blob: 79dbedcdc1111f7624fa51382c76bb79358de75d [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000011#include "llvm/Instructions.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000012#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000013#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000014#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000015#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000017#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000018#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000020#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/Target/TargetMachine.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/Target/MRegisterInfo.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000023#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000024
Chris Lattner333b2fa2002-12-13 10:09:43 +000025/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000026/// instruction at as well as a basic block. This is the version for when you
27/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000028inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000029 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000030 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000031 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000032 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000033 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000034 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
36}
37
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000038/// BMI - A special BuildMI variant that takes an iterator to insert the
39/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000041 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046 return MachineInstrBuilder(MI);
47}
48
Chris Lattner333b2fa2002-12-13 10:09:43 +000049
Chris Lattner72614082002-10-25 22:55:53 +000050namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000051 struct ISel : public FunctionPass, InstVisitor<ISel> {
52 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000053 MachineFunction *F; // The function we are compiling into
54 MachineBasicBlock *BB; // The current MBB we are compiling
55 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059 // MBBMap - Mapping between LLVM BB -> Machine BB
60 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
61
Chris Lattner3e130a22003-01-13 00:32:26 +000062 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000063
64 /// runOnFunction - Top level implementation of instruction selection for
65 /// the entire function.
66 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000067 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000068 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
Chris Lattner065faeb2002-12-28 20:24:02 +000070 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000071 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
73
Chris Lattner14aa7fe2002-12-16 22:54:46 +000074 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000075
Chris Lattnerdbd73722003-05-06 21:32:22 +000076 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000077 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000078
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000080 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
82 // Select the PHI nodes
83 SelectPHINodes();
84
Chris Lattner72614082002-10-25 22:55:53 +000085 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +000088 // We always build a machine code representation for the function
89 return true;
Chris Lattner72614082002-10-25 22:55:53 +000090 }
91
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000092 virtual const char *getPassName() const {
93 return "X86 Simple Instruction Selection";
94 }
95
Chris Lattner72614082002-10-25 22:55:53 +000096 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000097 /// block. This simply creates a new MachineBasicBlock to emit code into
98 /// and adds it to the current MachineFunction. Subsequent visit* for
99 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000100 ///
101 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000102 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000103 }
104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
106 /// from the stack into virtual registers.
107 ///
108 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000109
110 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
111 /// because we have to generate our sources into the source basic blocks,
112 /// not the current one.
113 ///
114 void SelectPHINodes();
115
Chris Lattner72614082002-10-25 22:55:53 +0000116 // Visitation methods for various instructions. These methods simply emit
117 // fixed X86 code for each instruction.
118 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000119
120 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000121 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000122 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000123
124 struct ValueRecord {
125 unsigned Reg;
126 const Type *Ty;
127 ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
128 };
129 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
130 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000131 void visitCallInst(CallInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000132 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000133
134 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000135 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000136 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
137 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000138 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000139 unsigned DestReg, const Type *DestTy,
140 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000141 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000142
Chris Lattnerf01729e2002-11-02 20:54:46 +0000143 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
144 void visitRem(BinaryOperator &B) { visitDivRem(B); }
145 void visitDivRem(BinaryOperator &B);
146
Chris Lattnere2954c82002-11-02 20:04:26 +0000147 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000148 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
149 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
150 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000151
Chris Lattner6d40c192003-01-16 16:43:00 +0000152 // Comparison operators...
153 void visitSetCondInst(SetCondInst &I);
154 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000155
156 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000157 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
158 MachineBasicBlock::iterator &MBBI,
159 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000160 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000161 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000162 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000163 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000164 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000165 void visitMallocInst(MallocInst &I);
166 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000167
Chris Lattnere2954c82002-11-02 20:04:26 +0000168 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000169 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000170 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000171 void visitCastInst(CastInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000172 void visitVarArgInst(VarArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000173
174 void visitInstruction(Instruction &I) {
175 std::cerr << "Cannot instruction select: " << I;
176 abort();
177 }
178
Brian Gaeke95780cc2002-12-13 07:56:18 +0000179 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000180 ///
181 void promote32(unsigned targetReg, const ValueRecord &VR);
182
183 /// EmitByteSwap - Byteswap SrcReg into DestReg.
184 ///
185 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000186
Chris Lattner3e130a22003-01-13 00:32:26 +0000187 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
188 /// constant expression GEP support.
189 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000190 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000191 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000192 User::op_iterator IdxEnd, unsigned TargetReg);
193
Chris Lattner548f61d2003-04-23 17:22:12 +0000194 /// emitCastOperation - Common code shared between visitCastInst and
195 /// constant expression cast support.
196 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
197 Value *Src, const Type *DestTy, unsigned TargetReg);
198
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000199 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
200 /// and constant expression support.
201 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
202 MachineBasicBlock::iterator &IP,
203 Value *Op0, Value *Op1,
204 unsigned OperatorClass, unsigned TargetReg);
205
Chris Lattnerc5291f52002-10-27 21:16:59 +0000206 /// copyConstantToRegister - Output the instructions required to put the
207 /// specified constant into the specified register.
208 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000209 void copyConstantToRegister(MachineBasicBlock *MBB,
210 MachineBasicBlock::iterator &MBBI,
211 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000212
Chris Lattner3e130a22003-01-13 00:32:26 +0000213 /// makeAnotherReg - This method returns the next register number we haven't
214 /// yet used.
215 ///
216 /// Long values are handled somewhat specially. They are always allocated
217 /// as pairs of 32 bit integer values. The register number returned is the
218 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
219 /// of the long value.
220 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000221 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000222 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
223 "Current target doesn't have X86 reg info??");
224 const X86RegisterInfo *MRI =
225 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000226 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000227 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000228 // Create the lower part
229 F->getSSARegMap()->createVirtualRegister(RC);
230 // Create the upper part.
231 return F->getSSARegMap()->createVirtualRegister(RC)-1;
232 }
233
Chris Lattnerc0812d82002-12-13 06:56:29 +0000234 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000235 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000236 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000237 }
238
Chris Lattner72614082002-10-25 22:55:53 +0000239 /// getReg - This method turns an LLVM value into a register number. This
240 /// is guaranteed to produce the same register number for a particular value
241 /// every time it is queried.
242 ///
243 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000244 unsigned getReg(Value *V) {
245 // Just append to the end of the current bb.
246 MachineBasicBlock::iterator It = BB->end();
247 return getReg(V, BB, It);
248 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000249 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000250 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000251 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000252 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000253 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000254 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000255 }
Chris Lattner72614082002-10-25 22:55:53 +0000256
Chris Lattner6f8fd252002-10-27 21:23:43 +0000257 // If this operand is a constant, emit the code to copy the constant into
258 // the register here...
259 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000260 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000261 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000262 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000263 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
264 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000265 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000266 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000267 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000268
Chris Lattner72614082002-10-25 22:55:53 +0000269 return Reg;
270 }
Chris Lattner72614082002-10-25 22:55:53 +0000271 };
272}
273
Chris Lattner43189d12002-11-17 20:07:45 +0000274/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
275/// Representation.
276///
277enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000278 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000279};
280
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000281/// getClass - Turn a primitive type into a "class" number which is based on the
282/// size of the type, and whether or not it is floating point.
283///
Chris Lattner43189d12002-11-17 20:07:45 +0000284static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000285 switch (Ty->getPrimitiveID()) {
286 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000287 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000288 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000289 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000290 case Type::IntTyID:
291 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000292 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000293
Chris Lattner94af4142002-12-25 05:13:53 +0000294 case Type::FloatTyID:
295 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000296
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000297 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000298 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000299 default:
300 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000301 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000302 }
303}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000304
Chris Lattner6b993cc2002-12-15 08:02:15 +0000305// getClassB - Just like getClass, but treat boolean values as bytes.
306static inline TypeClass getClassB(const Type *Ty) {
307 if (Ty == Type::BoolTy) return cByte;
308 return getClass(Ty);
309}
310
Chris Lattner06925362002-11-17 21:56:38 +0000311
Chris Lattnerc5291f52002-10-27 21:16:59 +0000312/// copyConstantToRegister - Output the instructions required to put the
313/// specified constant into the specified register.
314///
Chris Lattner8a307e82002-12-16 19:32:50 +0000315void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
316 MachineBasicBlock::iterator &IP,
317 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000318 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000319 unsigned Class = 0;
320 switch (CE->getOpcode()) {
321 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000322 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000323 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000324 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000325 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000326 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000327 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000328
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000329 case Instruction::Xor: ++Class; // FALL THROUGH
330 case Instruction::Or: ++Class; // FALL THROUGH
331 case Instruction::And: ++Class; // FALL THROUGH
332 case Instruction::Sub: ++Class; // FALL THROUGH
333 case Instruction::Add:
334 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
335 Class, R);
336 return;
337
338 default:
339 std::cerr << "Offending expr: " << C << "\n";
340 assert(0 && "Constant expressions not yet handled!\n");
341 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000342 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000343
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000344 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000345 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000346
347 if (Class == cLong) {
348 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000349 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000350 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
351 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
352 return;
353 }
354
Chris Lattner94af4142002-12-25 05:13:53 +0000355 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000356
357 static const unsigned IntegralOpcodeTab[] = {
358 X86::MOVir8, X86::MOVir16, X86::MOVir32
359 };
360
Chris Lattner6b993cc2002-12-15 08:02:15 +0000361 if (C->getType() == Type::BoolTy) {
362 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000363 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000364 ConstantInt *CI = cast<ConstantInt>(C);
365 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000366 }
Chris Lattner94af4142002-12-25 05:13:53 +0000367 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
368 double Value = CFP->getValue();
369 if (Value == +0.0)
370 BMI(MBB, IP, X86::FLD0, 0, R);
371 else if (Value == +1.0)
372 BMI(MBB, IP, X86::FLD1, 0, R);
373 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000374 // Otherwise we need to spill the constant to memory...
375 MachineConstantPool *CP = F->getConstantPool();
376 unsigned CPI = CP->getConstantPoolIndex(CFP);
377 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000378 }
379
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000380 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000381 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000382 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000383 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000384 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000385 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000386 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000387 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000388 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000389 }
390}
391
Chris Lattner065faeb2002-12-28 20:24:02 +0000392/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
393/// the stack into virtual registers.
394///
395void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
396 // Emit instructions to load the arguments... On entry to a function on the
397 // X86, the stack frame looks like this:
398 //
399 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000400 // [ESP + 4] -- first argument (leftmost lexically)
401 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000402 // ...
403 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000404 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000405 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000406
407 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
408 unsigned Reg = getReg(*I);
409
Chris Lattner065faeb2002-12-28 20:24:02 +0000410 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000411 switch (getClassB(I->getType())) {
412 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000413 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000414 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
415 break;
416 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000417 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000418 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
419 break;
420 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000421 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000422 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
423 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000424 case cLong:
425 FI = MFI->CreateFixedObject(8, ArgOffset);
426 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
427 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
428 ArgOffset += 4; // longs require 4 additional bytes
429 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000430 case cFP:
431 unsigned Opcode;
432 if (I->getType() == Type::FloatTy) {
433 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000434 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000435 } else {
436 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000437 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000438 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000439 }
440 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
441 break;
442 default:
443 assert(0 && "Unhandled argument type!");
444 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000445 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000446 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000447
448 // If the function takes variable number of arguments, add a frame offset for
449 // the start of the first vararg value... this is used to expand
450 // llvm.va_start.
451 if (Fn.getFunctionType()->isVarArg())
452 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000453}
454
455
Chris Lattner333b2fa2002-12-13 10:09:43 +0000456/// SelectPHINodes - Insert machine code to generate phis. This is tricky
457/// because we have to generate our sources into the source basic blocks, not
458/// the current one.
459///
460void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000461 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000462 const Function &LF = *F->getFunction(); // The LLVM function...
463 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
464 const BasicBlock *BB = I;
465 MachineBasicBlock *MBB = MBBMap[I];
466
467 // Loop over all of the PHI nodes in the LLVM basic block...
468 unsigned NumPHIs = 0;
469 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000470 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000471
Chris Lattner333b2fa2002-12-13 10:09:43 +0000472 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000473 unsigned PHIReg = getReg(*PN);
474 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
475 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
476
477 MachineInstr *LongPhiMI = 0;
478 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
479 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
480 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
481 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000482
Chris Lattnera6e73f12003-05-12 14:22:21 +0000483 // PHIValues - Map of blocks to incoming virtual registers. We use this
484 // so that we only initialize one incoming value for a particular block,
485 // even if the block has multiple entries in the PHI node.
486 //
487 std::map<MachineBasicBlock*, unsigned> PHIValues;
488
Chris Lattner333b2fa2002-12-13 10:09:43 +0000489 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
490 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000491 unsigned ValReg;
492 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
493 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000494
Chris Lattnera6e73f12003-05-12 14:22:21 +0000495 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
496 // We already inserted an initialization of the register for this
497 // predecessor. Recycle it.
498 ValReg = EntryIt->second;
499
500 } else {
501 // Get the incoming value into a virtual register. If it is not
502 // already available in a virtual register, insert the computation
503 // code into PredMBB
504 //
505 MachineBasicBlock::iterator PI = PredMBB->end();
506 while (PI != PredMBB->begin() &&
507 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
508 --PI;
509 ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
510
511 // Remember that we inserted a value for this PHI for this predecessor
512 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
513 }
514
Chris Lattner3e130a22003-01-13 00:32:26 +0000515 PhiMI->addRegOperand(ValReg);
516 PhiMI->addMachineBasicBlockOperand(PredMBB);
517 if (LongPhiMI) {
518 LongPhiMI->addRegOperand(ValReg+1);
519 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
520 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000521 }
522 }
523 }
524}
525
Chris Lattner6d40c192003-01-16 16:43:00 +0000526// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
527// the conditional branch instruction which is the only user of the cc
528// instruction. This is the case if the conditional branch is the only user of
529// the setcc, and if the setcc is in the same basic block as the conditional
530// branch. We also don't handle long arguments below, so we reject them here as
531// well.
532//
533static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
534 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
535 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
536 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
537 const Type *Ty = SCI->getOperand(0)->getType();
538 if (Ty != Type::LongTy && Ty != Type::ULongTy)
539 return SCI;
540 }
541 return 0;
542}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000543
Chris Lattner6d40c192003-01-16 16:43:00 +0000544// Return a fixed numbering for setcc instructions which does not depend on the
545// order of the opcodes.
546//
547static unsigned getSetCCNumber(unsigned Opcode) {
548 switch(Opcode) {
549 default: assert(0 && "Unknown setcc instruction!");
550 case Instruction::SetEQ: return 0;
551 case Instruction::SetNE: return 1;
552 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000553 case Instruction::SetGE: return 3;
554 case Instruction::SetGT: return 4;
555 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000556 }
557}
Chris Lattner06925362002-11-17 21:56:38 +0000558
Chris Lattner6d40c192003-01-16 16:43:00 +0000559// LLVM -> X86 signed X86 unsigned
560// ----- ---------- ------------
561// seteq -> sete sete
562// setne -> setne setne
563// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000564// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000565// setgt -> setg seta
566// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000567static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000568 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
569 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000570};
571
572bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
573
Brian Gaeke1749d632002-11-07 17:59:21 +0000574 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000575 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000576 bool isSigned = CompTy->isSigned();
Chris Lattner3e130a22003-01-13 00:32:26 +0000577 unsigned Class = getClassB(CompTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000578 unsigned Op0r = getReg(Op0);
579
580 // Special case handling of: cmp R, i
581 if (Class == cByte || Class == cShort || Class == cInt)
582 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000583 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
584
Chris Lattner333864d2003-06-05 19:30:30 +0000585 // Mask off any upper bits of the constant, if there are any...
586 Op1v &= (1ULL << (8 << Class)) - 1;
587
588 switch (Class) {
589 case cByte: BuildMI(BB, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
590 case cShort: BuildMI(BB, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
591 case cInt: BuildMI(BB, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
592 default:
593 assert(0 && "Invalid class!");
594 }
595 return isSigned;
596 }
597
598 unsigned Op1r = getReg(Op1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000599 switch (Class) {
600 default: assert(0 && "Unknown type class!");
601 // Emit: cmp <var1>, <var2> (do the comparison). We can
602 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
603 // 32-bit.
604 case cByte:
Chris Lattner333864d2003-06-05 19:30:30 +0000605 BuildMI(BB, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000606 break;
607 case cShort:
Chris Lattner333864d2003-06-05 19:30:30 +0000608 BuildMI(BB, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000609 break;
610 case cInt:
Chris Lattner333864d2003-06-05 19:30:30 +0000611 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000612 break;
613 case cFP:
Chris Lattner333864d2003-06-05 19:30:30 +0000614 BuildMI(BB, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000615 BuildMI(BB, X86::FNSTSWr8, 0);
616 BuildMI(BB, X86::SAHF, 1);
617 isSigned = false; // Compare with unsigned operators
618 break;
619
620 case cLong:
621 if (OpNum < 2) { // seteq, setne
622 unsigned LoTmp = makeAnotherReg(Type::IntTy);
623 unsigned HiTmp = makeAnotherReg(Type::IntTy);
624 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000625 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
626 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000627 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
628 break; // Allow the sete or setne to be generated from flags set by OR
629 } else {
630 // Emit a sequence of code which compares the high and low parts once
631 // each, then uses a conditional move to handle the overflow case. For
632 // example, a setlt for long would generate code like this:
633 //
634 // AL = lo(op1) < lo(op2) // Signedness depends on operands
635 // BL = hi(op1) < hi(op2) // Always unsigned comparison
636 // dest = hi(op1) == hi(op2) ? AL : BL;
637 //
638
Chris Lattner6d40c192003-01-16 16:43:00 +0000639 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000640 // classes! Until then, hardcode registers so that we can deal with their
641 // aliases (because we don't have conditional byte moves).
642 //
Chris Lattner333864d2003-06-05 19:30:30 +0000643 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner6d40c192003-01-16 16:43:00 +0000644 BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Chris Lattner333864d2003-06-05 19:30:30 +0000645 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner6d40c192003-01-16 16:43:00 +0000646 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000647 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000648 // NOTE: visitSetCondInst knows that the value is dumped into the BL
649 // register at this point for long values...
650 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000651 }
652 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000653 return isSigned;
654}
Chris Lattner3e130a22003-01-13 00:32:26 +0000655
Chris Lattner6d40c192003-01-16 16:43:00 +0000656
657/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
658/// register, then move it to wherever the result should be.
659///
660void ISel::visitSetCondInst(SetCondInst &I) {
661 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
662
663 unsigned OpNum = getSetCCNumber(I.getOpcode());
664 unsigned DestReg = getReg(I);
665 bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
666 I.getOperand(1));
667
668 if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
669 // Handle normal comparisons with a setcc instruction...
670 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
671 } else {
672 // Handle long comparisons by copying the value which is already in BL into
673 // the register we want...
674 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
675 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000676}
Chris Lattner51b49a92002-11-02 19:45:49 +0000677
Brian Gaekec2505982002-11-30 11:57:28 +0000678/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
679/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000680void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
681 bool isUnsigned = VR.Ty->isUnsigned();
682 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000683 case cByte:
684 // Extend value into target register (8->32)
685 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000686 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000687 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000688 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000689 break;
690 case cShort:
691 // Extend value into target register (16->32)
692 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000693 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000694 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000695 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000696 break;
697 case cInt:
698 // Move value into target register (32->32)
Chris Lattner3e130a22003-01-13 00:32:26 +0000699 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000700 break;
701 default:
702 assert(0 && "Unpromotable operand class in promote32");
703 }
Brian Gaekec2505982002-11-30 11:57:28 +0000704}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000705
Chris Lattner72614082002-10-25 22:55:53 +0000706/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
707/// we have the following possibilities:
708///
709/// ret void: No return value, simply emit a 'ret' instruction
710/// ret sbyte, ubyte : Extend value into EAX and return
711/// ret short, ushort: Extend value into EAX and return
712/// ret int, uint : Move value into EAX and return
713/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000714/// ret long, ulong : Move value into EAX/EDX and return
715/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000716///
Chris Lattner3e130a22003-01-13 00:32:26 +0000717void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000718 if (I.getNumOperands() == 0) {
719 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
720 return;
721 }
722
723 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000724 unsigned RetReg = getReg(RetVal);
725 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000726 case cByte: // integral return values: extend or move into EAX and return
727 case cShort:
728 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000729 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000730 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000731 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000732 break;
733 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000734 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000735 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000736 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000737 break;
738 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000739 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
740 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000741 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000742 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000743 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000744 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000745 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000746 }
Chris Lattner43189d12002-11-17 20:07:45 +0000747 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000748 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000749}
750
Chris Lattner55f6fab2003-01-16 18:07:23 +0000751// getBlockAfter - Return the basic block which occurs lexically after the
752// specified one.
753static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
754 Function::iterator I = BB; ++I; // Get iterator to next block
755 return I != BB->getParent()->end() ? &*I : 0;
756}
757
Chris Lattner51b49a92002-11-02 19:45:49 +0000758/// visitBranchInst - Handle conditional and unconditional branches here. Note
759/// that since code layout is frozen at this point, that if we are trying to
760/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000761/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000762///
Chris Lattner94af4142002-12-25 05:13:53 +0000763void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000764 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
765
766 if (!BI.isConditional()) { // Unconditional branch?
767 if (BI.getSuccessor(0) != NextBB)
768 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000769 return;
770 }
771
772 // See if we can fold the setcc into the branch itself...
773 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
774 if (SCI == 0) {
775 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
776 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000777 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000778 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000779 if (BI.getSuccessor(1) == NextBB) {
780 if (BI.getSuccessor(0) != NextBB)
781 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
782 } else {
783 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
784
785 if (BI.getSuccessor(0) != NextBB)
786 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
787 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000788 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000789 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000790
791 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
792 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
793 SCI->getOperand(1));
794
795 // LLVM -> X86 signed X86 unsigned
796 // ----- ---------- ------------
797 // seteq -> je je
798 // setne -> jne jne
799 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000800 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000801 // setgt -> jg ja
802 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000803 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000804 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
805 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000806 };
807
Chris Lattner55f6fab2003-01-16 18:07:23 +0000808 if (BI.getSuccessor(0) != NextBB) {
809 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
810 if (BI.getSuccessor(1) != NextBB)
811 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
812 } else {
813 // Change to the inverse condition...
814 if (BI.getSuccessor(1) != NextBB) {
815 OpNum ^= 1;
816 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
817 }
818 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000819}
820
Chris Lattner3e130a22003-01-13 00:32:26 +0000821
822/// doCall - This emits an abstract call instruction, setting up the arguments
823/// and the return value as appropriate. For the actual function call itself,
824/// it inserts the specified CallMI instruction into the stream.
825///
826void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
827 const std::vector<ValueRecord> &Args) {
828
Chris Lattner065faeb2002-12-28 20:24:02 +0000829 // Count how many bytes are to be pushed on the stack...
830 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000831
Chris Lattner3e130a22003-01-13 00:32:26 +0000832 if (!Args.empty()) {
833 for (unsigned i = 0, e = Args.size(); i != e; ++i)
834 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000835 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000836 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000837 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000838 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000839 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000840 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000841 break;
842 default: assert(0 && "Unknown class!");
843 }
844
845 // Adjust the stack pointer for the new arguments...
846 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
847
848 // Arguments go on the stack in reverse order, as specified by the ABI.
849 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000850 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
851 unsigned ArgReg = Args[i].Reg;
852 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000853 case cByte:
854 case cShort: {
855 // Promote arg to 32 bits wide into a temporary register...
856 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000857 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000858 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
859 X86::ESP, ArgOffset).addReg(R);
860 break;
861 }
862 case cInt:
863 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000864 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000865 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000866 case cLong:
867 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
868 X86::ESP, ArgOffset).addReg(ArgReg);
869 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
870 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
871 ArgOffset += 4; // 8 byte entry, not 4.
872 break;
873
Chris Lattner065faeb2002-12-28 20:24:02 +0000874 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000875 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000876 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000877 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000878 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000879 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
880 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
881 X86::ESP, ArgOffset).addReg(ArgReg);
882 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000883 }
884 break;
885
Chris Lattner3e130a22003-01-13 00:32:26 +0000886 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000887 }
888 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000889 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000890 } else {
891 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000892 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000893
Chris Lattner3e130a22003-01-13 00:32:26 +0000894 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000895
Chris Lattner065faeb2002-12-28 20:24:02 +0000896 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000897
898 // If there is a return value, scavenge the result from the location the call
899 // leaves it in...
900 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000901 if (Ret.Ty != Type::VoidTy) {
902 unsigned DestClass = getClassB(Ret.Ty);
903 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000904 case cByte:
905 case cShort:
906 case cInt: {
907 // Integral results are in %eax, or the appropriate portion
908 // thereof.
909 static const unsigned regRegMove[] = {
910 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
911 };
912 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000913 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000914 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000915 }
Chris Lattner94af4142002-12-25 05:13:53 +0000916 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000917 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000918 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000919 case cLong: // Long values are left in EDX:EAX
920 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
921 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
922 break;
923 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000924 }
Chris Lattnera3243642002-12-04 23:45:28 +0000925 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000926}
Chris Lattner2df035b2002-11-02 19:27:56 +0000927
Chris Lattner3e130a22003-01-13 00:32:26 +0000928
929/// visitCallInst - Push args on stack and do a procedure call instruction.
930void ISel::visitCallInst(CallInst &CI) {
931 MachineInstr *TheCall;
932 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +0000933 // Is it an intrinsic function call?
934 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
935 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
936 return;
937 }
938
Chris Lattner3e130a22003-01-13 00:32:26 +0000939 // Emit a CALL instruction with PC-relative displacement.
940 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
941 } else { // Emit an indirect call...
942 unsigned Reg = getReg(CI.getCalledValue());
943 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
944 }
945
946 std::vector<ValueRecord> Args;
947 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
948 Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
949 CI.getOperand(i)->getType()));
950
951 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
952 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
953}
954
Chris Lattnereca195e2003-05-08 19:44:13 +0000955void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
956 unsigned TmpReg1, TmpReg2;
957 switch (ID) {
958 case LLVMIntrinsic::va_start:
959 // Get the address of the first vararg value...
960 TmpReg1 = makeAnotherReg(Type::UIntTy);
961 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
962 TmpReg2 = getReg(CI.getOperand(1));
963 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
964 return;
965
966 case LLVMIntrinsic::va_end: return; // Noop on X86
967 case LLVMIntrinsic::va_copy:
968 TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
969 TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
970 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
971 return;
972
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000973 case LLVMIntrinsic::longjmp:
974 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
Brian Gaeked4615052003-07-18 20:23:43 +0000975 return;
976
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000977 case LLVMIntrinsic::setjmp:
Chris Lattnereb093fb2003-06-30 19:35:54 +0000978 // Setjmp always returns zero...
979 BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000980 return;
Chris Lattnereca195e2003-05-08 19:44:13 +0000981 default: assert(0 && "Unknown intrinsic for X86!");
982 }
983}
984
985
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000986/// visitSimpleBinary - Implement simple binary operators for integral types...
987/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
988/// Xor.
989void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
990 unsigned DestReg = getReg(B);
991 MachineBasicBlock::iterator MI = BB->end();
992 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
993 OperatorClass, DestReg);
994}
Chris Lattner3e130a22003-01-13 00:32:26 +0000995
Chris Lattner68aad932002-11-02 20:13:22 +0000996/// visitSimpleBinary - Implement simple binary operators for integral types...
997/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
998/// 4 for Xor.
999///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001000/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1001/// and constant expression support.
1002void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
1003 MachineBasicBlock::iterator &IP,
1004 Value *Op0, Value *Op1,
1005 unsigned OperatorClass,unsigned TargetReg){
1006 unsigned Class = getClassB(Op0->getType());
Chris Lattner35333e12003-06-05 18:28:55 +00001007 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1008 static const unsigned OpcodeTab[][4] = {
1009 // Arithmetic operators
1010 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1011 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1012
1013 // Bitwise operators
1014 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1015 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1016 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001017 };
Chris Lattner35333e12003-06-05 18:28:55 +00001018
1019 bool isLong = false;
1020 if (Class == cLong) {
1021 isLong = true;
1022 Class = cInt; // Bottom 32 bits are handled just like ints
1023 }
1024
1025 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1026 assert(Opcode && "Floating point arguments to logical inst?");
1027 unsigned Op0r = getReg(Op0, BB, IP);
1028 unsigned Op1r = getReg(Op1, BB, IP);
1029 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
1030
1031 if (isLong) { // Handle the upper 32 bits of long values...
1032 static const unsigned TopTab[] = {
1033 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1034 };
1035 BMI(BB, IP, TopTab[OperatorClass], 2,
1036 TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
1037 }
1038 } else {
1039 // Special case: op Reg, <const>
1040 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1041
1042 static const unsigned OpcodeTab[][3] = {
1043 // Arithmetic operators
1044 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1045 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1046
1047 // Bitwise operators
1048 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1049 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1050 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1051 };
1052
1053 assert(Class < 3 && "General code handles 64-bit integer types!");
1054 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1055 unsigned Op0r = getReg(Op0, BB, IP);
Chris Lattnerc07736a2003-07-23 15:22:26 +00001056 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner35333e12003-06-05 18:28:55 +00001057
1058 // Mask off any upper bits of the constant, if there are any...
1059 Op1v &= (1ULL << (8 << Class)) - 1;
1060 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
Chris Lattner3e130a22003-01-13 00:32:26 +00001061 }
Chris Lattnere2954c82002-11-02 20:04:26 +00001062}
1063
Chris Lattner3e130a22003-01-13 00:32:26 +00001064/// doMultiply - Emit appropriate instructions to multiply together the
1065/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1066/// result should be given as DestTy.
1067///
Chris Lattner8a307e82002-12-16 19:32:50 +00001068void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001069 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001070 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001071 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001072 switch (Class) {
1073 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001074 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001075 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001076 case cInt:
1077 case cShort:
1078 BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
1079 .addReg(op0Reg).addReg(op1Reg);
1080 return;
1081 case cByte:
1082 // Must use the MUL instruction, which forces use of AL...
1083 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1084 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1085 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1086 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001087 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001088 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001089 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001090}
1091
Chris Lattnerca9671d2002-11-02 20:28:58 +00001092/// visitMul - Multiplies are not simple binary operators because they must deal
1093/// with the EAX register explicitly.
1094///
1095void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001096 unsigned Op0Reg = getReg(I.getOperand(0));
1097 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +00001098 unsigned DestReg = getReg(I);
1099
1100 // Simple scalar multiply?
1101 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
1102 MachineBasicBlock::iterator MBBI = BB->end();
1103 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1104 } else {
1105 // Long value. We have to do things the hard way...
1106 // Multiply the two low parts... capturing carry into EDX
1107 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1108 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1109
1110 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1111 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1112 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1113
1114 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001115 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1116 BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001117
1118 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1119 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1120 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1121
1122 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001123 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1124 BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001125
1126 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1127 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1128 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001129}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001130
Chris Lattner06925362002-11-17 21:56:38 +00001131
Chris Lattnerf01729e2002-11-02 20:54:46 +00001132/// visitDivRem - Handle division and remainder instructions... these
1133/// instruction both require the same instructions to be generated, they just
1134/// select the result from a different register. Note that both of these
1135/// instructions work differently for signed and unsigned operands.
1136///
1137void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001138 unsigned Class = getClass(I.getType());
1139 unsigned Op0Reg = getReg(I.getOperand(0));
1140 unsigned Op1Reg = getReg(I.getOperand(1));
1141 unsigned ResultReg = getReg(I);
1142
1143 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001144 case cFP: // Floating point divide
Chris Lattner94af4142002-12-25 05:13:53 +00001145 if (I.getOpcode() == Instruction::Div)
1146 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001147 else { // Floating point remainder...
1148 MachineInstr *TheCall =
1149 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1150 std::vector<ValueRecord> Args;
1151 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1152 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1153 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1154 }
Chris Lattner94af4142002-12-25 05:13:53 +00001155 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001156 case cLong: {
1157 static const char *FnName[] =
1158 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1159
1160 unsigned NameIdx = I.getType()->isUnsigned()*2;
1161 NameIdx += I.getOpcode() == Instruction::Div;
1162 MachineInstr *TheCall =
1163 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1164
1165 std::vector<ValueRecord> Args;
1166 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1167 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1168 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1169 return;
1170 }
1171 case cByte: case cShort: case cInt:
1172 break; // Small integerals, handled below...
1173 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001174 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001175
1176 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1177 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001178 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001179 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1180 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1181
1182 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001183 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1184 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001185 };
1186
1187 bool isSigned = I.getType()->isSigned();
1188 unsigned Reg = Regs[Class];
1189 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001190
1191 // Put the first operand into one of the A registers...
1192 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1193
1194 if (isSigned) {
1195 // Emit a sign extension instruction...
Chris Lattner7b52c032003-06-22 03:31:18 +00001196 unsigned ShiftResult = makeAnotherReg(I.getType());
1197 BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1198 BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001199 } else {
1200 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1201 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1202 }
1203
Chris Lattner06925362002-11-17 21:56:38 +00001204 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +00001205 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001206
Chris Lattnerf01729e2002-11-02 20:54:46 +00001207 // Figure out which register we want to pick the result out of...
1208 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1209
Chris Lattnerf01729e2002-11-02 20:54:46 +00001210 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001211 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001212}
Chris Lattnere2954c82002-11-02 20:04:26 +00001213
Chris Lattner06925362002-11-17 21:56:38 +00001214
Brian Gaekea1719c92002-10-31 23:03:59 +00001215/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1216/// for constant immediate shift values, and for constant immediate
1217/// shift values equal to 1. Even the general case is sort of special,
1218/// because the shift amount has to be in CL, not just any old register.
1219///
Chris Lattner3e130a22003-01-13 00:32:26 +00001220void ISel::visitShiftInst(ShiftInst &I) {
1221 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001222 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001223 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001224 bool isSigned = I.getType()->isSigned();
1225 unsigned Class = getClass(I.getType());
1226
1227 static const unsigned ConstantOperand[][4] = {
1228 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1229 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1230 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1231 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1232 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001233
Chris Lattner3e130a22003-01-13 00:32:26 +00001234 static const unsigned NonConstantOperand[][4] = {
1235 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1236 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1237 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1238 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1239 };
Chris Lattner796df732002-11-02 00:44:25 +00001240
Chris Lattner3e130a22003-01-13 00:32:26 +00001241 // Longs, as usual, are handled specially...
1242 if (Class == cLong) {
1243 // If we have a constant shift, we can generate much more efficient code
1244 // than otherwise...
1245 //
1246 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1247 unsigned Amount = CUI->getValue();
1248 if (Amount < 32) {
1249 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1250 if (isLeftShift) {
1251 BuildMI(BB, Opc[3], 3,
1252 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1253 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1254 } else {
1255 BuildMI(BB, Opc[3], 3,
1256 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1257 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1258 }
1259 } else { // Shifting more than 32 bits
1260 Amount -= 32;
1261 if (isLeftShift) {
1262 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1263 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1264 } else {
1265 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1266 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1267 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1268 }
1269 }
1270 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001271 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1272
1273 if (!isLeftShift && isSigned) {
1274 // If this is a SHR of a Long, then we need to do funny sign extension
1275 // stuff. TmpReg gets the value to use as the high-part if we are
1276 // shifting more than 32 bits.
1277 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1278 } else {
1279 // Other shifts use a fixed zero value if the shift is more than 32
1280 // bits.
1281 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1282 }
1283
1284 // Initialize CL with the shift amount...
1285 unsigned ShiftAmount = getReg(I.getOperand(1));
1286 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1287
1288 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1289 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1290 if (isLeftShift) {
1291 // TmpReg2 = shld inHi, inLo
1292 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1293 // TmpReg3 = shl inLo, CL
1294 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1295
1296 // Set the flags to indicate whether the shift was by more than 32 bits.
1297 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1298
1299 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1300 BuildMI(BB, X86::CMOVNErr32, 2,
1301 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1302 // DestLo = (>32) ? TmpReg : TmpReg3;
1303 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1304 } else {
1305 // TmpReg2 = shrd inLo, inHi
1306 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1307 // TmpReg3 = s[ah]r inHi, CL
1308 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1309 .addReg(SrcReg+1);
1310
1311 // Set the flags to indicate whether the shift was by more than 32 bits.
1312 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1313
1314 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1315 BuildMI(BB, X86::CMOVNErr32, 2,
1316 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1317
1318 // DestHi = (>32) ? TmpReg : TmpReg3;
1319 BuildMI(BB, X86::CMOVNErr32, 2,
1320 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1321 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001322 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001323 return;
1324 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001325
Chris Lattner3e130a22003-01-13 00:32:26 +00001326 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1327 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1328 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001329
Chris Lattner3e130a22003-01-13 00:32:26 +00001330 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1331 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1332 } else { // The shift amount is non-constant.
1333 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001334
Chris Lattner3e130a22003-01-13 00:32:26 +00001335 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1336 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1337 }
1338}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001339
Chris Lattner3e130a22003-01-13 00:32:26 +00001340
1341/// doFPLoad - This method is used to load an FP value from memory using the
1342/// current endianness. NOTE: This method returns a partially constructed load
1343/// instruction which needs to have the memory source filled in still.
1344///
1345MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1346 MachineBasicBlock::iterator &MBBI,
1347 const Type *Ty, unsigned DestReg) {
1348 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1349 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1350
1351 if (TM.getTargetData().isLittleEndian()) // fast path...
1352 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1353
1354 // If we are big-endian, start by creating an LEA instruction to represent the
1355 // address of the memory location to load from...
1356 //
1357 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1358 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1359
1360 // Allocate a temporary stack slot to transform the value into...
1361 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1362
1363 // Perform the bswaps 32 bits at a time...
1364 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1365 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1366 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1367 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1368 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1369 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1370 FrameIdx, Offset).addReg(TmpReg2);
1371
1372 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1373 TmpReg1 = makeAnotherReg(Type::UIntTy);
1374 TmpReg2 = makeAnotherReg(Type::UIntTy);
1375
1376 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1377 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1378 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1379 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1380 }
1381
1382 // Now we can reload the final byteswapped result into the final destination.
1383 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1384 return Result;
1385}
1386
1387/// EmitByteSwap - Byteswap SrcReg into DestReg.
1388///
1389void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1390 // Emit the byte swap instruction...
1391 switch (Class) {
1392 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001393 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001394 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1395 break;
1396 case cInt:
1397 // Use the 32 bit bswap instruction to do a 32 bit swap...
1398 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1399 break;
1400
1401 case cShort:
1402 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001403 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001404 // into AX to do the xchg.
1405 //
1406 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1407 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1408 .addReg(X86::AH, MOTy::UseAndDef);
1409 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1410 break;
1411 default: assert(0 && "Cannot byteswap this class!");
1412 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001413}
1414
Chris Lattner06925362002-11-17 21:56:38 +00001415
Chris Lattner6fc3c522002-11-17 21:11:55 +00001416/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001417/// instruction. The load and store instructions are the only place where we
1418/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001419///
1420void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001421 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1422 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001423 unsigned SrcAddrReg = getReg(I.getOperand(0));
1424 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001425
Brian Gaekebfedb912003-07-17 21:30:06 +00001426 unsigned Class = getClassB(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001427 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001428 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001429 MachineBasicBlock::iterator MBBI = BB->end();
1430 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001431 return;
1432 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001433 case cLong: case cInt: case cShort: case cByte:
1434 break; // Integers of various sizes handled below
1435 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001436 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001437
Chris Lattnere8f0d922002-12-24 00:03:11 +00001438 // We need to adjust the input pointer if we are emulating a big-endian
1439 // long-pointer target. On these systems, the pointer that we are interested
1440 // in is in the upper part of the eight byte memory image of the pointer. It
1441 // also happens to be byte-swapped, but this will be handled later.
1442 //
1443 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1444 unsigned R = makeAnotherReg(Type::UIntTy);
1445 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1446 SrcAddrReg = R;
1447 }
Chris Lattner94af4142002-12-25 05:13:53 +00001448
Chris Lattnere8f0d922002-12-24 00:03:11 +00001449 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001450 if (!isLittleEndian) // If big endian we need an intermediate stage
1451 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001452
Chris Lattner3e130a22003-01-13 00:32:26 +00001453 static const unsigned Opcode[] = {
1454 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1455 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001456 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1457
Chris Lattner3e130a22003-01-13 00:32:26 +00001458 // Handle long values now...
1459 if (Class == cLong) {
1460 if (isLittleEndian) {
1461 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1462 } else {
1463 EmitByteSwap(IReg+1, DestReg, cInt);
1464 unsigned TempReg = makeAnotherReg(Type::IntTy);
1465 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1466 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001467 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001468 return;
1469 }
1470
1471 if (!isLittleEndian)
1472 EmitByteSwap(IReg, DestReg, Class);
1473}
1474
1475
1476/// doFPStore - This method is used to store an FP value to memory using the
1477/// current endianness.
1478///
1479void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1480 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1481 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1482
1483 if (TM.getTargetData().isLittleEndian()) { // fast path...
1484 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1485 return;
1486 }
1487
1488 // Allocate a temporary stack slot to transform the value into...
1489 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1490 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1491 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1492
1493 // Store the value into a temporary stack slot...
1494 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1495
1496 // Perform the bswaps 32 bits at a time...
1497 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1498 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1499 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1500 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1501 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1502 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1503 DestAddrReg, Offset).addReg(TmpReg2);
1504
1505 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1506 TmpReg1 = makeAnotherReg(Type::UIntTy);
1507 TmpReg2 = makeAnotherReg(Type::UIntTy);
1508
1509 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1510 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1511 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1512 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001513 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001514}
1515
Chris Lattner06925362002-11-17 21:56:38 +00001516
Chris Lattner6fc3c522002-11-17 21:11:55 +00001517/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1518/// instruction.
1519///
1520void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001521 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1522 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001523 unsigned ValReg = getReg(I.getOperand(0));
1524 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001525
Brian Gaekebfedb912003-07-17 21:30:06 +00001526 unsigned Class = getClassB(I.getOperand(0)->getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001527 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001528 case cLong:
1529 if (isLittleEndian) {
1530 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1531 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1532 AddressReg, 4).addReg(ValReg+1);
1533 } else {
1534 unsigned T1 = makeAnotherReg(Type::IntTy);
1535 unsigned T2 = makeAnotherReg(Type::IntTy);
1536 EmitByteSwap(T1, ValReg , cInt);
1537 EmitByteSwap(T2, ValReg+1, cInt);
1538 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1539 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1540 }
Chris Lattner94af4142002-12-25 05:13:53 +00001541 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001542 case cFP:
1543 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1544 return;
1545 case cInt: case cShort: case cByte:
1546 break; // Integers of various sizes handled below
1547 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001548 }
1549
1550 if (!isLittleEndian && hasLongPointers &&
1551 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001552 unsigned R = makeAnotherReg(Type::UIntTy);
1553 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1554 AddressReg = R;
1555 }
1556
Chris Lattner94af4142002-12-25 05:13:53 +00001557 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001558 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1559 EmitByteSwap(R, ValReg, Class);
1560 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001561 }
1562
Chris Lattner94af4142002-12-25 05:13:53 +00001563 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001564 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1565}
1566
1567
Brian Gaekec11232a2002-11-26 10:43:30 +00001568/// visitCastInst - Here we have various kinds of copying with or without
1569/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001570void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001571 Value *Op = CI.getOperand(0);
1572 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1573 // of the case are GEP instructions, then the cast does not need to be
1574 // generated explicitly, it will be folded into the GEP.
1575 if (CI.getType() == Type::LongTy &&
1576 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1577 bool AllUsesAreGEPs = true;
1578 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1579 if (!isa<GetElementPtrInst>(*I)) {
1580 AllUsesAreGEPs = false;
1581 break;
1582 }
1583
1584 // No need to codegen this cast if all users are getelementptr instrs...
1585 if (AllUsesAreGEPs) return;
1586 }
1587
Chris Lattner548f61d2003-04-23 17:22:12 +00001588 unsigned DestReg = getReg(CI);
1589 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001590 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001591}
1592
1593/// emitCastOperation - Common code shared between visitCastInst and
1594/// constant expression cast support.
1595void ISel::emitCastOperation(MachineBasicBlock *BB,
1596 MachineBasicBlock::iterator &IP,
1597 Value *Src, const Type *DestTy,
1598 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001599 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001600 const Type *SrcTy = Src->getType();
1601 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001602 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001603
Chris Lattner3e130a22003-01-13 00:32:26 +00001604 // Implement casts to bool by using compare on the operand followed by set if
1605 // not zero on the result.
1606 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001607 switch (SrcClass) {
1608 case cByte:
1609 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1610 break;
1611 case cShort:
1612 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1613 break;
1614 case cInt:
1615 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1616 break;
1617 case cLong: {
1618 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1619 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1620 break;
1621 }
1622 case cFP:
1623 assert(0 && "FIXME: implement cast FP to bool");
1624 abort();
1625 }
1626
1627 // If the zero flag is not set, then the value is true, set the byte to
1628 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001629 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001630 return;
1631 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001632
1633 static const unsigned RegRegMove[] = {
1634 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1635 };
1636
1637 // Implement casts between values of the same type class (as determined by
1638 // getClass) by using a register-to-register move.
1639 if (SrcClass == DestClass) {
1640 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001641 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001642 } else if (SrcClass == cFP) {
1643 if (SrcTy == Type::FloatTy) { // double -> float
1644 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001645 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001646 } else { // float -> double
1647 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1648 "Unknown cFP member!");
1649 // Truncate from double to float by storing to memory as short, then
1650 // reading it back.
1651 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1652 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001653 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1654 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001655 }
1656 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001657 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1658 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001659 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001660 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001661 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001662 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001663 return;
1664 }
1665
1666 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1667 // or zero extension, depending on whether the source type was signed.
1668 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1669 SrcClass < DestClass) {
1670 bool isLong = DestClass == cLong;
1671 if (isLong) DestClass = cInt;
1672
1673 static const unsigned Opc[][4] = {
1674 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1675 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1676 };
1677
1678 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001679 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1680 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001681
1682 if (isLong) { // Handle upper 32 bits as appropriate...
1683 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001684 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001685 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001686 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001687 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001688 return;
1689 }
1690
1691 // Special case long -> int ...
1692 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001693 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001694 return;
1695 }
1696
1697 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1698 // move out of AX or AL.
1699 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1700 && SrcClass > DestClass) {
1701 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001702 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1703 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001704 return;
1705 }
1706
1707 // Handle casts from integer to floating point now...
1708 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001709 // Promote the integer to a type supported by FLD. We do this because there
1710 // are no unsigned FLD instructions, so we must promote an unsigned value to
1711 // a larger signed value, then use FLD on the larger value.
1712 //
1713 const Type *PromoteType = 0;
1714 unsigned PromoteOpcode;
1715 switch (SrcTy->getPrimitiveID()) {
1716 case Type::BoolTyID:
1717 case Type::SByteTyID:
1718 // We don't have the facilities for directly loading byte sized data from
1719 // memory (even signed). Promote it to 16 bits.
1720 PromoteType = Type::ShortTy;
1721 PromoteOpcode = X86::MOVSXr16r8;
1722 break;
1723 case Type::UByteTyID:
1724 PromoteType = Type::ShortTy;
1725 PromoteOpcode = X86::MOVZXr16r8;
1726 break;
1727 case Type::UShortTyID:
1728 PromoteType = Type::IntTy;
1729 PromoteOpcode = X86::MOVZXr32r16;
1730 break;
1731 case Type::UIntTyID: {
1732 // Make a 64 bit temporary... and zero out the top of it...
1733 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1734 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1735 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1736 SrcTy = Type::LongTy;
1737 SrcClass = cLong;
1738 SrcReg = TmpReg;
1739 break;
1740 }
1741 case Type::ULongTyID:
1742 assert("FIXME: not implemented: cast ulong X to fp type!");
1743 default: // No promotion needed...
1744 break;
1745 }
1746
1747 if (PromoteType) {
1748 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001749 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1750 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001751 SrcTy = PromoteType;
1752 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001753 SrcReg = TmpReg;
1754 }
1755
1756 // Spill the integer to memory and reload it from there...
1757 int FrameIdx =
1758 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1759
1760 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001761 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1762 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001763 FrameIdx, 4).addReg(SrcReg+1);
1764 } else {
1765 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001766 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001767 }
1768
1769 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001770 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001771 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001772 return;
1773 }
1774
1775 // Handle casts from floating point to integer now...
1776 if (SrcClass == cFP) {
1777 // Change the floating point control register to use "round towards zero"
1778 // mode when truncating to an integer value.
1779 //
1780 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001781 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001782
1783 // Load the old value of the high byte of the control word...
1784 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001785 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001786
1787 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001788 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001789
1790 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001791 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001792
1793 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001794 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001795 CWFrameIdx, 1).addReg(HighPartOfCW);
1796
1797 // We don't have the facilities for directly storing byte sized data to
1798 // memory. Promote it to 16 bits. We also must promote unsigned values to
1799 // larger classes because we only have signed FP stores.
1800 unsigned StoreClass = DestClass;
1801 const Type *StoreTy = DestTy;
1802 if (StoreClass == cByte || DestTy->isUnsigned())
1803 switch (StoreClass) {
1804 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1805 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1806 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001807 // The following treatment of cLong may not be perfectly right,
1808 // but it survives chains of casts of the form
1809 // double->ulong->double.
1810 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001811 default: assert(0 && "Unknown store class!");
1812 }
1813
1814 // Spill the integer to memory and reload it from there...
1815 int FrameIdx =
1816 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1817
1818 static const unsigned Op1[] =
1819 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001820 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001821
1822 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001823 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1824 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001825 } else {
1826 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001827 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001828 }
1829
1830 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001831 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001832 return;
1833 }
1834
Brian Gaeked474e9c2002-12-06 10:49:33 +00001835 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001836 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001837 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001838}
Brian Gaekea1719c92002-10-31 23:03:59 +00001839
Chris Lattnereca195e2003-05-08 19:44:13 +00001840/// visitVarArgInst - Implement the va_arg instruction...
1841///
1842void ISel::visitVarArgInst(VarArgInst &I) {
1843 unsigned SrcReg = getReg(I.getOperand(0));
1844 unsigned DestReg = getReg(I);
1845
1846 // Load the va_list into a register...
1847 unsigned VAList = makeAnotherReg(Type::UIntTy);
1848 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
1849
1850 unsigned Size;
1851 switch (I.getType()->getPrimitiveID()) {
1852 default:
1853 std::cerr << I;
1854 assert(0 && "Error: bad type for va_arg instruction!");
1855 return;
1856 case Type::PointerTyID:
1857 case Type::UIntTyID:
1858 case Type::IntTyID:
1859 Size = 4;
1860 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1861 break;
1862 case Type::ULongTyID:
1863 case Type::LongTyID:
1864 Size = 8;
1865 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1866 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1867 break;
1868 case Type::DoubleTyID:
1869 Size = 8;
1870 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1871 break;
1872 }
1873
1874 // Increment the VAList pointer...
1875 unsigned NextVAList = makeAnotherReg(Type::UIntTy);
1876 BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
1877
1878 // Update the VAList in memory...
1879 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
1880}
1881
1882
Chris Lattner8a307e82002-12-16 19:32:50 +00001883// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1884// returns zero when the input is not exactly a power of two.
1885static unsigned ExactLog2(unsigned Val) {
1886 if (Val == 0) return 0;
1887 unsigned Count = 0;
1888 while (Val != 1) {
1889 if (Val & 1) return 0;
1890 Val >>= 1;
1891 ++Count;
1892 }
1893 return Count+1;
1894}
1895
Chris Lattner3e130a22003-01-13 00:32:26 +00001896void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1897 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001898 MachineBasicBlock::iterator MI = BB->end();
1899 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001900 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001901}
1902
Brian Gaeke71794c02002-12-13 11:22:48 +00001903void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001904 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001905 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001906 User::op_iterator IdxEnd, unsigned TargetReg) {
1907 const TargetData &TD = TM.getTargetData();
1908 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001909 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001910
Brian Gaeke20244b72002-12-12 15:33:40 +00001911 // GEPs have zero or more indices; we must perform a struct access
1912 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001913 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1914 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001915 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001916 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001917 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001918 // It's a struct access. idx is the index into the structure,
1919 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001920 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1921 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001922 && "Funny-looking structure index in GEP");
1923 // Use the TargetData structure to pick out what the layout of
1924 // the structure is in memory. Since the structure index must
1925 // be constant, we can get its value and use it to find the
1926 // right byte offset from the StructLayout class's list of
1927 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001928 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001929 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1930 if (FieldOff) {
1931 NextReg = makeAnotherReg(Type::UIntTy);
1932 // Emit an ADD to add FieldOff to the basePtr.
1933 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1934 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001935 // The next type is the member of the structure selected by the
1936 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001937 Ty = StTy->getElementTypes()[idxValue];
1938 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001939 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001940
Brian Gaeke20244b72002-12-12 15:33:40 +00001941 // idx is the index into the array. Unlike with structure
1942 // indices, we may not know its actual value at code-generation
1943 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001944 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1945
Chris Lattnerf5854472003-06-21 16:01:24 +00001946 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
1947 // operand on X86. Handle this case directly now...
1948 if (CastInst *CI = dyn_cast<CastInst>(idx))
1949 if (CI->getOperand(0)->getType() == Type::IntTy ||
1950 CI->getOperand(0)->getType() == Type::UIntTy)
1951 idx = CI->getOperand(0);
1952
Chris Lattner3e130a22003-01-13 00:32:26 +00001953 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001954 // must find the size of the pointed-to type (Not coincidentally, the next
1955 // type is the type of the elements in the array).
1956 Ty = SqTy->getElementType();
1957 unsigned elementSize = TD.getTypeSize(Ty);
1958
1959 // If idxReg is a constant, we don't need to perform the multiply!
1960 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001961 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001962 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001963 NextReg = makeAnotherReg(Type::UIntTy);
1964 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001965 }
1966 } else if (elementSize == 1) {
1967 // If the element size is 1, we don't have to multiply, just add
1968 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001969 NextReg = makeAnotherReg(Type::UIntTy);
1970 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001971 } else {
1972 unsigned idxReg = getReg(idx, MBB, IP);
1973 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1974 if (unsigned Shift = ExactLog2(elementSize)) {
1975 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001976 BMI(MBB, IP, X86::SHLir32, 2,
1977 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1978 } else {
1979 // Most general case, emit a multiply...
1980 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1981 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1982
1983 // Emit a MUL to multiply the register holding the index by
1984 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001985 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001986 }
1987 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001988 NextReg = makeAnotherReg(Type::UIntTy);
1989 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001990 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001991 }
1992 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00001993 // one, so we don't need to worry about BaseReg itself, anymore.
1994 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00001995 }
1996 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00001997 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00001998 // put the answer. A 32-bit move should do it, because we are in
1999 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002000 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002001}
2002
2003
Chris Lattner065faeb2002-12-28 20:24:02 +00002004/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2005/// frame manager, otherwise do it the hard way.
2006///
2007void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002008 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002009 const Type *Ty = I.getAllocatedType();
2010 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2011
2012 // If this is a fixed size alloca in the entry block for the function,
2013 // statically stack allocate the space.
2014 //
2015 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2016 if (I.getParent() == I.getParent()->getParent()->begin()) {
2017 TySize *= CUI->getValue(); // Get total allocated size...
2018 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2019
2020 // Create a new stack object using the frame manager...
2021 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2022 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2023 return;
2024 }
2025 }
2026
2027 // Create a register to hold the temporary result of multiplying the type size
2028 // constant by the variable amount.
2029 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2030 unsigned SrcReg1 = getReg(I.getArraySize());
2031 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
2032 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
2033
2034 // TotalSizeReg = mul <numelements>, <TypeSize>
2035 MachineBasicBlock::iterator MBBI = BB->end();
2036 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
2037
2038 // AddedSize = add <TotalSizeReg>, 15
2039 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2040 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2041
2042 // AlignedSize = and <AddedSize>, ~15
2043 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2044 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2045
Brian Gaekee48ec012002-12-13 06:46:31 +00002046 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002047 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002048
Brian Gaekee48ec012002-12-13 06:46:31 +00002049 // Put a pointer to the space into the result register, by copying
2050 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002051 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2052
Misha Brukman48196b32003-05-03 02:18:17 +00002053 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002054 // object.
2055 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002056}
Chris Lattner3e130a22003-01-13 00:32:26 +00002057
2058/// visitMallocInst - Malloc instructions are code generated into direct calls
2059/// to the library malloc.
2060///
2061void ISel::visitMallocInst(MallocInst &I) {
2062 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2063 unsigned Arg;
2064
2065 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2066 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2067 } else {
2068 Arg = makeAnotherReg(Type::UIntTy);
2069 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
2070 unsigned Op1Reg = getReg(I.getOperand(0));
2071 MachineBasicBlock::iterator MBBI = BB->end();
2072 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002073 }
2074
2075 std::vector<ValueRecord> Args;
2076 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2077 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2078 1).addExternalSymbol("malloc", true);
2079 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2080}
2081
2082
2083/// visitFreeInst - Free instructions are code gen'd to call the free libc
2084/// function.
2085///
2086void ISel::visitFreeInst(FreeInst &I) {
2087 std::vector<ValueRecord> Args;
2088 Args.push_back(ValueRecord(getReg(I.getOperand(0)),
2089 I.getOperand(0)->getType()));
2090 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2091 1).addExternalSymbol("free", true);
2092 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2093}
2094
Brian Gaeke20244b72002-12-12 15:33:40 +00002095
Chris Lattnerd281de22003-07-26 23:49:58 +00002096/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002097/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002098/// generated code sucks but the implementation is nice and simple.
2099///
Chris Lattnerd281de22003-07-26 23:49:58 +00002100Pass *createX86SimpleInstructionSelector(TargetMachine &TM) {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002101 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002102}