blob: a9b6fdd140855a25801ac8e8ac18f6b82761c224 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000035#include "llvm/CodeGen/EdgeBundles.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000036#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +000040#include "llvm/InlineAsm.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000041#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000046#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000047using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000048
Chris Lattner95b2c7d2006-12-19 22:59:26 +000049STATISTIC(NumFXCH, "Number of fxch instructions inserted");
50STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000051
Chris Lattner95b2c7d2006-12-19 22:59:26 +000052namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000053 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000054 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +000055 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000056 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
Jakob Stoklund Olesenb47bb132010-07-16 22:00:33 +000057 // This is really only to keep valgrind quiet.
58 // The logic in isLive() is too much for it.
59 memset(Stack, 0, sizeof(Stack));
60 memset(RegMap, 0, sizeof(RegMap));
61 }
Devang Patel794fd752007-05-01 21:15:47 +000062
Evan Chengbbeeb2a2008-09-22 20:58:04 +000063 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000064 AU.setPreservesCFG();
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000065 AU.addRequired<EdgeBundles>();
Evan Cheng8b56a902008-09-22 22:21:38 +000066 AU.addPreservedID(MachineLoopInfoID);
67 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000068 MachineFunctionPass::getAnalysisUsage(AU);
69 }
70
Chris Lattnera960d952003-01-13 01:01:59 +000071 virtual bool runOnMachineFunction(MachineFunction &MF);
72
73 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
74
Chris Lattnera960d952003-01-13 01:01:59 +000075 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000076 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000077
78 // Two CFG edges are related if they leave the same block, or enter the same
79 // block. The transitive closure of an edge under this relation is a
80 // LiveBundle. It represents a set of CFG edges where the live FP stack
81 // registers must be allocated identically in the x87 stack.
82 //
83 // A LiveBundle is usually all the edges leaving a block, or all the edges
84 // entering a block, but it can contain more edges if critical edges are
85 // present.
86 //
87 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
88 // but the exact mapping of FP registers to stack slots is fixed later.
89 struct LiveBundle {
90 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
91 unsigned Mask;
92
93 // Number of pre-assigned live registers in FixStack. This is 0 when the
94 // stack order has not yet been fixed.
95 unsigned FixCount;
96
97 // Assigned stack order for live-in registers.
98 // FixStack[i] == getStackEntry(i) for all i < FixCount.
99 unsigned char FixStack[8];
100
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000101 LiveBundle() : Mask(0), FixCount(0) {}
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000102
103 // Have the live registers been assigned a stack order yet?
104 bool isFixed() const { return !Mask || FixCount; }
105 };
106
107 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
108 // with no live FP registers.
109 SmallVector<LiveBundle, 8> LiveBundles;
110
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000111 // The edge bundle analysis provides indices into the LiveBundles vector.
112 EdgeBundles *Bundles;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000113
114 // Return a bitmask of FP registers in block's live-in list.
115 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
116 unsigned Mask = 0;
117 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
118 E = MBB->livein_end(); I != E; ++I) {
119 unsigned Reg = *I - X86::FP0;
120 if (Reg < 8)
121 Mask |= 1 << Reg;
122 }
123 return Mask;
124 }
125
126 // Partition all the CFG edges into LiveBundles.
127 void bundleCFG(MachineFunction &MF);
128
Evan Cheng32644ac2006-12-01 10:11:51 +0000129 MachineBasicBlock *MBB; // Current basic block
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000130
131 // The hardware keeps track of how many FP registers are live, so we have
132 // to model that exactly. Usually, each live register corresponds to an
133 // FP<n> register, but when dealing with calls, returns, and inline
134 // assembly, it is sometimes neccesary to have live scratch registers.
Evan Cheng32644ac2006-12-01 10:11:51 +0000135 unsigned Stack[8]; // FP<n> Registers in each stack slot...
Evan Cheng32644ac2006-12-01 10:11:51 +0000136 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000137
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000138 enum {
139 NumFPRegs = 16 // Including scratch pseudo-registers.
140 };
141
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000142 // For each live FP<n> register, point to its Stack[] entry.
143 // The first entries correspond to FP0-FP6, the rest are scratch registers
144 // used when we need slightly different live registers than what the
145 // register allocator thinks.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000146 unsigned RegMap[NumFPRegs];
147
148 // Pending fixed registers - Inline assembly needs FP registers to appear
149 // in fixed stack slot positions. This is handled by copying FP registers
150 // to ST registers before the instruction, and copying back after the
151 // instruction.
152 //
153 // This is modeled with pending ST registers. NumPendingSTs is the number
154 // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
155 // register that holds the ST value. The ST registers are not moved into
156 // place until immediately before the instruction that needs them.
157 //
158 // It can happen that we need an ST register to be live when no FP register
159 // holds the value:
160 //
161 // %ST0 = COPY %FP4<kill>
162 //
163 // When that happens, we allocate a scratch FP register to hold the ST
164 // value. That means every register in PendingST must be live.
165
166 unsigned NumPendingSTs;
167 unsigned char PendingST[8];
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000168
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000169 // Set up our stack model to match the incoming registers to MBB.
170 void setupBlockStack();
171
172 // Shuffle live registers to match the expectations of successor blocks.
173 void finishBlockStack();
174
Chris Lattnera960d952003-01-13 01:01:59 +0000175 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000176 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000177 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000178 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000179 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000180 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000181 for (unsigned i = 0; i != NumPendingSTs; ++i)
182 dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
David Greenef5c95a62010-01-05 01:29:34 +0000183 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000184 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000185
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000186 /// getSlot - Return the stack slot number a particular register number is
187 /// in.
Chris Lattnera960d952003-01-13 01:01:59 +0000188 unsigned getSlot(unsigned RegNo) const {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000189 assert(RegNo < NumFPRegs && "Regno out of range!");
Chris Lattnera960d952003-01-13 01:01:59 +0000190 return RegMap[RegNo];
191 }
192
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000193 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000194 bool isLive(unsigned RegNo) const {
195 unsigned Slot = getSlot(RegNo);
196 return Slot < StackTop && Stack[Slot] == RegNo;
197 }
198
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000199 /// getScratchReg - Return an FP register that is not currently in use.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000200 unsigned getScratchReg() {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000201 for (int i = NumFPRegs - 1; i >= 8; --i)
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000202 if (!isLive(i))
203 return i;
204 llvm_unreachable("Ran out of scratch FP registers");
205 }
206
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000207 /// isScratchReg - Returns trus if RegNo is a scratch FP register.
208 bool isScratchReg(unsigned RegNo) {
209 return RegNo > 8 && RegNo < NumFPRegs;
210 }
211
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000212 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000213 unsigned getStackEntry(unsigned STi) const {
Evan Cheng3f490f32010-10-12 23:19:28 +0000214 if (STi >= StackTop)
215 report_fatal_error("Access past stack top!");
Chris Lattnera960d952003-01-13 01:01:59 +0000216 return Stack[StackTop-1-STi];
217 }
218
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000219 /// getSTReg - Return the X86::ST(i) register which contains the specified
220 /// FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000221 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000222 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000223 }
224
Chris Lattner447ff682008-03-11 03:23:40 +0000225 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000226 void pushReg(unsigned Reg) {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000227 assert(Reg < NumFPRegs && "Register number out of range!");
Evan Cheng3f490f32010-10-12 23:19:28 +0000228 if (StackTop >= 8)
229 report_fatal_error("Stack overflow!");
Chris Lattnera960d952003-01-13 01:01:59 +0000230 Stack[StackTop] = Reg;
231 RegMap[Reg] = StackTop++;
232 }
233
234 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000235 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000236 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000237 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000238
Chris Lattner447ff682008-03-11 03:23:40 +0000239 unsigned STReg = getSTReg(RegNo);
240 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000241
Chris Lattner447ff682008-03-11 03:23:40 +0000242 // Swap the slots the regs are in.
243 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000244
Chris Lattner447ff682008-03-11 03:23:40 +0000245 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +0000246 if (RegMap[RegOnTop] >= StackTop)
247 report_fatal_error("Access past stack top!");
Chris Lattner447ff682008-03-11 03:23:40 +0000248 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000249
Chris Lattner447ff682008-03-11 03:23:40 +0000250 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000251 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000252 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000253 }
254
Chris Lattner0526f012004-04-01 04:06:09 +0000255 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000256 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000257 unsigned STReg = getSTReg(RegNo);
258 pushReg(AsReg); // New register on top of stack
259
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000260 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000261 }
262
Jakob Stoklund Olesen66b0f512011-08-08 17:15:43 +0000263 /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
264 /// RegNo. If any PendingST registers still need the RegNo value, duplicate
265 /// them to new scratch registers.
266 void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
267 for (unsigned i = 0; i != NumPendingSTs; ++i) {
268 if (PendingST[i] != RegNo)
269 continue;
270 unsigned SR = getScratchReg();
271 DEBUG(dbgs() << "Duplicating pending ST" << i
272 << " in FP" << RegNo << " to FP" << SR << '\n');
273 duplicateToTop(RegNo, SR, I);
274 PendingST[i] = SR;
275 }
276 }
277
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000278 /// popStackAfter - Pop the current value off of the top of the FP stack
279 /// after the specified instruction.
Chris Lattnera960d952003-01-13 01:01:59 +0000280 void popStackAfter(MachineBasicBlock::iterator &I);
281
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000282 /// freeStackSlotAfter - Free the specified register from the register
283 /// stack, so that it is no longer in a register. If the register is
284 /// currently at the top of the stack, we just pop the current instruction,
285 /// otherwise we store the current top-of-stack into the specified slot,
286 /// then pop the top of stack.
Chris Lattner0526f012004-04-01 04:06:09 +0000287 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
288
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000289 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
290 /// instruction.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000291 MachineBasicBlock::iterator
292 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
293
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000294 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000295 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
296
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000297 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000298 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000299 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
300 MachineBasicBlock::iterator I);
301
Chris Lattnera960d952003-01-13 01:01:59 +0000302 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
303
304 void handleZeroArgFP(MachineBasicBlock::iterator &I);
305 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000306 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000307 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000308 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000309 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000310 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000311
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000312 // Check if a COPY instruction is using FP registers.
313 bool isFPCopy(MachineInstr *MI) {
314 unsigned DstReg = MI->getOperand(0).getReg();
315 unsigned SrcReg = MI->getOperand(1).getReg();
316
317 return X86::RFP80RegClass.contains(DstReg) ||
318 X86::RFP80RegClass.contains(SrcReg);
319 }
Chris Lattnera960d952003-01-13 01:01:59 +0000320 };
Devang Patel19974732007-05-03 01:11:54 +0000321 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000322}
323
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000324FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000325
Chris Lattner3cc83842008-01-14 06:41:29 +0000326/// getFPReg - Return the X86::FPx register number for the specified operand.
327/// For example, this returns 3 for X86::FP3.
328static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000329 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000330 unsigned Reg = MO.getReg();
331 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
332 return Reg - X86::FP0;
333}
334
Chris Lattnera960d952003-01-13 01:01:59 +0000335/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
336/// register references into FP stack references.
337///
338bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000339 // We only need to run this pass if there are any FP registers used in this
340 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000341 bool FPIsUsed = false;
342
343 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
344 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000345 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000346 FPIsUsed = true;
347 break;
348 }
349
350 // Early exit.
351 if (!FPIsUsed) return false;
352
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000353 Bundles = &getAnalysis<EdgeBundles>();
Evan Cheng32644ac2006-12-01 10:11:51 +0000354 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000355
356 // Prepare cross-MBB liveness.
357 bundleCFG(MF);
358
Chris Lattnera960d952003-01-13 01:01:59 +0000359 StackTop = 0;
360
Chris Lattner847df252004-01-30 22:25:18 +0000361 // Process the function in depth first order so that we process at least one
362 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000363 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000364 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000365
366 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000367 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000368 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
369 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000370 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000371
Chris Lattnerba3598c2009-09-08 04:55:44 +0000372 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000373 if (MF.size() != Processed.size())
374 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
375 if (Processed.insert(BB))
376 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000377
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000378 LiveBundles.clear();
379
Chris Lattnera960d952003-01-13 01:01:59 +0000380 return Changed;
381}
382
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000383/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
384/// live-out sets for the FP registers. Consistent means that the set of
385/// registers live-out from a block is identical to the live-in set of all
386/// successors. This is not enforced by the normal live-in lists since
387/// registers may be implicitly defined, or not used by all successors.
388void FPS::bundleCFG(MachineFunction &MF) {
389 assert(LiveBundles.empty() && "Stale data in LiveBundles");
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000390 LiveBundles.resize(Bundles->getNumBundles());
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000391
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000392 // Gather the actual live-in masks for all MBBs.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000393 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
394 MachineBasicBlock *MBB = I;
395 const unsigned Mask = calcLiveInMask(MBB);
396 if (!Mask)
397 continue;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000398 // Update MBB ingoing bundle mask.
399 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000400 }
401}
402
Chris Lattnera960d952003-01-13 01:01:59 +0000403/// processBasicBlock - Loop over all of the instructions in the basic block,
404/// transforming FP instructions into their stack form.
405///
406bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000407 bool Changed = false;
408 MBB = &BB;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000409 NumPendingSTs = 0;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000410
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000411 setupBlockStack();
412
Chris Lattnera960d952003-01-13 01:01:59 +0000413 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000414 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000415 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000416
Chris Lattnere12ecf22008-03-11 19:50:13 +0000417 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000418 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000419 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000420
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000421 if (MI->isCopy() && isFPCopy(MI))
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000422 FPInstClass = X86II::SpecialFP;
423
Jakob Stoklund Olesen56e32322011-08-03 16:33:19 +0000424 if (MI->isImplicitDef() &&
425 X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
426 FPInstClass = X86II::SpecialFP;
427
Chris Lattnere12ecf22008-03-11 19:50:13 +0000428 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000429 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000430
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000431 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000432 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000433 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000434
435 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000436 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000437
438 // Get dead variables list now because the MI pointer may be deleted as part
439 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000440 SmallVector<unsigned, 8> DeadRegs;
441 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
442 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000443 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000444 DeadRegs.push_back(MO.getReg());
445 }
Chris Lattnera960d952003-01-13 01:01:59 +0000446
Chris Lattnere12ecf22008-03-11 19:50:13 +0000447 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000448 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000449 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000450 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000451 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000452 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000453 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000454 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000455 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000456 }
457
458 // Check to see if any of the values defined by this instruction are dead
459 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000460 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
461 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000462 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000463 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000464 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000465 }
466 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000467
Chris Lattnera960d952003-01-13 01:01:59 +0000468 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000469 DEBUG(
470 MachineBasicBlock::iterator PrevI(PrevMI);
471 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000472 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000473 } else {
474 MachineBasicBlock::iterator Start = I;
475 // Rewind to first instruction newly inserted.
476 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000477 dbgs() << "Inserted instructions:\n\t";
478 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000479 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000480 }
481 dumpStack();
482 );
Chris Lattnera960d952003-01-13 01:01:59 +0000483
484 Changed = true;
485 }
486
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000487 finishBlockStack();
488
Chris Lattnera960d952003-01-13 01:01:59 +0000489 return Changed;
490}
491
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000492/// setupBlockStack - Use the live bundles to set up our model of the stack
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000493/// to match predecessors' live out stack.
494void FPS::setupBlockStack() {
495 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
496 << " derived from " << MBB->getName() << ".\n");
497 StackTop = 0;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000498 // Get the live-in bundle for MBB.
499 const LiveBundle &Bundle =
500 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000501
502 if (!Bundle.Mask) {
503 DEBUG(dbgs() << "Block has no FP live-ins.\n");
504 return;
505 }
506
507 // Depth-first iteration should ensure that we always have an assigned stack.
508 assert(Bundle.isFixed() && "Reached block before any predecessors");
509
510 // Push the fixed live-in registers.
511 for (unsigned i = Bundle.FixCount; i > 0; --i) {
512 MBB->addLiveIn(X86::ST0+i-1);
513 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
514 << unsigned(Bundle.FixStack[i-1]) << '\n');
515 pushReg(Bundle.FixStack[i-1]);
516 }
517
518 // Kill off unwanted live-ins. This can happen with a critical edge.
519 // FIXME: We could keep these live registers around as zombies. They may need
520 // to be revived at the end of a short block. It might save a few instrs.
521 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
522 DEBUG(MBB->dump());
523}
524
525/// finishBlockStack - Revive live-outs that are implicitly defined out of
526/// MBB. Shuffle live registers to match the expected fixed stack of any
527/// predecessors, and ensure that all predecessors are expecting the same
528/// stack.
529void FPS::finishBlockStack() {
530 // The RET handling below takes care of return blocks for us.
531 if (MBB->succ_empty())
532 return;
533
534 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
535 << " derived from " << MBB->getName() << ".\n");
536
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000537 // Get MBB's live-out bundle.
538 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000539 LiveBundle &Bundle = LiveBundles[BundleIdx];
540
541 // We may need to kill and define some registers to match successors.
542 // FIXME: This can probably be combined with the shuffle below.
543 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
544 adjustLiveRegs(Bundle.Mask, Term);
545
546 if (!Bundle.Mask) {
547 DEBUG(dbgs() << "No live-outs.\n");
548 return;
549 }
550
551 // Has the stack order been fixed yet?
552 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
553 if (Bundle.isFixed()) {
554 DEBUG(dbgs() << "Shuffling stack to match.\n");
555 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
556 } else {
557 // Not fixed yet, we get to choose.
558 DEBUG(dbgs() << "Fixing stack order now.\n");
559 Bundle.FixCount = StackTop;
560 for (unsigned i = 0; i < StackTop; ++i)
561 Bundle.FixStack[i] = getStackEntry(i);
562 }
563}
564
565
Chris Lattnera960d952003-01-13 01:01:59 +0000566//===----------------------------------------------------------------------===//
567// Efficient Lookup Table Support
568//===----------------------------------------------------------------------===//
569
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000570namespace {
571 struct TableEntry {
572 unsigned from;
573 unsigned to;
574 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000575 friend bool operator<(const TableEntry &TE, unsigned V) {
576 return TE.from < V;
577 }
Chandler Carruth100c2672010-10-23 08:10:43 +0000578 friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
579 const TableEntry &TE) {
Jakob Stoklund Olesende78f052010-08-16 18:24:54 +0000580 return V < TE.from;
581 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000582 };
583}
Chris Lattnera960d952003-01-13 01:01:59 +0000584
Evan Chenga022bdf2008-07-21 20:02:45 +0000585#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000586static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
587 for (unsigned i = 0; i != NumEntries-1; ++i)
588 if (!(Table[i] < Table[i+1])) return false;
589 return true;
590}
Evan Chenga022bdf2008-07-21 20:02:45 +0000591#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000592
593static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
594 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
595 if (I != Table+N && I->from == Opcode)
596 return I->to;
597 return -1;
598}
599
Chris Lattnera960d952003-01-13 01:01:59 +0000600#ifdef NDEBUG
601#define ASSERT_SORTED(TABLE)
602#else
603#define ASSERT_SORTED(TABLE) \
604 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000605 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000606 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000607 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000608 TABLE##Checked = true; \
609 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000610 }
611#endif
612
Chris Lattner58fe4592005-12-21 07:47:04 +0000613//===----------------------------------------------------------------------===//
614// Register File -> Register Stack Mapping Methods
615//===----------------------------------------------------------------------===//
616
617// OpcodeTable - Sorted map of register instructions to their stack version.
618// The first element is an register file pseudo instruction, the second is the
619// concrete X86 instruction which uses the register stack.
620//
621static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000622 { X86::ABS_Fp32 , X86::ABS_F },
623 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000624 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000625 { X86::ADD_Fp32m , X86::ADD_F32m },
626 { X86::ADD_Fp64m , X86::ADD_F64m },
627 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000628 { X86::ADD_Fp80m32 , X86::ADD_F32m },
629 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000630 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
631 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000632 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000633 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
634 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000635 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000636 { X86::CHS_Fp32 , X86::CHS_F },
637 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000638 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000639 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
640 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000641 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000642 { X86::CMOVB_Fp32 , X86::CMOVB_F },
643 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000644 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000645 { X86::CMOVE_Fp32 , X86::CMOVE_F },
646 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000647 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000648 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
649 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000650 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000651 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
652 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000653 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000654 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
655 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000656 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000657 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
658 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000659 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000660 { X86::CMOVP_Fp32 , X86::CMOVP_F },
661 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000662 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000663 { X86::COS_Fp32 , X86::COS_F },
664 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000665 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000666 { X86::DIVR_Fp32m , X86::DIVR_F32m },
667 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000668 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000669 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
670 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000671 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
672 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000673 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000674 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
675 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000676 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000677 { X86::DIV_Fp32m , X86::DIV_F32m },
678 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000679 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000680 { X86::DIV_Fp80m32 , X86::DIV_F32m },
681 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000682 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
683 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000684 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000685 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
686 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000687 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000688 { X86::ILD_Fp16m32 , X86::ILD_F16m },
689 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000690 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000691 { X86::ILD_Fp32m32 , X86::ILD_F32m },
692 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000693 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000694 { X86::ILD_Fp64m32 , X86::ILD_F64m },
695 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000696 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000697 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
698 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000699 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000700 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
701 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000702 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000703 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
704 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000705 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000706 { X86::IST_Fp16m32 , X86::IST_F16m },
707 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000708 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000709 { X86::IST_Fp32m32 , X86::IST_F32m },
710 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000711 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000712 { X86::IST_Fp64m32 , X86::IST_FP64m },
713 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000714 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000715 { X86::LD_Fp032 , X86::LD_F0 },
716 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000717 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000718 { X86::LD_Fp132 , X86::LD_F1 },
719 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000720 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000721 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000722 { X86::LD_Fp32m64 , X86::LD_F32m },
723 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000724 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000725 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000726 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000727 { X86::MUL_Fp32m , X86::MUL_F32m },
728 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000729 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000730 { X86::MUL_Fp80m32 , X86::MUL_F32m },
731 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000732 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
733 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000734 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000735 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
736 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000737 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000738 { X86::SIN_Fp32 , X86::SIN_F },
739 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000740 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000741 { X86::SQRT_Fp32 , X86::SQRT_F },
742 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000743 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000744 { X86::ST_Fp32m , X86::ST_F32m },
745 { X86::ST_Fp64m , X86::ST_F64m },
746 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000747 { X86::ST_Fp80m32 , X86::ST_F32m },
748 { X86::ST_Fp80m64 , X86::ST_F64m },
749 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000750 { X86::SUBR_Fp32m , X86::SUBR_F32m },
751 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000752 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000753 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
754 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000755 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
756 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000757 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000758 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
759 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000760 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000761 { X86::SUB_Fp32m , X86::SUB_F32m },
762 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000763 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000764 { X86::SUB_Fp80m32 , X86::SUB_F32m },
765 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000766 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
767 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000768 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000769 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
770 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000771 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000772 { X86::TST_Fp32 , X86::TST_F },
773 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000774 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000775 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
776 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000777 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000778 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
779 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000780 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000781};
782
783static unsigned getConcreteOpcode(unsigned Opcode) {
784 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000785 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000786 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
787 return Opc;
788}
Chris Lattnera960d952003-01-13 01:01:59 +0000789
790//===----------------------------------------------------------------------===//
791// Helper Methods
792//===----------------------------------------------------------------------===//
793
794// PopTable - Sorted map of instructions to their popping version. The first
795// element is an instruction, the second is the version which pops.
796//
797static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000798 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000799
Dale Johannesene377d4d2007-07-04 21:07:47 +0000800 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
801 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000802
Dale Johannesene377d4d2007-07-04 21:07:47 +0000803 { X86::IST_F16m , X86::IST_FP16m },
804 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000805
Dale Johannesene377d4d2007-07-04 21:07:47 +0000806 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000807
Dale Johannesene377d4d2007-07-04 21:07:47 +0000808 { X86::ST_F32m , X86::ST_FP32m },
809 { X86::ST_F64m , X86::ST_FP64m },
810 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000811
Dale Johannesene377d4d2007-07-04 21:07:47 +0000812 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
813 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000814
Dale Johannesene377d4d2007-07-04 21:07:47 +0000815 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000816
Dale Johannesene377d4d2007-07-04 21:07:47 +0000817 { X86::UCOM_FPr , X86::UCOM_FPPr },
818 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000819};
820
821/// popStackAfter - Pop the current value off of the top of the FP stack after
822/// the specified instruction. This attempts to be sneaky and combine the pop
823/// into the instruction itself if possible. The iterator is left pointing to
824/// the last instruction, be it a new pop instruction inserted, or the old
825/// instruction if it was modified in place.
826///
827void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000828 MachineInstr* MI = I;
829 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000830 ASSERT_SORTED(PopTable);
Evan Cheng3f490f32010-10-12 23:19:28 +0000831 if (StackTop == 0)
832 report_fatal_error("Cannot pop empty stack!");
Chris Lattnera960d952003-01-13 01:01:59 +0000833 RegMap[Stack[--StackTop]] = ~0; // Update state
834
835 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000836 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000837 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000838 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000839 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000840 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000841 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000842 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000843 }
844}
845
Chris Lattner0526f012004-04-01 04:06:09 +0000846/// freeStackSlotAfter - Free the specified register from the register stack, so
847/// that it is no longer in a register. If the register is currently at the top
848/// of the stack, we just pop the current instruction, otherwise we store the
849/// current top-of-stack into the specified slot, then pop the top of stack.
850void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
851 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
852 popStackAfter(I);
853 return;
854 }
855
856 // Otherwise, store the top of stack into the dead slot, killing the operand
857 // without having to add in an explicit xchg then pop.
858 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000859 I = freeStackSlotBefore(++I, FPRegNo);
860}
861
862/// freeStackSlotBefore - Free the specified register without trying any
863/// folding.
864MachineBasicBlock::iterator
865FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000866 unsigned STReg = getSTReg(FPRegNo);
867 unsigned OldSlot = getSlot(FPRegNo);
868 unsigned TopReg = Stack[StackTop-1];
869 Stack[OldSlot] = TopReg;
870 RegMap[TopReg] = OldSlot;
871 RegMap[FPRegNo] = ~0;
872 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000873 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
874}
875
876/// adjustLiveRegs - Kill and revive registers such that exactly the FP
877/// registers with a bit in Mask are live.
878void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
879 unsigned Defs = Mask;
880 unsigned Kills = 0;
881 for (unsigned i = 0; i < StackTop; ++i) {
882 unsigned RegNo = Stack[i];
883 if (!(Defs & (1 << RegNo)))
884 // This register is live, but we don't want it.
885 Kills |= (1 << RegNo);
886 else
887 // We don't need to imp-def this live register.
888 Defs &= ~(1 << RegNo);
889 }
890 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
891
892 // Produce implicit-defs for free by using killed registers.
893 while (Kills && Defs) {
894 unsigned KReg = CountTrailingZeros_32(Kills);
895 unsigned DReg = CountTrailingZeros_32(Defs);
896 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
897 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
898 std::swap(RegMap[KReg], RegMap[DReg]);
899 Kills &= ~(1 << KReg);
900 Defs &= ~(1 << DReg);
901 }
902
903 // Kill registers by popping.
904 if (Kills && I != MBB->begin()) {
905 MachineBasicBlock::iterator I2 = llvm::prior(I);
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +0000906 while (StackTop) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000907 unsigned KReg = getStackEntry(0);
908 if (!(Kills & (1 << KReg)))
909 break;
910 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
911 popStackAfter(I2);
912 Kills &= ~(1 << KReg);
913 }
914 }
915
916 // Manually kill the rest.
917 while (Kills) {
918 unsigned KReg = CountTrailingZeros_32(Kills);
919 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
920 freeStackSlotBefore(I, KReg);
921 Kills &= ~(1 << KReg);
922 }
923
924 // Load zeros for all the imp-defs.
925 while(Defs) {
926 unsigned DReg = CountTrailingZeros_32(Defs);
927 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
928 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
929 pushReg(DReg);
930 Defs &= ~(1 << DReg);
931 }
932
933 // Now we should have the correct registers live.
934 DEBUG(dumpStack());
935 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
936}
937
938/// shuffleStackTop - emit fxch instructions before I to shuffle the top
939/// FixCount entries into the order given by FixStack.
940/// FIXME: Is there a better algorithm than insertion sort?
941void FPS::shuffleStackTop(const unsigned char *FixStack,
942 unsigned FixCount,
943 MachineBasicBlock::iterator I) {
944 // Move items into place, starting from the desired stack bottom.
945 while (FixCount--) {
946 // Old register at position FixCount.
947 unsigned OldReg = getStackEntry(FixCount);
948 // Desired register at position FixCount.
949 unsigned Reg = FixStack[FixCount];
950 if (Reg == OldReg)
951 continue;
952 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
953 moveToTop(Reg, I);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000954 if (FixCount > 0)
955 moveToTop(OldReg, I);
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000956 }
957 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000958}
959
960
Chris Lattnera960d952003-01-13 01:01:59 +0000961//===----------------------------------------------------------------------===//
962// Instruction transformation implementation
963//===----------------------------------------------------------------------===//
964
965/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000966///
Chris Lattnera960d952003-01-13 01:01:59 +0000967void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000968 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000969 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000970
Chris Lattner58fe4592005-12-21 07:47:04 +0000971 // Change from the pseudo instruction to the concrete instruction.
972 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000973 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000974
975 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000976 pushReg(DestReg);
977}
978
Chris Lattner4a06f352004-02-02 19:23:15 +0000979/// handleOneArgFP - fst <mem>, ST(0)
980///
Chris Lattnera960d952003-01-13 01:01:59 +0000981void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000982 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000983 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000984 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000985 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000986
Chris Lattner4a06f352004-02-02 19:23:15 +0000987 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000988 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000989 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000990
Jakob Stoklund Olesen66b0f512011-08-08 17:15:43 +0000991 if (KillsSrc)
992 duplicatePendingSTBeforeKill(Reg, I);
993
Evan Cheng2b152712006-02-18 02:36:28 +0000994 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000995 // If we have one _and_ we don't want to pop the operand, duplicate the value
996 // on the stack instead of moving it. This ensure that popping the value is
997 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000998 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000999 //
Evan Cheng2b152712006-02-18 02:36:28 +00001000 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +00001001 (MI->getOpcode() == X86::IST_Fp64m32 ||
1002 MI->getOpcode() == X86::ISTT_Fp16m32 ||
1003 MI->getOpcode() == X86::ISTT_Fp32m32 ||
1004 MI->getOpcode() == X86::ISTT_Fp64m32 ||
1005 MI->getOpcode() == X86::IST_Fp64m64 ||
1006 MI->getOpcode() == X86::ISTT_Fp16m64 ||
1007 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001008 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +00001009 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +00001010 MI->getOpcode() == X86::ISTT_Fp16m80 ||
1011 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1012 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001013 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001014 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +00001015 } else {
1016 moveToTop(Reg, I); // Move to the top of the stack...
1017 }
Chris Lattner58fe4592005-12-21 07:47:04 +00001018
1019 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +00001020 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +00001021 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001022
Dale Johannesene377d4d2007-07-04 21:07:47 +00001023 if (MI->getOpcode() == X86::IST_FP64m ||
1024 MI->getOpcode() == X86::ISTT_FP16m ||
1025 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +00001026 MI->getOpcode() == X86::ISTT_FP64m ||
1027 MI->getOpcode() == X86::ST_FP80m) {
Evan Cheng3f490f32010-10-12 23:19:28 +00001028 if (StackTop == 0)
1029 report_fatal_error("Stack empty??");
Chris Lattnera960d952003-01-13 01:01:59 +00001030 --StackTop;
1031 } else if (KillsSrc) { // Last use of operand?
1032 popStackAfter(I);
1033 }
1034}
1035
Chris Lattner4a06f352004-02-02 19:23:15 +00001036
Chris Lattner4cf15e72004-04-11 20:21:06 +00001037/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1038/// replace the value with a newly computed value. These instructions may have
1039/// non-fp operands after their FP operands.
1040///
1041/// Examples:
1042/// R1 = fchs R2
1043/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +00001044///
1045void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001046 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +00001047#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +00001048 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +00001049 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +00001050#endif
Chris Lattner4a06f352004-02-02 19:23:15 +00001051
1052 // Is this the last use of the source register?
1053 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +00001054 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +00001055
1056 if (KillsSrc) {
Jakob Stoklund Olesen66b0f512011-08-08 17:15:43 +00001057 duplicatePendingSTBeforeKill(Reg, I);
Chris Lattner4a06f352004-02-02 19:23:15 +00001058 // If this is the last use of the source register, just make sure it's on
1059 // the top of the stack.
1060 moveToTop(Reg, I);
Evan Cheng3f490f32010-10-12 23:19:28 +00001061 if (StackTop == 0)
1062 report_fatal_error("Stack cannot be empty!");
Chris Lattner4a06f352004-02-02 19:23:15 +00001063 --StackTop;
1064 pushReg(getFPReg(MI->getOperand(0)));
1065 } else {
1066 // If this is not the last use of the source register, _copy_ it to the top
1067 // of the stack.
1068 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1069 }
1070
Chris Lattner58fe4592005-12-21 07:47:04 +00001071 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001072 MI->RemoveOperand(1); // Drop the source operand.
1073 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001074 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001075}
1076
1077
Chris Lattnera960d952003-01-13 01:01:59 +00001078//===----------------------------------------------------------------------===//
1079// Define tables of various ways to map pseudo instructions
1080//
1081
1082// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1083static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001084 { X86::ADD_Fp32 , X86::ADD_FST0r },
1085 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001086 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001087 { X86::DIV_Fp32 , X86::DIV_FST0r },
1088 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001089 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001090 { X86::MUL_Fp32 , X86::MUL_FST0r },
1091 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001092 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001093 { X86::SUB_Fp32 , X86::SUB_FST0r },
1094 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001095 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001096};
1097
1098// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1099static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001100 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1101 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001102 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001103 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1104 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001105 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001106 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1107 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001108 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001109 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1110 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001111 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001112};
1113
1114// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1115static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001116 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1117 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001118 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001119 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1120 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001121 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001122 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1123 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001124 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001125 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1126 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001127 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001128};
1129
1130// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1131static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001132 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1133 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001134 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001135 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1136 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001137 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001138 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1139 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001140 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001141 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1142 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001143 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001144};
1145
1146
1147/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1148/// instructions which need to be simplified and possibly transformed.
1149///
1150/// Result: ST(0) = fsub ST(0), ST(i)
1151/// ST(i) = fsub ST(0), ST(i)
1152/// ST(0) = fsubr ST(0), ST(i)
1153/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001154///
Chris Lattnera960d952003-01-13 01:01:59 +00001155void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1156 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1157 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001158 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001159
Chris Lattner749c6f62008-01-07 07:27:27 +00001160 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001161 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001162 unsigned Dest = getFPReg(MI->getOperand(0));
1163 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1164 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001165 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1166 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001167 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001168
Chris Lattnera960d952003-01-13 01:01:59 +00001169 unsigned TOS = getStackEntry(0);
1170
1171 // One of our operands must be on the top of the stack. If neither is yet, we
1172 // need to move one.
1173 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1174 // We can choose to move either operand to the top of the stack. If one of
1175 // the operands is killed by this instruction, we want that one so that we
1176 // can update right on top of the old version.
1177 if (KillsOp0) {
1178 moveToTop(Op0, I); // Move dead operand to TOS.
1179 TOS = Op0;
1180 } else if (KillsOp1) {
1181 moveToTop(Op1, I);
1182 TOS = Op1;
1183 } else {
1184 // All of the operands are live after this instruction executes, so we
1185 // cannot update on top of any operand. Because of this, we must
1186 // duplicate one of the stack elements to the top. It doesn't matter
1187 // which one we pick.
1188 //
1189 duplicateToTop(Op0, Dest, I);
1190 Op0 = TOS = Dest;
1191 KillsOp0 = true;
1192 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001193 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001194 // If we DO have one of our operands at the top of the stack, but we don't
1195 // have a dead operand, we must duplicate one of the operands to a new slot
1196 // on the stack.
1197 duplicateToTop(Op0, Dest, I);
1198 Op0 = TOS = Dest;
1199 KillsOp0 = true;
1200 }
1201
1202 // Now we know that one of our operands is on the top of the stack, and at
1203 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001204 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1205 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001206
1207 // We decide which form to use based on what is on the top of the stack, and
1208 // which operand is killed by this instruction.
1209 const TableEntry *InstTable;
1210 bool isForward = TOS == Op0;
1211 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1212 if (updateST0) {
1213 if (isForward)
1214 InstTable = ForwardST0Table;
1215 else
1216 InstTable = ReverseST0Table;
1217 } else {
1218 if (isForward)
1219 InstTable = ForwardSTiTable;
1220 else
1221 InstTable = ReverseSTiTable;
1222 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001223
Owen Anderson718cb662007-09-07 04:06:50 +00001224 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1225 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001226 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1227
1228 // NotTOS - The register which is not on the top of stack...
1229 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1230
1231 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001232 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001233 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001234
1235 // If both operands are killed, pop one off of the stack in addition to
1236 // overwriting the other one.
1237 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1238 assert(!updateST0 && "Should have updated other operand!");
1239 popStackAfter(I); // Pop the top of stack
1240 }
1241
Chris Lattnera960d952003-01-13 01:01:59 +00001242 // Update stack information so that we know the destination register is now on
1243 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001244 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1245 assert(UpdatedSlot < StackTop && Dest < 7);
1246 Stack[UpdatedSlot] = Dest;
1247 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001248 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001249}
1250
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001251/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001252/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001253///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001254void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1255 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1256 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1257 MachineInstr *MI = I;
1258
Chris Lattner749c6f62008-01-07 07:27:27 +00001259 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001260 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001261 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1262 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001263 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1264 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001265
1266 // Make sure the first operand is on the top of stack, the other one can be
1267 // anywhere.
1268 moveToTop(Op0, I);
1269
Chris Lattner58fe4592005-12-21 07:47:04 +00001270 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001271 MI->getOperand(0).setReg(getSTReg(Op1));
1272 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001273 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001274
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001275 // If any of the operands are killed by this instruction, free them.
1276 if (KillsOp0) freeStackSlotAfter(I, Op0);
1277 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001278}
1279
Chris Lattnerc1bab322004-03-31 22:02:36 +00001280/// handleCondMovFP - Handle two address conditional move instructions. These
1281/// instructions move a st(i) register to st(0) iff a condition is true. These
1282/// instructions require that the first operand is at the top of the stack, but
1283/// otherwise don't modify the stack at all.
1284void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1285 MachineInstr *MI = I;
1286
1287 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001288 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001289 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001290
1291 // The first operand *must* be on the top of the stack.
1292 moveToTop(Op0, I);
1293
1294 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001295 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001296 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001297 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001298 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001299 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001300
Chris Lattnerc1bab322004-03-31 22:02:36 +00001301 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001302 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001303 // Get this value off of the register stack.
1304 freeStackSlotAfter(I, Op1);
1305 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001306}
1307
Chris Lattnera960d952003-01-13 01:01:59 +00001308
1309/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001310/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001311/// instructions.
1312///
1313void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001314 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001315 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001316 default: llvm_unreachable("Unknown SpecialFP instruction!");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001317 case TargetOpcode::COPY: {
1318 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
Evan Chengfb112882009-03-23 08:01:15 +00001319 const MachineOperand &MO1 = MI->getOperand(1);
Evan Chengfb112882009-03-23 08:01:15 +00001320 const MachineOperand &MO0 = MI->getOperand(0);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001321 unsigned DstST = MO0.getReg() - X86::ST0;
1322 unsigned SrcST = MO1.getReg() - X86::ST0;
1323 bool KillsSrc = MI->killsRegister(MO1.getReg());
1324
1325 // ST = COPY FP. Set up a pending ST register.
1326 if (DstST < 8) {
1327 unsigned SrcFP = getFPReg(MO1);
1328 assert(isLive(SrcFP) && "Cannot copy dead register");
1329 assert(!MO0.isDead() && "Cannot copy to dead ST register");
1330
1331 // Unallocated STs are marked as the nonexistent FP255.
1332 while (NumPendingSTs <= DstST)
1333 PendingST[NumPendingSTs++] = NumFPRegs;
1334
1335 // STi could still be live from a previous inline asm.
1336 if (isScratchReg(PendingST[DstST])) {
1337 DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1338 << '\n');
1339 freeStackSlotBefore(MI, PendingST[DstST]);
1340 }
1341
1342 // When the source is killed, allocate a scratch FP register.
1343 if (KillsSrc) {
Jakob Stoklund Olesen66b0f512011-08-08 17:15:43 +00001344 duplicatePendingSTBeforeKill(SrcFP, I);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001345 unsigned Slot = getSlot(SrcFP);
1346 unsigned SR = getScratchReg();
1347 PendingST[DstST] = SR;
1348 Stack[Slot] = SR;
1349 RegMap[SR] = Slot;
1350 } else
1351 PendingST[DstST] = SrcFP;
1352 break;
1353 }
1354
1355 // FP = COPY ST. Extract fixed stack value.
1356 // Any instruction defining ST registers must have assigned them to a
1357 // scratch register.
1358 if (SrcST < 8) {
1359 unsigned DstFP = getFPReg(MO0);
1360 assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1361 assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1362 unsigned SrcFP = PendingST[SrcST];
1363 assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1364 assert(isLive(SrcFP) && "Scratch holding ST is dead");
1365
1366 // DstFP steals the stack slot from SrcFP.
1367 unsigned Slot = getSlot(SrcFP);
1368 Stack[Slot] = DstFP;
1369 RegMap[DstFP] = Slot;
1370
1371 // Always treat the ST as killed.
1372 PendingST[SrcST] = NumFPRegs;
1373 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1374 --NumPendingSTs;
1375 break;
1376 }
1377
1378 // FP <- FP copy.
1379 unsigned DstFP = getFPReg(MO0);
1380 unsigned SrcFP = getFPReg(MO1);
1381 assert(isLive(SrcFP) && "Cannot copy dead register");
1382 if (KillsSrc) {
Chris Lattnera960d952003-01-13 01:01:59 +00001383 // If the input operand is killed, we can just change the owner of the
1384 // incoming stack slot into the result.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001385 unsigned Slot = getSlot(SrcFP);
1386 Stack[Slot] = DstFP;
1387 RegMap[DstFP] = Slot;
Chris Lattnera960d952003-01-13 01:01:59 +00001388 } else {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001389 // For COPY we just duplicate the specified value to a new stack slot.
Chris Lattnera960d952003-01-13 01:01:59 +00001390 // This could be made better, but would require substantial changes.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001391 duplicateToTop(SrcFP, DstFP, I);
Nick Lewycky3c786972008-03-11 05:56:09 +00001392 }
Chris Lattnera960d952003-01-13 01:01:59 +00001393 break;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001394 }
1395
Jakob Stoklund Olesen56e32322011-08-03 16:33:19 +00001396 case TargetOpcode::IMPLICIT_DEF: {
1397 // All FP registers must be explicitly defined, so load a 0 instead.
1398 unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1399 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1400 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1401 pushReg(Reg);
1402 break;
1403 }
1404
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001405 case X86::FpPOP_RETVAL: {
1406 // The FpPOP_RETVAL instruction is used after calls that return a value on
1407 // the floating point stack. We cannot model this with ST defs since CALL
1408 // instructions have fixed clobber lists. This instruction is interpreted
1409 // to mean that there is one more live register on the stack than we
1410 // thought.
1411 //
1412 // This means that StackTop does not match the hardware stack between a
1413 // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
1414 // between CALL and FpPOP_RETVAL as long as they don't overflow the
1415 // hardware stack.
1416 unsigned DstFP = getFPReg(MI->getOperand(0));
1417
1418 // Move existing stack elements up to reflect reality.
1419 assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1420 if (StackTop) {
1421 std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1422 for (unsigned i = 0; i != NumFPRegs; ++i)
1423 ++RegMap[i];
1424 }
1425 ++StackTop;
1426
1427 // DstFP is the new bottom of the stack.
1428 Stack[0] = DstFP;
1429 RegMap[DstFP] = 0;
1430
1431 // DstFP will be killed by processBasicBlock if this was a dead def.
1432 break;
1433 }
1434
Chris Lattner518bb532010-02-09 19:54:29 +00001435 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001436 // The inline asm MachineInstr currently only *uses* FP registers for the
1437 // 'f' constraint. These should be turned into the current ST(x) register
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001438 // in the machine instr.
1439 //
1440 // There are special rules for x87 inline assembly. The compiler must know
1441 // exactly how many registers are popped and pushed implicitly by the asm.
1442 // Otherwise it is not possible to restore the stack state after the inline
1443 // asm.
1444 //
1445 // There are 3 kinds of input operands:
1446 //
1447 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1448 // popped input operand must be in a fixed stack slot, and it is either
1449 // tied to an output operand, or in the clobber list. The MI has ST use
1450 // and def operands for these inputs.
1451 //
1452 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1453 // preserved by the inline asm. The fixed stack slots must be STn-STm
1454 // following the popped inputs. A fixed input operand cannot be tied to
1455 // an output or appear in the clobber list. The MI has ST use operands
1456 // and no defs for these inputs.
1457 //
1458 // 3. Preserved inputs. These inputs use the "f" constraint which is
1459 // represented as an FP register. The inline asm won't change these
1460 // stack slots.
1461 //
1462 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1463 // registers do not count as output operands. The inline asm changes the
1464 // stack as if it popped all the popped inputs and then pushed all the
1465 // output operands.
1466
1467 // Scan the assembly for ST registers used, defined and clobbered. We can
1468 // only tell clobbers from defs by looking at the asm descriptor.
1469 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1470 unsigned NumOps = 0;
1471 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1472 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1473 unsigned Flags = MI->getOperand(i).getImm();
1474 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1475 if (NumOps != 1)
1476 continue;
1477 const MachineOperand &MO = MI->getOperand(i + 1);
1478 if (!MO.isReg())
1479 continue;
1480 unsigned STReg = MO.getReg() - X86::ST0;
1481 if (STReg >= 8)
1482 continue;
1483
1484 switch (InlineAsm::getKind(Flags)) {
1485 case InlineAsm::Kind_RegUse:
1486 STUses |= (1u << STReg);
1487 break;
1488 case InlineAsm::Kind_RegDef:
1489 case InlineAsm::Kind_RegDefEarlyClobber:
1490 STDefs |= (1u << STReg);
1491 if (MO.isDead())
1492 STDeadDefs |= (1u << STReg);
1493 break;
1494 case InlineAsm::Kind_Clobber:
1495 STClobbers |= (1u << STReg);
1496 break;
1497 default:
1498 break;
1499 }
1500 }
1501
1502 if (STUses && !isMask_32(STUses))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001503 MI->emitError("fixed input regs must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001504 unsigned NumSTUses = CountTrailingOnes_32(STUses);
1505
1506 // Defs must be contiguous from the stack top. ST0-STn.
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +00001507 if (STDefs && !isMask_32(STDefs)) {
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001508 MI->emitError("output regs must be last on the x87 stack");
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +00001509 STDefs = NextPowerOf2(STDefs) - 1;
1510 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001511 unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1512
1513 // So must the clobbered stack slots. ST0-STm, m >= n.
1514 if (STClobbers && !isMask_32(STDefs | STClobbers))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001515 MI->emitError("clobbers must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001516
1517 // Popped inputs are the ones that are also clobbered or defined.
1518 unsigned STPopped = STUses & (STDefs | STClobbers);
1519 if (STPopped && !isMask_32(STPopped))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001520 MI->emitError("implicitly popped regs must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001521 unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1522
1523 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1524 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1525
1526 // Scan the instruction for FP uses corresponding to "f" constraints.
1527 // Collect FP registers to kill afer the instruction.
1528 // Always kill all the scratch regs.
1529 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1530 unsigned FPUsed = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001531 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1532 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001533 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001534 continue;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001535 if (!Op.isUse())
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001536 MI->emitError("illegal \"f\" output constraint");
Chris Lattnere12ecf22008-03-11 19:50:13 +00001537 unsigned FPReg = getFPReg(Op);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001538 FPUsed |= 1U << FPReg;
1539
Chris Lattnere12ecf22008-03-11 19:50:13 +00001540 // If we kill this operand, make sure to pop it from the stack after the
1541 // asm. We just remember it for now, and pop them all off at the end in
1542 // a batch.
1543 if (Op.isKill())
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001544 FPKills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001545 }
1546
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001547 // The popped inputs will be killed by the instruction, so duplicate them
1548 // if the FP register needs to be live after the instruction, or if it is
1549 // used in the instruction itself. We effectively treat the popped inputs
1550 // as early clobbers.
1551 for (unsigned i = 0; i < NumSTPopped; ++i) {
1552 if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1553 continue;
1554 unsigned SR = getScratchReg();
1555 duplicateToTop(PendingST[i], SR, I);
1556 DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1557 << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1558 PendingST[i] = SR;
1559 }
1560
1561 // Make sure we have a unique live register for every fixed use. Some of
1562 // them could be undef uses, and we need to emit LD_F0 instructions.
1563 for (unsigned i = 0; i < NumSTUses; ++i) {
1564 if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1565 // Check for shared assignments.
1566 for (unsigned j = 0; j < i; ++j) {
1567 if (PendingST[j] != PendingST[i])
1568 continue;
1569 // STi and STj are inn the same register, create a copy.
1570 unsigned SR = getScratchReg();
1571 duplicateToTop(PendingST[i], SR, I);
1572 DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1573 << unsigned(PendingST[i])
1574 << " to avoid collision with ST" << j << '\n');
1575 PendingST[i] = SR;
1576 }
1577 continue;
1578 }
1579 unsigned SR = getScratchReg();
1580 DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1581 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1582 pushReg(SR);
1583 PendingST[i] = SR;
1584 if (NumPendingSTs == i)
1585 ++NumPendingSTs;
1586 }
1587 assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1588
1589 // Now we can rearrange the live registers to match what was requested.
1590 shuffleStackTop(PendingST, NumPendingSTs, I);
1591 DEBUG({dbgs() << "Before asm: "; dumpStack();});
1592
1593 // With the stack layout fixed, rewrite the FP registers.
1594 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1595 MachineOperand &Op = MI->getOperand(i);
1596 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1597 continue;
1598 unsigned FPReg = getFPReg(Op);
1599 Op.setReg(getSTReg(FPReg));
1600 }
1601
1602 // Simulate the inline asm popping its inputs and pushing its outputs.
1603 StackTop -= NumSTPopped;
1604
1605 // Hold the fixed output registers in scratch FP registers. They will be
1606 // transferred to real FP registers by copies.
1607 NumPendingSTs = 0;
1608 for (unsigned i = 0; i < NumSTDefs; ++i) {
1609 unsigned SR = getScratchReg();
1610 pushReg(SR);
1611 FPKills &= ~(1u << SR);
1612 }
1613 for (unsigned i = 0; i < NumSTDefs; ++i)
1614 PendingST[NumPendingSTs++] = getStackEntry(i);
1615 DEBUG({dbgs() << "After asm: "; dumpStack();});
1616
1617 // If any of the ST defs were dead, pop them immediately. Our caller only
1618 // handles dead FP defs.
1619 MachineBasicBlock::iterator InsertPt = MI;
1620 for (unsigned i = 0; STDefs & (1u << i); ++i) {
1621 if (!(STDeadDefs & (1u << i)))
1622 continue;
1623 freeStackSlotAfter(InsertPt, PendingST[i]);
1624 PendingST[i] = NumFPRegs;
1625 }
1626 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1627 --NumPendingSTs;
1628
Chris Lattnere12ecf22008-03-11 19:50:13 +00001629 // If this asm kills any FP registers (is the last use of them) we must
1630 // explicitly emit pop instructions for them. Do this now after the asm has
1631 // executed so that the ST(x) numbers are not off (which would happen if we
1632 // did this inline with operand rewriting).
1633 //
1634 // Note: this might be a non-optimal pop sequence. We might be able to do
1635 // better by trying to pop in stack order or something.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001636 while (FPKills) {
1637 unsigned FPReg = CountTrailingZeros_32(FPKills);
1638 if (isLive(FPReg))
1639 freeStackSlotAfter(InsertPt, FPReg);
1640 FPKills &= ~(1U << FPReg);
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001641 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001642 // Don't delete the inline asm!
1643 return;
1644 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001645
Chris Lattner447ff682008-03-11 03:23:40 +00001646 case X86::RET:
1647 case X86::RETI:
1648 // If RET has an FP register use operand, pass the first one in ST(0) and
1649 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001650
Chris Lattner447ff682008-03-11 03:23:40 +00001651 // Find the register operands.
1652 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001653 unsigned LiveMask = 0;
1654
Chris Lattner447ff682008-03-11 03:23:40 +00001655 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1656 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001657 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001658 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001659 // FP Register uses must be kills unless there are two uses of the same
1660 // register, in which case only one will be a kill.
1661 assert(Op.isUse() &&
1662 (Op.isKill() || // Marked kill.
1663 getFPReg(Op) == FirstFPRegOp || // Second instance.
1664 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1665 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001666
1667 if (FirstFPRegOp == ~0U)
1668 FirstFPRegOp = getFPReg(Op);
1669 else {
1670 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1671 SecondFPRegOp = getFPReg(Op);
1672 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001673 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001674
1675 // Remove the operand so that later passes don't see it.
1676 MI->RemoveOperand(i);
1677 --i, --e;
1678 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001679
1680 // We may have been carrying spurious live-ins, so make sure only the returned
1681 // registers are left live.
1682 adjustLiveRegs(LiveMask, MI);
1683 if (!LiveMask) return; // Quick check to see if any are possible.
1684
Chris Lattner447ff682008-03-11 03:23:40 +00001685 // There are only four possibilities here:
1686 // 1) we are returning a single FP value. In this case, it has to be in
1687 // ST(0) already, so just declare success by removing the value from the
1688 // FP Stack.
1689 if (SecondFPRegOp == ~0U) {
1690 // Assert that the top of stack contains the right FP register.
1691 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1692 "Top of stack not the right register for RET!");
1693
1694 // Ok, everything is good, mark the value as not being on the stack
1695 // anymore so that our assertion about the stack being empty at end of
1696 // block doesn't fire.
1697 StackTop = 0;
1698 return;
1699 }
1700
Chris Lattner447ff682008-03-11 03:23:40 +00001701 // Otherwise, we are returning two values:
1702 // 2) If returning the same value for both, we only have one thing in the FP
1703 // stack. Consider: RET FP1, FP1
1704 if (StackTop == 1) {
1705 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1706 "Stack misconfiguration for RET!");
1707
1708 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1709 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001710 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001711 duplicateToTop(FirstFPRegOp, NewReg, MI);
1712 FirstFPRegOp = NewReg;
1713 }
1714
1715 /// Okay we know we have two different FPx operands now:
1716 assert(StackTop == 2 && "Must have two values live!");
1717
1718 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1719 /// in ST(1). In this case, emit an fxch.
1720 if (getStackEntry(0) == SecondFPRegOp) {
1721 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1722 moveToTop(FirstFPRegOp, MI);
1723 }
1724
1725 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1726 /// ST(1). Just remove both from our understanding of the stack and return.
1727 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001728 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001729 StackTop = 0;
1730 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001731 }
Chris Lattnera960d952003-01-13 01:01:59 +00001732
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001733 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001734
1735 // We want to leave I pointing to the previous instruction, but what if we
1736 // just erased the first instruction?
1737 if (I == MBB->begin()) {
1738 DEBUG(dbgs() << "Inserting dummy KILL\n");
1739 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1740 } else
1741 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001742}