loop.
2831
2832If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2833automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002834
Sean Silvaf722b002012-12-07 10:36:55 +00002835Module Flags Metadata
2836=====================
2837
2838Information about the module as a whole is difficult to convey to LLVM's
2839subsystems. The LLVM IR isn't sufficient to transmit this information.
2840The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002841this. These flags are in the form of key / value pairs --- much like a
2842dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002843look it up.
2844
2845The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2846Each triplet has the following form:
2847
2848- The first element is a *behavior* flag, which specifies the behavior
2849 when two (or more) modules are merged together, and it encounters two
2850 (or more) metadata with the same ID. The supported behaviors are
2851 described below.
2852- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002853 metadata. Each module may only have one flag entry for each unique ID (not
2854 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002855- The third element is the value of the flag.
2856
2857When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002858``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2859each unique metadata ID string, there will be exactly one entry in the merged
2860modules ``llvm.module.flags`` metadata table, and the value for that entry will
2861be determined by the merge behavior flag, as described below. The only exception
2862is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002863
2864The following behaviors are supported:
2865
2866.. list-table::
2867 :header-rows: 1
2868 :widths: 10 90
2869
2870 * - Value
2871 - Behavior
2872
2873 * - 1
2874 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002875 Emits an error if two values disagree, otherwise the resulting value
2876 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002877
2878 * - 2
2879 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002880 Emits a warning if two values disagree. The result value will be the
2881 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002882
2883 * - 3
2884 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002885 Adds a requirement that another module flag be present and have a
2886 specified value after linking is performed. The value must be a
2887 metadata pair, where the first element of the pair is the ID of the
2888 module flag to be restricted, and the second element of the pair is
2889 the value the module flag should be restricted to. This behavior can
2890 be used to restrict the allowable results (via triggering of an
2891 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002892
2893 * - 4
2894 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002895 Uses the specified value, regardless of the behavior or value of the
2896 other module. If both modules specify **Override**, but the values
2897 differ, an error will be emitted.
2898
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002899 * - 5
2900 - **Append**
2901 Appends the two values, which are required to be metadata nodes.
2902
2903 * - 6
2904 - **AppendUnique**
2905 Appends the two values, which are required to be metadata
2906 nodes. However, duplicate entries in the second list are dropped
2907 during the append operation.
2908
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002909It is an error for a particular unique flag ID to have multiple behaviors,
2910except in the case of **Require** (which adds restrictions on another metadata
2911value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002912
2913An example of module flags:
2914
2915.. code-block:: llvm
2916
2917 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2918 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2919 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2920 !3 = metadata !{ i32 3, metadata !"qux",
2921 metadata !{
2922 metadata !"foo", i32 1
2923 }
2924 }
2925 !llvm.module.flags = !{ !0, !1, !2, !3 }
2926
2927- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2928 if two or more ``!"foo"`` flags are seen is to emit an error if their
2929 values are not equal.
2930
2931- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2932 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002933 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002934
2935- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2936 behavior if two or more ``!"qux"`` flags are seen is to emit a
2937 warning if their values are not equal.
2938
2939- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2940
2941 ::
2942
2943 metadata !{ metadata !"foo", i32 1 }
2944
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002945 The behavior is to emit an error if the ``llvm.module.flags`` does not
2946 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2947 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002948
2949Objective-C Garbage Collection Module Flags Metadata
2950----------------------------------------------------
2951
2952On the Mach-O platform, Objective-C stores metadata about garbage
2953collection in a special section called "image info". The metadata
2954consists of a version number and a bitmask specifying what types of
2955garbage collection are supported (if any) by the file. If two or more
2956modules are linked together their garbage collection metadata needs to
2957be merged rather than appended together.
2958
2959The Objective-C garbage collection module flags metadata consists of the
2960following key-value pairs:
2961
2962.. list-table::
2963 :header-rows: 1
2964 :widths: 30 70
2965
2966 * - Key
2967 - Value
2968
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002969 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002970 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002971
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002972 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002973 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002974 always 0.
2975
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002976 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002977 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002978 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2979 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2980 Objective-C ABI version 2.
2981
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002982 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002983 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002984 not. Valid values are 0, for no garbage collection, and 2, for garbage
2985 collection supported.
2986
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002987 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002988 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002989 If present, its value must be 6. This flag requires that the
2990 ``Objective-C Garbage Collection`` flag have the value 2.
2991
2992Some important flag interactions:
2993
2994- If a module with ``Objective-C Garbage Collection`` set to 0 is
2995 merged with a module with ``Objective-C Garbage Collection`` set to
2996 2, then the resulting module has the
2997 ``Objective-C Garbage Collection`` flag set to 0.
2998- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2999 merged with a module with ``Objective-C GC Only`` set to 6.
3000
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003001Automatic Linker Flags Module Flags Metadata
3002--------------------------------------------
3003
3004Some targets support embedding flags to the linker inside individual object
3005files. Typically this is used in conjunction with language extensions which
3006allow source files to explicitly declare the libraries they depend on, and have
3007these automatically be transmitted to the linker via object files.
3008
3009These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003010using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003011to be ``AppendUnique``, and the value for the key is expected to be a metadata
3012node which should be a list of other metadata nodes, each of which should be a
3013list of metadata strings defining linker options.
3014
3015For example, the following metadata section specifies two separate sets of
3016linker options, presumably to link against ``libz`` and the ``Cocoa``
3017framework::
3018
Michael Liao2faa0f32013-03-06 18:24:34 +00003019 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003020 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00003021 metadata !{ metadata !"-lz" },
3022 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003023 !llvm.module.flags = !{ !0 }
3024
3025The metadata encoding as lists of lists of options, as opposed to a collapsed
3026list of options, is chosen so that the IR encoding can use multiple option
3027strings to specify e.g., a single library, while still having that specifier be
3028preserved as an atomic element that can be recognized by a target specific
3029assembly writer or object file emitter.
3030
3031Each individual option is required to be either a valid option for the target's
3032linker, or an option that is reserved by the target specific assembly writer or
3033object file emitter. No other aspect of these options is defined by the IR.
3034
Eli Bendersky88fe6822013-06-07 20:24:43 +00003035.. _intrinsicglobalvariables:
3036
Sean Silvaf722b002012-12-07 10:36:55 +00003037Intrinsic Global Variables
3038==========================
3039
3040LLVM has a number of "magic" global variables that contain data that
3041affect code generation or other IR semantics. These are documented here.
3042All globals of this sort should have a section specified as
3043"``llvm.metadata``". This section and all globals that start with
3044"``llvm.``" are reserved for use by LLVM.
3045
Eli Bendersky88fe6822013-06-07 20:24:43 +00003046.. _gv_llvmused:
3047
Sean Silvaf722b002012-12-07 10:36:55 +00003048The '``llvm.used``' Global Variable
3049-----------------------------------
3050
Rafael Espindolacde25b42013-04-22 14:58:02 +00003051The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00003052:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003053pointers to named global variables, functions and aliases which may optionally
3054have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00003055use of it is:
3056
3057.. code-block:: llvm
3058
3059 @X = global i8 4
3060 @Y = global i32 123
3061
3062 @llvm.used = appending global [2 x i8*] [
3063 i8* @X,
3064 i8* bitcast (i32* @Y to i8*)
3065 ], section "llvm.metadata"
3066
Rafael Espindolacde25b42013-04-22 14:58:02 +00003067If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3068and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003069symbol that it cannot see (which is why they have to be named). For example, if
3070a variable has internal linkage and no references other than that from the
3071``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3072references from inline asms and other things the compiler cannot "see", and
3073corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00003074
3075On some targets, the code generator must emit a directive to the
3076assembler or object file to prevent the assembler and linker from
3077molesting the symbol.
3078
Eli Bendersky88fe6822013-06-07 20:24:43 +00003079.. _gv_llvmcompilerused:
3080
Sean Silvaf722b002012-12-07 10:36:55 +00003081The '``llvm.compiler.used``' Global Variable
3082--------------------------------------------
3083
3084The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3085directive, except that it only prevents the compiler from touching the
3086symbol. On targets that support it, this allows an intelligent linker to
3087optimize references to the symbol without being impeded as it would be
3088by ``@llvm.used``.
3089
3090This is a rare construct that should only be used in rare circumstances,
3091and should not be exposed to source languages.
3092
Eli Bendersky88fe6822013-06-07 20:24:43 +00003093.. _gv_llvmglobalctors:
3094
Sean Silvaf722b002012-12-07 10:36:55 +00003095The '``llvm.global_ctors``' Global Variable
3096-------------------------------------------
3097
3098.. code-block:: llvm
3099
3100 %0 = type { i32, void ()* }
3101 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3102
3103The ``@llvm.global_ctors`` array contains a list of constructor
3104functions and associated priorities. The functions referenced by this
3105array will be called in ascending order of priority (i.e. lowest first)
3106when the module is loaded. The order of functions with the same priority
3107is not defined.
3108
Eli Bendersky88fe6822013-06-07 20:24:43 +00003109.. _llvmglobaldtors:
3110
Sean Silvaf722b002012-12-07 10:36:55 +00003111The '``llvm.global_dtors``' Global Variable
3112-------------------------------------------
3113
3114.. code-block:: llvm
3115
3116 %0 = type { i32, void ()* }
3117 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3118
3119The ``@llvm.global_dtors`` array contains a list of destructor functions
3120and associated priorities. The functions referenced by this array will
3121be called in descending order of priority (i.e. highest first) when the
3122module is loaded. The order of functions with the same priority is not
3123defined.
3124
3125Instruction Reference
3126=====================
3127
3128The LLVM instruction set consists of several different classifications
3129of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3130instructions <binaryops>`, :ref:`bitwise binary
3131instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3132:ref:`other instructions <otherops>`.
3133
3134.. _terminators:
3135
3136Terminator Instructions
3137-----------------------
3138
3139As mentioned :ref:`previously <functionstructure>`, every basic block in a
3140program ends with a "Terminator" instruction, which indicates which
3141block should be executed after the current block is finished. These
3142terminator instructions typically yield a '``void``' value: they produce
3143control flow, not values (the one exception being the
3144':ref:`invoke <i_invoke>`' instruction).
3145
3146The terminator instructions are: ':ref:`ret <i_ret>`',
3147':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3148':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3149':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3150
3151.. _i_ret:
3152
3153'``ret``' Instruction
3154^^^^^^^^^^^^^^^^^^^^^
3155
3156Syntax:
3157"""""""
3158
3159::
3160
3161 ret <type> <value> ; Return a value from a non-void function
3162 ret void ; Return from void function
3163
3164Overview:
3165"""""""""
3166
3167The '``ret``' instruction is used to return control flow (and optionally
3168a value) from a function back to the caller.
3169
3170There are two forms of the '``ret``' instruction: one that returns a
3171value and then causes control flow, and one that just causes control
3172flow to occur.
3173
3174Arguments:
3175""""""""""
3176
3177The '``ret``' instruction optionally accepts a single argument, the
3178return value. The type of the return value must be a ':ref:`first
3179class <t_firstclass>`' type.
3180
3181A function is not :ref:`well formed <wellformed>` if it it has a non-void
3182return type and contains a '``ret``' instruction with no return value or
3183a return value with a type that does not match its type, or if it has a
3184void return type and contains a '``ret``' instruction with a return
3185value.
3186
3187Semantics:
3188""""""""""
3189
3190When the '``ret``' instruction is executed, control flow returns back to
3191the calling function's context. If the caller is a
3192":ref:`call <i_call>`" instruction, execution continues at the
3193instruction after the call. If the caller was an
3194":ref:`invoke <i_invoke>`" instruction, execution continues at the
3195beginning of the "normal" destination block. If the instruction returns
3196a value, that value shall set the call or invoke instruction's return
3197value.
3198
3199Example:
3200""""""""
3201
3202.. code-block:: llvm
3203
3204 ret i32 5 ; Return an integer value of 5
3205 ret void ; Return from a void function
3206 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3207
3208.. _i_br:
3209
3210'``br``' Instruction
3211^^^^^^^^^^^^^^^^^^^^
3212
3213Syntax:
3214"""""""
3215
3216::
3217
3218 br i1 <cond>, label <iftrue>, label <iffalse>
3219 br label <dest> ; Unconditional branch
3220
3221Overview:
3222"""""""""
3223
3224The '``br``' instruction is used to cause control flow to transfer to a
3225different basic block in the current function. There are two forms of
3226this instruction, corresponding to a conditional branch and an
3227unconditional branch.
3228
3229Arguments:
3230""""""""""
3231
3232The conditional branch form of the '``br``' instruction takes a single
3233'``i1``' value and two '``label``' values. The unconditional form of the
3234'``br``' instruction takes a single '``label``' value as a target.
3235
3236Semantics:
3237""""""""""
3238
3239Upon execution of a conditional '``br``' instruction, the '``i1``'
3240argument is evaluated. If the value is ``true``, control flows to the
3241'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3242to the '``iffalse``' ``label`` argument.
3243
3244Example:
3245""""""""
3246
3247.. code-block:: llvm
3248
3249 Test:
3250 %cond = icmp eq i32 %a, %b
3251 br i1 %cond, label %IfEqual, label %IfUnequal
3252 IfEqual:
3253 ret i32 1
3254 IfUnequal:
3255 ret i32 0
3256
3257.. _i_switch:
3258
3259'``switch``' Instruction
3260^^^^^^^^^^^^^^^^^^^^^^^^
3261
3262Syntax:
3263"""""""
3264
3265::
3266
3267 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3268
3269Overview:
3270"""""""""
3271
3272The '``switch``' instruction is used to transfer control flow to one of
3273several different places. It is a generalization of the '``br``'
3274instruction, allowing a branch to occur to one of many possible
3275destinations.
3276
3277Arguments:
3278""""""""""
3279
3280The '``switch``' instruction uses three parameters: an integer
3281comparison value '``value``', a default '``label``' destination, and an
3282array of pairs of comparison value constants and '``label``'s. The table
3283is not allowed to contain duplicate constant entries.
3284
3285Semantics:
3286""""""""""
3287
3288The ``switch`` instruction specifies a table of values and destinations.
3289When the '``switch``' instruction is executed, this table is searched
3290for the given value. If the value is found, control flow is transferred
3291to the corresponding destination; otherwise, control flow is transferred
3292to the default destination.
3293
3294Implementation:
3295"""""""""""""""
3296
3297Depending on properties of the target machine and the particular
3298``switch`` instruction, this instruction may be code generated in
3299different ways. For example, it could be generated as a series of
3300chained conditional branches or with a lookup table.
3301
3302Example:
3303""""""""
3304
3305.. code-block:: llvm
3306
3307 ; Emulate a conditional br instruction
3308 %Val = zext i1 %value to i32
3309 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3310
3311 ; Emulate an unconditional br instruction
3312 switch i32 0, label %dest [ ]
3313
3314 ; Implement a jump table:
3315 switch i32 %val, label %otherwise [ i32 0, label %onzero
3316 i32 1, label %onone
3317 i32 2, label %ontwo ]
3318
3319.. _i_indirectbr:
3320
3321'``indirectbr``' Instruction
3322^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3323
3324Syntax:
3325"""""""
3326
3327::
3328
3329 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3330
3331Overview:
3332"""""""""
3333
3334The '``indirectbr``' instruction implements an indirect branch to a
3335label within the current function, whose address is specified by
3336"``address``". Address must be derived from a
3337:ref:`blockaddress <blockaddress>` constant.
3338
3339Arguments:
3340""""""""""
3341
3342The '``address``' argument is the address of the label to jump to. The
3343rest of the arguments indicate the full set of possible destinations
3344that the address may point to. Blocks are allowed to occur multiple
3345times in the destination list, though this isn't particularly useful.
3346
3347This destination list is required so that dataflow analysis has an
3348accurate understanding of the CFG.
3349
3350Semantics:
3351""""""""""
3352
3353Control transfers to the block specified in the address argument. All
3354possible destination blocks must be listed in the label list, otherwise
3355this instruction has undefined behavior. This implies that jumps to
3356labels defined in other functions have undefined behavior as well.
3357
3358Implementation:
3359"""""""""""""""
3360
3361This is typically implemented with a jump through a register.
3362
3363Example:
3364""""""""
3365
3366.. code-block:: llvm
3367
3368 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3369
3370.. _i_invoke:
3371
3372'``invoke``' Instruction
3373^^^^^^^^^^^^^^^^^^^^^^^^
3374
3375Syntax:
3376"""""""
3377
3378::
3379
3380 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3381 to label <normal label> unwind label <exception label>
3382
3383Overview:
3384"""""""""
3385
3386The '``invoke``' instruction causes control to transfer to a specified
3387function, with the possibility of control flow transfer to either the
3388'``normal``' label or the '``exception``' label. If the callee function
3389returns with the "``ret``" instruction, control flow will return to the
3390"normal" label. If the callee (or any indirect callees) returns via the
3391":ref:`resume <i_resume>`" instruction or other exception handling
3392mechanism, control is interrupted and continued at the dynamically
3393nearest "exception" label.
3394
3395The '``exception``' label is a `landing
3396pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3397'``exception``' label is required to have the
3398":ref:`landingpad <i_landingpad>`" instruction, which contains the
3399information about the behavior of the program after unwinding happens,
3400as its first non-PHI instruction. The restrictions on the
3401"``landingpad``" instruction's tightly couples it to the "``invoke``"
3402instruction, so that the important information contained within the
3403"``landingpad``" instruction can't be lost through normal code motion.
3404
3405Arguments:
3406""""""""""
3407
3408This instruction requires several arguments:
3409
3410#. The optional "cconv" marker indicates which :ref:`calling
3411 convention <callingconv>` the call should use. If none is
3412 specified, the call defaults to using C calling conventions.
3413#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3414 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3415 are valid here.
3416#. '``ptr to function ty``': shall be the signature of the pointer to
3417 function value being invoked. In most cases, this is a direct
3418 function invocation, but indirect ``invoke``'s are just as possible,
3419 branching off an arbitrary pointer to function value.
3420#. '``function ptr val``': An LLVM value containing a pointer to a
3421 function to be invoked.
3422#. '``function args``': argument list whose types match the function
3423 signature argument types and parameter attributes. All arguments must
3424 be of :ref:`first class <t_firstclass>` type. If the function signature
3425 indicates the function accepts a variable number of arguments, the
3426 extra arguments can be specified.
3427#. '``normal label``': the label reached when the called function
3428 executes a '``ret``' instruction.
3429#. '``exception label``': the label reached when a callee returns via
3430 the :ref:`resume <i_resume>` instruction or other exception handling
3431 mechanism.
3432#. The optional :ref:`function attributes <fnattrs>` list. Only
3433 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3434 attributes are valid here.
3435
3436Semantics:
3437""""""""""
3438
3439This instruction is designed to operate as a standard '``call``'
3440instruction in most regards. The primary difference is that it
3441establishes an association with a label, which is used by the runtime
3442library to unwind the stack.
3443
3444This instruction is used in languages with destructors to ensure that
3445proper cleanup is performed in the case of either a ``longjmp`` or a
3446thrown exception. Additionally, this is important for implementation of
3447'``catch``' clauses in high-level languages that support them.
3448
3449For the purposes of the SSA form, the definition of the value returned
3450by the '``invoke``' instruction is deemed to occur on the edge from the
3451current block to the "normal" label. If the callee unwinds then no
3452return value is available.
3453
3454Example:
3455""""""""
3456
3457.. code-block:: llvm
3458
3459 %retval = invoke i32 @Test(i32 15) to label %Continue
3460 unwind label %TestCleanup ; {i32}:retval set
3461 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3462 unwind label %TestCleanup ; {i32}:retval set
3463
3464.. _i_resume:
3465
3466'``resume``' Instruction
3467^^^^^^^^^^^^^^^^^^^^^^^^
3468
3469Syntax:
3470"""""""
3471
3472::
3473
3474 resume <type> <value>
3475
3476Overview:
3477"""""""""
3478
3479The '``resume``' instruction is a terminator instruction that has no
3480successors.
3481
3482Arguments:
3483""""""""""
3484
3485The '``resume``' instruction requires one argument, which must have the
3486same type as the result of any '``landingpad``' instruction in the same
3487function.
3488
3489Semantics:
3490""""""""""
3491
3492The '``resume``' instruction resumes propagation of an existing
3493(in-flight) exception whose unwinding was interrupted with a
3494:ref:`landingpad <i_landingpad>` instruction.
3495
3496Example:
3497""""""""
3498
3499.. code-block:: llvm
3500
3501 resume { i8*, i32 } %exn
3502
3503.. _i_unreachable:
3504
3505'``unreachable``' Instruction
3506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3507
3508Syntax:
3509"""""""
3510
3511::
3512
3513 unreachable
3514
3515Overview:
3516"""""""""
3517
3518The '``unreachable``' instruction has no defined semantics. This
3519instruction is used to inform the optimizer that a particular portion of
3520the code is not reachable. This can be used to indicate that the code
3521after a no-return function cannot be reached, and other facts.
3522
3523Semantics:
3524""""""""""
3525
3526The '``unreachable``' instruction has no defined semantics.
3527
3528.. _binaryops:
3529
3530Binary Operations
3531-----------------
3532
3533Binary operators are used to do most of the computation in a program.
3534They require two operands of the same type, execute an operation on
3535them, and produce a single value. The operands might represent multiple
3536data, as is the case with the :ref:`vector <t_vector>` data type. The
3537result value has the same type as its operands.
3538
3539There are several different binary operators:
3540
3541.. _i_add:
3542
3543'``add``' Instruction
3544^^^^^^^^^^^^^^^^^^^^^
3545
3546Syntax:
3547"""""""
3548
3549::
3550
3551 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3552 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3553 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3554 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3555
3556Overview:
3557"""""""""
3558
3559The '``add``' instruction returns the sum of its two operands.
3560
3561Arguments:
3562""""""""""
3563
3564The two arguments to the '``add``' instruction must be
3565:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3566arguments must have identical types.
3567
3568Semantics:
3569""""""""""
3570
3571The value produced is the integer sum of the two operands.
3572
3573If the sum has unsigned overflow, the result returned is the
3574mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3575the result.
3576
3577Because LLVM integers use a two's complement representation, this
3578instruction is appropriate for both signed and unsigned integers.
3579
3580``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3581respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3582result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3583unsigned and/or signed overflow, respectively, occurs.
3584
3585Example:
3586""""""""
3587
3588.. code-block:: llvm
3589
3590 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3591
3592.. _i_fadd:
3593
3594'``fadd``' Instruction
3595^^^^^^^^^^^^^^^^^^^^^^
3596
3597Syntax:
3598"""""""
3599
3600::
3601
3602 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3603
3604Overview:
3605"""""""""
3606
3607The '``fadd``' instruction returns the sum of its two operands.
3608
3609Arguments:
3610""""""""""
3611
3612The two arguments to the '``fadd``' instruction must be :ref:`floating
3613point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3614Both arguments must have identical types.
3615
3616Semantics:
3617""""""""""
3618
3619The value produced is the floating point sum of the two operands. This
3620instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3621which are optimization hints to enable otherwise unsafe floating point
3622optimizations:
3623
3624Example:
3625""""""""
3626
3627.. code-block:: llvm
3628
3629 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3630
3631'``sub``' Instruction
3632^^^^^^^^^^^^^^^^^^^^^
3633
3634Syntax:
3635"""""""
3636
3637::
3638
3639 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3640 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3641 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3642 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3643
3644Overview:
3645"""""""""
3646
3647The '``sub``' instruction returns the difference of its two operands.
3648
3649Note that the '``sub``' instruction is used to represent the '``neg``'
3650instruction present in most other intermediate representations.
3651
3652Arguments:
3653""""""""""
3654
3655The two arguments to the '``sub``' instruction must be
3656:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3657arguments must have identical types.
3658
3659Semantics:
3660""""""""""
3661
3662The value produced is the integer difference of the two operands.
3663
3664If the difference has unsigned overflow, the result returned is the
3665mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3666the result.
3667
3668Because LLVM integers use a two's complement representation, this
3669instruction is appropriate for both signed and unsigned integers.
3670
3671``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3672respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3673result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3674unsigned and/or signed overflow, respectively, occurs.
3675
3676Example:
3677""""""""
3678
3679.. code-block:: llvm
3680
3681 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3682 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3683
3684.. _i_fsub:
3685
3686'``fsub``' Instruction
3687^^^^^^^^^^^^^^^^^^^^^^
3688
3689Syntax:
3690"""""""
3691
3692::
3693
3694 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3695
3696Overview:
3697"""""""""
3698
3699The '``fsub``' instruction returns the difference of its two operands.
3700
3701Note that the '``fsub``' instruction is used to represent the '``fneg``'
3702instruction present in most other intermediate representations.
3703
3704Arguments:
3705""""""""""
3706
3707The two arguments to the '``fsub``' instruction must be :ref:`floating
3708point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3709Both arguments must have identical types.
3710
3711Semantics:
3712""""""""""
3713
3714The value produced is the floating point difference of the two operands.
3715This instruction can also take any number of :ref:`fast-math
3716flags <fastmath>`, which are optimization hints to enable otherwise
3717unsafe floating point optimizations:
3718
3719Example:
3720""""""""
3721
3722.. code-block:: llvm
3723
3724 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3725 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3726
3727'``mul``' Instruction
3728^^^^^^^^^^^^^^^^^^^^^
3729
3730Syntax:
3731"""""""
3732
3733::
3734
3735 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3736 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3737 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3738 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3739
3740Overview:
3741"""""""""
3742
3743The '``mul``' instruction returns the product of its two operands.
3744
3745Arguments:
3746""""""""""
3747
3748The two arguments to the '``mul``' instruction must be
3749:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3750arguments must have identical types.
3751
3752Semantics:
3753""""""""""
3754
3755The value produced is the integer product of the two operands.
3756
3757If the result of the multiplication has unsigned overflow, the result
3758returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3759bit width of the result.
3760
3761Because LLVM integers use a two's complement representation, and the
3762result is the same width as the operands, this instruction returns the
3763correct result for both signed and unsigned integers. If a full product
3764(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3765sign-extended or zero-extended as appropriate to the width of the full
3766product.
3767
3768``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3769respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3770result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3771unsigned and/or signed overflow, respectively, occurs.
3772
3773Example:
3774""""""""
3775
3776.. code-block:: llvm
3777
3778 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3779
3780.. _i_fmul:
3781
3782'``fmul``' Instruction
3783^^^^^^^^^^^^^^^^^^^^^^
3784
3785Syntax:
3786"""""""
3787
3788::
3789
3790 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3791
3792Overview:
3793"""""""""
3794
3795The '``fmul``' instruction returns the product of its two operands.
3796
3797Arguments:
3798""""""""""
3799
3800The two arguments to the '``fmul``' instruction must be :ref:`floating
3801point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3802Both arguments must have identical types.
3803
3804Semantics:
3805""""""""""
3806
3807The value produced is the floating point product of the two operands.
3808This instruction can also take any number of :ref:`fast-math
3809flags <fastmath>`, which are optimization hints to enable otherwise
3810unsafe floating point optimizations:
3811
3812Example:
3813""""""""
3814
3815.. code-block:: llvm
3816
3817 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3818
3819'``udiv``' Instruction
3820^^^^^^^^^^^^^^^^^^^^^^
3821
3822Syntax:
3823"""""""
3824
3825::
3826
3827 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3828 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3829
3830Overview:
3831"""""""""
3832
3833The '``udiv``' instruction returns the quotient of its two operands.
3834
3835Arguments:
3836""""""""""
3837
3838The two arguments to the '``udiv``' instruction must be
3839:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3840arguments must have identical types.
3841
3842Semantics:
3843""""""""""
3844
3845The value produced is the unsigned integer quotient of the two operands.
3846
3847Note that unsigned integer division and signed integer division are
3848distinct operations; for signed integer division, use '``sdiv``'.
3849
3850Division by zero leads to undefined behavior.
3851
3852If the ``exact`` keyword is present, the result value of the ``udiv`` is
3853a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3854such, "((a udiv exact b) mul b) == a").
3855
3856Example:
3857""""""""
3858
3859.. code-block:: llvm
3860
3861 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3862
3863'``sdiv``' Instruction
3864^^^^^^^^^^^^^^^^^^^^^^
3865
3866Syntax:
3867"""""""
3868
3869::
3870
3871 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3872 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3873
3874Overview:
3875"""""""""
3876
3877The '``sdiv``' instruction returns the quotient of its two operands.
3878
3879Arguments:
3880""""""""""
3881
3882The two arguments to the '``sdiv``' instruction must be
3883:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3884arguments must have identical types.
3885
3886Semantics:
3887""""""""""
3888
3889The value produced is the signed integer quotient of the two operands
3890rounded towards zero.
3891
3892Note that signed integer division and unsigned integer division are
3893distinct operations; for unsigned integer division, use '``udiv``'.
3894
3895Division by zero leads to undefined behavior. Overflow also leads to
3896undefined behavior; this is a rare case, but can occur, for example, by
3897doing a 32-bit division of -2147483648 by -1.
3898
3899If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3900a :ref:`poison value <poisonvalues>` if the result would be rounded.
3901
3902Example:
3903""""""""
3904
3905.. code-block:: llvm
3906
3907 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3908
3909.. _i_fdiv:
3910
3911'``fdiv``' Instruction
3912^^^^^^^^^^^^^^^^^^^^^^
3913
3914Syntax:
3915"""""""
3916
3917::
3918
3919 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3920
3921Overview:
3922"""""""""
3923
3924The '``fdiv``' instruction returns the quotient of its two operands.
3925
3926Arguments:
3927""""""""""
3928
3929The two arguments to the '``fdiv``' instruction must be :ref:`floating
3930point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3931Both arguments must have identical types.
3932
3933Semantics:
3934""""""""""
3935
3936The value produced is the floating point quotient of the two operands.
3937This instruction can also take any number of :ref:`fast-math
3938flags <fastmath>`, which are optimization hints to enable otherwise
3939unsafe floating point optimizations:
3940
3941Example:
3942""""""""
3943
3944.. code-block:: llvm
3945
3946 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3947
3948'``urem``' Instruction
3949^^^^^^^^^^^^^^^^^^^^^^
3950
3951Syntax:
3952"""""""
3953
3954::
3955
3956 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3957
3958Overview:
3959"""""""""
3960
3961The '``urem``' instruction returns the remainder from the unsigned
3962division of its two arguments.
3963
3964Arguments:
3965""""""""""
3966
3967The two arguments to the '``urem``' instruction must be
3968:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3969arguments must have identical types.
3970
3971Semantics:
3972""""""""""
3973
3974This instruction returns the unsigned integer *remainder* of a division.
3975This instruction always performs an unsigned division to get the
3976remainder.
3977
3978Note that unsigned integer remainder and signed integer remainder are
3979distinct operations; for signed integer remainder, use '``srem``'.
3980
3981Taking the remainder of a division by zero leads to undefined behavior.
3982
3983Example:
3984""""""""
3985
3986.. code-block:: llvm
3987
3988 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3989
3990'``srem``' Instruction
3991^^^^^^^^^^^^^^^^^^^^^^
3992
3993Syntax:
3994"""""""
3995
3996::
3997
3998 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3999
4000Overview:
4001"""""""""
4002
4003The '``srem``' instruction returns the remainder from the signed
4004division of its two operands. This instruction can also take
4005:ref:`vector <t_vector>` versions of the values in which case the elements
4006must be integers.
4007
4008Arguments:
4009""""""""""
4010
4011The two arguments to the '``srem``' instruction must be
4012:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4013arguments must have identical types.
4014
4015Semantics:
4016""""""""""
4017
4018This instruction returns the *remainder* of a division (where the result
4019is either zero or has the same sign as the dividend, ``op1``), not the
4020*modulo* operator (where the result is either zero or has the same sign
4021as the divisor, ``op2``) of a value. For more information about the
4022difference, see `The Math
4023Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4024table of how this is implemented in various languages, please see
4025`Wikipedia: modulo
4026operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4027
4028Note that signed integer remainder and unsigned integer remainder are
4029distinct operations; for unsigned integer remainder, use '``urem``'.
4030
4031Taking the remainder of a division by zero leads to undefined behavior.
4032Overflow also leads to undefined behavior; this is a rare case, but can
4033occur, for example, by taking the remainder of a 32-bit division of
4034-2147483648 by -1. (The remainder doesn't actually overflow, but this
4035rule lets srem be implemented using instructions that return both the
4036result of the division and the remainder.)
4037
4038Example:
4039""""""""
4040
4041.. code-block:: llvm
4042
4043 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4044
4045.. _i_frem:
4046
4047'``frem``' Instruction
4048^^^^^^^^^^^^^^^^^^^^^^
4049
4050Syntax:
4051"""""""
4052
4053::
4054
4055 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4056
4057Overview:
4058"""""""""
4059
4060The '``frem``' instruction returns the remainder from the division of
4061its two operands.
4062
4063Arguments:
4064""""""""""
4065
4066The two arguments to the '``frem``' instruction must be :ref:`floating
4067point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4068Both arguments must have identical types.
4069
4070Semantics:
4071""""""""""
4072
4073This instruction returns the *remainder* of a division. The remainder
4074has the same sign as the dividend. This instruction can also take any
4075number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4076to enable otherwise unsafe floating point optimizations:
4077
4078Example:
4079""""""""
4080
4081.. code-block:: llvm
4082
4083 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4084
4085.. _bitwiseops:
4086
4087Bitwise Binary Operations
4088-------------------------
4089
4090Bitwise binary operators are used to do various forms of bit-twiddling
4091in a program. They are generally very efficient instructions and can
4092commonly be strength reduced from other instructions. They require two
4093operands of the same type, execute an operation on them, and produce a
4094single value. The resulting value is the same type as its operands.
4095
4096'``shl``' Instruction
4097^^^^^^^^^^^^^^^^^^^^^
4098
4099Syntax:
4100"""""""
4101
4102::
4103
4104 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4105 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4106 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4107 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4108
4109Overview:
4110"""""""""
4111
4112The '``shl``' instruction returns the first operand shifted to the left
4113a specified number of bits.
4114
4115Arguments:
4116""""""""""
4117
4118Both arguments to the '``shl``' instruction must be the same
4119:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4120'``op2``' is treated as an unsigned value.
4121
4122Semantics:
4123""""""""""
4124
4125The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4126where ``n`` is the width of the result. If ``op2`` is (statically or
4127dynamically) negative or equal to or larger than the number of bits in
4128``op1``, the result is undefined. If the arguments are vectors, each
4129vector element of ``op1`` is shifted by the corresponding shift amount
4130in ``op2``.
4131
4132If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4133value <poisonvalues>` if it shifts out any non-zero bits. If the
4134``nsw`` keyword is present, then the shift produces a :ref:`poison
4135value <poisonvalues>` if it shifts out any bits that disagree with the
4136resultant sign bit. As such, NUW/NSW have the same semantics as they
4137would if the shift were expressed as a mul instruction with the same
4138nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4139
4140Example:
4141""""""""
4142
4143.. code-block:: llvm
4144
4145 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4146 <result> = shl i32 4, 2 ; yields {i32}: 16
4147 <result> = shl i32 1, 10 ; yields {i32}: 1024
4148 <result> = shl i32 1, 32 ; undefined
4149 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4150
4151'``lshr``' Instruction
4152^^^^^^^^^^^^^^^^^^^^^^
4153
4154Syntax:
4155"""""""
4156
4157::
4158
4159 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4160 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4161
4162Overview:
4163"""""""""
4164
4165The '``lshr``' instruction (logical shift right) returns the first
4166operand shifted to the right a specified number of bits with zero fill.
4167
4168Arguments:
4169""""""""""
4170
4171Both arguments to the '``lshr``' instruction must be the same
4172:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4173'``op2``' is treated as an unsigned value.
4174
4175Semantics:
4176""""""""""
4177
4178This instruction always performs a logical shift right operation. The
4179most significant bits of the result will be filled with zero bits after
4180the shift. If ``op2`` is (statically or dynamically) equal to or larger
4181than the number of bits in ``op1``, the result is undefined. If the
4182arguments are vectors, each vector element of ``op1`` is shifted by the
4183corresponding shift amount in ``op2``.
4184
4185If the ``exact`` keyword is present, the result value of the ``lshr`` is
4186a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4187non-zero.
4188
4189Example:
4190""""""""
4191
4192.. code-block:: llvm
4193
4194 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4195 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4196 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004197 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004198 <result> = lshr i32 1, 32 ; undefined
4199 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4200
4201'``ashr``' Instruction
4202^^^^^^^^^^^^^^^^^^^^^^
4203
4204Syntax:
4205"""""""
4206
4207::
4208
4209 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4210 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4211
4212Overview:
4213"""""""""
4214
4215The '``ashr``' instruction (arithmetic shift right) returns the first
4216operand shifted to the right a specified number of bits with sign
4217extension.
4218
4219Arguments:
4220""""""""""
4221
4222Both arguments to the '``ashr``' instruction must be the same
4223:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4224'``op2``' is treated as an unsigned value.
4225
4226Semantics:
4227""""""""""
4228
4229This instruction always performs an arithmetic shift right operation,
4230The most significant bits of the result will be filled with the sign bit
4231of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4232than the number of bits in ``op1``, the result is undefined. If the
4233arguments are vectors, each vector element of ``op1`` is shifted by the
4234corresponding shift amount in ``op2``.
4235
4236If the ``exact`` keyword is present, the result value of the ``ashr`` is
4237a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4238non-zero.
4239
4240Example:
4241""""""""
4242
4243.. code-block:: llvm
4244
4245 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4246 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4247 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4248 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4249 <result> = ashr i32 1, 32 ; undefined
4250 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4251
4252'``and``' Instruction
4253^^^^^^^^^^^^^^^^^^^^^
4254
4255Syntax:
4256"""""""
4257
4258::
4259
4260 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4261
4262Overview:
4263"""""""""
4264
4265The '``and``' instruction returns the bitwise logical and of its two
4266operands.
4267
4268Arguments:
4269""""""""""
4270
4271The two arguments to the '``and``' instruction must be
4272:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4273arguments must have identical types.
4274
4275Semantics:
4276""""""""""
4277
4278The truth table used for the '``and``' instruction is:
4279
4280+-----+-----+-----+
4281| In0 | In1 | Out |
4282+-----+-----+-----+
4283| 0 | 0 | 0 |
4284+-----+-----+-----+
4285| 0 | 1 | 0 |
4286+-----+-----+-----+
4287| 1 | 0 | 0 |
4288+-----+-----+-----+
4289| 1 | 1 | 1 |
4290+-----+-----+-----+
4291
4292Example:
4293""""""""
4294
4295.. code-block:: llvm
4296
4297 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4298 <result> = and i32 15, 40 ; yields {i32}:result = 8
4299 <result> = and i32 4, 8 ; yields {i32}:result = 0
4300
4301'``or``' Instruction
4302^^^^^^^^^^^^^^^^^^^^
4303
4304Syntax:
4305"""""""
4306
4307::
4308
4309 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4310
4311Overview:
4312"""""""""
4313
4314The '``or``' instruction returns the bitwise logical inclusive or of its
4315two operands.
4316
4317Arguments:
4318""""""""""
4319
4320The two arguments to the '``or``' instruction must be
4321:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4322arguments must have identical types.
4323
4324Semantics:
4325""""""""""
4326
4327The truth table used for the '``or``' instruction is:
4328
4329+-----+-----+-----+
4330| In0 | In1 | Out |
4331+-----+-----+-----+
4332| 0 | 0 | 0 |
4333+-----+-----+-----+
4334| 0 | 1 | 1 |
4335+-----+-----+-----+
4336| 1 | 0 | 1 |
4337+-----+-----+-----+
4338| 1 | 1 | 1 |
4339+-----+-----+-----+
4340
4341Example:
4342""""""""
4343
4344::
4345
4346 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4347 <result> = or i32 15, 40 ; yields {i32}:result = 47
4348 <result> = or i32 4, 8 ; yields {i32}:result = 12
4349
4350'``xor``' Instruction
4351^^^^^^^^^^^^^^^^^^^^^
4352
4353Syntax:
4354"""""""
4355
4356::
4357
4358 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4359
4360Overview:
4361"""""""""
4362
4363The '``xor``' instruction returns the bitwise logical exclusive or of
4364its two operands. The ``xor`` is used to implement the "one's
4365complement" operation, which is the "~" operator in C.
4366
4367Arguments:
4368""""""""""
4369
4370The two arguments to the '``xor``' instruction must be
4371:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4372arguments must have identical types.
4373
4374Semantics:
4375""""""""""
4376
4377The truth table used for the '``xor``' instruction is:
4378
4379+-----+-----+-----+
4380| In0 | In1 | Out |
4381+-----+-----+-----+
4382| 0 | 0 | 0 |
4383+-----+-----+-----+
4384| 0 | 1 | 1 |
4385+-----+-----+-----+
4386| 1 | 0 | 1 |
4387+-----+-----+-----+
4388| 1 | 1 | 0 |
4389+-----+-----+-----+
4390
4391Example:
4392""""""""
4393
4394.. code-block:: llvm
4395
4396 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4397 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4398 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4399 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4400
4401Vector Operations
4402-----------------
4403
4404LLVM supports several instructions to represent vector operations in a
4405target-independent manner. These instructions cover the element-access
4406and vector-specific operations needed to process vectors effectively.
4407While LLVM does directly support these vector operations, many
4408sophisticated algorithms will want to use target-specific intrinsics to
4409take full advantage of a specific target.
4410
4411.. _i_extractelement:
4412
4413'``extractelement``' Instruction
4414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4415
4416Syntax:
4417"""""""
4418
4419::
4420
4421 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4422
4423Overview:
4424"""""""""
4425
4426The '``extractelement``' instruction extracts a single scalar element
4427from a vector at a specified index.
4428
4429Arguments:
4430""""""""""
4431
4432The first operand of an '``extractelement``' instruction is a value of
4433:ref:`vector <t_vector>` type. The second operand is an index indicating
4434the position from which to extract the element. The index may be a
4435variable.
4436
4437Semantics:
4438""""""""""
4439
4440The result is a scalar of the same type as the element type of ``val``.
4441Its value is the value at position ``idx`` of ``val``. If ``idx``
4442exceeds the length of ``val``, the results are undefined.
4443
4444Example:
4445""""""""
4446
4447.. code-block:: llvm
4448
4449 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4450
4451.. _i_insertelement:
4452
4453'``insertelement``' Instruction
4454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4455
4456Syntax:
4457"""""""
4458
4459::
4460
4461 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4462
4463Overview:
4464"""""""""
4465
4466The '``insertelement``' instruction inserts a scalar element into a
4467vector at a specified index.
4468
4469Arguments:
4470""""""""""
4471
4472The first operand of an '``insertelement``' instruction is a value of
4473:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4474type must equal the element type of the first operand. The third operand
4475is an index indicating the position at which to insert the value. The
4476index may be a variable.
4477
4478Semantics:
4479""""""""""
4480
4481The result is a vector of the same type as ``val``. Its element values
4482are those of ``val`` except at position ``idx``, where it gets the value
4483``elt``. If ``idx`` exceeds the length of ``val``, the results are
4484undefined.
4485
4486Example:
4487""""""""
4488
4489.. code-block:: llvm
4490
4491 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4492
4493.. _i_shufflevector:
4494
4495'``shufflevector``' Instruction
4496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4497
4498Syntax:
4499"""""""
4500
4501::
4502
4503 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4504
4505Overview:
4506"""""""""
4507
4508The '``shufflevector``' instruction constructs a permutation of elements
4509from two input vectors, returning a vector with the same element type as
4510the input and length that is the same as the shuffle mask.
4511
4512Arguments:
4513""""""""""
4514
4515The first two operands of a '``shufflevector``' instruction are vectors
4516with the same type. The third argument is a shuffle mask whose element
4517type is always 'i32'. The result of the instruction is a vector whose
4518length is the same as the shuffle mask and whose element type is the
4519same as the element type of the first two operands.
4520
4521The shuffle mask operand is required to be a constant vector with either
4522constant integer or undef values.
4523
4524Semantics:
4525""""""""""
4526
4527The elements of the two input vectors are numbered from left to right
4528across both of the vectors. The shuffle mask operand specifies, for each
4529element of the result vector, which element of the two input vectors the
4530result element gets. The element selector may be undef (meaning "don't
4531care") and the second operand may be undef if performing a shuffle from
4532only one vector.
4533
4534Example:
4535""""""""
4536
4537.. code-block:: llvm
4538
4539 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4540 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4541 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4542 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4543 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4544 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4545 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4546 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4547
4548Aggregate Operations
4549--------------------
4550
4551LLVM supports several instructions for working with
4552:ref:`aggregate <t_aggregate>` values.
4553
4554.. _i_extractvalue:
4555
4556'``extractvalue``' Instruction
4557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4558
4559Syntax:
4560"""""""
4561
4562::
4563
4564 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4565
4566Overview:
4567"""""""""
4568
4569The '``extractvalue``' instruction extracts the value of a member field
4570from an :ref:`aggregate <t_aggregate>` value.
4571
4572Arguments:
4573""""""""""
4574
4575The first operand of an '``extractvalue``' instruction is a value of
4576:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4577constant indices to specify which value to extract in a similar manner
4578as indices in a '``getelementptr``' instruction.
4579
4580The major differences to ``getelementptr`` indexing are:
4581
4582- Since the value being indexed is not a pointer, the first index is
4583 omitted and assumed to be zero.
4584- At least one index must be specified.
4585- Not only struct indices but also array indices must be in bounds.
4586
4587Semantics:
4588""""""""""
4589
4590The result is the value at the position in the aggregate specified by
4591the index operands.
4592
4593Example:
4594""""""""
4595
4596.. code-block:: llvm
4597
4598 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4599
4600.. _i_insertvalue:
4601
4602'``insertvalue``' Instruction
4603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4604
4605Syntax:
4606"""""""
4607
4608::
4609
4610 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4611
4612Overview:
4613"""""""""
4614
4615The '``insertvalue``' instruction inserts a value into a member field in
4616an :ref:`aggregate <t_aggregate>` value.
4617
4618Arguments:
4619""""""""""
4620
4621The first operand of an '``insertvalue``' instruction is a value of
4622:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4623a first-class value to insert. The following operands are constant
4624indices indicating the position at which to insert the value in a
4625similar manner as indices in a '``extractvalue``' instruction. The value
4626to insert must have the same type as the value identified by the
4627indices.
4628
4629Semantics:
4630""""""""""
4631
4632The result is an aggregate of the same type as ``val``. Its value is
4633that of ``val`` except that the value at the position specified by the
4634indices is that of ``elt``.
4635
4636Example:
4637""""""""
4638
4639.. code-block:: llvm
4640
4641 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4642 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4643 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4644
4645.. _memoryops:
4646
4647Memory Access and Addressing Operations
4648---------------------------------------
4649
4650A key design point of an SSA-based representation is how it represents
4651memory. In LLVM, no memory locations are in SSA form, which makes things
4652very simple. This section describes how to read, write, and allocate
4653memory in LLVM.
4654
4655.. _i_alloca:
4656
4657'``alloca``' Instruction
4658^^^^^^^^^^^^^^^^^^^^^^^^
4659
4660Syntax:
4661"""""""
4662
4663::
4664
4665 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4666
4667Overview:
4668"""""""""
4669
4670The '``alloca``' instruction allocates memory on the stack frame of the
4671currently executing function, to be automatically released when this
4672function returns to its caller. The object is always allocated in the
4673generic address space (address space zero).
4674
4675Arguments:
4676""""""""""
4677
4678The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4679bytes of memory on the runtime stack, returning a pointer of the
4680appropriate type to the program. If "NumElements" is specified, it is
4681the number of elements allocated, otherwise "NumElements" is defaulted
4682to be one. If a constant alignment is specified, the value result of the
4683allocation is guaranteed to be aligned to at least that boundary. If not
4684specified, or if zero, the target can choose to align the allocation on
4685any convenient boundary compatible with the type.
4686
4687'``type``' may be any sized type.
4688
4689Semantics:
4690""""""""""
4691
4692Memory is allocated; a pointer is returned. The operation is undefined
4693if there is insufficient stack space for the allocation. '``alloca``'d
4694memory is automatically released when the function returns. The
4695'``alloca``' instruction is commonly used to represent automatic
4696variables that must have an address available. When the function returns
4697(either with the ``ret`` or ``resume`` instructions), the memory is
4698reclaimed. Allocating zero bytes is legal, but the result is undefined.
4699The order in which memory is allocated (ie., which way the stack grows)
4700is not specified.
4701
4702Example:
4703""""""""
4704
4705.. code-block:: llvm
4706
4707 %ptr = alloca i32 ; yields {i32*}:ptr
4708 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4709 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4710 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4711
4712.. _i_load:
4713
4714'``load``' Instruction
4715^^^^^^^^^^^^^^^^^^^^^^
4716
4717Syntax:
4718"""""""
4719
4720::
4721
4722 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4723 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4724 !<index> = !{ i32 1 }
4725
4726Overview:
4727"""""""""
4728
4729The '``load``' instruction is used to read from memory.
4730
4731Arguments:
4732""""""""""
4733
Eli Bendersky8c493382013-04-17 20:17:08 +00004734The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004735from which to load. The pointer must point to a :ref:`first
4736class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4737then the optimizer is not allowed to modify the number or order of
4738execution of this ``load`` with other :ref:`volatile
4739operations <volatile>`.
4740
4741If the ``load`` is marked as ``atomic``, it takes an extra
4742:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4743``release`` and ``acq_rel`` orderings are not valid on ``load``
4744instructions. Atomic loads produce :ref:`defined <memmodel>` results
4745when they may see multiple atomic stores. The type of the pointee must
4746be an integer type whose bit width is a power of two greater than or
4747equal to eight and less than or equal to a target-specific size limit.
4748``align`` must be explicitly specified on atomic loads, and the load has
4749undefined behavior if the alignment is not set to a value which is at
4750least the size in bytes of the pointee. ``!nontemporal`` does not have
4751any defined semantics for atomic loads.
4752
4753The optional constant ``align`` argument specifies the alignment of the
4754operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004755or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004756alignment for the target. It is the responsibility of the code emitter
4757to ensure that the alignment information is correct. Overestimating the
4758alignment results in undefined behavior. Underestimating the alignment
4759may produce less efficient code. An alignment of 1 is always safe.
4760
4761The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004762metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004763``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004764metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004765that this load is not expected to be reused in the cache. The code
4766generator may select special instructions to save cache bandwidth, such
4767as the ``MOVNT`` instruction on x86.
4768
4769The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004770metadata name ``<index>`` corresponding to a metadata node with no
4771entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004772instruction tells the optimizer and code generator that this load
4773address points to memory which does not change value during program
4774execution. The optimizer may then move this load around, for example, by
4775hoisting it out of loops using loop invariant code motion.
4776
4777Semantics:
4778""""""""""
4779
4780The location of memory pointed to is loaded. If the value being loaded
4781is of scalar type then the number of bytes read does not exceed the
4782minimum number of bytes needed to hold all bits of the type. For
4783example, loading an ``i24`` reads at most three bytes. When loading a
4784value of a type like ``i20`` with a size that is not an integral number
4785of bytes, the result is undefined if the value was not originally
4786written using a store of the same type.
4787
4788Examples:
4789"""""""""
4790
4791.. code-block:: llvm
4792
4793 %ptr = alloca i32 ; yields {i32*}:ptr
4794 store i32 3, i32* %ptr ; yields {void}
4795 %val = load i32* %ptr ; yields {i32}:val = i32 3
4796
4797.. _i_store:
4798
4799'``store``' Instruction
4800^^^^^^^^^^^^^^^^^^^^^^^
4801
4802Syntax:
4803"""""""
4804
4805::
4806
4807 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4808 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4809
4810Overview:
4811"""""""""
4812
4813The '``store``' instruction is used to write to memory.
4814
4815Arguments:
4816""""""""""
4817
Eli Bendersky8952d902013-04-17 17:17:20 +00004818There are two arguments to the ``store`` instruction: a value to store
4819and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004820operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004821the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004822then the optimizer is not allowed to modify the number or order of
4823execution of this ``store`` with other :ref:`volatile
4824operations <volatile>`.
4825
4826If the ``store`` is marked as ``atomic``, it takes an extra
4827:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4828``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4829instructions. Atomic loads produce :ref:`defined <memmodel>` results
4830when they may see multiple atomic stores. The type of the pointee must
4831be an integer type whose bit width is a power of two greater than or
4832equal to eight and less than or equal to a target-specific size limit.
4833``align`` must be explicitly specified on atomic stores, and the store
4834has undefined behavior if the alignment is not set to a value which is
4835at least the size in bytes of the pointee. ``!nontemporal`` does not
4836have any defined semantics for atomic stores.
4837
Eli Bendersky8952d902013-04-17 17:17:20 +00004838The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004839operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004840or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004841alignment for the target. It is the responsibility of the code emitter
4842to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004843alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004844alignment may produce less efficient code. An alignment of 1 is always
4845safe.
4846
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004847The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004848name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004849value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004850tells the optimizer and code generator that this load is not expected to
4851be reused in the cache. The code generator may select special
4852instructions to save cache bandwidth, such as the MOVNT instruction on
4853x86.
4854
4855Semantics:
4856""""""""""
4857
Eli Bendersky8952d902013-04-17 17:17:20 +00004858The contents of memory are updated to contain ``<value>`` at the
4859location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004860of scalar type then the number of bytes written does not exceed the
4861minimum number of bytes needed to hold all bits of the type. For
4862example, storing an ``i24`` writes at most three bytes. When writing a
4863value of a type like ``i20`` with a size that is not an integral number
4864of bytes, it is unspecified what happens to the extra bits that do not
4865belong to the type, but they will typically be overwritten.
4866
4867Example:
4868""""""""
4869
4870.. code-block:: llvm
4871
4872 %ptr = alloca i32 ; yields {i32*}:ptr
4873 store i32 3, i32* %ptr ; yields {void}
4874 %val = load i32* %ptr ; yields {i32}:val = i32 3
4875
4876.. _i_fence:
4877
4878'``fence``' Instruction
4879^^^^^^^^^^^^^^^^^^^^^^^
4880
4881Syntax:
4882"""""""
4883
4884::
4885
4886 fence [singlethread] <ordering> ; yields {void}
4887
4888Overview:
4889"""""""""
4890
4891The '``fence``' instruction is used to introduce happens-before edges
4892between operations.
4893
4894Arguments:
4895""""""""""
4896
4897'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4898defines what *synchronizes-with* edges they add. They can only be given
4899``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4900
4901Semantics:
4902""""""""""
4903
4904A fence A which has (at least) ``release`` ordering semantics
4905*synchronizes with* a fence B with (at least) ``acquire`` ordering
4906semantics if and only if there exist atomic operations X and Y, both
4907operating on some atomic object M, such that A is sequenced before X, X
4908modifies M (either directly or through some side effect of a sequence
4909headed by X), Y is sequenced before B, and Y observes M. This provides a
4910*happens-before* dependency between A and B. Rather than an explicit
4911``fence``, one (but not both) of the atomic operations X or Y might
4912provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4913still *synchronize-with* the explicit ``fence`` and establish the
4914*happens-before* edge.
4915
4916A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4917``acquire`` and ``release`` semantics specified above, participates in
4918the global program order of other ``seq_cst`` operations and/or fences.
4919
4920The optional ":ref:`singlethread <singlethread>`" argument specifies
4921that the fence only synchronizes with other fences in the same thread.
4922(This is useful for interacting with signal handlers.)
4923
4924Example:
4925""""""""
4926
4927.. code-block:: llvm
4928
4929 fence acquire ; yields {void}
4930 fence singlethread seq_cst ; yields {void}
4931
4932.. _i_cmpxchg:
4933
4934'``cmpxchg``' Instruction
4935^^^^^^^^^^^^^^^^^^^^^^^^^
4936
4937Syntax:
4938"""""""
4939
4940::
4941
4942 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4943
4944Overview:
4945"""""""""
4946
4947The '``cmpxchg``' instruction is used to atomically modify memory. It
4948loads a value in memory and compares it to a given value. If they are
4949equal, it stores a new value into the memory.
4950
4951Arguments:
4952""""""""""
4953
4954There are three arguments to the '``cmpxchg``' instruction: an address
4955to operate on, a value to compare to the value currently be at that
4956address, and a new value to place at that address if the compared values
4957are equal. The type of '<cmp>' must be an integer type whose bit width
4958is a power of two greater than or equal to eight and less than or equal
4959to a target-specific size limit. '<cmp>' and '<new>' must have the same
4960type, and the type of '<pointer>' must be a pointer to that type. If the
4961``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4962to modify the number or order of execution of this ``cmpxchg`` with
4963other :ref:`volatile operations <volatile>`.
4964
4965The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4966synchronizes with other atomic operations.
4967
4968The optional "``singlethread``" argument declares that the ``cmpxchg``
4969is only atomic with respect to code (usually signal handlers) running in
4970the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4971respect to all other code in the system.
4972
4973The pointer passed into cmpxchg must have alignment greater than or
4974equal to the size in memory of the operand.
4975
4976Semantics:
4977""""""""""
4978
4979The contents of memory at the location specified by the '``<pointer>``'
4980operand is read and compared to '``<cmp>``'; if the read value is the
4981equal, '``<new>``' is written. The original value at the location is
4982returned.
4983
4984A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4985of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4986atomic load with an ordering parameter determined by dropping any
4987``release`` part of the ``cmpxchg``'s ordering.
4988
4989Example:
4990""""""""
4991
4992.. code-block:: llvm
4993
4994 entry:
4995 %orig = atomic load i32* %ptr unordered ; yields {i32}
4996 br label %loop
4997
4998 loop:
4999 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5000 %squared = mul i32 %cmp, %cmp
5001 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5002 %success = icmp eq i32 %cmp, %old
5003 br i1 %success, label %done, label %loop
5004
5005 done:
5006 ...
5007
5008.. _i_atomicrmw:
5009
5010'``atomicrmw``' Instruction
5011^^^^^^^^^^^^^^^^^^^^^^^^^^^
5012
5013Syntax:
5014"""""""
5015
5016::
5017
5018 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5019
5020Overview:
5021"""""""""
5022
5023The '``atomicrmw``' instruction is used to atomically modify memory.
5024
5025Arguments:
5026""""""""""
5027
5028There are three arguments to the '``atomicrmw``' instruction: an
5029operation to apply, an address whose value to modify, an argument to the
5030operation. The operation must be one of the following keywords:
5031
5032- xchg
5033- add
5034- sub
5035- and
5036- nand
5037- or
5038- xor
5039- max
5040- min
5041- umax
5042- umin
5043
5044The type of '<value>' must be an integer type whose bit width is a power
5045of two greater than or equal to eight and less than or equal to a
5046target-specific size limit. The type of the '``<pointer>``' operand must
5047be a pointer to that type. If the ``atomicrmw`` is marked as
5048``volatile``, then the optimizer is not allowed to modify the number or
5049order of execution of this ``atomicrmw`` with other :ref:`volatile
5050operations <volatile>`.
5051
5052Semantics:
5053""""""""""
5054
5055The contents of memory at the location specified by the '``<pointer>``'
5056operand are atomically read, modified, and written back. The original
5057value at the location is returned. The modification is specified by the
5058operation argument:
5059
5060- xchg: ``*ptr = val``
5061- add: ``*ptr = *ptr + val``
5062- sub: ``*ptr = *ptr - val``
5063- and: ``*ptr = *ptr & val``
5064- nand: ``*ptr = ~(*ptr & val)``
5065- or: ``*ptr = *ptr | val``
5066- xor: ``*ptr = *ptr ^ val``
5067- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5068- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5069- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5070 comparison)
5071- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5072 comparison)
5073
5074Example:
5075""""""""
5076
5077.. code-block:: llvm
5078
5079 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5080
5081.. _i_getelementptr:
5082
5083'``getelementptr``' Instruction
5084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5085
5086Syntax:
5087"""""""
5088
5089::
5090
5091 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5092 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5093 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5094
5095Overview:
5096"""""""""
5097
5098The '``getelementptr``' instruction is used to get the address of a
5099subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5100address calculation only and does not access memory.
5101
5102Arguments:
5103""""""""""
5104
5105The first argument is always a pointer or a vector of pointers, and
5106forms the basis of the calculation. The remaining arguments are indices
5107that indicate which of the elements of the aggregate object are indexed.
5108The interpretation of each index is dependent on the type being indexed
5109into. The first index always indexes the pointer value given as the
5110first argument, the second index indexes a value of the type pointed to
5111(not necessarily the value directly pointed to, since the first index
5112can be non-zero), etc. The first type indexed into must be a pointer
5113value, subsequent types can be arrays, vectors, and structs. Note that
5114subsequent types being indexed into can never be pointers, since that
5115would require loading the pointer before continuing calculation.
5116
5117The type of each index argument depends on the type it is indexing into.
5118When indexing into a (optionally packed) structure, only ``i32`` integer
5119**constants** are allowed (when using a vector of indices they must all
5120be the **same** ``i32`` integer constant). When indexing into an array,
5121pointer or vector, integers of any width are allowed, and they are not
5122required to be constant. These integers are treated as signed values
5123where relevant.
5124
5125For example, let's consider a C code fragment and how it gets compiled
5126to LLVM:
5127
5128.. code-block:: c
5129
5130 struct RT {
5131 char A;
5132 int B[10][20];
5133 char C;
5134 };
5135 struct ST {
5136 int X;
5137 double Y;
5138 struct RT Z;
5139 };
5140
5141 int *foo(struct ST *s) {
5142 return &s[1].Z.B[5][13];
5143 }
5144
5145The LLVM code generated by Clang is:
5146
5147.. code-block:: llvm
5148
5149 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5150 %struct.ST = type { i32, double, %struct.RT }
5151
5152 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5153 entry:
5154 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5155 ret i32* %arrayidx
5156 }
5157
5158Semantics:
5159""""""""""
5160
5161In the example above, the first index is indexing into the
5162'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5163= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5164indexes into the third element of the structure, yielding a
5165'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5166structure. The third index indexes into the second element of the
5167structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5168dimensions of the array are subscripted into, yielding an '``i32``'
5169type. The '``getelementptr``' instruction returns a pointer to this
5170element, thus computing a value of '``i32*``' type.
5171
5172Note that it is perfectly legal to index partially through a structure,
5173returning a pointer to an inner element. Because of this, the LLVM code
5174for the given testcase is equivalent to:
5175
5176.. code-block:: llvm
5177
5178 define i32* @foo(%struct.ST* %s) {
5179 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5180 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5181 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5182 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5183 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5184 ret i32* %t5
5185 }
5186
5187If the ``inbounds`` keyword is present, the result value of the
5188``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5189pointer is not an *in bounds* address of an allocated object, or if any
5190of the addresses that would be formed by successive addition of the
5191offsets implied by the indices to the base address with infinitely
5192precise signed arithmetic are not an *in bounds* address of that
5193allocated object. The *in bounds* addresses for an allocated object are
5194all the addresses that point into the object, plus the address one byte
5195past the end. In cases where the base is a vector of pointers the
5196``inbounds`` keyword applies to each of the computations element-wise.
5197
5198If the ``inbounds`` keyword is not present, the offsets are added to the
5199base address with silently-wrapping two's complement arithmetic. If the
5200offsets have a different width from the pointer, they are sign-extended
5201or truncated to the width of the pointer. The result value of the
5202``getelementptr`` may be outside the object pointed to by the base
5203pointer. The result value may not necessarily be used to access memory
5204though, even if it happens to point into allocated storage. See the
5205:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5206information.
5207
5208The getelementptr instruction is often confusing. For some more insight
5209into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5210
5211Example:
5212""""""""
5213
5214.. code-block:: llvm
5215
5216 ; yields [12 x i8]*:aptr
5217 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5218 ; yields i8*:vptr
5219 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5220 ; yields i8*:eptr
5221 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5222 ; yields i32*:iptr
5223 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5224
5225In cases where the pointer argument is a vector of pointers, each index
5226must be a vector with the same number of elements. For example:
5227
5228.. code-block:: llvm
5229
5230 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5231
5232Conversion Operations
5233---------------------
5234
5235The instructions in this category are the conversion instructions
5236(casting) which all take a single operand and a type. They perform
5237various bit conversions on the operand.
5238
5239'``trunc .. to``' Instruction
5240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5241
5242Syntax:
5243"""""""
5244
5245::
5246
5247 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5248
5249Overview:
5250"""""""""
5251
5252The '``trunc``' instruction truncates its operand to the type ``ty2``.
5253
5254Arguments:
5255""""""""""
5256
5257The '``trunc``' instruction takes a value to trunc, and a type to trunc
5258it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5259of the same number of integers. The bit size of the ``value`` must be
5260larger than the bit size of the destination type, ``ty2``. Equal sized
5261types are not allowed.
5262
5263Semantics:
5264""""""""""
5265
5266The '``trunc``' instruction truncates the high order bits in ``value``
5267and converts the remaining bits to ``ty2``. Since the source size must
5268be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5269It will always truncate bits.
5270
5271Example:
5272""""""""
5273
5274.. code-block:: llvm
5275
5276 %X = trunc i32 257 to i8 ; yields i8:1
5277 %Y = trunc i32 123 to i1 ; yields i1:true
5278 %Z = trunc i32 122 to i1 ; yields i1:false
5279 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5280
5281'``zext .. to``' Instruction
5282^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5283
5284Syntax:
5285"""""""
5286
5287::
5288
5289 <result> = zext <ty> <value> to <ty2> ; yields ty2
5290
5291Overview:
5292"""""""""
5293
5294The '``zext``' instruction zero extends its operand to type ``ty2``.
5295
5296Arguments:
5297""""""""""
5298
5299The '``zext``' instruction takes a value to cast, and a type to cast it
5300to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5301the same number of integers. The bit size of the ``value`` must be
5302smaller than the bit size of the destination type, ``ty2``.
5303
5304Semantics:
5305""""""""""
5306
5307The ``zext`` fills the high order bits of the ``value`` with zero bits
5308until it reaches the size of the destination type, ``ty2``.
5309
5310When zero extending from i1, the result will always be either 0 or 1.
5311
5312Example:
5313""""""""
5314
5315.. code-block:: llvm
5316
5317 %X = zext i32 257 to i64 ; yields i64:257
5318 %Y = zext i1 true to i32 ; yields i32:1
5319 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5320
5321'``sext .. to``' Instruction
5322^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5323
5324Syntax:
5325"""""""
5326
5327::
5328
5329 <result> = sext <ty> <value> to <ty2> ; yields ty2
5330
5331Overview:
5332"""""""""
5333
5334The '``sext``' sign extends ``value`` to the type ``ty2``.
5335
5336Arguments:
5337""""""""""
5338
5339The '``sext``' instruction takes a value to cast, and a type to cast it
5340to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5341the same number of integers. The bit size of the ``value`` must be
5342smaller than the bit size of the destination type, ``ty2``.
5343
5344Semantics:
5345""""""""""
5346
5347The '``sext``' instruction performs a sign extension by copying the sign
5348bit (highest order bit) of the ``value`` until it reaches the bit size
5349of the type ``ty2``.
5350
5351When sign extending from i1, the extension always results in -1 or 0.
5352
5353Example:
5354""""""""
5355
5356.. code-block:: llvm
5357
5358 %X = sext i8 -1 to i16 ; yields i16 :65535
5359 %Y = sext i1 true to i32 ; yields i32:-1
5360 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5361
5362'``fptrunc .. to``' Instruction
5363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5364
5365Syntax:
5366"""""""
5367
5368::
5369
5370 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5371
5372Overview:
5373"""""""""
5374
5375The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5376
5377Arguments:
5378""""""""""
5379
5380The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5381value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5382The size of ``value`` must be larger than the size of ``ty2``. This
5383implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5384
5385Semantics:
5386""""""""""
5387
5388The '``fptrunc``' instruction truncates a ``value`` from a larger
5389:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5390point <t_floating>` type. If the value cannot fit within the
5391destination type, ``ty2``, then the results are undefined.
5392
5393Example:
5394""""""""
5395
5396.. code-block:: llvm
5397
5398 %X = fptrunc double 123.0 to float ; yields float:123.0
5399 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5400
5401'``fpext .. to``' Instruction
5402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5403
5404Syntax:
5405"""""""
5406
5407::
5408
5409 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5410
5411Overview:
5412"""""""""
5413
5414The '``fpext``' extends a floating point ``value`` to a larger floating
5415point value.
5416
5417Arguments:
5418""""""""""
5419
5420The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5421``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5422to. The source type must be smaller than the destination type.
5423
5424Semantics:
5425""""""""""
5426
5427The '``fpext``' instruction extends the ``value`` from a smaller
5428:ref:`floating point <t_floating>` type to a larger :ref:`floating
5429point <t_floating>` type. The ``fpext`` cannot be used to make a
5430*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5431*no-op cast* for a floating point cast.
5432
5433Example:
5434""""""""
5435
5436.. code-block:: llvm
5437
5438 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5439 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5440
5441'``fptoui .. to``' Instruction
5442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5443
5444Syntax:
5445"""""""
5446
5447::
5448
5449 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5450
5451Overview:
5452"""""""""
5453
5454The '``fptoui``' converts a floating point ``value`` to its unsigned
5455integer equivalent of type ``ty2``.
5456
5457Arguments:
5458""""""""""
5459
5460The '``fptoui``' instruction takes a value to cast, which must be a
5461scalar or vector :ref:`floating point <t_floating>` value, and a type to
5462cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5463``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5464type with the same number of elements as ``ty``
5465
5466Semantics:
5467""""""""""
5468
5469The '``fptoui``' instruction converts its :ref:`floating
5470point <t_floating>` operand into the nearest (rounding towards zero)
5471unsigned integer value. If the value cannot fit in ``ty2``, the results
5472are undefined.
5473
5474Example:
5475""""""""
5476
5477.. code-block:: llvm
5478
5479 %X = fptoui double 123.0 to i32 ; yields i32:123
5480 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5481 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5482
5483'``fptosi .. to``' Instruction
5484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5485
5486Syntax:
5487"""""""
5488
5489::
5490
5491 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5492
5493Overview:
5494"""""""""
5495
5496The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5497``value`` to type ``ty2``.
5498
5499Arguments:
5500""""""""""
5501
5502The '``fptosi``' instruction takes a value to cast, which must be a
5503scalar or vector :ref:`floating point <t_floating>` value, and a type to
5504cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5505``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5506type with the same number of elements as ``ty``
5507
5508Semantics:
5509""""""""""
5510
5511The '``fptosi``' instruction converts its :ref:`floating
5512point <t_floating>` operand into the nearest (rounding towards zero)
5513signed integer value. If the value cannot fit in ``ty2``, the results
5514are undefined.
5515
5516Example:
5517""""""""
5518
5519.. code-block:: llvm
5520
5521 %X = fptosi double -123.0 to i32 ; yields i32:-123
5522 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5523 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5524
5525'``uitofp .. to``' Instruction
5526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5527
5528Syntax:
5529"""""""
5530
5531::
5532
5533 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5534
5535Overview:
5536"""""""""
5537
5538The '``uitofp``' instruction regards ``value`` as an unsigned integer
5539and converts that value to the ``ty2`` type.
5540
5541Arguments:
5542""""""""""
5543
5544The '``uitofp``' instruction takes a value to cast, which must be a
5545scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5546``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5547``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5548type with the same number of elements as ``ty``
5549
5550Semantics:
5551""""""""""
5552
5553The '``uitofp``' instruction interprets its operand as an unsigned
5554integer quantity and converts it to the corresponding floating point
5555value. If the value cannot fit in the floating point value, the results
5556are undefined.
5557
5558Example:
5559""""""""
5560
5561.. code-block:: llvm
5562
5563 %X = uitofp i32 257 to float ; yields float:257.0
5564 %Y = uitofp i8 -1 to double ; yields double:255.0
5565
5566'``sitofp .. to``' Instruction
5567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5568
5569Syntax:
5570"""""""
5571
5572::
5573
5574 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5575
5576Overview:
5577"""""""""
5578
5579The '``sitofp``' instruction regards ``value`` as a signed integer and
5580converts that value to the ``ty2`` type.
5581
5582Arguments:
5583""""""""""
5584
5585The '``sitofp``' instruction takes a value to cast, which must be a
5586scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5587``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5588``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5589type with the same number of elements as ``ty``
5590
5591Semantics:
5592""""""""""
5593
5594The '``sitofp``' instruction interprets its operand as a signed integer
5595quantity and converts it to the corresponding floating point value. If
5596the value cannot fit in the floating point value, the results are
5597undefined.
5598
5599Example:
5600""""""""
5601
5602.. code-block:: llvm
5603
5604 %X = sitofp i32 257 to float ; yields float:257.0
5605 %Y = sitofp i8 -1 to double ; yields double:-1.0
5606
5607.. _i_ptrtoint:
5608
5609'``ptrtoint .. to``' Instruction
5610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5611
5612Syntax:
5613"""""""
5614
5615::
5616
5617 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5618
5619Overview:
5620"""""""""
5621
5622The '``ptrtoint``' instruction converts the pointer or a vector of
5623pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5624
5625Arguments:
5626""""""""""
5627
5628The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5629a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5630type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5631a vector of integers type.
5632
5633Semantics:
5634""""""""""
5635
5636The '``ptrtoint``' instruction converts ``value`` to integer type
5637``ty2`` by interpreting the pointer value as an integer and either
5638truncating or zero extending that value to the size of the integer type.
5639If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5640``value`` is larger than ``ty2`` then a truncation is done. If they are
5641the same size, then nothing is done (*no-op cast*) other than a type
5642change.
5643
5644Example:
5645""""""""
5646
5647.. code-block:: llvm
5648
5649 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5650 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5651 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5652
5653.. _i_inttoptr:
5654
5655'``inttoptr .. to``' Instruction
5656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5657
5658Syntax:
5659"""""""
5660
5661::
5662
5663 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5664
5665Overview:
5666"""""""""
5667
5668The '``inttoptr``' instruction converts an integer ``value`` to a
5669pointer type, ``ty2``.
5670
5671Arguments:
5672""""""""""
5673
5674The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5675cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5676type.
5677
5678Semantics:
5679""""""""""
5680
5681The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5682applying either a zero extension or a truncation depending on the size
5683of the integer ``value``. If ``value`` is larger than the size of a
5684pointer then a truncation is done. If ``value`` is smaller than the size
5685of a pointer then a zero extension is done. If they are the same size,
5686nothing is done (*no-op cast*).
5687
5688Example:
5689""""""""
5690
5691.. code-block:: llvm
5692
5693 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5694 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5695 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5696 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5697
5698.. _i_bitcast:
5699
5700'``bitcast .. to``' Instruction
5701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5702
5703Syntax:
5704"""""""
5705
5706::
5707
5708 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5709
5710Overview:
5711"""""""""
5712
5713The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5714changing any bits.
5715
5716Arguments:
5717""""""""""
5718
5719The '``bitcast``' instruction takes a value to cast, which must be a
5720non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005721also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5722bit sizes of ``value`` and the destination type, ``ty2``, must be
5723identical. If the source type is a pointer, the destination type must
5724also be a pointer of the same size. This instruction supports bitwise
5725conversion of vectors to integers and to vectors of other types (as
5726long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005727
5728Semantics:
5729""""""""""
5730
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005731The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5732is always a *no-op cast* because no bits change with this
5733conversion. The conversion is done as if the ``value`` had been stored
5734to memory and read back as type ``ty2``. Pointer (or vector of
5735pointers) types may only be converted to other pointer (or vector of
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005736pointers) types with the same address space through this instruction.
5737To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5738or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005739
5740Example:
5741""""""""
5742
5743.. code-block:: llvm
5744
5745 %X = bitcast i8 255 to i8 ; yields i8 :-1
5746 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5747 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5748 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5749
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005750.. _i_addrspacecast:
5751
5752'``addrspacecast .. to``' Instruction
5753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5754
5755Syntax:
5756"""""""
5757
5758::
5759
5760 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5761
5762Overview:
5763"""""""""
5764
5765The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5766address space ``n`` to type ``pty2`` in address space ``m``.
5767
5768Arguments:
5769""""""""""
5770
5771The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5772to cast and a pointer type to cast it to, which must have a different
5773address space.
5774
5775Semantics:
5776""""""""""
5777
5778The '``addrspacecast``' instruction converts the pointer value
5779``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault01ad8c32013-11-15 05:44:56 +00005780value modification, depending on the target and the address space
5781pair. Pointer conversions within the same address space must be
5782performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005783conversion is legal then both result and operand refer to the same memory
5784location.
5785
5786Example:
5787""""""""
5788
5789.. code-block:: llvm
5790
Matt Arsenaultef1b87a2013-11-15 22:43:50 +00005791 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5792 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5793 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005794
Sean Silvaf722b002012-12-07 10:36:55 +00005795.. _otherops:
5796
5797Other Operations
5798----------------
5799
5800The instructions in this category are the "miscellaneous" instructions,
5801which defy better classification.
5802
5803.. _i_icmp:
5804
5805'``icmp``' Instruction
5806^^^^^^^^^^^^^^^^^^^^^^
5807
5808Syntax:
5809"""""""
5810
5811::
5812
5813 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5814
5815Overview:
5816"""""""""
5817
5818The '``icmp``' instruction returns a boolean value or a vector of
5819boolean values based on comparison of its two integer, integer vector,
5820pointer, or pointer vector operands.
5821
5822Arguments:
5823""""""""""
5824
5825The '``icmp``' instruction takes three operands. The first operand is
5826the condition code indicating the kind of comparison to perform. It is
5827not a value, just a keyword. The possible condition code are:
5828
5829#. ``eq``: equal
5830#. ``ne``: not equal
5831#. ``ugt``: unsigned greater than
5832#. ``uge``: unsigned greater or equal
5833#. ``ult``: unsigned less than
5834#. ``ule``: unsigned less or equal
5835#. ``sgt``: signed greater than
5836#. ``sge``: signed greater or equal
5837#. ``slt``: signed less than
5838#. ``sle``: signed less or equal
5839
5840The remaining two arguments must be :ref:`integer <t_integer>` or
5841:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5842must also be identical types.
5843
5844Semantics:
5845""""""""""
5846
5847The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5848code given as ``cond``. The comparison performed always yields either an
5849:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5850
5851#. ``eq``: yields ``true`` if the operands are equal, ``false``
5852 otherwise. No sign interpretation is necessary or performed.
5853#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5854 otherwise. No sign interpretation is necessary or performed.
5855#. ``ugt``: interprets the operands as unsigned values and yields
5856 ``true`` if ``op1`` is greater than ``op2``.
5857#. ``uge``: interprets the operands as unsigned values and yields
5858 ``true`` if ``op1`` is greater than or equal to ``op2``.
5859#. ``ult``: interprets the operands as unsigned values and yields
5860 ``true`` if ``op1`` is less than ``op2``.
5861#. ``ule``: interprets the operands as unsigned values and yields
5862 ``true`` if ``op1`` is less than or equal to ``op2``.
5863#. ``sgt``: interprets the operands as signed values and yields ``true``
5864 if ``op1`` is greater than ``op2``.
5865#. ``sge``: interprets the operands as signed values and yields ``true``
5866 if ``op1`` is greater than or equal to ``op2``.
5867#. ``slt``: interprets the operands as signed values and yields ``true``
5868 if ``op1`` is less than ``op2``.
5869#. ``sle``: interprets the operands as signed values and yields ``true``
5870 if ``op1`` is less than or equal to ``op2``.
5871
5872If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5873are compared as if they were integers.
5874
5875If the operands are integer vectors, then they are compared element by
5876element. The result is an ``i1`` vector with the same number of elements
5877as the values being compared. Otherwise, the result is an ``i1``.
5878
5879Example:
5880""""""""
5881
5882.. code-block:: llvm
5883
5884 <result> = icmp eq i32 4, 5 ; yields: result=false
5885 <result> = icmp ne float* %X, %X ; yields: result=false
5886 <result> = icmp ult i16 4, 5 ; yields: result=true
5887 <result> = icmp sgt i16 4, 5 ; yields: result=false
5888 <result> = icmp ule i16 -4, 5 ; yields: result=false
5889 <result> = icmp sge i16 4, 5 ; yields: result=false
5890
5891Note that the code generator does not yet support vector types with the
5892``icmp`` instruction.
5893
5894.. _i_fcmp:
5895
5896'``fcmp``' Instruction
5897^^^^^^^^^^^^^^^^^^^^^^
5898
5899Syntax:
5900"""""""
5901
5902::
5903
5904 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5905
5906Overview:
5907"""""""""
5908
5909The '``fcmp``' instruction returns a boolean value or vector of boolean
5910values based on comparison of its operands.
5911
5912If the operands are floating point scalars, then the result type is a
5913boolean (:ref:`i1 <t_integer>`).
5914
5915If the operands are floating point vectors, then the result type is a
5916vector of boolean with the same number of elements as the operands being
5917compared.
5918
5919Arguments:
5920""""""""""
5921
5922The '``fcmp``' instruction takes three operands. The first operand is
5923the condition code indicating the kind of comparison to perform. It is
5924not a value, just a keyword. The possible condition code are:
5925
5926#. ``false``: no comparison, always returns false
5927#. ``oeq``: ordered and equal
5928#. ``ogt``: ordered and greater than
5929#. ``oge``: ordered and greater than or equal
5930#. ``olt``: ordered and less than
5931#. ``ole``: ordered and less than or equal
5932#. ``one``: ordered and not equal
5933#. ``ord``: ordered (no nans)
5934#. ``ueq``: unordered or equal
5935#. ``ugt``: unordered or greater than
5936#. ``uge``: unordered or greater than or equal
5937#. ``ult``: unordered or less than
5938#. ``ule``: unordered or less than or equal
5939#. ``une``: unordered or not equal
5940#. ``uno``: unordered (either nans)
5941#. ``true``: no comparison, always returns true
5942
5943*Ordered* means that neither operand is a QNAN while *unordered* means
5944that either operand may be a QNAN.
5945
5946Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5947point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5948type. They must have identical types.
5949
5950Semantics:
5951""""""""""
5952
5953The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5954condition code given as ``cond``. If the operands are vectors, then the
5955vectors are compared element by element. Each comparison performed
5956always yields an :ref:`i1 <t_integer>` result, as follows:
5957
5958#. ``false``: always yields ``false``, regardless of operands.
5959#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5960 is equal to ``op2``.
5961#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5962 is greater than ``op2``.
5963#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5964 is greater than or equal to ``op2``.
5965#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5966 is less than ``op2``.
5967#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5968 is less than or equal to ``op2``.
5969#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5970 is not equal to ``op2``.
5971#. ``ord``: yields ``true`` if both operands are not a QNAN.
5972#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5973 equal to ``op2``.
5974#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5975 greater than ``op2``.
5976#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5977 greater than or equal to ``op2``.
5978#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5979 less than ``op2``.
5980#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5981 less than or equal to ``op2``.
5982#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5983 not equal to ``op2``.
5984#. ``uno``: yields ``true`` if either operand is a QNAN.
5985#. ``true``: always yields ``true``, regardless of operands.
5986
5987Example:
5988""""""""
5989
5990.. code-block:: llvm
5991
5992 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5993 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5994 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5995 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5996
5997Note that the code generator does not yet support vector types with the
5998``fcmp`` instruction.
5999
6000.. _i_phi:
6001
6002'``phi``' Instruction
6003^^^^^^^^^^^^^^^^^^^^^
6004
6005Syntax:
6006"""""""
6007
6008::
6009
6010 <result> = phi <ty> [ <val0>, <label0>], ...
6011
6012Overview:
6013"""""""""
6014
6015The '``phi``' instruction is used to implement the φ node in the SSA
6016graph representing the function.
6017
6018Arguments:
6019""""""""""
6020
6021The type of the incoming values is specified with the first type field.
6022After this, the '``phi``' instruction takes a list of pairs as
6023arguments, with one pair for each predecessor basic block of the current
6024block. Only values of :ref:`first class <t_firstclass>` type may be used as
6025the value arguments to the PHI node. Only labels may be used as the
6026label arguments.
6027
6028There must be no non-phi instructions between the start of a basic block
6029and the PHI instructions: i.e. PHI instructions must be first in a basic
6030block.
6031
6032For the purposes of the SSA form, the use of each incoming value is
6033deemed to occur on the edge from the corresponding predecessor block to
6034the current block (but after any definition of an '``invoke``'
6035instruction's return value on the same edge).
6036
6037Semantics:
6038""""""""""
6039
6040At runtime, the '``phi``' instruction logically takes on the value
6041specified by the pair corresponding to the predecessor basic block that
6042executed just prior to the current block.
6043
6044Example:
6045""""""""
6046
6047.. code-block:: llvm
6048
6049 Loop: ; Infinite loop that counts from 0 on up...
6050 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6051 %nextindvar = add i32 %indvar, 1
6052 br label %Loop
6053
6054.. _i_select:
6055
6056'``select``' Instruction
6057^^^^^^^^^^^^^^^^^^^^^^^^
6058
6059Syntax:
6060"""""""
6061
6062::
6063
6064 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6065
6066 selty is either i1 or {<N x i1>}
6067
6068Overview:
6069"""""""""
6070
6071The '``select``' instruction is used to choose one value based on a
6072condition, without branching.
6073
6074Arguments:
6075""""""""""
6076
6077The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6078values indicating the condition, and two values of the same :ref:`first
6079class <t_firstclass>` type. If the val1/val2 are vectors and the
6080condition is a scalar, then entire vectors are selected, not individual
6081elements.
6082
6083Semantics:
6084""""""""""
6085
6086If the condition is an i1 and it evaluates to 1, the instruction returns
6087the first value argument; otherwise, it returns the second value
6088argument.
6089
6090If the condition is a vector of i1, then the value arguments must be
6091vectors of the same size, and the selection is done element by element.
6092
6093Example:
6094""""""""
6095
6096.. code-block:: llvm
6097
6098 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6099
6100.. _i_call:
6101
6102'``call``' Instruction
6103^^^^^^^^^^^^^^^^^^^^^^
6104
6105Syntax:
6106"""""""
6107
6108::
6109
6110 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6111
6112Overview:
6113"""""""""
6114
6115The '``call``' instruction represents a simple function call.
6116
6117Arguments:
6118""""""""""
6119
6120This instruction requires several arguments:
6121
6122#. The optional "tail" marker indicates that the callee function does
6123 not access any allocas or varargs in the caller. Note that calls may
6124 be marked "tail" even if they do not occur before a
6125 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6126 function call is eligible for tail call optimization, but `might not
6127 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6128 The code generator may optimize calls marked "tail" with either 1)
6129 automatic `sibling call
6130 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6131 callee have matching signatures, or 2) forced tail call optimization
6132 when the following extra requirements are met:
6133
6134 - Caller and callee both have the calling convention ``fastcc``.
6135 - The call is in tail position (ret immediately follows call and ret
6136 uses value of call or is void).
6137 - Option ``-tailcallopt`` is enabled, or
6138 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6139 - `Platform specific constraints are
6140 met. <CodeGenerator.html#tailcallopt>`_
6141
6142#. The optional "cconv" marker indicates which :ref:`calling
6143 convention <callingconv>` the call should use. If none is
6144 specified, the call defaults to using C calling conventions. The
6145 calling convention of the call must match the calling convention of
6146 the target function, or else the behavior is undefined.
6147#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6148 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6149 are valid here.
6150#. '``ty``': the type of the call instruction itself which is also the
6151 type of the return value. Functions that return no value are marked
6152 ``void``.
6153#. '``fnty``': shall be the signature of the pointer to function value
6154 being invoked. The argument types must match the types implied by
6155 this signature. This type can be omitted if the function is not
6156 varargs and if the function type does not return a pointer to a
6157 function.
6158#. '``fnptrval``': An LLVM value containing a pointer to a function to
6159 be invoked. In most cases, this is a direct function invocation, but
6160 indirect ``call``'s are just as possible, calling an arbitrary pointer
6161 to function value.
6162#. '``function args``': argument list whose types match the function
6163 signature argument types and parameter attributes. All arguments must
6164 be of :ref:`first class <t_firstclass>` type. If the function signature
6165 indicates the function accepts a variable number of arguments, the
6166 extra arguments can be specified.
6167#. The optional :ref:`function attributes <fnattrs>` list. Only
6168 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6169 attributes are valid here.
6170
6171Semantics:
6172""""""""""
6173
6174The '``call``' instruction is used to cause control flow to transfer to
6175a specified function, with its incoming arguments bound to the specified
6176values. Upon a '``ret``' instruction in the called function, control
6177flow continues with the instruction after the function call, and the
6178return value of the function is bound to the result argument.
6179
6180Example:
6181""""""""
6182
6183.. code-block:: llvm
6184
6185 %retval = call i32 @test(i32 %argc)
6186 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6187 %X = tail call i32 @foo() ; yields i32
6188 %Y = tail call fastcc i32 @foo() ; yields i32
6189 call void %foo(i8 97 signext)
6190
6191 %struct.A = type { i32, i8 }
6192 %r = call %struct.A @foo() ; yields { 32, i8 }
6193 %gr = extractvalue %struct.A %r, 0 ; yields i32
6194 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6195 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6196 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6197
6198llvm treats calls to some functions with names and arguments that match
6199the standard C99 library as being the C99 library functions, and may
6200perform optimizations or generate code for them under that assumption.
6201This is something we'd like to change in the future to provide better
6202support for freestanding environments and non-C-based languages.
6203
6204.. _i_va_arg:
6205
6206'``va_arg``' Instruction
6207^^^^^^^^^^^^^^^^^^^^^^^^
6208
6209Syntax:
6210"""""""
6211
6212::
6213
6214 <resultval> = va_arg <va_list*> <arglist>, <argty>
6215
6216Overview:
6217"""""""""
6218
6219The '``va_arg``' instruction is used to access arguments passed through
6220the "variable argument" area of a function call. It is used to implement
6221the ``va_arg`` macro in C.
6222
6223Arguments:
6224""""""""""
6225
6226This instruction takes a ``va_list*`` value and the type of the
6227argument. It returns a value of the specified argument type and
6228increments the ``va_list`` to point to the next argument. The actual
6229type of ``va_list`` is target specific.
6230
6231Semantics:
6232""""""""""
6233
6234The '``va_arg``' instruction loads an argument of the specified type
6235from the specified ``va_list`` and causes the ``va_list`` to point to
6236the next argument. For more information, see the variable argument
6237handling :ref:`Intrinsic Functions <int_varargs>`.
6238
6239It is legal for this instruction to be called in a function which does
6240not take a variable number of arguments, for example, the ``vfprintf``
6241function.
6242
6243``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6244function <intrinsics>` because it takes a type as an argument.
6245
6246Example:
6247""""""""
6248
6249See the :ref:`variable argument processing <int_varargs>` section.
6250
6251Note that the code generator does not yet fully support va\_arg on many
6252targets. Also, it does not currently support va\_arg with aggregate
6253types on any target.
6254
6255.. _i_landingpad:
6256
6257'``landingpad``' Instruction
6258^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6259
6260Syntax:
6261"""""""
6262
6263::
6264
6265 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6266 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6267
6268 <clause> := catch <type> <value>
6269 <clause> := filter <array constant type> <array constant>
6270
6271Overview:
6272"""""""""
6273
6274The '``landingpad``' instruction is used by `LLVM's exception handling
6275system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006276is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006277code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6278defines values supplied by the personality function (``pers_fn``) upon
6279re-entry to the function. The ``resultval`` has the type ``resultty``.
6280
6281Arguments:
6282""""""""""
6283
6284This instruction takes a ``pers_fn`` value. This is the personality
6285function associated with the unwinding mechanism. The optional
6286``cleanup`` flag indicates that the landing pad block is a cleanup.
6287
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006288A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006289contains the global variable representing the "type" that may be caught
6290or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6291clause takes an array constant as its argument. Use
6292"``[0 x i8**] undef``" for a filter which cannot throw. The
6293'``landingpad``' instruction must contain *at least* one ``clause`` or
6294the ``cleanup`` flag.
6295
6296Semantics:
6297""""""""""
6298
6299The '``landingpad``' instruction defines the values which are set by the
6300personality function (``pers_fn``) upon re-entry to the function, and
6301therefore the "result type" of the ``landingpad`` instruction. As with
6302calling conventions, how the personality function results are
6303represented in LLVM IR is target specific.
6304
6305The clauses are applied in order from top to bottom. If two
6306``landingpad`` instructions are merged together through inlining, the
6307clauses from the calling function are appended to the list of clauses.
6308When the call stack is being unwound due to an exception being thrown,
6309the exception is compared against each ``clause`` in turn. If it doesn't
6310match any of the clauses, and the ``cleanup`` flag is not set, then
6311unwinding continues further up the call stack.
6312
6313The ``landingpad`` instruction has several restrictions:
6314
6315- A landing pad block is a basic block which is the unwind destination
6316 of an '``invoke``' instruction.
6317- A landing pad block must have a '``landingpad``' instruction as its
6318 first non-PHI instruction.
6319- There can be only one '``landingpad``' instruction within the landing
6320 pad block.
6321- A basic block that is not a landing pad block may not include a
6322 '``landingpad``' instruction.
6323- All '``landingpad``' instructions in a function must have the same
6324 personality function.
6325
6326Example:
6327""""""""
6328
6329.. code-block:: llvm
6330
6331 ;; A landing pad which can catch an integer.
6332 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6333 catch i8** @_ZTIi
6334 ;; A landing pad that is a cleanup.
6335 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6336 cleanup
6337 ;; A landing pad which can catch an integer and can only throw a double.
6338 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6339 catch i8** @_ZTIi
6340 filter [1 x i8**] [@_ZTId]
6341
6342.. _intrinsics:
6343
6344Intrinsic Functions
6345===================
6346
6347LLVM supports the notion of an "intrinsic function". These functions
6348have well known names and semantics and are required to follow certain
6349restrictions. Overall, these intrinsics represent an extension mechanism
6350for the LLVM language that does not require changing all of the
6351transformations in LLVM when adding to the language (or the bitcode
6352reader/writer, the parser, etc...).
6353
6354Intrinsic function names must all start with an "``llvm.``" prefix. This
6355prefix is reserved in LLVM for intrinsic names; thus, function names may
6356not begin with this prefix. Intrinsic functions must always be external
6357functions: you cannot define the body of intrinsic functions. Intrinsic
6358functions may only be used in call or invoke instructions: it is illegal
6359to take the address of an intrinsic function. Additionally, because
6360intrinsic functions are part of the LLVM language, it is required if any
6361are added that they be documented here.
6362
6363Some intrinsic functions can be overloaded, i.e., the intrinsic
6364represents a family of functions that perform the same operation but on
6365different data types. Because LLVM can represent over 8 million
6366different integer types, overloading is used commonly to allow an
6367intrinsic function to operate on any integer type. One or more of the
6368argument types or the result type can be overloaded to accept any
6369integer type. Argument types may also be defined as exactly matching a
6370previous argument's type or the result type. This allows an intrinsic
6371function which accepts multiple arguments, but needs all of them to be
6372of the same type, to only be overloaded with respect to a single
6373argument or the result.
6374
6375Overloaded intrinsics will have the names of its overloaded argument
6376types encoded into its function name, each preceded by a period. Only
6377those types which are overloaded result in a name suffix. Arguments
6378whose type is matched against another type do not. For example, the
6379``llvm.ctpop`` function can take an integer of any width and returns an
6380integer of exactly the same integer width. This leads to a family of
6381functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6382``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6383overloaded, and only one type suffix is required. Because the argument's
6384type is matched against the return type, it does not require its own
6385name suffix.
6386
6387To learn how to add an intrinsic function, please see the `Extending
6388LLVM Guide <ExtendingLLVM.html>`_.
6389
6390.. _int_varargs:
6391
6392Variable Argument Handling Intrinsics
6393-------------------------------------
6394
6395Variable argument support is defined in LLVM with the
6396:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6397functions. These functions are related to the similarly named macros
6398defined in the ``<stdarg.h>`` header file.
6399
6400All of these functions operate on arguments that use a target-specific
6401value type "``va_list``". The LLVM assembly language reference manual
6402does not define what this type is, so all transformations should be
6403prepared to handle these functions regardless of the type used.
6404
6405This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6406variable argument handling intrinsic functions are used.
6407
6408.. code-block:: llvm
6409
6410 define i32 @test(i32 %X, ...) {
6411 ; Initialize variable argument processing
6412 %ap = alloca i8*
6413 %ap2 = bitcast i8** %ap to i8*
6414 call void @llvm.va_start(i8* %ap2)
6415
6416 ; Read a single integer argument
6417 %tmp = va_arg i8** %ap, i32
6418
6419 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6420 %aq = alloca i8*
6421 %aq2 = bitcast i8** %aq to i8*
6422 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6423 call void @llvm.va_end(i8* %aq2)
6424
6425 ; Stop processing of arguments.
6426 call void @llvm.va_end(i8* %ap2)
6427 ret i32 %tmp
6428 }
6429
6430 declare void @llvm.va_start(i8*)
6431 declare void @llvm.va_copy(i8*, i8*)
6432 declare void @llvm.va_end(i8*)
6433
6434.. _int_va_start:
6435
6436'``llvm.va_start``' Intrinsic
6437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6438
6439Syntax:
6440"""""""
6441
6442::
6443
Nick Lewyckyf7e61562013-09-11 22:04:52 +00006444 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +00006445
6446Overview:
6447"""""""""
6448
6449The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6450subsequent use by ``va_arg``.
6451
6452Arguments:
6453""""""""""
6454
6455The argument is a pointer to a ``va_list`` element to initialize.
6456
6457Semantics:
6458""""""""""
6459
6460The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6461available in C. In a target-dependent way, it initializes the
6462``va_list`` element to which the argument points, so that the next call
6463to ``va_arg`` will produce the first variable argument passed to the
6464function. Unlike the C ``va_start`` macro, this intrinsic does not need
6465to know the last argument of the function as the compiler can figure
6466that out.
6467
6468'``llvm.va_end``' Intrinsic
6469^^^^^^^^^^^^^^^^^^^^^^^^^^^
6470
6471Syntax:
6472"""""""
6473
6474::
6475
6476 declare void @llvm.va_end(i8* <arglist>)
6477
6478Overview:
6479"""""""""
6480
6481The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6482initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6483
6484Arguments:
6485""""""""""
6486
6487The argument is a pointer to a ``va_list`` to destroy.
6488
6489Semantics:
6490""""""""""
6491
6492The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6493available in C. In a target-dependent way, it destroys the ``va_list``
6494element to which the argument points. Calls to
6495:ref:`llvm.va_start <int_va_start>` and
6496:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6497``llvm.va_end``.
6498
6499.. _int_va_copy:
6500
6501'``llvm.va_copy``' Intrinsic
6502^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6503
6504Syntax:
6505"""""""
6506
6507::
6508
6509 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6510
6511Overview:
6512"""""""""
6513
6514The '``llvm.va_copy``' intrinsic copies the current argument position
6515from the source argument list to the destination argument list.
6516
6517Arguments:
6518""""""""""
6519
6520The first argument is a pointer to a ``va_list`` element to initialize.
6521The second argument is a pointer to a ``va_list`` element to copy from.
6522
6523Semantics:
6524""""""""""
6525
6526The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6527available in C. In a target-dependent way, it copies the source
6528``va_list`` element into the destination ``va_list`` element. This
6529intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6530arbitrarily complex and require, for example, memory allocation.
6531
6532Accurate Garbage Collection Intrinsics
6533--------------------------------------
6534
6535LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6536(GC) requires the implementation and generation of these intrinsics.
6537These intrinsics allow identification of :ref:`GC roots on the
6538stack <int_gcroot>`, as well as garbage collector implementations that
6539require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6540Front-ends for type-safe garbage collected languages should generate
6541these intrinsics to make use of the LLVM garbage collectors. For more
6542details, see `Accurate Garbage Collection with
6543LLVM <GarbageCollection.html>`_.
6544
6545The garbage collection intrinsics only operate on objects in the generic
6546address space (address space zero).
6547
6548.. _int_gcroot:
6549
6550'``llvm.gcroot``' Intrinsic
6551^^^^^^^^^^^^^^^^^^^^^^^^^^^
6552
6553Syntax:
6554"""""""
6555
6556::
6557
6558 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6559
6560Overview:
6561"""""""""
6562
6563The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6564the code generator, and allows some metadata to be associated with it.
6565
6566Arguments:
6567""""""""""
6568
6569The first argument specifies the address of a stack object that contains
6570the root pointer. The second pointer (which must be either a constant or
6571a global value address) contains the meta-data to be associated with the
6572root.
6573
6574Semantics:
6575""""""""""
6576
6577At runtime, a call to this intrinsic stores a null pointer into the
6578"ptrloc" location. At compile-time, the code generator generates
6579information to allow the runtime to find the pointer at GC safe points.
6580The '``llvm.gcroot``' intrinsic may only be used in a function which
6581:ref:`specifies a GC algorithm <gc>`.
6582
6583.. _int_gcread:
6584
6585'``llvm.gcread``' Intrinsic
6586^^^^^^^^^^^^^^^^^^^^^^^^^^^
6587
6588Syntax:
6589"""""""
6590
6591::
6592
6593 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6594
6595Overview:
6596"""""""""
6597
6598The '``llvm.gcread``' intrinsic identifies reads of references from heap
6599locations, allowing garbage collector implementations that require read
6600barriers.
6601
6602Arguments:
6603""""""""""
6604
6605The second argument is the address to read from, which should be an
6606address allocated from the garbage collector. The first object is a
6607pointer to the start of the referenced object, if needed by the language
6608runtime (otherwise null).
6609
6610Semantics:
6611""""""""""
6612
6613The '``llvm.gcread``' intrinsic has the same semantics as a load
6614instruction, but may be replaced with substantially more complex code by
6615the garbage collector runtime, as needed. The '``llvm.gcread``'
6616intrinsic may only be used in a function which :ref:`specifies a GC
6617algorithm <gc>`.
6618
6619.. _int_gcwrite:
6620
6621'``llvm.gcwrite``' Intrinsic
6622^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
6629 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6630
6631Overview:
6632"""""""""
6633
6634The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6635locations, allowing garbage collector implementations that require write
6636barriers (such as generational or reference counting collectors).
6637
6638Arguments:
6639""""""""""
6640
6641The first argument is the reference to store, the second is the start of
6642the object to store it to, and the third is the address of the field of
6643Obj to store to. If the runtime does not require a pointer to the
6644object, Obj may be null.
6645
6646Semantics:
6647""""""""""
6648
6649The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6650instruction, but may be replaced with substantially more complex code by
6651the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6652intrinsic may only be used in a function which :ref:`specifies a GC
6653algorithm <gc>`.
6654
6655Code Generator Intrinsics
6656-------------------------
6657
6658These intrinsics are provided by LLVM to expose special features that
6659may only be implemented with code generator support.
6660
6661'``llvm.returnaddress``' Intrinsic
6662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6663
6664Syntax:
6665"""""""
6666
6667::
6668
6669 declare i8 *@llvm.returnaddress(i32 <level>)
6670
6671Overview:
6672"""""""""
6673
6674The '``llvm.returnaddress``' intrinsic attempts to compute a
6675target-specific value indicating the return address of the current
6676function or one of its callers.
6677
6678Arguments:
6679""""""""""
6680
6681The argument to this intrinsic indicates which function to return the
6682address for. Zero indicates the calling function, one indicates its
6683caller, etc. The argument is **required** to be a constant integer
6684value.
6685
6686Semantics:
6687""""""""""
6688
6689The '``llvm.returnaddress``' intrinsic either returns a pointer
6690indicating the return address of the specified call frame, or zero if it
6691cannot be identified. The value returned by this intrinsic is likely to
6692be incorrect or 0 for arguments other than zero, so it should only be
6693used for debugging purposes.
6694
6695Note that calling this intrinsic does not prevent function inlining or
6696other aggressive transformations, so the value returned may not be that
6697of the obvious source-language caller.
6698
6699'``llvm.frameaddress``' Intrinsic
6700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6701
6702Syntax:
6703"""""""
6704
6705::
6706
6707 declare i8* @llvm.frameaddress(i32 <level>)
6708
6709Overview:
6710"""""""""
6711
6712The '``llvm.frameaddress``' intrinsic attempts to return the
6713target-specific frame pointer value for the specified stack frame.
6714
6715Arguments:
6716""""""""""
6717
6718The argument to this intrinsic indicates which function to return the
6719frame pointer for. Zero indicates the calling function, one indicates
6720its caller, etc. The argument is **required** to be a constant integer
6721value.
6722
6723Semantics:
6724""""""""""
6725
6726The '``llvm.frameaddress``' intrinsic either returns a pointer
6727indicating the frame address of the specified call frame, or zero if it
6728cannot be identified. The value returned by this intrinsic is likely to
6729be incorrect or 0 for arguments other than zero, so it should only be
6730used for debugging purposes.
6731
6732Note that calling this intrinsic does not prevent function inlining or
6733other aggressive transformations, so the value returned may not be that
6734of the obvious source-language caller.
6735
6736.. _int_stacksave:
6737
6738'``llvm.stacksave``' Intrinsic
6739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6740
6741Syntax:
6742"""""""
6743
6744::
6745
6746 declare i8* @llvm.stacksave()
6747
6748Overview:
6749"""""""""
6750
6751The '``llvm.stacksave``' intrinsic is used to remember the current state
6752of the function stack, for use with
6753:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6754implementing language features like scoped automatic variable sized
6755arrays in C99.
6756
6757Semantics:
6758""""""""""
6759
6760This intrinsic returns a opaque pointer value that can be passed to
6761:ref:`llvm.stackrestore <int_stackrestore>`. When an
6762``llvm.stackrestore`` intrinsic is executed with a value saved from
6763``llvm.stacksave``, it effectively restores the state of the stack to
6764the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6765practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6766were allocated after the ``llvm.stacksave`` was executed.
6767
6768.. _int_stackrestore:
6769
6770'``llvm.stackrestore``' Intrinsic
6771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6772
6773Syntax:
6774"""""""
6775
6776::
6777
6778 declare void @llvm.stackrestore(i8* %ptr)
6779
6780Overview:
6781"""""""""
6782
6783The '``llvm.stackrestore``' intrinsic is used to restore the state of
6784the function stack to the state it was in when the corresponding
6785:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6786useful for implementing language features like scoped automatic variable
6787sized arrays in C99.
6788
6789Semantics:
6790""""""""""
6791
6792See the description for :ref:`llvm.stacksave <int_stacksave>`.
6793
6794'``llvm.prefetch``' Intrinsic
6795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6796
6797Syntax:
6798"""""""
6799
6800::
6801
6802 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6803
6804Overview:
6805"""""""""
6806
6807The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6808insert a prefetch instruction if supported; otherwise, it is a noop.
6809Prefetches have no effect on the behavior of the program but can change
6810its performance characteristics.
6811
6812Arguments:
6813""""""""""
6814
6815``address`` is the address to be prefetched, ``rw`` is the specifier
6816determining if the fetch should be for a read (0) or write (1), and
6817``locality`` is a temporal locality specifier ranging from (0) - no
6818locality, to (3) - extremely local keep in cache. The ``cache type``
6819specifies whether the prefetch is performed on the data (1) or
6820instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6821arguments must be constant integers.
6822
6823Semantics:
6824""""""""""
6825
6826This intrinsic does not modify the behavior of the program. In
6827particular, prefetches cannot trap and do not produce a value. On
6828targets that support this intrinsic, the prefetch can provide hints to
6829the processor cache for better performance.
6830
6831'``llvm.pcmarker``' Intrinsic
6832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6833
6834Syntax:
6835"""""""
6836
6837::
6838
6839 declare void @llvm.pcmarker(i32 <id>)
6840
6841Overview:
6842"""""""""
6843
6844The '``llvm.pcmarker``' intrinsic is a method to export a Program
6845Counter (PC) in a region of code to simulators and other tools. The
6846method is target specific, but it is expected that the marker will use
6847exported symbols to transmit the PC of the marker. The marker makes no
6848guarantees that it will remain with any specific instruction after
6849optimizations. It is possible that the presence of a marker will inhibit
6850optimizations. The intended use is to be inserted after optimizations to
6851allow correlations of simulation runs.
6852
6853Arguments:
6854""""""""""
6855
6856``id`` is a numerical id identifying the marker.
6857
6858Semantics:
6859""""""""""
6860
6861This intrinsic does not modify the behavior of the program. Backends
6862that do not support this intrinsic may ignore it.
6863
6864'``llvm.readcyclecounter``' Intrinsic
6865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6866
6867Syntax:
6868"""""""
6869
6870::
6871
6872 declare i64 @llvm.readcyclecounter()
6873
6874Overview:
6875"""""""""
6876
6877The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6878counter register (or similar low latency, high accuracy clocks) on those
6879targets that support it. On X86, it should map to RDTSC. On Alpha, it
6880should map to RPCC. As the backing counters overflow quickly (on the
6881order of 9 seconds on alpha), this should only be used for small
6882timings.
6883
6884Semantics:
6885""""""""""
6886
6887When directly supported, reading the cycle counter should not modify any
6888memory. Implementations are allowed to either return a application
6889specific value or a system wide value. On backends without support, this
6890is lowered to a constant 0.
6891
Tim Northover5a02fc42013-05-23 19:11:20 +00006892Note that runtime support may be conditional on the privilege-level code is
6893running at and the host platform.
6894
Sean Silvaf722b002012-12-07 10:36:55 +00006895Standard C Library Intrinsics
6896-----------------------------
6897
6898LLVM provides intrinsics for a few important standard C library
6899functions. These intrinsics allow source-language front-ends to pass
6900information about the alignment of the pointer arguments to the code
6901generator, providing opportunity for more efficient code generation.
6902
6903.. _int_memcpy:
6904
6905'``llvm.memcpy``' Intrinsic
6906^^^^^^^^^^^^^^^^^^^^^^^^^^^
6907
6908Syntax:
6909"""""""
6910
6911This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6912integer bit width and for different address spaces. Not all targets
6913support all bit widths however.
6914
6915::
6916
6917 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6918 i32 <len>, i32 <align>, i1 <isvolatile>)
6919 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6920 i64 <len>, i32 <align>, i1 <isvolatile>)
6921
6922Overview:
6923"""""""""
6924
6925The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6926source location to the destination location.
6927
6928Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6929intrinsics do not return a value, takes extra alignment/isvolatile
6930arguments and the pointers can be in specified address spaces.
6931
6932Arguments:
6933""""""""""
6934
6935The first argument is a pointer to the destination, the second is a
6936pointer to the source. The third argument is an integer argument
6937specifying the number of bytes to copy, the fourth argument is the
6938alignment of the source and destination locations, and the fifth is a
6939boolean indicating a volatile access.
6940
6941If the call to this intrinsic has an alignment value that is not 0 or 1,
6942then the caller guarantees that both the source and destination pointers
6943are aligned to that boundary.
6944
6945If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6946a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6947very cleanly specified and it is unwise to depend on it.
6948
6949Semantics:
6950""""""""""
6951
6952The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6953source location to the destination location, which are not allowed to
6954overlap. It copies "len" bytes of memory over. If the argument is known
6955to be aligned to some boundary, this can be specified as the fourth
Bill Wendlingf47ffe02013-10-18 23:26:55 +00006956argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00006957
6958'``llvm.memmove``' Intrinsic
6959^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6960
6961Syntax:
6962"""""""
6963
6964This is an overloaded intrinsic. You can use llvm.memmove on any integer
6965bit width and for different address space. Not all targets support all
6966bit widths however.
6967
6968::
6969
6970 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6971 i32 <len>, i32 <align>, i1 <isvolatile>)
6972 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6973 i64 <len>, i32 <align>, i1 <isvolatile>)
6974
6975Overview:
6976"""""""""
6977
6978The '``llvm.memmove.*``' intrinsics move a block of memory from the
6979source location to the destination location. It is similar to the
6980'``llvm.memcpy``' intrinsic but allows the two memory locations to
6981overlap.
6982
6983Note that, unlike the standard libc function, the ``llvm.memmove.*``
6984intrinsics do not return a value, takes extra alignment/isvolatile
6985arguments and the pointers can be in specified address spaces.
6986
6987Arguments:
6988""""""""""
6989
6990The first argument is a pointer to the destination, the second is a
6991pointer to the source. The third argument is an integer argument
6992specifying the number of bytes to copy, the fourth argument is the
6993alignment of the source and destination locations, and the fifth is a
6994boolean indicating a volatile access.
6995
6996If the call to this intrinsic has an alignment value that is not 0 or 1,
6997then the caller guarantees that the source and destination pointers are
6998aligned to that boundary.
6999
7000If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7001is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7002not very cleanly specified and it is unwise to depend on it.
7003
7004Semantics:
7005""""""""""
7006
7007The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7008source location to the destination location, which may overlap. It
7009copies "len" bytes of memory over. If the argument is known to be
7010aligned to some boundary, this can be specified as the fourth argument,
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007011otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007012
7013'``llvm.memset.*``' Intrinsics
7014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7015
7016Syntax:
7017"""""""
7018
7019This is an overloaded intrinsic. You can use llvm.memset on any integer
7020bit width and for different address spaces. However, not all targets
7021support all bit widths.
7022
7023::
7024
7025 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7026 i32 <len>, i32 <align>, i1 <isvolatile>)
7027 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7028 i64 <len>, i32 <align>, i1 <isvolatile>)
7029
7030Overview:
7031"""""""""
7032
7033The '``llvm.memset.*``' intrinsics fill a block of memory with a
7034particular byte value.
7035
7036Note that, unlike the standard libc function, the ``llvm.memset``
7037intrinsic does not return a value and takes extra alignment/volatile
7038arguments. Also, the destination can be in an arbitrary address space.
7039
7040Arguments:
7041""""""""""
7042
7043The first argument is a pointer to the destination to fill, the second
7044is the byte value with which to fill it, the third argument is an
7045integer argument specifying the number of bytes to fill, and the fourth
7046argument is the known alignment of the destination location.
7047
7048If the call to this intrinsic has an alignment value that is not 0 or 1,
7049then the caller guarantees that the destination pointer is aligned to
7050that boundary.
7051
7052If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7053a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7054very cleanly specified and it is unwise to depend on it.
7055
7056Semantics:
7057""""""""""
7058
7059The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7060at the destination location. If the argument is known to be aligned to
7061some boundary, this can be specified as the fourth argument, otherwise
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007062it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007063
7064'``llvm.sqrt.*``' Intrinsic
7065^^^^^^^^^^^^^^^^^^^^^^^^^^^
7066
7067Syntax:
7068"""""""
7069
7070This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7071floating point or vector of floating point type. Not all targets support
7072all types however.
7073
7074::
7075
7076 declare float @llvm.sqrt.f32(float %Val)
7077 declare double @llvm.sqrt.f64(double %Val)
7078 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7079 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7080 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7081
7082Overview:
7083"""""""""
7084
7085The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7086returning the same value as the libm '``sqrt``' functions would. Unlike
7087``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7088negative numbers other than -0.0 (which allows for better optimization,
7089because there is no need to worry about errno being set).
7090``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7091
7092Arguments:
7093""""""""""
7094
7095The argument and return value are floating point numbers of the same
7096type.
7097
7098Semantics:
7099""""""""""
7100
7101This function returns the sqrt of the specified operand if it is a
7102nonnegative floating point number.
7103
7104'``llvm.powi.*``' Intrinsic
7105^^^^^^^^^^^^^^^^^^^^^^^^^^^
7106
7107Syntax:
7108"""""""
7109
7110This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7111floating point or vector of floating point type. Not all targets support
7112all types however.
7113
7114::
7115
7116 declare float @llvm.powi.f32(float %Val, i32 %power)
7117 declare double @llvm.powi.f64(double %Val, i32 %power)
7118 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7119 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7120 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7121
7122Overview:
7123"""""""""
7124
7125The '``llvm.powi.*``' intrinsics return the first operand raised to the
7126specified (positive or negative) power. The order of evaluation of
7127multiplications is not defined. When a vector of floating point type is
7128used, the second argument remains a scalar integer value.
7129
7130Arguments:
7131""""""""""
7132
7133The second argument is an integer power, and the first is a value to
7134raise to that power.
7135
7136Semantics:
7137""""""""""
7138
7139This function returns the first value raised to the second power with an
7140unspecified sequence of rounding operations.
7141
7142'``llvm.sin.*``' Intrinsic
7143^^^^^^^^^^^^^^^^^^^^^^^^^^
7144
7145Syntax:
7146"""""""
7147
7148This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7149floating point or vector of floating point type. Not all targets support
7150all types however.
7151
7152::
7153
7154 declare float @llvm.sin.f32(float %Val)
7155 declare double @llvm.sin.f64(double %Val)
7156 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7157 declare fp128 @llvm.sin.f128(fp128 %Val)
7158 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7159
7160Overview:
7161"""""""""
7162
7163The '``llvm.sin.*``' intrinsics return the sine of the operand.
7164
7165Arguments:
7166""""""""""
7167
7168The argument and return value are floating point numbers of the same
7169type.
7170
7171Semantics:
7172""""""""""
7173
7174This function returns the sine of the specified operand, returning the
7175same values as the libm ``sin`` functions would, and handles error
7176conditions in the same way.
7177
7178'``llvm.cos.*``' Intrinsic
7179^^^^^^^^^^^^^^^^^^^^^^^^^^
7180
7181Syntax:
7182"""""""
7183
7184This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7185floating point or vector of floating point type. Not all targets support
7186all types however.
7187
7188::
7189
7190 declare float @llvm.cos.f32(float %Val)
7191 declare double @llvm.cos.f64(double %Val)
7192 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7193 declare fp128 @llvm.cos.f128(fp128 %Val)
7194 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7195
7196Overview:
7197"""""""""
7198
7199The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7200
7201Arguments:
7202""""""""""
7203
7204The argument and return value are floating point numbers of the same
7205type.
7206
7207Semantics:
7208""""""""""
7209
7210This function returns the cosine of the specified operand, returning the
7211same values as the libm ``cos`` functions would, and handles error
7212conditions in the same way.
7213
7214'``llvm.pow.*``' Intrinsic
7215^^^^^^^^^^^^^^^^^^^^^^^^^^
7216
7217Syntax:
7218"""""""
7219
7220This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7221floating point or vector of floating point type. Not all targets support
7222all types however.
7223
7224::
7225
7226 declare float @llvm.pow.f32(float %Val, float %Power)
7227 declare double @llvm.pow.f64(double %Val, double %Power)
7228 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7229 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7230 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7231
7232Overview:
7233"""""""""
7234
7235The '``llvm.pow.*``' intrinsics return the first operand raised to the
7236specified (positive or negative) power.
7237
7238Arguments:
7239""""""""""
7240
7241The second argument is a floating point power, and the first is a value
7242to raise to that power.
7243
7244Semantics:
7245""""""""""
7246
7247This function returns the first value raised to the second power,
7248returning the same values as the libm ``pow`` functions would, and
7249handles error conditions in the same way.
7250
7251'``llvm.exp.*``' Intrinsic
7252^^^^^^^^^^^^^^^^^^^^^^^^^^
7253
7254Syntax:
7255"""""""
7256
7257This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7258floating point or vector of floating point type. Not all targets support
7259all types however.
7260
7261::
7262
7263 declare float @llvm.exp.f32(float %Val)
7264 declare double @llvm.exp.f64(double %Val)
7265 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7266 declare fp128 @llvm.exp.f128(fp128 %Val)
7267 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7268
7269Overview:
7270"""""""""
7271
7272The '``llvm.exp.*``' intrinsics perform the exp function.
7273
7274Arguments:
7275""""""""""
7276
7277The argument and return value are floating point numbers of the same
7278type.
7279
7280Semantics:
7281""""""""""
7282
7283This function returns the same values as the libm ``exp`` functions
7284would, and handles error conditions in the same way.
7285
7286'``llvm.exp2.*``' Intrinsic
7287^^^^^^^^^^^^^^^^^^^^^^^^^^^
7288
7289Syntax:
7290"""""""
7291
7292This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7293floating point or vector of floating point type. Not all targets support
7294all types however.
7295
7296::
7297
7298 declare float @llvm.exp2.f32(float %Val)
7299 declare double @llvm.exp2.f64(double %Val)
7300 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7301 declare fp128 @llvm.exp2.f128(fp128 %Val)
7302 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7303
7304Overview:
7305"""""""""
7306
7307The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7308
7309Arguments:
7310""""""""""
7311
7312The argument and return value are floating point numbers of the same
7313type.
7314
7315Semantics:
7316""""""""""
7317
7318This function returns the same values as the libm ``exp2`` functions
7319would, and handles error conditions in the same way.
7320
7321'``llvm.log.*``' Intrinsic
7322^^^^^^^^^^^^^^^^^^^^^^^^^^
7323
7324Syntax:
7325"""""""
7326
7327This is an overloaded intrinsic. You can use ``llvm.log`` on any
7328floating point or vector of floating point type. Not all targets support
7329all types however.
7330
7331::
7332
7333 declare float @llvm.log.f32(float %Val)
7334 declare double @llvm.log.f64(double %Val)
7335 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7336 declare fp128 @llvm.log.f128(fp128 %Val)
7337 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7338
7339Overview:
7340"""""""""
7341
7342The '``llvm.log.*``' intrinsics perform the log function.
7343
7344Arguments:
7345""""""""""
7346
7347The argument and return value are floating point numbers of the same
7348type.
7349
7350Semantics:
7351""""""""""
7352
7353This function returns the same values as the libm ``log`` functions
7354would, and handles error conditions in the same way.
7355
7356'``llvm.log10.*``' Intrinsic
7357^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7358
7359Syntax:
7360"""""""
7361
7362This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7363floating point or vector of floating point type. Not all targets support
7364all types however.
7365
7366::
7367
7368 declare float @llvm.log10.f32(float %Val)
7369 declare double @llvm.log10.f64(double %Val)
7370 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7371 declare fp128 @llvm.log10.f128(fp128 %Val)
7372 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7373
7374Overview:
7375"""""""""
7376
7377The '``llvm.log10.*``' intrinsics perform the log10 function.
7378
7379Arguments:
7380""""""""""
7381
7382The argument and return value are floating point numbers of the same
7383type.
7384
7385Semantics:
7386""""""""""
7387
7388This function returns the same values as the libm ``log10`` functions
7389would, and handles error conditions in the same way.
7390
7391'``llvm.log2.*``' Intrinsic
7392^^^^^^^^^^^^^^^^^^^^^^^^^^^
7393
7394Syntax:
7395"""""""
7396
7397This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7398floating point or vector of floating point type. Not all targets support
7399all types however.
7400
7401::
7402
7403 declare float @llvm.log2.f32(float %Val)
7404 declare double @llvm.log2.f64(double %Val)
7405 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7406 declare fp128 @llvm.log2.f128(fp128 %Val)
7407 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7408
7409Overview:
7410"""""""""
7411
7412The '``llvm.log2.*``' intrinsics perform the log2 function.
7413
7414Arguments:
7415""""""""""
7416
7417The argument and return value are floating point numbers of the same
7418type.
7419
7420Semantics:
7421""""""""""
7422
7423This function returns the same values as the libm ``log2`` functions
7424would, and handles error conditions in the same way.
7425
7426'``llvm.fma.*``' Intrinsic
7427^^^^^^^^^^^^^^^^^^^^^^^^^^
7428
7429Syntax:
7430"""""""
7431
7432This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7433floating point or vector of floating point type. Not all targets support
7434all types however.
7435
7436::
7437
7438 declare float @llvm.fma.f32(float %a, float %b, float %c)
7439 declare double @llvm.fma.f64(double %a, double %b, double %c)
7440 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7441 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7442 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7443
7444Overview:
7445"""""""""
7446
7447The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7448operation.
7449
7450Arguments:
7451""""""""""
7452
7453The argument and return value are floating point numbers of the same
7454type.
7455
7456Semantics:
7457""""""""""
7458
7459This function returns the same values as the libm ``fma`` functions
7460would.
7461
7462'``llvm.fabs.*``' Intrinsic
7463^^^^^^^^^^^^^^^^^^^^^^^^^^^
7464
7465Syntax:
7466"""""""
7467
7468This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7469floating point or vector of floating point type. Not all targets support
7470all types however.
7471
7472::
7473
7474 declare float @llvm.fabs.f32(float %Val)
7475 declare double @llvm.fabs.f64(double %Val)
7476 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7477 declare fp128 @llvm.fabs.f128(fp128 %Val)
7478 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7479
7480Overview:
7481"""""""""
7482
7483The '``llvm.fabs.*``' intrinsics return the absolute value of the
7484operand.
7485
7486Arguments:
7487""""""""""
7488
7489The argument and return value are floating point numbers of the same
7490type.
7491
7492Semantics:
7493""""""""""
7494
7495This function returns the same values as the libm ``fabs`` functions
7496would, and handles error conditions in the same way.
7497
Hal Finkel66d1fa62013-08-19 23:35:46 +00007498'``llvm.copysign.*``' Intrinsic
7499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7500
7501Syntax:
7502"""""""
7503
7504This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7505floating point or vector of floating point type. Not all targets support
7506all types however.
7507
7508::
7509
7510 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7511 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7512 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7513 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7514 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7515
7516Overview:
7517"""""""""
7518
7519The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7520first operand and the sign of the second operand.
7521
7522Arguments:
7523""""""""""
7524
7525The arguments and return value are floating point numbers of the same
7526type.
7527
7528Semantics:
7529""""""""""
7530
7531This function returns the same values as the libm ``copysign``
7532functions would, and handles error conditions in the same way.
7533
Sean Silvaf722b002012-12-07 10:36:55 +00007534'``llvm.floor.*``' Intrinsic
7535^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7536
7537Syntax:
7538"""""""
7539
7540This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7541floating point or vector of floating point type. Not all targets support
7542all types however.
7543
7544::
7545
7546 declare float @llvm.floor.f32(float %Val)
7547 declare double @llvm.floor.f64(double %Val)
7548 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7549 declare fp128 @llvm.floor.f128(fp128 %Val)
7550 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7551
7552Overview:
7553"""""""""
7554
7555The '``llvm.floor.*``' intrinsics return the floor of the operand.
7556
7557Arguments:
7558""""""""""
7559
7560The argument and return value are floating point numbers of the same
7561type.
7562
7563Semantics:
7564""""""""""
7565
7566This function returns the same values as the libm ``floor`` functions
7567would, and handles error conditions in the same way.
7568
7569'``llvm.ceil.*``' Intrinsic
7570^^^^^^^^^^^^^^^^^^^^^^^^^^^
7571
7572Syntax:
7573"""""""
7574
7575This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7576floating point or vector of floating point type. Not all targets support
7577all types however.
7578
7579::
7580
7581 declare float @llvm.ceil.f32(float %Val)
7582 declare double @llvm.ceil.f64(double %Val)
7583 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7584 declare fp128 @llvm.ceil.f128(fp128 %Val)
7585 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7586
7587Overview:
7588"""""""""
7589
7590The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7591
7592Arguments:
7593""""""""""
7594
7595The argument and return value are floating point numbers of the same
7596type.
7597
7598Semantics:
7599""""""""""
7600
7601This function returns the same values as the libm ``ceil`` functions
7602would, and handles error conditions in the same way.
7603
7604'``llvm.trunc.*``' Intrinsic
7605^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7606
7607Syntax:
7608"""""""
7609
7610This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7611floating point or vector of floating point type. Not all targets support
7612all types however.
7613
7614::
7615
7616 declare float @llvm.trunc.f32(float %Val)
7617 declare double @llvm.trunc.f64(double %Val)
7618 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7619 declare fp128 @llvm.trunc.f128(fp128 %Val)
7620 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7621
7622Overview:
7623"""""""""
7624
7625The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7626nearest integer not larger in magnitude than the operand.
7627
7628Arguments:
7629""""""""""
7630
7631The argument and return value are floating point numbers of the same
7632type.
7633
7634Semantics:
7635""""""""""
7636
7637This function returns the same values as the libm ``trunc`` functions
7638would, and handles error conditions in the same way.
7639
7640'``llvm.rint.*``' Intrinsic
7641^^^^^^^^^^^^^^^^^^^^^^^^^^^
7642
7643Syntax:
7644"""""""
7645
7646This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7647floating point or vector of floating point type. Not all targets support
7648all types however.
7649
7650::
7651
7652 declare float @llvm.rint.f32(float %Val)
7653 declare double @llvm.rint.f64(double %Val)
7654 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7655 declare fp128 @llvm.rint.f128(fp128 %Val)
7656 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7657
7658Overview:
7659"""""""""
7660
7661The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7662nearest integer. It may raise an inexact floating-point exception if the
7663operand isn't an integer.
7664
7665Arguments:
7666""""""""""
7667
7668The argument and return value are floating point numbers of the same
7669type.
7670
7671Semantics:
7672""""""""""
7673
7674This function returns the same values as the libm ``rint`` functions
7675would, and handles error conditions in the same way.
7676
7677'``llvm.nearbyint.*``' Intrinsic
7678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7679
7680Syntax:
7681"""""""
7682
7683This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7684floating point or vector of floating point type. Not all targets support
7685all types however.
7686
7687::
7688
7689 declare float @llvm.nearbyint.f32(float %Val)
7690 declare double @llvm.nearbyint.f64(double %Val)
7691 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7692 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7693 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7694
7695Overview:
7696"""""""""
7697
7698The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7699nearest integer.
7700
7701Arguments:
7702""""""""""
7703
7704The argument and return value are floating point numbers of the same
7705type.
7706
7707Semantics:
7708""""""""""
7709
7710This function returns the same values as the libm ``nearbyint``
7711functions would, and handles error conditions in the same way.
7712
Hal Finkel41418d12013-08-07 22:49:12 +00007713'``llvm.round.*``' Intrinsic
7714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7715
7716Syntax:
7717"""""""
7718
7719This is an overloaded intrinsic. You can use ``llvm.round`` on any
7720floating point or vector of floating point type. Not all targets support
7721all types however.
7722
7723::
7724
7725 declare float @llvm.round.f32(float %Val)
7726 declare double @llvm.round.f64(double %Val)
7727 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7728 declare fp128 @llvm.round.f128(fp128 %Val)
7729 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7730
7731Overview:
7732"""""""""
7733
7734The '``llvm.round.*``' intrinsics returns the operand rounded to the
7735nearest integer.
7736
7737Arguments:
7738""""""""""
7739
7740The argument and return value are floating point numbers of the same
7741type.
7742
7743Semantics:
7744""""""""""
7745
7746This function returns the same values as the libm ``round``
7747functions would, and handles error conditions in the same way.
7748
Sean Silvaf722b002012-12-07 10:36:55 +00007749Bit Manipulation Intrinsics
7750---------------------------
7751
7752LLVM provides intrinsics for a few important bit manipulation
7753operations. These allow efficient code generation for some algorithms.
7754
7755'``llvm.bswap.*``' Intrinsics
7756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7757
7758Syntax:
7759"""""""
7760
7761This is an overloaded intrinsic function. You can use bswap on any
7762integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7763
7764::
7765
7766 declare i16 @llvm.bswap.i16(i16 <id>)
7767 declare i32 @llvm.bswap.i32(i32 <id>)
7768 declare i64 @llvm.bswap.i64(i64 <id>)
7769
7770Overview:
7771"""""""""
7772
7773The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7774values with an even number of bytes (positive multiple of 16 bits).
7775These are useful for performing operations on data that is not in the
7776target's native byte order.
7777
7778Semantics:
7779""""""""""
7780
7781The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7782and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7783intrinsic returns an i32 value that has the four bytes of the input i32
7784swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7785returned i32 will have its bytes in 3, 2, 1, 0 order. The
7786``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7787concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7788respectively).
7789
7790'``llvm.ctpop.*``' Intrinsic
7791^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7792
7793Syntax:
7794"""""""
7795
7796This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7797bit width, or on any vector with integer elements. Not all targets
7798support all bit widths or vector types, however.
7799
7800::
7801
7802 declare i8 @llvm.ctpop.i8(i8 <src>)
7803 declare i16 @llvm.ctpop.i16(i16 <src>)
7804 declare i32 @llvm.ctpop.i32(i32 <src>)
7805 declare i64 @llvm.ctpop.i64(i64 <src>)
7806 declare i256 @llvm.ctpop.i256(i256 <src>)
7807 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7808
7809Overview:
7810"""""""""
7811
7812The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7813in a value.
7814
7815Arguments:
7816""""""""""
7817
7818The only argument is the value to be counted. The argument may be of any
7819integer type, or a vector with integer elements. The return type must
7820match the argument type.
7821
7822Semantics:
7823""""""""""
7824
7825The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7826each element of a vector.
7827
7828'``llvm.ctlz.*``' Intrinsic
7829^^^^^^^^^^^^^^^^^^^^^^^^^^^
7830
7831Syntax:
7832"""""""
7833
7834This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7835integer bit width, or any vector whose elements are integers. Not all
7836targets support all bit widths or vector types, however.
7837
7838::
7839
7840 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7841 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7842 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7843 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7844 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7845 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7846
7847Overview:
7848"""""""""
7849
7850The '``llvm.ctlz``' family of intrinsic functions counts the number of
7851leading zeros in a variable.
7852
7853Arguments:
7854""""""""""
7855
7856The first argument is the value to be counted. This argument may be of
7857any integer type, or a vectory with integer element type. The return
7858type must match the first argument type.
7859
7860The second argument must be a constant and is a flag to indicate whether
7861the intrinsic should ensure that a zero as the first argument produces a
7862defined result. Historically some architectures did not provide a
7863defined result for zero values as efficiently, and many algorithms are
7864now predicated on avoiding zero-value inputs.
7865
7866Semantics:
7867""""""""""
7868
7869The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7870zeros in a variable, or within each element of the vector. If
7871``src == 0`` then the result is the size in bits of the type of ``src``
7872if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7873``llvm.ctlz(i32 2) = 30``.
7874
7875'``llvm.cttz.*``' Intrinsic
7876^^^^^^^^^^^^^^^^^^^^^^^^^^^
7877
7878Syntax:
7879"""""""
7880
7881This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7882integer bit width, or any vector of integer elements. Not all targets
7883support all bit widths or vector types, however.
7884
7885::
7886
7887 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7888 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7889 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7890 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7891 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7892 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7893
7894Overview:
7895"""""""""
7896
7897The '``llvm.cttz``' family of intrinsic functions counts the number of
7898trailing zeros.
7899
7900Arguments:
7901""""""""""
7902
7903The first argument is the value to be counted. This argument may be of
7904any integer type, or a vectory with integer element type. The return
7905type must match the first argument type.
7906
7907The second argument must be a constant and is a flag to indicate whether
7908the intrinsic should ensure that a zero as the first argument produces a
7909defined result. Historically some architectures did not provide a
7910defined result for zero values as efficiently, and many algorithms are
7911now predicated on avoiding zero-value inputs.
7912
7913Semantics:
7914""""""""""
7915
7916The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7917zeros in a variable, or within each element of a vector. If ``src == 0``
7918then the result is the size in bits of the type of ``src`` if
7919``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7920``llvm.cttz(2) = 1``.
7921
7922Arithmetic with Overflow Intrinsics
7923-----------------------------------
7924
7925LLVM provides intrinsics for some arithmetic with overflow operations.
7926
7927'``llvm.sadd.with.overflow.*``' Intrinsics
7928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7929
7930Syntax:
7931"""""""
7932
7933This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7934on any integer bit width.
7935
7936::
7937
7938 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7939 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7940 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7941
7942Overview:
7943"""""""""
7944
7945The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7946a signed addition of the two arguments, and indicate whether an overflow
7947occurred during the signed summation.
7948
7949Arguments:
7950""""""""""
7951
7952The arguments (%a and %b) and the first element of the result structure
7953may be of integer types of any bit width, but they must have the same
7954bit width. The second element of the result structure must be of type
7955``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7956addition.
7957
7958Semantics:
7959""""""""""
7960
7961The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007962a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007963first element of which is the signed summation, and the second element
7964of which is a bit specifying if the signed summation resulted in an
7965overflow.
7966
7967Examples:
7968"""""""""
7969
7970.. code-block:: llvm
7971
7972 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7973 %sum = extractvalue {i32, i1} %res, 0
7974 %obit = extractvalue {i32, i1} %res, 1
7975 br i1 %obit, label %overflow, label %normal
7976
7977'``llvm.uadd.with.overflow.*``' Intrinsics
7978^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7979
7980Syntax:
7981"""""""
7982
7983This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7984on any integer bit width.
7985
7986::
7987
7988 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7989 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7990 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7991
7992Overview:
7993"""""""""
7994
7995The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7996an unsigned addition of the two arguments, and indicate whether a carry
7997occurred during the unsigned summation.
7998
7999Arguments:
8000""""""""""
8001
8002The arguments (%a and %b) and the first element of the result structure
8003may be of integer types of any bit width, but they must have the same
8004bit width. The second element of the result structure must be of type
8005``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8006addition.
8007
8008Semantics:
8009""""""""""
8010
8011The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008012an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008013first element of which is the sum, and the second element of which is a
8014bit specifying if the unsigned summation resulted in a carry.
8015
8016Examples:
8017"""""""""
8018
8019.. code-block:: llvm
8020
8021 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8022 %sum = extractvalue {i32, i1} %res, 0
8023 %obit = extractvalue {i32, i1} %res, 1
8024 br i1 %obit, label %carry, label %normal
8025
8026'``llvm.ssub.with.overflow.*``' Intrinsics
8027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8028
8029Syntax:
8030"""""""
8031
8032This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8033on any integer bit width.
8034
8035::
8036
8037 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8038 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8039 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8040
8041Overview:
8042"""""""""
8043
8044The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8045a signed subtraction of the two arguments, and indicate whether an
8046overflow occurred during the signed subtraction.
8047
8048Arguments:
8049""""""""""
8050
8051The arguments (%a and %b) and the first element of the result structure
8052may be of integer types of any bit width, but they must have the same
8053bit width. The second element of the result structure must be of type
8054``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8055subtraction.
8056
8057Semantics:
8058""""""""""
8059
8060The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008061a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008062first element of which is the subtraction, and the second element of
8063which is a bit specifying if the signed subtraction resulted in an
8064overflow.
8065
8066Examples:
8067"""""""""
8068
8069.. code-block:: llvm
8070
8071 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8072 %sum = extractvalue {i32, i1} %res, 0
8073 %obit = extractvalue {i32, i1} %res, 1
8074 br i1 %obit, label %overflow, label %normal
8075
8076'``llvm.usub.with.overflow.*``' Intrinsics
8077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8078
8079Syntax:
8080"""""""
8081
8082This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8083on any integer bit width.
8084
8085::
8086
8087 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8088 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8089 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8090
8091Overview:
8092"""""""""
8093
8094The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8095an unsigned subtraction of the two arguments, and indicate whether an
8096overflow occurred during the unsigned subtraction.
8097
8098Arguments:
8099""""""""""
8100
8101The arguments (%a and %b) and the first element of the result structure
8102may be of integer types of any bit width, but they must have the same
8103bit width. The second element of the result structure must be of type
8104``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8105subtraction.
8106
8107Semantics:
8108""""""""""
8109
8110The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008111an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008112the first element of which is the subtraction, and the second element of
8113which is a bit specifying if the unsigned subtraction resulted in an
8114overflow.
8115
8116Examples:
8117"""""""""
8118
8119.. code-block:: llvm
8120
8121 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8122 %sum = extractvalue {i32, i1} %res, 0
8123 %obit = extractvalue {i32, i1} %res, 1
8124 br i1 %obit, label %overflow, label %normal
8125
8126'``llvm.smul.with.overflow.*``' Intrinsics
8127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8128
8129Syntax:
8130"""""""
8131
8132This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8133on any integer bit width.
8134
8135::
8136
8137 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8138 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8139 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8140
8141Overview:
8142"""""""""
8143
8144The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8145a signed multiplication of the two arguments, and indicate whether an
8146overflow occurred during the signed multiplication.
8147
8148Arguments:
8149""""""""""
8150
8151The arguments (%a and %b) and the first element of the result structure
8152may be of integer types of any bit width, but they must have the same
8153bit width. The second element of the result structure must be of type
8154``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8155multiplication.
8156
8157Semantics:
8158""""""""""
8159
8160The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008161a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008162the first element of which is the multiplication, and the second element
8163of which is a bit specifying if the signed multiplication resulted in an
8164overflow.
8165
8166Examples:
8167"""""""""
8168
8169.. code-block:: llvm
8170
8171 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8172 %sum = extractvalue {i32, i1} %res, 0
8173 %obit = extractvalue {i32, i1} %res, 1
8174 br i1 %obit, label %overflow, label %normal
8175
8176'``llvm.umul.with.overflow.*``' Intrinsics
8177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8178
8179Syntax:
8180"""""""
8181
8182This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8183on any integer bit width.
8184
8185::
8186
8187 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8188 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8189 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8190
8191Overview:
8192"""""""""
8193
8194The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8195a unsigned multiplication of the two arguments, and indicate whether an
8196overflow occurred during the unsigned multiplication.
8197
8198Arguments:
8199""""""""""
8200
8201The arguments (%a and %b) and the first element of the result structure
8202may be of integer types of any bit width, but they must have the same
8203bit width. The second element of the result structure must be of type
8204``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8205multiplication.
8206
8207Semantics:
8208""""""""""
8209
8210The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008211an unsigned multiplication of the two arguments. They return a structure ---
8212the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008213element of which is a bit specifying if the unsigned multiplication
8214resulted in an overflow.
8215
8216Examples:
8217"""""""""
8218
8219.. code-block:: llvm
8220
8221 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8222 %sum = extractvalue {i32, i1} %res, 0
8223 %obit = extractvalue {i32, i1} %res, 1
8224 br i1 %obit, label %overflow, label %normal
8225
8226Specialised Arithmetic Intrinsics
8227---------------------------------
8228
8229'``llvm.fmuladd.*``' Intrinsic
8230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8231
8232Syntax:
8233"""""""
8234
8235::
8236
8237 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8238 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8239
8240Overview:
8241"""""""""
8242
8243The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008244expressions that can be fused if the code generator determines that (a) the
8245target instruction set has support for a fused operation, and (b) that the
8246fused operation is more efficient than the equivalent, separate pair of mul
8247and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008248
8249Arguments:
8250""""""""""
8251
8252The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8253multiplicands, a and b, and an addend c.
8254
8255Semantics:
8256""""""""""
8257
8258The expression:
8259
8260::
8261
8262 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8263
8264is equivalent to the expression a \* b + c, except that rounding will
8265not be performed between the multiplication and addition steps if the
8266code generator fuses the operations. Fusion is not guaranteed, even if
8267the target platform supports it. If a fused multiply-add is required the
8268corresponding llvm.fma.\* intrinsic function should be used instead.
8269
8270Examples:
8271"""""""""
8272
8273.. code-block:: llvm
8274
8275 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8276
8277Half Precision Floating Point Intrinsics
8278----------------------------------------
8279
8280For most target platforms, half precision floating point is a
8281storage-only format. This means that it is a dense encoding (in memory)
8282but does not support computation in the format.
8283
8284This means that code must first load the half-precision floating point
8285value as an i16, then convert it to float with
8286:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8287then be performed on the float value (including extending to double
8288etc). To store the value back to memory, it is first converted to float
8289if needed, then converted to i16 with
8290:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8291i16 value.
8292
8293.. _int_convert_to_fp16:
8294
8295'``llvm.convert.to.fp16``' Intrinsic
8296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8297
8298Syntax:
8299"""""""
8300
8301::
8302
8303 declare i16 @llvm.convert.to.fp16(f32 %a)
8304
8305Overview:
8306"""""""""
8307
8308The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8309from single precision floating point format to half precision floating
8310point format.
8311
8312Arguments:
8313""""""""""
8314
8315The intrinsic function contains single argument - the value to be
8316converted.
8317
8318Semantics:
8319""""""""""
8320
8321The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8322from single precision floating point format to half precision floating
8323point format. The return value is an ``i16`` which contains the
8324converted number.
8325
8326Examples:
8327"""""""""
8328
8329.. code-block:: llvm
8330
8331 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8332 store i16 %res, i16* @x, align 2
8333
8334.. _int_convert_from_fp16:
8335
8336'``llvm.convert.from.fp16``' Intrinsic
8337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8338
8339Syntax:
8340"""""""
8341
8342::
8343
8344 declare f32 @llvm.convert.from.fp16(i16 %a)
8345
8346Overview:
8347"""""""""
8348
8349The '``llvm.convert.from.fp16``' intrinsic function performs a
8350conversion from half precision floating point format to single precision
8351floating point format.
8352
8353Arguments:
8354""""""""""
8355
8356The intrinsic function contains single argument - the value to be
8357converted.
8358
8359Semantics:
8360""""""""""
8361
8362The '``llvm.convert.from.fp16``' intrinsic function performs a
8363conversion from half single precision floating point format to single
8364precision floating point format. The input half-float value is
8365represented by an ``i16`` value.
8366
8367Examples:
8368"""""""""
8369
8370.. code-block:: llvm
8371
8372 %a = load i16* @x, align 2
8373 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8374
8375Debugger Intrinsics
8376-------------------
8377
8378The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8379prefix), are described in the `LLVM Source Level
8380Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8381document.
8382
8383Exception Handling Intrinsics
8384-----------------------------
8385
8386The LLVM exception handling intrinsics (which all start with
8387``llvm.eh.`` prefix), are described in the `LLVM Exception
8388Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8389
8390.. _int_trampoline:
8391
8392Trampoline Intrinsics
8393---------------------
8394
8395These intrinsics make it possible to excise one parameter, marked with
8396the :ref:`nest <nest>` attribute, from a function. The result is a
8397callable function pointer lacking the nest parameter - the caller does
8398not need to provide a value for it. Instead, the value to use is stored
8399in advance in a "trampoline", a block of memory usually allocated on the
8400stack, which also contains code to splice the nest value into the
8401argument list. This is used to implement the GCC nested function address
8402extension.
8403
8404For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8405then the resulting function pointer has signature ``i32 (i32, i32)*``.
8406It can be created as follows:
8407
8408.. code-block:: llvm
8409
8410 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8411 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8412 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8413 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8414 %fp = bitcast i8* %p to i32 (i32, i32)*
8415
8416The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8417``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8418
8419.. _int_it:
8420
8421'``llvm.init.trampoline``' Intrinsic
8422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8423
8424Syntax:
8425"""""""
8426
8427::
8428
8429 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8430
8431Overview:
8432"""""""""
8433
8434This fills the memory pointed to by ``tramp`` with executable code,
8435turning it into a trampoline.
8436
8437Arguments:
8438""""""""""
8439
8440The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8441pointers. The ``tramp`` argument must point to a sufficiently large and
8442sufficiently aligned block of memory; this memory is written to by the
8443intrinsic. Note that the size and the alignment are target-specific -
8444LLVM currently provides no portable way of determining them, so a
8445front-end that generates this intrinsic needs to have some
8446target-specific knowledge. The ``func`` argument must hold a function
8447bitcast to an ``i8*``.
8448
8449Semantics:
8450""""""""""
8451
8452The block of memory pointed to by ``tramp`` is filled with target
8453dependent code, turning it into a function. Then ``tramp`` needs to be
8454passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8455be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8456function's signature is the same as that of ``func`` with any arguments
8457marked with the ``nest`` attribute removed. At most one such ``nest``
8458argument is allowed, and it must be of pointer type. Calling the new
8459function is equivalent to calling ``func`` with the same argument list,
8460but with ``nval`` used for the missing ``nest`` argument. If, after
8461calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8462modified, then the effect of any later call to the returned function
8463pointer is undefined.
8464
8465.. _int_at:
8466
8467'``llvm.adjust.trampoline``' Intrinsic
8468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8469
8470Syntax:
8471"""""""
8472
8473::
8474
8475 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8476
8477Overview:
8478"""""""""
8479
8480This performs any required machine-specific adjustment to the address of
8481a trampoline (passed as ``tramp``).
8482
8483Arguments:
8484""""""""""
8485
8486``tramp`` must point to a block of memory which already has trampoline
8487code filled in by a previous call to
8488:ref:`llvm.init.trampoline <int_it>`.
8489
8490Semantics:
8491""""""""""
8492
8493On some architectures the address of the code to be executed needs to be
8494different to the address where the trampoline is actually stored. This
8495intrinsic returns the executable address corresponding to ``tramp``
8496after performing the required machine specific adjustments. The pointer
8497returned can then be :ref:`bitcast and executed <int_trampoline>`.
8498
8499Memory Use Markers
8500------------------
8501
8502This class of intrinsics exists to information about the lifetime of
8503memory objects and ranges where variables are immutable.
8504
8505'``llvm.lifetime.start``' Intrinsic
8506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8507
8508Syntax:
8509"""""""
8510
8511::
8512
8513 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8514
8515Overview:
8516"""""""""
8517
8518The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8519object's lifetime.
8520
8521Arguments:
8522""""""""""
8523
8524The first argument is a constant integer representing the size of the
8525object, or -1 if it is variable sized. The second argument is a pointer
8526to the object.
8527
8528Semantics:
8529""""""""""
8530
8531This intrinsic indicates that before this point in the code, the value
8532of the memory pointed to by ``ptr`` is dead. This means that it is known
8533to never be used and has an undefined value. A load from the pointer
8534that precedes this intrinsic can be replaced with ``'undef'``.
8535
8536'``llvm.lifetime.end``' Intrinsic
8537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8538
8539Syntax:
8540"""""""
8541
8542::
8543
8544 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8545
8546Overview:
8547"""""""""
8548
8549The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8550object's lifetime.
8551
8552Arguments:
8553""""""""""
8554
8555The first argument is a constant integer representing the size of the
8556object, or -1 if it is variable sized. The second argument is a pointer
8557to the object.
8558
8559Semantics:
8560""""""""""
8561
8562This intrinsic indicates that after this point in the code, the value of
8563the memory pointed to by ``ptr`` is dead. This means that it is known to
8564never be used and has an undefined value. Any stores into the memory
8565object following this intrinsic may be removed as dead.
8566
8567'``llvm.invariant.start``' Intrinsic
8568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8569
8570Syntax:
8571"""""""
8572
8573::
8574
8575 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8576
8577Overview:
8578"""""""""
8579
8580The '``llvm.invariant.start``' intrinsic specifies that the contents of
8581a memory object will not change.
8582
8583Arguments:
8584""""""""""
8585
8586The first argument is a constant integer representing the size of the
8587object, or -1 if it is variable sized. The second argument is a pointer
8588to the object.
8589
8590Semantics:
8591""""""""""
8592
8593This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8594the return value, the referenced memory location is constant and
8595unchanging.
8596
8597'``llvm.invariant.end``' Intrinsic
8598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8599
8600Syntax:
8601"""""""
8602
8603::
8604
8605 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8606
8607Overview:
8608"""""""""
8609
8610The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8611memory object are mutable.
8612
8613Arguments:
8614""""""""""
8615
8616The first argument is the matching ``llvm.invariant.start`` intrinsic.
8617The second argument is a constant integer representing the size of the
8618object, or -1 if it is variable sized and the third argument is a
8619pointer to the object.
8620
8621Semantics:
8622""""""""""
8623
8624This intrinsic indicates that the memory is mutable again.
8625
8626General Intrinsics
8627------------------
8628
8629This class of intrinsics is designed to be generic and has no specific
8630purpose.
8631
8632'``llvm.var.annotation``' Intrinsic
8633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8634
8635Syntax:
8636"""""""
8637
8638::
8639
8640 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8641
8642Overview:
8643"""""""""
8644
8645The '``llvm.var.annotation``' intrinsic.
8646
8647Arguments:
8648""""""""""
8649
8650The first argument is a pointer to a value, the second is a pointer to a
8651global string, the third is a pointer to a global string which is the
8652source file name, and the last argument is the line number.
8653
8654Semantics:
8655""""""""""
8656
8657This intrinsic allows annotation of local variables with arbitrary
8658strings. This can be useful for special purpose optimizations that want
8659to look for these annotations. These have no other defined use; they are
8660ignored by code generation and optimization.
8661
Michael Gottesman872b4e52013-03-26 00:34:27 +00008662'``llvm.ptr.annotation.*``' Intrinsic
8663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8664
8665Syntax:
8666"""""""
8667
8668This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8669pointer to an integer of any width. *NOTE* you must specify an address space for
8670the pointer. The identifier for the default address space is the integer
8671'``0``'.
8672
8673::
8674
8675 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8676 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8677 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8678 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8679 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8680
8681Overview:
8682"""""""""
8683
8684The '``llvm.ptr.annotation``' intrinsic.
8685
8686Arguments:
8687""""""""""
8688
8689The first argument is a pointer to an integer value of arbitrary bitwidth
8690(result of some expression), the second is a pointer to a global string, the
8691third is a pointer to a global string which is the source file name, and the
8692last argument is the line number. It returns the value of the first argument.
8693
8694Semantics:
8695""""""""""
8696
8697This intrinsic allows annotation of a pointer to an integer with arbitrary
8698strings. This can be useful for special purpose optimizations that want to look
8699for these annotations. These have no other defined use; they are ignored by code
8700generation and optimization.
8701
Sean Silvaf722b002012-12-07 10:36:55 +00008702'``llvm.annotation.*``' Intrinsic
8703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8704
8705Syntax:
8706"""""""
8707
8708This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8709any integer bit width.
8710
8711::
8712
8713 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8714 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8715 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8716 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8717 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8718
8719Overview:
8720"""""""""
8721
8722The '``llvm.annotation``' intrinsic.
8723
8724Arguments:
8725""""""""""
8726
8727The first argument is an integer value (result of some expression), the
8728second is a pointer to a global string, the third is a pointer to a
8729global string which is the source file name, and the last argument is
8730the line number. It returns the value of the first argument.
8731
8732Semantics:
8733""""""""""
8734
8735This intrinsic allows annotations to be put on arbitrary expressions
8736with arbitrary strings. This can be useful for special purpose
8737optimizations that want to look for these annotations. These have no
8738other defined use; they are ignored by code generation and optimization.
8739
8740'``llvm.trap``' Intrinsic
8741^^^^^^^^^^^^^^^^^^^^^^^^^
8742
8743Syntax:
8744"""""""
8745
8746::
8747
8748 declare void @llvm.trap() noreturn nounwind
8749
8750Overview:
8751"""""""""
8752
8753The '``llvm.trap``' intrinsic.
8754
8755Arguments:
8756""""""""""
8757
8758None.
8759
8760Semantics:
8761""""""""""
8762
8763This intrinsic is lowered to the target dependent trap instruction. If
8764the target does not have a trap instruction, this intrinsic will be
8765lowered to a call of the ``abort()`` function.
8766
8767'``llvm.debugtrap``' Intrinsic
8768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8769
8770Syntax:
8771"""""""
8772
8773::
8774
8775 declare void @llvm.debugtrap() nounwind
8776
8777Overview:
8778"""""""""
8779
8780The '``llvm.debugtrap``' intrinsic.
8781
8782Arguments:
8783""""""""""
8784
8785None.
8786
8787Semantics:
8788""""""""""
8789
8790This intrinsic is lowered to code which is intended to cause an
8791execution trap with the intention of requesting the attention of a
8792debugger.
8793
8794'``llvm.stackprotector``' Intrinsic
8795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8796
8797Syntax:
8798"""""""
8799
8800::
8801
8802 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8803
8804Overview:
8805"""""""""
8806
8807The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8808onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8809is placed on the stack before local variables.
8810
8811Arguments:
8812""""""""""
8813
8814The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8815The first argument is the value loaded from the stack guard
8816``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8817enough space to hold the value of the guard.
8818
8819Semantics:
8820""""""""""
8821
Michael Gottesman2a64a632013-08-12 18:35:32 +00008822This intrinsic causes the prologue/epilogue inserter to force the position of
8823the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8824to ensure that if a local variable on the stack is overwritten, it will destroy
8825the value of the guard. When the function exits, the guard on the stack is
8826checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8827different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8828calling the ``__stack_chk_fail()`` function.
8829
8830'``llvm.stackprotectorcheck``' Intrinsic
Sean Silvacce63992013-09-09 19:13:28 +00008831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesman2a64a632013-08-12 18:35:32 +00008832
8833Syntax:
8834"""""""
8835
8836::
8837
8838 declare void @llvm.stackprotectorcheck(i8** <guard>)
8839
8840Overview:
8841"""""""""
8842
8843The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008844created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008845``__stack_chk_fail()`` function.
8846
Michael Gottesman2a64a632013-08-12 18:35:32 +00008847Arguments:
8848""""""""""
8849
8850The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8851the variable ``@__stack_chk_guard``.
8852
8853Semantics:
8854""""""""""
8855
8856This intrinsic is provided to perform the stack protector check by comparing
8857``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8858values do not match call the ``__stack_chk_fail()`` function.
8859
8860The reason to provide this as an IR level intrinsic instead of implementing it
8861via other IR operations is that in order to perform this operation at the IR
8862level without an intrinsic, one would need to create additional basic blocks to
8863handle the success/failure cases. This makes it difficult to stop the stack
8864protector check from disrupting sibling tail calls in Codegen. With this
8865intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramerd5976142013-10-29 17:53:27 +00008866codegen after the tail call decision has occurred.
Michael Gottesman2a64a632013-08-12 18:35:32 +00008867
Sean Silvaf722b002012-12-07 10:36:55 +00008868'``llvm.objectsize``' Intrinsic
8869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8870
8871Syntax:
8872"""""""
8873
8874::
8875
8876 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8877 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8878
8879Overview:
8880"""""""""
8881
8882The ``llvm.objectsize`` intrinsic is designed to provide information to
8883the optimizers to determine at compile time whether a) an operation
8884(like memcpy) will overflow a buffer that corresponds to an object, or
8885b) that a runtime check for overflow isn't necessary. An object in this
8886context means an allocation of a specific class, structure, array, or
8887other object.
8888
8889Arguments:
8890""""""""""
8891
8892The ``llvm.objectsize`` intrinsic takes two arguments. The first
8893argument is a pointer to or into the ``object``. The second argument is
8894a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8895or -1 (if false) when the object size is unknown. The second argument
8896only accepts constants.
8897
8898Semantics:
8899""""""""""
8900
8901The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8902the size of the object concerned. If the size cannot be determined at
8903compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8904on the ``min`` argument).
8905
8906'``llvm.expect``' Intrinsic
8907^^^^^^^^^^^^^^^^^^^^^^^^^^^
8908
8909Syntax:
8910"""""""
8911
8912::
8913
8914 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8915 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8916
8917Overview:
8918"""""""""
8919
8920The ``llvm.expect`` intrinsic provides information about expected (the
8921most probable) value of ``val``, which can be used by optimizers.
8922
8923Arguments:
8924""""""""""
8925
8926The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8927a value. The second argument is an expected value, this needs to be a
8928constant value, variables are not allowed.
8929
8930Semantics:
8931""""""""""
8932
8933This intrinsic is lowered to the ``val``.
8934
8935'``llvm.donothing``' Intrinsic
8936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8937
8938Syntax:
8939"""""""
8940
8941::
8942
8943 declare void @llvm.donothing() nounwind readnone
8944
8945Overview:
8946"""""""""
8947
8948The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8949only intrinsic that can be called with an invoke instruction.
8950
8951Arguments:
8952""""""""""
8953
8954None.
8955
8956Semantics:
8957""""""""""
8958
8959This intrinsic does nothing, and it's removed by optimizers and ignored
8960by codegen.