blob: 0fcc26313ef04906ce98180e386d192c808eb99a [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000030 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000031 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000032 </ol>
33 </li>
Chris Lattner00950542001-06-06 20:29:01 +000034 <li><a href="#typesystem">Type System</a>
35 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000036 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000037 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000038 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000039 <li><a href="#t_floating">Floating Point Types</a></li>
40 <li><a href="#t_void">Void Type</a></li>
41 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000042 </ol>
43 </li>
Chris Lattner00950542001-06-06 20:29:01 +000044 <li><a href="#t_derived">Derived Types</a>
45 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000046 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000047 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000048 <li><a href="#t_function">Function Type</a></li>
49 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000051 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000052 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000053 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000054 </ol>
55 </li>
56 </ol>
57 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000058 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000059 <ol>
60 <li><a href="#simpleconstants">Simple Constants</a>
61 <li><a href="#aggregateconstants">Aggregate Constants</a>
62 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63 <li><a href="#undefvalues">Undefined Values</a>
64 <li><a href="#constantexprs">Constant Expressions</a>
65 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000066 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000067 <li><a href="#othervalues">Other Values</a>
68 <ol>
69 <li><a href="#inlineasm">Inline Assembler Expressions</a>
70 </ol>
71 </li>
Chris Lattner00950542001-06-06 20:29:01 +000072 <li><a href="#instref">Instruction Reference</a>
73 <ol>
74 <li><a href="#terminators">Terminator Instructions</a>
75 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000076 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000078 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000080 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000081 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000082 </ol>
83 </li>
Chris Lattner00950542001-06-06 20:29:01 +000084 <li><a href="#binaryops">Binary Operations</a>
85 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000086 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000089 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000092 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 </ol>
96 </li>
Chris Lattner00950542001-06-06 20:29:01 +000097 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000099 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000102 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000104 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 </ol>
106 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 <li><a href="#vectorops">Vector Operations</a>
108 <ol>
109 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000112 </ol>
113 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000114 <li><a href="#aggregateops">Aggregate Operations</a>
115 <ol>
116 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
117 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
118 </ol>
119 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000120 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000121 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
123 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
124 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000125 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
126 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
127 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000128 </ol>
129 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000130 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000131 <ol>
132 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
133 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
134 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000137 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
139 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
140 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000141 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
142 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000143 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000144 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000145 <li><a href="#otherops">Other Operations</a>
146 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000147 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
148 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000149 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
150 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000151 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000152 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000154 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patelc3fc6df2008-03-10 20:49:15 +0000155 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000156 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000158 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000160 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
163 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000164 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
165 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </ol>
168 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000169 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
170 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000171 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
172 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000174 </ol>
175 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000176 <li><a href="#int_codegen">Code Generator Intrinsics</a>
177 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000178 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
179 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
181 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
182 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
183 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
184 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000185 </ol>
186 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000187 <li><a href="#int_libc">Standard C Library Intrinsics</a>
188 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000189 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
190 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000194 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000197 </ol>
198 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000199 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000200 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000201 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000202 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
203 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000205 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000207 </ol>
208 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000210 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000211 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000212 <ol>
213 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000214 </ol>
215 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000216 <li><a href="#int_atomics">Atomic intrinsics</a>
217 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000218 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
219 <li><a href="#int_atomic_lcs"><tt>llvm.atomic.lcs</tt></a></li>
220 <li><a href="#int_atomic_las"><tt>llvm.atomic.las</tt></a></li>
221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000222 </ol>
223 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000224 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000225 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000226 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000227 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000228 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000229 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000230 <li><a href="#int_trap">
231 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000232 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000233 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000234 </ol>
235 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000236</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000237
238<div class="doc_author">
239 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
240 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000241</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000242
Chris Lattner00950542001-06-06 20:29:01 +0000243<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000244<div class="doc_section"> <a name="abstract">Abstract </a></div>
245<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000246
Misha Brukman9d0919f2003-11-08 01:05:38 +0000247<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000248<p>This document is a reference manual for the LLVM assembly language.
249LLVM is an SSA based representation that provides type safety,
250low-level operations, flexibility, and the capability of representing
251'all' high-level languages cleanly. It is the common code
252representation used throughout all phases of the LLVM compilation
253strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000254</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000255
Chris Lattner00950542001-06-06 20:29:01 +0000256<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000257<div class="doc_section"> <a name="introduction">Introduction</a> </div>
258<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000259
Misha Brukman9d0919f2003-11-08 01:05:38 +0000260<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000261
Chris Lattner261efe92003-11-25 01:02:51 +0000262<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000263different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000264representation (suitable for fast loading by a Just-In-Time compiler),
265and as a human readable assembly language representation. This allows
266LLVM to provide a powerful intermediate representation for efficient
267compiler transformations and analysis, while providing a natural means
268to debug and visualize the transformations. The three different forms
269of LLVM are all equivalent. This document describes the human readable
270representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
John Criswellc1f786c2005-05-13 22:25:59 +0000272<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000273while being expressive, typed, and extensible at the same time. It
274aims to be a "universal IR" of sorts, by being at a low enough level
275that high-level ideas may be cleanly mapped to it (similar to how
276microprocessors are "universal IR's", allowing many source languages to
277be mapped to them). By providing type information, LLVM can be used as
278the target of optimizations: for example, through pointer analysis, it
279can be proven that a C automatic variable is never accessed outside of
280the current function... allowing it to be promoted to a simple SSA
281value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000282
Misha Brukman9d0919f2003-11-08 01:05:38 +0000283</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Chris Lattner00950542001-06-06 20:29:01 +0000285<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000286<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000287
Misha Brukman9d0919f2003-11-08 01:05:38 +0000288<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000289
Chris Lattner261efe92003-11-25 01:02:51 +0000290<p>It is important to note that this document describes 'well formed'
291LLVM assembly language. There is a difference between what the parser
292accepts and what is considered 'well formed'. For example, the
293following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000295<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000296<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000297%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000298</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000299</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
Chris Lattner261efe92003-11-25 01:02:51 +0000301<p>...because the definition of <tt>%x</tt> does not dominate all of
302its uses. The LLVM infrastructure provides a verification pass that may
303be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000304automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000305the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000306by the verifier pass indicate bugs in transformation passes or input to
307the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000308</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000309
Chris Lattnercc689392007-10-03 17:34:29 +0000310<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Chris Lattner00950542001-06-06 20:29:01 +0000312<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000313<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000314<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000315
Misha Brukman9d0919f2003-11-08 01:05:38 +0000316<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000317
Reid Spencer2c452282007-08-07 14:34:28 +0000318 <p>LLVM identifiers come in two basic types: global and local. Global
319 identifiers (functions, global variables) begin with the @ character. Local
320 identifiers (register names, types) begin with the % character. Additionally,
321 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000322
Chris Lattner00950542001-06-06 20:29:01 +0000323<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000324 <li>Named values are represented as a string of characters with their prefix.
325 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
326 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000327 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000328 with quotes. In this way, anything except a <tt>&quot;</tt> character can
329 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000330
Reid Spencer2c452282007-08-07 14:34:28 +0000331 <li>Unnamed values are represented as an unsigned numeric value with their
332 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000333
Reid Spencercc16dc32004-12-09 18:02:53 +0000334 <li>Constants, which are described in a <a href="#constants">section about
335 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000336</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337
Reid Spencer2c452282007-08-07 14:34:28 +0000338<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339don't need to worry about name clashes with reserved words, and the set of
340reserved words may be expanded in the future without penalty. Additionally,
341unnamed identifiers allow a compiler to quickly come up with a temporary
342variable without having to avoid symbol table conflicts.</p>
343
Chris Lattner261efe92003-11-25 01:02:51 +0000344<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000345languages. There are keywords for different opcodes
346('<tt><a href="#i_add">add</a></tt>',
347 '<tt><a href="#i_bitcast">bitcast</a></tt>',
348 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000349href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000351none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352
353<p>Here is an example of LLVM code to multiply the integer variable
354'<tt>%X</tt>' by 8:</p>
355
Misha Brukman9d0919f2003-11-08 01:05:38 +0000356<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000357
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000358<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000360%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000362</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Misha Brukman9d0919f2003-11-08 01:05:38 +0000364<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000366<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000368%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000370</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371
Misha Brukman9d0919f2003-11-08 01:05:38 +0000372<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000374<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
377<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
378%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381
Chris Lattner261efe92003-11-25 01:02:51 +0000382<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
383important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384
Chris Lattner00950542001-06-06 20:29:01 +0000385<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386
387 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
388 line.</li>
389
390 <li>Unnamed temporaries are created when the result of a computation is not
391 assigned to a named value.</li>
392
Misha Brukman9d0919f2003-11-08 01:05:38 +0000393 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Misha Brukman9d0919f2003-11-08 01:05:38 +0000395</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
John Criswelle4c57cc2005-05-12 16:52:32 +0000397<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398demonstrating instructions, we will follow an instruction with a comment that
399defines the type and name of value produced. Comments are shown in italic
400text.</p>
401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000403
404<!-- *********************************************************************** -->
405<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
406<!-- *********************************************************************** -->
407
408<!-- ======================================================================= -->
409<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
410</div>
411
412<div class="doc_text">
413
414<p>LLVM programs are composed of "Module"s, each of which is a
415translation unit of the input programs. Each module consists of
416functions, global variables, and symbol table entries. Modules may be
417combined together with the LLVM linker, which merges function (and
418global variable) definitions, resolves forward declarations, and merges
419symbol table entries. Here is an example of the "hello world" module:</p>
420
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000421<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000422<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000423<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
424 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000425
426<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000427<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000428
429<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000430define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000431 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000432 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000433 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000434
435 <i>; Call puts function to write out the string to stdout...</i>
436 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000439 href="#i_ret">ret</a> i32 0<br>}<br>
440</pre>
441</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442
443<p>This example is made up of a <a href="#globalvars">global variable</a>
444named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
445function, and a <a href="#functionstructure">function definition</a>
446for "<tt>main</tt>".</p>
447
Chris Lattnere5d947b2004-12-09 16:36:40 +0000448<p>In general, a module is made up of a list of global values,
449where both functions and global variables are global values. Global values are
450represented by a pointer to a memory location (in this case, a pointer to an
451array of char, and a pointer to a function), and have one of the following <a
452href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000453
Chris Lattnere5d947b2004-12-09 16:36:40 +0000454</div>
455
456<!-- ======================================================================= -->
457<div class="doc_subsection">
458 <a name="linkage">Linkage Types</a>
459</div>
460
461<div class="doc_text">
462
463<p>
464All Global Variables and Functions have one of the following types of linkage:
465</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000466
467<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000468
Chris Lattnerfa730212004-12-09 16:11:40 +0000469 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000470
471 <dd>Global values with internal linkage are only directly accessible by
472 objects in the current module. In particular, linking code into a module with
473 an internal global value may cause the internal to be renamed as necessary to
474 avoid collisions. Because the symbol is internal to the module, all
475 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000476 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000477 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478
Chris Lattnerfa730212004-12-09 16:11:40 +0000479 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
Chris Lattner4887bd82007-01-14 06:51:48 +0000481 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
482 the same name when linkage occurs. This is typically used to implement
483 inline functions, templates, or other code which must be generated in each
484 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
485 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000486 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000487
Chris Lattnerfa730212004-12-09 16:11:40 +0000488 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000489
490 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
491 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattner4887bd82007-01-14 06:51:48 +0000492 used for globals that may be emitted in multiple translation units, but that
493 are not guaranteed to be emitted into every translation unit that uses them.
494 One example of this are common globals in C, such as "<tt>int X;</tt>" at
495 global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000496 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000497
Chris Lattnerfa730212004-12-09 16:11:40 +0000498 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000499
500 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
501 pointer to array type. When two global variables with appending linkage are
502 linked together, the two global arrays are appended together. This is the
503 LLVM, typesafe, equivalent of having the system linker append together
504 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000505 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000506
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000507 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
508 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
509 until linked, if not linked, the symbol becomes null instead of being an
510 undefined reference.
511 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000512
Chris Lattnerfa730212004-12-09 16:11:40 +0000513 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000514
515 <dd>If none of the above identifiers are used, the global is externally
516 visible, meaning that it participates in linkage and can be used to resolve
517 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000518 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000519</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000520
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000521 <p>
522 The next two types of linkage are targeted for Microsoft Windows platform
523 only. They are designed to support importing (exporting) symbols from (to)
524 DLLs.
525 </p>
526
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000527 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000528 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
529
530 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
531 or variable via a global pointer to a pointer that is set up by the DLL
532 exporting the symbol. On Microsoft Windows targets, the pointer name is
533 formed by combining <code>_imp__</code> and the function or variable name.
534 </dd>
535
536 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
537
538 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
539 pointer to a pointer in a DLL, so that it can be referenced with the
540 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
541 name is formed by combining <code>_imp__</code> and the function or variable
542 name.
543 </dd>
544
Chris Lattnerfa730212004-12-09 16:11:40 +0000545</dl>
546
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000547<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000548variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
549variable and was linked with this one, one of the two would be renamed,
550preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
551external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000552outside of the current module.</p>
553<p>It is illegal for a function <i>declaration</i>
554to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000555or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000556<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
557linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000558</div>
559
560<!-- ======================================================================= -->
561<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000562 <a name="callingconv">Calling Conventions</a>
563</div>
564
565<div class="doc_text">
566
567<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
568and <a href="#i_invoke">invokes</a> can all have an optional calling convention
569specified for the call. The calling convention of any pair of dynamic
570caller/callee must match, or the behavior of the program is undefined. The
571following calling conventions are supported by LLVM, and more may be added in
572the future:</p>
573
574<dl>
575 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
576
577 <dd>This calling convention (the default if no other calling convention is
578 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000579 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000580 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000581 </dd>
582
583 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
584
585 <dd>This calling convention attempts to make calls as fast as possible
586 (e.g. by passing things in registers). This calling convention allows the
587 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000588 without having to conform to an externally specified ABI. Implementations of
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000589 this convention should allow arbitrary
590 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
591 supported. This calling convention does not support varargs and requires the
592 prototype of all callees to exactly match the prototype of the function
593 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000594 </dd>
595
596 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
597
598 <dd>This calling convention attempts to make code in the caller as efficient
599 as possible under the assumption that the call is not commonly executed. As
600 such, these calls often preserve all registers so that the call does not break
601 any live ranges in the caller side. This calling convention does not support
602 varargs and requires the prototype of all callees to exactly match the
603 prototype of the function definition.
604 </dd>
605
Chris Lattnercfe6b372005-05-07 01:46:40 +0000606 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000607
608 <dd>Any calling convention may be specified by number, allowing
609 target-specific calling conventions to be used. Target specific calling
610 conventions start at 64.
611 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000612</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000613
614<p>More calling conventions can be added/defined on an as-needed basis, to
615support pascal conventions or any other well-known target-independent
616convention.</p>
617
618</div>
619
620<!-- ======================================================================= -->
621<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000622 <a name="visibility">Visibility Styles</a>
623</div>
624
625<div class="doc_text">
626
627<p>
628All Global Variables and Functions have one of the following visibility styles:
629</p>
630
631<dl>
632 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
633
634 <dd>On ELF, default visibility means that the declaration is visible to other
635 modules and, in shared libraries, means that the declared entity may be
636 overridden. On Darwin, default visibility means that the declaration is
637 visible to other modules. Default visibility corresponds to "external
638 linkage" in the language.
639 </dd>
640
641 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
642
643 <dd>Two declarations of an object with hidden visibility refer to the same
644 object if they are in the same shared object. Usually, hidden visibility
645 indicates that the symbol will not be placed into the dynamic symbol table,
646 so no other module (executable or shared library) can reference it
647 directly.
648 </dd>
649
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000650 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
651
652 <dd>On ELF, protected visibility indicates that the symbol will be placed in
653 the dynamic symbol table, but that references within the defining module will
654 bind to the local symbol. That is, the symbol cannot be overridden by another
655 module.
656 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000657</dl>
658
659</div>
660
661<!-- ======================================================================= -->
662<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000663 <a name="globalvars">Global Variables</a>
664</div>
665
666<div class="doc_text">
667
Chris Lattner3689a342005-02-12 19:30:21 +0000668<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000669instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000670an explicit section to be placed in, and may have an optional explicit alignment
671specified. A variable may be defined as "thread_local", which means that it
672will not be shared by threads (each thread will have a separated copy of the
673variable). A variable may be defined as a global "constant," which indicates
674that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000675optimization, allowing the global data to be placed in the read-only section of
676an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000677cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000678
679<p>
680LLVM explicitly allows <em>declarations</em> of global variables to be marked
681constant, even if the final definition of the global is not. This capability
682can be used to enable slightly better optimization of the program, but requires
683the language definition to guarantee that optimizations based on the
684'constantness' are valid for the translation units that do not include the
685definition.
686</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000687
688<p>As SSA values, global variables define pointer values that are in
689scope (i.e. they dominate) all basic blocks in the program. Global
690variables always define a pointer to their "content" type because they
691describe a region of memory, and all memory objects in LLVM are
692accessed through pointers.</p>
693
Christopher Lamb284d9922007-12-11 09:31:00 +0000694<p>A global variable may be declared to reside in a target-specifc numbered
695address space. For targets that support them, address spaces may affect how
696optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000697the variable. The default address space is zero. The address space qualifier
698must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000699
Chris Lattner88f6c462005-11-12 00:45:07 +0000700<p>LLVM allows an explicit section to be specified for globals. If the target
701supports it, it will emit globals to the section specified.</p>
702
Chris Lattner2cbdc452005-11-06 08:02:57 +0000703<p>An explicit alignment may be specified for a global. If not present, or if
704the alignment is set to zero, the alignment of the global is set by the target
705to whatever it feels convenient. If an explicit alignment is specified, the
706global is forced to have at least that much alignment. All alignments must be
707a power of 2.</p>
708
Christopher Lamb284d9922007-12-11 09:31:00 +0000709<p>For example, the following defines a global in a numbered address space with
710an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000711
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000712<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000713<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000714@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000715</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000716</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000717
Chris Lattnerfa730212004-12-09 16:11:40 +0000718</div>
719
720
721<!-- ======================================================================= -->
722<div class="doc_subsection">
723 <a name="functionstructure">Functions</a>
724</div>
725
726<div class="doc_text">
727
Reid Spencerca86e162006-12-31 07:07:53 +0000728<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
729an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000730<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000731<a href="#callingconv">calling convention</a>, a return type, an optional
732<a href="#paramattrs">parameter attribute</a> for the return type, a function
733name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000734<a href="#paramattrs">parameter attributes</a>), an optional section, an
Gordon Henriksene754abe2007-12-10 03:30:21 +0000735optional alignment, an optional <a href="#gc">garbage collector name</a>, an
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000736opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000737
738LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
739optional <a href="#linkage">linkage type</a>, an optional
740<a href="#visibility">visibility style</a>, an optional
741<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000742<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000743name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000744<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000745
746<p>A function definition contains a list of basic blocks, forming the CFG for
747the function. Each basic block may optionally start with a label (giving the
748basic block a symbol table entry), contains a list of instructions, and ends
749with a <a href="#terminators">terminator</a> instruction (such as a branch or
750function return).</p>
751
Chris Lattner4a3c9012007-06-08 16:52:14 +0000752<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000753executed on entrance to the function, and it is not allowed to have predecessor
754basic blocks (i.e. there can not be any branches to the entry block of a
755function). Because the block can have no predecessors, it also cannot have any
756<a href="#i_phi">PHI nodes</a>.</p>
757
Chris Lattner88f6c462005-11-12 00:45:07 +0000758<p>LLVM allows an explicit section to be specified for functions. If the target
759supports it, it will emit functions to the section specified.</p>
760
Chris Lattner2cbdc452005-11-06 08:02:57 +0000761<p>An explicit alignment may be specified for a function. If not present, or if
762the alignment is set to zero, the alignment of the function is set by the target
763to whatever it feels convenient. If an explicit alignment is specified, the
764function is forced to have at least that much alignment. All alignments must be
765a power of 2.</p>
766
Chris Lattnerfa730212004-12-09 16:11:40 +0000767</div>
768
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000769
770<!-- ======================================================================= -->
771<div class="doc_subsection">
772 <a name="aliasstructure">Aliases</a>
773</div>
774<div class="doc_text">
775 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000776 function, global variable, another alias or bitcast of global value). Aliases
777 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000778 optional <a href="#visibility">visibility style</a>.</p>
779
780 <h5>Syntax:</h5>
781
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000782<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000783<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000784@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000785</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000786</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000787
788</div>
789
790
791
Chris Lattner4e9aba72006-01-23 23:23:47 +0000792<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000793<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
794<div class="doc_text">
795 <p>The return type and each parameter of a function type may have a set of
796 <i>parameter attributes</i> associated with them. Parameter attributes are
797 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000798 a function. Parameter attributes are considered to be part of the function,
799 not of the function type, so functions with different parameter attributes
800 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000801
Reid Spencer950e9f82007-01-15 18:27:39 +0000802 <p>Parameter attributes are simple keywords that follow the type specified. If
803 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000804 example:</p>
805
806<div class="doc_code">
807<pre>
Duncan Sandsdc024672007-11-27 13:23:08 +0000808declare i32 @printf(i8* noalias , ...) nounwind
809declare i32 @atoi(i8*) nounwind readonly
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000810</pre>
811</div>
812
Duncan Sandsdc024672007-11-27 13:23:08 +0000813 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
814 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000815
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000816 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000817 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000818 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000819 <dd>This indicates that the parameter should be zero extended just before
820 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000821
Reid Spencer9445e9a2007-07-19 23:13:04 +0000822 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000823 <dd>This indicates that the parameter should be sign extended just before
824 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000825
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000826 <dt><tt>inreg</tt></dt>
827 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000828 possible) during assembling function call. Support for this attribute is
829 target-specific</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000830
831 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000832 <dd>This indicates that the pointer parameter should really be passed by
833 value to the function. The attribute implies that a hidden copy of the
834 pointee is made between the caller and the callee, so the callee is unable
835 to modify the value in the callee. This attribute is only valid on llvm
836 pointer arguments. It is generally used to pass structs and arrays by
837 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000838
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000839 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000840 <dd>This indicates that the pointer parameter specifies the address of a
841 structure that is the return value of the function in the source program.
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000842 Loads and stores to the structure are assumed not to trap.
Duncan Sandse26dec62008-02-18 04:19:38 +0000843 May only be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000844
Zhou Shengfebca342007-06-05 05:28:26 +0000845 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000846 <dd>This indicates that the parameter does not alias any global or any other
847 parameter. The caller is responsible for ensuring that this is the case,
848 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000849
Reid Spencer2dc52012007-03-22 02:18:56 +0000850 <dt><tt>noreturn</tt></dt>
851 <dd>This function attribute indicates that the function never returns. This
852 indicates to LLVM that every call to this function should be treated as if
853 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000854
Reid Spencer67606122007-03-22 02:02:11 +0000855 <dt><tt>nounwind</tt></dt>
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000856 <dd>This function attribute indicates that no exceptions unwind out of the
857 function. Usually this is because the function makes no use of exceptions,
858 but it may also be that the function catches any exceptions thrown when
859 executing it.</dd>
860
Duncan Sands50f19f52007-07-27 19:57:41 +0000861 <dt><tt>nest</tt></dt>
862 <dd>This indicates that the parameter can be excised using the
863 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000864 <dt><tt>readonly</tt></dt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000865 <dd>This function attribute indicates that the function has no side-effects
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000866 except for producing a return value or throwing an exception. The value
867 returned must only depend on the function arguments and/or global variables.
868 It may use values obtained by dereferencing pointers.</dd>
869 <dt><tt>readnone</tt></dt>
870 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000871 function, but in addition it is not allowed to dereference any pointer arguments
872 or global variables.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000873 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000874
Reid Spencerca86e162006-12-31 07:07:53 +0000875</div>
876
877<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000878<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000879 <a name="gc">Garbage Collector Names</a>
880</div>
881
882<div class="doc_text">
883<p>Each function may specify a garbage collector name, which is simply a
884string.</p>
885
886<div class="doc_code"><pre
887>define void @f() gc "name" { ...</pre></div>
888
889<p>The compiler declares the supported values of <i>name</i>. Specifying a
890collector which will cause the compiler to alter its output in order to support
891the named garbage collection algorithm.</p>
892</div>
893
894<!-- ======================================================================= -->
895<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000896 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000897</div>
898
899<div class="doc_text">
900<p>
901Modules may contain "module-level inline asm" blocks, which corresponds to the
902GCC "file scope inline asm" blocks. These blocks are internally concatenated by
903LLVM and treated as a single unit, but may be separated in the .ll file if
904desired. The syntax is very simple:
905</p>
906
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000907<div class="doc_code">
908<pre>
909module asm "inline asm code goes here"
910module asm "more can go here"
911</pre>
912</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000913
914<p>The strings can contain any character by escaping non-printable characters.
915 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
916 for the number.
917</p>
918
919<p>
920 The inline asm code is simply printed to the machine code .s file when
921 assembly code is generated.
922</p>
923</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000924
Reid Spencerde151942007-02-19 23:54:10 +0000925<!-- ======================================================================= -->
926<div class="doc_subsection">
927 <a name="datalayout">Data Layout</a>
928</div>
929
930<div class="doc_text">
931<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000932data is to be laid out in memory. The syntax for the data layout is simply:</p>
933<pre> target datalayout = "<i>layout specification</i>"</pre>
934<p>The <i>layout specification</i> consists of a list of specifications
935separated by the minus sign character ('-'). Each specification starts with a
936letter and may include other information after the letter to define some
937aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000938<dl>
939 <dt><tt>E</tt></dt>
940 <dd>Specifies that the target lays out data in big-endian form. That is, the
941 bits with the most significance have the lowest address location.</dd>
942 <dt><tt>e</tt></dt>
943 <dd>Specifies that hte target lays out data in little-endian form. That is,
944 the bits with the least significance have the lowest address location.</dd>
945 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
946 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
947 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
948 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
949 too.</dd>
950 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
951 <dd>This specifies the alignment for an integer type of a given bit
952 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
953 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
954 <dd>This specifies the alignment for a vector type of a given bit
955 <i>size</i>.</dd>
956 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
957 <dd>This specifies the alignment for a floating point type of a given bit
958 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
959 (double).</dd>
960 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
961 <dd>This specifies the alignment for an aggregate type of a given bit
962 <i>size</i>.</dd>
963</dl>
964<p>When constructing the data layout for a given target, LLVM starts with a
965default set of specifications which are then (possibly) overriden by the
966specifications in the <tt>datalayout</tt> keyword. The default specifications
967are given in this list:</p>
968<ul>
969 <li><tt>E</tt> - big endian</li>
970 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
971 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
972 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
973 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
974 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
975 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
976 alignment of 64-bits</li>
977 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
978 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
979 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
980 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
981 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
982</ul>
983<p>When llvm is determining the alignment for a given type, it uses the
984following rules:
985<ol>
986 <li>If the type sought is an exact match for one of the specifications, that
987 specification is used.</li>
988 <li>If no match is found, and the type sought is an integer type, then the
989 smallest integer type that is larger than the bitwidth of the sought type is
990 used. If none of the specifications are larger than the bitwidth then the the
991 largest integer type is used. For example, given the default specifications
992 above, the i7 type will use the alignment of i8 (next largest) while both
993 i65 and i256 will use the alignment of i64 (largest specified).</li>
994 <li>If no match is found, and the type sought is a vector type, then the
995 largest vector type that is smaller than the sought vector type will be used
996 as a fall back. This happens because <128 x double> can be implemented in
997 terms of 64 <2 x double>, for example.</li>
998</ol>
999</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001000
Chris Lattner00950542001-06-06 20:29:01 +00001001<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001002<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1003<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001004
Misha Brukman9d0919f2003-11-08 01:05:38 +00001005<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001006
Misha Brukman9d0919f2003-11-08 01:05:38 +00001007<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001008intermediate representation. Being typed enables a number of
1009optimizations to be performed on the IR directly, without having to do
1010extra analyses on the side before the transformation. A strong type
1011system makes it easier to read the generated code and enables novel
1012analyses and transformations that are not feasible to perform on normal
1013three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001014
1015</div>
1016
Chris Lattner00950542001-06-06 20:29:01 +00001017<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001018<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001019Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001020<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001021<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001022classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001023
1024<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001025 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001026 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001027 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001028 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001029 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001030 </tr>
1031 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001032 <td><a href="#t_floating">floating point</a></td>
1033 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001034 </tr>
1035 <tr>
1036 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001037 <td><a href="#t_integer">integer</a>,
1038 <a href="#t_floating">floating point</a>,
1039 <a href="#t_pointer">pointer</a>,
1040 <a href="#t_vector">vector</a>
Dan Gohmana334d5f2008-05-12 23:51:09 +00001041 <a href="#t_struct">structure</a>,
1042 <a href="#t_array">array</a>,
Reid Spencerca86e162006-12-31 07:07:53 +00001043 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001044 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001045 <tr>
1046 <td><a href="#t_primitive">primitive</a></td>
1047 <td><a href="#t_label">label</a>,
1048 <a href="#t_void">void</a>,
1049 <a href="#t_integer">integer</a>,
1050 <a href="#t_floating">floating point</a>.</td>
1051 </tr>
1052 <tr>
1053 <td><a href="#t_derived">derived</a></td>
1054 <td><a href="#t_integer">integer</a>,
1055 <a href="#t_array">array</a>,
1056 <a href="#t_function">function</a>,
1057 <a href="#t_pointer">pointer</a>,
1058 <a href="#t_struct">structure</a>,
1059 <a href="#t_pstruct">packed structure</a>,
1060 <a href="#t_vector">vector</a>,
1061 <a href="#t_opaque">opaque</a>.
1062 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001063 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001064</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001065
Chris Lattner261efe92003-11-25 01:02:51 +00001066<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1067most important. Values of these types are the only ones which can be
1068produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001069instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001070</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001071
Chris Lattner00950542001-06-06 20:29:01 +00001072<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001073<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001074
Chris Lattner4f69f462008-01-04 04:32:38 +00001075<div class="doc_text">
1076<p>The primitive types are the fundamental building blocks of the LLVM
1077system.</p>
1078
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001079</div>
1080
Chris Lattner4f69f462008-01-04 04:32:38 +00001081<!-- _______________________________________________________________________ -->
1082<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1083
1084<div class="doc_text">
1085 <table>
1086 <tbody>
1087 <tr><th>Type</th><th>Description</th></tr>
1088 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1089 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1090 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1091 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1092 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1093 </tbody>
1094 </table>
1095</div>
1096
1097<!-- _______________________________________________________________________ -->
1098<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1099
1100<div class="doc_text">
1101<h5>Overview:</h5>
1102<p>The void type does not represent any value and has no size.</p>
1103
1104<h5>Syntax:</h5>
1105
1106<pre>
1107 void
1108</pre>
1109</div>
1110
1111<!-- _______________________________________________________________________ -->
1112<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1113
1114<div class="doc_text">
1115<h5>Overview:</h5>
1116<p>The label type represents code labels.</p>
1117
1118<h5>Syntax:</h5>
1119
1120<pre>
1121 label
1122</pre>
1123</div>
1124
1125
1126<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001127<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001128
Misha Brukman9d0919f2003-11-08 01:05:38 +00001129<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001130
Chris Lattner261efe92003-11-25 01:02:51 +00001131<p>The real power in LLVM comes from the derived types in the system.
1132This is what allows a programmer to represent arrays, functions,
1133pointers, and other useful types. Note that these derived types may be
1134recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001135
Misha Brukman9d0919f2003-11-08 01:05:38 +00001136</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001137
Chris Lattner00950542001-06-06 20:29:01 +00001138<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001139<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1140
1141<div class="doc_text">
1142
1143<h5>Overview:</h5>
1144<p>The integer type is a very simple derived type that simply specifies an
1145arbitrary bit width for the integer type desired. Any bit width from 1 bit to
11462^23-1 (about 8 million) can be specified.</p>
1147
1148<h5>Syntax:</h5>
1149
1150<pre>
1151 iN
1152</pre>
1153
1154<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1155value.</p>
1156
1157<h5>Examples:</h5>
1158<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001159 <tbody>
1160 <tr>
1161 <td><tt>i1</tt></td>
1162 <td>a single-bit integer.</td>
1163 </tr><tr>
1164 <td><tt>i32</tt></td>
1165 <td>a 32-bit integer.</td>
1166 </tr><tr>
1167 <td><tt>i1942652</tt></td>
1168 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001169 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001170 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001171</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001172</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001173
1174<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001175<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001176
Misha Brukman9d0919f2003-11-08 01:05:38 +00001177<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001178
Chris Lattner00950542001-06-06 20:29:01 +00001179<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001180
Misha Brukman9d0919f2003-11-08 01:05:38 +00001181<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001182sequentially in memory. The array type requires a size (number of
1183elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001184
Chris Lattner7faa8832002-04-14 06:13:44 +00001185<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001186
1187<pre>
1188 [&lt;# elements&gt; x &lt;elementtype&gt;]
1189</pre>
1190
John Criswelle4c57cc2005-05-12 16:52:32 +00001191<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001192be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001193
Chris Lattner7faa8832002-04-14 06:13:44 +00001194<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001195<table class="layout">
1196 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001197 <td class="left"><tt>[40 x i32]</tt></td>
1198 <td class="left">Array of 40 32-bit integer values.</td>
1199 </tr>
1200 <tr class="layout">
1201 <td class="left"><tt>[41 x i32]</tt></td>
1202 <td class="left">Array of 41 32-bit integer values.</td>
1203 </tr>
1204 <tr class="layout">
1205 <td class="left"><tt>[4 x i8]</tt></td>
1206 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001207 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001208</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001209<p>Here are some examples of multidimensional arrays:</p>
1210<table class="layout">
1211 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001212 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1213 <td class="left">3x4 array of 32-bit integer values.</td>
1214 </tr>
1215 <tr class="layout">
1216 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1217 <td class="left">12x10 array of single precision floating point values.</td>
1218 </tr>
1219 <tr class="layout">
1220 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1221 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001222 </tr>
1223</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001224
John Criswell0ec250c2005-10-24 16:17:18 +00001225<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1226length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001227LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1228As a special case, however, zero length arrays are recognized to be variable
1229length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001230type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001231
Misha Brukman9d0919f2003-11-08 01:05:38 +00001232</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001233
Chris Lattner00950542001-06-06 20:29:01 +00001234<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001235<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001236<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001237
Chris Lattner00950542001-06-06 20:29:01 +00001238<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001239
Chris Lattner261efe92003-11-25 01:02:51 +00001240<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001241consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001242return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001243If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001244class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001245
Chris Lattner00950542001-06-06 20:29:01 +00001246<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001247
1248<pre>
1249 &lt;returntype list&gt; (&lt;parameter list&gt;)
1250</pre>
1251
John Criswell0ec250c2005-10-24 16:17:18 +00001252<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001253specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001254which indicates that the function takes a variable number of arguments.
1255Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001256 href="#int_varargs">variable argument handling intrinsic</a> functions.
1257'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1258<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001259
Chris Lattner00950542001-06-06 20:29:01 +00001260<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001261<table class="layout">
1262 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001263 <td class="left"><tt>i32 (i32)</tt></td>
1264 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001265 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001266 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001267 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001268 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001269 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1270 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001271 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001272 <tt>float</tt>.
1273 </td>
1274 </tr><tr class="layout">
1275 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1276 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001277 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001278 which returns an integer. This is the signature for <tt>printf</tt> in
1279 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001280 </td>
Devang Patela582f402008-03-24 05:35:41 +00001281 </tr><tr class="layout">
1282 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001283 <td class="left">A function taking an <tt>i32></tt>, returning two
1284 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001285 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001286 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001287</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001288
Misha Brukman9d0919f2003-11-08 01:05:38 +00001289</div>
Chris Lattner00950542001-06-06 20:29:01 +00001290<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001291<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001292<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001293<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001294<p>The structure type is used to represent a collection of data members
1295together in memory. The packing of the field types is defined to match
1296the ABI of the underlying processor. The elements of a structure may
1297be any type that has a size.</p>
1298<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1299and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1300field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1301instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001302<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001303<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001304<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001305<table class="layout">
1306 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001307 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1308 <td class="left">A triple of three <tt>i32</tt> values</td>
1309 </tr><tr class="layout">
1310 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1311 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1312 second element is a <a href="#t_pointer">pointer</a> to a
1313 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1314 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001315 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001316</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001317</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001318
Chris Lattner00950542001-06-06 20:29:01 +00001319<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001320<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1321</div>
1322<div class="doc_text">
1323<h5>Overview:</h5>
1324<p>The packed structure type is used to represent a collection of data members
1325together in memory. There is no padding between fields. Further, the alignment
1326of a packed structure is 1 byte. The elements of a packed structure may
1327be any type that has a size.</p>
1328<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1329and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1330field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1331instruction.</p>
1332<h5>Syntax:</h5>
1333<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1334<h5>Examples:</h5>
1335<table class="layout">
1336 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001337 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1338 <td class="left">A triple of three <tt>i32</tt> values</td>
1339 </tr><tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001340 <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001341 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1342 second element is a <a href="#t_pointer">pointer</a> to a
1343 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1344 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001345 </tr>
1346</table>
1347</div>
1348
1349<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001350<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001351<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001352<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001353<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001354reference to another object, which must live in memory. Pointer types may have
1355an optional address space attribute defining the target-specific numbered
1356address space where the pointed-to object resides. The default address space is
1357zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001358<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001359<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001360<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001361<table class="layout">
1362 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001363 <td class="left"><tt>[4x i32]*</tt></td>
1364 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1365 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1366 </tr>
1367 <tr class="layout">
1368 <td class="left"><tt>i32 (i32 *) *</tt></td>
1369 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001370 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001371 <tt>i32</tt>.</td>
1372 </tr>
1373 <tr class="layout">
1374 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1375 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1376 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001377 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001378</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001379</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001380
Chris Lattnera58561b2004-08-12 19:12:28 +00001381<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001382<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001383<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001384
Chris Lattnera58561b2004-08-12 19:12:28 +00001385<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001386
Reid Spencer485bad12007-02-15 03:07:05 +00001387<p>A vector type is a simple derived type that represents a vector
1388of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001389are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001390A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001391elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001392of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001393considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001394
Chris Lattnera58561b2004-08-12 19:12:28 +00001395<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001396
1397<pre>
1398 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1399</pre>
1400
John Criswellc1f786c2005-05-13 22:25:59 +00001401<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001402be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001403
Chris Lattnera58561b2004-08-12 19:12:28 +00001404<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001405
Reid Spencerd3f876c2004-11-01 08:19:36 +00001406<table class="layout">
1407 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001408 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1409 <td class="left">Vector of 4 32-bit integer values.</td>
1410 </tr>
1411 <tr class="layout">
1412 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1413 <td class="left">Vector of 8 32-bit floating-point values.</td>
1414 </tr>
1415 <tr class="layout">
1416 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1417 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001418 </tr>
1419</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001420</div>
1421
Chris Lattner69c11bb2005-04-25 17:34:15 +00001422<!-- _______________________________________________________________________ -->
1423<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1424<div class="doc_text">
1425
1426<h5>Overview:</h5>
1427
1428<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001429corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001430In LLVM, opaque types can eventually be resolved to any type (not just a
1431structure type).</p>
1432
1433<h5>Syntax:</h5>
1434
1435<pre>
1436 opaque
1437</pre>
1438
1439<h5>Examples:</h5>
1440
1441<table class="layout">
1442 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001443 <td class="left"><tt>opaque</tt></td>
1444 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001445 </tr>
1446</table>
1447</div>
1448
1449
Chris Lattnerc3f59762004-12-09 17:30:23 +00001450<!-- *********************************************************************** -->
1451<div class="doc_section"> <a name="constants">Constants</a> </div>
1452<!-- *********************************************************************** -->
1453
1454<div class="doc_text">
1455
1456<p>LLVM has several different basic types of constants. This section describes
1457them all and their syntax.</p>
1458
1459</div>
1460
1461<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001462<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001463
1464<div class="doc_text">
1465
1466<dl>
1467 <dt><b>Boolean constants</b></dt>
1468
1469 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001470 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001471 </dd>
1472
1473 <dt><b>Integer constants</b></dt>
1474
Reid Spencercc16dc32004-12-09 18:02:53 +00001475 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001476 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001477 integer types.
1478 </dd>
1479
1480 <dt><b>Floating point constants</b></dt>
1481
1482 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1483 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001484 notation (see below). The assembler requires the exact decimal value of
1485 a floating-point constant. For example, the assembler accepts 1.25 but
1486 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1487 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001488
1489 <dt><b>Null pointer constants</b></dt>
1490
John Criswell9e2485c2004-12-10 15:51:16 +00001491 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001492 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1493
1494</dl>
1495
John Criswell9e2485c2004-12-10 15:51:16 +00001496<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001497of floating point constants. For example, the form '<tt>double
14980x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
14994.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001500(and the only time that they are generated by the disassembler) is when a
1501floating point constant must be emitted but it cannot be represented as a
1502decimal floating point number. For example, NaN's, infinities, and other
1503special values are represented in their IEEE hexadecimal format so that
1504assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001505
1506</div>
1507
1508<!-- ======================================================================= -->
1509<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1510</div>
1511
1512<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001513<p>Aggregate constants arise from aggregation of simple constants
1514and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001515
1516<dl>
1517 <dt><b>Structure constants</b></dt>
1518
1519 <dd>Structure constants are represented with notation similar to structure
1520 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001521 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1522 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001523 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001524 types of elements must match those specified by the type.
1525 </dd>
1526
1527 <dt><b>Array constants</b></dt>
1528
1529 <dd>Array constants are represented with notation similar to array type
1530 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001531 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001532 constants must have <a href="#t_array">array type</a>, and the number and
1533 types of elements must match those specified by the type.
1534 </dd>
1535
Reid Spencer485bad12007-02-15 03:07:05 +00001536 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001537
Reid Spencer485bad12007-02-15 03:07:05 +00001538 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001539 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001540 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001541 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001542 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001543 match those specified by the type.
1544 </dd>
1545
1546 <dt><b>Zero initialization</b></dt>
1547
1548 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1549 value to zero of <em>any</em> type, including scalar and aggregate types.
1550 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001551 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001552 initializers.
1553 </dd>
1554</dl>
1555
1556</div>
1557
1558<!-- ======================================================================= -->
1559<div class="doc_subsection">
1560 <a name="globalconstants">Global Variable and Function Addresses</a>
1561</div>
1562
1563<div class="doc_text">
1564
1565<p>The addresses of <a href="#globalvars">global variables</a> and <a
1566href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001567constants. These constants are explicitly referenced when the <a
1568href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001569href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1570file:</p>
1571
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001572<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001573<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001574@X = global i32 17
1575@Y = global i32 42
1576@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001577</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001578</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001579
1580</div>
1581
1582<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001583<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001584<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001585 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001586 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001587 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001588
Reid Spencer2dc45b82004-12-09 18:13:12 +00001589 <p>Undefined values indicate to the compiler that the program is well defined
1590 no matter what value is used, giving the compiler more freedom to optimize.
1591 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001592</div>
1593
1594<!-- ======================================================================= -->
1595<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1596</div>
1597
1598<div class="doc_text">
1599
1600<p>Constant expressions are used to allow expressions involving other constants
1601to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001602href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001603that does not have side effects (e.g. load and call are not supported). The
1604following is the syntax for constant expressions:</p>
1605
1606<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001607 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1608 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001609 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001610
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001611 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1612 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001613 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001614
1615 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1616 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001617 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001618
1619 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1620 <dd>Truncate a floating point constant to another floating point type. The
1621 size of CST must be larger than the size of TYPE. Both types must be
1622 floating point.</dd>
1623
1624 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1625 <dd>Floating point extend a constant to another type. The size of CST must be
1626 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1627
Reid Spencer1539a1c2007-07-31 14:40:14 +00001628 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001629 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001630 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1631 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1632 of the same number of elements. If the value won't fit in the integer type,
1633 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001634
Reid Spencerd4448792006-11-09 23:03:26 +00001635 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001636 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001637 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1638 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1639 of the same number of elements. If the value won't fit in the integer type,
1640 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001641
Reid Spencerd4448792006-11-09 23:03:26 +00001642 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001643 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001644 constant. TYPE must be a scalar or vector floating point type. CST must be of
1645 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1646 of the same number of elements. If the value won't fit in the floating point
1647 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001648
Reid Spencerd4448792006-11-09 23:03:26 +00001649 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001650 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001651 constant. TYPE must be a scalar or vector floating point type. CST must be of
1652 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1653 of the same number of elements. If the value won't fit in the floating point
1654 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001655
Reid Spencer5c0ef472006-11-11 23:08:07 +00001656 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1657 <dd>Convert a pointer typed constant to the corresponding integer constant
1658 TYPE must be an integer type. CST must be of pointer type. The CST value is
1659 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1660
1661 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1662 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1663 pointer type. CST must be of integer type. The CST value is zero extended,
1664 truncated, or unchanged to make it fit in a pointer size. This one is
1665 <i>really</i> dangerous!</dd>
1666
1667 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001668 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1669 identical (same number of bits). The conversion is done as if the CST value
1670 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001671 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001672 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001673 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001674 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001675
1676 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1677
1678 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1679 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1680 instruction, the index list may have zero or more indexes, which are required
1681 to make sense for the type of "CSTPTR".</dd>
1682
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001683 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1684
1685 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001686 constants.</dd>
1687
1688 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1689 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1690
1691 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1692 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001693
Nate Begemanac80ade2008-05-12 19:01:56 +00001694 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1695 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1696
1697 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1698 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1699
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001700 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1701
1702 <dd>Perform the <a href="#i_extractelement">extractelement
1703 operation</a> on constants.
1704
Robert Bocchino05ccd702006-01-15 20:48:27 +00001705 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1706
1707 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001708 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001709
Chris Lattnerc1989542006-04-08 00:13:41 +00001710
1711 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1712
1713 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001714 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001715
Chris Lattnerc3f59762004-12-09 17:30:23 +00001716 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1717
Reid Spencer2dc45b82004-12-09 18:13:12 +00001718 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1719 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001720 binary</a> operations. The constraints on operands are the same as those for
1721 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001722 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001723</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001724</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001725
Chris Lattner00950542001-06-06 20:29:01 +00001726<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001727<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1728<!-- *********************************************************************** -->
1729
1730<!-- ======================================================================= -->
1731<div class="doc_subsection">
1732<a name="inlineasm">Inline Assembler Expressions</a>
1733</div>
1734
1735<div class="doc_text">
1736
1737<p>
1738LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1739Module-Level Inline Assembly</a>) through the use of a special value. This
1740value represents the inline assembler as a string (containing the instructions
1741to emit), a list of operand constraints (stored as a string), and a flag that
1742indicates whether or not the inline asm expression has side effects. An example
1743inline assembler expression is:
1744</p>
1745
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001746<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001747<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001748i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001749</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001750</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001751
1752<p>
1753Inline assembler expressions may <b>only</b> be used as the callee operand of
1754a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1755</p>
1756
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001757<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001758<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001759%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001760</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001761</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001762
1763<p>
1764Inline asms with side effects not visible in the constraint list must be marked
1765as having side effects. This is done through the use of the
1766'<tt>sideeffect</tt>' keyword, like so:
1767</p>
1768
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001769<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001770<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001771call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001772</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001773</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001774
1775<p>TODO: The format of the asm and constraints string still need to be
1776documented here. Constraints on what can be done (e.g. duplication, moving, etc
1777need to be documented).
1778</p>
1779
1780</div>
1781
1782<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001783<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1784<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001785
Misha Brukman9d0919f2003-11-08 01:05:38 +00001786<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001787
Chris Lattner261efe92003-11-25 01:02:51 +00001788<p>The LLVM instruction set consists of several different
1789classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001790instructions</a>, <a href="#binaryops">binary instructions</a>,
1791<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001792 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1793instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001794
Misha Brukman9d0919f2003-11-08 01:05:38 +00001795</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001796
Chris Lattner00950542001-06-06 20:29:01 +00001797<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001798<div class="doc_subsection"> <a name="terminators">Terminator
1799Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001800
Misha Brukman9d0919f2003-11-08 01:05:38 +00001801<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001802
Chris Lattner261efe92003-11-25 01:02:51 +00001803<p>As mentioned <a href="#functionstructure">previously</a>, every
1804basic block in a program ends with a "Terminator" instruction, which
1805indicates which block should be executed after the current block is
1806finished. These terminator instructions typically yield a '<tt>void</tt>'
1807value: they produce control flow, not values (the one exception being
1808the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001809<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001810 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1811instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001812the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1813 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1814 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001815
Misha Brukman9d0919f2003-11-08 01:05:38 +00001816</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001817
Chris Lattner00950542001-06-06 20:29:01 +00001818<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001819<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1820Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001821<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001822<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001823<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001824 ret void <i>; Return from void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001825 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Chris Lattner00950542001-06-06 20:29:01 +00001826</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001827
Chris Lattner00950542001-06-06 20:29:01 +00001828<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001829
Chris Lattner261efe92003-11-25 01:02:51 +00001830<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001831value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001832<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001833returns value(s) and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001834control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001835
Chris Lattner00950542001-06-06 20:29:01 +00001836<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001837
1838<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1839The type of each return value must be a '<a href="#t_firstclass">first
1840class</a>' type. Note that a function is not <a href="#wellformed">well
1841formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1842function that returns values that do not match the return type of the
1843function.</p>
1844
Chris Lattner00950542001-06-06 20:29:01 +00001845<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001846
Chris Lattner261efe92003-11-25 01:02:51 +00001847<p>When the '<tt>ret</tt>' instruction is executed, control flow
1848returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001849 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001850the instruction after the call. If the caller was an "<a
1851 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001852at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001853returns a value, that value shall set the call or invoke instruction's
Devang Patelc3fc6df2008-03-10 20:49:15 +00001854return value. If the instruction returns multiple values then these
Devang Patel0dbb4a12008-03-11 05:51:59 +00001855values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1856</a>' instruction.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001857
Chris Lattner00950542001-06-06 20:29:01 +00001858<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001859
1860<pre>
1861 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001862 ret void <i>; Return from a void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001863 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Chris Lattner00950542001-06-06 20:29:01 +00001864</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001865</div>
Chris Lattner00950542001-06-06 20:29:01 +00001866<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001867<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001868<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001869<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001870<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001871</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001872<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001873<p>The '<tt>br</tt>' instruction is used to cause control flow to
1874transfer to a different basic block in the current function. There are
1875two forms of this instruction, corresponding to a conditional branch
1876and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001877<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001878<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001879single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001880unconditional form of the '<tt>br</tt>' instruction takes a single
1881'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001882<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001883<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001884argument is evaluated. If the value is <tt>true</tt>, control flows
1885to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1886control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001887<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001888<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001889 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001890</div>
Chris Lattner00950542001-06-06 20:29:01 +00001891<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001892<div class="doc_subsubsection">
1893 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1894</div>
1895
Misha Brukman9d0919f2003-11-08 01:05:38 +00001896<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001897<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001898
1899<pre>
1900 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1901</pre>
1902
Chris Lattner00950542001-06-06 20:29:01 +00001903<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001904
1905<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1906several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001907instruction, allowing a branch to occur to one of many possible
1908destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001909
1910
Chris Lattner00950542001-06-06 20:29:01 +00001911<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001912
1913<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1914comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1915an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1916table is not allowed to contain duplicate constant entries.</p>
1917
Chris Lattner00950542001-06-06 20:29:01 +00001918<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001919
Chris Lattner261efe92003-11-25 01:02:51 +00001920<p>The <tt>switch</tt> instruction specifies a table of values and
1921destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001922table is searched for the given value. If the value is found, control flow is
1923transfered to the corresponding destination; otherwise, control flow is
1924transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001925
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001926<h5>Implementation:</h5>
1927
1928<p>Depending on properties of the target machine and the particular
1929<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001930ways. For example, it could be generated as a series of chained conditional
1931branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001932
1933<h5>Example:</h5>
1934
1935<pre>
1936 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001937 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001938 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001939
1940 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001941 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001942
1943 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001944 switch i32 %val, label %otherwise [ i32 0, label %onzero
1945 i32 1, label %onone
1946 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001947</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001948</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001949
Chris Lattner00950542001-06-06 20:29:01 +00001950<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001951<div class="doc_subsubsection">
1952 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1953</div>
1954
Misha Brukman9d0919f2003-11-08 01:05:38 +00001955<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001956
Chris Lattner00950542001-06-06 20:29:01 +00001957<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001958
1959<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00001960 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001961 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001962</pre>
1963
Chris Lattner6536cfe2002-05-06 22:08:29 +00001964<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001965
1966<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1967function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001968'<tt>normal</tt>' label or the
1969'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001970"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1971"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001972href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patelc3fc6df2008-03-10 20:49:15 +00001973continued at the dynamically nearest "exception" label. If the callee function
Devang Patel0dbb4a12008-03-11 05:51:59 +00001974returns multiple values then individual return values are only accessible through
1975a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001976
Chris Lattner00950542001-06-06 20:29:01 +00001977<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001978
Misha Brukman9d0919f2003-11-08 01:05:38 +00001979<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001980
Chris Lattner00950542001-06-06 20:29:01 +00001981<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001982 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00001983 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001984 convention</a> the call should use. If none is specified, the call defaults
1985 to using C calling conventions.
1986 </li>
1987 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1988 function value being invoked. In most cases, this is a direct function
1989 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1990 an arbitrary pointer to function value.
1991 </li>
1992
1993 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1994 function to be invoked. </li>
1995
1996 <li>'<tt>function args</tt>': argument list whose types match the function
1997 signature argument types. If the function signature indicates the function
1998 accepts a variable number of arguments, the extra arguments can be
1999 specified. </li>
2000
2001 <li>'<tt>normal label</tt>': the label reached when the called function
2002 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2003
2004 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2005 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2006
Chris Lattner00950542001-06-06 20:29:01 +00002007</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002008
Chris Lattner00950542001-06-06 20:29:01 +00002009<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002010
Misha Brukman9d0919f2003-11-08 01:05:38 +00002011<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002012href="#i_call">call</a></tt>' instruction in most regards. The primary
2013difference is that it establishes an association with a label, which is used by
2014the runtime library to unwind the stack.</p>
2015
2016<p>This instruction is used in languages with destructors to ensure that proper
2017cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2018exception. Additionally, this is important for implementation of
2019'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2020
Chris Lattner00950542001-06-06 20:29:01 +00002021<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002022<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002023 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002024 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002025 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002026 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002027</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002028</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002029
2030
Chris Lattner27f71f22003-09-03 00:41:47 +00002031<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002032
Chris Lattner261efe92003-11-25 01:02:51 +00002033<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2034Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002035
Misha Brukman9d0919f2003-11-08 01:05:38 +00002036<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002037
Chris Lattner27f71f22003-09-03 00:41:47 +00002038<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002039<pre>
2040 unwind
2041</pre>
2042
Chris Lattner27f71f22003-09-03 00:41:47 +00002043<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002044
2045<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2046at the first callee in the dynamic call stack which used an <a
2047href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2048primarily used to implement exception handling.</p>
2049
Chris Lattner27f71f22003-09-03 00:41:47 +00002050<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002051
Chris Lattner72ed2002008-04-19 21:01:16 +00002052<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002053immediately halt. The dynamic call stack is then searched for the first <a
2054href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2055execution continues at the "exceptional" destination block specified by the
2056<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2057dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002058</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002059
2060<!-- _______________________________________________________________________ -->
2061
2062<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2063Instruction</a> </div>
2064
2065<div class="doc_text">
2066
2067<h5>Syntax:</h5>
2068<pre>
2069 unreachable
2070</pre>
2071
2072<h5>Overview:</h5>
2073
2074<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2075instruction is used to inform the optimizer that a particular portion of the
2076code is not reachable. This can be used to indicate that the code after a
2077no-return function cannot be reached, and other facts.</p>
2078
2079<h5>Semantics:</h5>
2080
2081<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2082</div>
2083
2084
2085
Chris Lattner00950542001-06-06 20:29:01 +00002086<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002087<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002088<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002089<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002090program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002091produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002092multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002093The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002094<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002095</div>
Chris Lattner00950542001-06-06 20:29:01 +00002096<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002097<div class="doc_subsubsection">
2098 <a name="i_add">'<tt>add</tt>' Instruction</a>
2099</div>
2100
Misha Brukman9d0919f2003-11-08 01:05:38 +00002101<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002102
Chris Lattner00950542001-06-06 20:29:01 +00002103<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002104
2105<pre>
2106 &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002107</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002108
Chris Lattner00950542001-06-06 20:29:01 +00002109<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002110
Misha Brukman9d0919f2003-11-08 01:05:38 +00002111<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002112
Chris Lattner00950542001-06-06 20:29:01 +00002113<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002114
2115<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2116 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2117 <a href="#t_vector">vector</a> values. Both arguments must have identical
2118 types.</p>
2119
Chris Lattner00950542001-06-06 20:29:01 +00002120<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002121
Misha Brukman9d0919f2003-11-08 01:05:38 +00002122<p>The value produced is the integer or floating point sum of the two
2123operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002124
Chris Lattner5ec89832008-01-28 00:36:27 +00002125<p>If an integer sum has unsigned overflow, the result returned is the
2126mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2127the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002128
Chris Lattner5ec89832008-01-28 00:36:27 +00002129<p>Because LLVM integers use a two's complement representation, this
2130instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002131
Chris Lattner00950542001-06-06 20:29:01 +00002132<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002133
2134<pre>
2135 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002136</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002137</div>
Chris Lattner00950542001-06-06 20:29:01 +00002138<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002139<div class="doc_subsubsection">
2140 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2141</div>
2142
Misha Brukman9d0919f2003-11-08 01:05:38 +00002143<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002144
Chris Lattner00950542001-06-06 20:29:01 +00002145<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002146
2147<pre>
2148 &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002149</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002150
Chris Lattner00950542001-06-06 20:29:01 +00002151<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002152
Misha Brukman9d0919f2003-11-08 01:05:38 +00002153<p>The '<tt>sub</tt>' instruction returns the difference of its two
2154operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002155
2156<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2157'<tt>neg</tt>' instruction present in most other intermediate
2158representations.</p>
2159
Chris Lattner00950542001-06-06 20:29:01 +00002160<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002161
2162<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2163 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2164 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2165 types.</p>
2166
Chris Lattner00950542001-06-06 20:29:01 +00002167<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002168
Chris Lattner261efe92003-11-25 01:02:51 +00002169<p>The value produced is the integer or floating point difference of
2170the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002171
Chris Lattner5ec89832008-01-28 00:36:27 +00002172<p>If an integer difference has unsigned overflow, the result returned is the
2173mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2174the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002175
Chris Lattner5ec89832008-01-28 00:36:27 +00002176<p>Because LLVM integers use a two's complement representation, this
2177instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002178
Chris Lattner00950542001-06-06 20:29:01 +00002179<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002180<pre>
2181 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002182 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002183</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002184</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002185
Chris Lattner00950542001-06-06 20:29:01 +00002186<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002187<div class="doc_subsubsection">
2188 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2189</div>
2190
Misha Brukman9d0919f2003-11-08 01:05:38 +00002191<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002192
Chris Lattner00950542001-06-06 20:29:01 +00002193<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002194<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002195</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002196<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002197<p>The '<tt>mul</tt>' instruction returns the product of its two
2198operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002199
Chris Lattner00950542001-06-06 20:29:01 +00002200<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002201
2202<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2203href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2204or <a href="#t_vector">vector</a> values. Both arguments must have identical
2205types.</p>
2206
Chris Lattner00950542001-06-06 20:29:01 +00002207<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002208
Chris Lattner261efe92003-11-25 01:02:51 +00002209<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002210two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002211
Chris Lattner5ec89832008-01-28 00:36:27 +00002212<p>If the result of an integer multiplication has unsigned overflow,
2213the result returned is the mathematical result modulo
22142<sup>n</sup>, where n is the bit width of the result.</p>
2215<p>Because LLVM integers use a two's complement representation, and the
2216result is the same width as the operands, this instruction returns the
2217correct result for both signed and unsigned integers. If a full product
2218(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2219should be sign-extended or zero-extended as appropriate to the
2220width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002221<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002222<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002223</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002224</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002225
Chris Lattner00950542001-06-06 20:29:01 +00002226<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002227<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2228</a></div>
2229<div class="doc_text">
2230<h5>Syntax:</h5>
2231<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2232</pre>
2233<h5>Overview:</h5>
2234<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2235operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002236
Reid Spencer1628cec2006-10-26 06:15:43 +00002237<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002238
Reid Spencer1628cec2006-10-26 06:15:43 +00002239<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002240<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2241values. Both arguments must have identical types.</p>
2242
Reid Spencer1628cec2006-10-26 06:15:43 +00002243<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002244
Chris Lattner5ec89832008-01-28 00:36:27 +00002245<p>The value produced is the unsigned integer quotient of the two operands.</p>
2246<p>Note that unsigned integer division and signed integer division are distinct
2247operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2248<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002249<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002250<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002251</pre>
2252</div>
2253<!-- _______________________________________________________________________ -->
2254<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2255</a> </div>
2256<div class="doc_text">
2257<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002258<pre>
2259 &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002260</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002261
Reid Spencer1628cec2006-10-26 06:15:43 +00002262<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002263
Reid Spencer1628cec2006-10-26 06:15:43 +00002264<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2265operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002266
Reid Spencer1628cec2006-10-26 06:15:43 +00002267<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002268
2269<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2270<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2271values. Both arguments must have identical types.</p>
2272
Reid Spencer1628cec2006-10-26 06:15:43 +00002273<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002274<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002275<p>Note that signed integer division and unsigned integer division are distinct
2276operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2277<p>Division by zero leads to undefined behavior. Overflow also leads to
2278undefined behavior; this is a rare case, but can occur, for example,
2279by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002280<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002281<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002282</pre>
2283</div>
2284<!-- _______________________________________________________________________ -->
2285<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002286Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002287<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002288<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002289<pre>
2290 &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002291</pre>
2292<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002293
Reid Spencer1628cec2006-10-26 06:15:43 +00002294<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002295operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002296
Chris Lattner261efe92003-11-25 01:02:51 +00002297<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002298
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002299<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002300<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2301of floating point values. Both arguments must have identical types.</p>
2302
Chris Lattner261efe92003-11-25 01:02:51 +00002303<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002304
Reid Spencer1628cec2006-10-26 06:15:43 +00002305<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002306
Chris Lattner261efe92003-11-25 01:02:51 +00002307<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002308
2309<pre>
2310 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002311</pre>
2312</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002313
Chris Lattner261efe92003-11-25 01:02:51 +00002314<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002315<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2316</div>
2317<div class="doc_text">
2318<h5>Syntax:</h5>
2319<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2320</pre>
2321<h5>Overview:</h5>
2322<p>The '<tt>urem</tt>' instruction returns the remainder from the
2323unsigned division of its two arguments.</p>
2324<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002325<p>The two arguments to the '<tt>urem</tt>' instruction must be
2326<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2327values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002328<h5>Semantics:</h5>
2329<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002330This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002331<p>Note that unsigned integer remainder and signed integer remainder are
2332distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2333<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002334<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002335<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002336</pre>
2337
2338</div>
2339<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002340<div class="doc_subsubsection">
2341 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2342</div>
2343
Chris Lattner261efe92003-11-25 01:02:51 +00002344<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002345
Chris Lattner261efe92003-11-25 01:02:51 +00002346<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002347
2348<pre>
2349 &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002350</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002351
Chris Lattner261efe92003-11-25 01:02:51 +00002352<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002353
Reid Spencer0a783f72006-11-02 01:53:59 +00002354<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002355signed division of its two operands. This instruction can also take
2356<a href="#t_vector">vector</a> versions of the values in which case
2357the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002358
Chris Lattner261efe92003-11-25 01:02:51 +00002359<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002360
Reid Spencer0a783f72006-11-02 01:53:59 +00002361<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002362<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2363values. Both arguments must have identical types.</p>
2364
Chris Lattner261efe92003-11-25 01:02:51 +00002365<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002366
Reid Spencer0a783f72006-11-02 01:53:59 +00002367<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002368has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2369operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2370a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002371 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002372Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002373please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002374Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002375<p>Note that signed integer remainder and unsigned integer remainder are
2376distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2377<p>Taking the remainder of a division by zero leads to undefined behavior.
2378Overflow also leads to undefined behavior; this is a rare case, but can occur,
2379for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2380(The remainder doesn't actually overflow, but this rule lets srem be
2381implemented using instructions that return both the result of the division
2382and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002383<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002384<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002385</pre>
2386
2387</div>
2388<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002389<div class="doc_subsubsection">
2390 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2391
Reid Spencer0a783f72006-11-02 01:53:59 +00002392<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002393
Reid Spencer0a783f72006-11-02 01:53:59 +00002394<h5>Syntax:</h5>
2395<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2396</pre>
2397<h5>Overview:</h5>
2398<p>The '<tt>frem</tt>' instruction returns the remainder from the
2399division of its two operands.</p>
2400<h5>Arguments:</h5>
2401<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002402<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2403of floating point values. Both arguments must have identical types.</p>
2404
Reid Spencer0a783f72006-11-02 01:53:59 +00002405<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002406
Chris Lattnera73afe02008-04-01 18:45:27 +00002407<p>This instruction returns the <i>remainder</i> of a division.
2408The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002409
Reid Spencer0a783f72006-11-02 01:53:59 +00002410<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002411
2412<pre>
2413 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002414</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002415</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002416
Reid Spencer8e11bf82007-02-02 13:57:07 +00002417<!-- ======================================================================= -->
2418<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2419Operations</a> </div>
2420<div class="doc_text">
2421<p>Bitwise binary operators are used to do various forms of
2422bit-twiddling in a program. They are generally very efficient
2423instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002424instructions. They require two operands of the same type, execute an operation on them,
2425and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002426</div>
2427
Reid Spencer569f2fa2007-01-31 21:39:12 +00002428<!-- _______________________________________________________________________ -->
2429<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2430Instruction</a> </div>
2431<div class="doc_text">
2432<h5>Syntax:</h5>
2433<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2434</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002435
Reid Spencer569f2fa2007-01-31 21:39:12 +00002436<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002437
Reid Spencer569f2fa2007-01-31 21:39:12 +00002438<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2439the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002440
Reid Spencer569f2fa2007-01-31 21:39:12 +00002441<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002442
Reid Spencer569f2fa2007-01-31 21:39:12 +00002443<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Chris Lattner72ed2002008-04-19 21:01:16 +00002444 href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
Chris Lattner5568e942008-05-20 20:48:21 +00002445unsigned value. This instruction does not support
2446<a href="#t_vector">vector</a> operands.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002447
Reid Spencer569f2fa2007-01-31 21:39:12 +00002448<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002449
Chris Lattnera73afe02008-04-01 18:45:27 +00002450<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup> mod 2<sup>n</sup>,
2451where n is the width of the result. If <tt>var2</tt> is (statically or dynamically) negative or
2452equal to or larger than the number of bits in <tt>var1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002453
Reid Spencer569f2fa2007-01-31 21:39:12 +00002454<h5>Example:</h5><pre>
2455 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2456 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2457 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002458 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002459</pre>
2460</div>
2461<!-- _______________________________________________________________________ -->
2462<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2463Instruction</a> </div>
2464<div class="doc_text">
2465<h5>Syntax:</h5>
2466<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2467</pre>
2468
2469<h5>Overview:</h5>
2470<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002471operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002472
2473<h5>Arguments:</h5>
2474<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Chris Lattner72ed2002008-04-19 21:01:16 +00002475<a href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
Chris Lattner5568e942008-05-20 20:48:21 +00002476unsigned value. This instruction does not support
2477<a href="#t_vector">vector</a> operands.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002478
2479<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002480
Reid Spencer569f2fa2007-01-31 21:39:12 +00002481<p>This instruction always performs a logical shift right operation. The most
2482significant bits of the result will be filled with zero bits after the
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002483shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2484the number of bits in <tt>var1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002485
2486<h5>Example:</h5>
2487<pre>
2488 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2489 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2490 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2491 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002492 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002493</pre>
2494</div>
2495
Reid Spencer8e11bf82007-02-02 13:57:07 +00002496<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002497<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2498Instruction</a> </div>
2499<div class="doc_text">
2500
2501<h5>Syntax:</h5>
2502<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2503</pre>
2504
2505<h5>Overview:</h5>
2506<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002507operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002508
2509<h5>Arguments:</h5>
2510<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Chris Lattner72ed2002008-04-19 21:01:16 +00002511<a href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
Chris Lattner5568e942008-05-20 20:48:21 +00002512unsigned value. This instruction does not support
2513<a href="#t_vector">vector</a> operands.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002514
2515<h5>Semantics:</h5>
2516<p>This instruction always performs an arithmetic shift right operation,
2517The most significant bits of the result will be filled with the sign bit
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002518of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2519larger than the number of bits in <tt>var1</tt>, the result is undefined.
2520</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002521
2522<h5>Example:</h5>
2523<pre>
2524 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2525 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2526 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2527 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002528 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002529</pre>
2530</div>
2531
Chris Lattner00950542001-06-06 20:29:01 +00002532<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002533<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2534Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002535
Misha Brukman9d0919f2003-11-08 01:05:38 +00002536<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002537
Chris Lattner00950542001-06-06 20:29:01 +00002538<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002539
2540<pre>
2541 &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002542</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002543
Chris Lattner00950542001-06-06 20:29:01 +00002544<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002545
Chris Lattner261efe92003-11-25 01:02:51 +00002546<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2547its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002548
Chris Lattner00950542001-06-06 20:29:01 +00002549<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002550
2551<p>The two arguments to the '<tt>and</tt>' instruction must be
2552<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2553values. Both arguments must have identical types.</p>
2554
Chris Lattner00950542001-06-06 20:29:01 +00002555<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002556<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002557<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002558<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002559<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002560 <tbody>
2561 <tr>
2562 <td>In0</td>
2563 <td>In1</td>
2564 <td>Out</td>
2565 </tr>
2566 <tr>
2567 <td>0</td>
2568 <td>0</td>
2569 <td>0</td>
2570 </tr>
2571 <tr>
2572 <td>0</td>
2573 <td>1</td>
2574 <td>0</td>
2575 </tr>
2576 <tr>
2577 <td>1</td>
2578 <td>0</td>
2579 <td>0</td>
2580 </tr>
2581 <tr>
2582 <td>1</td>
2583 <td>1</td>
2584 <td>1</td>
2585 </tr>
2586 </tbody>
2587</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002588</div>
Chris Lattner00950542001-06-06 20:29:01 +00002589<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002590<pre>
2591 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002592 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2593 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002594</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002595</div>
Chris Lattner00950542001-06-06 20:29:01 +00002596<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002597<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002598<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002599<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002600<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002601</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002602<h5>Overview:</h5>
2603<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2604or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002605<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002606
2607<p>The two arguments to the '<tt>or</tt>' instruction must be
2608<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2609values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002610<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002611<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002612<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002613<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002614<table border="1" cellspacing="0" cellpadding="4">
2615 <tbody>
2616 <tr>
2617 <td>In0</td>
2618 <td>In1</td>
2619 <td>Out</td>
2620 </tr>
2621 <tr>
2622 <td>0</td>
2623 <td>0</td>
2624 <td>0</td>
2625 </tr>
2626 <tr>
2627 <td>0</td>
2628 <td>1</td>
2629 <td>1</td>
2630 </tr>
2631 <tr>
2632 <td>1</td>
2633 <td>0</td>
2634 <td>1</td>
2635 </tr>
2636 <tr>
2637 <td>1</td>
2638 <td>1</td>
2639 <td>1</td>
2640 </tr>
2641 </tbody>
2642</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002643</div>
Chris Lattner00950542001-06-06 20:29:01 +00002644<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002645<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2646 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2647 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002648</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002649</div>
Chris Lattner00950542001-06-06 20:29:01 +00002650<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002651<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2652Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002653<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002654<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002655<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002656</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002657<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002658<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2659or of its two operands. The <tt>xor</tt> is used to implement the
2660"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002661<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002662<p>The two arguments to the '<tt>xor</tt>' instruction must be
2663<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2664values. Both arguments must have identical types.</p>
2665
Chris Lattner00950542001-06-06 20:29:01 +00002666<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002667
Misha Brukman9d0919f2003-11-08 01:05:38 +00002668<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002669<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002670<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002671<table border="1" cellspacing="0" cellpadding="4">
2672 <tbody>
2673 <tr>
2674 <td>In0</td>
2675 <td>In1</td>
2676 <td>Out</td>
2677 </tr>
2678 <tr>
2679 <td>0</td>
2680 <td>0</td>
2681 <td>0</td>
2682 </tr>
2683 <tr>
2684 <td>0</td>
2685 <td>1</td>
2686 <td>1</td>
2687 </tr>
2688 <tr>
2689 <td>1</td>
2690 <td>0</td>
2691 <td>1</td>
2692 </tr>
2693 <tr>
2694 <td>1</td>
2695 <td>1</td>
2696 <td>0</td>
2697 </tr>
2698 </tbody>
2699</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002700</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002701<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002702<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002703<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2704 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2705 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2706 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002707</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002708</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002709
Chris Lattner00950542001-06-06 20:29:01 +00002710<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002711<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002712 <a name="vectorops">Vector Operations</a>
2713</div>
2714
2715<div class="doc_text">
2716
2717<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002718target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002719vector-specific operations needed to process vectors effectively. While LLVM
2720does directly support these vector operations, many sophisticated algorithms
2721will want to use target-specific intrinsics to take full advantage of a specific
2722target.</p>
2723
2724</div>
2725
2726<!-- _______________________________________________________________________ -->
2727<div class="doc_subsubsection">
2728 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2729</div>
2730
2731<div class="doc_text">
2732
2733<h5>Syntax:</h5>
2734
2735<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002736 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002737</pre>
2738
2739<h5>Overview:</h5>
2740
2741<p>
2742The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002743element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002744</p>
2745
2746
2747<h5>Arguments:</h5>
2748
2749<p>
2750The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002751value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002752an index indicating the position from which to extract the element.
2753The index may be a variable.</p>
2754
2755<h5>Semantics:</h5>
2756
2757<p>
2758The result is a scalar of the same type as the element type of
2759<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2760<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2761results are undefined.
2762</p>
2763
2764<h5>Example:</h5>
2765
2766<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002767 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002768</pre>
2769</div>
2770
2771
2772<!-- _______________________________________________________________________ -->
2773<div class="doc_subsubsection">
2774 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2775</div>
2776
2777<div class="doc_text">
2778
2779<h5>Syntax:</h5>
2780
2781<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002782 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002783</pre>
2784
2785<h5>Overview:</h5>
2786
2787<p>
2788The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002789element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002790</p>
2791
2792
2793<h5>Arguments:</h5>
2794
2795<p>
2796The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002797value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002798scalar value whose type must equal the element type of the first
2799operand. The third operand is an index indicating the position at
2800which to insert the value. The index may be a variable.</p>
2801
2802<h5>Semantics:</h5>
2803
2804<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002805The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002806element values are those of <tt>val</tt> except at position
2807<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2808exceeds the length of <tt>val</tt>, the results are undefined.
2809</p>
2810
2811<h5>Example:</h5>
2812
2813<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002814 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002815</pre>
2816</div>
2817
2818<!-- _______________________________________________________________________ -->
2819<div class="doc_subsubsection">
2820 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2821</div>
2822
2823<div class="doc_text">
2824
2825<h5>Syntax:</h5>
2826
2827<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002828 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002829</pre>
2830
2831<h5>Overview:</h5>
2832
2833<p>
2834The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2835from two input vectors, returning a vector of the same type.
2836</p>
2837
2838<h5>Arguments:</h5>
2839
2840<p>
2841The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2842with types that match each other and types that match the result of the
2843instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002844of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002845</p>
2846
2847<p>
2848The shuffle mask operand is required to be a constant vector with either
2849constant integer or undef values.
2850</p>
2851
2852<h5>Semantics:</h5>
2853
2854<p>
2855The elements of the two input vectors are numbered from left to right across
2856both of the vectors. The shuffle mask operand specifies, for each element of
2857the result vector, which element of the two input registers the result element
2858gets. The element selector may be undef (meaning "don't care") and the second
2859operand may be undef if performing a shuffle from only one vector.
2860</p>
2861
2862<h5>Example:</h5>
2863
2864<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002865 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002866 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002867 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2868 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002869</pre>
2870</div>
2871
Tanya Lattner09474292006-04-14 19:24:33 +00002872
Chris Lattner3df241e2006-04-08 23:07:04 +00002873<!-- ======================================================================= -->
2874<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002875 <a name="aggregateops">Aggregate Operations</a>
2876</div>
2877
2878<div class="doc_text">
2879
2880<p>LLVM supports several instructions for working with aggregate values.
2881</p>
2882
2883</div>
2884
2885<!-- _______________________________________________________________________ -->
2886<div class="doc_subsubsection">
2887 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2888</div>
2889
2890<div class="doc_text">
2891
2892<h5>Syntax:</h5>
2893
2894<pre>
2895 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2896</pre>
2897
2898<h5>Overview:</h5>
2899
2900<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002901The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2902or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002903</p>
2904
2905
2906<h5>Arguments:</h5>
2907
2908<p>
2909The first operand of an '<tt>extractvalue</tt>' instruction is a
2910value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002911type. The operands are constant indices to specify which value to extract
2912in the same manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002913'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2914</p>
2915
2916<h5>Semantics:</h5>
2917
2918<p>
2919The result is the value at the position in the aggregate specified by
2920the index operands.
2921</p>
2922
2923<h5>Example:</h5>
2924
2925<pre>
2926 %result = extractvalue {i32, float} %agg, i32 0 <i>; yields i32</i>
2927</pre>
2928</div>
2929
2930
2931<!-- _______________________________________________________________________ -->
2932<div class="doc_subsubsection">
2933 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2934</div>
2935
2936<div class="doc_text">
2937
2938<h5>Syntax:</h5>
2939
2940<pre>
2941 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2942</pre>
2943
2944<h5>Overview:</h5>
2945
2946<p>
2947The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002948into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002949</p>
2950
2951
2952<h5>Arguments:</h5>
2953
2954<p>
2955The first operand of an '<tt>insertvalue</tt>' instruction is a
2956value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
2957The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00002958The following operands are constant indices
Dan Gohmana334d5f2008-05-12 23:51:09 +00002959indicating the position at which to insert the value in the same manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002960indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002961'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2962The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002963by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002964
2965<h5>Semantics:</h5>
2966
2967<p>
2968The result is an aggregate of the same type as <tt>val</tt>. Its
2969value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002970specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002971</p>
2972
2973<h5>Example:</h5>
2974
2975<pre>
2976 %result = insertvalue {i32, float} %agg, i32 1, i32 0 <i>; yields {i32, float}</i>
2977</pre>
2978</div>
2979
2980
2981<!-- ======================================================================= -->
2982<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002983 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002984</div>
2985
Misha Brukman9d0919f2003-11-08 01:05:38 +00002986<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002987
Chris Lattner261efe92003-11-25 01:02:51 +00002988<p>A key design point of an SSA-based representation is how it
2989represents memory. In LLVM, no memory locations are in SSA form, which
2990makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002991allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002992
Misha Brukman9d0919f2003-11-08 01:05:38 +00002993</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002994
Chris Lattner00950542001-06-06 20:29:01 +00002995<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002996<div class="doc_subsubsection">
2997 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2998</div>
2999
Misha Brukman9d0919f2003-11-08 01:05:38 +00003000<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003001
Chris Lattner00950542001-06-06 20:29:01 +00003002<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003003
3004<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003005 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003006</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003007
Chris Lattner00950542001-06-06 20:29:01 +00003008<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003009
Chris Lattner261efe92003-11-25 01:02:51 +00003010<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003011heap and returns a pointer to it. The object is always allocated in the generic
3012address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003013
Chris Lattner00950542001-06-06 20:29:01 +00003014<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003015
3016<p>The '<tt>malloc</tt>' instruction allocates
3017<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003018bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003019appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003020number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003021If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003022be aligned to at least that boundary. If not specified, or if zero, the target can
3023choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003024
Misha Brukman9d0919f2003-11-08 01:05:38 +00003025<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003026
Chris Lattner00950542001-06-06 20:29:01 +00003027<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003028
Chris Lattner261efe92003-11-25 01:02:51 +00003029<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003030a pointer is returned. The result of a zero byte allocattion is undefined. The
3031result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003032
Chris Lattner2cbdc452005-11-06 08:02:57 +00003033<h5>Example:</h5>
3034
3035<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003036 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003037
Bill Wendlingaac388b2007-05-29 09:42:13 +00003038 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3039 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3040 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3041 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3042 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003043</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003044</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003045
Chris Lattner00950542001-06-06 20:29:01 +00003046<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003047<div class="doc_subsubsection">
3048 <a name="i_free">'<tt>free</tt>' Instruction</a>
3049</div>
3050
Misha Brukman9d0919f2003-11-08 01:05:38 +00003051<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003052
Chris Lattner00950542001-06-06 20:29:01 +00003053<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003054
3055<pre>
3056 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003057</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003058
Chris Lattner00950542001-06-06 20:29:01 +00003059<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003060
Chris Lattner261efe92003-11-25 01:02:51 +00003061<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003062memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003063
Chris Lattner00950542001-06-06 20:29:01 +00003064<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003065
Chris Lattner261efe92003-11-25 01:02:51 +00003066<p>'<tt>value</tt>' shall be a pointer value that points to a value
3067that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3068instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003069
Chris Lattner00950542001-06-06 20:29:01 +00003070<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003071
John Criswell9e2485c2004-12-10 15:51:16 +00003072<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003073after this instruction executes. If the pointer is null, the operation
3074is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003075
Chris Lattner00950542001-06-06 20:29:01 +00003076<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003077
3078<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003079 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3080 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003081</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003082</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003083
Chris Lattner00950542001-06-06 20:29:01 +00003084<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003085<div class="doc_subsubsection">
3086 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3087</div>
3088
Misha Brukman9d0919f2003-11-08 01:05:38 +00003089<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003090
Chris Lattner00950542001-06-06 20:29:01 +00003091<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003092
3093<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003094 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003095</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003096
Chris Lattner00950542001-06-06 20:29:01 +00003097<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003098
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003099<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3100currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003101returns to its caller. The object is always allocated in the generic address
3102space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003103
Chris Lattner00950542001-06-06 20:29:01 +00003104<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003105
John Criswell9e2485c2004-12-10 15:51:16 +00003106<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003107bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003108appropriate type to the program. If "NumElements" is specified, it is the
3109number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003110If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003111to be aligned to at least that boundary. If not specified, or if zero, the target
3112can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003113
Misha Brukman9d0919f2003-11-08 01:05:38 +00003114<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003115
Chris Lattner00950542001-06-06 20:29:01 +00003116<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003117
Chris Lattner72ed2002008-04-19 21:01:16 +00003118<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3119there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003120memory is automatically released when the function returns. The '<tt>alloca</tt>'
3121instruction is commonly used to represent automatic variables that must
3122have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003123 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003124instructions), the memory is reclaimed. Allocating zero bytes
3125is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003126
Chris Lattner00950542001-06-06 20:29:01 +00003127<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003128
3129<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003130 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003131 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3132 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003133 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003134</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003135</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003136
Chris Lattner00950542001-06-06 20:29:01 +00003137<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003138<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3139Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003140<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003141<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003142<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003143<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003144<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003145<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003146<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003147address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003148 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003149marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003150the number or order of execution of this <tt>load</tt> with other
3151volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3152instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003153<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003154The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003155(that is, the alignment of the memory address). A value of 0 or an
3156omitted "align" argument means that the operation has the preferential
3157alignment for the target. It is the responsibility of the code emitter
3158to ensure that the alignment information is correct. Overestimating
3159the alignment results in an undefined behavior. Underestimating the
3160alignment may produce less efficient code. An alignment of 1 is always
3161safe.
3162</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003163<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003164<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003165<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003166<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003167 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003168 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3169 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003170</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003171</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003172<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003173<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3174Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003175<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003176<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003177<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3178 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003179</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003180<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003181<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003182<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003183<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003184to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003185operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3186of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003187operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003188optimizer is not allowed to modify the number or order of execution of
3189this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3190 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003191<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003192The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003193(that is, the alignment of the memory address). A value of 0 or an
3194omitted "align" argument means that the operation has the preferential
3195alignment for the target. It is the responsibility of the code emitter
3196to ensure that the alignment information is correct. Overestimating
3197the alignment results in an undefined behavior. Underestimating the
3198alignment may produce less efficient code. An alignment of 1 is always
3199safe.
3200</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003201<h5>Semantics:</h5>
3202<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3203at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003204<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003205<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003206 store i32 3, i32* %ptr <i>; yields {void}</i>
3207 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003208</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003209</div>
3210
Chris Lattner2b7d3202002-05-06 03:03:22 +00003211<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003212<div class="doc_subsubsection">
3213 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3214</div>
3215
Misha Brukman9d0919f2003-11-08 01:05:38 +00003216<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003217<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003218<pre>
3219 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3220</pre>
3221
Chris Lattner7faa8832002-04-14 06:13:44 +00003222<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003223
3224<p>
3225The '<tt>getelementptr</tt>' instruction is used to get the address of a
3226subelement of an aggregate data structure.</p>
3227
Chris Lattner7faa8832002-04-14 06:13:44 +00003228<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003229
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003230<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003231elements of the aggregate object to index to. The actual types of the arguments
3232provided depend on the type of the first pointer argument. The
3233'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003234levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003235structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003236into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3237values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003238
Chris Lattner261efe92003-11-25 01:02:51 +00003239<p>For example, let's consider a C code fragment and how it gets
3240compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003241
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003242<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003243<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003244struct RT {
3245 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003246 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003247 char C;
3248};
3249struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003250 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003251 double Y;
3252 struct RT Z;
3253};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003254
Chris Lattnercabc8462007-05-29 15:43:56 +00003255int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003256 return &amp;s[1].Z.B[5][13];
3257}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003258</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003259</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003260
Misha Brukman9d0919f2003-11-08 01:05:38 +00003261<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003262
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003263<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003264<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003265%RT = type { i8 , [10 x [20 x i32]], i8 }
3266%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003267
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003268define i32* %foo(%ST* %s) {
3269entry:
3270 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3271 ret i32* %reg
3272}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003273</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003274</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003275
Chris Lattner7faa8832002-04-14 06:13:44 +00003276<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003277
3278<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003279on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003280and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003281<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003282to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3283structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003284
Misha Brukman9d0919f2003-11-08 01:05:38 +00003285<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003286type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003287}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003288the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3289i8 }</tt>' type, another structure. The third index indexes into the second
3290element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003291array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003292'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3293to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003294
Chris Lattner261efe92003-11-25 01:02:51 +00003295<p>Note that it is perfectly legal to index partially through a
3296structure, returning a pointer to an inner element. Because of this,
3297the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003298
3299<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003300 define i32* %foo(%ST* %s) {
3301 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003302 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3303 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003304 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3305 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3306 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003307 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003308</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003309
3310<p>Note that it is undefined to access an array out of bounds: array and
3311pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003312The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003313defined to be accessible as variable length arrays, which requires access
3314beyond the zero'th element.</p>
3315
Chris Lattner884a9702006-08-15 00:45:58 +00003316<p>The getelementptr instruction is often confusing. For some more insight
3317into how it works, see <a href="GetElementPtr.html">the getelementptr
3318FAQ</a>.</p>
3319
Chris Lattner7faa8832002-04-14 06:13:44 +00003320<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003321
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003322<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003323 <i>; yields [12 x i8]*:aptr</i>
3324 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003325</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003326</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003327
Chris Lattner00950542001-06-06 20:29:01 +00003328<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003329<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003330</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003331<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003332<p>The instructions in this category are the conversion instructions (casting)
3333which all take a single operand and a type. They perform various bit conversions
3334on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003335</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003336
Chris Lattner6536cfe2002-05-06 22:08:29 +00003337<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003338<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003339 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3340</div>
3341<div class="doc_text">
3342
3343<h5>Syntax:</h5>
3344<pre>
3345 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3346</pre>
3347
3348<h5>Overview:</h5>
3349<p>
3350The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3351</p>
3352
3353<h5>Arguments:</h5>
3354<p>
3355The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3356be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003357and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003358type. The bit size of <tt>value</tt> must be larger than the bit size of
3359<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003360
3361<h5>Semantics:</h5>
3362<p>
3363The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003364and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3365larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3366It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003367
3368<h5>Example:</h5>
3369<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003370 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003371 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3372 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003373</pre>
3374</div>
3375
3376<!-- _______________________________________________________________________ -->
3377<div class="doc_subsubsection">
3378 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3379</div>
3380<div class="doc_text">
3381
3382<h5>Syntax:</h5>
3383<pre>
3384 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3385</pre>
3386
3387<h5>Overview:</h5>
3388<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3389<tt>ty2</tt>.</p>
3390
3391
3392<h5>Arguments:</h5>
3393<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003394<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3395also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003396<tt>value</tt> must be smaller than the bit size of the destination type,
3397<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003398
3399<h5>Semantics:</h5>
3400<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003401bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003402
Reid Spencerb5929522007-01-12 15:46:11 +00003403<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003404
3405<h5>Example:</h5>
3406<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003407 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003408 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003409</pre>
3410</div>
3411
3412<!-- _______________________________________________________________________ -->
3413<div class="doc_subsubsection">
3414 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3415</div>
3416<div class="doc_text">
3417
3418<h5>Syntax:</h5>
3419<pre>
3420 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3421</pre>
3422
3423<h5>Overview:</h5>
3424<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3425
3426<h5>Arguments:</h5>
3427<p>
3428The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003429<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3430also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003431<tt>value</tt> must be smaller than the bit size of the destination type,
3432<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003433
3434<h5>Semantics:</h5>
3435<p>
3436The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3437bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003438the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003439
Reid Spencerc78f3372007-01-12 03:35:51 +00003440<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003441
3442<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003443<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003444 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003445 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003446</pre>
3447</div>
3448
3449<!-- _______________________________________________________________________ -->
3450<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003451 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3452</div>
3453
3454<div class="doc_text">
3455
3456<h5>Syntax:</h5>
3457
3458<pre>
3459 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3460</pre>
3461
3462<h5>Overview:</h5>
3463<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3464<tt>ty2</tt>.</p>
3465
3466
3467<h5>Arguments:</h5>
3468<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3469 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3470cast it to. The size of <tt>value</tt> must be larger than the size of
3471<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3472<i>no-op cast</i>.</p>
3473
3474<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003475<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3476<a href="#t_floating">floating point</a> type to a smaller
3477<a href="#t_floating">floating point</a> type. If the value cannot fit within
3478the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003479
3480<h5>Example:</h5>
3481<pre>
3482 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3483 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3484</pre>
3485</div>
3486
3487<!-- _______________________________________________________________________ -->
3488<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003489 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3490</div>
3491<div class="doc_text">
3492
3493<h5>Syntax:</h5>
3494<pre>
3495 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3496</pre>
3497
3498<h5>Overview:</h5>
3499<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3500floating point value.</p>
3501
3502<h5>Arguments:</h5>
3503<p>The '<tt>fpext</tt>' instruction takes a
3504<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003505and a <a href="#t_floating">floating point</a> type to cast it to. The source
3506type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003507
3508<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003509<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003510<a href="#t_floating">floating point</a> type to a larger
3511<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003512used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003513<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003514
3515<h5>Example:</h5>
3516<pre>
3517 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3518 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3519</pre>
3520</div>
3521
3522<!-- _______________________________________________________________________ -->
3523<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003524 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003525</div>
3526<div class="doc_text">
3527
3528<h5>Syntax:</h5>
3529<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003530 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003531</pre>
3532
3533<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003534<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003535unsigned integer equivalent of type <tt>ty2</tt>.
3536</p>
3537
3538<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003539<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003540scalar or vector <a href="#t_floating">floating point</a> value, and a type
3541to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3542type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3543vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003544
3545<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003546<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003547<a href="#t_floating">floating point</a> operand into the nearest (rounding
3548towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3549the results are undefined.</p>
3550
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003551<h5>Example:</h5>
3552<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003553 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003554 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003555 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003556</pre>
3557</div>
3558
3559<!-- _______________________________________________________________________ -->
3560<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003561 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003562</div>
3563<div class="doc_text">
3564
3565<h5>Syntax:</h5>
3566<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003567 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003568</pre>
3569
3570<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003571<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003572<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003573</p>
3574
Chris Lattner6536cfe2002-05-06 22:08:29 +00003575<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003576<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003577scalar or vector <a href="#t_floating">floating point</a> value, and a type
3578to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3579type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3580vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003581
Chris Lattner6536cfe2002-05-06 22:08:29 +00003582<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003583<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003584<a href="#t_floating">floating point</a> operand into the nearest (rounding
3585towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3586the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003587
Chris Lattner33ba0d92001-07-09 00:26:23 +00003588<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003589<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003590 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003591 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003592 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003593</pre>
3594</div>
3595
3596<!-- _______________________________________________________________________ -->
3597<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003598 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003599</div>
3600<div class="doc_text">
3601
3602<h5>Syntax:</h5>
3603<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003604 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003605</pre>
3606
3607<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003608<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003609integer and converts that value to the <tt>ty2</tt> type.</p>
3610
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003611<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003612<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3613scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3614to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3615type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3616floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003617
3618<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003619<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003620integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003621the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003622
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003623<h5>Example:</h5>
3624<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003625 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003626 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003627</pre>
3628</div>
3629
3630<!-- _______________________________________________________________________ -->
3631<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003632 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003633</div>
3634<div class="doc_text">
3635
3636<h5>Syntax:</h5>
3637<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003638 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003639</pre>
3640
3641<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003642<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003643integer and converts that value to the <tt>ty2</tt> type.</p>
3644
3645<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003646<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3647scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3648to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3649type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3650floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003651
3652<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003653<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003654integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003655the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003656
3657<h5>Example:</h5>
3658<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003659 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003660 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003661</pre>
3662</div>
3663
3664<!-- _______________________________________________________________________ -->
3665<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003666 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3667</div>
3668<div class="doc_text">
3669
3670<h5>Syntax:</h5>
3671<pre>
3672 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3673</pre>
3674
3675<h5>Overview:</h5>
3676<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3677the integer type <tt>ty2</tt>.</p>
3678
3679<h5>Arguments:</h5>
3680<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003681must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003682<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3683
3684<h5>Semantics:</h5>
3685<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3686<tt>ty2</tt> by interpreting the pointer value as an integer and either
3687truncating or zero extending that value to the size of the integer type. If
3688<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3689<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003690are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3691change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003692
3693<h5>Example:</h5>
3694<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003695 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3696 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003697</pre>
3698</div>
3699
3700<!-- _______________________________________________________________________ -->
3701<div class="doc_subsubsection">
3702 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3703</div>
3704<div class="doc_text">
3705
3706<h5>Syntax:</h5>
3707<pre>
3708 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3709</pre>
3710
3711<h5>Overview:</h5>
3712<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3713a pointer type, <tt>ty2</tt>.</p>
3714
3715<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003716<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003717value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003718<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003719
3720<h5>Semantics:</h5>
3721<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3722<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3723the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3724size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3725the size of a pointer then a zero extension is done. If they are the same size,
3726nothing is done (<i>no-op cast</i>).</p>
3727
3728<h5>Example:</h5>
3729<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003730 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3731 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3732 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003733</pre>
3734</div>
3735
3736<!-- _______________________________________________________________________ -->
3737<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003738 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003739</div>
3740<div class="doc_text">
3741
3742<h5>Syntax:</h5>
3743<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003744 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003745</pre>
3746
3747<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003748
Reid Spencer5c0ef472006-11-11 23:08:07 +00003749<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003750<tt>ty2</tt> without changing any bits.</p>
3751
3752<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003753
Reid Spencer5c0ef472006-11-11 23:08:07 +00003754<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003755a first class value, and a type to cast it to, which must also be a <a
3756 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003757and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003758type is a pointer, the destination type must also be a pointer. This
3759instruction supports bitwise conversion of vectors to integers and to vectors
3760of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003761
3762<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003763<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003764<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3765this conversion. The conversion is done as if the <tt>value</tt> had been
3766stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3767converted to other pointer types with this instruction. To convert pointers to
3768other types, use the <a href="#i_inttoptr">inttoptr</a> or
3769<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003770
3771<h5>Example:</h5>
3772<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003773 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003774 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3775 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003776</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003777</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003778
Reid Spencer2fd21e62006-11-08 01:18:52 +00003779<!-- ======================================================================= -->
3780<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3781<div class="doc_text">
3782<p>The instructions in this category are the "miscellaneous"
3783instructions, which defy better classification.</p>
3784</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003785
3786<!-- _______________________________________________________________________ -->
3787<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3788</div>
3789<div class="doc_text">
3790<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003791<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003792</pre>
3793<h5>Overview:</h5>
3794<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
Chris Lattner4316dec2008-04-02 00:38:26 +00003795of its two integer or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003796<h5>Arguments:</h5>
3797<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003798the condition code indicating the kind of comparison to perform. It is not
3799a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003800<ol>
3801 <li><tt>eq</tt>: equal</li>
3802 <li><tt>ne</tt>: not equal </li>
3803 <li><tt>ugt</tt>: unsigned greater than</li>
3804 <li><tt>uge</tt>: unsigned greater or equal</li>
3805 <li><tt>ult</tt>: unsigned less than</li>
3806 <li><tt>ule</tt>: unsigned less or equal</li>
3807 <li><tt>sgt</tt>: signed greater than</li>
3808 <li><tt>sge</tt>: signed greater or equal</li>
3809 <li><tt>slt</tt>: signed less than</li>
3810 <li><tt>sle</tt>: signed less or equal</li>
3811</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003812<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003813<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003814<h5>Semantics:</h5>
3815<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3816the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003817yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003818<ol>
3819 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3820 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3821 </li>
3822 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3823 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3824 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3825 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3826 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3827 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3828 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3829 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3830 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3831 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3832 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3833 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3834 <li><tt>sge</tt>: interprets the operands as signed values and yields
3835 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3836 <li><tt>slt</tt>: interprets the operands as signed values and yields
3837 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3838 <li><tt>sle</tt>: interprets the operands as signed values and yields
3839 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003840</ol>
3841<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003842values are compared as if they were integers.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003843
3844<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003845<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3846 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3847 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3848 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3849 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3850 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003851</pre>
3852</div>
3853
3854<!-- _______________________________________________________________________ -->
3855<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3856</div>
3857<div class="doc_text">
3858<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003859<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003860</pre>
3861<h5>Overview:</h5>
3862<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3863of its floating point operands.</p>
3864<h5>Arguments:</h5>
3865<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003866the condition code indicating the kind of comparison to perform. It is not
3867a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003868<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003869 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003870 <li><tt>oeq</tt>: ordered and equal</li>
3871 <li><tt>ogt</tt>: ordered and greater than </li>
3872 <li><tt>oge</tt>: ordered and greater than or equal</li>
3873 <li><tt>olt</tt>: ordered and less than </li>
3874 <li><tt>ole</tt>: ordered and less than or equal</li>
3875 <li><tt>one</tt>: ordered and not equal</li>
3876 <li><tt>ord</tt>: ordered (no nans)</li>
3877 <li><tt>ueq</tt>: unordered or equal</li>
3878 <li><tt>ugt</tt>: unordered or greater than </li>
3879 <li><tt>uge</tt>: unordered or greater than or equal</li>
3880 <li><tt>ult</tt>: unordered or less than </li>
3881 <li><tt>ule</tt>: unordered or less than or equal</li>
3882 <li><tt>une</tt>: unordered or not equal</li>
3883 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003884 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003885</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003886<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003887<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003888<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3889<a href="#t_floating">floating point</a> typed. They must have identical
3890types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003891<h5>Semantics:</h5>
Nate Begemanac80ade2008-05-12 19:01:56 +00003892<p>The '<tt>fcmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
3893according to the condition code given as <tt>cond</tt>. The comparison performed
3894always yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003895<ol>
3896 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003897 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003898 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003899 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003900 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003901 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003902 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003903 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003904 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003905 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003906 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003907 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003908 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003909 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3910 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003911 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003912 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003913 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003914 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003915 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003916 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003917 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003918 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003919 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003920 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003921 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003922 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003923 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3924</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003925
3926<h5>Example:</h5>
3927<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3928 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3929 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3930 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3931</pre>
3932</div>
3933
Reid Spencer2fd21e62006-11-08 01:18:52 +00003934<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00003935<div class="doc_subsubsection">
3936 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
3937</div>
3938<div class="doc_text">
3939<h5>Syntax:</h5>
3940<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
3941</pre>
3942<h5>Overview:</h5>
3943<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
3944element-wise comparison of its two integer vector operands.</p>
3945<h5>Arguments:</h5>
3946<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
3947the condition code indicating the kind of comparison to perform. It is not
3948a value, just a keyword. The possible condition code are:
3949<ol>
3950 <li><tt>eq</tt>: equal</li>
3951 <li><tt>ne</tt>: not equal </li>
3952 <li><tt>ugt</tt>: unsigned greater than</li>
3953 <li><tt>uge</tt>: unsigned greater or equal</li>
3954 <li><tt>ult</tt>: unsigned less than</li>
3955 <li><tt>ule</tt>: unsigned less or equal</li>
3956 <li><tt>sgt</tt>: signed greater than</li>
3957 <li><tt>sge</tt>: signed greater or equal</li>
3958 <li><tt>slt</tt>: signed less than</li>
3959 <li><tt>sle</tt>: signed less or equal</li>
3960</ol>
3961<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
3962<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
3963<h5>Semantics:</h5>
3964<p>The '<tt>vicmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
3965according to the condition code given as <tt>cond</tt>. The comparison yields a
3966<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
3967identical type as the values being compared. The most significant bit in each
3968element is 1 if the element-wise comparison evaluates to true, and is 0
3969otherwise. All other bits of the result are undefined. The condition codes
3970are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
3971instruction</a>.
3972
3973<h5>Example:</h5>
3974<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003975 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
3976 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00003977</pre>
3978</div>
3979
3980<!-- _______________________________________________________________________ -->
3981<div class="doc_subsubsection">
3982 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
3983</div>
3984<div class="doc_text">
3985<h5>Syntax:</h5>
3986<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;</pre>
3987<h5>Overview:</h5>
3988<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
3989element-wise comparison of its two floating point vector operands. The output
3990elements have the same width as the input elements.</p>
3991<h5>Arguments:</h5>
3992<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
3993the condition code indicating the kind of comparison to perform. It is not
3994a value, just a keyword. The possible condition code are:
3995<ol>
3996 <li><tt>false</tt>: no comparison, always returns false</li>
3997 <li><tt>oeq</tt>: ordered and equal</li>
3998 <li><tt>ogt</tt>: ordered and greater than </li>
3999 <li><tt>oge</tt>: ordered and greater than or equal</li>
4000 <li><tt>olt</tt>: ordered and less than </li>
4001 <li><tt>ole</tt>: ordered and less than or equal</li>
4002 <li><tt>one</tt>: ordered and not equal</li>
4003 <li><tt>ord</tt>: ordered (no nans)</li>
4004 <li><tt>ueq</tt>: unordered or equal</li>
4005 <li><tt>ugt</tt>: unordered or greater than </li>
4006 <li><tt>uge</tt>: unordered or greater than or equal</li>
4007 <li><tt>ult</tt>: unordered or less than </li>
4008 <li><tt>ule</tt>: unordered or less than or equal</li>
4009 <li><tt>une</tt>: unordered or not equal</li>
4010 <li><tt>uno</tt>: unordered (either nans)</li>
4011 <li><tt>true</tt>: no comparison, always returns true</li>
4012</ol>
4013<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4014<a href="#t_floating">floating point</a> typed. They must also be identical
4015types.</p>
4016<h5>Semantics:</h5>
4017<p>The '<tt>vfcmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
4018according to the condition code given as <tt>cond</tt>. The comparison yields a
4019<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4020an identical number of elements as the values being compared, and each element
4021having identical with to the width of the floating point elements. The most
4022significant bit in each element is 1 if the element-wise comparison evaluates to
4023true, and is 0 otherwise. All other bits of the result are undefined. The
4024condition codes are evaluated identically to the
4025<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4026
4027<h5>Example:</h5>
4028<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004029 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4030 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004031</pre>
4032</div>
4033
4034<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004035<div class="doc_subsubsection">
4036 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4037</div>
4038
Reid Spencer2fd21e62006-11-08 01:18:52 +00004039<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004040
Reid Spencer2fd21e62006-11-08 01:18:52 +00004041<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004042
Reid Spencer2fd21e62006-11-08 01:18:52 +00004043<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4044<h5>Overview:</h5>
4045<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4046the SSA graph representing the function.</p>
4047<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004048
Jeff Cohenb627eab2007-04-29 01:07:00 +00004049<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004050field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4051as arguments, with one pair for each predecessor basic block of the
4052current block. Only values of <a href="#t_firstclass">first class</a>
4053type may be used as the value arguments to the PHI node. Only labels
4054may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004055
Reid Spencer2fd21e62006-11-08 01:18:52 +00004056<p>There must be no non-phi instructions between the start of a basic
4057block and the PHI instructions: i.e. PHI instructions must be first in
4058a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004059
Reid Spencer2fd21e62006-11-08 01:18:52 +00004060<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004061
Jeff Cohenb627eab2007-04-29 01:07:00 +00004062<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4063specified by the pair corresponding to the predecessor basic block that executed
4064just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004065
Reid Spencer2fd21e62006-11-08 01:18:52 +00004066<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004067<pre>
4068Loop: ; Infinite loop that counts from 0 on up...
4069 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4070 %nextindvar = add i32 %indvar, 1
4071 br label %Loop
4072</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004073</div>
4074
Chris Lattnercc37aae2004-03-12 05:50:16 +00004075<!-- _______________________________________________________________________ -->
4076<div class="doc_subsubsection">
4077 <a name="i_select">'<tt>select</tt>' Instruction</a>
4078</div>
4079
4080<div class="doc_text">
4081
4082<h5>Syntax:</h5>
4083
4084<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004085 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004086</pre>
4087
4088<h5>Overview:</h5>
4089
4090<p>
4091The '<tt>select</tt>' instruction is used to choose one value based on a
4092condition, without branching.
4093</p>
4094
4095
4096<h5>Arguments:</h5>
4097
4098<p>
Chris Lattner5568e942008-05-20 20:48:21 +00004099The '<tt>select</tt>' instruction requires an 'i1' value indicating the
4100condition, and two values of the same <a href="#t_firstclass">first class</a>
4101type. If the val1/val2 are vectors, the entire vectors are selected, not
4102individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004103</p>
4104
4105<h5>Semantics:</h5>
4106
4107<p>
Chris Lattner5568e942008-05-20 20:48:21 +00004108If the i1 condition evaluates is 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004109value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004110</p>
4111
4112<h5>Example:</h5>
4113
4114<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004115 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004116</pre>
4117</div>
4118
Robert Bocchino05ccd702006-01-15 20:48:27 +00004119
4120<!-- _______________________________________________________________________ -->
4121<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004122 <a name="i_call">'<tt>call</tt>' Instruction</a>
4123</div>
4124
Misha Brukman9d0919f2003-11-08 01:05:38 +00004125<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004126
Chris Lattner00950542001-06-06 20:29:01 +00004127<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004128<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004129 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004130</pre>
4131
Chris Lattner00950542001-06-06 20:29:01 +00004132<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004133
Misha Brukman9d0919f2003-11-08 01:05:38 +00004134<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004135
Chris Lattner00950542001-06-06 20:29:01 +00004136<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004137
Misha Brukman9d0919f2003-11-08 01:05:38 +00004138<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004139
Chris Lattner6536cfe2002-05-06 22:08:29 +00004140<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004141 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004142 <p>The optional "tail" marker indicates whether the callee function accesses
4143 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004144 function call is eligible for tail call optimization. Note that calls may
4145 be marked "tail" even if they do not occur before a <a
4146 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004147 </li>
4148 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004149 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004150 convention</a> the call should use. If none is specified, the call defaults
4151 to using C calling conventions.
4152 </li>
4153 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004154 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4155 the type of the return value. Functions that return no value are marked
4156 <tt><a href="#t_void">void</a></tt>.</p>
4157 </li>
4158 <li>
4159 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4160 value being invoked. The argument types must match the types implied by
4161 this signature. This type can be omitted if the function is not varargs
4162 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004163 </li>
4164 <li>
4165 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4166 be invoked. In most cases, this is a direct function invocation, but
4167 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004168 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004169 </li>
4170 <li>
4171 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004172 function signature argument types. All arguments must be of
4173 <a href="#t_firstclass">first class</a> type. If the function signature
4174 indicates the function accepts a variable number of arguments, the extra
4175 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004176 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004177</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004178
Chris Lattner00950542001-06-06 20:29:01 +00004179<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004180
Chris Lattner261efe92003-11-25 01:02:51 +00004181<p>The '<tt>call</tt>' instruction is used to cause control flow to
4182transfer to a specified function, with its incoming arguments bound to
4183the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4184instruction in the called function, control flow continues with the
4185instruction after the function call, and the return value of the
Chris Lattner772fccf2008-03-21 17:24:17 +00004186function is bound to the result argument. If the callee returns multiple
4187values then the return values of the function are only accessible through
4188the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004189
Chris Lattner00950542001-06-06 20:29:01 +00004190<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004191
4192<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004193 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004194 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4195 %X = tail call i32 @foo() <i>; yields i32</i>
4196 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4197 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004198
4199 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004200 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4201 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4202 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004203</pre>
4204
Misha Brukman9d0919f2003-11-08 01:05:38 +00004205</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004206
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004207<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004208<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004209 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004210</div>
4211
Misha Brukman9d0919f2003-11-08 01:05:38 +00004212<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004213
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004214<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004215
4216<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004217 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004218</pre>
4219
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004220<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004221
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004222<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004223the "variable argument" area of a function call. It is used to implement the
4224<tt>va_arg</tt> macro in C.</p>
4225
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004226<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004227
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004228<p>This instruction takes a <tt>va_list*</tt> value and the type of
4229the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004230increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004231actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004232
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004233<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004234
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004235<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4236type from the specified <tt>va_list</tt> and causes the
4237<tt>va_list</tt> to point to the next argument. For more information,
4238see the variable argument handling <a href="#int_varargs">Intrinsic
4239Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004240
4241<p>It is legal for this instruction to be called in a function which does not
4242take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004243function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004244
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004245<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004246href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004247argument.</p>
4248
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004249<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004250
4251<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4252
Misha Brukman9d0919f2003-11-08 01:05:38 +00004253</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004254
Devang Patelc3fc6df2008-03-10 20:49:15 +00004255<!-- _______________________________________________________________________ -->
4256<div class="doc_subsubsection">
4257 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4258</div>
4259
4260<div class="doc_text">
4261
4262<h5>Syntax:</h5>
4263<pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004264 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patelc3fc6df2008-03-10 20:49:15 +00004265</pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004266
Devang Patelc3fc6df2008-03-10 20:49:15 +00004267<h5>Overview:</h5>
4268
4269<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004270from a '<tt><a href="#i_call">call</a></tt>'
4271or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4272results.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004273
4274<h5>Arguments:</h5>
4275
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004276<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattner1c406d72008-04-23 04:06:52 +00004277first argument, or an undef value. The value must have <a
4278href="#t_struct">structure type</a>. The second argument is a constant
4279unsigned index value which must be in range for the number of values returned
4280by the call.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004281
4282<h5>Semantics:</h5>
4283
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004284<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4285'<tt>index</tt>' from the aggregate value.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004286
4287<h5>Example:</h5>
4288
4289<pre>
4290 %struct.A = type { i32, i8 }
4291
4292 %r = call %struct.A @foo()
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004293 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4294 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004295 add i32 %gr, 42
4296 add i8 %gr1, 41
4297</pre>
4298
4299</div>
4300
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004301<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004302<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4303<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004304
Misha Brukman9d0919f2003-11-08 01:05:38 +00004305<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004306
4307<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004308well known names and semantics and are required to follow certain restrictions.
4309Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004310language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004311adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004312
John Criswellfc6b8952005-05-16 16:17:45 +00004313<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004314prefix is reserved in LLVM for intrinsic names; thus, function names may not
4315begin with this prefix. Intrinsic functions must always be external functions:
4316you cannot define the body of intrinsic functions. Intrinsic functions may
4317only be used in call or invoke instructions: it is illegal to take the address
4318of an intrinsic function. Additionally, because intrinsic functions are part
4319of the LLVM language, it is required if any are added that they be documented
4320here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004321
Chandler Carruth69940402007-08-04 01:51:18 +00004322<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4323a family of functions that perform the same operation but on different data
4324types. Because LLVM can represent over 8 million different integer types,
4325overloading is used commonly to allow an intrinsic function to operate on any
4326integer type. One or more of the argument types or the result type can be
4327overloaded to accept any integer type. Argument types may also be defined as
4328exactly matching a previous argument's type or the result type. This allows an
4329intrinsic function which accepts multiple arguments, but needs all of them to
4330be of the same type, to only be overloaded with respect to a single argument or
4331the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004332
Chandler Carruth69940402007-08-04 01:51:18 +00004333<p>Overloaded intrinsics will have the names of its overloaded argument types
4334encoded into its function name, each preceded by a period. Only those types
4335which are overloaded result in a name suffix. Arguments whose type is matched
4336against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4337take an integer of any width and returns an integer of exactly the same integer
4338width. This leads to a family of functions such as
4339<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4340Only one type, the return type, is overloaded, and only one type suffix is
4341required. Because the argument's type is matched against the return type, it
4342does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004343
4344<p>To learn how to add an intrinsic function, please see the
4345<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004346</p>
4347
Misha Brukman9d0919f2003-11-08 01:05:38 +00004348</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004349
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004350<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004351<div class="doc_subsection">
4352 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4353</div>
4354
Misha Brukman9d0919f2003-11-08 01:05:38 +00004355<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004356
Misha Brukman9d0919f2003-11-08 01:05:38 +00004357<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004358 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004359intrinsic functions. These functions are related to the similarly
4360named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004361
Chris Lattner261efe92003-11-25 01:02:51 +00004362<p>All of these functions operate on arguments that use a
4363target-specific value type "<tt>va_list</tt>". The LLVM assembly
4364language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004365transformations should be prepared to handle these functions regardless of
4366the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004367
Chris Lattner374ab302006-05-15 17:26:46 +00004368<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004369instruction and the variable argument handling intrinsic functions are
4370used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004371
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004372<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004373<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004374define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004375 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004376 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004377 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004378 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004379
4380 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004381 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004382
4383 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004384 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004385 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004386 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004387 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004388
4389 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004390 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004391 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004392}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004393
4394declare void @llvm.va_start(i8*)
4395declare void @llvm.va_copy(i8*, i8*)
4396declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004397</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004398</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004399
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004400</div>
4401
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004402<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004403<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004404 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004405</div>
4406
4407
Misha Brukman9d0919f2003-11-08 01:05:38 +00004408<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004409<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004410<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004411<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004412<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4413<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4414href="#i_va_arg">va_arg</a></tt>.</p>
4415
4416<h5>Arguments:</h5>
4417
4418<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4419
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004420<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004421
4422<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4423macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004424<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004425<tt>va_arg</tt> will produce the first variable argument passed to the function.
4426Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004427last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004428
Misha Brukman9d0919f2003-11-08 01:05:38 +00004429</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004430
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004431<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004432<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004433 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004434</div>
4435
Misha Brukman9d0919f2003-11-08 01:05:38 +00004436<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004437<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004438<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004439<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004440
Jeff Cohenb627eab2007-04-29 01:07:00 +00004441<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004442which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004443or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004444
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004445<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004446
Jeff Cohenb627eab2007-04-29 01:07:00 +00004447<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004448
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004449<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004450
Misha Brukman9d0919f2003-11-08 01:05:38 +00004451<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004452macro available in C. In a target-dependent way, it destroys the
4453<tt>va_list</tt> element to which the argument points. Calls to <a
4454href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4455<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4456<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004457
Misha Brukman9d0919f2003-11-08 01:05:38 +00004458</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004459
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004460<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004461<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004462 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004463</div>
4464
Misha Brukman9d0919f2003-11-08 01:05:38 +00004465<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004466
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004467<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004468
4469<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004470 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004471</pre>
4472
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004473<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004474
Jeff Cohenb627eab2007-04-29 01:07:00 +00004475<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4476from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004477
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004478<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004479
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004480<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004481The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004482
Chris Lattnerd7923912004-05-23 21:06:01 +00004483
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004484<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004485
Jeff Cohenb627eab2007-04-29 01:07:00 +00004486<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4487macro available in C. In a target-dependent way, it copies the source
4488<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4489intrinsic is necessary because the <tt><a href="#int_va_start">
4490llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4491example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004492
Misha Brukman9d0919f2003-11-08 01:05:38 +00004493</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004494
Chris Lattner33aec9e2004-02-12 17:01:32 +00004495<!-- ======================================================================= -->
4496<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004497 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4498</div>
4499
4500<div class="doc_text">
4501
4502<p>
4503LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4504Collection</a> requires the implementation and generation of these intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004505These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004506stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004507href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004508Front-ends for type-safe garbage collected languages should generate these
4509intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4510href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4511</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004512
4513<p>The garbage collection intrinsics only operate on objects in the generic
4514 address space (address space zero).</p>
4515
Chris Lattnerd7923912004-05-23 21:06:01 +00004516</div>
4517
4518<!-- _______________________________________________________________________ -->
4519<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004520 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004521</div>
4522
4523<div class="doc_text">
4524
4525<h5>Syntax:</h5>
4526
4527<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004528 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004529</pre>
4530
4531<h5>Overview:</h5>
4532
John Criswell9e2485c2004-12-10 15:51:16 +00004533<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004534the code generator, and allows some metadata to be associated with it.</p>
4535
4536<h5>Arguments:</h5>
4537
4538<p>The first argument specifies the address of a stack object that contains the
4539root pointer. The second pointer (which must be either a constant or a global
4540value address) contains the meta-data to be associated with the root.</p>
4541
4542<h5>Semantics:</h5>
4543
Chris Lattner05d67092008-04-24 05:59:56 +00004544<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004545location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004546the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4547intrinsic may only be used in a function which <a href="#gc">specifies a GC
4548algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004549
4550</div>
4551
4552
4553<!-- _______________________________________________________________________ -->
4554<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004555 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004556</div>
4557
4558<div class="doc_text">
4559
4560<h5>Syntax:</h5>
4561
4562<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004563 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004564</pre>
4565
4566<h5>Overview:</h5>
4567
4568<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4569locations, allowing garbage collector implementations that require read
4570barriers.</p>
4571
4572<h5>Arguments:</h5>
4573
Chris Lattner80626e92006-03-14 20:02:51 +00004574<p>The second argument is the address to read from, which should be an address
4575allocated from the garbage collector. The first object is a pointer to the
4576start of the referenced object, if needed by the language runtime (otherwise
4577null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004578
4579<h5>Semantics:</h5>
4580
4581<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4582instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004583garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4584may only be used in a function which <a href="#gc">specifies a GC
4585algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004586
4587</div>
4588
4589
4590<!-- _______________________________________________________________________ -->
4591<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004592 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004593</div>
4594
4595<div class="doc_text">
4596
4597<h5>Syntax:</h5>
4598
4599<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004600 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004601</pre>
4602
4603<h5>Overview:</h5>
4604
4605<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4606locations, allowing garbage collector implementations that require write
4607barriers (such as generational or reference counting collectors).</p>
4608
4609<h5>Arguments:</h5>
4610
Chris Lattner80626e92006-03-14 20:02:51 +00004611<p>The first argument is the reference to store, the second is the start of the
4612object to store it to, and the third is the address of the field of Obj to
4613store to. If the runtime does not require a pointer to the object, Obj may be
4614null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004615
4616<h5>Semantics:</h5>
4617
4618<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4619instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004620garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4621may only be used in a function which <a href="#gc">specifies a GC
4622algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004623
4624</div>
4625
4626
4627
4628<!-- ======================================================================= -->
4629<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004630 <a name="int_codegen">Code Generator Intrinsics</a>
4631</div>
4632
4633<div class="doc_text">
4634<p>
4635These intrinsics are provided by LLVM to expose special features that may only
4636be implemented with code generator support.
4637</p>
4638
4639</div>
4640
4641<!-- _______________________________________________________________________ -->
4642<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004643 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004644</div>
4645
4646<div class="doc_text">
4647
4648<h5>Syntax:</h5>
4649<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004650 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004651</pre>
4652
4653<h5>Overview:</h5>
4654
4655<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004656The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4657target-specific value indicating the return address of the current function
4658or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004659</p>
4660
4661<h5>Arguments:</h5>
4662
4663<p>
4664The argument to this intrinsic indicates which function to return the address
4665for. Zero indicates the calling function, one indicates its caller, etc. The
4666argument is <b>required</b> to be a constant integer value.
4667</p>
4668
4669<h5>Semantics:</h5>
4670
4671<p>
4672The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4673the return address of the specified call frame, or zero if it cannot be
4674identified. The value returned by this intrinsic is likely to be incorrect or 0
4675for arguments other than zero, so it should only be used for debugging purposes.
4676</p>
4677
4678<p>
4679Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004680aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004681source-language caller.
4682</p>
4683</div>
4684
4685
4686<!-- _______________________________________________________________________ -->
4687<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004688 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004689</div>
4690
4691<div class="doc_text">
4692
4693<h5>Syntax:</h5>
4694<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004695 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004696</pre>
4697
4698<h5>Overview:</h5>
4699
4700<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004701The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4702target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004703</p>
4704
4705<h5>Arguments:</h5>
4706
4707<p>
4708The argument to this intrinsic indicates which function to return the frame
4709pointer for. Zero indicates the calling function, one indicates its caller,
4710etc. The argument is <b>required</b> to be a constant integer value.
4711</p>
4712
4713<h5>Semantics:</h5>
4714
4715<p>
4716The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4717the frame address of the specified call frame, or zero if it cannot be
4718identified. The value returned by this intrinsic is likely to be incorrect or 0
4719for arguments other than zero, so it should only be used for debugging purposes.
4720</p>
4721
4722<p>
4723Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004724aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004725source-language caller.
4726</p>
4727</div>
4728
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004729<!-- _______________________________________________________________________ -->
4730<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004731 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004732</div>
4733
4734<div class="doc_text">
4735
4736<h5>Syntax:</h5>
4737<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004738 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004739</pre>
4740
4741<h5>Overview:</h5>
4742
4743<p>
4744The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004745the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004746<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4747features like scoped automatic variable sized arrays in C99.
4748</p>
4749
4750<h5>Semantics:</h5>
4751
4752<p>
4753This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004754href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004755<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4756<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4757state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4758practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4759that were allocated after the <tt>llvm.stacksave</tt> was executed.
4760</p>
4761
4762</div>
4763
4764<!-- _______________________________________________________________________ -->
4765<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004766 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004767</div>
4768
4769<div class="doc_text">
4770
4771<h5>Syntax:</h5>
4772<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004773 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004774</pre>
4775
4776<h5>Overview:</h5>
4777
4778<p>
4779The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4780the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004781href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004782useful for implementing language features like scoped automatic variable sized
4783arrays in C99.
4784</p>
4785
4786<h5>Semantics:</h5>
4787
4788<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004789See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004790</p>
4791
4792</div>
4793
4794
4795<!-- _______________________________________________________________________ -->
4796<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004797 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004798</div>
4799
4800<div class="doc_text">
4801
4802<h5>Syntax:</h5>
4803<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004804 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004805</pre>
4806
4807<h5>Overview:</h5>
4808
4809
4810<p>
4811The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004812a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4813no
4814effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004815characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004816</p>
4817
4818<h5>Arguments:</h5>
4819
4820<p>
4821<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4822determining if the fetch should be for a read (0) or write (1), and
4823<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004824locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004825<tt>locality</tt> arguments must be constant integers.
4826</p>
4827
4828<h5>Semantics:</h5>
4829
4830<p>
4831This intrinsic does not modify the behavior of the program. In particular,
4832prefetches cannot trap and do not produce a value. On targets that support this
4833intrinsic, the prefetch can provide hints to the processor cache for better
4834performance.
4835</p>
4836
4837</div>
4838
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004839<!-- _______________________________________________________________________ -->
4840<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004841 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004842</div>
4843
4844<div class="doc_text">
4845
4846<h5>Syntax:</h5>
4847<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004848 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004849</pre>
4850
4851<h5>Overview:</h5>
4852
4853
4854<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004855The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4856(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004857code to simulators and other tools. The method is target specific, but it is
4858expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004859The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004860after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004861optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004862correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004863</p>
4864
4865<h5>Arguments:</h5>
4866
4867<p>
4868<tt>id</tt> is a numerical id identifying the marker.
4869</p>
4870
4871<h5>Semantics:</h5>
4872
4873<p>
4874This intrinsic does not modify the behavior of the program. Backends that do not
4875support this intrinisic may ignore it.
4876</p>
4877
4878</div>
4879
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004880<!-- _______________________________________________________________________ -->
4881<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004882 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004883</div>
4884
4885<div class="doc_text">
4886
4887<h5>Syntax:</h5>
4888<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004889 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004890</pre>
4891
4892<h5>Overview:</h5>
4893
4894
4895<p>
4896The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4897counter register (or similar low latency, high accuracy clocks) on those targets
4898that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4899As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4900should only be used for small timings.
4901</p>
4902
4903<h5>Semantics:</h5>
4904
4905<p>
4906When directly supported, reading the cycle counter should not modify any memory.
4907Implementations are allowed to either return a application specific value or a
4908system wide value. On backends without support, this is lowered to a constant 0.
4909</p>
4910
4911</div>
4912
Chris Lattner10610642004-02-14 04:08:35 +00004913<!-- ======================================================================= -->
4914<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004915 <a name="int_libc">Standard C Library Intrinsics</a>
4916</div>
4917
4918<div class="doc_text">
4919<p>
Chris Lattner10610642004-02-14 04:08:35 +00004920LLVM provides intrinsics for a few important standard C library functions.
4921These intrinsics allow source-language front-ends to pass information about the
4922alignment of the pointer arguments to the code generator, providing opportunity
4923for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004924</p>
4925
4926</div>
4927
4928<!-- _______________________________________________________________________ -->
4929<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004930 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004931</div>
4932
4933<div class="doc_text">
4934
4935<h5>Syntax:</h5>
4936<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004937 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004938 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004939 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004940 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004941</pre>
4942
4943<h5>Overview:</h5>
4944
4945<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004946The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004947location to the destination location.
4948</p>
4949
4950<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004951Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4952intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004953</p>
4954
4955<h5>Arguments:</h5>
4956
4957<p>
4958The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004959the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004960specifying the number of bytes to copy, and the fourth argument is the alignment
4961of the source and destination locations.
4962</p>
4963
Chris Lattner3301ced2004-02-12 21:18:15 +00004964<p>
4965If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004966the caller guarantees that both the source and destination pointers are aligned
4967to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004968</p>
4969
Chris Lattner33aec9e2004-02-12 17:01:32 +00004970<h5>Semantics:</h5>
4971
4972<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004973The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004974location to the destination location, which are not allowed to overlap. It
4975copies "len" bytes of memory over. If the argument is known to be aligned to
4976some boundary, this can be specified as the fourth argument, otherwise it should
4977be set to 0 or 1.
4978</p>
4979</div>
4980
4981
Chris Lattner0eb51b42004-02-12 18:10:10 +00004982<!-- _______________________________________________________________________ -->
4983<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004984 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00004985</div>
4986
4987<div class="doc_text">
4988
4989<h5>Syntax:</h5>
4990<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004991 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004992 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004993 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004994 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004995</pre>
4996
4997<h5>Overview:</h5>
4998
4999<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005000The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5001location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005002'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005003</p>
5004
5005<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005006Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5007intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005008</p>
5009
5010<h5>Arguments:</h5>
5011
5012<p>
5013The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005014the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005015specifying the number of bytes to copy, and the fourth argument is the alignment
5016of the source and destination locations.
5017</p>
5018
Chris Lattner3301ced2004-02-12 21:18:15 +00005019<p>
5020If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005021the caller guarantees that the source and destination pointers are aligned to
5022that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005023</p>
5024
Chris Lattner0eb51b42004-02-12 18:10:10 +00005025<h5>Semantics:</h5>
5026
5027<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005028The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005029location to the destination location, which may overlap. It
5030copies "len" bytes of memory over. If the argument is known to be aligned to
5031some boundary, this can be specified as the fourth argument, otherwise it should
5032be set to 0 or 1.
5033</p>
5034</div>
5035
Chris Lattner8ff75902004-01-06 05:31:32 +00005036
Chris Lattner10610642004-02-14 04:08:35 +00005037<!-- _______________________________________________________________________ -->
5038<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005039 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005040</div>
5041
5042<div class="doc_text">
5043
5044<h5>Syntax:</h5>
5045<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005046 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005047 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005048 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005049 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005050</pre>
5051
5052<h5>Overview:</h5>
5053
5054<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005055The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005056byte value.
5057</p>
5058
5059<p>
5060Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5061does not return a value, and takes an extra alignment argument.
5062</p>
5063
5064<h5>Arguments:</h5>
5065
5066<p>
5067The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005068byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005069argument specifying the number of bytes to fill, and the fourth argument is the
5070known alignment of destination location.
5071</p>
5072
5073<p>
5074If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005075the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005076</p>
5077
5078<h5>Semantics:</h5>
5079
5080<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005081The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5082the
Chris Lattner10610642004-02-14 04:08:35 +00005083destination location. If the argument is known to be aligned to some boundary,
5084this can be specified as the fourth argument, otherwise it should be set to 0 or
50851.
5086</p>
5087</div>
5088
5089
Chris Lattner32006282004-06-11 02:28:03 +00005090<!-- _______________________________________________________________________ -->
5091<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005092 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005093</div>
5094
5095<div class="doc_text">
5096
5097<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005098<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005099floating point or vector of floating point type. Not all targets support all
5100types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005101<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005102 declare float @llvm.sqrt.f32(float %Val)
5103 declare double @llvm.sqrt.f64(double %Val)
5104 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5105 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5106 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005107</pre>
5108
5109<h5>Overview:</h5>
5110
5111<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005112The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005113returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005114<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005115negative numbers other than -0.0 (which allows for better optimization, because
5116there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5117defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005118</p>
5119
5120<h5>Arguments:</h5>
5121
5122<p>
5123The argument and return value are floating point numbers of the same type.
5124</p>
5125
5126<h5>Semantics:</h5>
5127
5128<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005129This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005130floating point number.
5131</p>
5132</div>
5133
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005134<!-- _______________________________________________________________________ -->
5135<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005136 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005137</div>
5138
5139<div class="doc_text">
5140
5141<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005142<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005143floating point or vector of floating point type. Not all targets support all
5144types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005145<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005146 declare float @llvm.powi.f32(float %Val, i32 %power)
5147 declare double @llvm.powi.f64(double %Val, i32 %power)
5148 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5149 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5150 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005151</pre>
5152
5153<h5>Overview:</h5>
5154
5155<p>
5156The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5157specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005158multiplications is not defined. When a vector of floating point type is
5159used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005160</p>
5161
5162<h5>Arguments:</h5>
5163
5164<p>
5165The second argument is an integer power, and the first is a value to raise to
5166that power.
5167</p>
5168
5169<h5>Semantics:</h5>
5170
5171<p>
5172This function returns the first value raised to the second power with an
5173unspecified sequence of rounding operations.</p>
5174</div>
5175
Dan Gohman91c284c2007-10-15 20:30:11 +00005176<!-- _______________________________________________________________________ -->
5177<div class="doc_subsubsection">
5178 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5179</div>
5180
5181<div class="doc_text">
5182
5183<h5>Syntax:</h5>
5184<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5185floating point or vector of floating point type. Not all targets support all
5186types however.
5187<pre>
5188 declare float @llvm.sin.f32(float %Val)
5189 declare double @llvm.sin.f64(double %Val)
5190 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5191 declare fp128 @llvm.sin.f128(fp128 %Val)
5192 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5193</pre>
5194
5195<h5>Overview:</h5>
5196
5197<p>
5198The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5199</p>
5200
5201<h5>Arguments:</h5>
5202
5203<p>
5204The argument and return value are floating point numbers of the same type.
5205</p>
5206
5207<h5>Semantics:</h5>
5208
5209<p>
5210This function returns the sine of the specified operand, returning the
5211same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005212conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005213</div>
5214
5215<!-- _______________________________________________________________________ -->
5216<div class="doc_subsubsection">
5217 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5218</div>
5219
5220<div class="doc_text">
5221
5222<h5>Syntax:</h5>
5223<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5224floating point or vector of floating point type. Not all targets support all
5225types however.
5226<pre>
5227 declare float @llvm.cos.f32(float %Val)
5228 declare double @llvm.cos.f64(double %Val)
5229 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5230 declare fp128 @llvm.cos.f128(fp128 %Val)
5231 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5232</pre>
5233
5234<h5>Overview:</h5>
5235
5236<p>
5237The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5238</p>
5239
5240<h5>Arguments:</h5>
5241
5242<p>
5243The argument and return value are floating point numbers of the same type.
5244</p>
5245
5246<h5>Semantics:</h5>
5247
5248<p>
5249This function returns the cosine of the specified operand, returning the
5250same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005251conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005252</div>
5253
5254<!-- _______________________________________________________________________ -->
5255<div class="doc_subsubsection">
5256 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5257</div>
5258
5259<div class="doc_text">
5260
5261<h5>Syntax:</h5>
5262<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5263floating point or vector of floating point type. Not all targets support all
5264types however.
5265<pre>
5266 declare float @llvm.pow.f32(float %Val, float %Power)
5267 declare double @llvm.pow.f64(double %Val, double %Power)
5268 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5269 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5270 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5271</pre>
5272
5273<h5>Overview:</h5>
5274
5275<p>
5276The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5277specified (positive or negative) power.
5278</p>
5279
5280<h5>Arguments:</h5>
5281
5282<p>
5283The second argument is a floating point power, and the first is a value to
5284raise to that power.
5285</p>
5286
5287<h5>Semantics:</h5>
5288
5289<p>
5290This function returns the first value raised to the second power,
5291returning the
5292same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005293conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005294</div>
5295
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005296
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005297<!-- ======================================================================= -->
5298<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005299 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005300</div>
5301
5302<div class="doc_text">
5303<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005304LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005305These allow efficient code generation for some algorithms.
5306</p>
5307
5308</div>
5309
5310<!-- _______________________________________________________________________ -->
5311<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005312 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005313</div>
5314
5315<div class="doc_text">
5316
5317<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005318<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005319type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005320<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005321 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5322 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5323 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005324</pre>
5325
5326<h5>Overview:</h5>
5327
5328<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005329The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005330values with an even number of bytes (positive multiple of 16 bits). These are
5331useful for performing operations on data that is not in the target's native
5332byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005333</p>
5334
5335<h5>Semantics:</h5>
5336
5337<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005338The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005339and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5340intrinsic returns an i32 value that has the four bytes of the input i32
5341swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005342i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5343<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005344additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005345</p>
5346
5347</div>
5348
5349<!-- _______________________________________________________________________ -->
5350<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005351 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005352</div>
5353
5354<div class="doc_text">
5355
5356<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005357<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5358width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005359<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005360 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5361 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005362 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005363 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5364 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005365</pre>
5366
5367<h5>Overview:</h5>
5368
5369<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005370The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5371value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005372</p>
5373
5374<h5>Arguments:</h5>
5375
5376<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005377The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005378integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005379</p>
5380
5381<h5>Semantics:</h5>
5382
5383<p>
5384The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5385</p>
5386</div>
5387
5388<!-- _______________________________________________________________________ -->
5389<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005390 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005391</div>
5392
5393<div class="doc_text">
5394
5395<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005396<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5397integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005398<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005399 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5400 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005401 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005402 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5403 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005404</pre>
5405
5406<h5>Overview:</h5>
5407
5408<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005409The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5410leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005411</p>
5412
5413<h5>Arguments:</h5>
5414
5415<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005416The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005417integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005418</p>
5419
5420<h5>Semantics:</h5>
5421
5422<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005423The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5424in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005425of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005426</p>
5427</div>
Chris Lattner32006282004-06-11 02:28:03 +00005428
5429
Chris Lattnereff29ab2005-05-15 19:39:26 +00005430
5431<!-- _______________________________________________________________________ -->
5432<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005433 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005434</div>
5435
5436<div class="doc_text">
5437
5438<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005439<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5440integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005441<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005442 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5443 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005444 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005445 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5446 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005447</pre>
5448
5449<h5>Overview:</h5>
5450
5451<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005452The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5453trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005454</p>
5455
5456<h5>Arguments:</h5>
5457
5458<p>
5459The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005460integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005461</p>
5462
5463<h5>Semantics:</h5>
5464
5465<p>
5466The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5467in a variable. If the src == 0 then the result is the size in bits of the type
5468of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5469</p>
5470</div>
5471
Reid Spencer497d93e2007-04-01 08:27:01 +00005472<!-- _______________________________________________________________________ -->
5473<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005474 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005475</div>
5476
5477<div class="doc_text">
5478
5479<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005480<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005481on any integer bit width.
5482<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005483 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5484 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005485</pre>
5486
5487<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005488<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005489range of bits from an integer value and returns them in the same bit width as
5490the original value.</p>
5491
5492<h5>Arguments:</h5>
5493<p>The first argument, <tt>%val</tt> and the result may be integer types of
5494any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005495arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005496
5497<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005498<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005499of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5500<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5501operates in forward mode.</p>
5502<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5503right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005504only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5505<ol>
5506 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5507 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5508 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5509 to determine the number of bits to retain.</li>
5510 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5511 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5512</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005513<p>In reverse mode, a similar computation is made except that the bits are
5514returned in the reverse order. So, for example, if <tt>X</tt> has the value
5515<tt>i16 0x0ACF (101011001111)</tt> and we apply
5516<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5517<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005518</div>
5519
Reid Spencerf86037f2007-04-11 23:23:49 +00005520<div class="doc_subsubsection">
5521 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5522</div>
5523
5524<div class="doc_text">
5525
5526<h5>Syntax:</h5>
5527<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5528on any integer bit width.
5529<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005530 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5531 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005532</pre>
5533
5534<h5>Overview:</h5>
5535<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5536of bits in an integer value with another integer value. It returns the integer
5537with the replaced bits.</p>
5538
5539<h5>Arguments:</h5>
5540<p>The first argument, <tt>%val</tt> and the result may be integer types of
5541any bit width but they must have the same bit width. <tt>%val</tt> is the value
5542whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5543integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5544type since they specify only a bit index.</p>
5545
5546<h5>Semantics:</h5>
5547<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5548of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5549<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5550operates in forward mode.</p>
5551<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5552truncating it down to the size of the replacement area or zero extending it
5553up to that size.</p>
5554<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5555are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5556in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5557to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005558<p>In reverse mode, a similar computation is made except that the bits are
5559reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5560<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005561<h5>Examples:</h5>
5562<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005563 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005564 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5565 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5566 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005567 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005568</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005569</div>
5570
Chris Lattner8ff75902004-01-06 05:31:32 +00005571<!-- ======================================================================= -->
5572<div class="doc_subsection">
5573 <a name="int_debugger">Debugger Intrinsics</a>
5574</div>
5575
5576<div class="doc_text">
5577<p>
5578The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5579are described in the <a
5580href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5581Debugging</a> document.
5582</p>
5583</div>
5584
5585
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005586<!-- ======================================================================= -->
5587<div class="doc_subsection">
5588 <a name="int_eh">Exception Handling Intrinsics</a>
5589</div>
5590
5591<div class="doc_text">
5592<p> The LLVM exception handling intrinsics (which all start with
5593<tt>llvm.eh.</tt> prefix), are described in the <a
5594href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5595Handling</a> document. </p>
5596</div>
5597
Tanya Lattner6d806e92007-06-15 20:50:54 +00005598<!-- ======================================================================= -->
5599<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005600 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005601</div>
5602
5603<div class="doc_text">
5604<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005605 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005606 the <tt>nest</tt> attribute, from a function. The result is a callable
5607 function pointer lacking the nest parameter - the caller does not need
5608 to provide a value for it. Instead, the value to use is stored in
5609 advance in a "trampoline", a block of memory usually allocated
5610 on the stack, which also contains code to splice the nest value into the
5611 argument list. This is used to implement the GCC nested function address
5612 extension.
5613</p>
5614<p>
5615 For example, if the function is
5616 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005617 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005618<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005619 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5620 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5621 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5622 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005623</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005624 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5625 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005626</div>
5627
5628<!-- _______________________________________________________________________ -->
5629<div class="doc_subsubsection">
5630 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5631</div>
5632<div class="doc_text">
5633<h5>Syntax:</h5>
5634<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005635declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005636</pre>
5637<h5>Overview:</h5>
5638<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005639 This fills the memory pointed to by <tt>tramp</tt> with code
5640 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005641</p>
5642<h5>Arguments:</h5>
5643<p>
5644 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5645 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5646 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005647 intrinsic. Note that the size and the alignment are target-specific - LLVM
5648 currently provides no portable way of determining them, so a front-end that
5649 generates this intrinsic needs to have some target-specific knowledge.
5650 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005651</p>
5652<h5>Semantics:</h5>
5653<p>
5654 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005655 dependent code, turning it into a function. A pointer to this function is
5656 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005657 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005658 before being called. The new function's signature is the same as that of
5659 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5660 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5661 of pointer type. Calling the new function is equivalent to calling
5662 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5663 missing <tt>nest</tt> argument. If, after calling
5664 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5665 modified, then the effect of any later call to the returned function pointer is
5666 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005667</p>
5668</div>
5669
5670<!-- ======================================================================= -->
5671<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005672 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5673</div>
5674
5675<div class="doc_text">
5676<p>
5677 These intrinsic functions expand the "universal IR" of LLVM to represent
5678 hardware constructs for atomic operations and memory synchronization. This
5679 provides an interface to the hardware, not an interface to the programmer. It
5680 is aimed at a low enough level to allow any programming models or APIs which
5681 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5682 hardware behavior. Just as hardware provides a "universal IR" for source
5683 languages, it also provides a starting point for developing a "universal"
5684 atomic operation and synchronization IR.
5685</p>
5686<p>
5687 These do <em>not</em> form an API such as high-level threading libraries,
5688 software transaction memory systems, atomic primitives, and intrinsic
5689 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5690 application libraries. The hardware interface provided by LLVM should allow
5691 a clean implementation of all of these APIs and parallel programming models.
5692 No one model or paradigm should be selected above others unless the hardware
5693 itself ubiquitously does so.
5694
5695</p>
5696</div>
5697
5698<!-- _______________________________________________________________________ -->
5699<div class="doc_subsubsection">
5700 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5701</div>
5702<div class="doc_text">
5703<h5>Syntax:</h5>
5704<pre>
5705declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5706i1 &lt;device&gt; )
5707
5708</pre>
5709<h5>Overview:</h5>
5710<p>
5711 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5712 specific pairs of memory access types.
5713</p>
5714<h5>Arguments:</h5>
5715<p>
5716 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5717 The first four arguments enables a specific barrier as listed below. The fith
5718 argument specifies that the barrier applies to io or device or uncached memory.
5719
5720</p>
5721 <ul>
5722 <li><tt>ll</tt>: load-load barrier</li>
5723 <li><tt>ls</tt>: load-store barrier</li>
5724 <li><tt>sl</tt>: store-load barrier</li>
5725 <li><tt>ss</tt>: store-store barrier</li>
5726 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5727 </ul>
5728<h5>Semantics:</h5>
5729<p>
5730 This intrinsic causes the system to enforce some ordering constraints upon
5731 the loads and stores of the program. This barrier does not indicate
5732 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5733 which they occur. For any of the specified pairs of load and store operations
5734 (f.ex. load-load, or store-load), all of the first operations preceding the
5735 barrier will complete before any of the second operations succeeding the
5736 barrier begin. Specifically the semantics for each pairing is as follows:
5737</p>
5738 <ul>
5739 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5740 after the barrier begins.</li>
5741
5742 <li><tt>ls</tt>: All loads before the barrier must complete before any
5743 store after the barrier begins.</li>
5744 <li><tt>ss</tt>: All stores before the barrier must complete before any
5745 store after the barrier begins.</li>
5746 <li><tt>sl</tt>: All stores before the barrier must complete before any
5747 load after the barrier begins.</li>
5748 </ul>
5749<p>
5750 These semantics are applied with a logical "and" behavior when more than one
5751 is enabled in a single memory barrier intrinsic.
5752</p>
5753<p>
5754 Backends may implement stronger barriers than those requested when they do not
5755 support as fine grained a barrier as requested. Some architectures do not
5756 need all types of barriers and on such architectures, these become noops.
5757</p>
5758<h5>Example:</h5>
5759<pre>
5760%ptr = malloc i32
5761 store i32 4, %ptr
5762
5763%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5764 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5765 <i>; guarantee the above finishes</i>
5766 store i32 8, %ptr <i>; before this begins</i>
5767</pre>
5768</div>
5769
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005770<!-- _______________________________________________________________________ -->
5771<div class="doc_subsubsection">
5772 <a name="int_atomic_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
5773</div>
5774<div class="doc_text">
5775<h5>Syntax:</h5>
5776<p>
5777 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
5778 integer bit width. Not all targets support all bit widths however.</p>
5779
5780<pre>
5781declare i8 @llvm.atomic.lcs.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5782declare i16 @llvm.atomic.lcs.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5783declare i32 @llvm.atomic.lcs.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5784declare i64 @llvm.atomic.lcs.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
5785
5786</pre>
5787<h5>Overview:</h5>
5788<p>
5789 This loads a value in memory and compares it to a given value. If they are
5790 equal, it stores a new value into the memory.
5791</p>
5792<h5>Arguments:</h5>
5793<p>
5794 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
5795 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5796 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5797 this integer type. While any bit width integer may be used, targets may only
5798 lower representations they support in hardware.
5799
5800</p>
5801<h5>Semantics:</h5>
5802<p>
5803 This entire intrinsic must be executed atomically. It first loads the value
5804 in memory pointed to by <tt>ptr</tt> and compares it with the value
5805 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5806 loaded value is yielded in all cases. This provides the equivalent of an
5807 atomic compare-and-swap operation within the SSA framework.
5808</p>
5809<h5>Examples:</h5>
5810
5811<pre>
5812%ptr = malloc i32
5813 store i32 4, %ptr
5814
5815%val1 = add i32 4, 4
5816%result1 = call i32 @llvm.atomic.lcs.i32( i32* %ptr, i32 4, %val1 )
5817 <i>; yields {i32}:result1 = 4</i>
5818%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5819%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5820
5821%val2 = add i32 1, 1
5822%result2 = call i32 @llvm.atomic.lcs.i32( i32* %ptr, i32 5, %val2 )
5823 <i>; yields {i32}:result2 = 8</i>
5824%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5825
5826%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5827</pre>
5828</div>
5829
5830<!-- _______________________________________________________________________ -->
5831<div class="doc_subsubsection">
5832 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5833</div>
5834<div class="doc_text">
5835<h5>Syntax:</h5>
5836
5837<p>
5838 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5839 integer bit width. Not all targets support all bit widths however.</p>
5840<pre>
5841declare i8 @llvm.atomic.swap.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5842declare i16 @llvm.atomic.swap.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5843declare i32 @llvm.atomic.swap.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5844declare i64 @llvm.atomic.swap.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
5845
5846</pre>
5847<h5>Overview:</h5>
5848<p>
5849 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5850 the value from memory. It then stores the value in <tt>val</tt> in the memory
5851 at <tt>ptr</tt>.
5852</p>
5853<h5>Arguments:</h5>
5854
5855<p>
5856 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
5857 <tt>val</tt> argument and the result must be integers of the same bit width.
5858 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5859 integer type. The targets may only lower integer representations they
5860 support.
5861</p>
5862<h5>Semantics:</h5>
5863<p>
5864 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5865 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5866 equivalent of an atomic swap operation within the SSA framework.
5867
5868</p>
5869<h5>Examples:</h5>
5870<pre>
5871%ptr = malloc i32
5872 store i32 4, %ptr
5873
5874%val1 = add i32 4, 4
5875%result1 = call i32 @llvm.atomic.swap.i32( i32* %ptr, i32 %val1 )
5876 <i>; yields {i32}:result1 = 4</i>
5877%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5878%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5879
5880%val2 = add i32 1, 1
5881%result2 = call i32 @llvm.atomic.swap.i32( i32* %ptr, i32 %val2 )
5882 <i>; yields {i32}:result2 = 8</i>
5883
5884%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5885%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5886</pre>
5887</div>
5888
5889<!-- _______________________________________________________________________ -->
5890<div class="doc_subsubsection">
5891 <a name="int_atomic_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
5892
5893</div>
5894<div class="doc_text">
5895<h5>Syntax:</h5>
5896<p>
5897 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
5898 integer bit width. Not all targets support all bit widths however.</p>
5899<pre>
5900declare i8 @llvm.atomic.las.i8.( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5901declare i16 @llvm.atomic.las.i16.( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5902declare i32 @llvm.atomic.las.i32.( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5903declare i64 @llvm.atomic.las.i64.( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5904
5905</pre>
5906<h5>Overview:</h5>
5907<p>
5908 This intrinsic adds <tt>delta</tt> to the value stored in memory at
5909 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5910</p>
5911<h5>Arguments:</h5>
5912<p>
5913
5914 The intrinsic takes two arguments, the first a pointer to an integer value
5915 and the second an integer value. The result is also an integer value. These
5916 integer types can have any bit width, but they must all have the same bit
5917 width. The targets may only lower integer representations they support.
5918</p>
5919<h5>Semantics:</h5>
5920<p>
5921 This intrinsic does a series of operations atomically. It first loads the
5922 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5923 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5924</p>
5925
5926<h5>Examples:</h5>
5927<pre>
5928%ptr = malloc i32
5929 store i32 4, %ptr
5930%result1 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 4 )
5931 <i>; yields {i32}:result1 = 4</i>
5932%result2 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 2 )
5933 <i>; yields {i32}:result2 = 8</i>
5934%result3 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 5 )
5935 <i>; yields {i32}:result3 = 10</i>
5936%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5937</pre>
5938</div>
5939
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005940
5941<!-- ======================================================================= -->
5942<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00005943 <a name="int_general">General Intrinsics</a>
5944</div>
5945
5946<div class="doc_text">
5947<p> This class of intrinsics is designed to be generic and has
5948no specific purpose. </p>
5949</div>
5950
5951<!-- _______________________________________________________________________ -->
5952<div class="doc_subsubsection">
5953 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5954</div>
5955
5956<div class="doc_text">
5957
5958<h5>Syntax:</h5>
5959<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005960 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00005961</pre>
5962
5963<h5>Overview:</h5>
5964
5965<p>
5966The '<tt>llvm.var.annotation</tt>' intrinsic
5967</p>
5968
5969<h5>Arguments:</h5>
5970
5971<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005972The first argument is a pointer to a value, the second is a pointer to a
5973global string, the third is a pointer to a global string which is the source
5974file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005975</p>
5976
5977<h5>Semantics:</h5>
5978
5979<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005980This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005981This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005982annotations. These have no other defined use, they are ignored by code
5983generation and optimization.
5984</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00005985</div>
5986
Tanya Lattnerb6367882007-09-21 22:59:12 +00005987<!-- _______________________________________________________________________ -->
5988<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00005989 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005990</div>
5991
5992<div class="doc_text">
5993
5994<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00005995<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
5996any integer bit width.
5997</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005998<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00005999 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6000 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6001 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6002 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6003 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006004</pre>
6005
6006<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006007
6008<p>
6009The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006010</p>
6011
6012<h5>Arguments:</h5>
6013
6014<p>
6015The first argument is an integer value (result of some expression),
6016the second is a pointer to a global string, the third is a pointer to a global
6017string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006018It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006019</p>
6020
6021<h5>Semantics:</h5>
6022
6023<p>
6024This intrinsic allows annotations to be put on arbitrary expressions
6025with arbitrary strings. This can be useful for special purpose optimizations
6026that want to look for these annotations. These have no other defined use, they
6027are ignored by code generation and optimization.
6028</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006029
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006030<!-- _______________________________________________________________________ -->
6031<div class="doc_subsubsection">
6032 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6033</div>
6034
6035<div class="doc_text">
6036
6037<h5>Syntax:</h5>
6038<pre>
6039 declare void @llvm.trap()
6040</pre>
6041
6042<h5>Overview:</h5>
6043
6044<p>
6045The '<tt>llvm.trap</tt>' intrinsic
6046</p>
6047
6048<h5>Arguments:</h5>
6049
6050<p>
6051None
6052</p>
6053
6054<h5>Semantics:</h5>
6055
6056<p>
6057This intrinsics is lowered to the target dependent trap instruction. If the
6058target does not have a trap instruction, this intrinsic will be lowered to the
6059call of the abort() function.
6060</p>
6061</div>
6062
Chris Lattner00950542001-06-06 20:29:01 +00006063<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006064<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006065<address>
6066 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6067 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6068 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006069 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006070
6071 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006072 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006073 Last modified: $Date$
6074</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006075
Misha Brukman9d0919f2003-11-08 01:05:38 +00006076</body>
6077</html>