blob: 18d2c9cfb52211d1840ca9ee02ba539a288ae19e [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvaf722b002012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
275The next two types of linkage are targeted for Microsoft Windows
276platform only. They are designed to support importing (exporting)
277symbols from (to) DLLs (Dynamic Link Libraries).
278
279``dllimport``
280 "``dllimport``" linkage causes the compiler to reference a function
281 or variable via a global pointer to a pointer that is set up by the
282 DLL exporting the symbol. On Microsoft Windows targets, the pointer
283 name is formed by combining ``__imp_`` and the function or variable
284 name.
285``dllexport``
286 "``dllexport``" linkage causes the compiler to provide a global
287 pointer to a pointer in a DLL, so that it can be referenced with the
288 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291
292For example, since the "``.LC0``" variable is defined to be internal, if
293another module defined a "``.LC0``" variable and was linked with this
294one, one of the two would be renamed, preventing a collision. Since
295"``main``" and "``puts``" are external (i.e., lacking any linkage
296declarations), they are accessible outside of the current module.
297
298It is illegal for a function *declaration* to have any linkage type
299other than ``external``, ``dllimport`` or ``extern_weak``.
300
Sean Silvaf722b002012-12-07 10:36:55 +0000301.. _callingconv:
302
303Calling Conventions
304-------------------
305
306LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
307:ref:`invokes <i_invoke>` can all have an optional calling convention
308specified for the call. The calling convention of any pair of dynamic
309caller/callee must match, or the behavior of the program is undefined.
310The following calling conventions are supported by LLVM, and more may be
311added in the future:
312
313"``ccc``" - The C calling convention
314 This calling convention (the default if no other calling convention
315 is specified) matches the target C calling conventions. This calling
316 convention supports varargs function calls and tolerates some
317 mismatch in the declared prototype and implemented declaration of
318 the function (as does normal C).
319"``fastcc``" - The fast calling convention
320 This calling convention attempts to make calls as fast as possible
321 (e.g. by passing things in registers). This calling convention
322 allows the target to use whatever tricks it wants to produce fast
323 code for the target, without having to conform to an externally
324 specified ABI (Application Binary Interface). `Tail calls can only
325 be optimized when this, the GHC or the HiPE convention is
326 used. <CodeGenerator.html#id80>`_ This calling convention does not
327 support varargs and requires the prototype of all callees to exactly
328 match the prototype of the function definition.
329"``coldcc``" - The cold calling convention
330 This calling convention attempts to make code in the caller as
331 efficient as possible under the assumption that the call is not
332 commonly executed. As such, these calls often preserve all registers
333 so that the call does not break any live ranges in the caller side.
334 This calling convention does not support varargs and requires the
335 prototype of all callees to exactly match the prototype of the
336 function definition.
337"``cc 10``" - GHC convention
338 This calling convention has been implemented specifically for use by
339 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
340 It passes everything in registers, going to extremes to achieve this
341 by disabling callee save registers. This calling convention should
342 not be used lightly but only for specific situations such as an
343 alternative to the *register pinning* performance technique often
344 used when implementing functional programming languages. At the
345 moment only X86 supports this convention and it has the following
346 limitations:
347
348 - On *X86-32* only supports up to 4 bit type parameters. No
349 floating point types are supported.
350 - On *X86-64* only supports up to 10 bit type parameters and 6
351 floating point parameters.
352
353 This calling convention supports `tail call
354 optimization <CodeGenerator.html#id80>`_ but requires both the
355 caller and callee are using it.
356"``cc 11``" - The HiPE calling convention
357 This calling convention has been implemented specifically for use by
358 the `High-Performance Erlang
359 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
360 native code compiler of the `Ericsson's Open Source Erlang/OTP
361 system <http://www.erlang.org/download.shtml>`_. It uses more
362 registers for argument passing than the ordinary C calling
363 convention and defines no callee-saved registers. The calling
364 convention properly supports `tail call
365 optimization <CodeGenerator.html#id80>`_ but requires that both the
366 caller and the callee use it. It uses a *register pinning*
367 mechanism, similar to GHC's convention, for keeping frequently
368 accessed runtime components pinned to specific hardware registers.
369 At the moment only X86 supports this convention (both 32 and 64
370 bit).
371"``cc <n>``" - Numbered convention
372 Any calling convention may be specified by number, allowing
373 target-specific calling conventions to be used. Target specific
374 calling conventions start at 64.
375
376More calling conventions can be added/defined on an as-needed basis, to
377support Pascal conventions or any other well-known target-independent
378convention.
379
Eli Bendersky1de14102013-06-07 19:40:08 +0000380.. _visibilitystyles:
381
Sean Silvaf722b002012-12-07 10:36:55 +0000382Visibility Styles
383-----------------
384
385All Global Variables and Functions have one of the following visibility
386styles:
387
388"``default``" - Default style
389 On targets that use the ELF object file format, default visibility
390 means that the declaration is visible to other modules and, in
391 shared libraries, means that the declared entity may be overridden.
392 On Darwin, default visibility means that the declaration is visible
393 to other modules. Default visibility corresponds to "external
394 linkage" in the language.
395"``hidden``" - Hidden style
396 Two declarations of an object with hidden visibility refer to the
397 same object if they are in the same shared object. Usually, hidden
398 visibility indicates that the symbol will not be placed into the
399 dynamic symbol table, so no other module (executable or shared
400 library) can reference it directly.
401"``protected``" - Protected style
402 On ELF, protected visibility indicates that the symbol will be
403 placed in the dynamic symbol table, but that references within the
404 defining module will bind to the local symbol. That is, the symbol
405 cannot be overridden by another module.
406
Eli Bendersky1de14102013-06-07 19:40:08 +0000407.. _namedtypes:
408
Sean Silvaf722b002012-12-07 10:36:55 +0000409Named Types
410-----------
411
412LLVM IR allows you to specify name aliases for certain types. This can
413make it easier to read the IR and make the IR more condensed
414(particularly when recursive types are involved). An example of a name
415specification is:
416
417.. code-block:: llvm
418
419 %mytype = type { %mytype*, i32 }
420
421You may give a name to any :ref:`type <typesystem>` except
422":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
423expected with the syntax "%mytype".
424
425Note that type names are aliases for the structural type that they
426indicate, and that you can therefore specify multiple names for the same
427type. This often leads to confusing behavior when dumping out a .ll
428file. Since LLVM IR uses structural typing, the name is not part of the
429type. When printing out LLVM IR, the printer will pick *one name* to
430render all types of a particular shape. This means that if you have code
431where two different source types end up having the same LLVM type, that
432the dumper will sometimes print the "wrong" or unexpected type. This is
433an important design point and isn't going to change.
434
435.. _globalvars:
436
437Global Variables
438----------------
439
440Global variables define regions of memory allocated at compilation time
Rafael Espindola1313a222013-10-29 13:44:11 +0000441instead of run-time.
442
443Global variables definitions must be initialized, may have an explicit section
444to be placed in, and may have an optional explicit alignment specified.
445
446Global variables in other translation units can also be declared, in which
447case they don't have an initializer.
Sean Silvaf722b002012-12-07 10:36:55 +0000448
449A variable may be defined as ``thread_local``, which means that it will
450not be shared by threads (each thread will have a separated copy of the
451variable). Not all targets support thread-local variables. Optionally, a
452TLS model may be specified:
453
454``localdynamic``
455 For variables that are only used within the current shared library.
456``initialexec``
457 For variables in modules that will not be loaded dynamically.
458``localexec``
459 For variables defined in the executable and only used within it.
460
461The models correspond to the ELF TLS models; see `ELF Handling For
462Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
463more information on under which circumstances the different models may
464be used. The target may choose a different TLS model if the specified
465model is not supported, or if a better choice of model can be made.
466
Michael Gottesmanf5735882013-01-31 05:48:48 +0000467A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000468the contents of the variable will **never** be modified (enabling better
469optimization, allowing the global data to be placed in the read-only
470section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000471initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000472variable.
473
474LLVM explicitly allows *declarations* of global variables to be marked
475constant, even if the final definition of the global is not. This
476capability can be used to enable slightly better optimization of the
477program, but requires the language definition to guarantee that
478optimizations based on the 'constantness' are valid for the translation
479units that do not include the definition.
480
481As SSA values, global variables define pointer values that are in scope
482(i.e. they dominate) all basic blocks in the program. Global variables
483always define a pointer to their "content" type because they describe a
484region of memory, and all memory objects in LLVM are accessed through
485pointers.
486
487Global variables can be marked with ``unnamed_addr`` which indicates
488that the address is not significant, only the content. Constants marked
489like this can be merged with other constants if they have the same
490initializer. Note that a constant with significant address *can* be
491merged with a ``unnamed_addr`` constant, the result being a constant
492whose address is significant.
493
494A global variable may be declared to reside in a target-specific
495numbered address space. For targets that support them, address spaces
496may affect how optimizations are performed and/or what target
497instructions are used to access the variable. The default address space
498is zero. The address space qualifier must precede any other attributes.
499
500LLVM allows an explicit section to be specified for globals. If the
501target supports it, it will emit globals to the section specified.
502
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000503By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000504variables defined within the module are not modified from their
505initial values before the start of the global initializer. This is
506true even for variables potentially accessible from outside the
507module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000508``@llvm.used``. This assumption may be suppressed by marking the
509variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000510
Sean Silvaf722b002012-12-07 10:36:55 +0000511An explicit alignment may be specified for a global, which must be a
512power of 2. If not present, or if the alignment is set to zero, the
513alignment of the global is set by the target to whatever it feels
514convenient. If an explicit alignment is specified, the global is forced
515to have exactly that alignment. Targets and optimizers are not allowed
516to over-align the global if the global has an assigned section. In this
517case, the extra alignment could be observable: for example, code could
518assume that the globals are densely packed in their section and try to
519iterate over them as an array, alignment padding would break this
520iteration.
521
522For example, the following defines a global in a numbered address space
523with an initializer, section, and alignment:
524
525.. code-block:: llvm
526
527 @G = addrspace(5) constant float 1.0, section "foo", align 4
528
Rafael Espindola1313a222013-10-29 13:44:11 +0000529The following example just declares a global variable
530
531.. code-block:: llvm
532
533 @G = external global i32
534
Sean Silvaf722b002012-12-07 10:36:55 +0000535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000555collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
556curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000563name, a possibly empty list of arguments, an optional alignment, an optional
564:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000565
Bill Wendlingcba7d7d2013-10-27 05:09:12 +0000566A function definition contains a list of basic blocks, forming the CFG (Control
567Flow Graph) for the function. Each basic block may optionally start with a label
568(giving the basic block a symbol table entry), contains a list of instructions,
569and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
570function return). If an explicit label is not provided, a block is assigned an
571implicit numbered label, using the next value from the same counter as used for
572unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
573entry block does not have an explicit label, it will be assigned label "%0",
574then the first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000575
576The first basic block in a function is special in two ways: it is
577immediately executed on entrance to the function, and it is not allowed
578to have predecessor basic blocks (i.e. there can not be any branches to
579the entry block of a function). Because the block can have no
580predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
581
582LLVM allows an explicit section to be specified for functions. If the
583target supports it, it will emit functions to the section specified.
584
585An explicit alignment may be specified for a function. If not present,
586or if the alignment is set to zero, the alignment of the function is set
587by the target to whatever it feels convenient. If an explicit alignment
588is specified, the function is forced to have at least that much
589alignment. All alignments must be a power of 2.
590
591If the ``unnamed_addr`` attribute is given, the address is know to not
592be significant and two identical functions can be merged.
593
594Syntax::
595
596 define [linkage] [visibility]
597 [cconv] [ret attrs]
598 <ResultType> @<FunctionName> ([argument list])
599 [fn Attrs] [section "name"] [align N]
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000600 [gc] [prefix Constant] { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000601
Eli Bendersky1de14102013-06-07 19:40:08 +0000602.. _langref_aliases:
603
Sean Silvaf722b002012-12-07 10:36:55 +0000604Aliases
605-------
606
607Aliases act as "second name" for the aliasee value (which can be either
608function, global variable, another alias or bitcast of global value).
609Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
610:ref:`visibility style <visibility>`.
611
612Syntax::
613
614 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
615
Rafael Espindolacfa7d812013-10-07 13:57:59 +0000616The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola2def1792013-10-06 15:10:43 +0000617``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola19794da2013-11-01 17:09:14 +0000618``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
619might not correctly handle dropping a weak symbol that is aliased by a non weak
620alias.
Rafael Espindola2def1792013-10-06 15:10:43 +0000621
Sean Silvaf722b002012-12-07 10:36:55 +0000622.. _namedmetadatastructure:
623
624Named Metadata
625--------------
626
627Named metadata is a collection of metadata. :ref:`Metadata
628nodes <metadata>` (but not metadata strings) are the only valid
629operands for a named metadata.
630
631Syntax::
632
633 ; Some unnamed metadata nodes, which are referenced by the named metadata.
634 !0 = metadata !{metadata !"zero"}
635 !1 = metadata !{metadata !"one"}
636 !2 = metadata !{metadata !"two"}
637 ; A named metadata.
638 !name = !{!0, !1, !2}
639
640.. _paramattrs:
641
642Parameter Attributes
643--------------------
644
645The return type and each parameter of a function type may have a set of
646*parameter attributes* associated with them. Parameter attributes are
647used to communicate additional information about the result or
648parameters of a function. Parameter attributes are considered to be part
649of the function, not of the function type, so functions with different
650parameter attributes can have the same function type.
651
652Parameter attributes are simple keywords that follow the type specified.
653If multiple parameter attributes are needed, they are space separated.
654For example:
655
656.. code-block:: llvm
657
658 declare i32 @printf(i8* noalias nocapture, ...)
659 declare i32 @atoi(i8 zeroext)
660 declare signext i8 @returns_signed_char()
661
662Note that any attributes for the function result (``nounwind``,
663``readonly``) come immediately after the argument list.
664
665Currently, only the following parameter attributes are defined:
666
667``zeroext``
668 This indicates to the code generator that the parameter or return
669 value should be zero-extended to the extent required by the target's
670 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
671 the caller (for a parameter) or the callee (for a return value).
672``signext``
673 This indicates to the code generator that the parameter or return
674 value should be sign-extended to the extent required by the target's
675 ABI (which is usually 32-bits) by the caller (for a parameter) or
676 the callee (for a return value).
677``inreg``
678 This indicates that this parameter or return value should be treated
679 in a special target-dependent fashion during while emitting code for
680 a function call or return (usually, by putting it in a register as
681 opposed to memory, though some targets use it to distinguish between
682 two different kinds of registers). Use of this attribute is
683 target-specific.
684``byval``
685 This indicates that the pointer parameter should really be passed by
686 value to the function. The attribute implies that a hidden copy of
687 the pointee is made between the caller and the callee, so the callee
688 is unable to modify the value in the caller. This attribute is only
689 valid on LLVM pointer arguments. It is generally used to pass
690 structs and arrays by value, but is also valid on pointers to
691 scalars. The copy is considered to belong to the caller not the
692 callee (for example, ``readonly`` functions should not write to
693 ``byval`` parameters). This is not a valid attribute for return
694 values.
695
696 The byval attribute also supports specifying an alignment with the
697 align attribute. It indicates the alignment of the stack slot to
698 form and the known alignment of the pointer specified to the call
699 site. If the alignment is not specified, then the code generator
700 makes a target-specific assumption.
701
702``sret``
703 This indicates that the pointer parameter specifies the address of a
704 structure that is the return value of the function in the source
705 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000706 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000707 not to trap and to be properly aligned. This may only be applied to
708 the first parameter. This is not a valid attribute for return
709 values.
710``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000711 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000712 the argument or return value do not alias pointer values which are
713 not *based* on it, ignoring certain "irrelevant" dependencies. For a
714 call to the parent function, dependencies between memory references
715 from before or after the call and from those during the call are
716 "irrelevant" to the ``noalias`` keyword for the arguments and return
717 value used in that call. The caller shares the responsibility with
718 the callee for ensuring that these requirements are met. For further
719 details, please see the discussion of the NoAlias response in `alias
720 analysis <AliasAnalysis.html#MustMayNo>`_.
721
722 Note that this definition of ``noalias`` is intentionally similar
723 to the definition of ``restrict`` in C99 for function arguments,
724 though it is slightly weaker.
725
726 For function return values, C99's ``restrict`` is not meaningful,
727 while LLVM's ``noalias`` is.
728``nocapture``
729 This indicates that the callee does not make any copies of the
730 pointer that outlive the callee itself. This is not a valid
731 attribute for return values.
732
733.. _nest:
734
735``nest``
736 This indicates that the pointer parameter can be excised using the
737 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000738 attribute for return values and can only be applied to one parameter.
739
740``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000741 This indicates that the function always returns the argument as its return
742 value. This is an optimization hint to the code generator when generating
743 the caller, allowing tail call optimization and omission of register saves
744 and restores in some cases; it is not checked or enforced when generating
745 the callee. The parameter and the function return type must be valid
746 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
747 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000748
749.. _gc:
750
751Garbage Collector Names
752-----------------------
753
754Each function may specify a garbage collector name, which is simply a
755string:
756
757.. code-block:: llvm
758
759 define void @f() gc "name" { ... }
760
761The compiler declares the supported values of *name*. Specifying a
762collector which will cause the compiler to alter its output in order to
763support the named garbage collection algorithm.
764
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000765.. _prefixdata:
766
767Prefix Data
768-----------
769
770Prefix data is data associated with a function which the code generator
771will emit immediately before the function body. The purpose of this feature
772is to allow frontends to associate language-specific runtime metadata with
773specific functions and make it available through the function pointer while
774still allowing the function pointer to be called. To access the data for a
775given function, a program may bitcast the function pointer to a pointer to
776the constant's type. This implies that the IR symbol points to the start
777of the prefix data.
778
779To maintain the semantics of ordinary function calls, the prefix data must
780have a particular format. Specifically, it must begin with a sequence of
781bytes which decode to a sequence of machine instructions, valid for the
782module's target, which transfer control to the point immediately succeeding
783the prefix data, without performing any other visible action. This allows
784the inliner and other passes to reason about the semantics of the function
785definition without needing to reason about the prefix data. Obviously this
786makes the format of the prefix data highly target dependent.
787
Peter Collingbournea4ae4052013-09-23 20:14:21 +0000788Prefix data is laid out as if it were an initializer for a global variable
789of the prefix data's type. No padding is automatically placed between the
790prefix data and the function body. If padding is required, it must be part
791of the prefix data.
792
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000793A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
794which encodes the ``nop`` instruction:
795
796.. code-block:: llvm
797
798 define void @f() prefix i8 144 { ... }
799
800Generally prefix data can be formed by encoding a relative branch instruction
801which skips the metadata, as in this example of valid prefix data for the
802x86_64 architecture, where the first two bytes encode ``jmp .+10``:
803
804.. code-block:: llvm
805
806 %0 = type <{ i8, i8, i8* }>
807
808 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
809
810A function may have prefix data but no body. This has similar semantics
811to the ``available_externally`` linkage in that the data may be used by the
812optimizers but will not be emitted in the object file.
813
Bill Wendling95ce4c22013-02-06 06:52:58 +0000814.. _attrgrp:
815
816Attribute Groups
817----------------
818
819Attribute groups are groups of attributes that are referenced by objects within
820the IR. They are important for keeping ``.ll`` files readable, because a lot of
821functions will use the same set of attributes. In the degenerative case of a
822``.ll`` file that corresponds to a single ``.c`` file, the single attribute
823group will capture the important command line flags used to build that file.
824
825An attribute group is a module-level object. To use an attribute group, an
826object references the attribute group's ID (e.g. ``#37``). An object may refer
827to more than one attribute group. In that situation, the attributes from the
828different groups are merged.
829
830Here is an example of attribute groups for a function that should always be
831inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
832
833.. code-block:: llvm
834
835 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000836 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000837
838 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000839 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000840
841 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
842 define void @f() #0 #1 { ... }
843
Sean Silvaf722b002012-12-07 10:36:55 +0000844.. _fnattrs:
845
846Function Attributes
847-------------------
848
849Function attributes are set to communicate additional information about
850a function. Function attributes are considered to be part of the
851function, not of the function type, so functions with different function
852attributes can have the same function type.
853
854Function attributes are simple keywords that follow the type specified.
855If multiple attributes are needed, they are space separated. For
856example:
857
858.. code-block:: llvm
859
860 define void @f() noinline { ... }
861 define void @f() alwaysinline { ... }
862 define void @f() alwaysinline optsize { ... }
863 define void @f() optsize { ... }
864
Sean Silvaf722b002012-12-07 10:36:55 +0000865``alignstack(<n>)``
866 This attribute indicates that, when emitting the prologue and
867 epilogue, the backend should forcibly align the stack pointer.
868 Specify the desired alignment, which must be a power of two, in
869 parentheses.
870``alwaysinline``
871 This attribute indicates that the inliner should attempt to inline
872 this function into callers whenever possible, ignoring any active
873 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000874``builtin``
875 This indicates that the callee function at a call site should be
876 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000877 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000878 direct calls to functions which are declared with the ``nobuiltin``
879 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000880``cold``
881 This attribute indicates that this function is rarely called. When
882 computing edge weights, basic blocks post-dominated by a cold
883 function call are also considered to be cold; and, thus, given low
884 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000885``inlinehint``
886 This attribute indicates that the source code contained a hint that
887 inlining this function is desirable (such as the "inline" keyword in
888 C/C++). It is just a hint; it imposes no requirements on the
889 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000890``minsize``
891 This attribute suggests that optimization passes and code generator
892 passes make choices that keep the code size of this function as small
Andrew Trickcf940ce2013-10-31 17:18:07 +0000893 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000894 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000895``naked``
896 This attribute disables prologue / epilogue emission for the
897 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000898``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000899 This indicates that the callee function at a call site is not recognized as
900 a built-in function. LLVM will retain the original call and not replace it
901 with equivalent code based on the semantics of the built-in function, unless
902 the call site uses the ``builtin`` attribute. This is valid at call sites
903 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000904``noduplicate``
905 This attribute indicates that calls to the function cannot be
906 duplicated. A call to a ``noduplicate`` function may be moved
907 within its parent function, but may not be duplicated within
908 its parent function.
909
910 A function containing a ``noduplicate`` call may still
911 be an inlining candidate, provided that the call is not
912 duplicated by inlining. That implies that the function has
913 internal linkage and only has one call site, so the original
914 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000915``noimplicitfloat``
916 This attributes disables implicit floating point instructions.
917``noinline``
918 This attribute indicates that the inliner should never inline this
919 function in any situation. This attribute may not be used together
920 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000921``nonlazybind``
922 This attribute suppresses lazy symbol binding for the function. This
923 may make calls to the function faster, at the cost of extra program
924 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000925``noredzone``
926 This attribute indicates that the code generator should not use a
927 red zone, even if the target-specific ABI normally permits it.
928``noreturn``
929 This function attribute indicates that the function never returns
930 normally. This produces undefined behavior at runtime if the
931 function ever does dynamically return.
932``nounwind``
933 This function attribute indicates that the function never returns
934 with an unwind or exceptional control flow. If the function does
935 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000936``optnone``
937 This function attribute indicates that the function is not optimized
Andrew Trickcf940ce2013-10-31 17:18:07 +0000938 by any optimization or code generator passes with the
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000939 exception of interprocedural optimization passes.
940 This attribute cannot be used together with the ``alwaysinline``
941 attribute; this attribute is also incompatible
942 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000943
Paul Robinsonfe45fd02013-11-18 21:44:03 +0000944 This attribute requires the ``noinline`` attribute to be specified on
945 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000946 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsonfe45fd02013-11-18 21:44:03 +0000947 candidates for inlining into the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000948``optsize``
949 This attribute suggests that optimization passes and code generator
950 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000951 and otherwise do optimizations specifically to reduce code size as
952 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000953``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000954 On a function, this attribute indicates that the function computes its
955 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000956 without dereferencing any pointer arguments or otherwise accessing
957 any mutable state (e.g. memory, control registers, etc) visible to
958 caller functions. It does not write through any pointer arguments
959 (including ``byval`` arguments) and never changes any state visible
960 to callers. This means that it cannot unwind exceptions by calling
961 the ``C++`` exception throwing methods.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000962
Nick Lewyckydc897372013-07-06 00:29:58 +0000963 On an argument, this attribute indicates that the function does not
964 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000965 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000966``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000967 On a function, this attribute indicates that the function does not write
968 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000969 modify any state (e.g. memory, control registers, etc) visible to
970 caller functions. It may dereference pointer arguments and read
971 state that may be set in the caller. A readonly function always
972 returns the same value (or unwinds an exception identically) when
973 called with the same set of arguments and global state. It cannot
974 unwind an exception by calling the ``C++`` exception throwing
975 methods.
Andrew Trickcf940ce2013-10-31 17:18:07 +0000976
Nick Lewyckydc897372013-07-06 00:29:58 +0000977 On an argument, this attribute indicates that the function does not write
978 through this pointer argument, even though it may write to the memory that
979 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000980``returns_twice``
981 This attribute indicates that this function can return twice. The C
982 ``setjmp`` is an example of such a function. The compiler disables
983 some optimizations (like tail calls) in the caller of these
984 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000985``sanitize_address``
986 This attribute indicates that AddressSanitizer checks
987 (dynamic address safety analysis) are enabled for this function.
988``sanitize_memory``
989 This attribute indicates that MemorySanitizer checks (dynamic detection
990 of accesses to uninitialized memory) are enabled for this function.
991``sanitize_thread``
992 This attribute indicates that ThreadSanitizer checks
993 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000994``ssp``
995 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000996 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000997 placed on the stack before the local variables that's checked upon
998 return from the function to see if it has been overwritten. A
999 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001000 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001001
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001002 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1003 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1004 - Calls to alloca() with variable sizes or constant sizes greater than
1005 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +00001006
1007 If a function that has an ``ssp`` attribute is inlined into a
1008 function that doesn't have an ``ssp`` attribute, then the resulting
1009 function will have an ``ssp`` attribute.
1010``sspreq``
1011 This attribute indicates that the function should *always* emit a
1012 stack smashing protector. This overrides the ``ssp`` function
1013 attribute.
1014
1015 If a function that has an ``sspreq`` attribute is inlined into a
1016 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001017 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1018 an ``sspreq`` attribute.
1019``sspstrong``
1020 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001021 protector. This attribute causes a strong heuristic to be used when
1022 determining if a function needs stack protectors. The strong heuristic
1023 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001024
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001025 - Arrays of any size and type
1026 - Aggregates containing an array of any size and type.
1027 - Calls to alloca().
1028 - Local variables that have had their address taken.
1029
1030 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001031
1032 If a function that has an ``sspstrong`` attribute is inlined into a
1033 function that doesn't have an ``sspstrong`` attribute, then the
1034 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00001035``uwtable``
1036 This attribute indicates that the ABI being targeted requires that
1037 an unwind table entry be produce for this function even if we can
1038 show that no exceptions passes by it. This is normally the case for
1039 the ELF x86-64 abi, but it can be disabled for some compilation
1040 units.
Sean Silvaf722b002012-12-07 10:36:55 +00001041
1042.. _moduleasm:
1043
1044Module-Level Inline Assembly
1045----------------------------
1046
1047Modules may contain "module-level inline asm" blocks, which corresponds
1048to the GCC "file scope inline asm" blocks. These blocks are internally
1049concatenated by LLVM and treated as a single unit, but may be separated
1050in the ``.ll`` file if desired. The syntax is very simple:
1051
1052.. code-block:: llvm
1053
1054 module asm "inline asm code goes here"
1055 module asm "more can go here"
1056
1057The strings can contain any character by escaping non-printable
1058characters. The escape sequence used is simply "\\xx" where "xx" is the
1059two digit hex code for the number.
1060
1061The inline asm code is simply printed to the machine code .s file when
1062assembly code is generated.
1063
Eli Bendersky1de14102013-06-07 19:40:08 +00001064.. _langref_datalayout:
1065
Sean Silvaf722b002012-12-07 10:36:55 +00001066Data Layout
1067-----------
1068
1069A module may specify a target specific data layout string that specifies
1070how data is to be laid out in memory. The syntax for the data layout is
1071simply:
1072
1073.. code-block:: llvm
1074
1075 target datalayout = "layout specification"
1076
1077The *layout specification* consists of a list of specifications
1078separated by the minus sign character ('-'). Each specification starts
1079with a letter and may include other information after the letter to
1080define some aspect of the data layout. The specifications accepted are
1081as follows:
1082
1083``E``
1084 Specifies that the target lays out data in big-endian form. That is,
1085 the bits with the most significance have the lowest address
1086 location.
1087``e``
1088 Specifies that the target lays out data in little-endian form. That
1089 is, the bits with the least significance have the lowest address
1090 location.
1091``S<size>``
1092 Specifies the natural alignment of the stack in bits. Alignment
1093 promotion of stack variables is limited to the natural stack
1094 alignment to avoid dynamic stack realignment. The stack alignment
1095 must be a multiple of 8-bits. If omitted, the natural stack
1096 alignment defaults to "unspecified", which does not prevent any
1097 alignment promotions.
1098``p[n]:<size>:<abi>:<pref>``
1099 This specifies the *size* of a pointer and its ``<abi>`` and
1100 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1101 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1102 preceding ``:`` should be omitted too. The address space, ``n`` is
1103 optional, and if not specified, denotes the default address space 0.
1104 The value of ``n`` must be in the range [1,2^23).
1105``i<size>:<abi>:<pref>``
1106 This specifies the alignment for an integer type of a given bit
1107 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1108``v<size>:<abi>:<pref>``
1109 This specifies the alignment for a vector type of a given bit
1110 ``<size>``.
1111``f<size>:<abi>:<pref>``
1112 This specifies the alignment for a floating point type of a given bit
1113 ``<size>``. Only values of ``<size>`` that are supported by the target
1114 will work. 32 (float) and 64 (double) are supported on all targets; 80
1115 or 128 (different flavors of long double) are also supported on some
1116 targets.
1117``a<size>:<abi>:<pref>``
1118 This specifies the alignment for an aggregate type of a given bit
1119 ``<size>``.
1120``s<size>:<abi>:<pref>``
1121 This specifies the alignment for a stack object of a given bit
1122 ``<size>``.
1123``n<size1>:<size2>:<size3>...``
1124 This specifies a set of native integer widths for the target CPU in
1125 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1126 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1127 this set are considered to support most general arithmetic operations
1128 efficiently.
1129
1130When constructing the data layout for a given target, LLVM starts with a
1131default set of specifications which are then (possibly) overridden by
1132the specifications in the ``datalayout`` keyword. The default
1133specifications are given in this list:
1134
1135- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001136- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1137- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1138 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001139- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001140- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1141- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1142- ``i16:16:16`` - i16 is 16-bit aligned
1143- ``i32:32:32`` - i32 is 32-bit aligned
1144- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1145 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001146- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001147- ``f32:32:32`` - float is 32-bit aligned
1148- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001149- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001150- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1151- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001152- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001153
1154When LLVM is determining the alignment for a given type, it uses the
1155following rules:
1156
1157#. If the type sought is an exact match for one of the specifications,
1158 that specification is used.
1159#. If no match is found, and the type sought is an integer type, then
1160 the smallest integer type that is larger than the bitwidth of the
1161 sought type is used. If none of the specifications are larger than
1162 the bitwidth then the largest integer type is used. For example,
1163 given the default specifications above, the i7 type will use the
1164 alignment of i8 (next largest) while both i65 and i256 will use the
1165 alignment of i64 (largest specified).
1166#. If no match is found, and the type sought is a vector type, then the
1167 largest vector type that is smaller than the sought vector type will
1168 be used as a fall back. This happens because <128 x double> can be
1169 implemented in terms of 64 <2 x double>, for example.
1170
1171The function of the data layout string may not be what you expect.
1172Notably, this is not a specification from the frontend of what alignment
1173the code generator should use.
1174
1175Instead, if specified, the target data layout is required to match what
1176the ultimate *code generator* expects. This string is used by the
1177mid-level optimizers to improve code, and this only works if it matches
1178what the ultimate code generator uses. If you would like to generate IR
1179that does not embed this target-specific detail into the IR, then you
1180don't have to specify the string. This will disable some optimizations
1181that require precise layout information, but this also prevents those
1182optimizations from introducing target specificity into the IR.
1183
Bill Wendling4216b992013-10-18 23:41:25 +00001184.. _langref_triple:
1185
1186Target Triple
1187-------------
1188
1189A module may specify a target triple string that describes the target
1190host. The syntax for the target triple is simply:
1191
1192.. code-block:: llvm
1193
1194 target triple = "x86_64-apple-macosx10.7.0"
1195
1196The *target triple* string consists of a series of identifiers delimited
1197by the minus sign character ('-'). The canonical forms are:
1198
1199::
1200
1201 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1202 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1203
1204This information is passed along to the backend so that it generates
1205code for the proper architecture. It's possible to override this on the
1206command line with the ``-mtriple`` command line option.
1207
Sean Silvaf722b002012-12-07 10:36:55 +00001208.. _pointeraliasing:
1209
1210Pointer Aliasing Rules
1211----------------------
1212
1213Any memory access must be done through a pointer value associated with
1214an address range of the memory access, otherwise the behavior is
1215undefined. Pointer values are associated with address ranges according
1216to the following rules:
1217
1218- A pointer value is associated with the addresses associated with any
1219 value it is *based* on.
1220- An address of a global variable is associated with the address range
1221 of the variable's storage.
1222- The result value of an allocation instruction is associated with the
1223 address range of the allocated storage.
1224- A null pointer in the default address-space is associated with no
1225 address.
1226- An integer constant other than zero or a pointer value returned from
1227 a function not defined within LLVM may be associated with address
1228 ranges allocated through mechanisms other than those provided by
1229 LLVM. Such ranges shall not overlap with any ranges of addresses
1230 allocated by mechanisms provided by LLVM.
1231
1232A pointer value is *based* on another pointer value according to the
1233following rules:
1234
1235- A pointer value formed from a ``getelementptr`` operation is *based*
1236 on the first operand of the ``getelementptr``.
1237- The result value of a ``bitcast`` is *based* on the operand of the
1238 ``bitcast``.
1239- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1240 values that contribute (directly or indirectly) to the computation of
1241 the pointer's value.
1242- The "*based* on" relationship is transitive.
1243
1244Note that this definition of *"based"* is intentionally similar to the
1245definition of *"based"* in C99, though it is slightly weaker.
1246
1247LLVM IR does not associate types with memory. The result type of a
1248``load`` merely indicates the size and alignment of the memory from
1249which to load, as well as the interpretation of the value. The first
1250operand type of a ``store`` similarly only indicates the size and
1251alignment of the store.
1252
1253Consequently, type-based alias analysis, aka TBAA, aka
1254``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1255:ref:`Metadata <metadata>` may be used to encode additional information
1256which specialized optimization passes may use to implement type-based
1257alias analysis.
1258
1259.. _volatile:
1260
1261Volatile Memory Accesses
1262------------------------
1263
1264Certain memory accesses, such as :ref:`load <i_load>`'s,
1265:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1266marked ``volatile``. The optimizers must not change the number of
1267volatile operations or change their order of execution relative to other
1268volatile operations. The optimizers *may* change the order of volatile
1269operations relative to non-volatile operations. This is not Java's
1270"volatile" and has no cross-thread synchronization behavior.
1271
Andrew Trick9a6dd022013-01-30 21:19:35 +00001272IR-level volatile loads and stores cannot safely be optimized into
1273llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1274flagged volatile. Likewise, the backend should never split or merge
1275target-legal volatile load/store instructions.
1276
Andrew Trick946317d2013-01-31 00:49:39 +00001277.. admonition:: Rationale
1278
1279 Platforms may rely on volatile loads and stores of natively supported
1280 data width to be executed as single instruction. For example, in C
1281 this holds for an l-value of volatile primitive type with native
1282 hardware support, but not necessarily for aggregate types. The
1283 frontend upholds these expectations, which are intentionally
1284 unspecified in the IR. The rules above ensure that IR transformation
1285 do not violate the frontend's contract with the language.
1286
Sean Silvaf722b002012-12-07 10:36:55 +00001287.. _memmodel:
1288
1289Memory Model for Concurrent Operations
1290--------------------------------------
1291
1292The LLVM IR does not define any way to start parallel threads of
1293execution or to register signal handlers. Nonetheless, there are
1294platform-specific ways to create them, and we define LLVM IR's behavior
1295in their presence. This model is inspired by the C++0x memory model.
1296
1297For a more informal introduction to this model, see the :doc:`Atomics`.
1298
1299We define a *happens-before* partial order as the least partial order
1300that
1301
1302- Is a superset of single-thread program order, and
1303- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1304 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1305 techniques, like pthread locks, thread creation, thread joining,
1306 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1307 Constraints <ordering>`).
1308
1309Note that program order does not introduce *happens-before* edges
1310between a thread and signals executing inside that thread.
1311
1312Every (defined) read operation (load instructions, memcpy, atomic
1313loads/read-modify-writes, etc.) R reads a series of bytes written by
1314(defined) write operations (store instructions, atomic
1315stores/read-modify-writes, memcpy, etc.). For the purposes of this
1316section, initialized globals are considered to have a write of the
1317initializer which is atomic and happens before any other read or write
1318of the memory in question. For each byte of a read R, R\ :sub:`byte`
1319may see any write to the same byte, except:
1320
1321- If write\ :sub:`1` happens before write\ :sub:`2`, and
1322 write\ :sub:`2` happens before R\ :sub:`byte`, then
1323 R\ :sub:`byte` does not see write\ :sub:`1`.
1324- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1325 R\ :sub:`byte` does not see write\ :sub:`3`.
1326
1327Given that definition, R\ :sub:`byte` is defined as follows:
1328
1329- If R is volatile, the result is target-dependent. (Volatile is
1330 supposed to give guarantees which can support ``sig_atomic_t`` in
1331 C/C++, and may be used for accesses to addresses which do not behave
1332 like normal memory. It does not generally provide cross-thread
1333 synchronization.)
1334- Otherwise, if there is no write to the same byte that happens before
1335 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1336- Otherwise, if R\ :sub:`byte` may see exactly one write,
1337 R\ :sub:`byte` returns the value written by that write.
1338- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1339 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1340 Memory Ordering Constraints <ordering>` section for additional
1341 constraints on how the choice is made.
1342- Otherwise R\ :sub:`byte` returns ``undef``.
1343
1344R returns the value composed of the series of bytes it read. This
1345implies that some bytes within the value may be ``undef`` **without**
1346the entire value being ``undef``. Note that this only defines the
1347semantics of the operation; it doesn't mean that targets will emit more
1348than one instruction to read the series of bytes.
1349
1350Note that in cases where none of the atomic intrinsics are used, this
1351model places only one restriction on IR transformations on top of what
1352is required for single-threaded execution: introducing a store to a byte
1353which might not otherwise be stored is not allowed in general.
1354(Specifically, in the case where another thread might write to and read
1355from an address, introducing a store can change a load that may see
1356exactly one write into a load that may see multiple writes.)
1357
1358.. _ordering:
1359
1360Atomic Memory Ordering Constraints
1361----------------------------------
1362
1363Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1364:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1365:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1366an ordering parameter that determines which other atomic instructions on
1367the same address they *synchronize with*. These semantics are borrowed
1368from Java and C++0x, but are somewhat more colloquial. If these
1369descriptions aren't precise enough, check those specs (see spec
1370references in the :doc:`atomics guide <Atomics>`).
1371:ref:`fence <i_fence>` instructions treat these orderings somewhat
1372differently since they don't take an address. See that instruction's
1373documentation for details.
1374
1375For a simpler introduction to the ordering constraints, see the
1376:doc:`Atomics`.
1377
1378``unordered``
1379 The set of values that can be read is governed by the happens-before
1380 partial order. A value cannot be read unless some operation wrote
1381 it. This is intended to provide a guarantee strong enough to model
1382 Java's non-volatile shared variables. This ordering cannot be
1383 specified for read-modify-write operations; it is not strong enough
1384 to make them atomic in any interesting way.
1385``monotonic``
1386 In addition to the guarantees of ``unordered``, there is a single
1387 total order for modifications by ``monotonic`` operations on each
1388 address. All modification orders must be compatible with the
1389 happens-before order. There is no guarantee that the modification
1390 orders can be combined to a global total order for the whole program
1391 (and this often will not be possible). The read in an atomic
1392 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1393 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1394 order immediately before the value it writes. If one atomic read
1395 happens before another atomic read of the same address, the later
1396 read must see the same value or a later value in the address's
1397 modification order. This disallows reordering of ``monotonic`` (or
1398 stronger) operations on the same address. If an address is written
1399 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1400 read that address repeatedly, the other threads must eventually see
1401 the write. This corresponds to the C++0x/C1x
1402 ``memory_order_relaxed``.
1403``acquire``
1404 In addition to the guarantees of ``monotonic``, a
1405 *synchronizes-with* edge may be formed with a ``release`` operation.
1406 This is intended to model C++'s ``memory_order_acquire``.
1407``release``
1408 In addition to the guarantees of ``monotonic``, if this operation
1409 writes a value which is subsequently read by an ``acquire``
1410 operation, it *synchronizes-with* that operation. (This isn't a
1411 complete description; see the C++0x definition of a release
1412 sequence.) This corresponds to the C++0x/C1x
1413 ``memory_order_release``.
1414``acq_rel`` (acquire+release)
1415 Acts as both an ``acquire`` and ``release`` operation on its
1416 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1417``seq_cst`` (sequentially consistent)
1418 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1419 operation which only reads, ``release`` for an operation which only
1420 writes), there is a global total order on all
1421 sequentially-consistent operations on all addresses, which is
1422 consistent with the *happens-before* partial order and with the
1423 modification orders of all the affected addresses. Each
1424 sequentially-consistent read sees the last preceding write to the
1425 same address in this global order. This corresponds to the C++0x/C1x
1426 ``memory_order_seq_cst`` and Java volatile.
1427
1428.. _singlethread:
1429
1430If an atomic operation is marked ``singlethread``, it only *synchronizes
1431with* or participates in modification and seq\_cst total orderings with
1432other operations running in the same thread (for example, in signal
1433handlers).
1434
1435.. _fastmath:
1436
1437Fast-Math Flags
1438---------------
1439
1440LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1441:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1442:ref:`frem <i_frem>`) have the following flags that can set to enable
1443otherwise unsafe floating point operations
1444
1445``nnan``
1446 No NaNs - Allow optimizations to assume the arguments and result are not
1447 NaN. Such optimizations are required to retain defined behavior over
1448 NaNs, but the value of the result is undefined.
1449
1450``ninf``
1451 No Infs - Allow optimizations to assume the arguments and result are not
1452 +/-Inf. Such optimizations are required to retain defined behavior over
1453 +/-Inf, but the value of the result is undefined.
1454
1455``nsz``
1456 No Signed Zeros - Allow optimizations to treat the sign of a zero
1457 argument or result as insignificant.
1458
1459``arcp``
1460 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1461 argument rather than perform division.
1462
1463``fast``
1464 Fast - Allow algebraically equivalent transformations that may
1465 dramatically change results in floating point (e.g. reassociate). This
1466 flag implies all the others.
1467
1468.. _typesystem:
1469
1470Type System
1471===========
1472
1473The LLVM type system is one of the most important features of the
1474intermediate representation. Being typed enables a number of
1475optimizations to be performed on the intermediate representation
1476directly, without having to do extra analyses on the side before the
1477transformation. A strong type system makes it easier to read the
1478generated code and enables novel analyses and transformations that are
1479not feasible to perform on normal three address code representations.
1480
Eli Bendersky88fe6822013-06-07 20:24:43 +00001481.. _typeclassifications:
1482
Sean Silvaf722b002012-12-07 10:36:55 +00001483Type Classifications
1484--------------------
1485
1486The types fall into a few useful classifications:
1487
1488
1489.. list-table::
1490 :header-rows: 1
1491
1492 * - Classification
1493 - Types
1494
1495 * - :ref:`integer <t_integer>`
1496 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1497 ``i64``, ...
1498
1499 * - :ref:`floating point <t_floating>`
1500 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1501 ``ppc_fp128``
1502
1503
1504 * - first class
1505
1506 .. _t_firstclass:
1507
1508 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1509 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1510 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1511 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1512
1513 * - :ref:`primitive <t_primitive>`
1514 - :ref:`label <t_label>`,
1515 :ref:`void <t_void>`,
1516 :ref:`integer <t_integer>`,
1517 :ref:`floating point <t_floating>`,
1518 :ref:`x86mmx <t_x86mmx>`,
1519 :ref:`metadata <t_metadata>`.
1520
1521 * - :ref:`derived <t_derived>`
1522 - :ref:`array <t_array>`,
1523 :ref:`function <t_function>`,
1524 :ref:`pointer <t_pointer>`,
1525 :ref:`structure <t_struct>`,
1526 :ref:`vector <t_vector>`,
1527 :ref:`opaque <t_opaque>`.
1528
1529The :ref:`first class <t_firstclass>` types are perhaps the most important.
1530Values of these types are the only ones which can be produced by
1531instructions.
1532
1533.. _t_primitive:
1534
1535Primitive Types
1536---------------
1537
1538The primitive types are the fundamental building blocks of the LLVM
1539system.
1540
1541.. _t_integer:
1542
1543Integer Type
1544^^^^^^^^^^^^
1545
1546Overview:
1547"""""""""
1548
1549The integer type is a very simple type that simply specifies an
1550arbitrary bit width for the integer type desired. Any bit width from 1
1551bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1552
1553Syntax:
1554"""""""
1555
1556::
1557
1558 iN
1559
1560The number of bits the integer will occupy is specified by the ``N``
1561value.
1562
1563Examples:
1564"""""""""
1565
1566+----------------+------------------------------------------------+
1567| ``i1`` | a single-bit integer. |
1568+----------------+------------------------------------------------+
1569| ``i32`` | a 32-bit integer. |
1570+----------------+------------------------------------------------+
1571| ``i1942652`` | a really big integer of over 1 million bits. |
1572+----------------+------------------------------------------------+
1573
1574.. _t_floating:
1575
1576Floating Point Types
1577^^^^^^^^^^^^^^^^^^^^
1578
1579.. list-table::
1580 :header-rows: 1
1581
1582 * - Type
1583 - Description
1584
1585 * - ``half``
1586 - 16-bit floating point value
1587
1588 * - ``float``
1589 - 32-bit floating point value
1590
1591 * - ``double``
1592 - 64-bit floating point value
1593
1594 * - ``fp128``
1595 - 128-bit floating point value (112-bit mantissa)
1596
1597 * - ``x86_fp80``
1598 - 80-bit floating point value (X87)
1599
1600 * - ``ppc_fp128``
1601 - 128-bit floating point value (two 64-bits)
1602
1603.. _t_x86mmx:
1604
1605X86mmx Type
1606^^^^^^^^^^^
1607
1608Overview:
1609"""""""""
1610
1611The x86mmx type represents a value held in an MMX register on an x86
1612machine. The operations allowed on it are quite limited: parameters and
1613return values, load and store, and bitcast. User-specified MMX
1614instructions are represented as intrinsic or asm calls with arguments
1615and/or results of this type. There are no arrays, vectors or constants
1616of this type.
1617
1618Syntax:
1619"""""""
1620
1621::
1622
1623 x86mmx
1624
1625.. _t_void:
1626
1627Void Type
1628^^^^^^^^^
1629
1630Overview:
1631"""""""""
1632
1633The void type does not represent any value and has no size.
1634
1635Syntax:
1636"""""""
1637
1638::
1639
1640 void
1641
1642.. _t_label:
1643
1644Label Type
1645^^^^^^^^^^
1646
1647Overview:
1648"""""""""
1649
1650The label type represents code labels.
1651
1652Syntax:
1653"""""""
1654
1655::
1656
1657 label
1658
1659.. _t_metadata:
1660
1661Metadata Type
1662^^^^^^^^^^^^^
1663
1664Overview:
1665"""""""""
1666
1667The metadata type represents embedded metadata. No derived types may be
1668created from metadata except for :ref:`function <t_function>` arguments.
1669
1670Syntax:
1671"""""""
1672
1673::
1674
1675 metadata
1676
1677.. _t_derived:
1678
1679Derived Types
1680-------------
1681
1682The real power in LLVM comes from the derived types in the system. This
1683is what allows a programmer to represent arrays, functions, pointers,
1684and other useful types. Each of these types contain one or more element
1685types which may be a primitive type, or another derived type. For
1686example, it is possible to have a two dimensional array, using an array
1687as the element type of another array.
1688
1689.. _t_aggregate:
1690
1691Aggregate Types
1692^^^^^^^^^^^^^^^
1693
1694Aggregate Types are a subset of derived types that can contain multiple
1695member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1696aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1697aggregate types.
1698
1699.. _t_array:
1700
1701Array Type
1702^^^^^^^^^^
1703
1704Overview:
1705"""""""""
1706
1707The array type is a very simple derived type that arranges elements
1708sequentially in memory. The array type requires a size (number of
1709elements) and an underlying data type.
1710
1711Syntax:
1712"""""""
1713
1714::
1715
1716 [<# elements> x <elementtype>]
1717
1718The number of elements is a constant integer value; ``elementtype`` may
1719be any type with a size.
1720
1721Examples:
1722"""""""""
1723
1724+------------------+--------------------------------------+
1725| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1726+------------------+--------------------------------------+
1727| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1728+------------------+--------------------------------------+
1729| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1730+------------------+--------------------------------------+
1731
1732Here are some examples of multidimensional arrays:
1733
1734+-----------------------------+----------------------------------------------------------+
1735| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1736+-----------------------------+----------------------------------------------------------+
1737| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1738+-----------------------------+----------------------------------------------------------+
1739| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1740+-----------------------------+----------------------------------------------------------+
1741
1742There is no restriction on indexing beyond the end of the array implied
1743by a static type (though there are restrictions on indexing beyond the
1744bounds of an allocated object in some cases). This means that
1745single-dimension 'variable sized array' addressing can be implemented in
1746LLVM with a zero length array type. An implementation of 'pascal style
1747arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1748example.
1749
1750.. _t_function:
1751
1752Function Type
1753^^^^^^^^^^^^^
1754
1755Overview:
1756"""""""""
1757
Bill Wendling09f8e132013-10-27 04:19:29 +00001758The function type can be thought of as a function signature. It consists of a
1759return type and a list of formal parameter types. The return type of a function
1760type is a void type or first class type --- except for :ref:`label <t_label>`
1761and :ref:`metadata <t_metadata>` types.
Sean Silvaf722b002012-12-07 10:36:55 +00001762
1763Syntax:
1764"""""""
1765
1766::
1767
1768 <returntype> (<parameter list>)
1769
1770...where '``<parameter list>``' is a comma-separated list of type
Bill Wendling09f8e132013-10-27 04:19:29 +00001771specifiers. Optionally, the parameter list may include a type ``...``, which
1772indicates that the function takes a variable number of arguments. Variable
1773argument functions can access their arguments with the :ref:`variable argument
1774handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1775except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvaf722b002012-12-07 10:36:55 +00001776
1777Examples:
1778"""""""""
1779
1780+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1781| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1782+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001783| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001784+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1785| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1786+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1787| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1788+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1789
1790.. _t_struct:
1791
1792Structure Type
1793^^^^^^^^^^^^^^
1794
1795Overview:
1796"""""""""
1797
1798The structure type is used to represent a collection of data members
1799together in memory. The elements of a structure may be any type that has
1800a size.
1801
1802Structures in memory are accessed using '``load``' and '``store``' by
1803getting a pointer to a field with the '``getelementptr``' instruction.
1804Structures in registers are accessed using the '``extractvalue``' and
1805'``insertvalue``' instructions.
1806
1807Structures may optionally be "packed" structures, which indicate that
1808the alignment of the struct is one byte, and that there is no padding
1809between the elements. In non-packed structs, padding between field types
1810is inserted as defined by the DataLayout string in the module, which is
1811required to match what the underlying code generator expects.
1812
1813Structures can either be "literal" or "identified". A literal structure
1814is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1815identified types are always defined at the top level with a name.
1816Literal types are uniqued by their contents and can never be recursive
1817or opaque since there is no way to write one. Identified types can be
1818recursive, can be opaqued, and are never uniqued.
1819
1820Syntax:
1821"""""""
1822
1823::
1824
1825 %T1 = type { <type list> } ; Identified normal struct type
1826 %T2 = type <{ <type list> }> ; Identified packed struct type
1827
1828Examples:
1829"""""""""
1830
1831+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1832| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1833+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001834| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001835+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1836| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1837+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1838
1839.. _t_opaque:
1840
1841Opaque Structure Types
1842^^^^^^^^^^^^^^^^^^^^^^
1843
1844Overview:
1845"""""""""
1846
1847Opaque structure types are used to represent named structure types that
1848do not have a body specified. This corresponds (for example) to the C
1849notion of a forward declared structure.
1850
1851Syntax:
1852"""""""
1853
1854::
1855
1856 %X = type opaque
1857 %52 = type opaque
1858
1859Examples:
1860"""""""""
1861
1862+--------------+-------------------+
1863| ``opaque`` | An opaque type. |
1864+--------------+-------------------+
1865
1866.. _t_pointer:
1867
1868Pointer Type
1869^^^^^^^^^^^^
1870
1871Overview:
1872"""""""""
1873
1874The pointer type is used to specify memory locations. Pointers are
1875commonly used to reference objects in memory.
1876
1877Pointer types may have an optional address space attribute defining the
1878numbered address space where the pointed-to object resides. The default
1879address space is number zero. The semantics of non-zero address spaces
1880are target-specific.
1881
1882Note that LLVM does not permit pointers to void (``void*``) nor does it
1883permit pointers to labels (``label*``). Use ``i8*`` instead.
1884
1885Syntax:
1886"""""""
1887
1888::
1889
1890 <type> *
1891
1892Examples:
1893"""""""""
1894
1895+-------------------------+--------------------------------------------------------------------------------------------------------------+
1896| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1897+-------------------------+--------------------------------------------------------------------------------------------------------------+
1898| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1899+-------------------------+--------------------------------------------------------------------------------------------------------------+
1900| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1901+-------------------------+--------------------------------------------------------------------------------------------------------------+
1902
1903.. _t_vector:
1904
1905Vector Type
1906^^^^^^^^^^^
1907
1908Overview:
1909"""""""""
1910
1911A vector type is a simple derived type that represents a vector of
1912elements. Vector types are used when multiple primitive data are
1913operated in parallel using a single instruction (SIMD). A vector type
1914requires a size (number of elements) and an underlying primitive data
1915type. Vector types are considered :ref:`first class <t_firstclass>`.
1916
1917Syntax:
1918"""""""
1919
1920::
1921
1922 < <# elements> x <elementtype> >
1923
1924The number of elements is a constant integer value larger than 0;
1925elementtype may be any integer or floating point type, or a pointer to
1926these types. Vectors of size zero are not allowed.
1927
1928Examples:
1929"""""""""
1930
1931+-------------------+--------------------------------------------------+
1932| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1933+-------------------+--------------------------------------------------+
1934| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1935+-------------------+--------------------------------------------------+
1936| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1937+-------------------+--------------------------------------------------+
1938| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1939+-------------------+--------------------------------------------------+
1940
1941Constants
1942=========
1943
1944LLVM has several different basic types of constants. This section
1945describes them all and their syntax.
1946
1947Simple Constants
1948----------------
1949
1950**Boolean constants**
1951 The two strings '``true``' and '``false``' are both valid constants
1952 of the ``i1`` type.
1953**Integer constants**
1954 Standard integers (such as '4') are constants of the
1955 :ref:`integer <t_integer>` type. Negative numbers may be used with
1956 integer types.
1957**Floating point constants**
1958 Floating point constants use standard decimal notation (e.g.
1959 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1960 hexadecimal notation (see below). The assembler requires the exact
1961 decimal value of a floating-point constant. For example, the
1962 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1963 decimal in binary. Floating point constants must have a :ref:`floating
1964 point <t_floating>` type.
1965**Null pointer constants**
1966 The identifier '``null``' is recognized as a null pointer constant
1967 and must be of :ref:`pointer type <t_pointer>`.
1968
1969The one non-intuitive notation for constants is the hexadecimal form of
1970floating point constants. For example, the form
1971'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1972than) '``double 4.5e+15``'. The only time hexadecimal floating point
1973constants are required (and the only time that they are generated by the
1974disassembler) is when a floating point constant must be emitted but it
1975cannot be represented as a decimal floating point number in a reasonable
1976number of digits. For example, NaN's, infinities, and other special
1977values are represented in their IEEE hexadecimal format so that assembly
1978and disassembly do not cause any bits to change in the constants.
1979
1980When using the hexadecimal form, constants of types half, float, and
1981double are represented using the 16-digit form shown above (which
1982matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001983must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001984precision, respectively. Hexadecimal format is always used for long
1985double, and there are three forms of long double. The 80-bit format used
1986by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1987128-bit format used by PowerPC (two adjacent doubles) is represented by
1988``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001989represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1990will only work if they match the long double format on your target.
1991The IEEE 16-bit format (half precision) is represented by ``0xH``
1992followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1993(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001994
1995There are no constants of type x86mmx.
1996
Eli Bendersky88fe6822013-06-07 20:24:43 +00001997.. _complexconstants:
1998
Sean Silvaf722b002012-12-07 10:36:55 +00001999Complex Constants
2000-----------------
2001
2002Complex constants are a (potentially recursive) combination of simple
2003constants and smaller complex constants.
2004
2005**Structure constants**
2006 Structure constants are represented with notation similar to
2007 structure type definitions (a comma separated list of elements,
2008 surrounded by braces (``{}``)). For example:
2009 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2010 "``@G = external global i32``". Structure constants must have
2011 :ref:`structure type <t_struct>`, and the number and types of elements
2012 must match those specified by the type.
2013**Array constants**
2014 Array constants are represented with notation similar to array type
2015 definitions (a comma separated list of elements, surrounded by
2016 square brackets (``[]``)). For example:
2017 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2018 :ref:`array type <t_array>`, and the number and types of elements must
2019 match those specified by the type.
2020**Vector constants**
2021 Vector constants are represented with notation similar to vector
2022 type definitions (a comma separated list of elements, surrounded by
2023 less-than/greater-than's (``<>``)). For example:
2024 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2025 must have :ref:`vector type <t_vector>`, and the number and types of
2026 elements must match those specified by the type.
2027**Zero initialization**
2028 The string '``zeroinitializer``' can be used to zero initialize a
2029 value to zero of *any* type, including scalar and
2030 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2031 having to print large zero initializers (e.g. for large arrays) and
2032 is always exactly equivalent to using explicit zero initializers.
2033**Metadata node**
2034 A metadata node is a structure-like constant with :ref:`metadata
2035 type <t_metadata>`. For example:
2036 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2037 constants that are meant to be interpreted as part of the
2038 instruction stream, metadata is a place to attach additional
2039 information such as debug info.
2040
2041Global Variable and Function Addresses
2042--------------------------------------
2043
2044The addresses of :ref:`global variables <globalvars>` and
2045:ref:`functions <functionstructure>` are always implicitly valid
2046(link-time) constants. These constants are explicitly referenced when
2047the :ref:`identifier for the global <identifiers>` is used and always have
2048:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2049file:
2050
2051.. code-block:: llvm
2052
2053 @X = global i32 17
2054 @Y = global i32 42
2055 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2056
2057.. _undefvalues:
2058
2059Undefined Values
2060----------------
2061
2062The string '``undef``' can be used anywhere a constant is expected, and
2063indicates that the user of the value may receive an unspecified
2064bit-pattern. Undefined values may be of any type (other than '``label``'
2065or '``void``') and be used anywhere a constant is permitted.
2066
2067Undefined values are useful because they indicate to the compiler that
2068the program is well defined no matter what value is used. This gives the
2069compiler more freedom to optimize. Here are some examples of
2070(potentially surprising) transformations that are valid (in pseudo IR):
2071
2072.. code-block:: llvm
2073
2074 %A = add %X, undef
2075 %B = sub %X, undef
2076 %C = xor %X, undef
2077 Safe:
2078 %A = undef
2079 %B = undef
2080 %C = undef
2081
2082This is safe because all of the output bits are affected by the undef
2083bits. Any output bit can have a zero or one depending on the input bits.
2084
2085.. code-block:: llvm
2086
2087 %A = or %X, undef
2088 %B = and %X, undef
2089 Safe:
2090 %A = -1
2091 %B = 0
2092 Unsafe:
2093 %A = undef
2094 %B = undef
2095
2096These logical operations have bits that are not always affected by the
2097input. For example, if ``%X`` has a zero bit, then the output of the
2098'``and``' operation will always be a zero for that bit, no matter what
2099the corresponding bit from the '``undef``' is. As such, it is unsafe to
2100optimize or assume that the result of the '``and``' is '``undef``'.
2101However, it is safe to assume that all bits of the '``undef``' could be
21020, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2103all the bits of the '``undef``' operand to the '``or``' could be set,
2104allowing the '``or``' to be folded to -1.
2105
2106.. code-block:: llvm
2107
2108 %A = select undef, %X, %Y
2109 %B = select undef, 42, %Y
2110 %C = select %X, %Y, undef
2111 Safe:
2112 %A = %X (or %Y)
2113 %B = 42 (or %Y)
2114 %C = %Y
2115 Unsafe:
2116 %A = undef
2117 %B = undef
2118 %C = undef
2119
2120This set of examples shows that undefined '``select``' (and conditional
2121branch) conditions can go *either way*, but they have to come from one
2122of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2123both known to have a clear low bit, then ``%A`` would have to have a
2124cleared low bit. However, in the ``%C`` example, the optimizer is
2125allowed to assume that the '``undef``' operand could be the same as
2126``%Y``, allowing the whole '``select``' to be eliminated.
2127
2128.. code-block:: llvm
2129
2130 %A = xor undef, undef
2131
2132 %B = undef
2133 %C = xor %B, %B
2134
2135 %D = undef
2136 %E = icmp lt %D, 4
2137 %F = icmp gte %D, 4
2138
2139 Safe:
2140 %A = undef
2141 %B = undef
2142 %C = undef
2143 %D = undef
2144 %E = undef
2145 %F = undef
2146
2147This example points out that two '``undef``' operands are not
2148necessarily the same. This can be surprising to people (and also matches
2149C semantics) where they assume that "``X^X``" is always zero, even if
2150``X`` is undefined. This isn't true for a number of reasons, but the
2151short answer is that an '``undef``' "variable" can arbitrarily change
2152its value over its "live range". This is true because the variable
2153doesn't actually *have a live range*. Instead, the value is logically
2154read from arbitrary registers that happen to be around when needed, so
2155the value is not necessarily consistent over time. In fact, ``%A`` and
2156``%C`` need to have the same semantics or the core LLVM "replace all
2157uses with" concept would not hold.
2158
2159.. code-block:: llvm
2160
2161 %A = fdiv undef, %X
2162 %B = fdiv %X, undef
2163 Safe:
2164 %A = undef
2165 b: unreachable
2166
2167These examples show the crucial difference between an *undefined value*
2168and *undefined behavior*. An undefined value (like '``undef``') is
2169allowed to have an arbitrary bit-pattern. This means that the ``%A``
2170operation can be constant folded to '``undef``', because the '``undef``'
2171could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2172However, in the second example, we can make a more aggressive
2173assumption: because the ``undef`` is allowed to be an arbitrary value,
2174we are allowed to assume that it could be zero. Since a divide by zero
2175has *undefined behavior*, we are allowed to assume that the operation
2176does not execute at all. This allows us to delete the divide and all
2177code after it. Because the undefined operation "can't happen", the
2178optimizer can assume that it occurs in dead code.
2179
2180.. code-block:: llvm
2181
2182 a: store undef -> %X
2183 b: store %X -> undef
2184 Safe:
2185 a: <deleted>
2186 b: unreachable
2187
2188These examples reiterate the ``fdiv`` example: a store *of* an undefined
2189value can be assumed to not have any effect; we can assume that the
2190value is overwritten with bits that happen to match what was already
2191there. However, a store *to* an undefined location could clobber
2192arbitrary memory, therefore, it has undefined behavior.
2193
2194.. _poisonvalues:
2195
2196Poison Values
2197-------------
2198
2199Poison values are similar to :ref:`undef values <undefvalues>`, however
2200they also represent the fact that an instruction or constant expression
2201which cannot evoke side effects has nevertheless detected a condition
2202which results in undefined behavior.
2203
2204There is currently no way of representing a poison value in the IR; they
2205only exist when produced by operations such as :ref:`add <i_add>` with
2206the ``nsw`` flag.
2207
2208Poison value behavior is defined in terms of value *dependence*:
2209
2210- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2211- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2212 their dynamic predecessor basic block.
2213- Function arguments depend on the corresponding actual argument values
2214 in the dynamic callers of their functions.
2215- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2216 instructions that dynamically transfer control back to them.
2217- :ref:`Invoke <i_invoke>` instructions depend on the
2218 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2219 call instructions that dynamically transfer control back to them.
2220- Non-volatile loads and stores depend on the most recent stores to all
2221 of the referenced memory addresses, following the order in the IR
2222 (including loads and stores implied by intrinsics such as
2223 :ref:`@llvm.memcpy <int_memcpy>`.)
2224- An instruction with externally visible side effects depends on the
2225 most recent preceding instruction with externally visible side
2226 effects, following the order in the IR. (This includes :ref:`volatile
2227 operations <volatile>`.)
2228- An instruction *control-depends* on a :ref:`terminator
2229 instruction <terminators>` if the terminator instruction has
2230 multiple successors and the instruction is always executed when
2231 control transfers to one of the successors, and may not be executed
2232 when control is transferred to another.
2233- Additionally, an instruction also *control-depends* on a terminator
2234 instruction if the set of instructions it otherwise depends on would
2235 be different if the terminator had transferred control to a different
2236 successor.
2237- Dependence is transitive.
2238
2239Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2240with the additional affect that any instruction which has a *dependence*
2241on a poison value has undefined behavior.
2242
2243Here are some examples:
2244
2245.. code-block:: llvm
2246
2247 entry:
2248 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2249 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2250 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2251 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2252
2253 store i32 %poison, i32* @g ; Poison value stored to memory.
2254 %poison2 = load i32* @g ; Poison value loaded back from memory.
2255
2256 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2257
2258 %narrowaddr = bitcast i32* @g to i16*
2259 %wideaddr = bitcast i32* @g to i64*
2260 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2261 %poison4 = load i64* %wideaddr ; Returns a poison value.
2262
2263 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2264 br i1 %cmp, label %true, label %end ; Branch to either destination.
2265
2266 true:
2267 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2268 ; it has undefined behavior.
2269 br label %end
2270
2271 end:
2272 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2273 ; Both edges into this PHI are
2274 ; control-dependent on %cmp, so this
2275 ; always results in a poison value.
2276
2277 store volatile i32 0, i32* @g ; This would depend on the store in %true
2278 ; if %cmp is true, or the store in %entry
2279 ; otherwise, so this is undefined behavior.
2280
2281 br i1 %cmp, label %second_true, label %second_end
2282 ; The same branch again, but this time the
2283 ; true block doesn't have side effects.
2284
2285 second_true:
2286 ; No side effects!
2287 ret void
2288
2289 second_end:
2290 store volatile i32 0, i32* @g ; This time, the instruction always depends
2291 ; on the store in %end. Also, it is
2292 ; control-equivalent to %end, so this is
2293 ; well-defined (ignoring earlier undefined
2294 ; behavior in this example).
2295
2296.. _blockaddress:
2297
2298Addresses of Basic Blocks
2299-------------------------
2300
2301``blockaddress(@function, %block)``
2302
2303The '``blockaddress``' constant computes the address of the specified
2304basic block in the specified function, and always has an ``i8*`` type.
2305Taking the address of the entry block is illegal.
2306
2307This value only has defined behavior when used as an operand to the
2308':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2309against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002310undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002311no label is equal to the null pointer. This may be passed around as an
2312opaque pointer sized value as long as the bits are not inspected. This
2313allows ``ptrtoint`` and arithmetic to be performed on these values so
2314long as the original value is reconstituted before the ``indirectbr``
2315instruction.
2316
2317Finally, some targets may provide defined semantics when using the value
2318as the operand to an inline assembly, but that is target specific.
2319
Eli Bendersky88fe6822013-06-07 20:24:43 +00002320.. _constantexprs:
2321
Sean Silvaf722b002012-12-07 10:36:55 +00002322Constant Expressions
2323--------------------
2324
2325Constant expressions are used to allow expressions involving other
2326constants to be used as constants. Constant expressions may be of any
2327:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2328that does not have side effects (e.g. load and call are not supported).
2329The following is the syntax for constant expressions:
2330
2331``trunc (CST to TYPE)``
2332 Truncate a constant to another type. The bit size of CST must be
2333 larger than the bit size of TYPE. Both types must be integers.
2334``zext (CST to TYPE)``
2335 Zero extend a constant to another type. The bit size of CST must be
2336 smaller than the bit size of TYPE. Both types must be integers.
2337``sext (CST to TYPE)``
2338 Sign extend a constant to another type. The bit size of CST must be
2339 smaller than the bit size of TYPE. Both types must be integers.
2340``fptrunc (CST to TYPE)``
2341 Truncate a floating point constant to another floating point type.
2342 The size of CST must be larger than the size of TYPE. Both types
2343 must be floating point.
2344``fpext (CST to TYPE)``
2345 Floating point extend a constant to another type. The size of CST
2346 must be smaller or equal to the size of TYPE. Both types must be
2347 floating point.
2348``fptoui (CST to TYPE)``
2349 Convert a floating point constant to the corresponding unsigned
2350 integer constant. TYPE must be a scalar or vector integer type. CST
2351 must be of scalar or vector floating point type. Both CST and TYPE
2352 must be scalars, or vectors of the same number of elements. If the
2353 value won't fit in the integer type, the results are undefined.
2354``fptosi (CST to TYPE)``
2355 Convert a floating point constant to the corresponding signed
2356 integer constant. TYPE must be a scalar or vector integer type. CST
2357 must be of scalar or vector floating point type. Both CST and TYPE
2358 must be scalars, or vectors of the same number of elements. If the
2359 value won't fit in the integer type, the results are undefined.
2360``uitofp (CST to TYPE)``
2361 Convert an unsigned integer constant to the corresponding floating
2362 point constant. TYPE must be a scalar or vector floating point type.
2363 CST must be of scalar or vector integer type. Both CST and TYPE must
2364 be scalars, or vectors of the same number of elements. If the value
2365 won't fit in the floating point type, the results are undefined.
2366``sitofp (CST to TYPE)``
2367 Convert a signed integer constant to the corresponding floating
2368 point constant. TYPE must be a scalar or vector floating point type.
2369 CST must be of scalar or vector integer type. Both CST and TYPE must
2370 be scalars, or vectors of the same number of elements. If the value
2371 won't fit in the floating point type, the results are undefined.
2372``ptrtoint (CST to TYPE)``
2373 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002374 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002375 pointer type. The ``CST`` value is zero extended, truncated, or
2376 unchanged to make it fit in ``TYPE``.
2377``inttoptr (CST to TYPE)``
2378 Convert an integer constant to a pointer constant. TYPE must be a
2379 pointer type. CST must be of integer type. The CST value is zero
2380 extended, truncated, or unchanged to make it fit in a pointer size.
2381 This one is *really* dangerous!
2382``bitcast (CST to TYPE)``
2383 Convert a constant, CST, to another TYPE. The constraints of the
2384 operands are the same as those for the :ref:`bitcast
2385 instruction <i_bitcast>`.
Matt Arsenault59d3ae62013-11-15 01:34:59 +00002386``addrspacecast (CST to TYPE)``
2387 Convert a constant pointer or constant vector of pointer, CST, to another
2388 TYPE in a different address space. The constraints of the operands are the
2389 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvaf722b002012-12-07 10:36:55 +00002390``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2391 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2392 constants. As with the :ref:`getelementptr <i_getelementptr>`
2393 instruction, the index list may have zero or more indexes, which are
2394 required to make sense for the type of "CSTPTR".
2395``select (COND, VAL1, VAL2)``
2396 Perform the :ref:`select operation <i_select>` on constants.
2397``icmp COND (VAL1, VAL2)``
2398 Performs the :ref:`icmp operation <i_icmp>` on constants.
2399``fcmp COND (VAL1, VAL2)``
2400 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2401``extractelement (VAL, IDX)``
2402 Perform the :ref:`extractelement operation <i_extractelement>` on
2403 constants.
2404``insertelement (VAL, ELT, IDX)``
2405 Perform the :ref:`insertelement operation <i_insertelement>` on
2406 constants.
2407``shufflevector (VEC1, VEC2, IDXMASK)``
2408 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2409 constants.
2410``extractvalue (VAL, IDX0, IDX1, ...)``
2411 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2412 constants. The index list is interpreted in a similar manner as
2413 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2414 least one index value must be specified.
2415``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2416 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2417 The index list is interpreted in a similar manner as indices in a
2418 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2419 value must be specified.
2420``OPCODE (LHS, RHS)``
2421 Perform the specified operation of the LHS and RHS constants. OPCODE
2422 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2423 binary <bitwiseops>` operations. The constraints on operands are
2424 the same as those for the corresponding instruction (e.g. no bitwise
2425 operations on floating point values are allowed).
2426
2427Other Values
2428============
2429
Eli Bendersky88fe6822013-06-07 20:24:43 +00002430.. _inlineasmexprs:
2431
Sean Silvaf722b002012-12-07 10:36:55 +00002432Inline Assembler Expressions
2433----------------------------
2434
2435LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2436Inline Assembly <moduleasm>`) through the use of a special value. This
2437value represents the inline assembler as a string (containing the
2438instructions to emit), a list of operand constraints (stored as a
2439string), a flag that indicates whether or not the inline asm expression
2440has side effects, and a flag indicating whether the function containing
2441the asm needs to align its stack conservatively. An example inline
2442assembler expression is:
2443
2444.. code-block:: llvm
2445
2446 i32 (i32) asm "bswap $0", "=r,r"
2447
2448Inline assembler expressions may **only** be used as the callee operand
2449of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2450Thus, typically we have:
2451
2452.. code-block:: llvm
2453
2454 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2455
2456Inline asms with side effects not visible in the constraint list must be
2457marked as having side effects. This is done through the use of the
2458'``sideeffect``' keyword, like so:
2459
2460.. code-block:: llvm
2461
2462 call void asm sideeffect "eieio", ""()
2463
2464In some cases inline asms will contain code that will not work unless
2465the stack is aligned in some way, such as calls or SSE instructions on
2466x86, yet will not contain code that does that alignment within the asm.
2467The compiler should make conservative assumptions about what the asm
2468might contain and should generate its usual stack alignment code in the
2469prologue if the '``alignstack``' keyword is present:
2470
2471.. code-block:: llvm
2472
2473 call void asm alignstack "eieio", ""()
2474
2475Inline asms also support using non-standard assembly dialects. The
2476assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2477the inline asm is using the Intel dialect. Currently, ATT and Intel are
2478the only supported dialects. An example is:
2479
2480.. code-block:: llvm
2481
2482 call void asm inteldialect "eieio", ""()
2483
2484If multiple keywords appear the '``sideeffect``' keyword must come
2485first, the '``alignstack``' keyword second and the '``inteldialect``'
2486keyword last.
2487
2488Inline Asm Metadata
2489^^^^^^^^^^^^^^^^^^^
2490
2491The call instructions that wrap inline asm nodes may have a
2492"``!srcloc``" MDNode attached to it that contains a list of constant
2493integers. If present, the code generator will use the integer as the
2494location cookie value when report errors through the ``LLVMContext``
2495error reporting mechanisms. This allows a front-end to correlate backend
2496errors that occur with inline asm back to the source code that produced
2497it. For example:
2498
2499.. code-block:: llvm
2500
2501 call void asm sideeffect "something bad", ""(), !srcloc !42
2502 ...
2503 !42 = !{ i32 1234567 }
2504
2505It is up to the front-end to make sense of the magic numbers it places
2506in the IR. If the MDNode contains multiple constants, the code generator
2507will use the one that corresponds to the line of the asm that the error
2508occurs on.
2509
2510.. _metadata:
2511
2512Metadata Nodes and Metadata Strings
2513-----------------------------------
2514
2515LLVM IR allows metadata to be attached to instructions in the program
2516that can convey extra information about the code to the optimizers and
2517code generator. One example application of metadata is source-level
2518debug information. There are two metadata primitives: strings and nodes.
2519All metadata has the ``metadata`` type and is identified in syntax by a
2520preceding exclamation point ('``!``').
2521
2522A metadata string is a string surrounded by double quotes. It can
2523contain any character by escaping non-printable characters with
2524"``\xx``" where "``xx``" is the two digit hex code. For example:
2525"``!"test\00"``".
2526
2527Metadata nodes are represented with notation similar to structure
2528constants (a comma separated list of elements, surrounded by braces and
2529preceded by an exclamation point). Metadata nodes can have any values as
2530their operand. For example:
2531
2532.. code-block:: llvm
2533
2534 !{ metadata !"test\00", i32 10}
2535
2536A :ref:`named metadata <namedmetadatastructure>` is a collection of
2537metadata nodes, which can be looked up in the module symbol table. For
2538example:
2539
2540.. code-block:: llvm
2541
2542 !foo = metadata !{!4, !3}
2543
2544Metadata can be used as function arguments. Here ``llvm.dbg.value``
2545function is using two metadata arguments:
2546
2547.. code-block:: llvm
2548
2549 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2550
2551Metadata can be attached with an instruction. Here metadata ``!21`` is
2552attached to the ``add`` instruction using the ``!dbg`` identifier:
2553
2554.. code-block:: llvm
2555
2556 %indvar.next = add i64 %indvar, 1, !dbg !21
2557
2558More information about specific metadata nodes recognized by the
2559optimizers and code generator is found below.
2560
2561'``tbaa``' Metadata
2562^^^^^^^^^^^^^^^^^^^
2563
2564In LLVM IR, memory does not have types, so LLVM's own type system is not
2565suitable for doing TBAA. Instead, metadata is added to the IR to
2566describe a type system of a higher level language. This can be used to
2567implement typical C/C++ TBAA, but it can also be used to implement
2568custom alias analysis behavior for other languages.
2569
2570The current metadata format is very simple. TBAA metadata nodes have up
2571to three fields, e.g.:
2572
2573.. code-block:: llvm
2574
2575 !0 = metadata !{ metadata !"an example type tree" }
2576 !1 = metadata !{ metadata !"int", metadata !0 }
2577 !2 = metadata !{ metadata !"float", metadata !0 }
2578 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2579
2580The first field is an identity field. It can be any value, usually a
2581metadata string, which uniquely identifies the type. The most important
2582name in the tree is the name of the root node. Two trees with different
2583root node names are entirely disjoint, even if they have leaves with
2584common names.
2585
2586The second field identifies the type's parent node in the tree, or is
2587null or omitted for a root node. A type is considered to alias all of
2588its descendants and all of its ancestors in the tree. Also, a type is
2589considered to alias all types in other trees, so that bitcode produced
2590from multiple front-ends is handled conservatively.
2591
2592If the third field is present, it's an integer which if equal to 1
2593indicates that the type is "constant" (meaning
2594``pointsToConstantMemory`` should return true; see `other useful
2595AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2596
2597'``tbaa.struct``' Metadata
2598^^^^^^^^^^^^^^^^^^^^^^^^^^
2599
2600The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2601aggregate assignment operations in C and similar languages, however it
2602is defined to copy a contiguous region of memory, which is more than
2603strictly necessary for aggregate types which contain holes due to
2604padding. Also, it doesn't contain any TBAA information about the fields
2605of the aggregate.
2606
2607``!tbaa.struct`` metadata can describe which memory subregions in a
2608memcpy are padding and what the TBAA tags of the struct are.
2609
2610The current metadata format is very simple. ``!tbaa.struct`` metadata
2611nodes are a list of operands which are in conceptual groups of three.
2612For each group of three, the first operand gives the byte offset of a
2613field in bytes, the second gives its size in bytes, and the third gives
2614its tbaa tag. e.g.:
2615
2616.. code-block:: llvm
2617
2618 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2619
2620This describes a struct with two fields. The first is at offset 0 bytes
2621with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2622and has size 4 bytes and has tbaa tag !2.
2623
2624Note that the fields need not be contiguous. In this example, there is a
26254 byte gap between the two fields. This gap represents padding which
2626does not carry useful data and need not be preserved.
2627
2628'``fpmath``' Metadata
2629^^^^^^^^^^^^^^^^^^^^^
2630
2631``fpmath`` metadata may be attached to any instruction of floating point
2632type. It can be used to express the maximum acceptable error in the
2633result of that instruction, in ULPs, thus potentially allowing the
2634compiler to use a more efficient but less accurate method of computing
2635it. ULP is defined as follows:
2636
2637 If ``x`` is a real number that lies between two finite consecutive
2638 floating-point numbers ``a`` and ``b``, without being equal to one
2639 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2640 distance between the two non-equal finite floating-point numbers
2641 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2642
2643The metadata node shall consist of a single positive floating point
2644number representing the maximum relative error, for example:
2645
2646.. code-block:: llvm
2647
2648 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2649
2650'``range``' Metadata
2651^^^^^^^^^^^^^^^^^^^^
2652
2653``range`` metadata may be attached only to loads of integer types. It
2654expresses the possible ranges the loaded value is in. The ranges are
2655represented with a flattened list of integers. The loaded value is known
2656to be in the union of the ranges defined by each consecutive pair. Each
2657pair has the following properties:
2658
2659- The type must match the type loaded by the instruction.
2660- The pair ``a,b`` represents the range ``[a,b)``.
2661- Both ``a`` and ``b`` are constants.
2662- The range is allowed to wrap.
2663- The range should not represent the full or empty set. That is,
2664 ``a!=b``.
2665
2666In addition, the pairs must be in signed order of the lower bound and
2667they must be non-contiguous.
2668
2669Examples:
2670
2671.. code-block:: llvm
2672
2673 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2674 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2675 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2676 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2677 ...
2678 !0 = metadata !{ i8 0, i8 2 }
2679 !1 = metadata !{ i8 255, i8 2 }
2680 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2681 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2682
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002683'``llvm.loop``'
2684^^^^^^^^^^^^^^^
2685
2686It is sometimes useful to attach information to loop constructs. Currently,
2687loop metadata is implemented as metadata attached to the branch instruction
2688in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002689guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002690specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002691
2692The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002693itself to avoid merging it with any other identifier metadata, e.g.,
2694during module linkage or function inlining. That is, each loop should refer
2695to their own identification metadata even if they reside in separate functions.
2696The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002697constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002698
2699.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002700
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002701 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002702 !1 = metadata !{ metadata !1 }
2703
Paul Redmondee21b6f2013-05-28 20:00:34 +00002704The loop identifier metadata can be used to specify additional per-loop
2705metadata. Any operands after the first operand can be treated as user-defined
2706metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2707by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002708
Paul Redmondee21b6f2013-05-28 20:00:34 +00002709.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002710
Paul Redmondee21b6f2013-05-28 20:00:34 +00002711 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2712 ...
2713 !0 = metadata !{ metadata !0, metadata !1 }
2714 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002715
2716'``llvm.mem``'
2717^^^^^^^^^^^^^^^
2718
2719Metadata types used to annotate memory accesses with information helpful
2720for optimizations are prefixed with ``llvm.mem``.
2721
2722'``llvm.mem.parallel_loop_access``' Metadata
2723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2724
2725For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002726the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002727also all of the memory accessing instructions in the loop body need to be
2728marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2729is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002730the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002731converted to sequential loops due to optimization passes that are unaware of
2732the parallel semantics and that insert new memory instructions to the loop
2733body.
2734
2735Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002736both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002737metadata types that refer to the same loop identifier metadata.
2738
2739.. code-block:: llvm
2740
2741 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002742 ...
2743 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2744 ...
2745 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2746 ...
2747 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002748
2749 for.end:
2750 ...
2751 !0 = metadata !{ metadata !0 }
2752
2753It is also possible to have nested parallel loops. In that case the
2754memory accesses refer to a list of loop identifier metadata nodes instead of
2755the loop identifier metadata node directly:
2756
2757.. code-block:: llvm
2758
2759 outer.for.body:
2760 ...
2761
2762 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002763 ...
2764 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2765 ...
2766 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2767 ...
2768 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002769
2770 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002771 ...
2772 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2773 ...
2774 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2775 ...
2776 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002777
2778 outer.for.end: ; preds = %for.body
2779 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002780 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2781 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2782 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002783
Paul Redmondee21b6f2013-05-28 20:00:34 +00002784'``llvm.vectorizer``'
2785^^^^^^^^^^^^^^^^^^^^^
2786
2787Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2788vectorization parameters such as vectorization factor and unroll factor.
2789
2790``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2791loop identification metadata.
2792
2793'``llvm.vectorizer.unroll``' Metadata
2794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2795
2796This metadata instructs the loop vectorizer to unroll the specified
2797loop exactly ``N`` times.
2798
2799The first operand is the string ``llvm.vectorizer.unroll`` and the second
2800operand is an integer specifying the unroll factor. For example:
2801
2802.. code-block:: llvm
2803
2804 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2805
2806Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2807loop.
2808
2809If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2810determined automatically.
2811
2812'``llvm.vectorizer.width``' Metadata
2813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2814
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002815This metadata sets the target width of the vectorizer to ``N``. Without
2816this metadata, the vectorizer will choose a width automatically.
2817Regardless of this metadata, the vectorizer will only vectorize loops if
2818it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002819
2820The first operand is the string ``llvm.vectorizer.width`` and the second
2821operand is an integer specifying the width. For example:
2822
2823.. code-block:: llvm
2824
2825 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2826
2827Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2828loop.
2829
2830If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2831automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002832
Sean Silvaf722b002012-12-07 10:36:55 +00002833Module Flags Metadata
2834=====================
2835
2836Information about the module as a whole is difficult to convey to LLVM's
2837subsystems. The LLVM IR isn't sufficient to transmit this information.
2838The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002839this. These flags are in the form of key / value pairs --- much like a
2840dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002841look it up.
2842
2843The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2844Each triplet has the following form:
2845
2846- The first element is a *behavior* flag, which specifies the behavior
2847 when two (or more) modules are merged together, and it encounters two
2848 (or more) metadata with the same ID. The supported behaviors are
2849 described below.
2850- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002851 metadata. Each module may only have one flag entry for each unique ID (not
2852 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002853- The third element is the value of the flag.
2854
2855When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002856``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2857each unique metadata ID string, there will be exactly one entry in the merged
2858modules ``llvm.module.flags`` metadata table, and the value for that entry will
2859be determined by the merge behavior flag, as described below. The only exception
2860is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002861
2862The following behaviors are supported:
2863
2864.. list-table::
2865 :header-rows: 1
2866 :widths: 10 90
2867
2868 * - Value
2869 - Behavior
2870
2871 * - 1
2872 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002873 Emits an error if two values disagree, otherwise the resulting value
2874 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002875
2876 * - 2
2877 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002878 Emits a warning if two values disagree. The result value will be the
2879 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002880
2881 * - 3
2882 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002883 Adds a requirement that another module flag be present and have a
2884 specified value after linking is performed. The value must be a
2885 metadata pair, where the first element of the pair is the ID of the
2886 module flag to be restricted, and the second element of the pair is
2887 the value the module flag should be restricted to. This behavior can
2888 be used to restrict the allowable results (via triggering of an
2889 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002890
2891 * - 4
2892 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002893 Uses the specified value, regardless of the behavior or value of the
2894 other module. If both modules specify **Override**, but the values
2895 differ, an error will be emitted.
2896
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002897 * - 5
2898 - **Append**
2899 Appends the two values, which are required to be metadata nodes.
2900
2901 * - 6
2902 - **AppendUnique**
2903 Appends the two values, which are required to be metadata
2904 nodes. However, duplicate entries in the second list are dropped
2905 during the append operation.
2906
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002907It is an error for a particular unique flag ID to have multiple behaviors,
2908except in the case of **Require** (which adds restrictions on another metadata
2909value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002910
2911An example of module flags:
2912
2913.. code-block:: llvm
2914
2915 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2916 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2917 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2918 !3 = metadata !{ i32 3, metadata !"qux",
2919 metadata !{
2920 metadata !"foo", i32 1
2921 }
2922 }
2923 !llvm.module.flags = !{ !0, !1, !2, !3 }
2924
2925- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2926 if two or more ``!"foo"`` flags are seen is to emit an error if their
2927 values are not equal.
2928
2929- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2930 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002931 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002932
2933- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2934 behavior if two or more ``!"qux"`` flags are seen is to emit a
2935 warning if their values are not equal.
2936
2937- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2938
2939 ::
2940
2941 metadata !{ metadata !"foo", i32 1 }
2942
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002943 The behavior is to emit an error if the ``llvm.module.flags`` does not
2944 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2945 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002946
2947Objective-C Garbage Collection Module Flags Metadata
2948----------------------------------------------------
2949
2950On the Mach-O platform, Objective-C stores metadata about garbage
2951collection in a special section called "image info". The metadata
2952consists of a version number and a bitmask specifying what types of
2953garbage collection are supported (if any) by the file. If two or more
2954modules are linked together their garbage collection metadata needs to
2955be merged rather than appended together.
2956
2957The Objective-C garbage collection module flags metadata consists of the
2958following key-value pairs:
2959
2960.. list-table::
2961 :header-rows: 1
2962 :widths: 30 70
2963
2964 * - Key
2965 - Value
2966
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002967 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002968 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002969
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002970 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002971 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002972 always 0.
2973
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002974 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002975 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002976 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2977 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2978 Objective-C ABI version 2.
2979
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002980 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002981 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002982 not. Valid values are 0, for no garbage collection, and 2, for garbage
2983 collection supported.
2984
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002985 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002986 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002987 If present, its value must be 6. This flag requires that the
2988 ``Objective-C Garbage Collection`` flag have the value 2.
2989
2990Some important flag interactions:
2991
2992- If a module with ``Objective-C Garbage Collection`` set to 0 is
2993 merged with a module with ``Objective-C Garbage Collection`` set to
2994 2, then the resulting module has the
2995 ``Objective-C Garbage Collection`` flag set to 0.
2996- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2997 merged with a module with ``Objective-C GC Only`` set to 6.
2998
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002999Automatic Linker Flags Module Flags Metadata
3000--------------------------------------------
3001
3002Some targets support embedding flags to the linker inside individual object
3003files. Typically this is used in conjunction with language extensions which
3004allow source files to explicitly declare the libraries they depend on, and have
3005these automatically be transmitted to the linker via object files.
3006
3007These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003008using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003009to be ``AppendUnique``, and the value for the key is expected to be a metadata
3010node which should be a list of other metadata nodes, each of which should be a
3011list of metadata strings defining linker options.
3012
3013For example, the following metadata section specifies two separate sets of
3014linker options, presumably to link against ``libz`` and the ``Cocoa``
3015framework::
3016
Michael Liao2faa0f32013-03-06 18:24:34 +00003017 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003018 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00003019 metadata !{ metadata !"-lz" },
3020 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003021 !llvm.module.flags = !{ !0 }
3022
3023The metadata encoding as lists of lists of options, as opposed to a collapsed
3024list of options, is chosen so that the IR encoding can use multiple option
3025strings to specify e.g., a single library, while still having that specifier be
3026preserved as an atomic element that can be recognized by a target specific
3027assembly writer or object file emitter.
3028
3029Each individual option is required to be either a valid option for the target's
3030linker, or an option that is reserved by the target specific assembly writer or
3031object file emitter. No other aspect of these options is defined by the IR.
3032
Eli Bendersky88fe6822013-06-07 20:24:43 +00003033.. _intrinsicglobalvariables:
3034
Sean Silvaf722b002012-12-07 10:36:55 +00003035Intrinsic Global Variables
3036==========================
3037
3038LLVM has a number of "magic" global variables that contain data that
3039affect code generation or other IR semantics. These are documented here.
3040All globals of this sort should have a section specified as
3041"``llvm.metadata``". This section and all globals that start with
3042"``llvm.``" are reserved for use by LLVM.
3043
Eli Bendersky88fe6822013-06-07 20:24:43 +00003044.. _gv_llvmused:
3045
Sean Silvaf722b002012-12-07 10:36:55 +00003046The '``llvm.used``' Global Variable
3047-----------------------------------
3048
Rafael Espindolacde25b42013-04-22 14:58:02 +00003049The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00003050:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003051pointers to named global variables, functions and aliases which may optionally
3052have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00003053use of it is:
3054
3055.. code-block:: llvm
3056
3057 @X = global i8 4
3058 @Y = global i32 123
3059
3060 @llvm.used = appending global [2 x i8*] [
3061 i8* @X,
3062 i8* bitcast (i32* @Y to i8*)
3063 ], section "llvm.metadata"
3064
Rafael Espindolacde25b42013-04-22 14:58:02 +00003065If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3066and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003067symbol that it cannot see (which is why they have to be named). For example, if
3068a variable has internal linkage and no references other than that from the
3069``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3070references from inline asms and other things the compiler cannot "see", and
3071corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00003072
3073On some targets, the code generator must emit a directive to the
3074assembler or object file to prevent the assembler and linker from
3075molesting the symbol.
3076
Eli Bendersky88fe6822013-06-07 20:24:43 +00003077.. _gv_llvmcompilerused:
3078
Sean Silvaf722b002012-12-07 10:36:55 +00003079The '``llvm.compiler.used``' Global Variable
3080--------------------------------------------
3081
3082The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3083directive, except that it only prevents the compiler from touching the
3084symbol. On targets that support it, this allows an intelligent linker to
3085optimize references to the symbol without being impeded as it would be
3086by ``@llvm.used``.
3087
3088This is a rare construct that should only be used in rare circumstances,
3089and should not be exposed to source languages.
3090
Eli Bendersky88fe6822013-06-07 20:24:43 +00003091.. _gv_llvmglobalctors:
3092
Sean Silvaf722b002012-12-07 10:36:55 +00003093The '``llvm.global_ctors``' Global Variable
3094-------------------------------------------
3095
3096.. code-block:: llvm
3097
3098 %0 = type { i32, void ()* }
3099 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3100
3101The ``@llvm.global_ctors`` array contains a list of constructor
3102functions and associated priorities. The functions referenced by this
3103array will be called in ascending order of priority (i.e. lowest first)
3104when the module is loaded. The order of functions with the same priority
3105is not defined.
3106
Eli Bendersky88fe6822013-06-07 20:24:43 +00003107.. _llvmglobaldtors:
3108
Sean Silvaf722b002012-12-07 10:36:55 +00003109The '``llvm.global_dtors``' Global Variable
3110-------------------------------------------
3111
3112.. code-block:: llvm
3113
3114 %0 = type { i32, void ()* }
3115 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3116
3117The ``@llvm.global_dtors`` array contains a list of destructor functions
3118and associated priorities. The functions referenced by this array will
3119be called in descending order of priority (i.e. highest first) when the
3120module is loaded. The order of functions with the same priority is not
3121defined.
3122
3123Instruction Reference
3124=====================
3125
3126The LLVM instruction set consists of several different classifications
3127of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3128instructions <binaryops>`, :ref:`bitwise binary
3129instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3130:ref:`other instructions <otherops>`.
3131
3132.. _terminators:
3133
3134Terminator Instructions
3135-----------------------
3136
3137As mentioned :ref:`previously <functionstructure>`, every basic block in a
3138program ends with a "Terminator" instruction, which indicates which
3139block should be executed after the current block is finished. These
3140terminator instructions typically yield a '``void``' value: they produce
3141control flow, not values (the one exception being the
3142':ref:`invoke <i_invoke>`' instruction).
3143
3144The terminator instructions are: ':ref:`ret <i_ret>`',
3145':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3146':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3147':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3148
3149.. _i_ret:
3150
3151'``ret``' Instruction
3152^^^^^^^^^^^^^^^^^^^^^
3153
3154Syntax:
3155"""""""
3156
3157::
3158
3159 ret <type> <value> ; Return a value from a non-void function
3160 ret void ; Return from void function
3161
3162Overview:
3163"""""""""
3164
3165The '``ret``' instruction is used to return control flow (and optionally
3166a value) from a function back to the caller.
3167
3168There are two forms of the '``ret``' instruction: one that returns a
3169value and then causes control flow, and one that just causes control
3170flow to occur.
3171
3172Arguments:
3173""""""""""
3174
3175The '``ret``' instruction optionally accepts a single argument, the
3176return value. The type of the return value must be a ':ref:`first
3177class <t_firstclass>`' type.
3178
3179A function is not :ref:`well formed <wellformed>` if it it has a non-void
3180return type and contains a '``ret``' instruction with no return value or
3181a return value with a type that does not match its type, or if it has a
3182void return type and contains a '``ret``' instruction with a return
3183value.
3184
3185Semantics:
3186""""""""""
3187
3188When the '``ret``' instruction is executed, control flow returns back to
3189the calling function's context. If the caller is a
3190":ref:`call <i_call>`" instruction, execution continues at the
3191instruction after the call. If the caller was an
3192":ref:`invoke <i_invoke>`" instruction, execution continues at the
3193beginning of the "normal" destination block. If the instruction returns
3194a value, that value shall set the call or invoke instruction's return
3195value.
3196
3197Example:
3198""""""""
3199
3200.. code-block:: llvm
3201
3202 ret i32 5 ; Return an integer value of 5
3203 ret void ; Return from a void function
3204 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3205
3206.. _i_br:
3207
3208'``br``' Instruction
3209^^^^^^^^^^^^^^^^^^^^
3210
3211Syntax:
3212"""""""
3213
3214::
3215
3216 br i1 <cond>, label <iftrue>, label <iffalse>
3217 br label <dest> ; Unconditional branch
3218
3219Overview:
3220"""""""""
3221
3222The '``br``' instruction is used to cause control flow to transfer to a
3223different basic block in the current function. There are two forms of
3224this instruction, corresponding to a conditional branch and an
3225unconditional branch.
3226
3227Arguments:
3228""""""""""
3229
3230The conditional branch form of the '``br``' instruction takes a single
3231'``i1``' value and two '``label``' values. The unconditional form of the
3232'``br``' instruction takes a single '``label``' value as a target.
3233
3234Semantics:
3235""""""""""
3236
3237Upon execution of a conditional '``br``' instruction, the '``i1``'
3238argument is evaluated. If the value is ``true``, control flows to the
3239'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3240to the '``iffalse``' ``label`` argument.
3241
3242Example:
3243""""""""
3244
3245.. code-block:: llvm
3246
3247 Test:
3248 %cond = icmp eq i32 %a, %b
3249 br i1 %cond, label %IfEqual, label %IfUnequal
3250 IfEqual:
3251 ret i32 1
3252 IfUnequal:
3253 ret i32 0
3254
3255.. _i_switch:
3256
3257'``switch``' Instruction
3258^^^^^^^^^^^^^^^^^^^^^^^^
3259
3260Syntax:
3261"""""""
3262
3263::
3264
3265 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3266
3267Overview:
3268"""""""""
3269
3270The '``switch``' instruction is used to transfer control flow to one of
3271several different places. It is a generalization of the '``br``'
3272instruction, allowing a branch to occur to one of many possible
3273destinations.
3274
3275Arguments:
3276""""""""""
3277
3278The '``switch``' instruction uses three parameters: an integer
3279comparison value '``value``', a default '``label``' destination, and an
3280array of pairs of comparison value constants and '``label``'s. The table
3281is not allowed to contain duplicate constant entries.
3282
3283Semantics:
3284""""""""""
3285
3286The ``switch`` instruction specifies a table of values and destinations.
3287When the '``switch``' instruction is executed, this table is searched
3288for the given value. If the value is found, control flow is transferred
3289to the corresponding destination; otherwise, control flow is transferred
3290to the default destination.
3291
3292Implementation:
3293"""""""""""""""
3294
3295Depending on properties of the target machine and the particular
3296``switch`` instruction, this instruction may be code generated in
3297different ways. For example, it could be generated as a series of
3298chained conditional branches or with a lookup table.
3299
3300Example:
3301""""""""
3302
3303.. code-block:: llvm
3304
3305 ; Emulate a conditional br instruction
3306 %Val = zext i1 %value to i32
3307 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3308
3309 ; Emulate an unconditional br instruction
3310 switch i32 0, label %dest [ ]
3311
3312 ; Implement a jump table:
3313 switch i32 %val, label %otherwise [ i32 0, label %onzero
3314 i32 1, label %onone
3315 i32 2, label %ontwo ]
3316
3317.. _i_indirectbr:
3318
3319'``indirectbr``' Instruction
3320^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3321
3322Syntax:
3323"""""""
3324
3325::
3326
3327 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3328
3329Overview:
3330"""""""""
3331
3332The '``indirectbr``' instruction implements an indirect branch to a
3333label within the current function, whose address is specified by
3334"``address``". Address must be derived from a
3335:ref:`blockaddress <blockaddress>` constant.
3336
3337Arguments:
3338""""""""""
3339
3340The '``address``' argument is the address of the label to jump to. The
3341rest of the arguments indicate the full set of possible destinations
3342that the address may point to. Blocks are allowed to occur multiple
3343times in the destination list, though this isn't particularly useful.
3344
3345This destination list is required so that dataflow analysis has an
3346accurate understanding of the CFG.
3347
3348Semantics:
3349""""""""""
3350
3351Control transfers to the block specified in the address argument. All
3352possible destination blocks must be listed in the label list, otherwise
3353this instruction has undefined behavior. This implies that jumps to
3354labels defined in other functions have undefined behavior as well.
3355
3356Implementation:
3357"""""""""""""""
3358
3359This is typically implemented with a jump through a register.
3360
3361Example:
3362""""""""
3363
3364.. code-block:: llvm
3365
3366 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3367
3368.. _i_invoke:
3369
3370'``invoke``' Instruction
3371^^^^^^^^^^^^^^^^^^^^^^^^
3372
3373Syntax:
3374"""""""
3375
3376::
3377
3378 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3379 to label <normal label> unwind label <exception label>
3380
3381Overview:
3382"""""""""
3383
3384The '``invoke``' instruction causes control to transfer to a specified
3385function, with the possibility of control flow transfer to either the
3386'``normal``' label or the '``exception``' label. If the callee function
3387returns with the "``ret``" instruction, control flow will return to the
3388"normal" label. If the callee (or any indirect callees) returns via the
3389":ref:`resume <i_resume>`" instruction or other exception handling
3390mechanism, control is interrupted and continued at the dynamically
3391nearest "exception" label.
3392
3393The '``exception``' label is a `landing
3394pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3395'``exception``' label is required to have the
3396":ref:`landingpad <i_landingpad>`" instruction, which contains the
3397information about the behavior of the program after unwinding happens,
3398as its first non-PHI instruction. The restrictions on the
3399"``landingpad``" instruction's tightly couples it to the "``invoke``"
3400instruction, so that the important information contained within the
3401"``landingpad``" instruction can't be lost through normal code motion.
3402
3403Arguments:
3404""""""""""
3405
3406This instruction requires several arguments:
3407
3408#. The optional "cconv" marker indicates which :ref:`calling
3409 convention <callingconv>` the call should use. If none is
3410 specified, the call defaults to using C calling conventions.
3411#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3412 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3413 are valid here.
3414#. '``ptr to function ty``': shall be the signature of the pointer to
3415 function value being invoked. In most cases, this is a direct
3416 function invocation, but indirect ``invoke``'s are just as possible,
3417 branching off an arbitrary pointer to function value.
3418#. '``function ptr val``': An LLVM value containing a pointer to a
3419 function to be invoked.
3420#. '``function args``': argument list whose types match the function
3421 signature argument types and parameter attributes. All arguments must
3422 be of :ref:`first class <t_firstclass>` type. If the function signature
3423 indicates the function accepts a variable number of arguments, the
3424 extra arguments can be specified.
3425#. '``normal label``': the label reached when the called function
3426 executes a '``ret``' instruction.
3427#. '``exception label``': the label reached when a callee returns via
3428 the :ref:`resume <i_resume>` instruction or other exception handling
3429 mechanism.
3430#. The optional :ref:`function attributes <fnattrs>` list. Only
3431 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3432 attributes are valid here.
3433
3434Semantics:
3435""""""""""
3436
3437This instruction is designed to operate as a standard '``call``'
3438instruction in most regards. The primary difference is that it
3439establishes an association with a label, which is used by the runtime
3440library to unwind the stack.
3441
3442This instruction is used in languages with destructors to ensure that
3443proper cleanup is performed in the case of either a ``longjmp`` or a
3444thrown exception. Additionally, this is important for implementation of
3445'``catch``' clauses in high-level languages that support them.
3446
3447For the purposes of the SSA form, the definition of the value returned
3448by the '``invoke``' instruction is deemed to occur on the edge from the
3449current block to the "normal" label. If the callee unwinds then no
3450return value is available.
3451
3452Example:
3453""""""""
3454
3455.. code-block:: llvm
3456
3457 %retval = invoke i32 @Test(i32 15) to label %Continue
3458 unwind label %TestCleanup ; {i32}:retval set
3459 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3460 unwind label %TestCleanup ; {i32}:retval set
3461
3462.. _i_resume:
3463
3464'``resume``' Instruction
3465^^^^^^^^^^^^^^^^^^^^^^^^
3466
3467Syntax:
3468"""""""
3469
3470::
3471
3472 resume <type> <value>
3473
3474Overview:
3475"""""""""
3476
3477The '``resume``' instruction is a terminator instruction that has no
3478successors.
3479
3480Arguments:
3481""""""""""
3482
3483The '``resume``' instruction requires one argument, which must have the
3484same type as the result of any '``landingpad``' instruction in the same
3485function.
3486
3487Semantics:
3488""""""""""
3489
3490The '``resume``' instruction resumes propagation of an existing
3491(in-flight) exception whose unwinding was interrupted with a
3492:ref:`landingpad <i_landingpad>` instruction.
3493
3494Example:
3495""""""""
3496
3497.. code-block:: llvm
3498
3499 resume { i8*, i32 } %exn
3500
3501.. _i_unreachable:
3502
3503'``unreachable``' Instruction
3504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3505
3506Syntax:
3507"""""""
3508
3509::
3510
3511 unreachable
3512
3513Overview:
3514"""""""""
3515
3516The '``unreachable``' instruction has no defined semantics. This
3517instruction is used to inform the optimizer that a particular portion of
3518the code is not reachable. This can be used to indicate that the code
3519after a no-return function cannot be reached, and other facts.
3520
3521Semantics:
3522""""""""""
3523
3524The '``unreachable``' instruction has no defined semantics.
3525
3526.. _binaryops:
3527
3528Binary Operations
3529-----------------
3530
3531Binary operators are used to do most of the computation in a program.
3532They require two operands of the same type, execute an operation on
3533them, and produce a single value. The operands might represent multiple
3534data, as is the case with the :ref:`vector <t_vector>` data type. The
3535result value has the same type as its operands.
3536
3537There are several different binary operators:
3538
3539.. _i_add:
3540
3541'``add``' Instruction
3542^^^^^^^^^^^^^^^^^^^^^
3543
3544Syntax:
3545"""""""
3546
3547::
3548
3549 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3550 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3551 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3552 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3553
3554Overview:
3555"""""""""
3556
3557The '``add``' instruction returns the sum of its two operands.
3558
3559Arguments:
3560""""""""""
3561
3562The two arguments to the '``add``' instruction must be
3563:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3564arguments must have identical types.
3565
3566Semantics:
3567""""""""""
3568
3569The value produced is the integer sum of the two operands.
3570
3571If the sum has unsigned overflow, the result returned is the
3572mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3573the result.
3574
3575Because LLVM integers use a two's complement representation, this
3576instruction is appropriate for both signed and unsigned integers.
3577
3578``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3579respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3580result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3581unsigned and/or signed overflow, respectively, occurs.
3582
3583Example:
3584""""""""
3585
3586.. code-block:: llvm
3587
3588 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3589
3590.. _i_fadd:
3591
3592'``fadd``' Instruction
3593^^^^^^^^^^^^^^^^^^^^^^
3594
3595Syntax:
3596"""""""
3597
3598::
3599
3600 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3601
3602Overview:
3603"""""""""
3604
3605The '``fadd``' instruction returns the sum of its two operands.
3606
3607Arguments:
3608""""""""""
3609
3610The two arguments to the '``fadd``' instruction must be :ref:`floating
3611point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3612Both arguments must have identical types.
3613
3614Semantics:
3615""""""""""
3616
3617The value produced is the floating point sum of the two operands. This
3618instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3619which are optimization hints to enable otherwise unsafe floating point
3620optimizations:
3621
3622Example:
3623""""""""
3624
3625.. code-block:: llvm
3626
3627 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3628
3629'``sub``' Instruction
3630^^^^^^^^^^^^^^^^^^^^^
3631
3632Syntax:
3633"""""""
3634
3635::
3636
3637 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3638 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3639 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3640 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3641
3642Overview:
3643"""""""""
3644
3645The '``sub``' instruction returns the difference of its two operands.
3646
3647Note that the '``sub``' instruction is used to represent the '``neg``'
3648instruction present in most other intermediate representations.
3649
3650Arguments:
3651""""""""""
3652
3653The two arguments to the '``sub``' instruction must be
3654:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3655arguments must have identical types.
3656
3657Semantics:
3658""""""""""
3659
3660The value produced is the integer difference of the two operands.
3661
3662If the difference has unsigned overflow, the result returned is the
3663mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3664the result.
3665
3666Because LLVM integers use a two's complement representation, this
3667instruction is appropriate for both signed and unsigned integers.
3668
3669``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3670respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3671result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3672unsigned and/or signed overflow, respectively, occurs.
3673
3674Example:
3675""""""""
3676
3677.. code-block:: llvm
3678
3679 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3680 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3681
3682.. _i_fsub:
3683
3684'``fsub``' Instruction
3685^^^^^^^^^^^^^^^^^^^^^^
3686
3687Syntax:
3688"""""""
3689
3690::
3691
3692 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3693
3694Overview:
3695"""""""""
3696
3697The '``fsub``' instruction returns the difference of its two operands.
3698
3699Note that the '``fsub``' instruction is used to represent the '``fneg``'
3700instruction present in most other intermediate representations.
3701
3702Arguments:
3703""""""""""
3704
3705The two arguments to the '``fsub``' instruction must be :ref:`floating
3706point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3707Both arguments must have identical types.
3708
3709Semantics:
3710""""""""""
3711
3712The value produced is the floating point difference of the two operands.
3713This instruction can also take any number of :ref:`fast-math
3714flags <fastmath>`, which are optimization hints to enable otherwise
3715unsafe floating point optimizations:
3716
3717Example:
3718""""""""
3719
3720.. code-block:: llvm
3721
3722 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3723 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3724
3725'``mul``' Instruction
3726^^^^^^^^^^^^^^^^^^^^^
3727
3728Syntax:
3729"""""""
3730
3731::
3732
3733 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3734 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3735 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3736 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3737
3738Overview:
3739"""""""""
3740
3741The '``mul``' instruction returns the product of its two operands.
3742
3743Arguments:
3744""""""""""
3745
3746The two arguments to the '``mul``' instruction must be
3747:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3748arguments must have identical types.
3749
3750Semantics:
3751""""""""""
3752
3753The value produced is the integer product of the two operands.
3754
3755If the result of the multiplication has unsigned overflow, the result
3756returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3757bit width of the result.
3758
3759Because LLVM integers use a two's complement representation, and the
3760result is the same width as the operands, this instruction returns the
3761correct result for both signed and unsigned integers. If a full product
3762(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3763sign-extended or zero-extended as appropriate to the width of the full
3764product.
3765
3766``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3767respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3768result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3769unsigned and/or signed overflow, respectively, occurs.
3770
3771Example:
3772""""""""
3773
3774.. code-block:: llvm
3775
3776 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3777
3778.. _i_fmul:
3779
3780'``fmul``' Instruction
3781^^^^^^^^^^^^^^^^^^^^^^
3782
3783Syntax:
3784"""""""
3785
3786::
3787
3788 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3789
3790Overview:
3791"""""""""
3792
3793The '``fmul``' instruction returns the product of its two operands.
3794
3795Arguments:
3796""""""""""
3797
3798The two arguments to the '``fmul``' instruction must be :ref:`floating
3799point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3800Both arguments must have identical types.
3801
3802Semantics:
3803""""""""""
3804
3805The value produced is the floating point product of the two operands.
3806This instruction can also take any number of :ref:`fast-math
3807flags <fastmath>`, which are optimization hints to enable otherwise
3808unsafe floating point optimizations:
3809
3810Example:
3811""""""""
3812
3813.. code-block:: llvm
3814
3815 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3816
3817'``udiv``' Instruction
3818^^^^^^^^^^^^^^^^^^^^^^
3819
3820Syntax:
3821"""""""
3822
3823::
3824
3825 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3826 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3827
3828Overview:
3829"""""""""
3830
3831The '``udiv``' instruction returns the quotient of its two operands.
3832
3833Arguments:
3834""""""""""
3835
3836The two arguments to the '``udiv``' instruction must be
3837:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3838arguments must have identical types.
3839
3840Semantics:
3841""""""""""
3842
3843The value produced is the unsigned integer quotient of the two operands.
3844
3845Note that unsigned integer division and signed integer division are
3846distinct operations; for signed integer division, use '``sdiv``'.
3847
3848Division by zero leads to undefined behavior.
3849
3850If the ``exact`` keyword is present, the result value of the ``udiv`` is
3851a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3852such, "((a udiv exact b) mul b) == a").
3853
3854Example:
3855""""""""
3856
3857.. code-block:: llvm
3858
3859 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3860
3861'``sdiv``' Instruction
3862^^^^^^^^^^^^^^^^^^^^^^
3863
3864Syntax:
3865"""""""
3866
3867::
3868
3869 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3870 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3871
3872Overview:
3873"""""""""
3874
3875The '``sdiv``' instruction returns the quotient of its two operands.
3876
3877Arguments:
3878""""""""""
3879
3880The two arguments to the '``sdiv``' instruction must be
3881:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3882arguments must have identical types.
3883
3884Semantics:
3885""""""""""
3886
3887The value produced is the signed integer quotient of the two operands
3888rounded towards zero.
3889
3890Note that signed integer division and unsigned integer division are
3891distinct operations; for unsigned integer division, use '``udiv``'.
3892
3893Division by zero leads to undefined behavior. Overflow also leads to
3894undefined behavior; this is a rare case, but can occur, for example, by
3895doing a 32-bit division of -2147483648 by -1.
3896
3897If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3898a :ref:`poison value <poisonvalues>` if the result would be rounded.
3899
3900Example:
3901""""""""
3902
3903.. code-block:: llvm
3904
3905 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3906
3907.. _i_fdiv:
3908
3909'``fdiv``' Instruction
3910^^^^^^^^^^^^^^^^^^^^^^
3911
3912Syntax:
3913"""""""
3914
3915::
3916
3917 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3918
3919Overview:
3920"""""""""
3921
3922The '``fdiv``' instruction returns the quotient of its two operands.
3923
3924Arguments:
3925""""""""""
3926
3927The two arguments to the '``fdiv``' instruction must be :ref:`floating
3928point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3929Both arguments must have identical types.
3930
3931Semantics:
3932""""""""""
3933
3934The value produced is the floating point quotient of the two operands.
3935This instruction can also take any number of :ref:`fast-math
3936flags <fastmath>`, which are optimization hints to enable otherwise
3937unsafe floating point optimizations:
3938
3939Example:
3940""""""""
3941
3942.. code-block:: llvm
3943
3944 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3945
3946'``urem``' Instruction
3947^^^^^^^^^^^^^^^^^^^^^^
3948
3949Syntax:
3950"""""""
3951
3952::
3953
3954 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3955
3956Overview:
3957"""""""""
3958
3959The '``urem``' instruction returns the remainder from the unsigned
3960division of its two arguments.
3961
3962Arguments:
3963""""""""""
3964
3965The two arguments to the '``urem``' instruction must be
3966:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3967arguments must have identical types.
3968
3969Semantics:
3970""""""""""
3971
3972This instruction returns the unsigned integer *remainder* of a division.
3973This instruction always performs an unsigned division to get the
3974remainder.
3975
3976Note that unsigned integer remainder and signed integer remainder are
3977distinct operations; for signed integer remainder, use '``srem``'.
3978
3979Taking the remainder of a division by zero leads to undefined behavior.
3980
3981Example:
3982""""""""
3983
3984.. code-block:: llvm
3985
3986 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3987
3988'``srem``' Instruction
3989^^^^^^^^^^^^^^^^^^^^^^
3990
3991Syntax:
3992"""""""
3993
3994::
3995
3996 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3997
3998Overview:
3999"""""""""
4000
4001The '``srem``' instruction returns the remainder from the signed
4002division of its two operands. This instruction can also take
4003:ref:`vector <t_vector>` versions of the values in which case the elements
4004must be integers.
4005
4006Arguments:
4007""""""""""
4008
4009The two arguments to the '``srem``' instruction must be
4010:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4011arguments must have identical types.
4012
4013Semantics:
4014""""""""""
4015
4016This instruction returns the *remainder* of a division (where the result
4017is either zero or has the same sign as the dividend, ``op1``), not the
4018*modulo* operator (where the result is either zero or has the same sign
4019as the divisor, ``op2``) of a value. For more information about the
4020difference, see `The Math
4021Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4022table of how this is implemented in various languages, please see
4023`Wikipedia: modulo
4024operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4025
4026Note that signed integer remainder and unsigned integer remainder are
4027distinct operations; for unsigned integer remainder, use '``urem``'.
4028
4029Taking the remainder of a division by zero leads to undefined behavior.
4030Overflow also leads to undefined behavior; this is a rare case, but can
4031occur, for example, by taking the remainder of a 32-bit division of
4032-2147483648 by -1. (The remainder doesn't actually overflow, but this
4033rule lets srem be implemented using instructions that return both the
4034result of the division and the remainder.)
4035
4036Example:
4037""""""""
4038
4039.. code-block:: llvm
4040
4041 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4042
4043.. _i_frem:
4044
4045'``frem``' Instruction
4046^^^^^^^^^^^^^^^^^^^^^^
4047
4048Syntax:
4049"""""""
4050
4051::
4052
4053 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4054
4055Overview:
4056"""""""""
4057
4058The '``frem``' instruction returns the remainder from the division of
4059its two operands.
4060
4061Arguments:
4062""""""""""
4063
4064The two arguments to the '``frem``' instruction must be :ref:`floating
4065point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4066Both arguments must have identical types.
4067
4068Semantics:
4069""""""""""
4070
4071This instruction returns the *remainder* of a division. The remainder
4072has the same sign as the dividend. This instruction can also take any
4073number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4074to enable otherwise unsafe floating point optimizations:
4075
4076Example:
4077""""""""
4078
4079.. code-block:: llvm
4080
4081 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4082
4083.. _bitwiseops:
4084
4085Bitwise Binary Operations
4086-------------------------
4087
4088Bitwise binary operators are used to do various forms of bit-twiddling
4089in a program. They are generally very efficient instructions and can
4090commonly be strength reduced from other instructions. They require two
4091operands of the same type, execute an operation on them, and produce a
4092single value. The resulting value is the same type as its operands.
4093
4094'``shl``' Instruction
4095^^^^^^^^^^^^^^^^^^^^^
4096
4097Syntax:
4098"""""""
4099
4100::
4101
4102 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4103 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4104 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4105 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4106
4107Overview:
4108"""""""""
4109
4110The '``shl``' instruction returns the first operand shifted to the left
4111a specified number of bits.
4112
4113Arguments:
4114""""""""""
4115
4116Both arguments to the '``shl``' instruction must be the same
4117:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4118'``op2``' is treated as an unsigned value.
4119
4120Semantics:
4121""""""""""
4122
4123The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4124where ``n`` is the width of the result. If ``op2`` is (statically or
4125dynamically) negative or equal to or larger than the number of bits in
4126``op1``, the result is undefined. If the arguments are vectors, each
4127vector element of ``op1`` is shifted by the corresponding shift amount
4128in ``op2``.
4129
4130If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4131value <poisonvalues>` if it shifts out any non-zero bits. If the
4132``nsw`` keyword is present, then the shift produces a :ref:`poison
4133value <poisonvalues>` if it shifts out any bits that disagree with the
4134resultant sign bit. As such, NUW/NSW have the same semantics as they
4135would if the shift were expressed as a mul instruction with the same
4136nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4137
4138Example:
4139""""""""
4140
4141.. code-block:: llvm
4142
4143 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4144 <result> = shl i32 4, 2 ; yields {i32}: 16
4145 <result> = shl i32 1, 10 ; yields {i32}: 1024
4146 <result> = shl i32 1, 32 ; undefined
4147 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4148
4149'``lshr``' Instruction
4150^^^^^^^^^^^^^^^^^^^^^^
4151
4152Syntax:
4153"""""""
4154
4155::
4156
4157 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4158 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4159
4160Overview:
4161"""""""""
4162
4163The '``lshr``' instruction (logical shift right) returns the first
4164operand shifted to the right a specified number of bits with zero fill.
4165
4166Arguments:
4167""""""""""
4168
4169Both arguments to the '``lshr``' instruction must be the same
4170:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4171'``op2``' is treated as an unsigned value.
4172
4173Semantics:
4174""""""""""
4175
4176This instruction always performs a logical shift right operation. The
4177most significant bits of the result will be filled with zero bits after
4178the shift. If ``op2`` is (statically or dynamically) equal to or larger
4179than the number of bits in ``op1``, the result is undefined. If the
4180arguments are vectors, each vector element of ``op1`` is shifted by the
4181corresponding shift amount in ``op2``.
4182
4183If the ``exact`` keyword is present, the result value of the ``lshr`` is
4184a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4185non-zero.
4186
4187Example:
4188""""""""
4189
4190.. code-block:: llvm
4191
4192 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4193 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4194 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004195 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004196 <result> = lshr i32 1, 32 ; undefined
4197 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4198
4199'``ashr``' Instruction
4200^^^^^^^^^^^^^^^^^^^^^^
4201
4202Syntax:
4203"""""""
4204
4205::
4206
4207 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4208 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4209
4210Overview:
4211"""""""""
4212
4213The '``ashr``' instruction (arithmetic shift right) returns the first
4214operand shifted to the right a specified number of bits with sign
4215extension.
4216
4217Arguments:
4218""""""""""
4219
4220Both arguments to the '``ashr``' instruction must be the same
4221:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4222'``op2``' is treated as an unsigned value.
4223
4224Semantics:
4225""""""""""
4226
4227This instruction always performs an arithmetic shift right operation,
4228The most significant bits of the result will be filled with the sign bit
4229of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4230than the number of bits in ``op1``, the result is undefined. If the
4231arguments are vectors, each vector element of ``op1`` is shifted by the
4232corresponding shift amount in ``op2``.
4233
4234If the ``exact`` keyword is present, the result value of the ``ashr`` is
4235a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4236non-zero.
4237
4238Example:
4239""""""""
4240
4241.. code-block:: llvm
4242
4243 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4244 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4245 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4246 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4247 <result> = ashr i32 1, 32 ; undefined
4248 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4249
4250'``and``' Instruction
4251^^^^^^^^^^^^^^^^^^^^^
4252
4253Syntax:
4254"""""""
4255
4256::
4257
4258 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4259
4260Overview:
4261"""""""""
4262
4263The '``and``' instruction returns the bitwise logical and of its two
4264operands.
4265
4266Arguments:
4267""""""""""
4268
4269The two arguments to the '``and``' instruction must be
4270:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4271arguments must have identical types.
4272
4273Semantics:
4274""""""""""
4275
4276The truth table used for the '``and``' instruction is:
4277
4278+-----+-----+-----+
4279| In0 | In1 | Out |
4280+-----+-----+-----+
4281| 0 | 0 | 0 |
4282+-----+-----+-----+
4283| 0 | 1 | 0 |
4284+-----+-----+-----+
4285| 1 | 0 | 0 |
4286+-----+-----+-----+
4287| 1 | 1 | 1 |
4288+-----+-----+-----+
4289
4290Example:
4291""""""""
4292
4293.. code-block:: llvm
4294
4295 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4296 <result> = and i32 15, 40 ; yields {i32}:result = 8
4297 <result> = and i32 4, 8 ; yields {i32}:result = 0
4298
4299'``or``' Instruction
4300^^^^^^^^^^^^^^^^^^^^
4301
4302Syntax:
4303"""""""
4304
4305::
4306
4307 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4308
4309Overview:
4310"""""""""
4311
4312The '``or``' instruction returns the bitwise logical inclusive or of its
4313two operands.
4314
4315Arguments:
4316""""""""""
4317
4318The two arguments to the '``or``' instruction must be
4319:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4320arguments must have identical types.
4321
4322Semantics:
4323""""""""""
4324
4325The truth table used for the '``or``' instruction is:
4326
4327+-----+-----+-----+
4328| In0 | In1 | Out |
4329+-----+-----+-----+
4330| 0 | 0 | 0 |
4331+-----+-----+-----+
4332| 0 | 1 | 1 |
4333+-----+-----+-----+
4334| 1 | 0 | 1 |
4335+-----+-----+-----+
4336| 1 | 1 | 1 |
4337+-----+-----+-----+
4338
4339Example:
4340""""""""
4341
4342::
4343
4344 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4345 <result> = or i32 15, 40 ; yields {i32}:result = 47
4346 <result> = or i32 4, 8 ; yields {i32}:result = 12
4347
4348'``xor``' Instruction
4349^^^^^^^^^^^^^^^^^^^^^
4350
4351Syntax:
4352"""""""
4353
4354::
4355
4356 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4357
4358Overview:
4359"""""""""
4360
4361The '``xor``' instruction returns the bitwise logical exclusive or of
4362its two operands. The ``xor`` is used to implement the "one's
4363complement" operation, which is the "~" operator in C.
4364
4365Arguments:
4366""""""""""
4367
4368The two arguments to the '``xor``' instruction must be
4369:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4370arguments must have identical types.
4371
4372Semantics:
4373""""""""""
4374
4375The truth table used for the '``xor``' instruction is:
4376
4377+-----+-----+-----+
4378| In0 | In1 | Out |
4379+-----+-----+-----+
4380| 0 | 0 | 0 |
4381+-----+-----+-----+
4382| 0 | 1 | 1 |
4383+-----+-----+-----+
4384| 1 | 0 | 1 |
4385+-----+-----+-----+
4386| 1 | 1 | 0 |
4387+-----+-----+-----+
4388
4389Example:
4390""""""""
4391
4392.. code-block:: llvm
4393
4394 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4395 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4396 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4397 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4398
4399Vector Operations
4400-----------------
4401
4402LLVM supports several instructions to represent vector operations in a
4403target-independent manner. These instructions cover the element-access
4404and vector-specific operations needed to process vectors effectively.
4405While LLVM does directly support these vector operations, many
4406sophisticated algorithms will want to use target-specific intrinsics to
4407take full advantage of a specific target.
4408
4409.. _i_extractelement:
4410
4411'``extractelement``' Instruction
4412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4413
4414Syntax:
4415"""""""
4416
4417::
4418
4419 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4420
4421Overview:
4422"""""""""
4423
4424The '``extractelement``' instruction extracts a single scalar element
4425from a vector at a specified index.
4426
4427Arguments:
4428""""""""""
4429
4430The first operand of an '``extractelement``' instruction is a value of
4431:ref:`vector <t_vector>` type. The second operand is an index indicating
4432the position from which to extract the element. The index may be a
4433variable.
4434
4435Semantics:
4436""""""""""
4437
4438The result is a scalar of the same type as the element type of ``val``.
4439Its value is the value at position ``idx`` of ``val``. If ``idx``
4440exceeds the length of ``val``, the results are undefined.
4441
4442Example:
4443""""""""
4444
4445.. code-block:: llvm
4446
4447 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4448
4449.. _i_insertelement:
4450
4451'``insertelement``' Instruction
4452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4453
4454Syntax:
4455"""""""
4456
4457::
4458
4459 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4460
4461Overview:
4462"""""""""
4463
4464The '``insertelement``' instruction inserts a scalar element into a
4465vector at a specified index.
4466
4467Arguments:
4468""""""""""
4469
4470The first operand of an '``insertelement``' instruction is a value of
4471:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4472type must equal the element type of the first operand. The third operand
4473is an index indicating the position at which to insert the value. The
4474index may be a variable.
4475
4476Semantics:
4477""""""""""
4478
4479The result is a vector of the same type as ``val``. Its element values
4480are those of ``val`` except at position ``idx``, where it gets the value
4481``elt``. If ``idx`` exceeds the length of ``val``, the results are
4482undefined.
4483
4484Example:
4485""""""""
4486
4487.. code-block:: llvm
4488
4489 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4490
4491.. _i_shufflevector:
4492
4493'``shufflevector``' Instruction
4494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4495
4496Syntax:
4497"""""""
4498
4499::
4500
4501 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4502
4503Overview:
4504"""""""""
4505
4506The '``shufflevector``' instruction constructs a permutation of elements
4507from two input vectors, returning a vector with the same element type as
4508the input and length that is the same as the shuffle mask.
4509
4510Arguments:
4511""""""""""
4512
4513The first two operands of a '``shufflevector``' instruction are vectors
4514with the same type. The third argument is a shuffle mask whose element
4515type is always 'i32'. The result of the instruction is a vector whose
4516length is the same as the shuffle mask and whose element type is the
4517same as the element type of the first two operands.
4518
4519The shuffle mask operand is required to be a constant vector with either
4520constant integer or undef values.
4521
4522Semantics:
4523""""""""""
4524
4525The elements of the two input vectors are numbered from left to right
4526across both of the vectors. The shuffle mask operand specifies, for each
4527element of the result vector, which element of the two input vectors the
4528result element gets. The element selector may be undef (meaning "don't
4529care") and the second operand may be undef if performing a shuffle from
4530only one vector.
4531
4532Example:
4533""""""""
4534
4535.. code-block:: llvm
4536
4537 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4538 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4539 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4540 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4541 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4542 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4543 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4544 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4545
4546Aggregate Operations
4547--------------------
4548
4549LLVM supports several instructions for working with
4550:ref:`aggregate <t_aggregate>` values.
4551
4552.. _i_extractvalue:
4553
4554'``extractvalue``' Instruction
4555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4556
4557Syntax:
4558"""""""
4559
4560::
4561
4562 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4563
4564Overview:
4565"""""""""
4566
4567The '``extractvalue``' instruction extracts the value of a member field
4568from an :ref:`aggregate <t_aggregate>` value.
4569
4570Arguments:
4571""""""""""
4572
4573The first operand of an '``extractvalue``' instruction is a value of
4574:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4575constant indices to specify which value to extract in a similar manner
4576as indices in a '``getelementptr``' instruction.
4577
4578The major differences to ``getelementptr`` indexing are:
4579
4580- Since the value being indexed is not a pointer, the first index is
4581 omitted and assumed to be zero.
4582- At least one index must be specified.
4583- Not only struct indices but also array indices must be in bounds.
4584
4585Semantics:
4586""""""""""
4587
4588The result is the value at the position in the aggregate specified by
4589the index operands.
4590
4591Example:
4592""""""""
4593
4594.. code-block:: llvm
4595
4596 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4597
4598.. _i_insertvalue:
4599
4600'``insertvalue``' Instruction
4601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4602
4603Syntax:
4604"""""""
4605
4606::
4607
4608 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4609
4610Overview:
4611"""""""""
4612
4613The '``insertvalue``' instruction inserts a value into a member field in
4614an :ref:`aggregate <t_aggregate>` value.
4615
4616Arguments:
4617""""""""""
4618
4619The first operand of an '``insertvalue``' instruction is a value of
4620:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4621a first-class value to insert. The following operands are constant
4622indices indicating the position at which to insert the value in a
4623similar manner as indices in a '``extractvalue``' instruction. The value
4624to insert must have the same type as the value identified by the
4625indices.
4626
4627Semantics:
4628""""""""""
4629
4630The result is an aggregate of the same type as ``val``. Its value is
4631that of ``val`` except that the value at the position specified by the
4632indices is that of ``elt``.
4633
4634Example:
4635""""""""
4636
4637.. code-block:: llvm
4638
4639 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4640 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4641 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4642
4643.. _memoryops:
4644
4645Memory Access and Addressing Operations
4646---------------------------------------
4647
4648A key design point of an SSA-based representation is how it represents
4649memory. In LLVM, no memory locations are in SSA form, which makes things
4650very simple. This section describes how to read, write, and allocate
4651memory in LLVM.
4652
4653.. _i_alloca:
4654
4655'``alloca``' Instruction
4656^^^^^^^^^^^^^^^^^^^^^^^^
4657
4658Syntax:
4659"""""""
4660
4661::
4662
4663 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4664
4665Overview:
4666"""""""""
4667
4668The '``alloca``' instruction allocates memory on the stack frame of the
4669currently executing function, to be automatically released when this
4670function returns to its caller. The object is always allocated in the
4671generic address space (address space zero).
4672
4673Arguments:
4674""""""""""
4675
4676The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4677bytes of memory on the runtime stack, returning a pointer of the
4678appropriate type to the program. If "NumElements" is specified, it is
4679the number of elements allocated, otherwise "NumElements" is defaulted
4680to be one. If a constant alignment is specified, the value result of the
4681allocation is guaranteed to be aligned to at least that boundary. If not
4682specified, or if zero, the target can choose to align the allocation on
4683any convenient boundary compatible with the type.
4684
4685'``type``' may be any sized type.
4686
4687Semantics:
4688""""""""""
4689
4690Memory is allocated; a pointer is returned. The operation is undefined
4691if there is insufficient stack space for the allocation. '``alloca``'d
4692memory is automatically released when the function returns. The
4693'``alloca``' instruction is commonly used to represent automatic
4694variables that must have an address available. When the function returns
4695(either with the ``ret`` or ``resume`` instructions), the memory is
4696reclaimed. Allocating zero bytes is legal, but the result is undefined.
4697The order in which memory is allocated (ie., which way the stack grows)
4698is not specified.
4699
4700Example:
4701""""""""
4702
4703.. code-block:: llvm
4704
4705 %ptr = alloca i32 ; yields {i32*}:ptr
4706 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4707 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4708 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4709
4710.. _i_load:
4711
4712'``load``' Instruction
4713^^^^^^^^^^^^^^^^^^^^^^
4714
4715Syntax:
4716"""""""
4717
4718::
4719
4720 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4721 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4722 !<index> = !{ i32 1 }
4723
4724Overview:
4725"""""""""
4726
4727The '``load``' instruction is used to read from memory.
4728
4729Arguments:
4730""""""""""
4731
Eli Bendersky8c493382013-04-17 20:17:08 +00004732The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004733from which to load. The pointer must point to a :ref:`first
4734class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4735then the optimizer is not allowed to modify the number or order of
4736execution of this ``load`` with other :ref:`volatile
4737operations <volatile>`.
4738
4739If the ``load`` is marked as ``atomic``, it takes an extra
4740:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4741``release`` and ``acq_rel`` orderings are not valid on ``load``
4742instructions. Atomic loads produce :ref:`defined <memmodel>` results
4743when they may see multiple atomic stores. The type of the pointee must
4744be an integer type whose bit width is a power of two greater than or
4745equal to eight and less than or equal to a target-specific size limit.
4746``align`` must be explicitly specified on atomic loads, and the load has
4747undefined behavior if the alignment is not set to a value which is at
4748least the size in bytes of the pointee. ``!nontemporal`` does not have
4749any defined semantics for atomic loads.
4750
4751The optional constant ``align`` argument specifies the alignment of the
4752operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004753or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004754alignment for the target. It is the responsibility of the code emitter
4755to ensure that the alignment information is correct. Overestimating the
4756alignment results in undefined behavior. Underestimating the alignment
4757may produce less efficient code. An alignment of 1 is always safe.
4758
4759The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004760metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004761``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004762metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004763that this load is not expected to be reused in the cache. The code
4764generator may select special instructions to save cache bandwidth, such
4765as the ``MOVNT`` instruction on x86.
4766
4767The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004768metadata name ``<index>`` corresponding to a metadata node with no
4769entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004770instruction tells the optimizer and code generator that this load
4771address points to memory which does not change value during program
4772execution. The optimizer may then move this load around, for example, by
4773hoisting it out of loops using loop invariant code motion.
4774
4775Semantics:
4776""""""""""
4777
4778The location of memory pointed to is loaded. If the value being loaded
4779is of scalar type then the number of bytes read does not exceed the
4780minimum number of bytes needed to hold all bits of the type. For
4781example, loading an ``i24`` reads at most three bytes. When loading a
4782value of a type like ``i20`` with a size that is not an integral number
4783of bytes, the result is undefined if the value was not originally
4784written using a store of the same type.
4785
4786Examples:
4787"""""""""
4788
4789.. code-block:: llvm
4790
4791 %ptr = alloca i32 ; yields {i32*}:ptr
4792 store i32 3, i32* %ptr ; yields {void}
4793 %val = load i32* %ptr ; yields {i32}:val = i32 3
4794
4795.. _i_store:
4796
4797'``store``' Instruction
4798^^^^^^^^^^^^^^^^^^^^^^^
4799
4800Syntax:
4801"""""""
4802
4803::
4804
4805 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4806 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4807
4808Overview:
4809"""""""""
4810
4811The '``store``' instruction is used to write to memory.
4812
4813Arguments:
4814""""""""""
4815
Eli Bendersky8952d902013-04-17 17:17:20 +00004816There are two arguments to the ``store`` instruction: a value to store
4817and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004818operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004819the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004820then the optimizer is not allowed to modify the number or order of
4821execution of this ``store`` with other :ref:`volatile
4822operations <volatile>`.
4823
4824If the ``store`` is marked as ``atomic``, it takes an extra
4825:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4826``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4827instructions. Atomic loads produce :ref:`defined <memmodel>` results
4828when they may see multiple atomic stores. The type of the pointee must
4829be an integer type whose bit width is a power of two greater than or
4830equal to eight and less than or equal to a target-specific size limit.
4831``align`` must be explicitly specified on atomic stores, and the store
4832has undefined behavior if the alignment is not set to a value which is
4833at least the size in bytes of the pointee. ``!nontemporal`` does not
4834have any defined semantics for atomic stores.
4835
Eli Bendersky8952d902013-04-17 17:17:20 +00004836The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004837operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004838or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004839alignment for the target. It is the responsibility of the code emitter
4840to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004841alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004842alignment may produce less efficient code. An alignment of 1 is always
4843safe.
4844
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004845The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004846name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004847value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004848tells the optimizer and code generator that this load is not expected to
4849be reused in the cache. The code generator may select special
4850instructions to save cache bandwidth, such as the MOVNT instruction on
4851x86.
4852
4853Semantics:
4854""""""""""
4855
Eli Bendersky8952d902013-04-17 17:17:20 +00004856The contents of memory are updated to contain ``<value>`` at the
4857location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004858of scalar type then the number of bytes written does not exceed the
4859minimum number of bytes needed to hold all bits of the type. For
4860example, storing an ``i24`` writes at most three bytes. When writing a
4861value of a type like ``i20`` with a size that is not an integral number
4862of bytes, it is unspecified what happens to the extra bits that do not
4863belong to the type, but they will typically be overwritten.
4864
4865Example:
4866""""""""
4867
4868.. code-block:: llvm
4869
4870 %ptr = alloca i32 ; yields {i32*}:ptr
4871 store i32 3, i32* %ptr ; yields {void}
4872 %val = load i32* %ptr ; yields {i32}:val = i32 3
4873
4874.. _i_fence:
4875
4876'``fence``' Instruction
4877^^^^^^^^^^^^^^^^^^^^^^^
4878
4879Syntax:
4880"""""""
4881
4882::
4883
4884 fence [singlethread] <ordering> ; yields {void}
4885
4886Overview:
4887"""""""""
4888
4889The '``fence``' instruction is used to introduce happens-before edges
4890between operations.
4891
4892Arguments:
4893""""""""""
4894
4895'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4896defines what *synchronizes-with* edges they add. They can only be given
4897``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4898
4899Semantics:
4900""""""""""
4901
4902A fence A which has (at least) ``release`` ordering semantics
4903*synchronizes with* a fence B with (at least) ``acquire`` ordering
4904semantics if and only if there exist atomic operations X and Y, both
4905operating on some atomic object M, such that A is sequenced before X, X
4906modifies M (either directly or through some side effect of a sequence
4907headed by X), Y is sequenced before B, and Y observes M. This provides a
4908*happens-before* dependency between A and B. Rather than an explicit
4909``fence``, one (but not both) of the atomic operations X or Y might
4910provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4911still *synchronize-with* the explicit ``fence`` and establish the
4912*happens-before* edge.
4913
4914A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4915``acquire`` and ``release`` semantics specified above, participates in
4916the global program order of other ``seq_cst`` operations and/or fences.
4917
4918The optional ":ref:`singlethread <singlethread>`" argument specifies
4919that the fence only synchronizes with other fences in the same thread.
4920(This is useful for interacting with signal handlers.)
4921
4922Example:
4923""""""""
4924
4925.. code-block:: llvm
4926
4927 fence acquire ; yields {void}
4928 fence singlethread seq_cst ; yields {void}
4929
4930.. _i_cmpxchg:
4931
4932'``cmpxchg``' Instruction
4933^^^^^^^^^^^^^^^^^^^^^^^^^
4934
4935Syntax:
4936"""""""
4937
4938::
4939
4940 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4941
4942Overview:
4943"""""""""
4944
4945The '``cmpxchg``' instruction is used to atomically modify memory. It
4946loads a value in memory and compares it to a given value. If they are
4947equal, it stores a new value into the memory.
4948
4949Arguments:
4950""""""""""
4951
4952There are three arguments to the '``cmpxchg``' instruction: an address
4953to operate on, a value to compare to the value currently be at that
4954address, and a new value to place at that address if the compared values
4955are equal. The type of '<cmp>' must be an integer type whose bit width
4956is a power of two greater than or equal to eight and less than or equal
4957to a target-specific size limit. '<cmp>' and '<new>' must have the same
4958type, and the type of '<pointer>' must be a pointer to that type. If the
4959``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4960to modify the number or order of execution of this ``cmpxchg`` with
4961other :ref:`volatile operations <volatile>`.
4962
4963The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4964synchronizes with other atomic operations.
4965
4966The optional "``singlethread``" argument declares that the ``cmpxchg``
4967is only atomic with respect to code (usually signal handlers) running in
4968the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4969respect to all other code in the system.
4970
4971The pointer passed into cmpxchg must have alignment greater than or
4972equal to the size in memory of the operand.
4973
4974Semantics:
4975""""""""""
4976
4977The contents of memory at the location specified by the '``<pointer>``'
4978operand is read and compared to '``<cmp>``'; if the read value is the
4979equal, '``<new>``' is written. The original value at the location is
4980returned.
4981
4982A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4983of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4984atomic load with an ordering parameter determined by dropping any
4985``release`` part of the ``cmpxchg``'s ordering.
4986
4987Example:
4988""""""""
4989
4990.. code-block:: llvm
4991
4992 entry:
4993 %orig = atomic load i32* %ptr unordered ; yields {i32}
4994 br label %loop
4995
4996 loop:
4997 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4998 %squared = mul i32 %cmp, %cmp
4999 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5000 %success = icmp eq i32 %cmp, %old
5001 br i1 %success, label %done, label %loop
5002
5003 done:
5004 ...
5005
5006.. _i_atomicrmw:
5007
5008'``atomicrmw``' Instruction
5009^^^^^^^^^^^^^^^^^^^^^^^^^^^
5010
5011Syntax:
5012"""""""
5013
5014::
5015
5016 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5017
5018Overview:
5019"""""""""
5020
5021The '``atomicrmw``' instruction is used to atomically modify memory.
5022
5023Arguments:
5024""""""""""
5025
5026There are three arguments to the '``atomicrmw``' instruction: an
5027operation to apply, an address whose value to modify, an argument to the
5028operation. The operation must be one of the following keywords:
5029
5030- xchg
5031- add
5032- sub
5033- and
5034- nand
5035- or
5036- xor
5037- max
5038- min
5039- umax
5040- umin
5041
5042The type of '<value>' must be an integer type whose bit width is a power
5043of two greater than or equal to eight and less than or equal to a
5044target-specific size limit. The type of the '``<pointer>``' operand must
5045be a pointer to that type. If the ``atomicrmw`` is marked as
5046``volatile``, then the optimizer is not allowed to modify the number or
5047order of execution of this ``atomicrmw`` with other :ref:`volatile
5048operations <volatile>`.
5049
5050Semantics:
5051""""""""""
5052
5053The contents of memory at the location specified by the '``<pointer>``'
5054operand are atomically read, modified, and written back. The original
5055value at the location is returned. The modification is specified by the
5056operation argument:
5057
5058- xchg: ``*ptr = val``
5059- add: ``*ptr = *ptr + val``
5060- sub: ``*ptr = *ptr - val``
5061- and: ``*ptr = *ptr & val``
5062- nand: ``*ptr = ~(*ptr & val)``
5063- or: ``*ptr = *ptr | val``
5064- xor: ``*ptr = *ptr ^ val``
5065- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5066- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5067- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5068 comparison)
5069- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5070 comparison)
5071
5072Example:
5073""""""""
5074
5075.. code-block:: llvm
5076
5077 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5078
5079.. _i_getelementptr:
5080
5081'``getelementptr``' Instruction
5082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5083
5084Syntax:
5085"""""""
5086
5087::
5088
5089 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5090 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5091 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5092
5093Overview:
5094"""""""""
5095
5096The '``getelementptr``' instruction is used to get the address of a
5097subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5098address calculation only and does not access memory.
5099
5100Arguments:
5101""""""""""
5102
5103The first argument is always a pointer or a vector of pointers, and
5104forms the basis of the calculation. The remaining arguments are indices
5105that indicate which of the elements of the aggregate object are indexed.
5106The interpretation of each index is dependent on the type being indexed
5107into. The first index always indexes the pointer value given as the
5108first argument, the second index indexes a value of the type pointed to
5109(not necessarily the value directly pointed to, since the first index
5110can be non-zero), etc. The first type indexed into must be a pointer
5111value, subsequent types can be arrays, vectors, and structs. Note that
5112subsequent types being indexed into can never be pointers, since that
5113would require loading the pointer before continuing calculation.
5114
5115The type of each index argument depends on the type it is indexing into.
5116When indexing into a (optionally packed) structure, only ``i32`` integer
5117**constants** are allowed (when using a vector of indices they must all
5118be the **same** ``i32`` integer constant). When indexing into an array,
5119pointer or vector, integers of any width are allowed, and they are not
5120required to be constant. These integers are treated as signed values
5121where relevant.
5122
5123For example, let's consider a C code fragment and how it gets compiled
5124to LLVM:
5125
5126.. code-block:: c
5127
5128 struct RT {
5129 char A;
5130 int B[10][20];
5131 char C;
5132 };
5133 struct ST {
5134 int X;
5135 double Y;
5136 struct RT Z;
5137 };
5138
5139 int *foo(struct ST *s) {
5140 return &s[1].Z.B[5][13];
5141 }
5142
5143The LLVM code generated by Clang is:
5144
5145.. code-block:: llvm
5146
5147 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5148 %struct.ST = type { i32, double, %struct.RT }
5149
5150 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5151 entry:
5152 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5153 ret i32* %arrayidx
5154 }
5155
5156Semantics:
5157""""""""""
5158
5159In the example above, the first index is indexing into the
5160'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5161= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5162indexes into the third element of the structure, yielding a
5163'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5164structure. The third index indexes into the second element of the
5165structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5166dimensions of the array are subscripted into, yielding an '``i32``'
5167type. The '``getelementptr``' instruction returns a pointer to this
5168element, thus computing a value of '``i32*``' type.
5169
5170Note that it is perfectly legal to index partially through a structure,
5171returning a pointer to an inner element. Because of this, the LLVM code
5172for the given testcase is equivalent to:
5173
5174.. code-block:: llvm
5175
5176 define i32* @foo(%struct.ST* %s) {
5177 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5178 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5179 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5180 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5181 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5182 ret i32* %t5
5183 }
5184
5185If the ``inbounds`` keyword is present, the result value of the
5186``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5187pointer is not an *in bounds* address of an allocated object, or if any
5188of the addresses that would be formed by successive addition of the
5189offsets implied by the indices to the base address with infinitely
5190precise signed arithmetic are not an *in bounds* address of that
5191allocated object. The *in bounds* addresses for an allocated object are
5192all the addresses that point into the object, plus the address one byte
5193past the end. In cases where the base is a vector of pointers the
5194``inbounds`` keyword applies to each of the computations element-wise.
5195
5196If the ``inbounds`` keyword is not present, the offsets are added to the
5197base address with silently-wrapping two's complement arithmetic. If the
5198offsets have a different width from the pointer, they are sign-extended
5199or truncated to the width of the pointer. The result value of the
5200``getelementptr`` may be outside the object pointed to by the base
5201pointer. The result value may not necessarily be used to access memory
5202though, even if it happens to point into allocated storage. See the
5203:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5204information.
5205
5206The getelementptr instruction is often confusing. For some more insight
5207into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5208
5209Example:
5210""""""""
5211
5212.. code-block:: llvm
5213
5214 ; yields [12 x i8]*:aptr
5215 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5216 ; yields i8*:vptr
5217 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5218 ; yields i8*:eptr
5219 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5220 ; yields i32*:iptr
5221 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5222
5223In cases where the pointer argument is a vector of pointers, each index
5224must be a vector with the same number of elements. For example:
5225
5226.. code-block:: llvm
5227
5228 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5229
5230Conversion Operations
5231---------------------
5232
5233The instructions in this category are the conversion instructions
5234(casting) which all take a single operand and a type. They perform
5235various bit conversions on the operand.
5236
5237'``trunc .. to``' Instruction
5238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5239
5240Syntax:
5241"""""""
5242
5243::
5244
5245 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5246
5247Overview:
5248"""""""""
5249
5250The '``trunc``' instruction truncates its operand to the type ``ty2``.
5251
5252Arguments:
5253""""""""""
5254
5255The '``trunc``' instruction takes a value to trunc, and a type to trunc
5256it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5257of the same number of integers. The bit size of the ``value`` must be
5258larger than the bit size of the destination type, ``ty2``. Equal sized
5259types are not allowed.
5260
5261Semantics:
5262""""""""""
5263
5264The '``trunc``' instruction truncates the high order bits in ``value``
5265and converts the remaining bits to ``ty2``. Since the source size must
5266be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5267It will always truncate bits.
5268
5269Example:
5270""""""""
5271
5272.. code-block:: llvm
5273
5274 %X = trunc i32 257 to i8 ; yields i8:1
5275 %Y = trunc i32 123 to i1 ; yields i1:true
5276 %Z = trunc i32 122 to i1 ; yields i1:false
5277 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5278
5279'``zext .. to``' Instruction
5280^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5281
5282Syntax:
5283"""""""
5284
5285::
5286
5287 <result> = zext <ty> <value> to <ty2> ; yields ty2
5288
5289Overview:
5290"""""""""
5291
5292The '``zext``' instruction zero extends its operand to type ``ty2``.
5293
5294Arguments:
5295""""""""""
5296
5297The '``zext``' instruction takes a value to cast, and a type to cast it
5298to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5299the same number of integers. The bit size of the ``value`` must be
5300smaller than the bit size of the destination type, ``ty2``.
5301
5302Semantics:
5303""""""""""
5304
5305The ``zext`` fills the high order bits of the ``value`` with zero bits
5306until it reaches the size of the destination type, ``ty2``.
5307
5308When zero extending from i1, the result will always be either 0 or 1.
5309
5310Example:
5311""""""""
5312
5313.. code-block:: llvm
5314
5315 %X = zext i32 257 to i64 ; yields i64:257
5316 %Y = zext i1 true to i32 ; yields i32:1
5317 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5318
5319'``sext .. to``' Instruction
5320^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5321
5322Syntax:
5323"""""""
5324
5325::
5326
5327 <result> = sext <ty> <value> to <ty2> ; yields ty2
5328
5329Overview:
5330"""""""""
5331
5332The '``sext``' sign extends ``value`` to the type ``ty2``.
5333
5334Arguments:
5335""""""""""
5336
5337The '``sext``' instruction takes a value to cast, and a type to cast it
5338to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5339the same number of integers. The bit size of the ``value`` must be
5340smaller than the bit size of the destination type, ``ty2``.
5341
5342Semantics:
5343""""""""""
5344
5345The '``sext``' instruction performs a sign extension by copying the sign
5346bit (highest order bit) of the ``value`` until it reaches the bit size
5347of the type ``ty2``.
5348
5349When sign extending from i1, the extension always results in -1 or 0.
5350
5351Example:
5352""""""""
5353
5354.. code-block:: llvm
5355
5356 %X = sext i8 -1 to i16 ; yields i16 :65535
5357 %Y = sext i1 true to i32 ; yields i32:-1
5358 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5359
5360'``fptrunc .. to``' Instruction
5361^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5362
5363Syntax:
5364"""""""
5365
5366::
5367
5368 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5369
5370Overview:
5371"""""""""
5372
5373The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5374
5375Arguments:
5376""""""""""
5377
5378The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5379value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5380The size of ``value`` must be larger than the size of ``ty2``. This
5381implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5382
5383Semantics:
5384""""""""""
5385
5386The '``fptrunc``' instruction truncates a ``value`` from a larger
5387:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5388point <t_floating>` type. If the value cannot fit within the
5389destination type, ``ty2``, then the results are undefined.
5390
5391Example:
5392""""""""
5393
5394.. code-block:: llvm
5395
5396 %X = fptrunc double 123.0 to float ; yields float:123.0
5397 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5398
5399'``fpext .. to``' Instruction
5400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5401
5402Syntax:
5403"""""""
5404
5405::
5406
5407 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5408
5409Overview:
5410"""""""""
5411
5412The '``fpext``' extends a floating point ``value`` to a larger floating
5413point value.
5414
5415Arguments:
5416""""""""""
5417
5418The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5419``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5420to. The source type must be smaller than the destination type.
5421
5422Semantics:
5423""""""""""
5424
5425The '``fpext``' instruction extends the ``value`` from a smaller
5426:ref:`floating point <t_floating>` type to a larger :ref:`floating
5427point <t_floating>` type. The ``fpext`` cannot be used to make a
5428*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5429*no-op cast* for a floating point cast.
5430
5431Example:
5432""""""""
5433
5434.. code-block:: llvm
5435
5436 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5437 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5438
5439'``fptoui .. to``' Instruction
5440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5441
5442Syntax:
5443"""""""
5444
5445::
5446
5447 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5448
5449Overview:
5450"""""""""
5451
5452The '``fptoui``' converts a floating point ``value`` to its unsigned
5453integer equivalent of type ``ty2``.
5454
5455Arguments:
5456""""""""""
5457
5458The '``fptoui``' instruction takes a value to cast, which must be a
5459scalar or vector :ref:`floating point <t_floating>` value, and a type to
5460cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5461``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5462type with the same number of elements as ``ty``
5463
5464Semantics:
5465""""""""""
5466
5467The '``fptoui``' instruction converts its :ref:`floating
5468point <t_floating>` operand into the nearest (rounding towards zero)
5469unsigned integer value. If the value cannot fit in ``ty2``, the results
5470are undefined.
5471
5472Example:
5473""""""""
5474
5475.. code-block:: llvm
5476
5477 %X = fptoui double 123.0 to i32 ; yields i32:123
5478 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5479 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5480
5481'``fptosi .. to``' Instruction
5482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5483
5484Syntax:
5485"""""""
5486
5487::
5488
5489 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5490
5491Overview:
5492"""""""""
5493
5494The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5495``value`` to type ``ty2``.
5496
5497Arguments:
5498""""""""""
5499
5500The '``fptosi``' instruction takes a value to cast, which must be a
5501scalar or vector :ref:`floating point <t_floating>` value, and a type to
5502cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5503``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5504type with the same number of elements as ``ty``
5505
5506Semantics:
5507""""""""""
5508
5509The '``fptosi``' instruction converts its :ref:`floating
5510point <t_floating>` operand into the nearest (rounding towards zero)
5511signed integer value. If the value cannot fit in ``ty2``, the results
5512are undefined.
5513
5514Example:
5515""""""""
5516
5517.. code-block:: llvm
5518
5519 %X = fptosi double -123.0 to i32 ; yields i32:-123
5520 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5521 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5522
5523'``uitofp .. to``' Instruction
5524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5525
5526Syntax:
5527"""""""
5528
5529::
5530
5531 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5532
5533Overview:
5534"""""""""
5535
5536The '``uitofp``' instruction regards ``value`` as an unsigned integer
5537and converts that value to the ``ty2`` type.
5538
5539Arguments:
5540""""""""""
5541
5542The '``uitofp``' instruction takes a value to cast, which must be a
5543scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5544``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5545``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5546type with the same number of elements as ``ty``
5547
5548Semantics:
5549""""""""""
5550
5551The '``uitofp``' instruction interprets its operand as an unsigned
5552integer quantity and converts it to the corresponding floating point
5553value. If the value cannot fit in the floating point value, the results
5554are undefined.
5555
5556Example:
5557""""""""
5558
5559.. code-block:: llvm
5560
5561 %X = uitofp i32 257 to float ; yields float:257.0
5562 %Y = uitofp i8 -1 to double ; yields double:255.0
5563
5564'``sitofp .. to``' Instruction
5565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5566
5567Syntax:
5568"""""""
5569
5570::
5571
5572 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5573
5574Overview:
5575"""""""""
5576
5577The '``sitofp``' instruction regards ``value`` as a signed integer and
5578converts that value to the ``ty2`` type.
5579
5580Arguments:
5581""""""""""
5582
5583The '``sitofp``' instruction takes a value to cast, which must be a
5584scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5585``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5586``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5587type with the same number of elements as ``ty``
5588
5589Semantics:
5590""""""""""
5591
5592The '``sitofp``' instruction interprets its operand as a signed integer
5593quantity and converts it to the corresponding floating point value. If
5594the value cannot fit in the floating point value, the results are
5595undefined.
5596
5597Example:
5598""""""""
5599
5600.. code-block:: llvm
5601
5602 %X = sitofp i32 257 to float ; yields float:257.0
5603 %Y = sitofp i8 -1 to double ; yields double:-1.0
5604
5605.. _i_ptrtoint:
5606
5607'``ptrtoint .. to``' Instruction
5608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5609
5610Syntax:
5611"""""""
5612
5613::
5614
5615 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5616
5617Overview:
5618"""""""""
5619
5620The '``ptrtoint``' instruction converts the pointer or a vector of
5621pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5622
5623Arguments:
5624""""""""""
5625
5626The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5627a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5628type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5629a vector of integers type.
5630
5631Semantics:
5632""""""""""
5633
5634The '``ptrtoint``' instruction converts ``value`` to integer type
5635``ty2`` by interpreting the pointer value as an integer and either
5636truncating or zero extending that value to the size of the integer type.
5637If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5638``value`` is larger than ``ty2`` then a truncation is done. If they are
5639the same size, then nothing is done (*no-op cast*) other than a type
5640change.
5641
5642Example:
5643""""""""
5644
5645.. code-block:: llvm
5646
5647 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5648 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5649 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5650
5651.. _i_inttoptr:
5652
5653'``inttoptr .. to``' Instruction
5654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5655
5656Syntax:
5657"""""""
5658
5659::
5660
5661 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5662
5663Overview:
5664"""""""""
5665
5666The '``inttoptr``' instruction converts an integer ``value`` to a
5667pointer type, ``ty2``.
5668
5669Arguments:
5670""""""""""
5671
5672The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5673cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5674type.
5675
5676Semantics:
5677""""""""""
5678
5679The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5680applying either a zero extension or a truncation depending on the size
5681of the integer ``value``. If ``value`` is larger than the size of a
5682pointer then a truncation is done. If ``value`` is smaller than the size
5683of a pointer then a zero extension is done. If they are the same size,
5684nothing is done (*no-op cast*).
5685
5686Example:
5687""""""""
5688
5689.. code-block:: llvm
5690
5691 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5692 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5693 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5694 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5695
5696.. _i_bitcast:
5697
5698'``bitcast .. to``' Instruction
5699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5700
5701Syntax:
5702"""""""
5703
5704::
5705
5706 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5707
5708Overview:
5709"""""""""
5710
5711The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5712changing any bits.
5713
5714Arguments:
5715""""""""""
5716
5717The '``bitcast``' instruction takes a value to cast, which must be a
5718non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005719also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5720bit sizes of ``value`` and the destination type, ``ty2``, must be
5721identical. If the source type is a pointer, the destination type must
5722also be a pointer of the same size. This instruction supports bitwise
5723conversion of vectors to integers and to vectors of other types (as
5724long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005725
5726Semantics:
5727""""""""""
5728
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005729The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5730is always a *no-op cast* because no bits change with this
5731conversion. The conversion is done as if the ``value`` had been stored
5732to memory and read back as type ``ty2``. Pointer (or vector of
5733pointers) types may only be converted to other pointer (or vector of
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005734pointers) types with the same address space through this instruction.
5735To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5736or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005737
5738Example:
5739""""""""
5740
5741.. code-block:: llvm
5742
5743 %X = bitcast i8 255 to i8 ; yields i8 :-1
5744 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5745 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5746 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5747
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005748.. _i_addrspacecast:
5749
5750'``addrspacecast .. to``' Instruction
5751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5752
5753Syntax:
5754"""""""
5755
5756::
5757
5758 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5759
5760Overview:
5761"""""""""
5762
5763The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5764address space ``n`` to type ``pty2`` in address space ``m``.
5765
5766Arguments:
5767""""""""""
5768
5769The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5770to cast and a pointer type to cast it to, which must have a different
5771address space.
5772
5773Semantics:
5774""""""""""
5775
5776The '``addrspacecast``' instruction converts the pointer value
5777``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault01ad8c32013-11-15 05:44:56 +00005778value modification, depending on the target and the address space
5779pair. Pointer conversions within the same address space must be
5780performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005781conversion is legal then both result and operand refer to the same memory
5782location.
5783
5784Example:
5785""""""""
5786
5787.. code-block:: llvm
5788
Matt Arsenaultef1b87a2013-11-15 22:43:50 +00005789 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5790 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5791 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005792
Sean Silvaf722b002012-12-07 10:36:55 +00005793.. _otherops:
5794
5795Other Operations
5796----------------
5797
5798The instructions in this category are the "miscellaneous" instructions,
5799which defy better classification.
5800
5801.. _i_icmp:
5802
5803'``icmp``' Instruction
5804^^^^^^^^^^^^^^^^^^^^^^
5805
5806Syntax:
5807"""""""
5808
5809::
5810
5811 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5812
5813Overview:
5814"""""""""
5815
5816The '``icmp``' instruction returns a boolean value or a vector of
5817boolean values based on comparison of its two integer, integer vector,
5818pointer, or pointer vector operands.
5819
5820Arguments:
5821""""""""""
5822
5823The '``icmp``' instruction takes three operands. The first operand is
5824the condition code indicating the kind of comparison to perform. It is
5825not a value, just a keyword. The possible condition code are:
5826
5827#. ``eq``: equal
5828#. ``ne``: not equal
5829#. ``ugt``: unsigned greater than
5830#. ``uge``: unsigned greater or equal
5831#. ``ult``: unsigned less than
5832#. ``ule``: unsigned less or equal
5833#. ``sgt``: signed greater than
5834#. ``sge``: signed greater or equal
5835#. ``slt``: signed less than
5836#. ``sle``: signed less or equal
5837
5838The remaining two arguments must be :ref:`integer <t_integer>` or
5839:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5840must also be identical types.
5841
5842Semantics:
5843""""""""""
5844
5845The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5846code given as ``cond``. The comparison performed always yields either an
5847:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5848
5849#. ``eq``: yields ``true`` if the operands are equal, ``false``
5850 otherwise. No sign interpretation is necessary or performed.
5851#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5852 otherwise. No sign interpretation is necessary or performed.
5853#. ``ugt``: interprets the operands as unsigned values and yields
5854 ``true`` if ``op1`` is greater than ``op2``.
5855#. ``uge``: interprets the operands as unsigned values and yields
5856 ``true`` if ``op1`` is greater than or equal to ``op2``.
5857#. ``ult``: interprets the operands as unsigned values and yields
5858 ``true`` if ``op1`` is less than ``op2``.
5859#. ``ule``: interprets the operands as unsigned values and yields
5860 ``true`` if ``op1`` is less than or equal to ``op2``.
5861#. ``sgt``: interprets the operands as signed values and yields ``true``
5862 if ``op1`` is greater than ``op2``.
5863#. ``sge``: interprets the operands as signed values and yields ``true``
5864 if ``op1`` is greater than or equal to ``op2``.
5865#. ``slt``: interprets the operands as signed values and yields ``true``
5866 if ``op1`` is less than ``op2``.
5867#. ``sle``: interprets the operands as signed values and yields ``true``
5868 if ``op1`` is less than or equal to ``op2``.
5869
5870If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5871are compared as if they were integers.
5872
5873If the operands are integer vectors, then they are compared element by
5874element. The result is an ``i1`` vector with the same number of elements
5875as the values being compared. Otherwise, the result is an ``i1``.
5876
5877Example:
5878""""""""
5879
5880.. code-block:: llvm
5881
5882 <result> = icmp eq i32 4, 5 ; yields: result=false
5883 <result> = icmp ne float* %X, %X ; yields: result=false
5884 <result> = icmp ult i16 4, 5 ; yields: result=true
5885 <result> = icmp sgt i16 4, 5 ; yields: result=false
5886 <result> = icmp ule i16 -4, 5 ; yields: result=false
5887 <result> = icmp sge i16 4, 5 ; yields: result=false
5888
5889Note that the code generator does not yet support vector types with the
5890``icmp`` instruction.
5891
5892.. _i_fcmp:
5893
5894'``fcmp``' Instruction
5895^^^^^^^^^^^^^^^^^^^^^^
5896
5897Syntax:
5898"""""""
5899
5900::
5901
5902 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5903
5904Overview:
5905"""""""""
5906
5907The '``fcmp``' instruction returns a boolean value or vector of boolean
5908values based on comparison of its operands.
5909
5910If the operands are floating point scalars, then the result type is a
5911boolean (:ref:`i1 <t_integer>`).
5912
5913If the operands are floating point vectors, then the result type is a
5914vector of boolean with the same number of elements as the operands being
5915compared.
5916
5917Arguments:
5918""""""""""
5919
5920The '``fcmp``' instruction takes three operands. The first operand is
5921the condition code indicating the kind of comparison to perform. It is
5922not a value, just a keyword. The possible condition code are:
5923
5924#. ``false``: no comparison, always returns false
5925#. ``oeq``: ordered and equal
5926#. ``ogt``: ordered and greater than
5927#. ``oge``: ordered and greater than or equal
5928#. ``olt``: ordered and less than
5929#. ``ole``: ordered and less than or equal
5930#. ``one``: ordered and not equal
5931#. ``ord``: ordered (no nans)
5932#. ``ueq``: unordered or equal
5933#. ``ugt``: unordered or greater than
5934#. ``uge``: unordered or greater than or equal
5935#. ``ult``: unordered or less than
5936#. ``ule``: unordered or less than or equal
5937#. ``une``: unordered or not equal
5938#. ``uno``: unordered (either nans)
5939#. ``true``: no comparison, always returns true
5940
5941*Ordered* means that neither operand is a QNAN while *unordered* means
5942that either operand may be a QNAN.
5943
5944Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5945point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5946type. They must have identical types.
5947
5948Semantics:
5949""""""""""
5950
5951The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5952condition code given as ``cond``. If the operands are vectors, then the
5953vectors are compared element by element. Each comparison performed
5954always yields an :ref:`i1 <t_integer>` result, as follows:
5955
5956#. ``false``: always yields ``false``, regardless of operands.
5957#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5958 is equal to ``op2``.
5959#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5960 is greater than ``op2``.
5961#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5962 is greater than or equal to ``op2``.
5963#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5964 is less than ``op2``.
5965#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5966 is less than or equal to ``op2``.
5967#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5968 is not equal to ``op2``.
5969#. ``ord``: yields ``true`` if both operands are not a QNAN.
5970#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5971 equal to ``op2``.
5972#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5973 greater than ``op2``.
5974#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5975 greater than or equal to ``op2``.
5976#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5977 less than ``op2``.
5978#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5979 less than or equal to ``op2``.
5980#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5981 not equal to ``op2``.
5982#. ``uno``: yields ``true`` if either operand is a QNAN.
5983#. ``true``: always yields ``true``, regardless of operands.
5984
5985Example:
5986""""""""
5987
5988.. code-block:: llvm
5989
5990 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5991 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5992 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5993 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5994
5995Note that the code generator does not yet support vector types with the
5996``fcmp`` instruction.
5997
5998.. _i_phi:
5999
6000'``phi``' Instruction
6001^^^^^^^^^^^^^^^^^^^^^
6002
6003Syntax:
6004"""""""
6005
6006::
6007
6008 <result> = phi <ty> [ <val0>, <label0>], ...
6009
6010Overview:
6011"""""""""
6012
6013The '``phi``' instruction is used to implement the φ node in the SSA
6014graph representing the function.
6015
6016Arguments:
6017""""""""""
6018
6019The type of the incoming values is specified with the first type field.
6020After this, the '``phi``' instruction takes a list of pairs as
6021arguments, with one pair for each predecessor basic block of the current
6022block. Only values of :ref:`first class <t_firstclass>` type may be used as
6023the value arguments to the PHI node. Only labels may be used as the
6024label arguments.
6025
6026There must be no non-phi instructions between the start of a basic block
6027and the PHI instructions: i.e. PHI instructions must be first in a basic
6028block.
6029
6030For the purposes of the SSA form, the use of each incoming value is
6031deemed to occur on the edge from the corresponding predecessor block to
6032the current block (but after any definition of an '``invoke``'
6033instruction's return value on the same edge).
6034
6035Semantics:
6036""""""""""
6037
6038At runtime, the '``phi``' instruction logically takes on the value
6039specified by the pair corresponding to the predecessor basic block that
6040executed just prior to the current block.
6041
6042Example:
6043""""""""
6044
6045.. code-block:: llvm
6046
6047 Loop: ; Infinite loop that counts from 0 on up...
6048 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6049 %nextindvar = add i32 %indvar, 1
6050 br label %Loop
6051
6052.. _i_select:
6053
6054'``select``' Instruction
6055^^^^^^^^^^^^^^^^^^^^^^^^
6056
6057Syntax:
6058"""""""
6059
6060::
6061
6062 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6063
6064 selty is either i1 or {<N x i1>}
6065
6066Overview:
6067"""""""""
6068
6069The '``select``' instruction is used to choose one value based on a
6070condition, without branching.
6071
6072Arguments:
6073""""""""""
6074
6075The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6076values indicating the condition, and two values of the same :ref:`first
6077class <t_firstclass>` type. If the val1/val2 are vectors and the
6078condition is a scalar, then entire vectors are selected, not individual
6079elements.
6080
6081Semantics:
6082""""""""""
6083
6084If the condition is an i1 and it evaluates to 1, the instruction returns
6085the first value argument; otherwise, it returns the second value
6086argument.
6087
6088If the condition is a vector of i1, then the value arguments must be
6089vectors of the same size, and the selection is done element by element.
6090
6091Example:
6092""""""""
6093
6094.. code-block:: llvm
6095
6096 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6097
6098.. _i_call:
6099
6100'``call``' Instruction
6101^^^^^^^^^^^^^^^^^^^^^^
6102
6103Syntax:
6104"""""""
6105
6106::
6107
6108 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6109
6110Overview:
6111"""""""""
6112
6113The '``call``' instruction represents a simple function call.
6114
6115Arguments:
6116""""""""""
6117
6118This instruction requires several arguments:
6119
6120#. The optional "tail" marker indicates that the callee function does
6121 not access any allocas or varargs in the caller. Note that calls may
6122 be marked "tail" even if they do not occur before a
6123 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6124 function call is eligible for tail call optimization, but `might not
6125 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6126 The code generator may optimize calls marked "tail" with either 1)
6127 automatic `sibling call
6128 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6129 callee have matching signatures, or 2) forced tail call optimization
6130 when the following extra requirements are met:
6131
6132 - Caller and callee both have the calling convention ``fastcc``.
6133 - The call is in tail position (ret immediately follows call and ret
6134 uses value of call or is void).
6135 - Option ``-tailcallopt`` is enabled, or
6136 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6137 - `Platform specific constraints are
6138 met. <CodeGenerator.html#tailcallopt>`_
6139
6140#. The optional "cconv" marker indicates which :ref:`calling
6141 convention <callingconv>` the call should use. If none is
6142 specified, the call defaults to using C calling conventions. The
6143 calling convention of the call must match the calling convention of
6144 the target function, or else the behavior is undefined.
6145#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6146 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6147 are valid here.
6148#. '``ty``': the type of the call instruction itself which is also the
6149 type of the return value. Functions that return no value are marked
6150 ``void``.
6151#. '``fnty``': shall be the signature of the pointer to function value
6152 being invoked. The argument types must match the types implied by
6153 this signature. This type can be omitted if the function is not
6154 varargs and if the function type does not return a pointer to a
6155 function.
6156#. '``fnptrval``': An LLVM value containing a pointer to a function to
6157 be invoked. In most cases, this is a direct function invocation, but
6158 indirect ``call``'s are just as possible, calling an arbitrary pointer
6159 to function value.
6160#. '``function args``': argument list whose types match the function
6161 signature argument types and parameter attributes. All arguments must
6162 be of :ref:`first class <t_firstclass>` type. If the function signature
6163 indicates the function accepts a variable number of arguments, the
6164 extra arguments can be specified.
6165#. The optional :ref:`function attributes <fnattrs>` list. Only
6166 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6167 attributes are valid here.
6168
6169Semantics:
6170""""""""""
6171
6172The '``call``' instruction is used to cause control flow to transfer to
6173a specified function, with its incoming arguments bound to the specified
6174values. Upon a '``ret``' instruction in the called function, control
6175flow continues with the instruction after the function call, and the
6176return value of the function is bound to the result argument.
6177
6178Example:
6179""""""""
6180
6181.. code-block:: llvm
6182
6183 %retval = call i32 @test(i32 %argc)
6184 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6185 %X = tail call i32 @foo() ; yields i32
6186 %Y = tail call fastcc i32 @foo() ; yields i32
6187 call void %foo(i8 97 signext)
6188
6189 %struct.A = type { i32, i8 }
6190 %r = call %struct.A @foo() ; yields { 32, i8 }
6191 %gr = extractvalue %struct.A %r, 0 ; yields i32
6192 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6193 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6194 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6195
6196llvm treats calls to some functions with names and arguments that match
6197the standard C99 library as being the C99 library functions, and may
6198perform optimizations or generate code for them under that assumption.
6199This is something we'd like to change in the future to provide better
6200support for freestanding environments and non-C-based languages.
6201
6202.. _i_va_arg:
6203
6204'``va_arg``' Instruction
6205^^^^^^^^^^^^^^^^^^^^^^^^
6206
6207Syntax:
6208"""""""
6209
6210::
6211
6212 <resultval> = va_arg <va_list*> <arglist>, <argty>
6213
6214Overview:
6215"""""""""
6216
6217The '``va_arg``' instruction is used to access arguments passed through
6218the "variable argument" area of a function call. It is used to implement
6219the ``va_arg`` macro in C.
6220
6221Arguments:
6222""""""""""
6223
6224This instruction takes a ``va_list*`` value and the type of the
6225argument. It returns a value of the specified argument type and
6226increments the ``va_list`` to point to the next argument. The actual
6227type of ``va_list`` is target specific.
6228
6229Semantics:
6230""""""""""
6231
6232The '``va_arg``' instruction loads an argument of the specified type
6233from the specified ``va_list`` and causes the ``va_list`` to point to
6234the next argument. For more information, see the variable argument
6235handling :ref:`Intrinsic Functions <int_varargs>`.
6236
6237It is legal for this instruction to be called in a function which does
6238not take a variable number of arguments, for example, the ``vfprintf``
6239function.
6240
6241``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6242function <intrinsics>` because it takes a type as an argument.
6243
6244Example:
6245""""""""
6246
6247See the :ref:`variable argument processing <int_varargs>` section.
6248
6249Note that the code generator does not yet fully support va\_arg on many
6250targets. Also, it does not currently support va\_arg with aggregate
6251types on any target.
6252
6253.. _i_landingpad:
6254
6255'``landingpad``' Instruction
6256^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6257
6258Syntax:
6259"""""""
6260
6261::
6262
6263 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6264 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6265
6266 <clause> := catch <type> <value>
6267 <clause> := filter <array constant type> <array constant>
6268
6269Overview:
6270"""""""""
6271
6272The '``landingpad``' instruction is used by `LLVM's exception handling
6273system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006274is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006275code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6276defines values supplied by the personality function (``pers_fn``) upon
6277re-entry to the function. The ``resultval`` has the type ``resultty``.
6278
6279Arguments:
6280""""""""""
6281
6282This instruction takes a ``pers_fn`` value. This is the personality
6283function associated with the unwinding mechanism. The optional
6284``cleanup`` flag indicates that the landing pad block is a cleanup.
6285
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006286A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006287contains the global variable representing the "type" that may be caught
6288or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6289clause takes an array constant as its argument. Use
6290"``[0 x i8**] undef``" for a filter which cannot throw. The
6291'``landingpad``' instruction must contain *at least* one ``clause`` or
6292the ``cleanup`` flag.
6293
6294Semantics:
6295""""""""""
6296
6297The '``landingpad``' instruction defines the values which are set by the
6298personality function (``pers_fn``) upon re-entry to the function, and
6299therefore the "result type" of the ``landingpad`` instruction. As with
6300calling conventions, how the personality function results are
6301represented in LLVM IR is target specific.
6302
6303The clauses are applied in order from top to bottom. If two
6304``landingpad`` instructions are merged together through inlining, the
6305clauses from the calling function are appended to the list of clauses.
6306When the call stack is being unwound due to an exception being thrown,
6307the exception is compared against each ``clause`` in turn. If it doesn't
6308match any of the clauses, and the ``cleanup`` flag is not set, then
6309unwinding continues further up the call stack.
6310
6311The ``landingpad`` instruction has several restrictions:
6312
6313- A landing pad block is a basic block which is the unwind destination
6314 of an '``invoke``' instruction.
6315- A landing pad block must have a '``landingpad``' instruction as its
6316 first non-PHI instruction.
6317- There can be only one '``landingpad``' instruction within the landing
6318 pad block.
6319- A basic block that is not a landing pad block may not include a
6320 '``landingpad``' instruction.
6321- All '``landingpad``' instructions in a function must have the same
6322 personality function.
6323
6324Example:
6325""""""""
6326
6327.. code-block:: llvm
6328
6329 ;; A landing pad which can catch an integer.
6330 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6331 catch i8** @_ZTIi
6332 ;; A landing pad that is a cleanup.
6333 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6334 cleanup
6335 ;; A landing pad which can catch an integer and can only throw a double.
6336 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6337 catch i8** @_ZTIi
6338 filter [1 x i8**] [@_ZTId]
6339
6340.. _intrinsics:
6341
6342Intrinsic Functions
6343===================
6344
6345LLVM supports the notion of an "intrinsic function". These functions
6346have well known names and semantics and are required to follow certain
6347restrictions. Overall, these intrinsics represent an extension mechanism
6348for the LLVM language that does not require changing all of the
6349transformations in LLVM when adding to the language (or the bitcode
6350reader/writer, the parser, etc...).
6351
6352Intrinsic function names must all start with an "``llvm.``" prefix. This
6353prefix is reserved in LLVM for intrinsic names; thus, function names may
6354not begin with this prefix. Intrinsic functions must always be external
6355functions: you cannot define the body of intrinsic functions. Intrinsic
6356functions may only be used in call or invoke instructions: it is illegal
6357to take the address of an intrinsic function. Additionally, because
6358intrinsic functions are part of the LLVM language, it is required if any
6359are added that they be documented here.
6360
6361Some intrinsic functions can be overloaded, i.e., the intrinsic
6362represents a family of functions that perform the same operation but on
6363different data types. Because LLVM can represent over 8 million
6364different integer types, overloading is used commonly to allow an
6365intrinsic function to operate on any integer type. One or more of the
6366argument types or the result type can be overloaded to accept any
6367integer type. Argument types may also be defined as exactly matching a
6368previous argument's type or the result type. This allows an intrinsic
6369function which accepts multiple arguments, but needs all of them to be
6370of the same type, to only be overloaded with respect to a single
6371argument or the result.
6372
6373Overloaded intrinsics will have the names of its overloaded argument
6374types encoded into its function name, each preceded by a period. Only
6375those types which are overloaded result in a name suffix. Arguments
6376whose type is matched against another type do not. For example, the
6377``llvm.ctpop`` function can take an integer of any width and returns an
6378integer of exactly the same integer width. This leads to a family of
6379functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6380``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6381overloaded, and only one type suffix is required. Because the argument's
6382type is matched against the return type, it does not require its own
6383name suffix.
6384
6385To learn how to add an intrinsic function, please see the `Extending
6386LLVM Guide <ExtendingLLVM.html>`_.
6387
6388.. _int_varargs:
6389
6390Variable Argument Handling Intrinsics
6391-------------------------------------
6392
6393Variable argument support is defined in LLVM with the
6394:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6395functions. These functions are related to the similarly named macros
6396defined in the ``<stdarg.h>`` header file.
6397
6398All of these functions operate on arguments that use a target-specific
6399value type "``va_list``". The LLVM assembly language reference manual
6400does not define what this type is, so all transformations should be
6401prepared to handle these functions regardless of the type used.
6402
6403This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6404variable argument handling intrinsic functions are used.
6405
6406.. code-block:: llvm
6407
6408 define i32 @test(i32 %X, ...) {
6409 ; Initialize variable argument processing
6410 %ap = alloca i8*
6411 %ap2 = bitcast i8** %ap to i8*
6412 call void @llvm.va_start(i8* %ap2)
6413
6414 ; Read a single integer argument
6415 %tmp = va_arg i8** %ap, i32
6416
6417 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6418 %aq = alloca i8*
6419 %aq2 = bitcast i8** %aq to i8*
6420 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6421 call void @llvm.va_end(i8* %aq2)
6422
6423 ; Stop processing of arguments.
6424 call void @llvm.va_end(i8* %ap2)
6425 ret i32 %tmp
6426 }
6427
6428 declare void @llvm.va_start(i8*)
6429 declare void @llvm.va_copy(i8*, i8*)
6430 declare void @llvm.va_end(i8*)
6431
6432.. _int_va_start:
6433
6434'``llvm.va_start``' Intrinsic
6435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6436
6437Syntax:
6438"""""""
6439
6440::
6441
Nick Lewyckyf7e61562013-09-11 22:04:52 +00006442 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +00006443
6444Overview:
6445"""""""""
6446
6447The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6448subsequent use by ``va_arg``.
6449
6450Arguments:
6451""""""""""
6452
6453The argument is a pointer to a ``va_list`` element to initialize.
6454
6455Semantics:
6456""""""""""
6457
6458The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6459available in C. In a target-dependent way, it initializes the
6460``va_list`` element to which the argument points, so that the next call
6461to ``va_arg`` will produce the first variable argument passed to the
6462function. Unlike the C ``va_start`` macro, this intrinsic does not need
6463to know the last argument of the function as the compiler can figure
6464that out.
6465
6466'``llvm.va_end``' Intrinsic
6467^^^^^^^^^^^^^^^^^^^^^^^^^^^
6468
6469Syntax:
6470"""""""
6471
6472::
6473
6474 declare void @llvm.va_end(i8* <arglist>)
6475
6476Overview:
6477"""""""""
6478
6479The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6480initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6481
6482Arguments:
6483""""""""""
6484
6485The argument is a pointer to a ``va_list`` to destroy.
6486
6487Semantics:
6488""""""""""
6489
6490The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6491available in C. In a target-dependent way, it destroys the ``va_list``
6492element to which the argument points. Calls to
6493:ref:`llvm.va_start <int_va_start>` and
6494:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6495``llvm.va_end``.
6496
6497.. _int_va_copy:
6498
6499'``llvm.va_copy``' Intrinsic
6500^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6501
6502Syntax:
6503"""""""
6504
6505::
6506
6507 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6508
6509Overview:
6510"""""""""
6511
6512The '``llvm.va_copy``' intrinsic copies the current argument position
6513from the source argument list to the destination argument list.
6514
6515Arguments:
6516""""""""""
6517
6518The first argument is a pointer to a ``va_list`` element to initialize.
6519The second argument is a pointer to a ``va_list`` element to copy from.
6520
6521Semantics:
6522""""""""""
6523
6524The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6525available in C. In a target-dependent way, it copies the source
6526``va_list`` element into the destination ``va_list`` element. This
6527intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6528arbitrarily complex and require, for example, memory allocation.
6529
6530Accurate Garbage Collection Intrinsics
6531--------------------------------------
6532
6533LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6534(GC) requires the implementation and generation of these intrinsics.
6535These intrinsics allow identification of :ref:`GC roots on the
6536stack <int_gcroot>`, as well as garbage collector implementations that
6537require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6538Front-ends for type-safe garbage collected languages should generate
6539these intrinsics to make use of the LLVM garbage collectors. For more
6540details, see `Accurate Garbage Collection with
6541LLVM <GarbageCollection.html>`_.
6542
6543The garbage collection intrinsics only operate on objects in the generic
6544address space (address space zero).
6545
6546.. _int_gcroot:
6547
6548'``llvm.gcroot``' Intrinsic
6549^^^^^^^^^^^^^^^^^^^^^^^^^^^
6550
6551Syntax:
6552"""""""
6553
6554::
6555
6556 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6557
6558Overview:
6559"""""""""
6560
6561The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6562the code generator, and allows some metadata to be associated with it.
6563
6564Arguments:
6565""""""""""
6566
6567The first argument specifies the address of a stack object that contains
6568the root pointer. The second pointer (which must be either a constant or
6569a global value address) contains the meta-data to be associated with the
6570root.
6571
6572Semantics:
6573""""""""""
6574
6575At runtime, a call to this intrinsic stores a null pointer into the
6576"ptrloc" location. At compile-time, the code generator generates
6577information to allow the runtime to find the pointer at GC safe points.
6578The '``llvm.gcroot``' intrinsic may only be used in a function which
6579:ref:`specifies a GC algorithm <gc>`.
6580
6581.. _int_gcread:
6582
6583'``llvm.gcread``' Intrinsic
6584^^^^^^^^^^^^^^^^^^^^^^^^^^^
6585
6586Syntax:
6587"""""""
6588
6589::
6590
6591 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6592
6593Overview:
6594"""""""""
6595
6596The '``llvm.gcread``' intrinsic identifies reads of references from heap
6597locations, allowing garbage collector implementations that require read
6598barriers.
6599
6600Arguments:
6601""""""""""
6602
6603The second argument is the address to read from, which should be an
6604address allocated from the garbage collector. The first object is a
6605pointer to the start of the referenced object, if needed by the language
6606runtime (otherwise null).
6607
6608Semantics:
6609""""""""""
6610
6611The '``llvm.gcread``' intrinsic has the same semantics as a load
6612instruction, but may be replaced with substantially more complex code by
6613the garbage collector runtime, as needed. The '``llvm.gcread``'
6614intrinsic may only be used in a function which :ref:`specifies a GC
6615algorithm <gc>`.
6616
6617.. _int_gcwrite:
6618
6619'``llvm.gcwrite``' Intrinsic
6620^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6621
6622Syntax:
6623"""""""
6624
6625::
6626
6627 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6628
6629Overview:
6630"""""""""
6631
6632The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6633locations, allowing garbage collector implementations that require write
6634barriers (such as generational or reference counting collectors).
6635
6636Arguments:
6637""""""""""
6638
6639The first argument is the reference to store, the second is the start of
6640the object to store it to, and the third is the address of the field of
6641Obj to store to. If the runtime does not require a pointer to the
6642object, Obj may be null.
6643
6644Semantics:
6645""""""""""
6646
6647The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6648instruction, but may be replaced with substantially more complex code by
6649the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6650intrinsic may only be used in a function which :ref:`specifies a GC
6651algorithm <gc>`.
6652
6653Code Generator Intrinsics
6654-------------------------
6655
6656These intrinsics are provided by LLVM to expose special features that
6657may only be implemented with code generator support.
6658
6659'``llvm.returnaddress``' Intrinsic
6660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6661
6662Syntax:
6663"""""""
6664
6665::
6666
6667 declare i8 *@llvm.returnaddress(i32 <level>)
6668
6669Overview:
6670"""""""""
6671
6672The '``llvm.returnaddress``' intrinsic attempts to compute a
6673target-specific value indicating the return address of the current
6674function or one of its callers.
6675
6676Arguments:
6677""""""""""
6678
6679The argument to this intrinsic indicates which function to return the
6680address for. Zero indicates the calling function, one indicates its
6681caller, etc. The argument is **required** to be a constant integer
6682value.
6683
6684Semantics:
6685""""""""""
6686
6687The '``llvm.returnaddress``' intrinsic either returns a pointer
6688indicating the return address of the specified call frame, or zero if it
6689cannot be identified. The value returned by this intrinsic is likely to
6690be incorrect or 0 for arguments other than zero, so it should only be
6691used for debugging purposes.
6692
6693Note that calling this intrinsic does not prevent function inlining or
6694other aggressive transformations, so the value returned may not be that
6695of the obvious source-language caller.
6696
6697'``llvm.frameaddress``' Intrinsic
6698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6699
6700Syntax:
6701"""""""
6702
6703::
6704
6705 declare i8* @llvm.frameaddress(i32 <level>)
6706
6707Overview:
6708"""""""""
6709
6710The '``llvm.frameaddress``' intrinsic attempts to return the
6711target-specific frame pointer value for the specified stack frame.
6712
6713Arguments:
6714""""""""""
6715
6716The argument to this intrinsic indicates which function to return the
6717frame pointer for. Zero indicates the calling function, one indicates
6718its caller, etc. The argument is **required** to be a constant integer
6719value.
6720
6721Semantics:
6722""""""""""
6723
6724The '``llvm.frameaddress``' intrinsic either returns a pointer
6725indicating the frame address of the specified call frame, or zero if it
6726cannot be identified. The value returned by this intrinsic is likely to
6727be incorrect or 0 for arguments other than zero, so it should only be
6728used for debugging purposes.
6729
6730Note that calling this intrinsic does not prevent function inlining or
6731other aggressive transformations, so the value returned may not be that
6732of the obvious source-language caller.
6733
6734.. _int_stacksave:
6735
6736'``llvm.stacksave``' Intrinsic
6737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6738
6739Syntax:
6740"""""""
6741
6742::
6743
6744 declare i8* @llvm.stacksave()
6745
6746Overview:
6747"""""""""
6748
6749The '``llvm.stacksave``' intrinsic is used to remember the current state
6750of the function stack, for use with
6751:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6752implementing language features like scoped automatic variable sized
6753arrays in C99.
6754
6755Semantics:
6756""""""""""
6757
6758This intrinsic returns a opaque pointer value that can be passed to
6759:ref:`llvm.stackrestore <int_stackrestore>`. When an
6760``llvm.stackrestore`` intrinsic is executed with a value saved from
6761``llvm.stacksave``, it effectively restores the state of the stack to
6762the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6763practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6764were allocated after the ``llvm.stacksave`` was executed.
6765
6766.. _int_stackrestore:
6767
6768'``llvm.stackrestore``' Intrinsic
6769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6770
6771Syntax:
6772"""""""
6773
6774::
6775
6776 declare void @llvm.stackrestore(i8* %ptr)
6777
6778Overview:
6779"""""""""
6780
6781The '``llvm.stackrestore``' intrinsic is used to restore the state of
6782the function stack to the state it was in when the corresponding
6783:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6784useful for implementing language features like scoped automatic variable
6785sized arrays in C99.
6786
6787Semantics:
6788""""""""""
6789
6790See the description for :ref:`llvm.stacksave <int_stacksave>`.
6791
6792'``llvm.prefetch``' Intrinsic
6793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6794
6795Syntax:
6796"""""""
6797
6798::
6799
6800 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6801
6802Overview:
6803"""""""""
6804
6805The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6806insert a prefetch instruction if supported; otherwise, it is a noop.
6807Prefetches have no effect on the behavior of the program but can change
6808its performance characteristics.
6809
6810Arguments:
6811""""""""""
6812
6813``address`` is the address to be prefetched, ``rw`` is the specifier
6814determining if the fetch should be for a read (0) or write (1), and
6815``locality`` is a temporal locality specifier ranging from (0) - no
6816locality, to (3) - extremely local keep in cache. The ``cache type``
6817specifies whether the prefetch is performed on the data (1) or
6818instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6819arguments must be constant integers.
6820
6821Semantics:
6822""""""""""
6823
6824This intrinsic does not modify the behavior of the program. In
6825particular, prefetches cannot trap and do not produce a value. On
6826targets that support this intrinsic, the prefetch can provide hints to
6827the processor cache for better performance.
6828
6829'``llvm.pcmarker``' Intrinsic
6830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6831
6832Syntax:
6833"""""""
6834
6835::
6836
6837 declare void @llvm.pcmarker(i32 <id>)
6838
6839Overview:
6840"""""""""
6841
6842The '``llvm.pcmarker``' intrinsic is a method to export a Program
6843Counter (PC) in a region of code to simulators and other tools. The
6844method is target specific, but it is expected that the marker will use
6845exported symbols to transmit the PC of the marker. The marker makes no
6846guarantees that it will remain with any specific instruction after
6847optimizations. It is possible that the presence of a marker will inhibit
6848optimizations. The intended use is to be inserted after optimizations to
6849allow correlations of simulation runs.
6850
6851Arguments:
6852""""""""""
6853
6854``id`` is a numerical id identifying the marker.
6855
6856Semantics:
6857""""""""""
6858
6859This intrinsic does not modify the behavior of the program. Backends
6860that do not support this intrinsic may ignore it.
6861
6862'``llvm.readcyclecounter``' Intrinsic
6863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6864
6865Syntax:
6866"""""""
6867
6868::
6869
6870 declare i64 @llvm.readcyclecounter()
6871
6872Overview:
6873"""""""""
6874
6875The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6876counter register (or similar low latency, high accuracy clocks) on those
6877targets that support it. On X86, it should map to RDTSC. On Alpha, it
6878should map to RPCC. As the backing counters overflow quickly (on the
6879order of 9 seconds on alpha), this should only be used for small
6880timings.
6881
6882Semantics:
6883""""""""""
6884
6885When directly supported, reading the cycle counter should not modify any
6886memory. Implementations are allowed to either return a application
6887specific value or a system wide value. On backends without support, this
6888is lowered to a constant 0.
6889
Tim Northover5a02fc42013-05-23 19:11:20 +00006890Note that runtime support may be conditional on the privilege-level code is
6891running at and the host platform.
6892
Sean Silvaf722b002012-12-07 10:36:55 +00006893Standard C Library Intrinsics
6894-----------------------------
6895
6896LLVM provides intrinsics for a few important standard C library
6897functions. These intrinsics allow source-language front-ends to pass
6898information about the alignment of the pointer arguments to the code
6899generator, providing opportunity for more efficient code generation.
6900
6901.. _int_memcpy:
6902
6903'``llvm.memcpy``' Intrinsic
6904^^^^^^^^^^^^^^^^^^^^^^^^^^^
6905
6906Syntax:
6907"""""""
6908
6909This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6910integer bit width and for different address spaces. Not all targets
6911support all bit widths however.
6912
6913::
6914
6915 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6916 i32 <len>, i32 <align>, i1 <isvolatile>)
6917 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6918 i64 <len>, i32 <align>, i1 <isvolatile>)
6919
6920Overview:
6921"""""""""
6922
6923The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6924source location to the destination location.
6925
6926Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6927intrinsics do not return a value, takes extra alignment/isvolatile
6928arguments and the pointers can be in specified address spaces.
6929
6930Arguments:
6931""""""""""
6932
6933The first argument is a pointer to the destination, the second is a
6934pointer to the source. The third argument is an integer argument
6935specifying the number of bytes to copy, the fourth argument is the
6936alignment of the source and destination locations, and the fifth is a
6937boolean indicating a volatile access.
6938
6939If the call to this intrinsic has an alignment value that is not 0 or 1,
6940then the caller guarantees that both the source and destination pointers
6941are aligned to that boundary.
6942
6943If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6944a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6945very cleanly specified and it is unwise to depend on it.
6946
6947Semantics:
6948""""""""""
6949
6950The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6951source location to the destination location, which are not allowed to
6952overlap. It copies "len" bytes of memory over. If the argument is known
6953to be aligned to some boundary, this can be specified as the fourth
Bill Wendlingf47ffe02013-10-18 23:26:55 +00006954argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00006955
6956'``llvm.memmove``' Intrinsic
6957^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6958
6959Syntax:
6960"""""""
6961
6962This is an overloaded intrinsic. You can use llvm.memmove on any integer
6963bit width and for different address space. Not all targets support all
6964bit widths however.
6965
6966::
6967
6968 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6969 i32 <len>, i32 <align>, i1 <isvolatile>)
6970 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6971 i64 <len>, i32 <align>, i1 <isvolatile>)
6972
6973Overview:
6974"""""""""
6975
6976The '``llvm.memmove.*``' intrinsics move a block of memory from the
6977source location to the destination location. It is similar to the
6978'``llvm.memcpy``' intrinsic but allows the two memory locations to
6979overlap.
6980
6981Note that, unlike the standard libc function, the ``llvm.memmove.*``
6982intrinsics do not return a value, takes extra alignment/isvolatile
6983arguments and the pointers can be in specified address spaces.
6984
6985Arguments:
6986""""""""""
6987
6988The first argument is a pointer to the destination, the second is a
6989pointer to the source. The third argument is an integer argument
6990specifying the number of bytes to copy, the fourth argument is the
6991alignment of the source and destination locations, and the fifth is a
6992boolean indicating a volatile access.
6993
6994If the call to this intrinsic has an alignment value that is not 0 or 1,
6995then the caller guarantees that the source and destination pointers are
6996aligned to that boundary.
6997
6998If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6999is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7000not very cleanly specified and it is unwise to depend on it.
7001
7002Semantics:
7003""""""""""
7004
7005The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7006source location to the destination location, which may overlap. It
7007copies "len" bytes of memory over. If the argument is known to be
7008aligned to some boundary, this can be specified as the fourth argument,
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007009otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007010
7011'``llvm.memset.*``' Intrinsics
7012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7013
7014Syntax:
7015"""""""
7016
7017This is an overloaded intrinsic. You can use llvm.memset on any integer
7018bit width and for different address spaces. However, not all targets
7019support all bit widths.
7020
7021::
7022
7023 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7024 i32 <len>, i32 <align>, i1 <isvolatile>)
7025 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7026 i64 <len>, i32 <align>, i1 <isvolatile>)
7027
7028Overview:
7029"""""""""
7030
7031The '``llvm.memset.*``' intrinsics fill a block of memory with a
7032particular byte value.
7033
7034Note that, unlike the standard libc function, the ``llvm.memset``
7035intrinsic does not return a value and takes extra alignment/volatile
7036arguments. Also, the destination can be in an arbitrary address space.
7037
7038Arguments:
7039""""""""""
7040
7041The first argument is a pointer to the destination to fill, the second
7042is the byte value with which to fill it, the third argument is an
7043integer argument specifying the number of bytes to fill, and the fourth
7044argument is the known alignment of the destination location.
7045
7046If the call to this intrinsic has an alignment value that is not 0 or 1,
7047then the caller guarantees that the destination pointer is aligned to
7048that boundary.
7049
7050If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7051a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7052very cleanly specified and it is unwise to depend on it.
7053
7054Semantics:
7055""""""""""
7056
7057The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7058at the destination location. If the argument is known to be aligned to
7059some boundary, this can be specified as the fourth argument, otherwise
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007060it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007061
7062'``llvm.sqrt.*``' Intrinsic
7063^^^^^^^^^^^^^^^^^^^^^^^^^^^
7064
7065Syntax:
7066"""""""
7067
7068This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7069floating point or vector of floating point type. Not all targets support
7070all types however.
7071
7072::
7073
7074 declare float @llvm.sqrt.f32(float %Val)
7075 declare double @llvm.sqrt.f64(double %Val)
7076 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7077 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7078 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7079
7080Overview:
7081"""""""""
7082
7083The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7084returning the same value as the libm '``sqrt``' functions would. Unlike
7085``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7086negative numbers other than -0.0 (which allows for better optimization,
7087because there is no need to worry about errno being set).
7088``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7089
7090Arguments:
7091""""""""""
7092
7093The argument and return value are floating point numbers of the same
7094type.
7095
7096Semantics:
7097""""""""""
7098
7099This function returns the sqrt of the specified operand if it is a
7100nonnegative floating point number.
7101
7102'``llvm.powi.*``' Intrinsic
7103^^^^^^^^^^^^^^^^^^^^^^^^^^^
7104
7105Syntax:
7106"""""""
7107
7108This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7109floating point or vector of floating point type. Not all targets support
7110all types however.
7111
7112::
7113
7114 declare float @llvm.powi.f32(float %Val, i32 %power)
7115 declare double @llvm.powi.f64(double %Val, i32 %power)
7116 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7117 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7118 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7119
7120Overview:
7121"""""""""
7122
7123The '``llvm.powi.*``' intrinsics return the first operand raised to the
7124specified (positive or negative) power. The order of evaluation of
7125multiplications is not defined. When a vector of floating point type is
7126used, the second argument remains a scalar integer value.
7127
7128Arguments:
7129""""""""""
7130
7131The second argument is an integer power, and the first is a value to
7132raise to that power.
7133
7134Semantics:
7135""""""""""
7136
7137This function returns the first value raised to the second power with an
7138unspecified sequence of rounding operations.
7139
7140'``llvm.sin.*``' Intrinsic
7141^^^^^^^^^^^^^^^^^^^^^^^^^^
7142
7143Syntax:
7144"""""""
7145
7146This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7147floating point or vector of floating point type. Not all targets support
7148all types however.
7149
7150::
7151
7152 declare float @llvm.sin.f32(float %Val)
7153 declare double @llvm.sin.f64(double %Val)
7154 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7155 declare fp128 @llvm.sin.f128(fp128 %Val)
7156 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7157
7158Overview:
7159"""""""""
7160
7161The '``llvm.sin.*``' intrinsics return the sine of the operand.
7162
7163Arguments:
7164""""""""""
7165
7166The argument and return value are floating point numbers of the same
7167type.
7168
7169Semantics:
7170""""""""""
7171
7172This function returns the sine of the specified operand, returning the
7173same values as the libm ``sin`` functions would, and handles error
7174conditions in the same way.
7175
7176'``llvm.cos.*``' Intrinsic
7177^^^^^^^^^^^^^^^^^^^^^^^^^^
7178
7179Syntax:
7180"""""""
7181
7182This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7183floating point or vector of floating point type. Not all targets support
7184all types however.
7185
7186::
7187
7188 declare float @llvm.cos.f32(float %Val)
7189 declare double @llvm.cos.f64(double %Val)
7190 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7191 declare fp128 @llvm.cos.f128(fp128 %Val)
7192 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7193
7194Overview:
7195"""""""""
7196
7197The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7198
7199Arguments:
7200""""""""""
7201
7202The argument and return value are floating point numbers of the same
7203type.
7204
7205Semantics:
7206""""""""""
7207
7208This function returns the cosine of the specified operand, returning the
7209same values as the libm ``cos`` functions would, and handles error
7210conditions in the same way.
7211
7212'``llvm.pow.*``' Intrinsic
7213^^^^^^^^^^^^^^^^^^^^^^^^^^
7214
7215Syntax:
7216"""""""
7217
7218This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7219floating point or vector of floating point type. Not all targets support
7220all types however.
7221
7222::
7223
7224 declare float @llvm.pow.f32(float %Val, float %Power)
7225 declare double @llvm.pow.f64(double %Val, double %Power)
7226 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7227 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7228 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7229
7230Overview:
7231"""""""""
7232
7233The '``llvm.pow.*``' intrinsics return the first operand raised to the
7234specified (positive or negative) power.
7235
7236Arguments:
7237""""""""""
7238
7239The second argument is a floating point power, and the first is a value
7240to raise to that power.
7241
7242Semantics:
7243""""""""""
7244
7245This function returns the first value raised to the second power,
7246returning the same values as the libm ``pow`` functions would, and
7247handles error conditions in the same way.
7248
7249'``llvm.exp.*``' Intrinsic
7250^^^^^^^^^^^^^^^^^^^^^^^^^^
7251
7252Syntax:
7253"""""""
7254
7255This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7256floating point or vector of floating point type. Not all targets support
7257all types however.
7258
7259::
7260
7261 declare float @llvm.exp.f32(float %Val)
7262 declare double @llvm.exp.f64(double %Val)
7263 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7264 declare fp128 @llvm.exp.f128(fp128 %Val)
7265 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7266
7267Overview:
7268"""""""""
7269
7270The '``llvm.exp.*``' intrinsics perform the exp function.
7271
7272Arguments:
7273""""""""""
7274
7275The argument and return value are floating point numbers of the same
7276type.
7277
7278Semantics:
7279""""""""""
7280
7281This function returns the same values as the libm ``exp`` functions
7282would, and handles error conditions in the same way.
7283
7284'``llvm.exp2.*``' Intrinsic
7285^^^^^^^^^^^^^^^^^^^^^^^^^^^
7286
7287Syntax:
7288"""""""
7289
7290This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7291floating point or vector of floating point type. Not all targets support
7292all types however.
7293
7294::
7295
7296 declare float @llvm.exp2.f32(float %Val)
7297 declare double @llvm.exp2.f64(double %Val)
7298 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7299 declare fp128 @llvm.exp2.f128(fp128 %Val)
7300 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7301
7302Overview:
7303"""""""""
7304
7305The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7306
7307Arguments:
7308""""""""""
7309
7310The argument and return value are floating point numbers of the same
7311type.
7312
7313Semantics:
7314""""""""""
7315
7316This function returns the same values as the libm ``exp2`` functions
7317would, and handles error conditions in the same way.
7318
7319'``llvm.log.*``' Intrinsic
7320^^^^^^^^^^^^^^^^^^^^^^^^^^
7321
7322Syntax:
7323"""""""
7324
7325This is an overloaded intrinsic. You can use ``llvm.log`` on any
7326floating point or vector of floating point type. Not all targets support
7327all types however.
7328
7329::
7330
7331 declare float @llvm.log.f32(float %Val)
7332 declare double @llvm.log.f64(double %Val)
7333 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7334 declare fp128 @llvm.log.f128(fp128 %Val)
7335 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7336
7337Overview:
7338"""""""""
7339
7340The '``llvm.log.*``' intrinsics perform the log function.
7341
7342Arguments:
7343""""""""""
7344
7345The argument and return value are floating point numbers of the same
7346type.
7347
7348Semantics:
7349""""""""""
7350
7351This function returns the same values as the libm ``log`` functions
7352would, and handles error conditions in the same way.
7353
7354'``llvm.log10.*``' Intrinsic
7355^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7356
7357Syntax:
7358"""""""
7359
7360This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7361floating point or vector of floating point type. Not all targets support
7362all types however.
7363
7364::
7365
7366 declare float @llvm.log10.f32(float %Val)
7367 declare double @llvm.log10.f64(double %Val)
7368 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7369 declare fp128 @llvm.log10.f128(fp128 %Val)
7370 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7371
7372Overview:
7373"""""""""
7374
7375The '``llvm.log10.*``' intrinsics perform the log10 function.
7376
7377Arguments:
7378""""""""""
7379
7380The argument and return value are floating point numbers of the same
7381type.
7382
7383Semantics:
7384""""""""""
7385
7386This function returns the same values as the libm ``log10`` functions
7387would, and handles error conditions in the same way.
7388
7389'``llvm.log2.*``' Intrinsic
7390^^^^^^^^^^^^^^^^^^^^^^^^^^^
7391
7392Syntax:
7393"""""""
7394
7395This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7396floating point or vector of floating point type. Not all targets support
7397all types however.
7398
7399::
7400
7401 declare float @llvm.log2.f32(float %Val)
7402 declare double @llvm.log2.f64(double %Val)
7403 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7404 declare fp128 @llvm.log2.f128(fp128 %Val)
7405 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7406
7407Overview:
7408"""""""""
7409
7410The '``llvm.log2.*``' intrinsics perform the log2 function.
7411
7412Arguments:
7413""""""""""
7414
7415The argument and return value are floating point numbers of the same
7416type.
7417
7418Semantics:
7419""""""""""
7420
7421This function returns the same values as the libm ``log2`` functions
7422would, and handles error conditions in the same way.
7423
7424'``llvm.fma.*``' Intrinsic
7425^^^^^^^^^^^^^^^^^^^^^^^^^^
7426
7427Syntax:
7428"""""""
7429
7430This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7431floating point or vector of floating point type. Not all targets support
7432all types however.
7433
7434::
7435
7436 declare float @llvm.fma.f32(float %a, float %b, float %c)
7437 declare double @llvm.fma.f64(double %a, double %b, double %c)
7438 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7439 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7440 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7441
7442Overview:
7443"""""""""
7444
7445The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7446operation.
7447
7448Arguments:
7449""""""""""
7450
7451The argument and return value are floating point numbers of the same
7452type.
7453
7454Semantics:
7455""""""""""
7456
7457This function returns the same values as the libm ``fma`` functions
7458would.
7459
7460'``llvm.fabs.*``' Intrinsic
7461^^^^^^^^^^^^^^^^^^^^^^^^^^^
7462
7463Syntax:
7464"""""""
7465
7466This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7467floating point or vector of floating point type. Not all targets support
7468all types however.
7469
7470::
7471
7472 declare float @llvm.fabs.f32(float %Val)
7473 declare double @llvm.fabs.f64(double %Val)
7474 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7475 declare fp128 @llvm.fabs.f128(fp128 %Val)
7476 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7477
7478Overview:
7479"""""""""
7480
7481The '``llvm.fabs.*``' intrinsics return the absolute value of the
7482operand.
7483
7484Arguments:
7485""""""""""
7486
7487The argument and return value are floating point numbers of the same
7488type.
7489
7490Semantics:
7491""""""""""
7492
7493This function returns the same values as the libm ``fabs`` functions
7494would, and handles error conditions in the same way.
7495
Hal Finkel66d1fa62013-08-19 23:35:46 +00007496'``llvm.copysign.*``' Intrinsic
7497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7498
7499Syntax:
7500"""""""
7501
7502This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7503floating point or vector of floating point type. Not all targets support
7504all types however.
7505
7506::
7507
7508 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7509 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7510 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7511 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7512 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7513
7514Overview:
7515"""""""""
7516
7517The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7518first operand and the sign of the second operand.
7519
7520Arguments:
7521""""""""""
7522
7523The arguments and return value are floating point numbers of the same
7524type.
7525
7526Semantics:
7527""""""""""
7528
7529This function returns the same values as the libm ``copysign``
7530functions would, and handles error conditions in the same way.
7531
Sean Silvaf722b002012-12-07 10:36:55 +00007532'``llvm.floor.*``' Intrinsic
7533^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7534
7535Syntax:
7536"""""""
7537
7538This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7539floating point or vector of floating point type. Not all targets support
7540all types however.
7541
7542::
7543
7544 declare float @llvm.floor.f32(float %Val)
7545 declare double @llvm.floor.f64(double %Val)
7546 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7547 declare fp128 @llvm.floor.f128(fp128 %Val)
7548 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7549
7550Overview:
7551"""""""""
7552
7553The '``llvm.floor.*``' intrinsics return the floor of the operand.
7554
7555Arguments:
7556""""""""""
7557
7558The argument and return value are floating point numbers of the same
7559type.
7560
7561Semantics:
7562""""""""""
7563
7564This function returns the same values as the libm ``floor`` functions
7565would, and handles error conditions in the same way.
7566
7567'``llvm.ceil.*``' Intrinsic
7568^^^^^^^^^^^^^^^^^^^^^^^^^^^
7569
7570Syntax:
7571"""""""
7572
7573This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7574floating point or vector of floating point type. Not all targets support
7575all types however.
7576
7577::
7578
7579 declare float @llvm.ceil.f32(float %Val)
7580 declare double @llvm.ceil.f64(double %Val)
7581 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7582 declare fp128 @llvm.ceil.f128(fp128 %Val)
7583 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7584
7585Overview:
7586"""""""""
7587
7588The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7589
7590Arguments:
7591""""""""""
7592
7593The argument and return value are floating point numbers of the same
7594type.
7595
7596Semantics:
7597""""""""""
7598
7599This function returns the same values as the libm ``ceil`` functions
7600would, and handles error conditions in the same way.
7601
7602'``llvm.trunc.*``' Intrinsic
7603^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7604
7605Syntax:
7606"""""""
7607
7608This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7609floating point or vector of floating point type. Not all targets support
7610all types however.
7611
7612::
7613
7614 declare float @llvm.trunc.f32(float %Val)
7615 declare double @llvm.trunc.f64(double %Val)
7616 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7617 declare fp128 @llvm.trunc.f128(fp128 %Val)
7618 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7619
7620Overview:
7621"""""""""
7622
7623The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7624nearest integer not larger in magnitude than the operand.
7625
7626Arguments:
7627""""""""""
7628
7629The argument and return value are floating point numbers of the same
7630type.
7631
7632Semantics:
7633""""""""""
7634
7635This function returns the same values as the libm ``trunc`` functions
7636would, and handles error conditions in the same way.
7637
7638'``llvm.rint.*``' Intrinsic
7639^^^^^^^^^^^^^^^^^^^^^^^^^^^
7640
7641Syntax:
7642"""""""
7643
7644This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7645floating point or vector of floating point type. Not all targets support
7646all types however.
7647
7648::
7649
7650 declare float @llvm.rint.f32(float %Val)
7651 declare double @llvm.rint.f64(double %Val)
7652 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7653 declare fp128 @llvm.rint.f128(fp128 %Val)
7654 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7655
7656Overview:
7657"""""""""
7658
7659The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7660nearest integer. It may raise an inexact floating-point exception if the
7661operand isn't an integer.
7662
7663Arguments:
7664""""""""""
7665
7666The argument and return value are floating point numbers of the same
7667type.
7668
7669Semantics:
7670""""""""""
7671
7672This function returns the same values as the libm ``rint`` functions
7673would, and handles error conditions in the same way.
7674
7675'``llvm.nearbyint.*``' Intrinsic
7676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7677
7678Syntax:
7679"""""""
7680
7681This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7682floating point or vector of floating point type. Not all targets support
7683all types however.
7684
7685::
7686
7687 declare float @llvm.nearbyint.f32(float %Val)
7688 declare double @llvm.nearbyint.f64(double %Val)
7689 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7690 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7691 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7692
7693Overview:
7694"""""""""
7695
7696The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7697nearest integer.
7698
7699Arguments:
7700""""""""""
7701
7702The argument and return value are floating point numbers of the same
7703type.
7704
7705Semantics:
7706""""""""""
7707
7708This function returns the same values as the libm ``nearbyint``
7709functions would, and handles error conditions in the same way.
7710
Hal Finkel41418d12013-08-07 22:49:12 +00007711'``llvm.round.*``' Intrinsic
7712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7713
7714Syntax:
7715"""""""
7716
7717This is an overloaded intrinsic. You can use ``llvm.round`` on any
7718floating point or vector of floating point type. Not all targets support
7719all types however.
7720
7721::
7722
7723 declare float @llvm.round.f32(float %Val)
7724 declare double @llvm.round.f64(double %Val)
7725 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7726 declare fp128 @llvm.round.f128(fp128 %Val)
7727 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7728
7729Overview:
7730"""""""""
7731
7732The '``llvm.round.*``' intrinsics returns the operand rounded to the
7733nearest integer.
7734
7735Arguments:
7736""""""""""
7737
7738The argument and return value are floating point numbers of the same
7739type.
7740
7741Semantics:
7742""""""""""
7743
7744This function returns the same values as the libm ``round``
7745functions would, and handles error conditions in the same way.
7746
Sean Silvaf722b002012-12-07 10:36:55 +00007747Bit Manipulation Intrinsics
7748---------------------------
7749
7750LLVM provides intrinsics for a few important bit manipulation
7751operations. These allow efficient code generation for some algorithms.
7752
7753'``llvm.bswap.*``' Intrinsics
7754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7755
7756Syntax:
7757"""""""
7758
7759This is an overloaded intrinsic function. You can use bswap on any
7760integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7761
7762::
7763
7764 declare i16 @llvm.bswap.i16(i16 <id>)
7765 declare i32 @llvm.bswap.i32(i32 <id>)
7766 declare i64 @llvm.bswap.i64(i64 <id>)
7767
7768Overview:
7769"""""""""
7770
7771The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7772values with an even number of bytes (positive multiple of 16 bits).
7773These are useful for performing operations on data that is not in the
7774target's native byte order.
7775
7776Semantics:
7777""""""""""
7778
7779The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7780and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7781intrinsic returns an i32 value that has the four bytes of the input i32
7782swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7783returned i32 will have its bytes in 3, 2, 1, 0 order. The
7784``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7785concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7786respectively).
7787
7788'``llvm.ctpop.*``' Intrinsic
7789^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7790
7791Syntax:
7792"""""""
7793
7794This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7795bit width, or on any vector with integer elements. Not all targets
7796support all bit widths or vector types, however.
7797
7798::
7799
7800 declare i8 @llvm.ctpop.i8(i8 <src>)
7801 declare i16 @llvm.ctpop.i16(i16 <src>)
7802 declare i32 @llvm.ctpop.i32(i32 <src>)
7803 declare i64 @llvm.ctpop.i64(i64 <src>)
7804 declare i256 @llvm.ctpop.i256(i256 <src>)
7805 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7806
7807Overview:
7808"""""""""
7809
7810The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7811in a value.
7812
7813Arguments:
7814""""""""""
7815
7816The only argument is the value to be counted. The argument may be of any
7817integer type, or a vector with integer elements. The return type must
7818match the argument type.
7819
7820Semantics:
7821""""""""""
7822
7823The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7824each element of a vector.
7825
7826'``llvm.ctlz.*``' Intrinsic
7827^^^^^^^^^^^^^^^^^^^^^^^^^^^
7828
7829Syntax:
7830"""""""
7831
7832This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7833integer bit width, or any vector whose elements are integers. Not all
7834targets support all bit widths or vector types, however.
7835
7836::
7837
7838 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7839 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7840 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7841 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7842 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7843 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7844
7845Overview:
7846"""""""""
7847
7848The '``llvm.ctlz``' family of intrinsic functions counts the number of
7849leading zeros in a variable.
7850
7851Arguments:
7852""""""""""
7853
7854The first argument is the value to be counted. This argument may be of
7855any integer type, or a vectory with integer element type. The return
7856type must match the first argument type.
7857
7858The second argument must be a constant and is a flag to indicate whether
7859the intrinsic should ensure that a zero as the first argument produces a
7860defined result. Historically some architectures did not provide a
7861defined result for zero values as efficiently, and many algorithms are
7862now predicated on avoiding zero-value inputs.
7863
7864Semantics:
7865""""""""""
7866
7867The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7868zeros in a variable, or within each element of the vector. If
7869``src == 0`` then the result is the size in bits of the type of ``src``
7870if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7871``llvm.ctlz(i32 2) = 30``.
7872
7873'``llvm.cttz.*``' Intrinsic
7874^^^^^^^^^^^^^^^^^^^^^^^^^^^
7875
7876Syntax:
7877"""""""
7878
7879This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7880integer bit width, or any vector of integer elements. Not all targets
7881support all bit widths or vector types, however.
7882
7883::
7884
7885 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7886 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7887 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7888 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7889 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7890 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7891
7892Overview:
7893"""""""""
7894
7895The '``llvm.cttz``' family of intrinsic functions counts the number of
7896trailing zeros.
7897
7898Arguments:
7899""""""""""
7900
7901The first argument is the value to be counted. This argument may be of
7902any integer type, or a vectory with integer element type. The return
7903type must match the first argument type.
7904
7905The second argument must be a constant and is a flag to indicate whether
7906the intrinsic should ensure that a zero as the first argument produces a
7907defined result. Historically some architectures did not provide a
7908defined result for zero values as efficiently, and many algorithms are
7909now predicated on avoiding zero-value inputs.
7910
7911Semantics:
7912""""""""""
7913
7914The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7915zeros in a variable, or within each element of a vector. If ``src == 0``
7916then the result is the size in bits of the type of ``src`` if
7917``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7918``llvm.cttz(2) = 1``.
7919
7920Arithmetic with Overflow Intrinsics
7921-----------------------------------
7922
7923LLVM provides intrinsics for some arithmetic with overflow operations.
7924
7925'``llvm.sadd.with.overflow.*``' Intrinsics
7926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7927
7928Syntax:
7929"""""""
7930
7931This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7932on any integer bit width.
7933
7934::
7935
7936 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7937 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7938 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7939
7940Overview:
7941"""""""""
7942
7943The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7944a signed addition of the two arguments, and indicate whether an overflow
7945occurred during the signed summation.
7946
7947Arguments:
7948""""""""""
7949
7950The arguments (%a and %b) and the first element of the result structure
7951may be of integer types of any bit width, but they must have the same
7952bit width. The second element of the result structure must be of type
7953``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7954addition.
7955
7956Semantics:
7957""""""""""
7958
7959The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007960a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007961first element of which is the signed summation, and the second element
7962of which is a bit specifying if the signed summation resulted in an
7963overflow.
7964
7965Examples:
7966"""""""""
7967
7968.. code-block:: llvm
7969
7970 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7971 %sum = extractvalue {i32, i1} %res, 0
7972 %obit = extractvalue {i32, i1} %res, 1
7973 br i1 %obit, label %overflow, label %normal
7974
7975'``llvm.uadd.with.overflow.*``' Intrinsics
7976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7977
7978Syntax:
7979"""""""
7980
7981This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7982on any integer bit width.
7983
7984::
7985
7986 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7987 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7988 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7989
7990Overview:
7991"""""""""
7992
7993The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7994an unsigned addition of the two arguments, and indicate whether a carry
7995occurred during the unsigned summation.
7996
7997Arguments:
7998""""""""""
7999
8000The arguments (%a and %b) and the first element of the result structure
8001may be of integer types of any bit width, but they must have the same
8002bit width. The second element of the result structure must be of type
8003``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8004addition.
8005
8006Semantics:
8007""""""""""
8008
8009The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008010an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008011first element of which is the sum, and the second element of which is a
8012bit specifying if the unsigned summation resulted in a carry.
8013
8014Examples:
8015"""""""""
8016
8017.. code-block:: llvm
8018
8019 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8020 %sum = extractvalue {i32, i1} %res, 0
8021 %obit = extractvalue {i32, i1} %res, 1
8022 br i1 %obit, label %carry, label %normal
8023
8024'``llvm.ssub.with.overflow.*``' Intrinsics
8025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8026
8027Syntax:
8028"""""""
8029
8030This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8031on any integer bit width.
8032
8033::
8034
8035 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8036 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8037 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8038
8039Overview:
8040"""""""""
8041
8042The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8043a signed subtraction of the two arguments, and indicate whether an
8044overflow occurred during the signed subtraction.
8045
8046Arguments:
8047""""""""""
8048
8049The arguments (%a and %b) and the first element of the result structure
8050may be of integer types of any bit width, but they must have the same
8051bit width. The second element of the result structure must be of type
8052``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8053subtraction.
8054
8055Semantics:
8056""""""""""
8057
8058The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008059a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008060first element of which is the subtraction, and the second element of
8061which is a bit specifying if the signed subtraction resulted in an
8062overflow.
8063
8064Examples:
8065"""""""""
8066
8067.. code-block:: llvm
8068
8069 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8070 %sum = extractvalue {i32, i1} %res, 0
8071 %obit = extractvalue {i32, i1} %res, 1
8072 br i1 %obit, label %overflow, label %normal
8073
8074'``llvm.usub.with.overflow.*``' Intrinsics
8075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8076
8077Syntax:
8078"""""""
8079
8080This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8081on any integer bit width.
8082
8083::
8084
8085 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8086 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8087 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8088
8089Overview:
8090"""""""""
8091
8092The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8093an unsigned subtraction of the two arguments, and indicate whether an
8094overflow occurred during the unsigned subtraction.
8095
8096Arguments:
8097""""""""""
8098
8099The arguments (%a and %b) and the first element of the result structure
8100may be of integer types of any bit width, but they must have the same
8101bit width. The second element of the result structure must be of type
8102``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8103subtraction.
8104
8105Semantics:
8106""""""""""
8107
8108The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008109an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008110the first element of which is the subtraction, and the second element of
8111which is a bit specifying if the unsigned subtraction resulted in an
8112overflow.
8113
8114Examples:
8115"""""""""
8116
8117.. code-block:: llvm
8118
8119 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8120 %sum = extractvalue {i32, i1} %res, 0
8121 %obit = extractvalue {i32, i1} %res, 1
8122 br i1 %obit, label %overflow, label %normal
8123
8124'``llvm.smul.with.overflow.*``' Intrinsics
8125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8126
8127Syntax:
8128"""""""
8129
8130This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8131on any integer bit width.
8132
8133::
8134
8135 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8136 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8137 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8138
8139Overview:
8140"""""""""
8141
8142The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8143a signed multiplication of the two arguments, and indicate whether an
8144overflow occurred during the signed multiplication.
8145
8146Arguments:
8147""""""""""
8148
8149The arguments (%a and %b) and the first element of the result structure
8150may be of integer types of any bit width, but they must have the same
8151bit width. The second element of the result structure must be of type
8152``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8153multiplication.
8154
8155Semantics:
8156""""""""""
8157
8158The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008159a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008160the first element of which is the multiplication, and the second element
8161of which is a bit specifying if the signed multiplication resulted in an
8162overflow.
8163
8164Examples:
8165"""""""""
8166
8167.. code-block:: llvm
8168
8169 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8170 %sum = extractvalue {i32, i1} %res, 0
8171 %obit = extractvalue {i32, i1} %res, 1
8172 br i1 %obit, label %overflow, label %normal
8173
8174'``llvm.umul.with.overflow.*``' Intrinsics
8175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8176
8177Syntax:
8178"""""""
8179
8180This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8181on any integer bit width.
8182
8183::
8184
8185 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8186 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8187 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8188
8189Overview:
8190"""""""""
8191
8192The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8193a unsigned multiplication of the two arguments, and indicate whether an
8194overflow occurred during the unsigned multiplication.
8195
8196Arguments:
8197""""""""""
8198
8199The arguments (%a and %b) and the first element of the result structure
8200may be of integer types of any bit width, but they must have the same
8201bit width. The second element of the result structure must be of type
8202``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8203multiplication.
8204
8205Semantics:
8206""""""""""
8207
8208The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008209an unsigned multiplication of the two arguments. They return a structure ---
8210the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008211element of which is a bit specifying if the unsigned multiplication
8212resulted in an overflow.
8213
8214Examples:
8215"""""""""
8216
8217.. code-block:: llvm
8218
8219 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8220 %sum = extractvalue {i32, i1} %res, 0
8221 %obit = extractvalue {i32, i1} %res, 1
8222 br i1 %obit, label %overflow, label %normal
8223
8224Specialised Arithmetic Intrinsics
8225---------------------------------
8226
8227'``llvm.fmuladd.*``' Intrinsic
8228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8229
8230Syntax:
8231"""""""
8232
8233::
8234
8235 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8236 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8237
8238Overview:
8239"""""""""
8240
8241The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008242expressions that can be fused if the code generator determines that (a) the
8243target instruction set has support for a fused operation, and (b) that the
8244fused operation is more efficient than the equivalent, separate pair of mul
8245and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008246
8247Arguments:
8248""""""""""
8249
8250The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8251multiplicands, a and b, and an addend c.
8252
8253Semantics:
8254""""""""""
8255
8256The expression:
8257
8258::
8259
8260 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8261
8262is equivalent to the expression a \* b + c, except that rounding will
8263not be performed between the multiplication and addition steps if the
8264code generator fuses the operations. Fusion is not guaranteed, even if
8265the target platform supports it. If a fused multiply-add is required the
8266corresponding llvm.fma.\* intrinsic function should be used instead.
8267
8268Examples:
8269"""""""""
8270
8271.. code-block:: llvm
8272
8273 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8274
8275Half Precision Floating Point Intrinsics
8276----------------------------------------
8277
8278For most target platforms, half precision floating point is a
8279storage-only format. This means that it is a dense encoding (in memory)
8280but does not support computation in the format.
8281
8282This means that code must first load the half-precision floating point
8283value as an i16, then convert it to float with
8284:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8285then be performed on the float value (including extending to double
8286etc). To store the value back to memory, it is first converted to float
8287if needed, then converted to i16 with
8288:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8289i16 value.
8290
8291.. _int_convert_to_fp16:
8292
8293'``llvm.convert.to.fp16``' Intrinsic
8294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8295
8296Syntax:
8297"""""""
8298
8299::
8300
8301 declare i16 @llvm.convert.to.fp16(f32 %a)
8302
8303Overview:
8304"""""""""
8305
8306The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8307from single precision floating point format to half precision floating
8308point format.
8309
8310Arguments:
8311""""""""""
8312
8313The intrinsic function contains single argument - the value to be
8314converted.
8315
8316Semantics:
8317""""""""""
8318
8319The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8320from single precision floating point format to half precision floating
8321point format. The return value is an ``i16`` which contains the
8322converted number.
8323
8324Examples:
8325"""""""""
8326
8327.. code-block:: llvm
8328
8329 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8330 store i16 %res, i16* @x, align 2
8331
8332.. _int_convert_from_fp16:
8333
8334'``llvm.convert.from.fp16``' Intrinsic
8335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8336
8337Syntax:
8338"""""""
8339
8340::
8341
8342 declare f32 @llvm.convert.from.fp16(i16 %a)
8343
8344Overview:
8345"""""""""
8346
8347The '``llvm.convert.from.fp16``' intrinsic function performs a
8348conversion from half precision floating point format to single precision
8349floating point format.
8350
8351Arguments:
8352""""""""""
8353
8354The intrinsic function contains single argument - the value to be
8355converted.
8356
8357Semantics:
8358""""""""""
8359
8360The '``llvm.convert.from.fp16``' intrinsic function performs a
8361conversion from half single precision floating point format to single
8362precision floating point format. The input half-float value is
8363represented by an ``i16`` value.
8364
8365Examples:
8366"""""""""
8367
8368.. code-block:: llvm
8369
8370 %a = load i16* @x, align 2
8371 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8372
8373Debugger Intrinsics
8374-------------------
8375
8376The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8377prefix), are described in the `LLVM Source Level
8378Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8379document.
8380
8381Exception Handling Intrinsics
8382-----------------------------
8383
8384The LLVM exception handling intrinsics (which all start with
8385``llvm.eh.`` prefix), are described in the `LLVM Exception
8386Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8387
8388.. _int_trampoline:
8389
8390Trampoline Intrinsics
8391---------------------
8392
8393These intrinsics make it possible to excise one parameter, marked with
8394the :ref:`nest <nest>` attribute, from a function. The result is a
8395callable function pointer lacking the nest parameter - the caller does
8396not need to provide a value for it. Instead, the value to use is stored
8397in advance in a "trampoline", a block of memory usually allocated on the
8398stack, which also contains code to splice the nest value into the
8399argument list. This is used to implement the GCC nested function address
8400extension.
8401
8402For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8403then the resulting function pointer has signature ``i32 (i32, i32)*``.
8404It can be created as follows:
8405
8406.. code-block:: llvm
8407
8408 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8409 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8410 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8411 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8412 %fp = bitcast i8* %p to i32 (i32, i32)*
8413
8414The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8415``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8416
8417.. _int_it:
8418
8419'``llvm.init.trampoline``' Intrinsic
8420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8421
8422Syntax:
8423"""""""
8424
8425::
8426
8427 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8428
8429Overview:
8430"""""""""
8431
8432This fills the memory pointed to by ``tramp`` with executable code,
8433turning it into a trampoline.
8434
8435Arguments:
8436""""""""""
8437
8438The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8439pointers. The ``tramp`` argument must point to a sufficiently large and
8440sufficiently aligned block of memory; this memory is written to by the
8441intrinsic. Note that the size and the alignment are target-specific -
8442LLVM currently provides no portable way of determining them, so a
8443front-end that generates this intrinsic needs to have some
8444target-specific knowledge. The ``func`` argument must hold a function
8445bitcast to an ``i8*``.
8446
8447Semantics:
8448""""""""""
8449
8450The block of memory pointed to by ``tramp`` is filled with target
8451dependent code, turning it into a function. Then ``tramp`` needs to be
8452passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8453be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8454function's signature is the same as that of ``func`` with any arguments
8455marked with the ``nest`` attribute removed. At most one such ``nest``
8456argument is allowed, and it must be of pointer type. Calling the new
8457function is equivalent to calling ``func`` with the same argument list,
8458but with ``nval`` used for the missing ``nest`` argument. If, after
8459calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8460modified, then the effect of any later call to the returned function
8461pointer is undefined.
8462
8463.. _int_at:
8464
8465'``llvm.adjust.trampoline``' Intrinsic
8466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8467
8468Syntax:
8469"""""""
8470
8471::
8472
8473 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8474
8475Overview:
8476"""""""""
8477
8478This performs any required machine-specific adjustment to the address of
8479a trampoline (passed as ``tramp``).
8480
8481Arguments:
8482""""""""""
8483
8484``tramp`` must point to a block of memory which already has trampoline
8485code filled in by a previous call to
8486:ref:`llvm.init.trampoline <int_it>`.
8487
8488Semantics:
8489""""""""""
8490
8491On some architectures the address of the code to be executed needs to be
8492different to the address where the trampoline is actually stored. This
8493intrinsic returns the executable address corresponding to ``tramp``
8494after performing the required machine specific adjustments. The pointer
8495returned can then be :ref:`bitcast and executed <int_trampoline>`.
8496
8497Memory Use Markers
8498------------------
8499
8500This class of intrinsics exists to information about the lifetime of
8501memory objects and ranges where variables are immutable.
8502
8503'``llvm.lifetime.start``' Intrinsic
8504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8505
8506Syntax:
8507"""""""
8508
8509::
8510
8511 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8512
8513Overview:
8514"""""""""
8515
8516The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8517object's lifetime.
8518
8519Arguments:
8520""""""""""
8521
8522The first argument is a constant integer representing the size of the
8523object, or -1 if it is variable sized. The second argument is a pointer
8524to the object.
8525
8526Semantics:
8527""""""""""
8528
8529This intrinsic indicates that before this point in the code, the value
8530of the memory pointed to by ``ptr`` is dead. This means that it is known
8531to never be used and has an undefined value. A load from the pointer
8532that precedes this intrinsic can be replaced with ``'undef'``.
8533
8534'``llvm.lifetime.end``' Intrinsic
8535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8536
8537Syntax:
8538"""""""
8539
8540::
8541
8542 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8543
8544Overview:
8545"""""""""
8546
8547The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8548object's lifetime.
8549
8550Arguments:
8551""""""""""
8552
8553The first argument is a constant integer representing the size of the
8554object, or -1 if it is variable sized. The second argument is a pointer
8555to the object.
8556
8557Semantics:
8558""""""""""
8559
8560This intrinsic indicates that after this point in the code, the value of
8561the memory pointed to by ``ptr`` is dead. This means that it is known to
8562never be used and has an undefined value. Any stores into the memory
8563object following this intrinsic may be removed as dead.
8564
8565'``llvm.invariant.start``' Intrinsic
8566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8567
8568Syntax:
8569"""""""
8570
8571::
8572
8573 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8574
8575Overview:
8576"""""""""
8577
8578The '``llvm.invariant.start``' intrinsic specifies that the contents of
8579a memory object will not change.
8580
8581Arguments:
8582""""""""""
8583
8584The first argument is a constant integer representing the size of the
8585object, or -1 if it is variable sized. The second argument is a pointer
8586to the object.
8587
8588Semantics:
8589""""""""""
8590
8591This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8592the return value, the referenced memory location is constant and
8593unchanging.
8594
8595'``llvm.invariant.end``' Intrinsic
8596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8597
8598Syntax:
8599"""""""
8600
8601::
8602
8603 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8604
8605Overview:
8606"""""""""
8607
8608The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8609memory object are mutable.
8610
8611Arguments:
8612""""""""""
8613
8614The first argument is the matching ``llvm.invariant.start`` intrinsic.
8615The second argument is a constant integer representing the size of the
8616object, or -1 if it is variable sized and the third argument is a
8617pointer to the object.
8618
8619Semantics:
8620""""""""""
8621
8622This intrinsic indicates that the memory is mutable again.
8623
8624General Intrinsics
8625------------------
8626
8627This class of intrinsics is designed to be generic and has no specific
8628purpose.
8629
8630'``llvm.var.annotation``' Intrinsic
8631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8632
8633Syntax:
8634"""""""
8635
8636::
8637
8638 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8639
8640Overview:
8641"""""""""
8642
8643The '``llvm.var.annotation``' intrinsic.
8644
8645Arguments:
8646""""""""""
8647
8648The first argument is a pointer to a value, the second is a pointer to a
8649global string, the third is a pointer to a global string which is the
8650source file name, and the last argument is the line number.
8651
8652Semantics:
8653""""""""""
8654
8655This intrinsic allows annotation of local variables with arbitrary
8656strings. This can be useful for special purpose optimizations that want
8657to look for these annotations. These have no other defined use; they are
8658ignored by code generation and optimization.
8659
Michael Gottesman872b4e52013-03-26 00:34:27 +00008660'``llvm.ptr.annotation.*``' Intrinsic
8661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8662
8663Syntax:
8664"""""""
8665
8666This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8667pointer to an integer of any width. *NOTE* you must specify an address space for
8668the pointer. The identifier for the default address space is the integer
8669'``0``'.
8670
8671::
8672
8673 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8674 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8675 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8676 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8677 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8678
8679Overview:
8680"""""""""
8681
8682The '``llvm.ptr.annotation``' intrinsic.
8683
8684Arguments:
8685""""""""""
8686
8687The first argument is a pointer to an integer value of arbitrary bitwidth
8688(result of some expression), the second is a pointer to a global string, the
8689third is a pointer to a global string which is the source file name, and the
8690last argument is the line number. It returns the value of the first argument.
8691
8692Semantics:
8693""""""""""
8694
8695This intrinsic allows annotation of a pointer to an integer with arbitrary
8696strings. This can be useful for special purpose optimizations that want to look
8697for these annotations. These have no other defined use; they are ignored by code
8698generation and optimization.
8699
Sean Silvaf722b002012-12-07 10:36:55 +00008700'``llvm.annotation.*``' Intrinsic
8701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8702
8703Syntax:
8704"""""""
8705
8706This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8707any integer bit width.
8708
8709::
8710
8711 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8712 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8713 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8714 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8715 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8716
8717Overview:
8718"""""""""
8719
8720The '``llvm.annotation``' intrinsic.
8721
8722Arguments:
8723""""""""""
8724
8725The first argument is an integer value (result of some expression), the
8726second is a pointer to a global string, the third is a pointer to a
8727global string which is the source file name, and the last argument is
8728the line number. It returns the value of the first argument.
8729
8730Semantics:
8731""""""""""
8732
8733This intrinsic allows annotations to be put on arbitrary expressions
8734with arbitrary strings. This can be useful for special purpose
8735optimizations that want to look for these annotations. These have no
8736other defined use; they are ignored by code generation and optimization.
8737
8738'``llvm.trap``' Intrinsic
8739^^^^^^^^^^^^^^^^^^^^^^^^^
8740
8741Syntax:
8742"""""""
8743
8744::
8745
8746 declare void @llvm.trap() noreturn nounwind
8747
8748Overview:
8749"""""""""
8750
8751The '``llvm.trap``' intrinsic.
8752
8753Arguments:
8754""""""""""
8755
8756None.
8757
8758Semantics:
8759""""""""""
8760
8761This intrinsic is lowered to the target dependent trap instruction. If
8762the target does not have a trap instruction, this intrinsic will be
8763lowered to a call of the ``abort()`` function.
8764
8765'``llvm.debugtrap``' Intrinsic
8766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8767
8768Syntax:
8769"""""""
8770
8771::
8772
8773 declare void @llvm.debugtrap() nounwind
8774
8775Overview:
8776"""""""""
8777
8778The '``llvm.debugtrap``' intrinsic.
8779
8780Arguments:
8781""""""""""
8782
8783None.
8784
8785Semantics:
8786""""""""""
8787
8788This intrinsic is lowered to code which is intended to cause an
8789execution trap with the intention of requesting the attention of a
8790debugger.
8791
8792'``llvm.stackprotector``' Intrinsic
8793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8794
8795Syntax:
8796"""""""
8797
8798::
8799
8800 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8801
8802Overview:
8803"""""""""
8804
8805The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8806onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8807is placed on the stack before local variables.
8808
8809Arguments:
8810""""""""""
8811
8812The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8813The first argument is the value loaded from the stack guard
8814``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8815enough space to hold the value of the guard.
8816
8817Semantics:
8818""""""""""
8819
Michael Gottesman2a64a632013-08-12 18:35:32 +00008820This intrinsic causes the prologue/epilogue inserter to force the position of
8821the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8822to ensure that if a local variable on the stack is overwritten, it will destroy
8823the value of the guard. When the function exits, the guard on the stack is
8824checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8825different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8826calling the ``__stack_chk_fail()`` function.
8827
8828'``llvm.stackprotectorcheck``' Intrinsic
Sean Silvacce63992013-09-09 19:13:28 +00008829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesman2a64a632013-08-12 18:35:32 +00008830
8831Syntax:
8832"""""""
8833
8834::
8835
8836 declare void @llvm.stackprotectorcheck(i8** <guard>)
8837
8838Overview:
8839"""""""""
8840
8841The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008842created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008843``__stack_chk_fail()`` function.
8844
Michael Gottesman2a64a632013-08-12 18:35:32 +00008845Arguments:
8846""""""""""
8847
8848The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8849the variable ``@__stack_chk_guard``.
8850
8851Semantics:
8852""""""""""
8853
8854This intrinsic is provided to perform the stack protector check by comparing
8855``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8856values do not match call the ``__stack_chk_fail()`` function.
8857
8858The reason to provide this as an IR level intrinsic instead of implementing it
8859via other IR operations is that in order to perform this operation at the IR
8860level without an intrinsic, one would need to create additional basic blocks to
8861handle the success/failure cases. This makes it difficult to stop the stack
8862protector check from disrupting sibling tail calls in Codegen. With this
8863intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramerd5976142013-10-29 17:53:27 +00008864codegen after the tail call decision has occurred.
Michael Gottesman2a64a632013-08-12 18:35:32 +00008865
Sean Silvaf722b002012-12-07 10:36:55 +00008866'``llvm.objectsize``' Intrinsic
8867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8868
8869Syntax:
8870"""""""
8871
8872::
8873
8874 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8875 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8876
8877Overview:
8878"""""""""
8879
8880The ``llvm.objectsize`` intrinsic is designed to provide information to
8881the optimizers to determine at compile time whether a) an operation
8882(like memcpy) will overflow a buffer that corresponds to an object, or
8883b) that a runtime check for overflow isn't necessary. An object in this
8884context means an allocation of a specific class, structure, array, or
8885other object.
8886
8887Arguments:
8888""""""""""
8889
8890The ``llvm.objectsize`` intrinsic takes two arguments. The first
8891argument is a pointer to or into the ``object``. The second argument is
8892a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8893or -1 (if false) when the object size is unknown. The second argument
8894only accepts constants.
8895
8896Semantics:
8897""""""""""
8898
8899The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8900the size of the object concerned. If the size cannot be determined at
8901compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8902on the ``min`` argument).
8903
8904'``llvm.expect``' Intrinsic
8905^^^^^^^^^^^^^^^^^^^^^^^^^^^
8906
8907Syntax:
8908"""""""
8909
8910::
8911
8912 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8913 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8914
8915Overview:
8916"""""""""
8917
8918The ``llvm.expect`` intrinsic provides information about expected (the
8919most probable) value of ``val``, which can be used by optimizers.
8920
8921Arguments:
8922""""""""""
8923
8924The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8925a value. The second argument is an expected value, this needs to be a
8926constant value, variables are not allowed.
8927
8928Semantics:
8929""""""""""
8930
8931This intrinsic is lowered to the ``val``.
8932
8933'``llvm.donothing``' Intrinsic
8934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8935
8936Syntax:
8937"""""""
8938
8939::
8940
8941 declare void @llvm.donothing() nounwind readnone
8942
8943Overview:
8944"""""""""
8945
8946The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8947only intrinsic that can be called with an invoke instruction.
8948
8949Arguments:
8950""""""""""
8951
8952None.
8953
8954Semantics:
8955""""""""""
8956
8957This intrinsic does nothing, and it's removed by optimizers and ignored
8958by codegen.