blob: a30facc0676c88240e6b02f8fffdc038fabc4af6 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Chris Lattner98599d02004-07-11 02:48:28 +000030#include <iostream>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000031using namespace llvm;
32
33namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000034 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
35 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000036 ///
37 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000038 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 };
40}
41
42/// getClass - Turn a primitive type into a "class" number which is based on the
43/// size of the type, and whether or not it is floating point.
44///
45static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000046 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000047 case Type::SByteTyID:
48 case Type::UByteTyID: return cByte; // Byte operands are class #0
49 case Type::ShortTyID:
50 case Type::UShortTyID: return cShort; // Short operands are class #1
51 case Type::IntTyID:
52 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000053 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000054
Misha Brukman7e898c32004-07-20 00:41:46 +000055 case Type::FloatTyID: return cFP32; // Single float is #3
56 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
58 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000059 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060 default:
61 assert(0 && "Invalid type to getClass!");
62 return cByte; // not reached
63 }
64}
65
66// getClassB - Just like getClass, but treat boolean values as ints.
67static inline TypeClass getClassB(const Type *Ty) {
68 if (Ty == Type::BoolTy) return cInt;
69 return getClass(Ty);
70}
71
72namespace {
73 struct ISel : public FunctionPass, InstVisitor<ISel> {
74 TargetMachine &TM;
75 MachineFunction *F; // The function we are compiling into
76 MachineBasicBlock *BB; // The current MBB we are compiling
77 int VarArgsFrameIndex; // FrameIndex for start of varargs area
78 int ReturnAddressIndex; // FrameIndex for the return address
79
Misha Brukman313efcb2004-07-09 15:45:07 +000080 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000081
Misha Brukman2834a4d2004-07-07 20:07:22 +000082 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000083 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
84 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
85 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000086
Misha Brukman5dfe3a92004-06-21 16:55:25 +000087 // MBBMap - Mapping between LLVM BB -> Machine BB
88 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
89
90 // AllocaMap - Mapping from fixed sized alloca instructions to the
91 // FrameIndex for the alloca.
92 std::map<AllocaInst*, unsigned> AllocaMap;
93
94 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
95
Misha Brukman2834a4d2004-07-07 20:07:22 +000096 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000097 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000098 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +000099 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +0000100 Type *l = Type::LongTy;
101 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000102 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000103 // float fmodf(float, float);
104 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000105 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000106 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000107 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000108 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000109 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000110 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000111 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000112 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000113 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000114 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000115 // long __fixsfdi(float)
116 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000117 // long __fixdfdi(double)
118 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
119 // float __floatdisf(long)
120 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
121 // double __floatdidf(long)
122 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000123 // void* malloc(size_t)
124 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
125 // void free(void*)
126 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000127 return false;
128 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000129
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000130 /// runOnFunction - Top level implementation of instruction selection for
131 /// the entire function.
132 ///
133 bool runOnFunction(Function &Fn) {
134 // First pass over the function, lower any unknown intrinsic functions
135 // with the IntrinsicLowering class.
136 LowerUnknownIntrinsicFunctionCalls(Fn);
137
138 F = &MachineFunction::construct(&Fn, TM);
139
140 // Create all of the machine basic blocks for the function...
141 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
142 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
143
144 BB = &F->front();
145
146 // Set up a frame object for the return address. This is used by the
147 // llvm.returnaddress & llvm.frameaddress intrinisics.
148 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
149
150 // Copy incoming arguments off of the stack...
151 LoadArgumentsToVirtualRegs(Fn);
152
153 // Instruction select everything except PHI nodes
154 visit(Fn);
155
156 // Select the PHI nodes
157 SelectPHINodes();
158
159 RegMap.clear();
160 MBBMap.clear();
161 AllocaMap.clear();
162 F = 0;
163 // We always build a machine code representation for the function
164 return true;
165 }
166
167 virtual const char *getPassName() const {
168 return "PowerPC Simple Instruction Selection";
169 }
170
171 /// visitBasicBlock - This method is called when we are visiting a new basic
172 /// block. This simply creates a new MachineBasicBlock to emit code into
173 /// and adds it to the current MachineFunction. Subsequent visit* for
174 /// instructions will be invoked for all instructions in the basic block.
175 ///
176 void visitBasicBlock(BasicBlock &LLVM_BB) {
177 BB = MBBMap[&LLVM_BB];
178 }
179
180 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
181 /// function, lowering any calls to unknown intrinsic functions into the
182 /// equivalent LLVM code.
183 ///
184 void LowerUnknownIntrinsicFunctionCalls(Function &F);
185
186 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
187 /// from the stack into virtual registers.
188 ///
189 void LoadArgumentsToVirtualRegs(Function &F);
190
191 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
192 /// because we have to generate our sources into the source basic blocks,
193 /// not the current one.
194 ///
195 void SelectPHINodes();
196
197 // Visitation methods for various instructions. These methods simply emit
198 // fixed PowerPC code for each instruction.
199
200 // Control flow operators
201 void visitReturnInst(ReturnInst &RI);
202 void visitBranchInst(BranchInst &BI);
203
204 struct ValueRecord {
205 Value *Val;
206 unsigned Reg;
207 const Type *Ty;
208 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
209 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
210 };
211 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000212 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000213 void visitCallInst(CallInst &I);
214 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
215
216 // Arithmetic operators
217 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
218 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
219 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
220 void visitMul(BinaryOperator &B);
221
222 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
223 void visitRem(BinaryOperator &B) { visitDivRem(B); }
224 void visitDivRem(BinaryOperator &B);
225
226 // Bitwise operators
227 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
228 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
229 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
230
231 // Comparison operators...
232 void visitSetCondInst(SetCondInst &I);
233 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
234 MachineBasicBlock *MBB,
235 MachineBasicBlock::iterator MBBI);
236 void visitSelectInst(SelectInst &SI);
237
238
239 // Memory Instructions
240 void visitLoadInst(LoadInst &I);
241 void visitStoreInst(StoreInst &I);
242 void visitGetElementPtrInst(GetElementPtrInst &I);
243 void visitAllocaInst(AllocaInst &I);
244 void visitMallocInst(MallocInst &I);
245 void visitFreeInst(FreeInst &I);
246
247 // Other operators
248 void visitShiftInst(ShiftInst &I);
249 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
250 void visitCastInst(CastInst &I);
251 void visitVANextInst(VANextInst &I);
252 void visitVAArgInst(VAArgInst &I);
253
254 void visitInstruction(Instruction &I) {
255 std::cerr << "Cannot instruction select: " << I;
256 abort();
257 }
258
259 /// promote32 - Make a value 32-bits wide, and put it somewhere.
260 ///
261 void promote32(unsigned targetReg, const ValueRecord &VR);
262
263 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
264 /// constant expression GEP support.
265 ///
266 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
267 Value *Src, User::op_iterator IdxBegin,
268 User::op_iterator IdxEnd, unsigned TargetReg);
269
270 /// emitCastOperation - Common code shared between visitCastInst and
271 /// constant expression cast support.
272 ///
273 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
274 Value *Src, const Type *DestTy, unsigned TargetReg);
275
276 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
277 /// and constant expression support.
278 ///
279 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
280 MachineBasicBlock::iterator IP,
281 Value *Op0, Value *Op1,
282 unsigned OperatorClass, unsigned TargetReg);
283
284 /// emitBinaryFPOperation - This method handles emission of floating point
285 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
286 void emitBinaryFPOperation(MachineBasicBlock *BB,
287 MachineBasicBlock::iterator IP,
288 Value *Op0, Value *Op1,
289 unsigned OperatorClass, unsigned TargetReg);
290
291 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
292 Value *Op0, Value *Op1, unsigned TargetReg);
293
294 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
295 unsigned DestReg, const Type *DestTy,
296 unsigned Op0Reg, unsigned Op1Reg);
297 void doMultiplyConst(MachineBasicBlock *MBB,
298 MachineBasicBlock::iterator MBBI,
299 unsigned DestReg, const Type *DestTy,
300 unsigned Op0Reg, unsigned Op1Val);
301
302 void emitDivRemOperation(MachineBasicBlock *BB,
303 MachineBasicBlock::iterator IP,
304 Value *Op0, Value *Op1, bool isDiv,
305 unsigned TargetReg);
306
307 /// emitSetCCOperation - Common code shared between visitSetCondInst and
308 /// constant expression support.
309 ///
310 void emitSetCCOperation(MachineBasicBlock *BB,
311 MachineBasicBlock::iterator IP,
312 Value *Op0, Value *Op1, unsigned Opcode,
313 unsigned TargetReg);
314
315 /// emitShiftOperation - Common code shared between visitShiftInst and
316 /// constant expression support.
317 ///
318 void emitShiftOperation(MachineBasicBlock *MBB,
319 MachineBasicBlock::iterator IP,
320 Value *Op, Value *ShiftAmount, bool isLeftShift,
321 const Type *ResultTy, unsigned DestReg);
322
323 /// emitSelectOperation - Common code shared between visitSelectInst and the
324 /// constant expression support.
325 void emitSelectOperation(MachineBasicBlock *MBB,
326 MachineBasicBlock::iterator IP,
327 Value *Cond, Value *TrueVal, Value *FalseVal,
328 unsigned DestReg);
329
330 /// copyConstantToRegister - Output the instructions required to put the
331 /// specified constant into the specified register.
332 ///
333 void copyConstantToRegister(MachineBasicBlock *MBB,
334 MachineBasicBlock::iterator MBBI,
335 Constant *C, unsigned Reg);
336
337 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
338 unsigned LHS, unsigned RHS);
339
340 /// makeAnotherReg - This method returns the next register number we haven't
341 /// yet used.
342 ///
343 /// Long values are handled somewhat specially. They are always allocated
344 /// as pairs of 32 bit integer values. The register number returned is the
345 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
346 /// of the long value.
347 ///
348 unsigned makeAnotherReg(const Type *Ty) {
349 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
350 "Current target doesn't have PPC reg info??");
351 const PowerPCRegisterInfo *MRI =
352 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
353 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
354 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
355 // Create the lower part
356 F->getSSARegMap()->createVirtualRegister(RC);
357 // Create the upper part.
358 return F->getSSARegMap()->createVirtualRegister(RC)-1;
359 }
360
361 // Add the mapping of regnumber => reg class to MachineFunction
362 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
363 return F->getSSARegMap()->createVirtualRegister(RC);
364 }
365
366 /// getReg - This method turns an LLVM value into a register number.
367 ///
368 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
369 unsigned getReg(Value *V) {
370 // Just append to the end of the current bb.
371 MachineBasicBlock::iterator It = BB->end();
372 return getReg(V, BB, It);
373 }
374 unsigned getReg(Value *V, MachineBasicBlock *MBB,
375 MachineBasicBlock::iterator IPt);
376
377 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
378 /// that is to be statically allocated with the initial stack frame
379 /// adjustment.
380 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
381 };
382}
383
384/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
385/// instruction in the entry block, return it. Otherwise, return a null
386/// pointer.
387static AllocaInst *dyn_castFixedAlloca(Value *V) {
388 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
389 BasicBlock *BB = AI->getParent();
390 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
391 return AI;
392 }
393 return 0;
394}
395
396/// getReg - This method turns an LLVM value into a register number.
397///
398unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
399 MachineBasicBlock::iterator IPt) {
400 // If this operand is a constant, emit the code to copy the constant into
401 // the register here...
402 //
Chris Lattnera51e4f62004-07-18 18:45:01 +0000403 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000404 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000405 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000406 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000407 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000408 // Move PC to destination reg
409 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000410 // Move value at PC + distance into return reg
411 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000412 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000413 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000414 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000415 return Reg2;
Chris Lattnera51e4f62004-07-18 18:45:01 +0000416 } else if (Constant *C = dyn_cast<Constant>(V)) {
417 unsigned Reg = makeAnotherReg(V->getType());
418 copyConstantToRegister(MBB, IPt, C, Reg);
419 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000420 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
421 // Do not emit noop casts at all.
422 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
423 return getReg(CI->getOperand(0), MBB, IPt);
424 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
425 unsigned Reg = makeAnotherReg(V->getType());
426 unsigned FI = getFixedSizedAllocaFI(AI);
427 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
428 return Reg;
429 }
430
431 unsigned &Reg = RegMap[V];
432 if (Reg == 0) {
433 Reg = makeAnotherReg(V->getType());
434 RegMap[V] = Reg;
435 }
436
437 return Reg;
438}
439
440/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
441/// that is to be statically allocated with the initial stack frame
442/// adjustment.
443unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
444 // Already computed this?
445 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
446 if (I != AllocaMap.end() && I->first == AI) return I->second;
447
448 const Type *Ty = AI->getAllocatedType();
449 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
450 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
451 TySize *= CUI->getValue(); // Get total allocated size...
452 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
453
454 // Create a new stack object using the frame manager...
455 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
456 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
457 return FrameIdx;
458}
459
460
461/// copyConstantToRegister - Output the instructions required to put the
462/// specified constant into the specified register.
463///
464void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
465 MachineBasicBlock::iterator IP,
466 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000467 if (C->getType()->isIntegral()) {
468 unsigned Class = getClassB(C->getType());
469
470 if (Class == cLong) {
471 // Copy the value into the register pair.
472 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000473
474 if (Val < (1ULL << 16)) {
475 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(Val & 0xFFFF);
476 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
477 } else if (Val < (1ULL << 32)) {
478 unsigned Temp = makeAnotherReg(Type::IntTy);
479 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
480 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
481 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
482 } else if (Val < (1ULL << 48)) {
483 unsigned Temp = makeAnotherReg(Type::IntTy);
484 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
485 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
486 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm((Val >> 32) & 0xFFFF);
487 } else {
488 unsigned TempLo = makeAnotherReg(Type::IntTy);
489 unsigned TempHi = makeAnotherReg(Type::IntTy);
490 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addImm((Val >> 16) & 0xFFFF);
491 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempLo).addImm(Val & 0xFFFF);
492 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addImm((Val >> 48) & 0xFFFF);
493 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempHi)
494 .addImm((Val >> 32) & 0xFFFF);
495 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000496 return;
497 }
498
499 assert(Class <= cInt && "Type not handled yet!");
500
501 if (C->getType() == Type::BoolTy) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000502 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503 } else if (Class == cByte || Class == cShort) {
504 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukmanbebde752004-07-16 21:06:24 +0000505 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000506 } else {
507 ConstantInt *CI = cast<ConstantInt>(C);
508 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
509 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000510 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000511 } else {
512 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000513 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman911afde2004-06-25 14:50:41 +0000514 .addImm(CI->getRawValue() >> 16);
515 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
516 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000517 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000518 }
519 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000520 // We need to spill the constant to memory...
521 MachineConstantPool *CP = F->getConstantPool();
522 unsigned CPI = CP->getConstantPoolIndex(CFP);
523 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000524
Misha Brukmand18a31d2004-07-06 22:51:53 +0000525 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000526
527 // Load addr of constant to reg; constant is located at PC + distance
528 unsigned CurPC = makeAnotherReg(Type::IntTy);
529 unsigned Reg1 = makeAnotherReg(Type::IntTy);
530 unsigned Reg2 = makeAnotherReg(Type::IntTy);
531 // Move PC to destination reg
532 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
533 // Move value at PC + distance into return reg
534 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
535 .addConstantPoolIndex(CPI);
536 BuildMI(*MBB, IP, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
537 .addConstantPoolIndex(CPI);
538
Misha Brukmand18a31d2004-07-06 22:51:53 +0000539 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfc879c32004-07-08 18:02:38 +0000540 BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000541 } else if (isa<ConstantPointerNull>(C)) {
542 // Copy zero (null pointer) to the register.
Misha Brukmanbebde752004-07-16 21:06:24 +0000543 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000544 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
545 unsigned AddrReg = getReg(GV, MBB, IP);
Misha Brukman32caa8d2004-07-14 17:57:04 +0000546 BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(AddrReg).addReg(AddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000547 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000548 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000549 assert(0 && "Type not handled yet!");
550 }
551}
552
553/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
554/// the stack into virtual registers.
555///
556/// FIXME: When we can calculate which args are coming in via registers
557/// source them from there instead.
558void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
559 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
560 unsigned GPR_remaining = 8;
561 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000562 unsigned GPR_idx = 0, FPR_idx = 0;
563 static const unsigned GPR[] = {
564 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
565 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
566 };
567 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000568 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000569 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000570 };
Misha Brukman422791f2004-06-21 17:41:12 +0000571
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000572 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000573
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000574 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
575 bool ArgLive = !I->use_empty();
576 unsigned Reg = ArgLive ? getReg(*I) : 0;
577 int FI; // Frame object index
578
579 switch (getClassB(I->getType())) {
580 case cByte:
581 if (ArgLive) {
582 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000583 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000584 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000585 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
586 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000587 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000588 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000589 }
590 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000591 break;
592 case cShort:
593 if (ArgLive) {
594 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000595 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000596 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000597 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
598 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000599 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000600 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000601 }
602 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000603 break;
604 case cInt:
605 if (ArgLive) {
606 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000607 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000608 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000609 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
610 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000611 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000612 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000613 }
614 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000615 break;
616 case cLong:
617 if (ArgLive) {
618 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000619 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000620 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
621 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000622 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
623 .addReg(GPR[GPR_idx]);
624 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
625 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000626 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000627 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
628 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000629 }
630 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000631 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000632 if (GPR_remaining > 1) {
633 GPR_remaining--; // uses up 2 GPRs
634 GPR_idx++;
635 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000636 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000637 case cFP32:
638 if (ArgLive) {
639 FI = MFI->CreateFixedObject(4, ArgOffset);
640
Misha Brukman422791f2004-06-21 17:41:12 +0000641 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000642 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000643 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
644 FPR_remaining--;
645 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000646 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000647 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000648 }
649 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000650 break;
651 case cFP64:
652 if (ArgLive) {
653 FI = MFI->CreateFixedObject(8, ArgOffset);
654
655 if (FPR_remaining > 0) {
656 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
657 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
658 FPR_remaining--;
659 FPR_idx++;
660 } else {
661 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000662 }
663 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000664
665 // doubles require 4 additional bytes and use 2 GPRs of param space
666 ArgOffset += 4;
667 if (GPR_remaining > 0) {
668 GPR_remaining--;
669 GPR_idx++;
670 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000671 break;
672 default:
673 assert(0 && "Unhandled argument type!");
674 }
675 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000676 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000677 GPR_remaining--; // uses up 2 GPRs
678 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000679 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000680 }
681
682 // If the function takes variable number of arguments, add a frame offset for
683 // the start of the first vararg value... this is used to expand
684 // llvm.va_start.
685 if (Fn.getFunctionType()->isVarArg())
686 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
687}
688
689
690/// SelectPHINodes - Insert machine code to generate phis. This is tricky
691/// because we have to generate our sources into the source basic blocks, not
692/// the current one.
693///
694void ISel::SelectPHINodes() {
695 const TargetInstrInfo &TII = *TM.getInstrInfo();
696 const Function &LF = *F->getFunction(); // The LLVM function...
697 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
698 const BasicBlock *BB = I;
699 MachineBasicBlock &MBB = *MBBMap[I];
700
701 // Loop over all of the PHI nodes in the LLVM basic block...
702 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
703 for (BasicBlock::const_iterator I = BB->begin();
704 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
705
706 // Create a new machine instr PHI node, and insert it.
707 unsigned PHIReg = getReg(*PN);
708 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
709 PPC32::PHI, PN->getNumOperands(), PHIReg);
710
711 MachineInstr *LongPhiMI = 0;
712 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
713 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
714 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
715
716 // PHIValues - Map of blocks to incoming virtual registers. We use this
717 // so that we only initialize one incoming value for a particular block,
718 // even if the block has multiple entries in the PHI node.
719 //
720 std::map<MachineBasicBlock*, unsigned> PHIValues;
721
722 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000723 MachineBasicBlock *PredMBB = 0;
724 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
725 PE = MBB.pred_end (); PI != PE; ++PI)
726 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
727 PredMBB = *PI;
728 break;
729 }
730 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
731
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000732 unsigned ValReg;
733 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
734 PHIValues.lower_bound(PredMBB);
735
736 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
737 // We already inserted an initialization of the register for this
738 // predecessor. Recycle it.
739 ValReg = EntryIt->second;
740
741 } else {
742 // Get the incoming value into a virtual register.
743 //
744 Value *Val = PN->getIncomingValue(i);
745
746 // If this is a constant or GlobalValue, we may have to insert code
747 // into the basic block to compute it into a virtual register.
748 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
749 isa<GlobalValue>(Val)) {
750 // Simple constants get emitted at the end of the basic block,
751 // before any terminator instructions. We "know" that the code to
752 // move a constant into a register will never clobber any flags.
753 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
754 } else {
755 // Because we don't want to clobber any values which might be in
756 // physical registers with the computation of this constant (which
757 // might be arbitrarily complex if it is a constant expression),
758 // just insert the computation at the top of the basic block.
759 MachineBasicBlock::iterator PI = PredMBB->begin();
760
761 // Skip over any PHI nodes though!
762 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
763 ++PI;
764
765 ValReg = getReg(Val, PredMBB, PI);
766 }
767
768 // Remember that we inserted a value for this PHI for this predecessor
769 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
770 }
771
772 PhiMI->addRegOperand(ValReg);
773 PhiMI->addMachineBasicBlockOperand(PredMBB);
774 if (LongPhiMI) {
775 LongPhiMI->addRegOperand(ValReg+1);
776 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
777 }
778 }
779
780 // Now that we emitted all of the incoming values for the PHI node, make
781 // sure to reposition the InsertPoint after the PHI that we just added.
782 // This is needed because we might have inserted a constant into this
783 // block, right after the PHI's which is before the old insert point!
784 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
785 ++PHIInsertPoint;
786 }
787 }
788}
789
790
791// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
792// it into the conditional branch or select instruction which is the only user
793// of the cc instruction. This is the case if the conditional branch is the
794// only user of the setcc, and if the setcc is in the same basic block as the
795// conditional branch. We also don't handle long arguments below, so we reject
796// them here as well.
797//
798static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
799 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
800 if (SCI->hasOneUse()) {
801 Instruction *User = cast<Instruction>(SCI->use_back());
802 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000803 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000804 return SCI;
805 }
806 return 0;
807}
808
809// Return a fixed numbering for setcc instructions which does not depend on the
810// order of the opcodes.
811//
812static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000813 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000814 default: assert(0 && "Unknown setcc instruction!");
815 case Instruction::SetEQ: return 0;
816 case Instruction::SetNE: return 1;
817 case Instruction::SetLT: return 2;
818 case Instruction::SetGE: return 3;
819 case Instruction::SetGT: return 4;
820 case Instruction::SetLE: return 5;
821 }
822}
823
Misha Brukmane9c65512004-07-06 15:32:44 +0000824static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
825 switch (Opcode) {
826 default: assert(0 && "Unknown setcc instruction!");
827 case Instruction::SetEQ: return PPC32::BEQ;
828 case Instruction::SetNE: return PPC32::BNE;
829 case Instruction::SetLT: return PPC32::BLT;
830 case Instruction::SetGE: return PPC32::BGE;
831 case Instruction::SetGT: return PPC32::BGT;
832 case Instruction::SetLE: return PPC32::BLE;
833 }
834}
835
836static unsigned invertPPCBranchOpcode(unsigned Opcode) {
837 switch (Opcode) {
838 default: assert(0 && "Unknown PPC32 branch opcode!");
839 case PPC32::BEQ: return PPC32::BNE;
840 case PPC32::BNE: return PPC32::BEQ;
841 case PPC32::BLT: return PPC32::BGE;
842 case PPC32::BGE: return PPC32::BLT;
843 case PPC32::BGT: return PPC32::BLE;
844 case PPC32::BLE: return PPC32::BGT;
845 }
846}
847
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000848/// emitUCOM - emits an unordered FP compare.
849void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
850 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000851 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000852}
853
Misha Brukmanbebde752004-07-16 21:06:24 +0000854/// EmitComparison - emits a comparison of the two operands, returning the
855/// extended setcc code to use. The result is in CR0.
856///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000857unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
858 MachineBasicBlock *MBB,
859 MachineBasicBlock::iterator IP) {
860 // The arguments are already supposed to be of the same type.
861 const Type *CompTy = Op0->getType();
862 unsigned Class = getClassB(CompTy);
863 unsigned Op0r = getReg(Op0, MBB, IP);
864
865 // Special case handling of: cmp R, i
866 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000867 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000868 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
869 if (Class == cByte || Class == cShort || Class == cInt) {
870 unsigned Op1v = CI->getRawValue();
871
872 // Mask off any upper bits of the constant, if there are any...
873 Op1v &= (1ULL << (8 << Class)) - 1;
874
Misha Brukman422791f2004-06-21 17:41:12 +0000875 // Compare immediate or promote to reg?
876 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000877 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
878 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000879 } else {
880 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000881 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
882 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000883 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000884 return OpNum;
885 } else {
886 assert(Class == cLong && "Unknown integer class!");
887 unsigned LowCst = CI->getRawValue();
888 unsigned HiCst = CI->getRawValue() >> 32;
889 if (OpNum < 2) { // seteq, setne
890 unsigned LoTmp = Op0r;
891 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000892 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000893 unsigned LoTmp = makeAnotherReg(Type::IntTy);
894 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000895 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
896 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000897 }
898 unsigned HiTmp = Op0r+1;
899 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000900 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000901 unsigned HiTmp = makeAnotherReg(Type::IntTy);
902 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000903 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
904 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000905 }
906 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
907 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000908 return OpNum;
909 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000910 unsigned ConstReg = makeAnotherReg(CompTy);
911 unsigned CondReg = makeAnotherReg(Type::IntTy);
912 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
913 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
914 copyConstantToRegister(MBB, IP, CI, ConstReg);
915
916 // FIXME: this is inefficient, but avoids branches
917
918 // compare hi word -> cr0
919 // compare lo word -> cr1
920 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
921 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(ConstReg+1);
922 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
923 .addReg(ConstReg);
924 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
925 // shift amount = 4 * CR0[EQ]
926 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
927 .addImm(29).addImm(29);
928 // shift cr1 into cr0 position if op0.hi and const.hi were equal
929 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
930 .addReg(TmpReg1);
931 // cr0 == ( op0.hi != const.hi ) ? cr0 : cr1
932 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
933
Misha Brukman422791f2004-06-21 17:41:12 +0000934 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000935 }
936 }
937 }
938
939 unsigned Op1r = getReg(Op1, MBB, IP);
940 switch (Class) {
941 default: assert(0 && "Unknown type class!");
942 case cByte:
943 case cShort:
944 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000945 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
946 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000947 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000948
Misha Brukman7e898c32004-07-20 00:41:46 +0000949 case cFP32:
950 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000951 emitUCOM(MBB, IP, Op0r, Op1r);
952 break;
953
954 case cLong:
955 if (OpNum < 2) { // seteq, setne
956 unsigned LoTmp = makeAnotherReg(Type::IntTy);
957 unsigned HiTmp = makeAnotherReg(Type::IntTy);
958 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
959 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
960 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
961 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000962 break; // Allow the sete or setne to be generated from flags set by OR
963 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000964 unsigned CondReg = makeAnotherReg(Type::IntTy);
965 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
966 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
967
968 // FIXME: this is inefficient, but avoids branches
969
970 // compare hi word -> cr0
971 // compare lo word -> cr1
972 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
973 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(Op1r+1);
974 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
975 .addReg(Op1r);
976 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
977 // shift amount = 4 * CR0[EQ]
978 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
979 .addImm(29).addImm(29);
980 // shift cr1 into cr0 position if op0.hi and op1.hi were equal
981 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
982 .addReg(TmpReg1);
983 // cr0 == ( op0.hi != op1.hi ) ? cr0 : cr1
984 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
985
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000986 return OpNum;
987 }
988 }
989 return OpNum;
990}
991
Misha Brukmand18a31d2004-07-06 22:51:53 +0000992/// visitSetCondInst - emit code to calculate the condition via
993/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000994///
995void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000996 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000997 return;
Misha Brukmanbebde752004-07-16 21:06:24 +0000998
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000999 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +00001000 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +00001001 const Type *Ty = I.getOperand (0)->getType();
1002
Misha Brukmand18a31d2004-07-06 22:51:53 +00001003 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
1004
1005 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +00001006 MachineBasicBlock *thisMBB = BB;
1007 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001008 ilist<MachineBasicBlock>::iterator It = BB;
1009 ++It;
1010
Misha Brukman425ff242004-07-01 21:34:10 +00001011 // thisMBB:
1012 // ...
1013 // cmpTY cr0, r1, r2
1014 // bCC copy1MBB
1015 // b copy0MBB
1016
1017 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1018 // if we could insert other, non-terminator instructions after the
1019 // bCC. But MBB->getFirstTerminator() can't understand this.
1020 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001021 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001022 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1023 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001024 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001025 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1026 // Update machine-CFG edges
1027 BB->addSuccessor(copy1MBB);
1028 BB->addSuccessor(copy0MBB);
1029
1030 // copy0MBB:
1031 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +00001032 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001033 BB = copy0MBB;
1034 unsigned FalseValue = makeAnotherReg(I.getType());
Misha Brukmanbebde752004-07-16 21:06:24 +00001035 BuildMI(BB, PPC32::LI, 1, FalseValue).addImm(0);
Misha Brukman425ff242004-07-01 21:34:10 +00001036 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001037 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001038 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1039 // Update machine-CFG edges
1040 BB->addSuccessor(sinkMBB);
1041
1042 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
1043 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
1044 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
1045 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
1046
1047 // copy1MBB:
1048 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001049 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001050 BB = copy1MBB;
1051 unsigned TrueValue = makeAnotherReg (I.getType ());
Misha Brukmanbebde752004-07-16 21:06:24 +00001052 BuildMI(BB, PPC32::LI, 1, TrueValue).addImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001053 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1054 // Update machine-CFG edges
1055 BB->addSuccessor(sinkMBB);
1056
1057 // sinkMBB:
1058 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1059 // ...
1060 BB = sinkMBB;
1061 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1062 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001063}
1064
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001065void ISel::visitSelectInst(SelectInst &SI) {
1066 unsigned DestReg = getReg(SI);
1067 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001068 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1069 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001070}
1071
1072/// emitSelect - Common code shared between visitSelectInst and the constant
1073/// expression support.
1074/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1075/// no select instruction. FSEL only works for comparisons against zero.
1076void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1077 MachineBasicBlock::iterator IP,
1078 Value *Cond, Value *TrueVal, Value *FalseVal,
1079 unsigned DestReg) {
1080 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001081 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001082
Misha Brukmanbebde752004-07-16 21:06:24 +00001083 // See if we can fold the setcc into the select instruction, or if we have
1084 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001085 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1086 // We successfully folded the setcc into the select instruction.
1087
1088 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1089 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1090 IP);
1091 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1092 } else {
1093 unsigned CondReg = getReg(Cond, MBB, IP);
1094
1095 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addImm(0);
1096 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001097 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001098
1099 // thisMBB:
1100 // ...
1101 // cmpTY cr0, r1, r2
1102 // bCC copy1MBB
1103 // b copy0MBB
1104
1105 MachineBasicBlock *thisMBB = BB;
1106 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001107 ilist<MachineBasicBlock>::iterator It = BB;
1108 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001109
1110 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1111 // if we could insert other, non-terminator instructions after the
1112 // bCC. But MBB->getFirstTerminator() can't understand this.
1113 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001114 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001115 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1116 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001117 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001118 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1119 // Update machine-CFG edges
1120 BB->addSuccessor(copy1MBB);
1121 BB->addSuccessor(copy0MBB);
1122
1123 // FIXME: spill code is being generated after the branch and before copy1MBB
1124 // this is bad, since it will never be run
1125
1126 // copy0MBB:
1127 // %FalseValue = ...
1128 // b sinkMBB
1129 BB = copy0MBB;
1130 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1131 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001132 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001133 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1134 // Update machine-CFG edges
1135 BB->addSuccessor(sinkMBB);
1136
1137 // copy1MBB:
1138 // %TrueValue = ...
1139 // b sinkMBB
1140 BB = copy1MBB;
1141 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1142 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1143 // Update machine-CFG edges
1144 BB->addSuccessor(sinkMBB);
1145
1146 // sinkMBB:
1147 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1148 // ...
1149 BB = sinkMBB;
1150 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1151 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001152 return;
1153}
1154
1155
1156
1157/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1158/// operand, in the specified target register.
1159///
1160void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1161 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1162
1163 Value *Val = VR.Val;
1164 const Type *Ty = VR.Ty;
1165 if (Val) {
1166 if (Constant *C = dyn_cast<Constant>(Val)) {
1167 Val = ConstantExpr::getCast(C, Type::IntTy);
1168 Ty = Type::IntTy;
1169 }
1170
Misha Brukman2fec9902004-06-21 20:22:03 +00001171 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001172 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1173 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1174
1175 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +00001176 BuildMI(BB, PPC32::LI, 1, targetReg).addImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001177 } else {
1178 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001179 BuildMI(BB, PPC32::LIS, 1, TmpReg).addImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001180 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1181 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001182 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001183 return;
1184 }
1185 }
1186
1187 // Make sure we have the register number for this value...
1188 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1189
1190 switch (getClassB(Ty)) {
1191 case cByte:
1192 // Extend value into target register (8->32)
1193 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001194 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1195 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001196 else
1197 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1198 break;
1199 case cShort:
1200 // Extend value into target register (16->32)
1201 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001202 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1203 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001204 else
1205 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1206 break;
1207 case cInt:
1208 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001209 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001210 break;
1211 default:
1212 assert(0 && "Unpromotable operand class in promote32");
1213 }
1214}
1215
Misha Brukman2fec9902004-06-21 20:22:03 +00001216/// visitReturnInst - implemented with BLR
1217///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001218void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001219 // Only do the processing if this is a non-void return
1220 if (I.getNumOperands() > 0) {
1221 Value *RetVal = I.getOperand(0);
1222 switch (getClassB(RetVal->getType())) {
1223 case cByte: // integral return values: extend or move into r3 and return
1224 case cShort:
1225 case cInt:
1226 promote32(PPC32::R3, ValueRecord(RetVal));
1227 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001228 case cFP32:
1229 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001230 unsigned RetReg = getReg(RetVal);
1231 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1232 break;
1233 }
1234 case cLong: {
1235 unsigned RetReg = getReg(RetVal);
1236 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1237 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1238 break;
1239 }
1240 default:
1241 visitInstruction(I);
1242 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001243 }
1244 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1245}
1246
1247// getBlockAfter - Return the basic block which occurs lexically after the
1248// specified one.
1249static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1250 Function::iterator I = BB; ++I; // Get iterator to next block
1251 return I != BB->getParent()->end() ? &*I : 0;
1252}
1253
1254/// visitBranchInst - Handle conditional and unconditional branches here. Note
1255/// that since code layout is frozen at this point, that if we are trying to
1256/// jump to a block that is the immediate successor of the current block, we can
1257/// just make a fall-through (but we don't currently).
1258///
1259void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001260 // Update machine-CFG edges
1261 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1262 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001263 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001264
1265 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001266
Misha Brukman2fec9902004-06-21 20:22:03 +00001267 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001268 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001269 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1270 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001271 }
1272
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001273 // See if we can fold the setcc into the branch itself...
1274 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1275 if (SCI == 0) {
1276 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1277 // computed some other way...
1278 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001279 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001280 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001281 if (BI.getSuccessor(1) == NextBB) {
1282 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001283 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001284 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001285 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001286 BuildMI(BB, PPC32::BEQ, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001287 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001288
1289 if (BI.getSuccessor(0) != NextBB)
1290 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1291 }
1292 return;
1293 }
1294
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001295 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001296 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001297 MachineBasicBlock::iterator MII = BB->end();
1298 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001299
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001300 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001301 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001302 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001303 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001304 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001305 } else {
1306 // Change to the inverse condition...
1307 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001308 Opcode = invertPPCBranchOpcode(Opcode);
1309 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001310 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001311 }
1312 }
1313}
1314
Misha Brukmanfc879c32004-07-08 18:02:38 +00001315static Constant* minUConstantForValue(uint64_t val) {
1316 if (val <= 1)
1317 return ConstantBool::get(val);
1318 else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
1319 return ConstantUInt::get(Type::UShortTy, val);
1320 else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
1321 return ConstantUInt::get(Type::UIntTy, val);
1322 else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
1323 return ConstantUInt::get(Type::ULongTy, val);
1324
1325 std::cerr << "Value: " << val << " not accepted for any integral type!\n";
1326 abort();
1327}
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001328
1329/// doCall - This emits an abstract call instruction, setting up the arguments
1330/// and the return value as appropriate. For the actual function call itself,
1331/// it inserts the specified CallMI instruction into the stream.
1332///
1333/// FIXME: See Documentation at the following URL for "correct" behavior
1334/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1335void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001336 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001337 // Count how many bytes are to be pushed on the stack...
1338 unsigned NumBytes = 0;
1339
1340 if (!Args.empty()) {
1341 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1342 switch (getClassB(Args[i].Ty)) {
1343 case cByte: case cShort: case cInt:
1344 NumBytes += 4; break;
1345 case cLong:
1346 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001347 case cFP32:
1348 NumBytes += 4; break;
1349 case cFP64:
1350 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001351 break;
1352 default: assert(0 && "Unknown class!");
1353 }
1354
1355 // Adjust the stack pointer for the new arguments...
1356 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1357
1358 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001359 // Offset to the paramater area on the stack is 24.
1360 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001361 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001362 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001363 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001364 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1365 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1366 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001367 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001368 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1369 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1370 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001371 };
Misha Brukman422791f2004-06-21 17:41:12 +00001372
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001373 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1374 unsigned ArgReg;
1375 switch (getClassB(Args[i].Ty)) {
1376 case cByte:
1377 case cShort:
1378 // Promote arg to 32 bits wide into a temporary register...
1379 ArgReg = makeAnotherReg(Type::UIntTy);
1380 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001381
1382 // Reg or stack?
1383 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001384 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001385 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001386 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001387 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001388 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1389 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001390 }
1391 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001392 case cInt:
1393 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1394
Misha Brukman422791f2004-06-21 17:41:12 +00001395 // Reg or stack?
1396 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001397 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001398 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001399 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001400 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001401 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1402 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001403 }
1404 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001405 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001406 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001407
Misha Brukman422791f2004-06-21 17:41:12 +00001408 // Reg or stack?
1409 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001410 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001411 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001412 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001413 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001414 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1415 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001416 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001417 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1418 .addReg(PPC32::R1);
1419 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1420 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001421 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001422
1423 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001424 GPR_remaining -= 1; // uses up 2 GPRs
1425 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001426 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001427 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001428 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001429 // Reg or stack?
1430 if (FPR_remaining > 0) {
1431 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1432 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1433 FPR_remaining--;
1434 FPR_idx++;
1435
1436 // If this is a vararg function, and there are GPRs left, also
1437 // pass the float in an int. Otherwise, put it on the stack.
1438 if (isVarArg) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001439 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001440 .addReg(PPC32::R1);
1441 if (GPR_remaining > 0) {
1442 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
1443 .addImm(ArgOffset).addReg(ArgReg);
1444 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1445 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001446 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001447 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +00001448 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1449 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001450 }
1451 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001452 case cFP64:
1453 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1454 // Reg or stack?
1455 if (FPR_remaining > 0) {
1456 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1457 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1458 FPR_remaining--;
1459 FPR_idx++;
1460 // For vararg functions, must pass doubles via int regs as well
1461 if (isVarArg) {
1462 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1463 .addReg(PPC32::R1);
1464
1465 if (GPR_remaining > 1) {
1466 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1467 .addReg(PPC32::R1);
1468 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
1469 .addImm(ArgOffset+4).addReg(PPC32::R1);
1470 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1471 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1472 }
1473 }
1474 } else {
1475 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1476 .addReg(PPC32::R1);
1477 }
1478 // Doubles use 8 bytes, and 2 GPRs worth of param space
1479 ArgOffset += 4;
1480 GPR_remaining--;
1481 GPR_idx++;
1482 break;
1483
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001484 default: assert(0 && "Unknown class!");
1485 }
1486 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001487 GPR_remaining--;
1488 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001489 }
1490 } else {
1491 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1492 }
1493
1494 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001495 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1496
1497 // If there is a return value, scavenge the result from the location the call
1498 // leaves it in...
1499 //
1500 if (Ret.Ty != Type::VoidTy) {
1501 unsigned DestClass = getClassB(Ret.Ty);
1502 switch (DestClass) {
1503 case cByte:
1504 case cShort:
1505 case cInt:
1506 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001507 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001508 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001509 case cFP32: // Floating-point return values live in f1
1510 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001511 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1512 break;
1513 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001514 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1515 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001516 break;
1517 default: assert(0 && "Unknown class!");
1518 }
1519 }
1520}
1521
1522
1523/// visitCallInst - Push args on stack and do a procedure call instruction.
1524void ISel::visitCallInst(CallInst &CI) {
1525 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001526 Function *F = CI.getCalledFunction();
1527 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001528 // Is it an intrinsic function call?
1529 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1530 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1531 return;
1532 }
1533
1534 // Emit a CALL instruction with PC-relative displacement.
1535 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1536 } else { // Emit an indirect call through the CTR
1537 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001538 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1539 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001540 }
1541
1542 std::vector<ValueRecord> Args;
1543 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1544 Args.push_back(ValueRecord(CI.getOperand(i)));
1545
1546 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001547 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1548 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001549}
1550
1551
1552/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1553///
1554static Value *dyncastIsNan(Value *V) {
1555 if (CallInst *CI = dyn_cast<CallInst>(V))
1556 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001557 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001558 return CI->getOperand(1);
1559 return 0;
1560}
1561
1562/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1563/// or's whos operands are all calls to the isnan predicate.
1564static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1565 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1566
1567 // Check all uses, which will be or's of isnans if this predicate is true.
1568 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1569 Instruction *I = cast<Instruction>(*UI);
1570 if (I->getOpcode() != Instruction::Or) return false;
1571 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1572 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1573 }
1574
1575 return true;
1576}
1577
1578/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1579/// function, lowering any calls to unknown intrinsic functions into the
1580/// equivalent LLVM code.
1581///
1582void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1583 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1584 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1585 if (CallInst *CI = dyn_cast<CallInst>(I++))
1586 if (Function *F = CI->getCalledFunction())
1587 switch (F->getIntrinsicID()) {
1588 case Intrinsic::not_intrinsic:
1589 case Intrinsic::vastart:
1590 case Intrinsic::vacopy:
1591 case Intrinsic::vaend:
1592 case Intrinsic::returnaddress:
1593 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001594 // FIXME: should lower this ourselves
1595 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001596 // We directly implement these intrinsics
1597 break;
1598 case Intrinsic::readio: {
1599 // On PPC, memory operations are in-order. Lower this intrinsic
1600 // into a volatile load.
1601 Instruction *Before = CI->getPrev();
1602 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1603 CI->replaceAllUsesWith(LI);
1604 BB->getInstList().erase(CI);
1605 break;
1606 }
1607 case Intrinsic::writeio: {
1608 // On PPC, memory operations are in-order. Lower this intrinsic
1609 // into a volatile store.
1610 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001611 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001612 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001613 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001614 BB->getInstList().erase(CI);
1615 break;
1616 }
1617 default:
1618 // All other intrinsic calls we must lower.
1619 Instruction *Before = CI->getPrev();
1620 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1621 if (Before) { // Move iterator to instruction after call
1622 I = Before; ++I;
1623 } else {
1624 I = BB->begin();
1625 }
1626 }
1627}
1628
1629void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1630 unsigned TmpReg1, TmpReg2, TmpReg3;
1631 switch (ID) {
1632 case Intrinsic::vastart:
1633 // Get the address of the first vararg value...
1634 TmpReg1 = getReg(CI);
1635 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1636 return;
1637
1638 case Intrinsic::vacopy:
1639 TmpReg1 = getReg(CI);
1640 TmpReg2 = getReg(CI.getOperand(1));
1641 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1642 return;
1643 case Intrinsic::vaend: return;
1644
1645 case Intrinsic::returnaddress:
1646 case Intrinsic::frameaddress:
1647 TmpReg1 = getReg(CI);
1648 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1649 if (ID == Intrinsic::returnaddress) {
1650 // Just load the return address
1651 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1652 ReturnAddressIndex);
1653 } else {
1654 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1655 ReturnAddressIndex, -4, false);
1656 }
1657 } else {
1658 // Values other than zero are not implemented yet.
Misha Brukmanbebde752004-07-16 21:06:24 +00001659 BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001660 }
1661 return;
1662
Misha Brukmana2916ce2004-06-21 17:58:36 +00001663#if 0
1664 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001665 case Intrinsic::isnan:
1666 // If this is only used by 'isunordered' style comparisons, don't emit it.
1667 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1668 TmpReg1 = getReg(CI.getOperand(1));
1669 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001670 TmpReg2 = makeAnotherReg(Type::IntTy);
1671 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001672 TmpReg3 = getReg(CI);
1673 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1674 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001675#endif
1676
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001677 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1678 }
1679}
1680
1681/// visitSimpleBinary - Implement simple binary operators for integral types...
1682/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1683/// Xor.
1684///
1685void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1686 unsigned DestReg = getReg(B);
1687 MachineBasicBlock::iterator MI = BB->end();
1688 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1689 unsigned Class = getClassB(B.getType());
1690
1691 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1692}
1693
1694/// emitBinaryFPOperation - This method handles emission of floating point
1695/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1696void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1697 MachineBasicBlock::iterator IP,
1698 Value *Op0, Value *Op1,
1699 unsigned OperatorClass, unsigned DestReg) {
1700
1701 // Special case: op Reg, <const fp>
1702 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001703 // Create a constant pool entry for this constant.
1704 MachineConstantPool *CP = F->getConstantPool();
1705 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1706 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001707 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001708
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001709 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001710 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1711 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001712 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001713
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001714 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001715 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001716 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001717 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001718 return;
1719 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001720
1721 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001722 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1723 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001724 // -0.0 - X === -X
1725 unsigned op1Reg = getReg(Op1, BB, IP);
1726 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1727 return;
1728 } else {
1729 // R1 = op CST, R2 --> R1 = opr R2, CST
1730
1731 // Create a constant pool entry for this constant.
1732 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001733 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1734 const Type *Ty = Op0C->getType();
1735 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001736
1737 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001738 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1739 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001740 };
1741
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001742 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001743 unsigned Op0Reg = getReg(Op0C, BB, IP);
1744 unsigned Op1Reg = getReg(Op1, BB, IP);
1745 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001746 return;
1747 }
1748
1749 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001750 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001751 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1752 };
1753
1754 unsigned Opcode = OpcodeTab[OperatorClass];
1755 unsigned Op0r = getReg(Op0, BB, IP);
1756 unsigned Op1r = getReg(Op1, BB, IP);
1757 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1758}
1759
1760/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1761/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1762/// Or, 4 for Xor.
1763///
1764/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1765/// and constant expression support.
1766///
1767void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1768 MachineBasicBlock::iterator IP,
1769 Value *Op0, Value *Op1,
1770 unsigned OperatorClass, unsigned DestReg) {
1771 unsigned Class = getClassB(Op0->getType());
1772
Misha Brukman422791f2004-06-21 17:41:12 +00001773 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001774 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001775 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1776 };
1777 // Otherwise, code generate the full operation with a constant.
1778 static const unsigned BottomTab[] = {
1779 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1780 };
1781 static const unsigned TopTab[] = {
1782 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1783 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001784
Misha Brukman7e898c32004-07-20 00:41:46 +00001785 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001786 assert(OperatorClass < 2 && "No logical ops for FP!");
1787 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1788 return;
1789 }
1790
1791 if (Op0->getType() == Type::BoolTy) {
1792 if (OperatorClass == 3)
1793 // If this is an or of two isnan's, emit an FP comparison directly instead
1794 // of or'ing two isnan's together.
1795 if (Value *LHS = dyncastIsNan(Op0))
1796 if (Value *RHS = dyncastIsNan(Op1)) {
1797 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001798 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001799 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001800 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001801 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1802 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001803 return;
1804 }
1805 }
1806
1807 // sub 0, X -> neg X
1808 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1809 if (OperatorClass == 1 && CI->isNullValue()) {
1810 unsigned op1Reg = getReg(Op1, MBB, IP);
1811 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1812
1813 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001814 unsigned zeroes = makeAnotherReg(Type::IntTy);
1815 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001816 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001817 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001818 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1819 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001820 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1821 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001822 }
1823 return;
1824 }
1825
1826 // Special case: op Reg, <const int>
1827 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1828 unsigned Op0r = getReg(Op0, MBB, IP);
1829
1830 // xor X, -1 -> not X
1831 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1832 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1833 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001834 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1835 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001836 return;
1837 }
1838
1839 unsigned Opcode = OpcodeTab[OperatorClass];
1840 unsigned Op1r = getReg(Op1, MBB, IP);
1841
1842 if (Class != cLong) {
1843 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1844 return;
1845 }
1846
1847 // If the constant is zero in the low 32-bits, just copy the low part
1848 // across and apply the normal 32-bit operation to the high parts. There
1849 // will be no carry or borrow into the top.
1850 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1851 if (OperatorClass != 2) // All but and...
1852 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1853 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001854 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001855 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001856 return;
1857 }
1858
1859 // If this is a long value and the high or low bits have a special
1860 // property, emit some special cases.
1861 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1862
1863 // If this is a logical operation and the top 32-bits are zero, just
1864 // operate on the lower 32.
1865 if (Op1h == 0 && OperatorClass > 1) {
1866 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1867 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001868 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001869 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001870 BuildMI(*MBB, IP, PPC32::LI, 1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001871 return;
1872 }
1873
1874 // TODO: We could handle lots of other special cases here, such as AND'ing
1875 // with 0xFFFFFFFF00000000 -> noop, etc.
1876
Misha Brukman2fec9902004-06-21 20:22:03 +00001877 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
Misha Brukman7e898c32004-07-20 00:41:46 +00001878 .addReg(Op1r);
Misha Brukman2fec9902004-06-21 20:22:03 +00001879 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001880 .addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001881 return;
1882 }
1883
1884 unsigned Op0r = getReg(Op0, MBB, IP);
1885 unsigned Op1r = getReg(Op1, MBB, IP);
1886
1887 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001888 unsigned Opcode = OpcodeTab[OperatorClass];
1889 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001890 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001891 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
Misha Brukman7e898c32004-07-20 00:41:46 +00001892 .addReg(Op1r);
Misha Brukman2fec9902004-06-21 20:22:03 +00001893 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001894 .addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001895 }
1896 return;
1897}
1898
1899/// doMultiply - Emit appropriate instructions to multiply together the
1900/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1901/// result should be given as DestTy.
1902///
1903void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1904 unsigned DestReg, const Type *DestTy,
1905 unsigned op0Reg, unsigned op1Reg) {
1906 unsigned Class = getClass(DestTy);
1907 switch (Class) {
1908 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001909 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1910 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001911 case cInt:
1912 case cShort:
1913 case cByte:
1914 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1915 return;
1916 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001917 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001918 }
1919}
1920
1921// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1922// returns zero when the input is not exactly a power of two.
1923static unsigned ExactLog2(unsigned Val) {
1924 if (Val == 0 || (Val & (Val-1))) return 0;
1925 unsigned Count = 0;
1926 while (Val != 1) {
1927 Val >>= 1;
1928 ++Count;
1929 }
1930 return Count+1;
1931}
1932
1933
1934/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1935/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001936///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001937void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1938 MachineBasicBlock::iterator IP,
1939 unsigned DestReg, const Type *DestTy,
1940 unsigned op0Reg, unsigned ConstRHS) {
1941 unsigned Class = getClass(DestTy);
1942 // Handle special cases here.
1943 switch (ConstRHS) {
1944 case 0:
Misha Brukmanbebde752004-07-16 21:06:24 +00001945 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001946 return;
1947 case 1:
1948 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1949 return;
1950 case 2:
1951 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1952 return;
1953 }
1954
1955 // If the element size is exactly a power of 2, use a shift to get it.
1956 if (unsigned Shift = ExactLog2(ConstRHS)) {
1957 switch (Class) {
1958 default: assert(0 && "Unknown class for this function!");
1959 case cByte:
1960 case cShort:
1961 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001962 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
Misha Brukman8d442c22004-07-14 15:29:51 +00001963 .addImm(Shift-1).addImm(0).addImm(31-Shift+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001964 return;
1965 }
1966 }
1967
1968 // Most general case, emit a normal multiply...
Misha Brukman7e898c32004-07-20 00:41:46 +00001969 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1970 Constant *C = ConstantUInt::get(Type::UIntTy, ConstRHS);
1971
1972 copyConstantToRegister(MBB, IP, C, TmpReg);
1973 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001974}
1975
1976void ISel::visitMul(BinaryOperator &I) {
1977 unsigned ResultReg = getReg(I);
1978
1979 Value *Op0 = I.getOperand(0);
1980 Value *Op1 = I.getOperand(1);
1981
1982 MachineBasicBlock::iterator IP = BB->end();
1983 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1984}
1985
1986void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1987 Value *Op0, Value *Op1, unsigned DestReg) {
1988 MachineBasicBlock &BB = *MBB;
1989 TypeClass Class = getClass(Op0->getType());
1990
1991 // Simple scalar multiply?
1992 unsigned Op0Reg = getReg(Op0, &BB, IP);
1993 switch (Class) {
1994 case cByte:
1995 case cShort:
1996 case cInt:
1997 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1998 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1999 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
2000 } else {
2001 unsigned Op1Reg = getReg(Op1, &BB, IP);
2002 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
2003 }
2004 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002005 case cFP32:
2006 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002007 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2008 return;
2009 case cLong:
2010 break;
2011 }
2012
2013 // Long value. We have to do things the hard way...
2014 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2015 unsigned CLow = CI->getRawValue();
2016 unsigned CHi = CI->getRawValue() >> 32;
2017
2018 if (CLow == 0) {
2019 // If the low part of the constant is all zeros, things are simple.
Misha Brukmanbebde752004-07-16 21:06:24 +00002020 BuildMI(BB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002021 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2022 return;
2023 }
2024
2025 // Multiply the two low parts
2026 unsigned OverflowReg = 0;
2027 if (CLow == 1) {
2028 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2029 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002030 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002031 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2032 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002033 BuildMI(BB, IP, PPC32::LIS, 1, TmpRegL).addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00002034 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
2035 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00002036 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
2037 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002038 }
2039
2040 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
2041 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2042
2043 unsigned AHBLplusOverflowReg;
2044 if (OverflowReg) {
2045 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002046 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002047 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2048 } else {
2049 AHBLplusOverflowReg = AHBLReg;
2050 }
2051
2052 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002053 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
2054 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002055 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002056 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002057 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
2058
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002059 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002060 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2061 }
2062 return;
2063 }
2064
2065 // General 64x64 multiply
2066
2067 unsigned Op1Reg = getReg(Op1, &BB, IP);
2068
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002069 // Multiply the two low parts...
2070 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002071
2072 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002073 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002074
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002075 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002076 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2077
2078 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002079 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
2080 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002081
2082 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2083 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2084
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002085 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002086 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2087}
2088
2089
2090/// visitDivRem - Handle division and remainder instructions... these
2091/// instruction both require the same instructions to be generated, they just
2092/// select the result from a different register. Note that both of these
2093/// instructions work differently for signed and unsigned operands.
2094///
2095void ISel::visitDivRem(BinaryOperator &I) {
2096 unsigned ResultReg = getReg(I);
2097 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2098
2099 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002100 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2101 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002102}
2103
2104void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2105 MachineBasicBlock::iterator IP,
2106 Value *Op0, Value *Op1, bool isDiv,
2107 unsigned ResultReg) {
2108 const Type *Ty = Op0->getType();
2109 unsigned Class = getClass(Ty);
2110 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002111 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002112 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002113 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002114 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2115 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002116 } else {
2117 // Floating point remainder via fmodf(float x, float y);
2118 unsigned Op0Reg = getReg(Op0, BB, IP);
2119 unsigned Op1Reg = getReg(Op1, BB, IP);
2120 MachineInstr *TheCall =
2121 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2122 std::vector<ValueRecord> Args;
2123 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2124 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2125 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
2126 }
2127 return;
2128 case cFP64:
2129 if (isDiv) {
2130 // Floating point divide...
2131 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2132 return;
2133 } else {
2134 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002135 unsigned Op0Reg = getReg(Op0, BB, IP);
2136 unsigned Op1Reg = getReg(Op1, BB, IP);
2137 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002138 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002139 std::vector<ValueRecord> Args;
2140 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2141 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002142 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002143 }
2144 return;
2145 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002146 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002147 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002148 unsigned Op0Reg = getReg(Op0, BB, IP);
2149 unsigned Op1Reg = getReg(Op1, BB, IP);
2150 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2151 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002152 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002153
2154 std::vector<ValueRecord> Args;
2155 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2156 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002157 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002158 return;
2159 }
2160 case cByte: case cShort: case cInt:
2161 break; // Small integrals, handled below...
2162 default: assert(0 && "Unknown class!");
2163 }
2164
2165 // Special case signed division by power of 2.
2166 if (isDiv)
2167 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2168 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2169 int V = CI->getValue();
2170
2171 if (V == 1) { // X /s 1 => X
2172 unsigned Op0Reg = getReg(Op0, BB, IP);
2173 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2174 return;
2175 }
2176
2177 if (V == -1) { // X /s -1 => -X
2178 unsigned Op0Reg = getReg(Op0, BB, IP);
2179 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2180 return;
2181 }
2182
2183 bool isNeg = false;
2184 if (V < 0) { // Not a positive power of 2?
2185 V = -V;
2186 isNeg = true; // Maybe it's a negative power of 2.
2187 }
2188 if (unsigned Log = ExactLog2(V)) {
2189 --Log;
2190 unsigned Op0Reg = getReg(Op0, BB, IP);
2191 unsigned TmpReg = makeAnotherReg(Op0->getType());
2192 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002193 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002194 else
2195 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
2196
2197 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00002198 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2199 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002200
2201 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2202 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2203
2204 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2205 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2206
2207 if (isNeg)
2208 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2209 return;
2210 }
2211 }
2212
2213 unsigned Op0Reg = getReg(Op0, BB, IP);
2214 unsigned Op1Reg = getReg(Op1, BB, IP);
2215
2216 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002217 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002218 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002219 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002220 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002221 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002222 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002223 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2224 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2225
2226 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002227 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002228 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002229 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002230 }
2231 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2232 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002233 }
2234}
2235
2236
2237/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2238/// for constant immediate shift values, and for constant immediate
2239/// shift values equal to 1. Even the general case is sort of special,
2240/// because the shift amount has to be in CL, not just any old register.
2241///
2242void ISel::visitShiftInst(ShiftInst &I) {
2243 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002244 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2245 I.getOpcode () == Instruction::Shl, I.getType (),
2246 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002247}
2248
2249/// emitShiftOperation - Common code shared between visitShiftInst and
2250/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002251///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002252void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2253 MachineBasicBlock::iterator IP,
2254 Value *Op, Value *ShiftAmount, bool isLeftShift,
2255 const Type *ResultTy, unsigned DestReg) {
2256 unsigned SrcReg = getReg (Op, MBB, IP);
2257 bool isSigned = ResultTy->isSigned ();
2258 unsigned Class = getClass (ResultTy);
2259
2260 // Longs, as usual, are handled specially...
2261 if (Class == cLong) {
2262 // If we have a constant shift, we can generate much more efficient code
2263 // than otherwise...
2264 //
2265 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2266 unsigned Amount = CUI->getValue();
2267 if (Amount < 32) {
2268 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002269 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002270 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2271 .addImm(Amount).addImm(0).addImm(31-Amount);
2272 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2273 .addImm(Amount).addImm(32-Amount).addImm(31);
2274 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2275 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002276 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002277 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002278 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2279 .addImm(32-Amount).addImm(Amount).addImm(31);
2280 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2281 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2282 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2283 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002284 }
2285 } else { // Shifting more than 32 bits
2286 Amount -= 32;
2287 if (isLeftShift) {
2288 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002289 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2290 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002291 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002292 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2293 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002294 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002295 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002296 } else {
2297 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002298 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002299 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2300 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002301 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002302 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2303 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002304 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002305 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2306 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002307 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002308 BuildMI(*MBB, IP,PPC32::LI,1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002309 }
2310 }
2311 } else {
2312 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2313 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002314 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2315 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2316 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2317 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2318 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2319
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002320 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002321 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2322 .addImm(32);
2323 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2324 .addReg(ShiftAmountReg);
2325 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2326 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2327 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2328 .addImm(-32);
2329 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2330 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2331 .addReg(TmpReg6);
2332 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2333 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002334 } else {
2335 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002336 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002337 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002338 std::cerr << "Unimplemented: signed right shift\n";
2339 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002340 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002341 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2342 .addImm(32);
2343 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2344 .addReg(ShiftAmountReg);
2345 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2346 .addReg(TmpReg1);
2347 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2348 .addReg(TmpReg3);
2349 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2350 .addImm(-32);
2351 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2352 .addReg(TmpReg5);
2353 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2354 .addReg(TmpReg6);
2355 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2356 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002357 }
2358 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002359 }
2360 return;
2361 }
2362
2363 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2364 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2365 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2366 unsigned Amount = CUI->getValue();
2367
Misha Brukman422791f2004-06-21 17:41:12 +00002368 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002369 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2370 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002371 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002372 if (isSigned) {
2373 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2374 } else {
2375 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2376 .addImm(32-Amount).addImm(Amount).addImm(31);
2377 }
Misha Brukman422791f2004-06-21 17:41:12 +00002378 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002379 } else { // The shift amount is non-constant.
2380 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2381
Misha Brukman422791f2004-06-21 17:41:12 +00002382 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002383 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2384 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002385 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002386 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2387 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002388 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002389 }
2390}
2391
2392
2393/// visitLoadInst - Implement LLVM load instructions
2394///
2395void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002396 static const unsigned Opcodes[] = {
2397 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2398 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002399 unsigned Class = getClassB(I.getType());
2400 unsigned Opcode = Opcodes[Class];
2401 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2402
2403 unsigned DestReg = getReg(I);
2404
2405 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002406 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002407 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002408 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2409 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002410 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002411 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002412 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002413 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002414 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002415
2416 if (Class == cLong) {
2417 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2418 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2419 } else {
2420 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2421 }
2422 }
2423}
2424
2425/// visitStoreInst - Implement LLVM store instructions
2426///
2427void ISel::visitStoreInst(StoreInst &I) {
2428 unsigned ValReg = getReg(I.getOperand(0));
2429 unsigned AddressReg = getReg(I.getOperand(1));
2430
2431 const Type *ValTy = I.getOperand(0)->getType();
2432 unsigned Class = getClassB(ValTy);
2433
2434 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002435 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002436 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002437 return;
2438 }
2439
2440 static const unsigned Opcodes[] = {
2441 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2442 };
2443 unsigned Opcode = Opcodes[Class];
2444 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2445 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2446}
2447
2448
2449/// visitCastInst - Here we have various kinds of copying with or without sign
2450/// extension going on.
2451///
2452void ISel::visitCastInst(CastInst &CI) {
2453 Value *Op = CI.getOperand(0);
2454
2455 unsigned SrcClass = getClassB(Op->getType());
2456 unsigned DestClass = getClassB(CI.getType());
2457 // Noop casts are not emitted: getReg will return the source operand as the
2458 // register to use for any uses of the noop cast.
2459 if (DestClass == SrcClass)
2460 return;
2461
2462 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2463 // of the case are GEP instructions, then the cast does not need to be
2464 // generated explicitly, it will be folded into the GEP.
2465 if (DestClass == cLong && SrcClass == cInt) {
2466 bool AllUsesAreGEPs = true;
2467 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2468 if (!isa<GetElementPtrInst>(*I)) {
2469 AllUsesAreGEPs = false;
2470 break;
2471 }
2472
2473 // No need to codegen this cast if all users are getelementptr instrs...
2474 if (AllUsesAreGEPs) return;
2475 }
2476
2477 unsigned DestReg = getReg(CI);
2478 MachineBasicBlock::iterator MI = BB->end();
2479 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2480}
2481
2482/// emitCastOperation - Common code shared between visitCastInst and constant
2483/// expression cast support.
2484///
Misha Brukman7e898c32004-07-20 00:41:46 +00002485void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002486 MachineBasicBlock::iterator IP,
2487 Value *Src, const Type *DestTy,
2488 unsigned DestReg) {
2489 const Type *SrcTy = Src->getType();
2490 unsigned SrcClass = getClassB(SrcTy);
2491 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002492 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002493
2494 // Implement casts to bool by using compare on the operand followed by set if
2495 // not zero on the result.
2496 if (DestTy == Type::BoolTy) {
2497 switch (SrcClass) {
2498 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002499 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002500 case cInt: {
2501 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002502 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2503 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002504 break;
2505 }
2506 case cLong: {
2507 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2508 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002509 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
2510 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2511 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002512 break;
2513 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002514 case cFP32:
2515 case cFP64:
2516 // FSEL perhaps?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002517 std::cerr << "Cast fp-to-bool not implemented!";
2518 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002519 }
2520 return;
2521 }
2522
2523 // Implement casts between values of the same type class (as determined by
2524 // getClass) by using a register-to-register move.
2525 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002526 if (SrcClass <= cInt) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002527 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2528 } else if (SrcClass == cFP32 || SrcClass == cFP64) {
2529 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002530 } else if (SrcClass == cLong) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002531 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2532 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002533 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002534 } else {
2535 assert(0 && "Cannot handle this type of cast instruction!");
2536 abort();
2537 }
2538 return;
2539 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002540
2541 // Handle cast of Float -> Double
2542 if (SrcClass == cFP32 && DestClass == cFP64) {
2543 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2544 return;
2545 }
2546
2547 // Handle cast of Double -> Float
2548 if (SrcClass == cFP64 && DestClass == cFP32) {
2549 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2550 return;
2551 }
2552
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002553 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2554 // or zero extension, depending on whether the source type was signed.
2555 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2556 SrcClass < DestClass) {
2557 bool isLong = DestClass == cLong;
2558 if (isLong) DestClass = cInt;
2559
2560 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2561 if (SrcClass < cInt) {
2562 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002563 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002564 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2565 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002566 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002567 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2568 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002569 }
2570 } else {
2571 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2572 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002573
2574 if (isLong) { // Handle upper 32 bits as appropriate...
2575 if (isUnsigned) // Zero out top bits...
Misha Brukmanbebde752004-07-16 21:06:24 +00002576 BuildMI(*BB, IP, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002577 else // Sign extend bottom half...
2578 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2579 }
2580 return;
2581 }
2582
2583 // Special case long -> int ...
2584 if (SrcClass == cLong && DestClass == cInt) {
2585 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2586 return;
2587 }
2588
2589 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2590 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2591 && SrcClass > DestClass) {
2592 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002593 if (isUnsigned) {
2594 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002595 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2596 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002597 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002598 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2599 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002600 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002601 return;
2602 }
2603
2604 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002605 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002606
Misha Brukman422791f2004-06-21 17:41:12 +00002607 // Emit a library call for long to float conversion
2608 if (SrcClass == cLong) {
2609 std::vector<ValueRecord> Args;
2610 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002611 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002612 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002613 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002614 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002615 return;
2616 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002617
Misha Brukman7e898c32004-07-20 00:41:46 +00002618 // Make sure we're dealing with a full 32 bits
2619 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2620 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2621
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002622 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002623
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002624 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002625 // Also spill room for a special conversion constant
2626 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002627 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2628 int ValueFrameIdx =
2629 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2630
Misha Brukman422791f2004-06-21 17:41:12 +00002631 unsigned constantHi = makeAnotherReg(Type::IntTy);
2632 unsigned constantLo = makeAnotherReg(Type::IntTy);
2633 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2634 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2635
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002636 if (!SrcTy->isSigned()) {
Misha Brukmanbebde752004-07-16 21:06:24 +00002637 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2638 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002639 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2640 ConstantFrameIndex);
2641 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2642 ConstantFrameIndex, 4);
2643 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2644 ValueFrameIdx);
2645 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2646 ValueFrameIdx, 4);
2647 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2648 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002649 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2650 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2651 } else {
2652 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002653 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2654 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002655 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2656 ConstantFrameIndex);
2657 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2658 ConstantFrameIndex, 4);
2659 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2660 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002661 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002662 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2663 ValueFrameIdx, 4);
2664 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2665 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002666 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002667 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002668 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002669 return;
2670 }
2671
2672 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002673 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002674 // emit library call
2675 if (DestClass == cLong) {
2676 std::vector<ValueRecord> Args;
2677 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002678 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002679 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002680 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002681 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002682 return;
2683 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002684
2685 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002686 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002687
Misha Brukman7e898c32004-07-20 00:41:46 +00002688 if (DestTy->isSigned()) {
2689 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman422791f2004-06-21 17:41:12 +00002690 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002691
2692 // Convert to integer in the FP reg and store it to a stack slot
Misha Brukman422791f2004-06-21 17:41:12 +00002693 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002694 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2695 .addReg(TempReg), ValueFrameIdx);
Misha Brukman7e898c32004-07-20 00:41:46 +00002696
2697 // There is no load signed byte opcode, so we must emit a sign extend
2698 if (DestClass == cByte) {
2699 unsigned TempReg2 = makeAnotherReg(DestTy);
2700 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, TempReg2),
2701 ValueFrameIdx+4);
2702 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2703 } else {
2704 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
2705 ValueFrameIdx+4);
2706 }
2707 } else {
2708 std::cerr << "Cast fp-to-unsigned not implemented!";
2709 abort();
2710 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002711 return;
2712 }
2713
2714 // Anything we haven't handled already, we can't (yet) handle at all.
2715 assert(0 && "Unhandled cast instruction!");
2716 abort();
2717}
2718
2719/// visitVANextInst - Implement the va_next instruction...
2720///
2721void ISel::visitVANextInst(VANextInst &I) {
2722 unsigned VAList = getReg(I.getOperand(0));
2723 unsigned DestReg = getReg(I);
2724
2725 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002726 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002727 default:
2728 std::cerr << I;
2729 assert(0 && "Error: bad type for va_next instruction!");
2730 return;
2731 case Type::PointerTyID:
2732 case Type::UIntTyID:
2733 case Type::IntTyID:
2734 Size = 4;
2735 break;
2736 case Type::ULongTyID:
2737 case Type::LongTyID:
2738 case Type::DoubleTyID:
2739 Size = 8;
2740 break;
2741 }
2742
2743 // Increment the VAList pointer...
2744 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2745}
2746
2747void ISel::visitVAArgInst(VAArgInst &I) {
2748 unsigned VAList = getReg(I.getOperand(0));
2749 unsigned DestReg = getReg(I);
2750
Misha Brukman358829f2004-06-21 17:25:55 +00002751 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002752 default:
2753 std::cerr << I;
2754 assert(0 && "Error: bad type for va_next instruction!");
2755 return;
2756 case Type::PointerTyID:
2757 case Type::UIntTyID:
2758 case Type::IntTyID:
2759 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2760 break;
2761 case Type::ULongTyID:
2762 case Type::LongTyID:
2763 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2764 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2765 break;
2766 case Type::DoubleTyID:
2767 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2768 break;
2769 }
2770}
2771
2772/// visitGetElementPtrInst - instruction-select GEP instructions
2773///
2774void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2775 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002776 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2777 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002778}
2779
2780void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2781 MachineBasicBlock::iterator IP,
2782 Value *Src, User::op_iterator IdxBegin,
2783 User::op_iterator IdxEnd, unsigned TargetReg) {
2784 const TargetData &TD = TM.getTargetData();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002785
2786 std::vector<Value*> GEPOps;
2787 GEPOps.resize(IdxEnd-IdxBegin+1);
2788 GEPOps[0] = Src;
2789 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2790
2791 std::vector<const Type*> GEPTypes;
2792 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2793 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2794
2795 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002796 while (!GEPOps.empty()) {
2797 if (GEPTypes.empty()) {
2798 // Load the base pointer into a register.
2799 unsigned Reg = getReg(Src, MBB, IP);
2800 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2801 break; // we are now done
2802 }
Misha Brukman313efcb2004-07-09 15:45:07 +00002803 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
2804 // It's a struct access. CUI is the index into the structure,
2805 // which names the field. This index must have unsigned type.
2806 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002807
Misha Brukman313efcb2004-07-09 15:45:07 +00002808 // Use the TargetData structure to pick out what the layout of the
2809 // structure is in memory. Since the structure index must be constant, we
2810 // can get its value and use it to find the right byte offset from the
2811 // StructLayout class's list of structure member offsets.
2812 unsigned Disp = TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
2813 GEPOps.pop_back(); // Consume a GEP operand
2814 GEPTypes.pop_back();
Misha Brukman2fec9902004-06-21 20:22:03 +00002815 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman313efcb2004-07-09 15:45:07 +00002816 unsigned DispReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002817 BuildMI(*MBB, IP, PPC32::LI, 1, DispReg).addImm(Disp);
Misha Brukman313efcb2004-07-09 15:45:07 +00002818 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(DispReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002819 --IP; // Insert the next instruction before this one.
2820 TargetReg = Reg; // Codegen the rest of the GEP into this
2821 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +00002822 // It's an array or pointer access: [ArraySize x ElementType].
2823 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2824 Value *idx = GEPOps.back();
2825 GEPOps.pop_back(); // Consume a GEP operand
2826 GEPTypes.pop_back();
2827
2828 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2829 // operand. Handle this case directly now...
2830 if (CastInst *CI = dyn_cast<CastInst>(idx))
2831 if (CI->getOperand(0)->getType() == Type::IntTy ||
2832 CI->getOperand(0)->getType() == Type::UIntTy)
2833 idx = CI->getOperand(0);
2834
2835 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2836 // must find the size of the pointed-to type (Not coincidentally, the next
2837 // type is the type of the elements in the array).
2838 const Type *ElTy = SqTy->getElementType();
2839 unsigned elementSize = TD.getTypeSize(ElTy);
2840
2841 if (idx == Constant::getNullValue(idx->getType())) {
2842 // GEP with idx 0 is a no-op
2843 } else if (elementSize == 1) {
2844 // If the element size is 1, we don't have to multiply, just add
2845 unsigned idxReg = getReg(idx, MBB, IP);
2846 unsigned Reg = makeAnotherReg(Type::UIntTy);
2847 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2848 --IP; // Insert the next instruction before this one.
2849 TargetReg = Reg; // Codegen the rest of the GEP into this
2850 } else {
2851 unsigned idxReg = getReg(idx, MBB, IP);
2852 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2853
2854 // Make sure we can back the iterator up to point to the first
2855 // instruction emitted.
2856 MachineBasicBlock::iterator BeforeIt = IP;
2857 if (IP == MBB->begin())
2858 BeforeIt = MBB->end();
2859 else
2860 --BeforeIt;
2861 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2862
2863 // Emit an ADD to add OffsetReg to the basePtr.
2864 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002865 BuildMI(*MBB, IP, PPC32::ADD,2,TargetReg).addReg(Reg).addReg(OffsetReg);
2866
Misha Brukman313efcb2004-07-09 15:45:07 +00002867 // Step to the first instruction of the multiply.
2868 if (BeforeIt == MBB->end())
2869 IP = MBB->begin();
2870 else
2871 IP = ++BeforeIt;
2872
2873 TargetReg = Reg; // Codegen the rest of the GEP into this
2874 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002875 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002876 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002877}
2878
2879/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2880/// frame manager, otherwise do it the hard way.
2881///
2882void ISel::visitAllocaInst(AllocaInst &I) {
2883 // If this is a fixed size alloca in the entry block for the function, we
2884 // statically stack allocate the space, so we don't need to do anything here.
2885 //
2886 if (dyn_castFixedAlloca(&I)) return;
2887
2888 // Find the data size of the alloca inst's getAllocatedType.
2889 const Type *Ty = I.getAllocatedType();
2890 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2891
2892 // Create a register to hold the temporary result of multiplying the type size
2893 // constant by the variable amount.
2894 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2895 unsigned SrcReg1 = getReg(I.getArraySize());
2896
2897 // TotalSizeReg = mul <numelements>, <TypeSize>
2898 MachineBasicBlock::iterator MBBI = BB->end();
2899 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2900
2901 // AddedSize = add <TotalSizeReg>, 15
2902 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2903 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2904
2905 // AlignedSize = and <AddedSize>, ~15
2906 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002907 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2908 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002909
2910 // Subtract size from stack pointer, thereby allocating some space.
2911 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2912
2913 // Put a pointer to the space into the result register, by copying
2914 // the stack pointer.
2915 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2916
2917 // Inform the Frame Information that we have just allocated a variable-sized
2918 // object.
2919 F->getFrameInfo()->CreateVariableSizedObject();
2920}
2921
2922/// visitMallocInst - Malloc instructions are code generated into direct calls
2923/// to the library malloc.
2924///
2925void ISel::visitMallocInst(MallocInst &I) {
2926 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2927 unsigned Arg;
2928
2929 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2930 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2931 } else {
2932 Arg = makeAnotherReg(Type::UIntTy);
2933 unsigned Op0Reg = getReg(I.getOperand(0));
2934 MachineBasicBlock::iterator MBBI = BB->end();
2935 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2936 }
2937
2938 std::vector<ValueRecord> Args;
2939 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002940 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002941 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002942 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002943}
2944
2945
2946/// visitFreeInst - Free instructions are code gen'd to call the free libc
2947/// function.
2948///
2949void ISel::visitFreeInst(FreeInst &I) {
2950 std::vector<ValueRecord> Args;
2951 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002952 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002953 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002954 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002955}
2956
2957/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2958/// into a machine code representation is a very simple peep-hole fashion. The
2959/// generated code sucks but the implementation is nice and simple.
2960///
2961FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2962 return new ISel(TM);
2963}