blob: 6b64648f17f5c2d9be015fbfa7a497fa07727442 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohman161ea032009-07-07 17:06:11 +000017// can handle. These classes are reference counted, managed by the const SCEV *
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
Owen Andersone755b092009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohman9545fb02009-07-17 20:47:02 +000069#include "llvm/Operator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohmana7726c32009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/ConstantRange.h"
Edwin Török675d5622009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/Support/InstIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohmanb7d04aa2009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000088using namespace llvm;
89
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman089efff2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman9bc642f2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 cl::init(100));
105
Dan Gohman089efff2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000117
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000118SCEV::~SCEV() {}
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000119
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000121 print(errs());
122 errs() << '\n';
123}
124
125void SCEV::print(std::ostream &o) const {
126 raw_os_ostream OS(o);
127 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000128}
129
Dan Gohman7b560c42008-06-18 16:23:07 +0000130bool SCEV::isZero() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isZero();
133 return false;
134}
135
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000136bool SCEV::isOne() const {
137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138 return SC->getValue()->isOne();
139 return false;
140}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141
Dan Gohmanf05118e2009-06-24 00:30:26 +0000142bool SCEV::isAllOnesValue() const {
143 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
144 return SC->getValue()->isAllOnesValue();
145 return false;
146}
147
Owen Andersonb70139d2009-06-22 21:57:23 +0000148SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmand43a8282009-07-13 20:50:19 +0000149 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000150
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000151bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Edwin Törökbd448e32009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 return false;
154}
155
156const Type *SCEVCouldNotCompute::getType() const {
Edwin Törökbd448e32009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 return 0;
159}
160
161bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Edwin Törökbd448e32009-07-14 16:55:14 +0000162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000163 return false;
164}
165
Dan Gohman9bc642f2009-06-24 04:48:43 +0000166const SCEV *
167SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
168 const SCEV *Sym,
169 const SCEV *Conc,
170 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000171 return this;
172}
173
Dan Gohman13058cc2009-04-21 00:47:46 +0000174void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 OS << "***COULDNOTCOMPUTE***";
176}
177
178bool SCEVCouldNotCompute::classof(const SCEV *S) {
179 return S->getSCEVType() == scCouldNotCompute;
180}
181
Dan Gohman161ea032009-07-07 17:06:11 +0000182const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000183 FoldingSetNodeID ID;
184 ID.AddInteger(scConstant);
185 ID.AddPointer(V);
186 void *IP = 0;
187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
188 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000189 new (S) SCEVConstant(ID, V);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000190 UniqueSCEVs.InsertNode(S, IP);
191 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192}
193
Dan Gohman161ea032009-07-07 17:06:11 +0000194const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneacb44d2009-07-24 23:12:02 +0000195 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196}
197
Dan Gohman161ea032009-07-07 17:06:11 +0000198const SCEV *
Dan Gohman8fd520a2009-06-15 22:12:54 +0000199ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Owen Anderson9f5b2aa2009-07-14 23:09:55 +0000200 return getConstant(
Owen Andersoneacb44d2009-07-24 23:12:02 +0000201 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
Dan Gohman8fd520a2009-06-15 22:12:54 +0000202}
203
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204const Type *SCEVConstant::getType() const { return V->getType(); }
205
Dan Gohman13058cc2009-04-21 00:47:46 +0000206void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000207 WriteAsOperand(OS, V, false);
208}
209
Dan Gohmand43a8282009-07-13 20:50:19 +0000210SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
211 unsigned SCEVTy, const SCEV *op, const Type *ty)
212 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000213
Dan Gohman2a381532009-04-21 01:25:57 +0000214bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
215 return Op->dominates(BB, DT);
216}
217
Dan Gohmand43a8282009-07-13 20:50:19 +0000218SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
219 const SCEV *op, const Type *ty)
220 : SCEVCastExpr(ID, scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000221 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
222 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224}
225
Dan Gohman13058cc2009-04-21 00:47:46 +0000226void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000227 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228}
229
Dan Gohmand43a8282009-07-13 20:50:19 +0000230SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
231 const SCEV *op, const Type *ty)
232 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000233 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
234 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236}
237
Dan Gohman13058cc2009-04-21 00:47:46 +0000238void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000239 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240}
241
Dan Gohmand43a8282009-07-13 20:50:19 +0000242SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
243 const SCEV *op, const Type *ty)
244 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000245 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
246 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000247 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000248}
249
Dan Gohman13058cc2009-04-21 00:47:46 +0000250void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000251 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252}
253
Dan Gohman13058cc2009-04-21 00:47:46 +0000254void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
256 const char *OpStr = getOperationStr();
257 OS << "(" << *Operands[0];
258 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
259 OS << OpStr << *Operands[i];
260 OS << ")";
261}
262
Dan Gohman9bc642f2009-06-24 04:48:43 +0000263const SCEV *
264SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
265 const SCEV *Sym,
266 const SCEV *Conc,
267 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000269 const SCEV *H =
Dan Gohman89f85052007-10-22 18:31:58 +0000270 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000271 if (H != getOperand(i)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000272 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 NewOps.reserve(getNumOperands());
274 for (unsigned j = 0; j != i; ++j)
275 NewOps.push_back(getOperand(j));
276 NewOps.push_back(H);
277 for (++i; i != e; ++i)
278 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000279 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280
281 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000282 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000284 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000285 else if (isa<SCEVSMaxExpr>(this))
286 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000287 else if (isa<SCEVUMaxExpr>(this))
288 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 else
Edwin Törökbd448e32009-07-14 16:55:14 +0000290 llvm_unreachable("Unknown commutative expr!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 }
292 }
293 return this;
294}
295
Dan Gohman72a8a022009-05-07 14:00:19 +0000296bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000297 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
298 if (!getOperand(i)->dominates(BB, DT))
299 return false;
300 }
301 return true;
302}
303
Evan Cheng98c073b2009-02-17 00:13:06 +0000304bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
305 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
306}
307
Dan Gohman13058cc2009-04-21 00:47:46 +0000308void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000309 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000310}
311
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000312const Type *SCEVUDivExpr::getType() const {
Dan Gohman140f08f2009-05-26 17:44:05 +0000313 // In most cases the types of LHS and RHS will be the same, but in some
314 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
315 // depend on the type for correctness, but handling types carefully can
316 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
317 // a pointer type than the RHS, so use the RHS' type here.
318 return RHS->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319}
320
Dan Gohman9bc642f2009-06-24 04:48:43 +0000321const SCEV *
322SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
323 const SCEV *Conc,
324 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000325 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000326 const SCEV *H =
Dan Gohman89f85052007-10-22 18:31:58 +0000327 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 if (H != getOperand(i)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000329 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330 NewOps.reserve(getNumOperands());
331 for (unsigned j = 0; j != i; ++j)
332 NewOps.push_back(getOperand(j));
333 NewOps.push_back(H);
334 for (++i; i != e; ++i)
335 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000336 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337
Dan Gohman89f85052007-10-22 18:31:58 +0000338 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 }
340 }
341 return this;
342}
343
344
345bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000346 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohman2d888d82009-06-26 22:17:21 +0000347 if (!QueryLoop)
348 return false;
349
350 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
351 if (QueryLoop->contains(L->getHeader()))
352 return false;
353
354 // This recurrence is variant w.r.t. QueryLoop if any of its operands
355 // are variant.
356 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
357 if (!getOperand(i)->isLoopInvariant(QueryLoop))
358 return false;
359
360 // Otherwise it's loop-invariant.
361 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362}
363
Dan Gohman13058cc2009-04-21 00:47:46 +0000364void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365 OS << "{" << *Operands[0];
366 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
367 OS << ",+," << *Operands[i];
368 OS << "}<" << L->getHeader()->getName() + ">";
369}
370
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
372 // All non-instruction values are loop invariant. All instructions are loop
373 // invariant if they are not contained in the specified loop.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000374 // Instructions are never considered invariant in the function body
375 // (null loop) because they are defined within the "loop".
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000377 return L && !L->contains(I->getParent());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 return true;
379}
380
Evan Cheng98c073b2009-02-17 00:13:06 +0000381bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
382 if (Instruction *I = dyn_cast<Instruction>(getValue()))
383 return DT->dominates(I->getParent(), BB);
384 return true;
385}
386
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387const Type *SCEVUnknown::getType() const {
388 return V->getType();
389}
390
Dan Gohman13058cc2009-04-21 00:47:46 +0000391void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392 WriteAsOperand(OS, V, false);
393}
394
395//===----------------------------------------------------------------------===//
396// SCEV Utilities
397//===----------------------------------------------------------------------===//
398
399namespace {
400 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
401 /// than the complexity of the RHS. This comparator is used to canonicalize
402 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000403 class VISIBILITY_HIDDEN SCEVComplexityCompare {
404 LoopInfo *LI;
405 public:
406 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
407
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000408 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000409 // Primarily, sort the SCEVs by their getSCEVType().
410 if (LHS->getSCEVType() != RHS->getSCEVType())
411 return LHS->getSCEVType() < RHS->getSCEVType();
412
413 // Aside from the getSCEVType() ordering, the particular ordering
414 // isn't very important except that it's beneficial to be consistent,
415 // so that (a + b) and (b + a) don't end up as different expressions.
416
417 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
418 // not as complete as it could be.
419 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
420 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
421
Dan Gohmand0c01232009-05-19 02:15:55 +0000422 // Order pointer values after integer values. This helps SCEVExpander
423 // form GEPs.
424 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
425 return false;
426 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
427 return true;
428
Dan Gohman5d486452009-05-07 14:39:04 +0000429 // Compare getValueID values.
430 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
431 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
432
433 // Sort arguments by their position.
434 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
435 const Argument *RA = cast<Argument>(RU->getValue());
436 return LA->getArgNo() < RA->getArgNo();
437 }
438
439 // For instructions, compare their loop depth, and their opcode.
440 // This is pretty loose.
441 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
442 Instruction *RV = cast<Instruction>(RU->getValue());
443
444 // Compare loop depths.
445 if (LI->getLoopDepth(LV->getParent()) !=
446 LI->getLoopDepth(RV->getParent()))
447 return LI->getLoopDepth(LV->getParent()) <
448 LI->getLoopDepth(RV->getParent());
449
450 // Compare opcodes.
451 if (LV->getOpcode() != RV->getOpcode())
452 return LV->getOpcode() < RV->getOpcode();
453
454 // Compare the number of operands.
455 if (LV->getNumOperands() != RV->getNumOperands())
456 return LV->getNumOperands() < RV->getNumOperands();
457 }
458
459 return false;
460 }
461
Dan Gohman56fc8f12009-06-14 22:51:25 +0000462 // Compare constant values.
463 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
464 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewycky9bb14052009-07-04 17:24:52 +0000465 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
466 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman56fc8f12009-06-14 22:51:25 +0000467 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
468 }
469
470 // Compare addrec loop depths.
471 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
472 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
473 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
474 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
475 }
Dan Gohman5d486452009-05-07 14:39:04 +0000476
477 // Lexicographically compare n-ary expressions.
478 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
479 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
480 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
481 if (i >= RC->getNumOperands())
482 return false;
483 if (operator()(LC->getOperand(i), RC->getOperand(i)))
484 return true;
485 if (operator()(RC->getOperand(i), LC->getOperand(i)))
486 return false;
487 }
488 return LC->getNumOperands() < RC->getNumOperands();
489 }
490
Dan Gohman6e10db12009-05-07 19:23:21 +0000491 // Lexicographically compare udiv expressions.
492 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
493 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
494 if (operator()(LC->getLHS(), RC->getLHS()))
495 return true;
496 if (operator()(RC->getLHS(), LC->getLHS()))
497 return false;
498 if (operator()(LC->getRHS(), RC->getRHS()))
499 return true;
500 if (operator()(RC->getRHS(), LC->getRHS()))
501 return false;
502 return false;
503 }
504
Dan Gohman5d486452009-05-07 14:39:04 +0000505 // Compare cast expressions by operand.
506 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
507 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
508 return operator()(LC->getOperand(), RC->getOperand());
509 }
510
Edwin Törökbd448e32009-07-14 16:55:14 +0000511 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman5d486452009-05-07 14:39:04 +0000512 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000513 }
514 };
515}
516
517/// GroupByComplexity - Given a list of SCEV objects, order them by their
518/// complexity, and group objects of the same complexity together by value.
519/// When this routine is finished, we know that any duplicates in the vector are
520/// consecutive and that complexity is monotonically increasing.
521///
522/// Note that we go take special precautions to ensure that we get determinstic
523/// results from this routine. In other words, we don't want the results of
524/// this to depend on where the addresses of various SCEV objects happened to
525/// land in memory.
526///
Dan Gohman161ea032009-07-07 17:06:11 +0000527static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman5d486452009-05-07 14:39:04 +0000528 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000529 if (Ops.size() < 2) return; // Noop
530 if (Ops.size() == 2) {
531 // This is the common case, which also happens to be trivially simple.
532 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000533 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000534 std::swap(Ops[0], Ops[1]);
535 return;
536 }
537
538 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000539 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000540
541 // Now that we are sorted by complexity, group elements of the same
542 // complexity. Note that this is, at worst, N^2, but the vector is likely to
543 // be extremely short in practice. Note that we take this approach because we
544 // do not want to depend on the addresses of the objects we are grouping.
545 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000546 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000547 unsigned Complexity = S->getSCEVType();
548
549 // If there are any objects of the same complexity and same value as this
550 // one, group them.
551 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
552 if (Ops[j] == S) { // Found a duplicate.
553 // Move it to immediately after i'th element.
554 std::swap(Ops[i+1], Ops[j]);
555 ++i; // no need to rescan it.
556 if (i == e-2) return; // Done!
557 }
558 }
559 }
560}
561
562
563
564//===----------------------------------------------------------------------===//
565// Simple SCEV method implementations
566//===----------------------------------------------------------------------===//
567
Eli Friedman7489ec92008-08-04 23:49:06 +0000568/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohmanc8a29272009-05-24 23:45:28 +0000569/// Assume, K > 0.
Dan Gohman161ea032009-07-07 17:06:11 +0000570static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanf5606fd2009-07-21 00:38:55 +0000571 ScalarEvolution &SE,
572 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000573 // Handle the simplest case efficiently.
574 if (K == 1)
575 return SE.getTruncateOrZeroExtend(It, ResultTy);
576
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000577 // We are using the following formula for BC(It, K):
578 //
579 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
580 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000581 // Suppose, W is the bitwidth of the return value. We must be prepared for
582 // overflow. Hence, we must assure that the result of our computation is
583 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
584 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000585 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000586 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman9bc642f2009-06-24 04:48:43 +0000587 // is something like the following, where T is the number of factors of 2 in
Eli Friedman7489ec92008-08-04 23:49:06 +0000588 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
589 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000590 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000591 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000592 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000593 // This formula is trivially equivalent to the previous formula. However,
594 // this formula can be implemented much more efficiently. The trick is that
595 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
596 // arithmetic. To do exact division in modular arithmetic, all we have
597 // to do is multiply by the inverse. Therefore, this step can be done at
598 // width W.
Dan Gohman9bc642f2009-06-24 04:48:43 +0000599 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000600 // The next issue is how to safely do the division by 2^T. The way this
601 // is done is by doing the multiplication step at a width of at least W + T
602 // bits. This way, the bottom W+T bits of the product are accurate. Then,
603 // when we perform the division by 2^T (which is equivalent to a right shift
604 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
605 // truncated out after the division by 2^T.
606 //
607 // In comparison to just directly using the first formula, this technique
608 // is much more efficient; using the first formula requires W * K bits,
609 // but this formula less than W + K bits. Also, the first formula requires
610 // a division step, whereas this formula only requires multiplies and shifts.
611 //
612 // It doesn't matter whether the subtraction step is done in the calculation
613 // width or the input iteration count's width; if the subtraction overflows,
614 // the result must be zero anyway. We prefer here to do it in the width of
615 // the induction variable because it helps a lot for certain cases; CodeGen
616 // isn't smart enough to ignore the overflow, which leads to much less
617 // efficient code if the width of the subtraction is wider than the native
618 // register width.
619 //
620 // (It's possible to not widen at all by pulling out factors of 2 before
621 // the multiplication; for example, K=2 can be calculated as
622 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
623 // extra arithmetic, so it's not an obvious win, and it gets
624 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000625
Eli Friedman7489ec92008-08-04 23:49:06 +0000626 // Protection from insane SCEVs; this bound is conservative,
627 // but it probably doesn't matter.
628 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000629 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000630
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000631 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000632
Eli Friedman7489ec92008-08-04 23:49:06 +0000633 // Calculate K! / 2^T and T; we divide out the factors of two before
634 // multiplying for calculating K! / 2^T to avoid overflow.
635 // Other overflow doesn't matter because we only care about the bottom
636 // W bits of the result.
637 APInt OddFactorial(W, 1);
638 unsigned T = 1;
639 for (unsigned i = 3; i <= K; ++i) {
640 APInt Mult(W, i);
641 unsigned TwoFactors = Mult.countTrailingZeros();
642 T += TwoFactors;
643 Mult = Mult.lshr(TwoFactors);
644 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000645 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000646
Eli Friedman7489ec92008-08-04 23:49:06 +0000647 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000648 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000649
650 // Calcuate 2^T, at width T+W.
651 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
652
653 // Calculate the multiplicative inverse of K! / 2^T;
654 // this multiplication factor will perform the exact division by
655 // K! / 2^T.
656 APInt Mod = APInt::getSignedMinValue(W+1);
657 APInt MultiplyFactor = OddFactorial.zext(W+1);
658 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
659 MultiplyFactor = MultiplyFactor.trunc(W);
660
661 // Calculate the product, at width T+W
662 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
Dan Gohman161ea032009-07-07 17:06:11 +0000663 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman7489ec92008-08-04 23:49:06 +0000664 for (unsigned i = 1; i != K; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000665 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedman7489ec92008-08-04 23:49:06 +0000666 Dividend = SE.getMulExpr(Dividend,
667 SE.getTruncateOrZeroExtend(S, CalculationTy));
668 }
669
670 // Divide by 2^T
Dan Gohman161ea032009-07-07 17:06:11 +0000671 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman7489ec92008-08-04 23:49:06 +0000672
673 // Truncate the result, and divide by K! / 2^T.
674
675 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
676 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677}
678
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000679/// evaluateAtIteration - Return the value of this chain of recurrences at
680/// the specified iteration number. We can evaluate this recurrence by
681/// multiplying each element in the chain by the binomial coefficient
682/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
683///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000684/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000685///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000686/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000687///
Dan Gohman161ea032009-07-07 17:06:11 +0000688const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanf5606fd2009-07-21 00:38:55 +0000689 ScalarEvolution &SE) const {
Dan Gohman161ea032009-07-07 17:06:11 +0000690 const SCEV *Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000691 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000692 // The computation is correct in the face of overflow provided that the
693 // multiplication is performed _after_ the evaluation of the binomial
694 // coefficient.
Dan Gohman161ea032009-07-07 17:06:11 +0000695 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000696 if (isa<SCEVCouldNotCompute>(Coeff))
697 return Coeff;
698
699 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700 }
701 return Result;
702}
703
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704//===----------------------------------------------------------------------===//
705// SCEV Expression folder implementations
706//===----------------------------------------------------------------------===//
707
Dan Gohman161ea032009-07-07 17:06:11 +0000708const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohman69eacc72009-07-13 22:05:32 +0000709 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000710 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000711 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000712 assert(isSCEVable(Ty) &&
713 "This is not a conversion to a SCEVable type!");
714 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000715
Dan Gohmand43a8282009-07-13 20:50:19 +0000716 FoldingSetNodeID ID;
717 ID.AddInteger(scTruncate);
718 ID.AddPointer(Op);
719 ID.AddPointer(Ty);
720 void *IP = 0;
721 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
722
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000723 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000724 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman55788cf2009-06-24 00:38:39 +0000725 return getConstant(
726 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727
Dan Gohman1a5c4992009-04-22 16:20:48 +0000728 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000729 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000730 return getTruncateExpr(ST->getOperand(), Ty);
731
Nick Lewycky37d04642009-04-23 05:15:08 +0000732 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000733 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000734 return getTruncateOrSignExtend(SS->getOperand(), Ty);
735
736 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000737 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000738 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
739
Dan Gohman1c0aa2c2009-06-18 16:24:47 +0000740 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000741 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000742 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000744 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
745 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 }
747
Dan Gohmand43a8282009-07-13 20:50:19 +0000748 // The cast wasn't folded; create an explicit cast node.
749 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000750 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
751 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000752 new (S) SCEVTruncateExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000753 UniqueSCEVs.InsertNode(S, IP);
754 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755}
756
Dan Gohman161ea032009-07-07 17:06:11 +0000757const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohman69eacc72009-07-13 22:05:32 +0000758 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000759 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000760 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000761 assert(isSCEVable(Ty) &&
762 "This is not a conversion to a SCEVable type!");
763 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000764
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000765 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000766 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000767 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000768 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
769 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohman55788cf2009-06-24 00:38:39 +0000770 return getConstant(cast<ConstantInt>(C));
Dan Gohman01c2ee72009-04-16 03:18:22 +0000771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772
Dan Gohman1a5c4992009-04-22 16:20:48 +0000773 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000774 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000775 return getZeroExtendExpr(SZ->getOperand(), Ty);
776
Dan Gohmandb888422009-07-13 20:55:53 +0000777 // Before doing any expensive analysis, check to see if we've already
778 // computed a SCEV for this Op and Ty.
779 FoldingSetNodeID ID;
780 ID.AddInteger(scZeroExtend);
781 ID.AddPointer(Op);
782 ID.AddPointer(Ty);
783 void *IP = 0;
784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
785
Dan Gohmana9dba962009-04-27 20:16:15 +0000786 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000788 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000789 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000790 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000791 if (AR->isAffine()) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000792 const SCEV *Start = AR->getStart();
793 const SCEV *Step = AR->getStepRecurrence(*this);
794 unsigned BitWidth = getTypeSizeInBits(AR->getType());
795 const Loop *L = AR->getLoop();
796
Dan Gohmana9dba962009-04-27 20:16:15 +0000797 // Check whether the backedge-taken count is SCEVCouldNotCompute.
798 // Note that this serves two purposes: It filters out loops that are
799 // simply not analyzable, and it covers the case where this code is
800 // being called from within backedge-taken count analysis, such that
801 // attempting to ask for the backedge-taken count would likely result
802 // in infinite recursion. In the later case, the analysis code will
803 // cope with a conservative value, and it will take care to purge
804 // that value once it has finished.
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000805 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000806 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000807 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000808 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000809
810 // Check whether the backedge-taken count can be losslessly casted to
811 // the addrec's type. The count is always unsigned.
Dan Gohman161ea032009-07-07 17:06:11 +0000812 const SCEV *CastedMaxBECount =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000813 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman161ea032009-07-07 17:06:11 +0000814 const SCEV *RecastedMaxBECount =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000815 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
816 if (MaxBECount == RecastedMaxBECount) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000817 const Type *WideTy = IntegerType::get(BitWidth * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000818 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman161ea032009-07-07 17:06:11 +0000819 const SCEV *ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000820 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000821 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman161ea032009-07-07 17:06:11 +0000822 const SCEV *Add = getAddExpr(Start, ZMul);
823 const SCEV *OperandExtendedAdd =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000824 getAddExpr(getZeroExtendExpr(Start, WideTy),
825 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
826 getZeroExtendExpr(Step, WideTy)));
827 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000828 // Return the expression with the addrec on the outside.
829 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
830 getZeroExtendExpr(Step, Ty),
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000831 L);
Dan Gohmana9dba962009-04-27 20:16:15 +0000832
833 // Similar to above, only this time treat the step value as signed.
834 // This covers loops that count down.
Dan Gohman161ea032009-07-07 17:06:11 +0000835 const SCEV *SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000836 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000837 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000838 Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000839 OperandExtendedAdd =
840 getAddExpr(getZeroExtendExpr(Start, WideTy),
841 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
842 getSignExtendExpr(Step, WideTy)));
843 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000844 // Return the expression with the addrec on the outside.
845 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
846 getSignExtendExpr(Step, Ty),
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000847 L);
848 }
849
850 // If the backedge is guarded by a comparison with the pre-inc value
851 // the addrec is safe. Also, if the entry is guarded by a comparison
852 // with the start value and the backedge is guarded by a comparison
853 // with the post-inc value, the addrec is safe.
854 if (isKnownPositive(Step)) {
855 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
856 getUnsignedRange(Step).getUnsignedMax());
857 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
858 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
859 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
860 AR->getPostIncExpr(*this), N)))
861 // Return the expression with the addrec on the outside.
862 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
863 getZeroExtendExpr(Step, Ty),
864 L);
865 } else if (isKnownNegative(Step)) {
866 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
867 getSignedRange(Step).getSignedMin());
868 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
869 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
870 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
871 AR->getPostIncExpr(*this), N)))
872 // Return the expression with the addrec on the outside.
873 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
874 getSignExtendExpr(Step, Ty),
875 L);
Dan Gohmana9dba962009-04-27 20:16:15 +0000876 }
877 }
878 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879
Dan Gohmandb888422009-07-13 20:55:53 +0000880 // The cast wasn't folded; create an explicit cast node.
881 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000882 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
883 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000884 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000885 UniqueSCEVs.InsertNode(S, IP);
886 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000887}
888
Dan Gohman161ea032009-07-07 17:06:11 +0000889const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohman69eacc72009-07-13 22:05:32 +0000890 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000891 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000892 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000893 assert(isSCEVable(Ty) &&
894 "This is not a conversion to a SCEVable type!");
895 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000896
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000897 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000898 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000899 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000900 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
901 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohman55788cf2009-06-24 00:38:39 +0000902 return getConstant(cast<ConstantInt>(C));
Dan Gohman01c2ee72009-04-16 03:18:22 +0000903 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904
Dan Gohman1a5c4992009-04-22 16:20:48 +0000905 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000906 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000907 return getSignExtendExpr(SS->getOperand(), Ty);
908
Dan Gohmandb888422009-07-13 20:55:53 +0000909 // Before doing any expensive analysis, check to see if we've already
910 // computed a SCEV for this Op and Ty.
911 FoldingSetNodeID ID;
912 ID.AddInteger(scSignExtend);
913 ID.AddPointer(Op);
914 ID.AddPointer(Ty);
915 void *IP = 0;
916 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
917
Dan Gohmana9dba962009-04-27 20:16:15 +0000918 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000919 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000920 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000921 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000922 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000923 if (AR->isAffine()) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000924 const SCEV *Start = AR->getStart();
925 const SCEV *Step = AR->getStepRecurrence(*this);
926 unsigned BitWidth = getTypeSizeInBits(AR->getType());
927 const Loop *L = AR->getLoop();
928
Dan Gohmana9dba962009-04-27 20:16:15 +0000929 // Check whether the backedge-taken count is SCEVCouldNotCompute.
930 // Note that this serves two purposes: It filters out loops that are
931 // simply not analyzable, and it covers the case where this code is
932 // being called from within backedge-taken count analysis, such that
933 // attempting to ask for the backedge-taken count would likely result
934 // in infinite recursion. In the later case, the analysis code will
935 // cope with a conservative value, and it will take care to purge
936 // that value once it has finished.
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000937 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000938 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000939 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000940 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000941
942 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000943 // the addrec's type. The count is always unsigned.
Dan Gohman161ea032009-07-07 17:06:11 +0000944 const SCEV *CastedMaxBECount =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000945 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman161ea032009-07-07 17:06:11 +0000946 const SCEV *RecastedMaxBECount =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000947 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
948 if (MaxBECount == RecastedMaxBECount) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000949 const Type *WideTy = IntegerType::get(BitWidth * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000950 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman161ea032009-07-07 17:06:11 +0000951 const SCEV *SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000952 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000953 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman161ea032009-07-07 17:06:11 +0000954 const SCEV *Add = getAddExpr(Start, SMul);
955 const SCEV *OperandExtendedAdd =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000956 getAddExpr(getSignExtendExpr(Start, WideTy),
957 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
958 getSignExtendExpr(Step, WideTy)));
959 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000960 // Return the expression with the addrec on the outside.
961 return getAddRecExpr(getSignExtendExpr(Start, Ty),
962 getSignExtendExpr(Step, Ty),
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000963 L);
Dan Gohman2d4f5b12009-07-16 17:34:36 +0000964
965 // Similar to above, only this time treat the step value as unsigned.
966 // This covers loops that count up with an unsigned step.
967 const SCEV *UMul =
968 getMulExpr(CastedMaxBECount,
969 getTruncateOrZeroExtend(Step, Start->getType()));
970 Add = getAddExpr(Start, UMul);
971 OperandExtendedAdd =
972 getAddExpr(getZeroExtendExpr(Start, WideTy),
973 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
974 getZeroExtendExpr(Step, WideTy)));
975 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
976 // Return the expression with the addrec on the outside.
977 return getAddRecExpr(getSignExtendExpr(Start, Ty),
978 getZeroExtendExpr(Step, Ty),
979 L);
Dan Gohman55e2d7e2009-07-13 21:35:55 +0000980 }
981
982 // If the backedge is guarded by a comparison with the pre-inc value
983 // the addrec is safe. Also, if the entry is guarded by a comparison
984 // with the start value and the backedge is guarded by a comparison
985 // with the post-inc value, the addrec is safe.
986 if (isKnownPositive(Step)) {
987 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
988 getSignedRange(Step).getSignedMax());
989 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
990 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
991 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
992 AR->getPostIncExpr(*this), N)))
993 // Return the expression with the addrec on the outside.
994 return getAddRecExpr(getSignExtendExpr(Start, Ty),
995 getSignExtendExpr(Step, Ty),
996 L);
997 } else if (isKnownNegative(Step)) {
998 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
999 getSignedRange(Step).getSignedMin());
1000 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1001 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1002 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1003 AR->getPostIncExpr(*this), N)))
1004 // Return the expression with the addrec on the outside.
1005 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1006 getSignExtendExpr(Step, Ty),
1007 L);
Dan Gohmana9dba962009-04-27 20:16:15 +00001008 }
1009 }
1010 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011
Dan Gohmandb888422009-07-13 20:55:53 +00001012 // The cast wasn't folded; create an explicit cast node.
1013 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001014 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1015 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001016 new (S) SCEVSignExtendExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001017 UniqueSCEVs.InsertNode(S, IP);
1018 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019}
1020
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001021/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1022/// unspecified bits out to the given type.
1023///
Dan Gohman161ea032009-07-07 17:06:11 +00001024const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001025 const Type *Ty) {
1026 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1027 "This is not an extending conversion!");
1028 assert(isSCEVable(Ty) &&
1029 "This is not a conversion to a SCEVable type!");
1030 Ty = getEffectiveSCEVType(Ty);
1031
1032 // Sign-extend negative constants.
1033 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1034 if (SC->getValue()->getValue().isNegative())
1035 return getSignExtendExpr(Op, Ty);
1036
1037 // Peel off a truncate cast.
1038 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman161ea032009-07-07 17:06:11 +00001039 const SCEV *NewOp = T->getOperand();
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001040 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1041 return getAnyExtendExpr(NewOp, Ty);
1042 return getTruncateOrNoop(NewOp, Ty);
1043 }
1044
1045 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman161ea032009-07-07 17:06:11 +00001046 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001047 if (!isa<SCEVZeroExtendExpr>(ZExt))
1048 return ZExt;
1049
1050 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman161ea032009-07-07 17:06:11 +00001051 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001052 if (!isa<SCEVSignExtendExpr>(SExt))
1053 return SExt;
1054
1055 // If the expression is obviously signed, use the sext cast value.
1056 if (isa<SCEVSMaxExpr>(Op))
1057 return SExt;
1058
1059 // Absent any other information, use the zext cast value.
1060 return ZExt;
1061}
1062
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001063/// CollectAddOperandsWithScales - Process the given Ops list, which is
1064/// a list of operands to be added under the given scale, update the given
1065/// map. This is a helper function for getAddRecExpr. As an example of
1066/// what it does, given a sequence of operands that would form an add
1067/// expression like this:
1068///
1069/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1070///
1071/// where A and B are constants, update the map with these values:
1072///
1073/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1074///
1075/// and add 13 + A*B*29 to AccumulatedConstant.
1076/// This will allow getAddRecExpr to produce this:
1077///
1078/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1079///
1080/// This form often exposes folding opportunities that are hidden in
1081/// the original operand list.
1082///
1083/// Return true iff it appears that any interesting folding opportunities
1084/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1085/// the common case where no interesting opportunities are present, and
1086/// is also used as a check to avoid infinite recursion.
1087///
1088static bool
Dan Gohman161ea032009-07-07 17:06:11 +00001089CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1090 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001091 APInt &AccumulatedConstant,
Dan Gohman161ea032009-07-07 17:06:11 +00001092 const SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001093 const APInt &Scale,
1094 ScalarEvolution &SE) {
1095 bool Interesting = false;
1096
1097 // Iterate over the add operands.
1098 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1099 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1100 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1101 APInt NewScale =
1102 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1103 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1104 // A multiplication of a constant with another add; recurse.
1105 Interesting |=
1106 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1107 cast<SCEVAddExpr>(Mul->getOperand(1))
1108 ->getOperands(),
1109 NewScale, SE);
1110 } else {
1111 // A multiplication of a constant with some other value. Update
1112 // the map.
Dan Gohman161ea032009-07-07 17:06:11 +00001113 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1114 const SCEV *Key = SE.getMulExpr(MulOps);
1115 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman3bf01f02009-06-29 18:25:52 +00001116 M.insert(std::make_pair(Key, NewScale));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001117 if (Pair.second) {
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001118 NewOps.push_back(Pair.first->first);
1119 } else {
1120 Pair.first->second += NewScale;
1121 // The map already had an entry for this value, which may indicate
1122 // a folding opportunity.
1123 Interesting = true;
1124 }
1125 }
1126 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1127 // Pull a buried constant out to the outside.
1128 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1129 Interesting = true;
1130 AccumulatedConstant += Scale * C->getValue()->getValue();
1131 } else {
1132 // An ordinary operand. Update the map.
Dan Gohman161ea032009-07-07 17:06:11 +00001133 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman3bf01f02009-06-29 18:25:52 +00001134 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001135 if (Pair.second) {
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001136 NewOps.push_back(Pair.first->first);
1137 } else {
1138 Pair.first->second += Scale;
1139 // The map already had an entry for this value, which may indicate
1140 // a folding opportunity.
1141 Interesting = true;
1142 }
1143 }
1144 }
1145
1146 return Interesting;
1147}
1148
1149namespace {
1150 struct APIntCompare {
1151 bool operator()(const APInt &LHS, const APInt &RHS) const {
1152 return LHS.ult(RHS);
1153 }
1154 };
1155}
1156
Dan Gohmanc8a29272009-05-24 23:45:28 +00001157/// getAddExpr - Get a canonical add expression, or something simpler if
1158/// possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001159const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 assert(!Ops.empty() && "Cannot get empty add!");
1161 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001162#ifndef NDEBUG
1163 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1164 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1165 getEffectiveSCEVType(Ops[0]->getType()) &&
1166 "SCEVAddExpr operand types don't match!");
1167#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001168
1169 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001170 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171
1172 // If there are any constants, fold them together.
1173 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001174 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001175 ++Idx;
1176 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001177 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001178 // We found two constants, fold them together!
Dan Gohman02ff9392009-06-14 22:47:23 +00001179 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1180 RHSC->getValue()->getValue());
Dan Gohman68f23e82009-06-14 22:53:57 +00001181 if (Ops.size() == 2) return Ops[0];
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001182 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001183 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001184 }
1185
1186 // If we are left with a constant zero being added, strip it off.
1187 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1188 Ops.erase(Ops.begin());
1189 --Idx;
1190 }
1191 }
1192
1193 if (Ops.size() == 1) return Ops[0];
1194
1195 // Okay, check to see if the same value occurs in the operand list twice. If
1196 // so, merge them together into an multiply expression. Since we sorted the
1197 // list, these values are required to be adjacent.
1198 const Type *Ty = Ops[0]->getType();
1199 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1200 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1201 // Found a match, merge the two values into a multiply, and add any
1202 // remaining values to the result.
Dan Gohman161ea032009-07-07 17:06:11 +00001203 const SCEV *Two = getIntegerSCEV(2, Ty);
1204 const SCEV *Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001205 if (Ops.size() == 2)
1206 return Mul;
1207 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1208 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +00001209 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001210 }
1211
Dan Gohman45b3b542009-05-08 21:03:19 +00001212 // Check for truncates. If all the operands are truncated from the same
1213 // type, see if factoring out the truncate would permit the result to be
1214 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1215 // if the contents of the resulting outer trunc fold to something simple.
1216 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1217 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1218 const Type *DstType = Trunc->getType();
1219 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00001220 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001221 bool Ok = true;
1222 // Check all the operands to see if they can be represented in the
1223 // source type of the truncate.
1224 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1225 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1226 if (T->getOperand()->getType() != SrcType) {
1227 Ok = false;
1228 break;
1229 }
1230 LargeOps.push_back(T->getOperand());
1231 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1232 // This could be either sign or zero extension, but sign extension
1233 // is much more likely to be foldable here.
1234 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1235 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman161ea032009-07-07 17:06:11 +00001236 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001237 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1238 if (const SCEVTruncateExpr *T =
1239 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1240 if (T->getOperand()->getType() != SrcType) {
1241 Ok = false;
1242 break;
1243 }
1244 LargeMulOps.push_back(T->getOperand());
1245 } else if (const SCEVConstant *C =
1246 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1247 // This could be either sign or zero extension, but sign extension
1248 // is much more likely to be foldable here.
1249 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1250 } else {
1251 Ok = false;
1252 break;
1253 }
1254 }
1255 if (Ok)
1256 LargeOps.push_back(getMulExpr(LargeMulOps));
1257 } else {
1258 Ok = false;
1259 break;
1260 }
1261 }
1262 if (Ok) {
1263 // Evaluate the expression in the larger type.
Dan Gohman161ea032009-07-07 17:06:11 +00001264 const SCEV *Fold = getAddExpr(LargeOps);
Dan Gohman45b3b542009-05-08 21:03:19 +00001265 // If it folds to something simple, use it. Otherwise, don't.
1266 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1267 return getTruncateExpr(Fold, DstType);
1268 }
1269 }
1270
1271 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001272 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1273 ++Idx;
1274
1275 // If there are add operands they would be next.
1276 if (Idx < Ops.size()) {
1277 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001278 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 // If we have an add, expand the add operands onto the end of the operands
1280 // list.
1281 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1282 Ops.erase(Ops.begin()+Idx);
1283 DeletedAdd = true;
1284 }
1285
1286 // If we deleted at least one add, we added operands to the end of the list,
1287 // and they are not necessarily sorted. Recurse to resort and resimplify
1288 // any operands we just aquired.
1289 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001290 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001291 }
1292
1293 // Skip over the add expression until we get to a multiply.
1294 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1295 ++Idx;
1296
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001297 // Check to see if there are any folding opportunities present with
1298 // operands multiplied by constant values.
1299 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1300 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman161ea032009-07-07 17:06:11 +00001301 DenseMap<const SCEV *, APInt> M;
1302 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001303 APInt AccumulatedConstant(BitWidth, 0);
1304 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1305 Ops, APInt(BitWidth, 1), *this)) {
1306 // Some interesting folding opportunity is present, so its worthwhile to
1307 // re-generate the operands list. Group the operands by constant scale,
1308 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman161ea032009-07-07 17:06:11 +00001309 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1310 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001311 E = NewOps.end(); I != E; ++I)
1312 MulOpLists[M.find(*I)->second].push_back(*I);
1313 // Re-generate the operands list.
1314 Ops.clear();
1315 if (AccumulatedConstant != 0)
1316 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman9bc642f2009-06-24 04:48:43 +00001317 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1318 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001319 if (I->first != 0)
Dan Gohman9bc642f2009-06-24 04:48:43 +00001320 Ops.push_back(getMulExpr(getConstant(I->first),
1321 getAddExpr(I->second)));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001322 if (Ops.empty())
1323 return getIntegerSCEV(0, Ty);
1324 if (Ops.size() == 1)
1325 return Ops[0];
1326 return getAddExpr(Ops);
1327 }
1328 }
1329
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001330 // If we are adding something to a multiply expression, make sure the
1331 // something is not already an operand of the multiply. If so, merge it into
1332 // the multiply.
1333 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001334 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001336 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001337 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman02ff9392009-06-14 22:47:23 +00001338 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001339 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman161ea032009-07-07 17:06:11 +00001340 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341 if (Mul->getNumOperands() != 2) {
1342 // If the multiply has more than two operands, we must get the
1343 // Y*Z term.
Dan Gohman161ea032009-07-07 17:06:11 +00001344 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001345 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001346 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001347 }
Dan Gohman161ea032009-07-07 17:06:11 +00001348 const SCEV *One = getIntegerSCEV(1, Ty);
1349 const SCEV *AddOne = getAddExpr(InnerMul, One);
1350 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001351 if (Ops.size() == 2) return OuterMul;
1352 if (AddOp < Idx) {
1353 Ops.erase(Ops.begin()+AddOp);
1354 Ops.erase(Ops.begin()+Idx-1);
1355 } else {
1356 Ops.erase(Ops.begin()+Idx);
1357 Ops.erase(Ops.begin()+AddOp-1);
1358 }
1359 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001360 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001361 }
1362
1363 // Check this multiply against other multiplies being added together.
1364 for (unsigned OtherMulIdx = Idx+1;
1365 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1366 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001367 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368 // If MulOp occurs in OtherMul, we can fold the two multiplies
1369 // together.
1370 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1371 OMulOp != e; ++OMulOp)
1372 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1373 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman161ea032009-07-07 17:06:11 +00001374 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001375 if (Mul->getNumOperands() != 2) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00001376 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1377 Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001378 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001379 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380 }
Dan Gohman161ea032009-07-07 17:06:11 +00001381 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001382 if (OtherMul->getNumOperands() != 2) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00001383 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1384 OtherMul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001385 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001386 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001387 }
Dan Gohman161ea032009-07-07 17:06:11 +00001388 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1389 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390 if (Ops.size() == 2) return OuterMul;
1391 Ops.erase(Ops.begin()+Idx);
1392 Ops.erase(Ops.begin()+OtherMulIdx-1);
1393 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001394 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001395 }
1396 }
1397 }
1398 }
1399
1400 // If there are any add recurrences in the operands list, see if any other
1401 // added values are loop invariant. If so, we can fold them into the
1402 // recurrence.
1403 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1404 ++Idx;
1405
1406 // Scan over all recurrences, trying to fold loop invariants into them.
1407 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1408 // Scan all of the other operands to this add and add them to the vector if
1409 // they are loop invariant w.r.t. the recurrence.
Dan Gohman161ea032009-07-07 17:06:11 +00001410 SmallVector<const SCEV *, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001411 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001412 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1413 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1414 LIOps.push_back(Ops[i]);
1415 Ops.erase(Ops.begin()+i);
1416 --i; --e;
1417 }
1418
1419 // If we found some loop invariants, fold them into the recurrence.
1420 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001421 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001422 LIOps.push_back(AddRec->getStart());
1423
Dan Gohman161ea032009-07-07 17:06:11 +00001424 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001425 AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001426 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001427
Dan Gohman161ea032009-07-07 17:06:11 +00001428 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429 // If all of the other operands were loop invariant, we are done.
1430 if (Ops.size() == 1) return NewRec;
1431
1432 // Otherwise, add the folded AddRec by the non-liv parts.
1433 for (unsigned i = 0;; ++i)
1434 if (Ops[i] == AddRec) {
1435 Ops[i] = NewRec;
1436 break;
1437 }
Dan Gohman89f85052007-10-22 18:31:58 +00001438 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001439 }
1440
1441 // Okay, if there weren't any loop invariants to be folded, check to see if
1442 // there are multiple AddRec's with the same loop induction variable being
1443 // added together. If so, we can fold them.
1444 for (unsigned OtherIdx = Idx+1;
1445 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1446 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001447 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001448 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1449 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman9bc642f2009-06-24 04:48:43 +00001450 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1451 AddRec->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001452 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1453 if (i >= NewOps.size()) {
1454 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1455 OtherAddRec->op_end());
1456 break;
1457 }
Dan Gohman89f85052007-10-22 18:31:58 +00001458 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459 }
Dan Gohman161ea032009-07-07 17:06:11 +00001460 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001461
1462 if (Ops.size() == 2) return NewAddRec;
1463
1464 Ops.erase(Ops.begin()+Idx);
1465 Ops.erase(Ops.begin()+OtherIdx-1);
1466 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001467 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001468 }
1469 }
1470
1471 // Otherwise couldn't fold anything into this recurrence. Move onto the
1472 // next one.
1473 }
1474
1475 // Okay, it looks like we really DO need an add expr. Check to see if we
1476 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001477 FoldingSetNodeID ID;
1478 ID.AddInteger(scAddExpr);
1479 ID.AddInteger(Ops.size());
1480 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1481 ID.AddPointer(Ops[i]);
1482 void *IP = 0;
1483 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1484 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001485 new (S) SCEVAddExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001486 UniqueSCEVs.InsertNode(S, IP);
1487 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001488}
1489
1490
Dan Gohmanc8a29272009-05-24 23:45:28 +00001491/// getMulExpr - Get a canonical multiply expression, or something simpler if
1492/// possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001493const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana77b3d42009-05-18 15:44:58 +00001495#ifndef NDEBUG
1496 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1497 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1498 getEffectiveSCEVType(Ops[0]->getType()) &&
1499 "SCEVMulExpr operand types don't match!");
1500#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501
1502 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001503 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504
1505 // If there are any constants, fold them together.
1506 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001507 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001508
1509 // C1*(C2+V) -> C1*C2 + C1*V
1510 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001511 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001512 if (Add->getNumOperands() == 2 &&
1513 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001514 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1515 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001516
1517
1518 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001519 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520 // We found two constants, fold them together!
Owen Andersoneacb44d2009-07-24 23:12:02 +00001521 ConstantInt *Fold = ConstantInt::get(getContext(),
1522 LHSC->getValue()->getValue() *
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001523 RHSC->getValue()->getValue());
1524 Ops[0] = getConstant(Fold);
1525 Ops.erase(Ops.begin()+1); // Erase the folded element
1526 if (Ops.size() == 1) return Ops[0];
1527 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001528 }
1529
1530 // If we are left with a constant one being multiplied, strip it off.
1531 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1532 Ops.erase(Ops.begin());
1533 --Idx;
1534 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1535 // If we have a multiply of zero, it will always be zero.
1536 return Ops[0];
1537 }
1538 }
1539
1540 // Skip over the add expression until we get to a multiply.
1541 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1542 ++Idx;
1543
1544 if (Ops.size() == 1)
1545 return Ops[0];
1546
1547 // If there are mul operands inline them all into this expression.
1548 if (Idx < Ops.size()) {
1549 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001550 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001551 // If we have an mul, expand the mul operands onto the end of the operands
1552 // list.
1553 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1554 Ops.erase(Ops.begin()+Idx);
1555 DeletedMul = true;
1556 }
1557
1558 // If we deleted at least one mul, we added operands to the end of the list,
1559 // and they are not necessarily sorted. Recurse to resort and resimplify
1560 // any operands we just aquired.
1561 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001562 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001563 }
1564
1565 // If there are any add recurrences in the operands list, see if any other
1566 // added values are loop invariant. If so, we can fold them into the
1567 // recurrence.
1568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1569 ++Idx;
1570
1571 // Scan over all recurrences, trying to fold loop invariants into them.
1572 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1573 // Scan all of the other operands to this mul and add them to the vector if
1574 // they are loop invariant w.r.t. the recurrence.
Dan Gohman161ea032009-07-07 17:06:11 +00001575 SmallVector<const SCEV *, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001576 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001577 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1578 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1579 LIOps.push_back(Ops[i]);
1580 Ops.erase(Ops.begin()+i);
1581 --i; --e;
1582 }
1583
1584 // If we found some loop invariants, fold them into the recurrence.
1585 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001586 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman161ea032009-07-07 17:06:11 +00001587 SmallVector<const SCEV *, 4> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001588 NewOps.reserve(AddRec->getNumOperands());
1589 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001590 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001591 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001592 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001593 } else {
1594 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001595 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001596 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001597 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001598 }
1599 }
1600
Dan Gohman161ea032009-07-07 17:06:11 +00001601 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602
1603 // If all of the other operands were loop invariant, we are done.
1604 if (Ops.size() == 1) return NewRec;
1605
1606 // Otherwise, multiply the folded AddRec by the non-liv parts.
1607 for (unsigned i = 0;; ++i)
1608 if (Ops[i] == AddRec) {
1609 Ops[i] = NewRec;
1610 break;
1611 }
Dan Gohman89f85052007-10-22 18:31:58 +00001612 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001613 }
1614
1615 // Okay, if there weren't any loop invariants to be folded, check to see if
1616 // there are multiple AddRec's with the same loop induction variable being
1617 // multiplied together. If so, we can fold them.
1618 for (unsigned OtherIdx = Idx+1;
1619 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1620 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001621 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001622 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1623 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001624 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman161ea032009-07-07 17:06:11 +00001625 const SCEV *NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001626 G->getStart());
Dan Gohman161ea032009-07-07 17:06:11 +00001627 const SCEV *B = F->getStepRecurrence(*this);
1628 const SCEV *D = G->getStepRecurrence(*this);
1629 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman89f85052007-10-22 18:31:58 +00001630 getMulExpr(G, B),
1631 getMulExpr(B, D));
Dan Gohman161ea032009-07-07 17:06:11 +00001632 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman89f85052007-10-22 18:31:58 +00001633 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001634 if (Ops.size() == 2) return NewAddRec;
1635
1636 Ops.erase(Ops.begin()+Idx);
1637 Ops.erase(Ops.begin()+OtherIdx-1);
1638 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001639 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001640 }
1641 }
1642
1643 // Otherwise couldn't fold anything into this recurrence. Move onto the
1644 // next one.
1645 }
1646
1647 // Okay, it looks like we really DO need an mul expr. Check to see if we
1648 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001649 FoldingSetNodeID ID;
1650 ID.AddInteger(scMulExpr);
1651 ID.AddInteger(Ops.size());
1652 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1653 ID.AddPointer(Ops[i]);
1654 void *IP = 0;
1655 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1656 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001657 new (S) SCEVMulExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001658 UniqueSCEVs.InsertNode(S, IP);
1659 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001660}
1661
Dan Gohmanc8a29272009-05-24 23:45:28 +00001662/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1663/// possible.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001664const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1665 const SCEV *RHS) {
Dan Gohmana77b3d42009-05-18 15:44:58 +00001666 assert(getEffectiveSCEVType(LHS->getType()) ==
1667 getEffectiveSCEVType(RHS->getType()) &&
1668 "SCEVUDivExpr operand types don't match!");
1669
Dan Gohmanc76b5452009-05-04 22:02:23 +00001670 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001671 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001672 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001673 if (RHSC->isZero())
1674 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001675
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001676 // Determine if the division can be folded into the operands of
1677 // its operands.
1678 // TODO: Generalize this to non-constants by using known-bits information.
1679 const Type *Ty = LHS->getType();
1680 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1681 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1682 // For non-power-of-two values, effectively round the value up to the
1683 // nearest power of two.
1684 if (!RHSC->getValue()->getValue().isPowerOf2())
1685 ++MaxShiftAmt;
1686 const IntegerType *ExtTy =
1687 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1688 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1690 if (const SCEVConstant *Step =
1691 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1692 if (!Step->getValue()->getValue()
1693 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001694 getZeroExtendExpr(AR, ExtTy) ==
1695 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1696 getZeroExtendExpr(Step, ExtTy),
1697 AR->getLoop())) {
Dan Gohman161ea032009-07-07 17:06:11 +00001698 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001699 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1700 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1701 return getAddRecExpr(Operands, AR->getLoop());
1702 }
1703 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001704 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman161ea032009-07-07 17:06:11 +00001705 SmallVector<const SCEV *, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001706 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1707 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1708 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001709 // Find an operand that's safely divisible.
1710 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001711 const SCEV *Op = M->getOperand(i);
1712 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001713 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman161ea032009-07-07 17:06:11 +00001714 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1715 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001716 MOperands.end());
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001717 Operands[i] = Div;
1718 return getMulExpr(Operands);
1719 }
1720 }
Dan Gohman14374d32009-05-08 23:11:16 +00001721 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001722 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001723 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman161ea032009-07-07 17:06:11 +00001724 SmallVector<const SCEV *, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001725 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1726 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1727 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1728 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001729 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001730 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001731 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1732 break;
1733 Operands.push_back(Op);
1734 }
1735 if (Operands.size() == A->getNumOperands())
1736 return getAddExpr(Operands);
1737 }
Dan Gohman14374d32009-05-08 23:11:16 +00001738 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001739
1740 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001741 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001742 Constant *LHSCV = LHSC->getValue();
1743 Constant *RHSCV = RHSC->getValue();
Owen Anderson175b6542009-07-22 00:24:57 +00001744 return getConstant(cast<ConstantInt>(getContext().getConstantExprUDiv(LHSCV,
Dan Gohman55788cf2009-06-24 00:38:39 +00001745 RHSCV)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001746 }
1747 }
1748
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001749 FoldingSetNodeID ID;
1750 ID.AddInteger(scUDivExpr);
1751 ID.AddPointer(LHS);
1752 ID.AddPointer(RHS);
1753 void *IP = 0;
1754 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1755 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001756 new (S) SCEVUDivExpr(ID, LHS, RHS);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001757 UniqueSCEVs.InsertNode(S, IP);
1758 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001759}
1760
1761
Dan Gohmanc8a29272009-05-24 23:45:28 +00001762/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1763/// Simplify the expression as much as possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001764const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman1c4054f2009-07-24 01:03:59 +00001765 const SCEV *Step, const Loop *L) {
Dan Gohman161ea032009-07-07 17:06:11 +00001766 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001767 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001768 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001769 if (StepChrec->getLoop() == L) {
1770 Operands.insert(Operands.end(), StepChrec->op_begin(),
1771 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001772 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001773 }
1774
1775 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001776 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777}
1778
Dan Gohmanc8a29272009-05-24 23:45:28 +00001779/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1780/// Simplify the expression as much as possible.
Dan Gohman9bc642f2009-06-24 04:48:43 +00001781const SCEV *
Dan Gohman161ea032009-07-07 17:06:11 +00001782ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman9bc642f2009-06-24 04:48:43 +00001783 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784 if (Operands.size() == 1) return Operands[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001785#ifndef NDEBUG
1786 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1787 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1788 getEffectiveSCEVType(Operands[0]->getType()) &&
1789 "SCEVAddRecExpr operand types don't match!");
1790#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791
Dan Gohman7b560c42008-06-18 16:23:07 +00001792 if (Operands.back()->isZero()) {
1793 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001794 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001795 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796
Dan Gohman42936882008-08-08 18:33:12 +00001797 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001798 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001799 const Loop* NestedLoop = NestedAR->getLoop();
1800 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Dan Gohman161ea032009-07-07 17:06:11 +00001801 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001802 NestedAR->op_end());
Dan Gohman42936882008-08-08 18:33:12 +00001803 Operands[0] = NestedAR->getStart();
Dan Gohman08c4c072009-06-26 22:36:20 +00001804 // AddRecs require their operands be loop-invariant with respect to their
1805 // loops. Don't perform this transformation if it would break this
1806 // requirement.
1807 bool AllInvariant = true;
1808 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1809 if (!Operands[i]->isLoopInvariant(L)) {
1810 AllInvariant = false;
1811 break;
1812 }
1813 if (AllInvariant) {
1814 NestedOperands[0] = getAddRecExpr(Operands, L);
1815 AllInvariant = true;
1816 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1817 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1818 AllInvariant = false;
1819 break;
1820 }
1821 if (AllInvariant)
1822 // Ok, both add recurrences are valid after the transformation.
1823 return getAddRecExpr(NestedOperands, NestedLoop);
1824 }
1825 // Reset Operands to its original state.
1826 Operands[0] = NestedAR;
Dan Gohman42936882008-08-08 18:33:12 +00001827 }
1828 }
1829
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001830 FoldingSetNodeID ID;
1831 ID.AddInteger(scAddRecExpr);
1832 ID.AddInteger(Operands.size());
1833 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1834 ID.AddPointer(Operands[i]);
1835 ID.AddPointer(L);
1836 void *IP = 0;
1837 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1838 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001839 new (S) SCEVAddRecExpr(ID, Operands, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001840 UniqueSCEVs.InsertNode(S, IP);
1841 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001842}
1843
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001844const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1845 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00001846 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky711640a2007-11-25 22:41:31 +00001847 Ops.push_back(LHS);
1848 Ops.push_back(RHS);
1849 return getSMaxExpr(Ops);
1850}
1851
Dan Gohman161ea032009-07-07 17:06:11 +00001852const SCEV *
1853ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001854 assert(!Ops.empty() && "Cannot get empty smax!");
1855 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001856#ifndef NDEBUG
1857 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1858 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1859 getEffectiveSCEVType(Ops[0]->getType()) &&
1860 "SCEVSMaxExpr operand types don't match!");
1861#endif
Nick Lewycky711640a2007-11-25 22:41:31 +00001862
1863 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001864 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001865
1866 // If there are any constants, fold them together.
1867 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001868 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001869 ++Idx;
1870 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001871 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001872 // We found two constants, fold them together!
Owen Andersoneacb44d2009-07-24 23:12:02 +00001873 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky711640a2007-11-25 22:41:31 +00001874 APIntOps::smax(LHSC->getValue()->getValue(),
1875 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001876 Ops[0] = getConstant(Fold);
1877 Ops.erase(Ops.begin()+1); // Erase the folded element
1878 if (Ops.size() == 1) return Ops[0];
1879 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001880 }
1881
Dan Gohmand156c092009-06-24 14:46:22 +00001882 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky711640a2007-11-25 22:41:31 +00001883 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1884 Ops.erase(Ops.begin());
1885 --Idx;
Dan Gohmand156c092009-06-24 14:46:22 +00001886 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1887 // If we have an smax with a constant maximum-int, it will always be
1888 // maximum-int.
1889 return Ops[0];
Nick Lewycky711640a2007-11-25 22:41:31 +00001890 }
1891 }
1892
1893 if (Ops.size() == 1) return Ops[0];
1894
1895 // Find the first SMax
1896 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1897 ++Idx;
1898
1899 // Check to see if one of the operands is an SMax. If so, expand its operands
1900 // onto our operand list, and recurse to simplify.
1901 if (Idx < Ops.size()) {
1902 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001903 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001904 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1905 Ops.erase(Ops.begin()+Idx);
1906 DeletedSMax = true;
1907 }
1908
1909 if (DeletedSMax)
1910 return getSMaxExpr(Ops);
1911 }
1912
1913 // Okay, check to see if the same value occurs in the operand list twice. If
1914 // so, delete one. Since we sorted the list, these values are required to
1915 // be adjacent.
1916 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1917 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1918 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1919 --i; --e;
1920 }
1921
1922 if (Ops.size() == 1) return Ops[0];
1923
1924 assert(!Ops.empty() && "Reduced smax down to nothing!");
1925
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001926 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001927 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001928 FoldingSetNodeID ID;
1929 ID.AddInteger(scSMaxExpr);
1930 ID.AddInteger(Ops.size());
1931 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1932 ID.AddPointer(Ops[i]);
1933 void *IP = 0;
1934 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1935 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001936 new (S) SCEVSMaxExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001937 UniqueSCEVs.InsertNode(S, IP);
1938 return S;
Nick Lewycky711640a2007-11-25 22:41:31 +00001939}
1940
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001941const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1942 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00001943 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001944 Ops.push_back(LHS);
1945 Ops.push_back(RHS);
1946 return getUMaxExpr(Ops);
1947}
1948
Dan Gohman161ea032009-07-07 17:06:11 +00001949const SCEV *
1950ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001951 assert(!Ops.empty() && "Cannot get empty umax!");
1952 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001953#ifndef NDEBUG
1954 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1955 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1956 getEffectiveSCEVType(Ops[0]->getType()) &&
1957 "SCEVUMaxExpr operand types don't match!");
1958#endif
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001959
1960 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001961 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001962
1963 // If there are any constants, fold them together.
1964 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001965 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001966 ++Idx;
1967 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001968 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001969 // We found two constants, fold them together!
Owen Andersoneacb44d2009-07-24 23:12:02 +00001970 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001971 APIntOps::umax(LHSC->getValue()->getValue(),
1972 RHSC->getValue()->getValue()));
1973 Ops[0] = getConstant(Fold);
1974 Ops.erase(Ops.begin()+1); // Erase the folded element
1975 if (Ops.size() == 1) return Ops[0];
1976 LHSC = cast<SCEVConstant>(Ops[0]);
1977 }
1978
Dan Gohmand156c092009-06-24 14:46:22 +00001979 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001980 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1981 Ops.erase(Ops.begin());
1982 --Idx;
Dan Gohmand156c092009-06-24 14:46:22 +00001983 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1984 // If we have an umax with a constant maximum-int, it will always be
1985 // maximum-int.
1986 return Ops[0];
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001987 }
1988 }
1989
1990 if (Ops.size() == 1) return Ops[0];
1991
1992 // Find the first UMax
1993 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1994 ++Idx;
1995
1996 // Check to see if one of the operands is a UMax. If so, expand its operands
1997 // onto our operand list, and recurse to simplify.
1998 if (Idx < Ops.size()) {
1999 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00002000 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002001 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2002 Ops.erase(Ops.begin()+Idx);
2003 DeletedUMax = true;
2004 }
2005
2006 if (DeletedUMax)
2007 return getUMaxExpr(Ops);
2008 }
2009
2010 // Okay, check to see if the same value occurs in the operand list twice. If
2011 // so, delete one. Since we sorted the list, these values are required to
2012 // be adjacent.
2013 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2014 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2015 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2016 --i; --e;
2017 }
2018
2019 if (Ops.size() == 1) return Ops[0];
2020
2021 assert(!Ops.empty() && "Reduced umax down to nothing!");
2022
2023 // Okay, it looks like we really DO need a umax expr. Check to see if we
2024 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002025 FoldingSetNodeID ID;
2026 ID.AddInteger(scUMaxExpr);
2027 ID.AddInteger(Ops.size());
2028 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2029 ID.AddPointer(Ops[i]);
2030 void *IP = 0;
2031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2032 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00002033 new (S) SCEVUMaxExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002034 UniqueSCEVs.InsertNode(S, IP);
2035 return S;
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002036}
2037
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002038const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2039 const SCEV *RHS) {
Dan Gohmand01fff82009-06-22 03:18:45 +00002040 // ~smax(~x, ~y) == smin(x, y).
2041 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2042}
2043
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002044const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2045 const SCEV *RHS) {
Dan Gohmand01fff82009-06-22 03:18:45 +00002046 // ~umax(~x, ~y) == umin(x, y)
2047 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2048}
2049
Dan Gohman161ea032009-07-07 17:06:11 +00002050const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman984c78a2009-06-24 00:54:57 +00002051 // Don't attempt to do anything other than create a SCEVUnknown object
2052 // here. createSCEV only calls getUnknown after checking for all other
2053 // interesting possibilities, and any other code that calls getUnknown
2054 // is doing so in order to hide a value from SCEV canonicalization.
2055
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002056 FoldingSetNodeID ID;
2057 ID.AddInteger(scUnknown);
2058 ID.AddPointer(V);
2059 void *IP = 0;
2060 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2061 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
Dan Gohmand43a8282009-07-13 20:50:19 +00002062 new (S) SCEVUnknown(ID, V);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002063 UniqueSCEVs.InsertNode(S, IP);
2064 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065}
2066
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002067//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002068// Basic SCEV Analysis and PHI Idiom Recognition Code
2069//
2070
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002071/// isSCEVable - Test if values of the given type are analyzable within
2072/// the SCEV framework. This primarily includes integer types, and it
2073/// can optionally include pointer types if the ScalarEvolution class
2074/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002075bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002076 // Integers are always SCEVable.
2077 if (Ty->isInteger())
2078 return true;
2079
2080 // Pointers are SCEVable if TargetData information is available
2081 // to provide pointer size information.
2082 if (isa<PointerType>(Ty))
2083 return TD != NULL;
2084
2085 // Otherwise it's not SCEVable.
2086 return false;
2087}
2088
2089/// getTypeSizeInBits - Return the size in bits of the specified type,
2090/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002091uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002092 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2093
2094 // If we have a TargetData, use it!
2095 if (TD)
2096 return TD->getTypeSizeInBits(Ty);
2097
2098 // Otherwise, we support only integer types.
2099 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2100 return Ty->getPrimitiveSizeInBits();
2101}
2102
2103/// getEffectiveSCEVType - Return a type with the same bitwidth as
2104/// the given type and which represents how SCEV will treat the given
2105/// type, for which isSCEVable must return true. For pointer types,
2106/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002107const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002108 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2109
2110 if (Ty->isInteger())
2111 return Ty;
2112
2113 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2114 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00002115}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002116
Dan Gohman161ea032009-07-07 17:06:11 +00002117const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002118 return &CouldNotCompute;
Dan Gohman0ad08b02009-04-18 17:58:19 +00002119}
2120
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002121/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2122/// expression and create a new one.
Dan Gohman161ea032009-07-07 17:06:11 +00002123const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002124 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002125
Dan Gohman161ea032009-07-07 17:06:11 +00002126 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002127 if (I != Scalars.end()) return I->second;
Dan Gohman161ea032009-07-07 17:06:11 +00002128 const SCEV *S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00002129 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002130 return S;
2131}
2132
Dan Gohman984c78a2009-06-24 00:54:57 +00002133/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman01c2ee72009-04-16 03:18:22 +00002134/// specified signed integer value and return a SCEV for the constant.
Dan Gohman161ea032009-07-07 17:06:11 +00002135const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohman984c78a2009-06-24 00:54:57 +00002136 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneacb44d2009-07-24 23:12:02 +00002137 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002138}
2139
2140/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2141///
Dan Gohman161ea032009-07-07 17:06:11 +00002142const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002143 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson15b39322009-07-13 04:09:18 +00002144 return getConstant(
Owen Anderson175b6542009-07-22 00:24:57 +00002145 cast<ConstantInt>(getContext().getConstantExprNeg(VC->getValue())));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002146
2147 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002148 Ty = getEffectiveSCEVType(Ty);
Owen Anderson035d41d2009-07-13 20:58:05 +00002149 return getMulExpr(V,
Owen Anderson175b6542009-07-22 00:24:57 +00002150 getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty))));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002151}
2152
2153/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman161ea032009-07-07 17:06:11 +00002154const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002155 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson035d41d2009-07-13 20:58:05 +00002156 return getConstant(
Owen Anderson175b6542009-07-22 00:24:57 +00002157 cast<ConstantInt>(getContext().getConstantExprNot(VC->getValue())));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002158
2159 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002160 Ty = getEffectiveSCEVType(Ty);
Owen Anderson035d41d2009-07-13 20:58:05 +00002161 const SCEV *AllOnes =
Owen Anderson175b6542009-07-22 00:24:57 +00002162 getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002163 return getMinusSCEV(AllOnes, V);
2164}
2165
2166/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2167///
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002168const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2169 const SCEV *RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002170 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002171 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002172}
2173
2174/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2175/// input value to the specified type. If the type must be extended, it is zero
2176/// extended.
Dan Gohman161ea032009-07-07 17:06:11 +00002177const SCEV *
2178ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky37d04642009-04-23 05:15:08 +00002179 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002180 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002181 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2182 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00002183 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002184 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00002185 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002186 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002187 return getTruncateExpr(V, Ty);
2188 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002189}
2190
2191/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2192/// input value to the specified type. If the type must be extended, it is sign
2193/// extended.
Dan Gohman161ea032009-07-07 17:06:11 +00002194const SCEV *
2195ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky37d04642009-04-23 05:15:08 +00002196 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002197 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002198 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2199 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00002200 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002201 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00002202 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002203 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002204 return getTruncateExpr(V, Ty);
2205 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002206}
2207
Dan Gohmanac959332009-05-13 03:46:30 +00002208/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2209/// input value to the specified type. If the type must be extended, it is zero
2210/// extended. The conversion must not be narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002211const SCEV *
2212ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002213 const Type *SrcTy = V->getType();
2214 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2215 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2216 "Cannot noop or zero extend with non-integer arguments!");
2217 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2218 "getNoopOrZeroExtend cannot truncate!");
2219 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2220 return V; // No conversion
2221 return getZeroExtendExpr(V, Ty);
2222}
2223
2224/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2225/// input value to the specified type. If the type must be extended, it is sign
2226/// extended. The conversion must not be narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002227const SCEV *
2228ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002229 const Type *SrcTy = V->getType();
2230 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2231 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2232 "Cannot noop or sign extend with non-integer arguments!");
2233 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2234 "getNoopOrSignExtend cannot truncate!");
2235 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2236 return V; // No conversion
2237 return getSignExtendExpr(V, Ty);
2238}
2239
Dan Gohmane1ca7e82009-06-13 15:56:47 +00002240/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2241/// the input value to the specified type. If the type must be extended,
2242/// it is extended with unspecified bits. The conversion must not be
2243/// narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002244const SCEV *
2245ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohmane1ca7e82009-06-13 15:56:47 +00002246 const Type *SrcTy = V->getType();
2247 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2248 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2249 "Cannot noop or any extend with non-integer arguments!");
2250 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2251 "getNoopOrAnyExtend cannot truncate!");
2252 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2253 return V; // No conversion
2254 return getAnyExtendExpr(V, Ty);
2255}
2256
Dan Gohmanac959332009-05-13 03:46:30 +00002257/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2258/// input value to the specified type. The conversion must not be widening.
Dan Gohman161ea032009-07-07 17:06:11 +00002259const SCEV *
2260ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002261 const Type *SrcTy = V->getType();
2262 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2263 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2264 "Cannot truncate or noop with non-integer arguments!");
2265 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2266 "getTruncateOrNoop cannot extend!");
2267 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2268 return V; // No conversion
2269 return getTruncateExpr(V, Ty);
2270}
2271
Dan Gohman8e8b5232009-06-22 00:31:57 +00002272/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2273/// the types using zero-extension, and then perform a umax operation
2274/// with them.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002275const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2276 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00002277 const SCEV *PromotedLHS = LHS;
2278 const SCEV *PromotedRHS = RHS;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002279
2280 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2281 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2282 else
2283 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2284
2285 return getUMaxExpr(PromotedLHS, PromotedRHS);
2286}
2287
Dan Gohman9e62bb02009-06-22 15:03:27 +00002288/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2289/// the types using zero-extension, and then perform a umin operation
2290/// with them.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002291const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2292 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00002293 const SCEV *PromotedLHS = LHS;
2294 const SCEV *PromotedRHS = RHS;
Dan Gohman9e62bb02009-06-22 15:03:27 +00002295
2296 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2297 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2298 else
2299 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2300
2301 return getUMinExpr(PromotedLHS, PromotedRHS);
2302}
2303
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002304/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2305/// the specified instruction and replaces any references to the symbolic value
2306/// SymName with the specified value. This is used during PHI resolution.
Dan Gohman9bc642f2009-06-24 04:48:43 +00002307void
2308ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
2309 const SCEV *SymName,
2310 const SCEV *NewVal) {
Dan Gohman161ea032009-07-07 17:06:11 +00002311 std::map<SCEVCallbackVH, const SCEV *>::iterator SI =
Dan Gohmanbff6b582009-05-04 22:30:44 +00002312 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002313 if (SI == Scalars.end()) return;
2314
Dan Gohman161ea032009-07-07 17:06:11 +00002315 const SCEV *NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002316 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002317 if (NV == SI->second) return; // No change.
2318
2319 SI->second = NV; // Update the scalars map!
2320
2321 // Any instruction values that use this instruction might also need to be
2322 // updated!
2323 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2324 UI != E; ++UI)
2325 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2326}
2327
2328/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2329/// a loop header, making it a potential recurrence, or it doesn't.
2330///
Dan Gohman161ea032009-07-07 17:06:11 +00002331const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002333 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002334 if (L->getHeader() == PN->getParent()) {
2335 // If it lives in the loop header, it has two incoming values, one
2336 // from outside the loop, and one from inside.
2337 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2338 unsigned BackEdge = IncomingEdge^1;
2339
2340 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman161ea032009-07-07 17:06:11 +00002341 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002342 assert(Scalars.find(PN) == Scalars.end() &&
2343 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00002344 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345
2346 // Using this symbolic name for the PHI, analyze the value coming around
2347 // the back-edge.
Dan Gohman161ea032009-07-07 17:06:11 +00002348 const SCEV *BEValue = getSCEV(PN->getIncomingValue(BackEdge));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002349
2350 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2351 // has a special value for the first iteration of the loop.
2352
2353 // If the value coming around the backedge is an add with the symbolic
2354 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00002355 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356 // If there is a single occurrence of the symbolic value, replace it
2357 // with a recurrence.
2358 unsigned FoundIndex = Add->getNumOperands();
2359 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2360 if (Add->getOperand(i) == SymbolicName)
2361 if (FoundIndex == e) {
2362 FoundIndex = i;
2363 break;
2364 }
2365
2366 if (FoundIndex != Add->getNumOperands()) {
2367 // Create an add with everything but the specified operand.
Dan Gohman161ea032009-07-07 17:06:11 +00002368 SmallVector<const SCEV *, 8> Ops;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002369 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2370 if (i != FoundIndex)
2371 Ops.push_back(Add->getOperand(i));
Dan Gohman161ea032009-07-07 17:06:11 +00002372 const SCEV *Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002373
2374 // This is not a valid addrec if the step amount is varying each
2375 // loop iteration, but is not itself an addrec in this loop.
2376 if (Accum->isLoopInvariant(L) ||
2377 (isa<SCEVAddRecExpr>(Accum) &&
2378 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00002379 const SCEV *StartVal =
2380 getSCEV(PN->getIncomingValue(IncomingEdge));
2381 const SCEV *PHISCEV =
2382 getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383
2384 // Okay, for the entire analysis of this edge we assumed the PHI
2385 // to be symbolic. We now need to go back and update all of the
2386 // entries for the scalars that use the PHI (except for the PHI
2387 // itself) to use the new analyzed value instead of the "symbolic"
2388 // value.
2389 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2390 return PHISCEV;
2391 }
2392 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00002393 } else if (const SCEVAddRecExpr *AddRec =
2394 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002395 // Otherwise, this could be a loop like this:
2396 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2397 // In this case, j = {1,+,1} and BEValue is j.
2398 // Because the other in-value of i (0) fits the evolution of BEValue
2399 // i really is an addrec evolution.
2400 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman161ea032009-07-07 17:06:11 +00002401 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402
2403 // If StartVal = j.start - j.stride, we can use StartVal as the
2404 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002405 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00002406 AddRec->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00002407 const SCEV *PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002408 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002409
2410 // Okay, for the entire analysis of this edge we assumed the PHI
2411 // to be symbolic. We now need to go back and update all of the
2412 // entries for the scalars that use the PHI (except for the PHI
2413 // itself) to use the new analyzed value instead of the "symbolic"
2414 // value.
2415 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2416 return PHISCEV;
2417 }
2418 }
2419 }
2420
2421 return SymbolicName;
2422 }
2423
Dan Gohman32f35cc2009-07-14 14:06:25 +00002424 // It's tempting to recognize PHIs with a unique incoming value, however
2425 // this leads passes like indvars to break LCSSA form. Fortunately, such
2426 // PHIs are rare, as instcombine zaps them.
2427
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002429 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430}
2431
Dan Gohman509cf4d2009-05-08 20:26:55 +00002432/// createNodeForGEP - Expand GEP instructions into add and multiply
2433/// operations. This allows them to be analyzed by regular SCEV code.
2434///
Dan Gohman9545fb02009-07-17 20:47:02 +00002435const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00002436
2437 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002438 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00002439 // Don't attempt to analyze GEPs over unsized objects.
2440 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2441 return getUnknown(GEP);
Dan Gohman161ea032009-07-07 17:06:11 +00002442 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002443 gep_type_iterator GTI = gep_type_begin(GEP);
2444 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2445 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00002446 I != E; ++I) {
2447 Value *Index = *I;
2448 // Compute the (potentially symbolic) offset in bytes for this index.
2449 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2450 // For a struct, add the member offset.
2451 const StructLayout &SL = *TD->getStructLayout(STy);
2452 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2453 uint64_t Offset = SL.getElementOffset(FieldNo);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002454 TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
Dan Gohman509cf4d2009-05-08 20:26:55 +00002455 } else {
2456 // For an array, add the element offset, explicitly scaled.
Dan Gohman161ea032009-07-07 17:06:11 +00002457 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002458 if (!isa<PointerType>(LocalOffset->getType()))
2459 // Getelementptr indicies are signed.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002460 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002461 LocalOffset =
2462 getMulExpr(LocalOffset,
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002463 getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
Dan Gohman509cf4d2009-05-08 20:26:55 +00002464 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2465 }
2466 }
2467 return getAddExpr(getSCEV(Base), TotalOffset);
2468}
2469
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002470/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2471/// guaranteed to end in (at every loop iteration). It is, at the same time,
2472/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2473/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman6e923a72009-06-19 23:29:04 +00002474uint32_t
Dan Gohman161ea032009-07-07 17:06:11 +00002475ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002476 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002477 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478
Dan Gohmanc76b5452009-05-04 22:02:23 +00002479 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman6e923a72009-06-19 23:29:04 +00002480 return std::min(GetMinTrailingZeros(T->getOperand()),
2481 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002482
Dan Gohmanc76b5452009-05-04 22:02:23 +00002483 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002484 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2485 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2486 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002487 }
2488
Dan Gohmanc76b5452009-05-04 22:02:23 +00002489 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002490 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2491 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2492 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002493 }
2494
Dan Gohmanc76b5452009-05-04 22:02:23 +00002495 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002496 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002497 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002498 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002499 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002500 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002501 }
2502
Dan Gohmanc76b5452009-05-04 22:02:23 +00002503 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002504 // The result is the sum of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002505 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2506 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002507 for (unsigned i = 1, e = M->getNumOperands();
2508 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002509 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002510 BitWidth);
2511 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002512 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002513
Dan Gohmanc76b5452009-05-04 22:02:23 +00002514 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002515 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002516 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002517 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002518 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002519 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002520 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002521
Dan Gohmanc76b5452009-05-04 22:02:23 +00002522 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002523 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002524 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky711640a2007-11-25 22:41:31 +00002525 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002526 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky711640a2007-11-25 22:41:31 +00002527 return MinOpRes;
2528 }
2529
Dan Gohmanc76b5452009-05-04 22:02:23 +00002530 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002531 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002532 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002533 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002534 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002535 return MinOpRes;
2536 }
2537
Dan Gohman6e923a72009-06-19 23:29:04 +00002538 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2539 // For a SCEVUnknown, ask ValueTracking.
2540 unsigned BitWidth = getTypeSizeInBits(U->getType());
2541 APInt Mask = APInt::getAllOnesValue(BitWidth);
2542 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2543 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2544 return Zeros.countTrailingOnes();
2545 }
2546
2547 // SCEVUDivExpr
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002548 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002549}
2550
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002551/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2552///
2553ConstantRange
2554ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002555
2556 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002557 return ConstantRange(C->getValue()->getValue());
Dan Gohman6e923a72009-06-19 23:29:04 +00002558
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002559 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2560 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2561 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2562 X = X.add(getUnsignedRange(Add->getOperand(i)));
2563 return X;
2564 }
2565
2566 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2567 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2568 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2569 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2570 return X;
2571 }
2572
2573 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2574 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2575 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2576 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2577 return X;
2578 }
2579
2580 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2581 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2582 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2583 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2584 return X;
2585 }
2586
2587 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2588 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2589 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2590 return X.udiv(Y);
2591 }
2592
2593 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2594 ConstantRange X = getUnsignedRange(ZExt->getOperand());
2595 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2596 }
2597
2598 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2599 ConstantRange X = getUnsignedRange(SExt->getOperand());
2600 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2601 }
2602
2603 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2604 ConstantRange X = getUnsignedRange(Trunc->getOperand());
2605 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2606 }
2607
2608 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2609
2610 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2611 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2612 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2613 if (!Trip) return FullSet;
2614
2615 // TODO: non-affine addrec
2616 if (AddRec->isAffine()) {
2617 const Type *Ty = AddRec->getType();
2618 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2619 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2620 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2621
2622 const SCEV *Start = AddRec->getStart();
Dan Gohman13dca602009-07-21 00:42:47 +00002623 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002624 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2625
2626 // Check for overflow.
Dan Gohman13dca602009-07-21 00:42:47 +00002627 // TODO: This is very conservative.
2628 if (!(Step->isOne() &&
2629 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2630 !(Step->isAllOnesValue() &&
2631 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002632 return FullSet;
2633
2634 ConstantRange StartRange = getUnsignedRange(Start);
2635 ConstantRange EndRange = getUnsignedRange(End);
2636 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2637 EndRange.getUnsignedMin());
2638 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2639 EndRange.getUnsignedMax());
2640 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman56e18592009-07-20 22:41:51 +00002641 return FullSet;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002642 return ConstantRange(Min, Max+1);
2643 }
2644 }
Dan Gohman6e923a72009-06-19 23:29:04 +00002645 }
2646
2647 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2648 // For a SCEVUnknown, ask ValueTracking.
2649 unsigned BitWidth = getTypeSizeInBits(U->getType());
2650 APInt Mask = APInt::getAllOnesValue(BitWidth);
2651 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2652 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman07620512009-07-20 22:34:18 +00002653 if (Ones == ~Zeros + 1)
2654 return FullSet;
2655 return ConstantRange(Ones, ~Zeros + 1);
Dan Gohman6e923a72009-06-19 23:29:04 +00002656 }
2657
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002658 return FullSet;
Dan Gohman6e923a72009-06-19 23:29:04 +00002659}
2660
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002661/// getSignedRange - Determine the signed range for a particular SCEV.
2662///
2663ConstantRange
2664ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002665
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002666 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2667 return ConstantRange(C->getValue()->getValue());
2668
2669 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2670 ConstantRange X = getSignedRange(Add->getOperand(0));
2671 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2672 X = X.add(getSignedRange(Add->getOperand(i)));
2673 return X;
Dan Gohman6e923a72009-06-19 23:29:04 +00002674 }
2675
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002676 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2677 ConstantRange X = getSignedRange(Mul->getOperand(0));
2678 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2679 X = X.multiply(getSignedRange(Mul->getOperand(i)));
2680 return X;
Dan Gohman6e923a72009-06-19 23:29:04 +00002681 }
2682
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002683 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2684 ConstantRange X = getSignedRange(SMax->getOperand(0));
2685 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2686 X = X.smax(getSignedRange(SMax->getOperand(i)));
2687 return X;
2688 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002689
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002690 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2691 ConstantRange X = getSignedRange(UMax->getOperand(0));
2692 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2693 X = X.umax(getSignedRange(UMax->getOperand(i)));
2694 return X;
2695 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002696
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002697 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2698 ConstantRange X = getSignedRange(UDiv->getLHS());
2699 ConstantRange Y = getSignedRange(UDiv->getRHS());
2700 return X.udiv(Y);
2701 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002702
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002703 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2704 ConstantRange X = getSignedRange(ZExt->getOperand());
2705 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2706 }
2707
2708 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2709 ConstantRange X = getSignedRange(SExt->getOperand());
2710 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2711 }
2712
2713 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2714 ConstantRange X = getSignedRange(Trunc->getOperand());
2715 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2716 }
2717
2718 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2719
2720 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2721 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2722 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2723 if (!Trip) return FullSet;
2724
2725 // TODO: non-affine addrec
2726 if (AddRec->isAffine()) {
2727 const Type *Ty = AddRec->getType();
2728 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2729 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2730 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2731
2732 const SCEV *Start = AddRec->getStart();
2733 const SCEV *Step = AddRec->getStepRecurrence(*this);
2734 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2735
2736 // Check for overflow.
Dan Gohman13dca602009-07-21 00:42:47 +00002737 // TODO: This is very conservative.
2738 if (!(Step->isOne() &&
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002739 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
Dan Gohman13dca602009-07-21 00:42:47 +00002740 !(Step->isAllOnesValue() &&
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002741 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2742 return FullSet;
2743
2744 ConstantRange StartRange = getSignedRange(Start);
2745 ConstantRange EndRange = getSignedRange(End);
2746 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2747 EndRange.getSignedMin());
2748 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2749 EndRange.getSignedMax());
2750 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmandc87c862009-07-21 00:37:45 +00002751 return FullSet;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002752 return ConstantRange(Min, Max+1);
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002753 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002754 }
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002755 }
2756
Dan Gohman6e923a72009-06-19 23:29:04 +00002757 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2758 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002759 unsigned BitWidth = getTypeSizeInBits(U->getType());
2760 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2761 if (NS == 1)
2762 return FullSet;
2763 return
2764 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2765 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
Dan Gohman6e923a72009-06-19 23:29:04 +00002766 }
2767
Dan Gohman55e2d7e2009-07-13 21:35:55 +00002768 return FullSet;
Dan Gohman6e923a72009-06-19 23:29:04 +00002769}
2770
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002771/// createSCEV - We know that there is no SCEV for the specified value.
2772/// Analyze the expression.
2773///
Dan Gohman161ea032009-07-07 17:06:11 +00002774const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002775 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002776 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002777
Dan Gohman3996f472008-06-22 19:56:46 +00002778 unsigned Opcode = Instruction::UserOp1;
2779 if (Instruction *I = dyn_cast<Instruction>(V))
2780 Opcode = I->getOpcode();
2781 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2782 Opcode = CE->getOpcode();
Dan Gohman984c78a2009-06-24 00:54:57 +00002783 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2784 return getConstant(CI);
2785 else if (isa<ConstantPointerNull>(V))
2786 return getIntegerSCEV(0, V->getType());
2787 else if (isa<UndefValue>(V))
2788 return getIntegerSCEV(0, V->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002789 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002790 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002791
Dan Gohman9545fb02009-07-17 20:47:02 +00002792 Operator *U = cast<Operator>(V);
Dan Gohman3996f472008-06-22 19:56:46 +00002793 switch (Opcode) {
2794 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002795 return getAddExpr(getSCEV(U->getOperand(0)),
2796 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002797 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002798 return getMulExpr(getSCEV(U->getOperand(0)),
2799 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002800 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002801 return getUDivExpr(getSCEV(U->getOperand(0)),
2802 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002803 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002804 return getMinusSCEV(getSCEV(U->getOperand(0)),
2805 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002806 case Instruction::And:
2807 // For an expression like x&255 that merely masks off the high bits,
2808 // use zext(trunc(x)) as the SCEV expression.
2809 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002810 if (CI->isNullValue())
2811 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002812 if (CI->isAllOnesValue())
2813 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002814 const APInt &A = CI->getValue();
Dan Gohmana7726c32009-06-16 19:52:01 +00002815
2816 // Instcombine's ShrinkDemandedConstant may strip bits out of
2817 // constants, obscuring what would otherwise be a low-bits mask.
2818 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2819 // knew about to reconstruct a low-bits mask value.
2820 unsigned LZ = A.countLeadingZeros();
2821 unsigned BitWidth = A.getBitWidth();
2822 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2823 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2824 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2825
2826 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2827
Dan Gohmanae1d7dd2009-06-17 23:54:37 +00002828 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman53bf64a2009-04-21 02:26:00 +00002829 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002830 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Dan Gohmana7726c32009-06-16 19:52:01 +00002831 IntegerType::get(BitWidth - LZ)),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002832 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002833 }
2834 break;
Dan Gohmana7726c32009-06-16 19:52:01 +00002835
Dan Gohman3996f472008-06-22 19:56:46 +00002836 case Instruction::Or:
2837 // If the RHS of the Or is a constant, we may have something like:
2838 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2839 // optimizations will transparently handle this case.
2840 //
2841 // In order for this transformation to be safe, the LHS must be of the
2842 // form X*(2^n) and the Or constant must be less than 2^n.
2843 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00002844 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman3996f472008-06-22 19:56:46 +00002845 const APInt &CIVal = CI->getValue();
Dan Gohman6e923a72009-06-19 23:29:04 +00002846 if (GetMinTrailingZeros(LHS) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002847 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002848 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002849 }
Dan Gohman3996f472008-06-22 19:56:46 +00002850 break;
2851 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002852 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002853 // If the RHS of the xor is a signbit, then this is just an add.
2854 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002855 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002856 return getAddExpr(getSCEV(U->getOperand(0)),
2857 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002858
2859 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmanc897f752009-05-18 16:17:44 +00002860 if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002861 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohmanfc78cff2009-05-18 16:29:04 +00002862
2863 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2864 // This is a variant of the check for xor with -1, and it handles
2865 // the case where instcombine has trimmed non-demanded bits out
2866 // of an xor with -1.
2867 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2868 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2869 if (BO->getOpcode() == Instruction::And &&
2870 LCI->getValue() == CI->getValue())
2871 if (const SCEVZeroExtendExpr *Z =
Dan Gohmane49ae432009-06-17 01:22:39 +00002872 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohmaned1d8bb2009-06-18 00:00:20 +00002873 const Type *UTy = U->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00002874 const SCEV *Z0 = Z->getOperand();
Dan Gohmaned1d8bb2009-06-18 00:00:20 +00002875 const Type *Z0Ty = Z0->getType();
2876 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2877
2878 // If C is a low-bits mask, the zero extend is zerving to
2879 // mask off the high bits. Complement the operand and
2880 // re-apply the zext.
2881 if (APIntOps::isMask(Z0TySize, CI->getValue()))
2882 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2883
2884 // If C is a single bit, it may be in the sign-bit position
2885 // before the zero-extend. In this case, represent the xor
2886 // using an add, which is equivalent, and re-apply the zext.
2887 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2888 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2889 Trunc.isSignBit())
2890 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2891 UTy);
Dan Gohmane49ae432009-06-17 01:22:39 +00002892 }
Dan Gohman3996f472008-06-22 19:56:46 +00002893 }
2894 break;
2895
2896 case Instruction::Shl:
2897 // Turn shift left of a constant amount into a multiply.
2898 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2899 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersoneacb44d2009-07-24 23:12:02 +00002900 Constant *X = ConstantInt::get(getContext(),
Dan Gohman3996f472008-06-22 19:56:46 +00002901 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002902 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002903 }
2904 break;
2905
Nick Lewycky7fd27892008-07-07 06:15:49 +00002906 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002907 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002908 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2909 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersoneacb44d2009-07-24 23:12:02 +00002910 Constant *X = ConstantInt::get(getContext(),
Nick Lewycky7fd27892008-07-07 06:15:49 +00002911 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002912 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002913 }
2914 break;
2915
Dan Gohman53bf64a2009-04-21 02:26:00 +00002916 case Instruction::AShr:
2917 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2918 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2919 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2920 if (L->getOpcode() == Instruction::Shl &&
2921 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002922 unsigned BitWidth = getTypeSizeInBits(U->getType());
2923 uint64_t Amt = BitWidth - CI->getZExtValue();
2924 if (Amt == BitWidth)
2925 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2926 if (Amt > BitWidth)
2927 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002928 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002929 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002930 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002931 U->getType());
2932 }
2933 break;
2934
Dan Gohman3996f472008-06-22 19:56:46 +00002935 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002936 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002937
2938 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002939 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002940
2941 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002942 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002943
2944 case Instruction::BitCast:
2945 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002946 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002947 return getSCEV(U->getOperand(0));
2948 break;
2949
Dan Gohman2ec15e62009-07-20 17:43:30 +00002950 // It's tempting to handle inttoptr and ptrtoint, however this can
2951 // lead to pointer expressions which cannot be expanded to GEPs
2952 // (because they may overflow). For now, the only pointer-typed
2953 // expressions we handle are GEPs and address literals.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002954
Dan Gohman509cf4d2009-05-08 20:26:55 +00002955 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002956 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002957 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002958
Dan Gohman3996f472008-06-22 19:56:46 +00002959 case Instruction::PHI:
2960 return createNodeForPHI(cast<PHINode>(U));
2961
2962 case Instruction::Select:
2963 // This could be a smax or umax that was lowered earlier.
2964 // Try to recover it.
2965 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2966 Value *LHS = ICI->getOperand(0);
2967 Value *RHS = ICI->getOperand(1);
2968 switch (ICI->getPredicate()) {
2969 case ICmpInst::ICMP_SLT:
2970 case ICmpInst::ICMP_SLE:
2971 std::swap(LHS, RHS);
2972 // fall through
2973 case ICmpInst::ICMP_SGT:
2974 case ICmpInst::ICMP_SGE:
2975 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002976 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002977 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmand01fff82009-06-22 03:18:45 +00002978 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002979 break;
2980 case ICmpInst::ICMP_ULT:
2981 case ICmpInst::ICMP_ULE:
2982 std::swap(LHS, RHS);
2983 // fall through
2984 case ICmpInst::ICMP_UGT:
2985 case ICmpInst::ICMP_UGE:
2986 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002987 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002988 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmand01fff82009-06-22 03:18:45 +00002989 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002990 break;
Dan Gohmanf27dc692009-06-18 20:21:07 +00002991 case ICmpInst::ICMP_NE:
2992 // n != 0 ? n : 1 -> umax(n, 1)
2993 if (LHS == U->getOperand(1) &&
2994 isa<ConstantInt>(U->getOperand(2)) &&
2995 cast<ConstantInt>(U->getOperand(2))->isOne() &&
2996 isa<ConstantInt>(RHS) &&
2997 cast<ConstantInt>(RHS)->isZero())
2998 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2999 break;
3000 case ICmpInst::ICMP_EQ:
3001 // n == 0 ? 1 : n -> umax(n, 1)
3002 if (LHS == U->getOperand(2) &&
3003 isa<ConstantInt>(U->getOperand(1)) &&
3004 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3005 isa<ConstantInt>(RHS) &&
3006 cast<ConstantInt>(RHS)->isZero())
3007 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3008 break;
Dan Gohman3996f472008-06-22 19:56:46 +00003009 default:
3010 break;
3011 }
3012 }
3013
3014 default: // We cannot analyze this expression.
3015 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003016 }
3017
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003018 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003019}
3020
3021
3022
3023//===----------------------------------------------------------------------===//
3024// Iteration Count Computation Code
3025//
3026
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003027/// getBackedgeTakenCount - If the specified loop has a predictable
3028/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3029/// object. The backedge-taken count is the number of times the loop header
3030/// will be branched to from within the loop. This is one less than the
3031/// trip count of the loop, since it doesn't count the first iteration,
3032/// when the header is branched to from outside the loop.
3033///
3034/// Note that it is not valid to call this method on a loop without a
3035/// loop-invariant backedge-taken count (see
3036/// hasLoopInvariantBackedgeTakenCount).
3037///
Dan Gohman161ea032009-07-07 17:06:11 +00003038const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003039 return getBackedgeTakenInfo(L).Exact;
3040}
3041
3042/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3043/// return the least SCEV value that is known never to be less than the
3044/// actual backedge taken count.
Dan Gohman161ea032009-07-07 17:06:11 +00003045const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003046 return getBackedgeTakenInfo(L).Max;
3047}
3048
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003049/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3050/// onto the given Worklist.
3051static void
3052PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3053 BasicBlock *Header = L->getHeader();
3054
3055 // Push all Loop-header PHIs onto the Worklist stack.
3056 for (BasicBlock::iterator I = Header->begin();
3057 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3058 Worklist.push_back(PN);
3059}
3060
3061/// PushDefUseChildren - Push users of the given Instruction
3062/// onto the given Worklist.
3063static void
3064PushDefUseChildren(Instruction *I,
3065 SmallVectorImpl<Instruction *> &Worklist) {
3066 // Push the def-use children onto the Worklist stack.
3067 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
3068 UI != UE; ++UI)
3069 Worklist.push_back(cast<Instruction>(UI));
3070}
3071
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003072const ScalarEvolution::BackedgeTakenInfo &
3073ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00003074 // Initially insert a CouldNotCompute for this loop. If the insertion
3075 // succeeds, procede to actually compute a backedge-taken count and
3076 // update the value. The temporary CouldNotCompute value tells SCEV
3077 // code elsewhere that it shouldn't attempt to request a new
3078 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003079 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00003080 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3081 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003082 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003083 if (ItCount.Exact != getCouldNotCompute()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003084 assert(ItCount.Exact->isLoopInvariant(L) &&
3085 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003086 "Computed trip count isn't loop invariant for loop!");
3087 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00003088
Dan Gohmana9dba962009-04-27 20:16:15 +00003089 // Update the value in the map.
3090 Pair.first->second = ItCount;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003091 } else {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003092 if (ItCount.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003093 // Update the value in the map.
3094 Pair.first->second = ItCount;
3095 if (isa<PHINode>(L->getHeader()->begin()))
3096 // Only count loops that have phi nodes as not being computable.
3097 ++NumTripCountsNotComputed;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003098 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003099
3100 // Now that we know more about the trip count for this loop, forget any
3101 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003102 // conservative estimates made without the benefit of trip count
3103 // information. This is similar to the code in
3104 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3105 // nodes specially.
3106 if (ItCount.hasAnyInfo()) {
3107 SmallVector<Instruction *, 16> Worklist;
3108 PushLoopPHIs(L, Worklist);
3109
3110 SmallPtrSet<Instruction *, 8> Visited;
3111 while (!Worklist.empty()) {
3112 Instruction *I = Worklist.pop_back_val();
3113 if (!Visited.insert(I)) continue;
3114
3115 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3116 Scalars.find(static_cast<Value *>(I));
3117 if (It != Scalars.end()) {
3118 // SCEVUnknown for a PHI either means that it has an unrecognized
3119 // structure, or it's a PHI that's in the progress of being computed
Dan Gohman0fa91f32009-07-13 22:04:06 +00003120 // by createNodeForPHI. In the former case, additional loop trip
3121 // count information isn't going to change anything. In the later
3122 // case, createNodeForPHI will perform the necessary updates on its
3123 // own when it gets to that point.
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003124 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
3125 Scalars.erase(It);
3126 ValuesAtScopes.erase(I);
3127 if (PHINode *PN = dyn_cast<PHINode>(I))
3128 ConstantEvolutionLoopExitValue.erase(PN);
3129 }
3130
3131 PushDefUseChildren(I, Worklist);
3132 }
3133 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003134 }
Dan Gohmana9dba962009-04-27 20:16:15 +00003135 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003136}
3137
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003138/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00003139/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003140/// ScalarEvolution's ability to compute a trip count, or if the loop
3141/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003142void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003143 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00003144
Dan Gohmanbff6b582009-05-04 22:30:44 +00003145 SmallVector<Instruction *, 16> Worklist;
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003146 PushLoopPHIs(L, Worklist);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003147
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003148 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmanbff6b582009-05-04 22:30:44 +00003149 while (!Worklist.empty()) {
3150 Instruction *I = Worklist.pop_back_val();
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00003151 if (!Visited.insert(I)) continue;
3152
3153 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3154 Scalars.find(static_cast<Value *>(I));
3155 if (It != Scalars.end()) {
3156 Scalars.erase(It);
3157 ValuesAtScopes.erase(I);
3158 if (PHINode *PN = dyn_cast<PHINode>(I))
3159 ConstantEvolutionLoopExitValue.erase(PN);
3160 }
3161
3162 PushDefUseChildren(I, Worklist);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003163 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00003164}
3165
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003166/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3167/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003168ScalarEvolution::BackedgeTakenInfo
3169ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman8e8b5232009-06-22 00:31:57 +00003170 SmallVector<BasicBlock*, 8> ExitingBlocks;
3171 L->getExitingBlocks(ExitingBlocks);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003172
Dan Gohman8e8b5232009-06-22 00:31:57 +00003173 // Examine all exits and pick the most conservative values.
Dan Gohman161ea032009-07-07 17:06:11 +00003174 const SCEV *BECount = getCouldNotCompute();
3175 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003176 bool CouldNotComputeBECount = false;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003177 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3178 BackedgeTakenInfo NewBTI =
3179 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003180
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003181 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohman8e8b5232009-06-22 00:31:57 +00003182 // We couldn't compute an exact value for this exit, so
Dan Gohmanc6e8c832009-06-22 21:10:22 +00003183 // we won't be able to compute an exact value for the loop.
Dan Gohman8e8b5232009-06-22 00:31:57 +00003184 CouldNotComputeBECount = true;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003185 BECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003186 } else if (!CouldNotComputeBECount) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003187 if (BECount == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003188 BECount = NewBTI.Exact;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003189 else
Dan Gohman423ed6c2009-06-24 01:18:18 +00003190 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003191 }
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003192 if (MaxBECount == getCouldNotCompute())
Dan Gohman423ed6c2009-06-24 01:18:18 +00003193 MaxBECount = NewBTI.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003194 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman423ed6c2009-06-24 01:18:18 +00003195 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003196 }
3197
3198 return BackedgeTakenInfo(BECount, MaxBECount);
3199}
3200
3201/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3202/// of the specified loop will execute if it exits via the specified block.
3203ScalarEvolution::BackedgeTakenInfo
3204ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3205 BasicBlock *ExitingBlock) {
3206
3207 // Okay, we've chosen an exiting block. See what condition causes us to
3208 // exit at this block.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003209 //
3210 // FIXME: we should be able to handle switch instructions (with a single exit)
3211 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003212 if (ExitBr == 0) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003213 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman9bc642f2009-06-24 04:48:43 +00003214
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003215 // At this point, we know we have a conditional branch that determines whether
3216 // the loop is exited. However, we don't know if the branch is executed each
3217 // time through the loop. If not, then the execution count of the branch will
3218 // not be equal to the trip count of the loop.
3219 //
3220 // Currently we check for this by checking to see if the Exit branch goes to
3221 // the loop header. If so, we know it will always execute the same number of
3222 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman8e8b5232009-06-22 00:31:57 +00003223 // loop header. This is common for un-rotated loops.
3224 //
3225 // If both of those tests fail, walk up the unique predecessor chain to the
3226 // header, stopping if there is an edge that doesn't exit the loop. If the
3227 // header is reached, the execution count of the branch will be equal to the
3228 // trip count of the loop.
3229 //
3230 // More extensive analysis could be done to handle more cases here.
3231 //
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003232 if (ExitBr->getSuccessor(0) != L->getHeader() &&
3233 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohman8e8b5232009-06-22 00:31:57 +00003234 ExitBr->getParent() != L->getHeader()) {
3235 // The simple checks failed, try climbing the unique predecessor chain
3236 // up to the header.
3237 bool Ok = false;
3238 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3239 BasicBlock *Pred = BB->getUniquePredecessor();
3240 if (!Pred)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003241 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003242 TerminatorInst *PredTerm = Pred->getTerminator();
3243 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3244 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3245 if (PredSucc == BB)
3246 continue;
3247 // If the predecessor has a successor that isn't BB and isn't
3248 // outside the loop, assume the worst.
3249 if (L->contains(PredSucc))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003250 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003251 }
3252 if (Pred == L->getHeader()) {
3253 Ok = true;
3254 break;
3255 }
3256 BB = Pred;
3257 }
3258 if (!Ok)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003259 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003260 }
3261
3262 // Procede to the next level to examine the exit condition expression.
3263 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3264 ExitBr->getSuccessor(0),
3265 ExitBr->getSuccessor(1));
3266}
3267
3268/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3269/// backedge of the specified loop will execute if its exit condition
3270/// were a conditional branch of ExitCond, TBB, and FBB.
3271ScalarEvolution::BackedgeTakenInfo
3272ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3273 Value *ExitCond,
3274 BasicBlock *TBB,
3275 BasicBlock *FBB) {
Dan Gohman423ed6c2009-06-24 01:18:18 +00003276 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman8e8b5232009-06-22 00:31:57 +00003277 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3278 if (BO->getOpcode() == Instruction::And) {
3279 // Recurse on the operands of the and.
3280 BackedgeTakenInfo BTI0 =
3281 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3282 BackedgeTakenInfo BTI1 =
3283 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman161ea032009-07-07 17:06:11 +00003284 const SCEV *BECount = getCouldNotCompute();
3285 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003286 if (L->contains(TBB)) {
3287 // Both conditions must be true for the loop to continue executing.
3288 // Choose the less conservative count.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003289 if (BTI0.Exact == getCouldNotCompute() ||
3290 BTI1.Exact == getCouldNotCompute())
3291 BECount = getCouldNotCompute();
Dan Gohmanac958b32009-06-22 15:09:28 +00003292 else
3293 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003294 if (BTI0.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003295 MaxBECount = BTI1.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003296 else if (BTI1.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003297 MaxBECount = BTI0.Max;
Dan Gohmanac958b32009-06-22 15:09:28 +00003298 else
3299 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003300 } else {
3301 // Both conditions must be true for the loop to exit.
3302 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003303 if (BTI0.Exact != getCouldNotCompute() &&
3304 BTI1.Exact != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003305 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003306 if (BTI0.Max != getCouldNotCompute() &&
3307 BTI1.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003308 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3309 }
3310
3311 return BackedgeTakenInfo(BECount, MaxBECount);
3312 }
3313 if (BO->getOpcode() == Instruction::Or) {
3314 // Recurse on the operands of the or.
3315 BackedgeTakenInfo BTI0 =
3316 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3317 BackedgeTakenInfo BTI1 =
3318 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman161ea032009-07-07 17:06:11 +00003319 const SCEV *BECount = getCouldNotCompute();
3320 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003321 if (L->contains(FBB)) {
3322 // Both conditions must be false for the loop to continue executing.
3323 // Choose the less conservative count.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003324 if (BTI0.Exact == getCouldNotCompute() ||
3325 BTI1.Exact == getCouldNotCompute())
3326 BECount = getCouldNotCompute();
Dan Gohmanac958b32009-06-22 15:09:28 +00003327 else
3328 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003329 if (BTI0.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003330 MaxBECount = BTI1.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003331 else if (BTI1.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003332 MaxBECount = BTI0.Max;
Dan Gohmanac958b32009-06-22 15:09:28 +00003333 else
3334 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003335 } else {
3336 // Both conditions must be false for the loop to exit.
3337 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003338 if (BTI0.Exact != getCouldNotCompute() &&
3339 BTI1.Exact != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003340 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003341 if (BTI0.Max != getCouldNotCompute() &&
3342 BTI1.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003343 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3344 }
3345
3346 return BackedgeTakenInfo(BECount, MaxBECount);
3347 }
3348 }
3349
3350 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3351 // Procede to the next level to examine the icmp.
3352 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3353 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003354
Eli Friedman459d7292009-05-09 12:32:42 +00003355 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohman8e8b5232009-06-22 00:31:57 +00003356 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3357}
3358
3359/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3360/// backedge of the specified loop will execute if its exit condition
3361/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3362ScalarEvolution::BackedgeTakenInfo
3363ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3364 ICmpInst *ExitCond,
3365 BasicBlock *TBB,
3366 BasicBlock *FBB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003367
3368 // If the condition was exit on true, convert the condition to exit on false
3369 ICmpInst::Predicate Cond;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003370 if (!L->contains(FBB))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003371 Cond = ExitCond->getPredicate();
3372 else
3373 Cond = ExitCond->getInversePredicate();
3374
3375 // Handle common loops like: for (X = "string"; *X; ++X)
3376 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3377 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00003378 const SCEV *ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003379 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003380 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3381 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3382 return BackedgeTakenInfo(ItCnt,
3383 isa<SCEVConstant>(ItCnt) ? ItCnt :
3384 getConstant(APInt::getMaxValue(BitWidth)-1));
3385 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003386 }
3387
Dan Gohman161ea032009-07-07 17:06:11 +00003388 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3389 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003390
3391 // Try to evaluate any dependencies out of the loop.
Dan Gohmanaff14d62009-05-24 23:25:42 +00003392 LHS = getSCEVAtScope(LHS, L);
3393 RHS = getSCEVAtScope(RHS, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003394
Dan Gohman9bc642f2009-06-24 04:48:43 +00003395 // At this point, we would like to compute how many iterations of the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003396 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00003397 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3398 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003399 std::swap(LHS, RHS);
3400 Cond = ICmpInst::getSwappedPredicate(Cond);
3401 }
3402
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003403 // If we have a comparison of a chrec against a constant, try to use value
3404 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003405 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3406 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003407 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00003408 // Form the constant range.
3409 ConstantRange CompRange(
3410 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003411
Dan Gohman161ea032009-07-07 17:06:11 +00003412 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman459d7292009-05-09 12:32:42 +00003413 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003414 }
3415
3416 switch (Cond) {
3417 case ICmpInst::ICMP_NE: { // while (X != Y)
3418 // Convert to: while (X-Y != 0)
Dan Gohman161ea032009-07-07 17:06:11 +00003419 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003420 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3421 break;
3422 }
3423 case ICmpInst::ICMP_EQ: {
3424 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohman161ea032009-07-07 17:06:11 +00003425 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003426 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3427 break;
3428 }
3429 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003430 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3431 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003432 break;
3433 }
3434 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003435 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3436 getNotSCEV(RHS), L, true);
3437 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00003438 break;
3439 }
3440 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003441 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3442 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00003443 break;
3444 }
3445 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003446 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3447 getNotSCEV(RHS), L, false);
3448 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003449 break;
3450 }
3451 default:
3452#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003453 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003454 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00003455 errs() << "[unsigned] ";
3456 errs() << *LHS << " "
Dan Gohman9bc642f2009-06-24 04:48:43 +00003457 << Instruction::getOpcodeName(Instruction::ICmp)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003458 << " " << *RHS << "\n";
3459#endif
3460 break;
3461 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003462 return
Dan Gohman8e8b5232009-06-22 00:31:57 +00003463 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003464}
3465
3466static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00003467EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3468 ScalarEvolution &SE) {
Dan Gohman161ea032009-07-07 17:06:11 +00003469 const SCEV *InVal = SE.getConstant(C);
3470 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003471 assert(isa<SCEVConstant>(Val) &&
3472 "Evaluation of SCEV at constant didn't fold correctly?");
3473 return cast<SCEVConstant>(Val)->getValue();
3474}
3475
3476/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3477/// and a GEP expression (missing the pointer index) indexing into it, return
3478/// the addressed element of the initializer or null if the index expression is
3479/// invalid.
3480static Constant *
Owen Anderson175b6542009-07-22 00:24:57 +00003481GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003482 const std::vector<ConstantInt*> &Indices) {
3483 Constant *Init = GV->getInitializer();
3484 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3485 uint64_t Idx = Indices[i]->getZExtValue();
3486 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3487 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3488 Init = cast<Constant>(CS->getOperand(Idx));
3489 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3490 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3491 Init = cast<Constant>(CA->getOperand(Idx));
3492 } else if (isa<ConstantAggregateZero>(Init)) {
3493 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3494 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Anderson175b6542009-07-22 00:24:57 +00003495 Init = Context.getNullValue(STy->getElementType(Idx));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003496 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3497 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Anderson175b6542009-07-22 00:24:57 +00003498 Init = Context.getNullValue(ATy->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003499 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00003500 llvm_unreachable("Unknown constant aggregate type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003501 }
3502 return 0;
3503 } else {
3504 return 0; // Unknown initializer type
3505 }
3506 }
3507 return Init;
3508}
3509
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003510/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3511/// 'icmp op load X, cst', try to see if we can compute the backedge
3512/// execution count.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003513const SCEV *
3514ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3515 LoadInst *LI,
3516 Constant *RHS,
3517 const Loop *L,
3518 ICmpInst::Predicate predicate) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003519 if (LI->isVolatile()) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003520
3521 // Check to see if the loaded pointer is a getelementptr of a global.
3522 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003523 if (!GEP) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003524
3525 // Make sure that it is really a constant global we are gepping, with an
3526 // initializer, and make sure the first IDX is really 0.
3527 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3528 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3529 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3530 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003531 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003532
3533 // Okay, we allow one non-constant index into the GEP instruction.
3534 Value *VarIdx = 0;
3535 std::vector<ConstantInt*> Indexes;
3536 unsigned VarIdxNum = 0;
3537 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3538 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3539 Indexes.push_back(CI);
3540 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003541 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003542 VarIdx = GEP->getOperand(i);
3543 VarIdxNum = i-2;
3544 Indexes.push_back(0);
3545 }
3546
3547 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3548 // Check to see if X is a loop variant variable value now.
Dan Gohman161ea032009-07-07 17:06:11 +00003549 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmanaff14d62009-05-24 23:25:42 +00003550 Idx = getSCEVAtScope(Idx, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551
3552 // We can only recognize very limited forms of loop index expressions, in
3553 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00003554 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003555 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3556 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3557 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003558 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003559
3560 unsigned MaxSteps = MaxBruteForceIterations;
3561 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneacb44d2009-07-24 23:12:02 +00003562 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9f5b2aa2009-07-14 23:09:55 +00003563 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003564 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003565
3566 // Form the GEP offset.
3567 Indexes[VarIdxNum] = Val;
3568
Owen Anderson175b6542009-07-22 00:24:57 +00003569 Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003570 if (Result == 0) break; // Cannot compute!
3571
3572 // Evaluate the condition for this iteration.
3573 Result = ConstantExpr::getICmp(predicate, Result, RHS);
3574 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
3575 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3576#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003577 errs() << "\n***\n*** Computed loop count " << *ItCst
3578 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3579 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003580#endif
3581 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003582 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003583 }
3584 }
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003585 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003586}
3587
3588
3589/// CanConstantFold - Return true if we can constant fold an instruction of the
3590/// specified type, assuming that all operands were constants.
3591static bool CanConstantFold(const Instruction *I) {
3592 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3593 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3594 return true;
3595
3596 if (const CallInst *CI = dyn_cast<CallInst>(I))
3597 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00003598 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003599 return false;
3600}
3601
3602/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3603/// in the loop that V is derived from. We allow arbitrary operations along the
3604/// way, but the operands of an operation must either be constants or a value
3605/// derived from a constant PHI. If this expression does not fit with these
3606/// constraints, return null.
3607static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3608 // If this is not an instruction, or if this is an instruction outside of the
3609 // loop, it can't be derived from a loop PHI.
3610 Instruction *I = dyn_cast<Instruction>(V);
3611 if (I == 0 || !L->contains(I->getParent())) return 0;
3612
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00003613 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003614 if (L->getHeader() == I->getParent())
3615 return PN;
3616 else
3617 // We don't currently keep track of the control flow needed to evaluate
3618 // PHIs, so we cannot handle PHIs inside of loops.
3619 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00003620 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003621
3622 // If we won't be able to constant fold this expression even if the operands
3623 // are constants, return early.
3624 if (!CanConstantFold(I)) return 0;
3625
3626 // Otherwise, we can evaluate this instruction if all of its operands are
3627 // constant or derived from a PHI node themselves.
3628 PHINode *PHI = 0;
3629 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3630 if (!(isa<Constant>(I->getOperand(Op)) ||
3631 isa<GlobalValue>(I->getOperand(Op)))) {
3632 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3633 if (P == 0) return 0; // Not evolving from PHI
3634 if (PHI == 0)
3635 PHI = P;
3636 else if (PHI != P)
3637 return 0; // Evolving from multiple different PHIs.
3638 }
3639
3640 // This is a expression evolving from a constant PHI!
3641 return PHI;
3642}
3643
3644/// EvaluateExpression - Given an expression that passes the
3645/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3646/// in the loop has the value PHIVal. If we can't fold this expression for some
3647/// reason, return null.
3648static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3649 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003650 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003651 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003652 Instruction *I = cast<Instruction>(V);
Owen Anderson175b6542009-07-22 00:24:57 +00003653 LLVMContext &Context = I->getParent()->getContext();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003654
3655 std::vector<Constant*> Operands;
3656 Operands.resize(I->getNumOperands());
3657
3658 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3659 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3660 if (Operands[i] == 0) return 0;
3661 }
3662
Chris Lattnerd6e56912007-12-10 22:53:04 +00003663 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3664 return ConstantFoldCompareInstOperands(CI->getPredicate(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003665 &Operands[0], Operands.size(),
3666 Context);
Chris Lattnerd6e56912007-12-10 22:53:04 +00003667 else
3668 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003669 &Operands[0], Operands.size(),
3670 Context);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003671}
3672
3673/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3674/// in the header of its containing loop, we know the loop executes a
3675/// constant number of times, and the PHI node is just a recurrence
3676/// involving constants, fold it.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003677Constant *
3678ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3679 const APInt& BEs,
3680 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003681 std::map<PHINode*, Constant*>::iterator I =
3682 ConstantEvolutionLoopExitValue.find(PN);
3683 if (I != ConstantEvolutionLoopExitValue.end())
3684 return I->second;
3685
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003686 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003687 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3688
3689 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3690
3691 // Since the loop is canonicalized, the PHI node must have two entries. One
3692 // entry must be a constant (coming in from outside of the loop), and the
3693 // second must be derived from the same PHI.
3694 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3695 Constant *StartCST =
3696 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3697 if (StartCST == 0)
3698 return RetVal = 0; // Must be a constant.
3699
3700 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3701 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3702 if (PN2 != PN)
3703 return RetVal = 0; // Not derived from same PHI.
3704
3705 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003706 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003707 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3708
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003709 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003710 unsigned IterationNum = 0;
3711 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3712 if (IterationNum == NumIterations)
3713 return RetVal = PHIVal; // Got exit value!
3714
3715 // Compute the value of the PHI node for the next iteration.
3716 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3717 if (NextPHI == PHIVal)
3718 return RetVal = NextPHI; // Stopped evolving!
3719 if (NextPHI == 0)
3720 return 0; // Couldn't evaluate!
3721 PHIVal = NextPHI;
3722 }
3723}
3724
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003725/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003726/// constant number of times (the condition evolves only from constants),
3727/// try to evaluate a few iterations of the loop until we get the exit
3728/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003729/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman9bc642f2009-06-24 04:48:43 +00003730const SCEV *
3731ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3732 Value *Cond,
3733 bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003734 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003735 if (PN == 0) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003736
3737 // Since the loop is canonicalized, the PHI node must have two entries. One
3738 // entry must be a constant (coming in from outside of the loop), and the
3739 // second must be derived from the same PHI.
3740 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3741 Constant *StartCST =
3742 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003743 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003744
3745 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3746 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003747 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003748
3749 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3750 // the loop symbolically to determine when the condition gets a value of
3751 // "ExitWhen".
3752 unsigned IterationNum = 0;
3753 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3754 for (Constant *PHIVal = StartCST;
3755 IterationNum != MaxIterations; ++IterationNum) {
3756 ConstantInt *CondVal =
3757 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3758
3759 // Couldn't symbolically evaluate.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003760 if (!CondVal) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003761
3762 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003763 ++NumBruteForceTripCountsComputed;
Dan Gohman8fd520a2009-06-15 22:12:54 +00003764 return getConstant(Type::Int32Ty, IterationNum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003765 }
3766
3767 // Compute the value of the PHI node for the next iteration.
3768 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3769 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003770 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003771 PHIVal = NextPHI;
3772 }
3773
3774 // Too many iterations were needed to evaluate.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003775 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003776}
3777
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003778/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3779/// at the specified scope in the program. The L value specifies a loop
3780/// nest to evaluate the expression at, where null is the top-level or a
3781/// specified loop is immediately inside of the loop.
3782///
3783/// This method can be used to compute the exit value for a variable defined
3784/// in a loop by querying what the value will hold in the parent loop.
3785///
Dan Gohmanaff14d62009-05-24 23:25:42 +00003786/// In the case that a relevant loop exit value cannot be computed, the
3787/// original value V is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00003788const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003789 // FIXME: this should be turned into a virtual method on SCEV!
3790
3791 if (isa<SCEVConstant>(V)) return V;
3792
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003793 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003794 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003795 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003796 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003797 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3799 if (PHINode *PN = dyn_cast<PHINode>(I))
3800 if (PN->getParent() == LI->getHeader()) {
3801 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003802 // to see if the loop that contains it has a known backedge-taken
3803 // count. If so, we may be able to force computation of the exit
3804 // value.
Dan Gohman161ea032009-07-07 17:06:11 +00003805 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003806 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003807 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003808 // Okay, we know how many times the containing loop executes. If
3809 // this is a constant evolving PHI node, get the final value at
3810 // the specified iteration number.
3811 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003812 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003813 LI);
Dan Gohman652caf12009-06-29 21:31:18 +00003814 if (RV) return getSCEV(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003815 }
3816 }
3817
3818 // Okay, this is an expression that we cannot symbolically evaluate
3819 // into a SCEV. Check to see if it's possible to symbolically evaluate
3820 // the arguments into constants, and if so, try to constant propagate the
3821 // result. This is particularly useful for computing loop exit values.
3822 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00003823 // Check to see if we've folded this instruction at this loop before.
3824 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3825 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3826 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3827 if (!Pair.second)
Dan Gohman652caf12009-06-29 21:31:18 +00003828 return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
Dan Gohmanda0071e2009-05-08 20:47:27 +00003829
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003830 std::vector<Constant*> Operands;
3831 Operands.reserve(I->getNumOperands());
3832 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3833 Value *Op = I->getOperand(i);
3834 if (Constant *C = dyn_cast<Constant>(Op)) {
3835 Operands.push_back(C);
3836 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00003837 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00003838 // non-integer and non-pointer, don't even try to analyze them
3839 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00003840 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00003841 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003842
Dan Gohman55e2d7e2009-07-13 21:35:55 +00003843 const SCEV* OpV = getSCEVAtScope(Op, L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003844 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003845 Constant *C = SC->getValue();
3846 if (C->getType() != Op->getType())
3847 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3848 Op->getType(),
3849 false),
3850 C, Op->getType());
3851 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003852 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003853 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3854 if (C->getType() != Op->getType())
3855 C =
3856 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3857 Op->getType(),
3858 false),
3859 C, Op->getType());
3860 Operands.push_back(C);
3861 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003862 return V;
3863 } else {
3864 return V;
3865 }
3866 }
3867 }
Dan Gohman9bc642f2009-06-24 04:48:43 +00003868
Chris Lattnerd6e56912007-12-10 22:53:04 +00003869 Constant *C;
3870 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3871 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003872 &Operands[0], Operands.size(),
Owen Anderson175b6542009-07-22 00:24:57 +00003873 getContext());
Chris Lattnerd6e56912007-12-10 22:53:04 +00003874 else
3875 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Owen Anderson175b6542009-07-22 00:24:57 +00003876 &Operands[0], Operands.size(),
3877 getContext());
Dan Gohmanda0071e2009-05-08 20:47:27 +00003878 Pair.first->second = C;
Dan Gohman652caf12009-06-29 21:31:18 +00003879 return getSCEV(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003880 }
3881 }
3882
3883 // This is some other type of SCEVUnknown, just return it.
3884 return V;
3885 }
3886
Dan Gohmanc76b5452009-05-04 22:02:23 +00003887 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888 // Avoid performing the look-up in the common case where the specified
3889 // expression has no loop-variant portions.
3890 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00003891 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003892 if (OpAtScope != Comm->getOperand(i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003893 // Okay, at least one of these operands is loop variant but might be
3894 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003895 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3896 Comm->op_begin()+i);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003897 NewOps.push_back(OpAtScope);
3898
3899 for (++i; i != e; ++i) {
3900 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003901 NewOps.push_back(OpAtScope);
3902 }
3903 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003904 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003905 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003906 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003907 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003908 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003909 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003910 return getUMaxExpr(NewOps);
Edwin Törökbd448e32009-07-14 16:55:14 +00003911 llvm_unreachable("Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003912 }
3913 }
3914 // If we got here, all operands are loop invariant.
3915 return Comm;
3916 }
3917
Dan Gohmanc76b5452009-05-04 22:02:23 +00003918 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003919 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
3920 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003921 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3922 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003923 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003924 }
3925
3926 // If this is a loop recurrence for a loop that does not contain L, then we
3927 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003928 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003929 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3930 // To evaluate this recurrence, we need to know how many times the AddRec
3931 // loop iterates. Compute this now.
Dan Gohman161ea032009-07-07 17:06:11 +00003932 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003933 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003934
Eli Friedman7489ec92008-08-04 23:49:06 +00003935 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003936 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003937 }
Dan Gohmanaff14d62009-05-24 23:25:42 +00003938 return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003939 }
3940
Dan Gohmanc76b5452009-05-04 22:02:23 +00003941 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003942 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003943 if (Op == Cast->getOperand())
3944 return Cast; // must be loop invariant
3945 return getZeroExtendExpr(Op, Cast->getType());
3946 }
3947
Dan Gohmanc76b5452009-05-04 22:02:23 +00003948 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003949 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003950 if (Op == Cast->getOperand())
3951 return Cast; // must be loop invariant
3952 return getSignExtendExpr(Op, Cast->getType());
3953 }
3954
Dan Gohmanc76b5452009-05-04 22:02:23 +00003955 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003956 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003957 if (Op == Cast->getOperand())
3958 return Cast; // must be loop invariant
3959 return getTruncateExpr(Op, Cast->getType());
3960 }
3961
Edwin Törökbd448e32009-07-14 16:55:14 +00003962 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbara95d96c2009-05-18 16:43:04 +00003963 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003964}
3965
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003966/// getSCEVAtScope - This is a convenience function which does
3967/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman161ea032009-07-07 17:06:11 +00003968const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003969 return getSCEVAtScope(getSCEV(V), L);
3970}
3971
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003972/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3973/// following equation:
3974///
3975/// A * X = B (mod N)
3976///
3977/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3978/// A and B isn't important.
3979///
3980/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00003981static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003982 ScalarEvolution &SE) {
3983 uint32_t BW = A.getBitWidth();
3984 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3985 assert(A != 0 && "A must be non-zero.");
3986
3987 // 1. D = gcd(A, N)
3988 //
3989 // The gcd of A and N may have only one prime factor: 2. The number of
3990 // trailing zeros in A is its multiplicity
3991 uint32_t Mult2 = A.countTrailingZeros();
3992 // D = 2^Mult2
3993
3994 // 2. Check if B is divisible by D.
3995 //
3996 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3997 // is not less than multiplicity of this prime factor for D.
3998 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003999 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004000
4001 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4002 // modulo (N / D).
4003 //
4004 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4005 // bit width during computations.
4006 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4007 APInt Mod(BW + 1, 0);
4008 Mod.set(BW - Mult2); // Mod = N / D
4009 APInt I = AD.multiplicativeInverse(Mod);
4010
4011 // 4. Compute the minimum unsigned root of the equation:
4012 // I * (B / D) mod (N / D)
4013 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4014
4015 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4016 // bits.
4017 return SE.getConstant(Result.trunc(BW));
4018}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004019
4020/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4021/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4022/// might be the same) or two SCEVCouldNotCompute objects.
4023///
Dan Gohman161ea032009-07-07 17:06:11 +00004024static std::pair<const SCEV *,const SCEV *>
Dan Gohman89f85052007-10-22 18:31:58 +00004025SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004026 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00004027 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4028 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4029 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004030
4031 // We currently can only solve this if the coefficients are constants.
4032 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00004033 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004034 return std::make_pair(CNC, CNC);
4035 }
4036
4037 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4038 const APInt &L = LC->getValue()->getValue();
4039 const APInt &M = MC->getValue()->getValue();
4040 const APInt &N = NC->getValue()->getValue();
4041 APInt Two(BitWidth, 2);
4042 APInt Four(BitWidth, 4);
4043
Dan Gohman9bc642f2009-06-24 04:48:43 +00004044 {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004045 using namespace APIntOps;
4046 const APInt& C = L;
4047 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4048 // The B coefficient is M-N/2
4049 APInt B(M);
4050 B -= sdiv(N,Two);
4051
4052 // The A coefficient is N/2
4053 APInt A(N.sdiv(Two));
4054
4055 // Compute the B^2-4ac term.
4056 APInt SqrtTerm(B);
4057 SqrtTerm *= B;
4058 SqrtTerm -= Four * (A * C);
4059
4060 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4061 // integer value or else APInt::sqrt() will assert.
4062 APInt SqrtVal(SqrtTerm.sqrt());
4063
Dan Gohman9bc642f2009-06-24 04:48:43 +00004064 // Compute the two solutions for the quadratic formula.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004065 // The divisions must be performed as signed divisions.
4066 APInt NegB(-B);
4067 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00004068 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00004069 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00004070 return std::make_pair(CNC, CNC);
4071 }
4072
Owen Anderson175b6542009-07-22 00:24:57 +00004073 LLVMContext &Context = SE.getContext();
Owen Andersone755b092009-07-06 22:37:39 +00004074
4075 ConstantInt *Solution1 =
Owen Andersoneacb44d2009-07-24 23:12:02 +00004076 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersone755b092009-07-06 22:37:39 +00004077 ConstantInt *Solution2 =
Owen Andersoneacb44d2009-07-24 23:12:02 +00004078 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004079
Dan Gohman9bc642f2009-06-24 04:48:43 +00004080 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman89f85052007-10-22 18:31:58 +00004081 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004082 } // end APIntOps namespace
4083}
4084
4085/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman0c850912009-06-06 14:37:11 +00004086/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohman161ea032009-07-07 17:06:11 +00004087const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004088 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00004089 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004090 // If the value is already zero, the branch will execute zero times.
4091 if (C->getValue()->isZero()) return C;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004092 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004093 }
4094
Dan Gohmanbff6b582009-05-04 22:30:44 +00004095 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004096 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004097 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004098
4099 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004100 // If this is an affine expression, the execution count of this branch is
4101 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004102 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004103 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004104 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004105 // equivalent to:
4106 //
4107 // Step*N = -Start (mod 2^BW)
4108 //
4109 // where BW is the common bit width of Start and Step.
4110
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004111 // Get the initial value for the loop.
Dan Gohman9bc642f2009-06-24 04:48:43 +00004112 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4113 L->getParentLoop());
4114 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4115 L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004116
Dan Gohmanc76b5452009-05-04 22:02:23 +00004117 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004118 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004119
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004120 // First, handle unitary steps.
4121 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004122 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004123 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4124 return Start; // N = Start (as unsigned)
4125
4126 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00004127 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00004128 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004129 -StartC->getValue()->getValue(),
4130 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004131 }
4132 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4133 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4134 // the quadratic equation to solve it.
Dan Gohman161ea032009-07-07 17:06:11 +00004135 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004136 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004137 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4138 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004139 if (R1) {
4140#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00004141 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4142 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004143#endif
4144 // Pick the smallest positive root value.
4145 if (ConstantInt *CB =
Owen Anderson175b6542009-07-22 00:24:57 +00004146 dyn_cast<ConstantInt>(getContext().getConstantExprICmp(ICmpInst::ICMP_ULT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004147 R1->getValue(), R2->getValue()))) {
4148 if (CB->getZExtValue() == false)
4149 std::swap(R1, R2); // R1 is the minimum root now.
4150
4151 // We can only use this value if the chrec ends up with an exact zero
4152 // value at this index. When solving for "X*X != 5", for example, we
4153 // should not accept a root of 2.
Dan Gohman161ea032009-07-07 17:06:11 +00004154 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00004155 if (Val->isZero())
4156 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004157 }
4158 }
4159 }
4160
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004161 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004162}
4163
4164/// HowFarToNonZero - Return the number of times a backedge checking the
4165/// specified value for nonzero will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00004166/// CouldNotCompute
Dan Gohman161ea032009-07-07 17:06:11 +00004167const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004168 // Loops that look like: while (X == 0) are very strange indeed. We don't
4169 // handle them yet except for the trivial case. This could be expanded in the
4170 // future as needed.
4171
4172 // If the value is a constant, check to see if it is known to be non-zero
4173 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00004174 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00004175 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004176 return getIntegerSCEV(0, C->getType());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004177 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004178 }
4179
4180 // We could implement others, but I really doubt anyone writes loops like
4181 // this, and if they did, they would already be constant folded.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004182 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004183}
4184
Dan Gohmanab157b22009-05-18 15:36:09 +00004185/// getLoopPredecessor - If the given loop's header has exactly one unique
4186/// predecessor outside the loop, return it. Otherwise return null.
4187///
4188BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4189 BasicBlock *Header = L->getHeader();
4190 BasicBlock *Pred = 0;
4191 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4192 PI != E; ++PI)
4193 if (!L->contains(*PI)) {
4194 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4195 Pred = *PI;
4196 }
4197 return Pred;
4198}
4199
Dan Gohman1cddf972008-09-15 22:18:04 +00004200/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4201/// (which may not be an immediate predecessor) which has exactly one
4202/// successor from which BB is reachable, or null if no such block is
4203/// found.
4204///
4205BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004206ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00004207 // If the block has a unique predecessor, then there is no path from the
4208 // predecessor to the block that does not go through the direct edge
4209 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00004210 if (BasicBlock *Pred = BB->getSinglePredecessor())
4211 return Pred;
4212
4213 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00004214 // If the header has a unique predecessor outside the loop, it must be
4215 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004216 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00004217 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00004218
4219 return 0;
4220}
4221
Dan Gohmanbc1e3472009-06-20 00:35:32 +00004222/// HasSameValue - SCEV structural equivalence is usually sufficient for
4223/// testing whether two expressions are equal, however for the purposes of
4224/// looking for a condition guarding a loop, it can be useful to be a little
4225/// more general, since a front-end may have replicated the controlling
4226/// expression.
4227///
Dan Gohman161ea032009-07-07 17:06:11 +00004228static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohmanbc1e3472009-06-20 00:35:32 +00004229 // Quick check to see if they are the same SCEV.
4230 if (A == B) return true;
4231
4232 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4233 // two different instructions with the same value. Check for this case.
4234 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4235 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4236 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4237 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4238 if (AI->isIdenticalTo(BI))
4239 return true;
4240
4241 // Otherwise assume they may have a different value.
4242 return false;
4243}
4244
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004245bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4246 return getSignedRange(S).getSignedMax().isNegative();
4247}
4248
4249bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4250 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4251}
4252
4253bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4254 return !getSignedRange(S).getSignedMin().isNegative();
4255}
4256
4257bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4258 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4259}
4260
4261bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4262 return isKnownNegative(S) || isKnownPositive(S);
4263}
4264
4265bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4266 const SCEV *LHS, const SCEV *RHS) {
4267
4268 if (HasSameValue(LHS, RHS))
4269 return ICmpInst::isTrueWhenEqual(Pred);
4270
4271 switch (Pred) {
4272 default:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004273 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004274 break;
4275 case ICmpInst::ICMP_SGT:
4276 Pred = ICmpInst::ICMP_SLT;
4277 std::swap(LHS, RHS);
4278 case ICmpInst::ICMP_SLT: {
4279 ConstantRange LHSRange = getSignedRange(LHS);
4280 ConstantRange RHSRange = getSignedRange(RHS);
4281 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4282 return true;
4283 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4284 return false;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004285 break;
4286 }
4287 case ICmpInst::ICMP_SGE:
4288 Pred = ICmpInst::ICMP_SLE;
4289 std::swap(LHS, RHS);
4290 case ICmpInst::ICMP_SLE: {
4291 ConstantRange LHSRange = getSignedRange(LHS);
4292 ConstantRange RHSRange = getSignedRange(RHS);
4293 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4294 return true;
4295 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4296 return false;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004297 break;
4298 }
4299 case ICmpInst::ICMP_UGT:
4300 Pred = ICmpInst::ICMP_ULT;
4301 std::swap(LHS, RHS);
4302 case ICmpInst::ICMP_ULT: {
4303 ConstantRange LHSRange = getUnsignedRange(LHS);
4304 ConstantRange RHSRange = getUnsignedRange(RHS);
4305 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4306 return true;
4307 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4308 return false;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004309 break;
4310 }
4311 case ICmpInst::ICMP_UGE:
4312 Pred = ICmpInst::ICMP_ULE;
4313 std::swap(LHS, RHS);
4314 case ICmpInst::ICMP_ULE: {
4315 ConstantRange LHSRange = getUnsignedRange(LHS);
4316 ConstantRange RHSRange = getUnsignedRange(RHS);
4317 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4318 return true;
4319 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4320 return false;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004321 break;
4322 }
4323 case ICmpInst::ICMP_NE: {
4324 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4325 return true;
4326 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4327 return true;
4328
4329 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4330 if (isKnownNonZero(Diff))
4331 return true;
4332 break;
4333 }
4334 case ICmpInst::ICMP_EQ:
Dan Gohman44e675f2009-07-20 23:54:43 +00004335 // The check at the top of the function catches the case where
4336 // the values are known to be equal.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004337 break;
4338 }
4339 return false;
4340}
4341
4342/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4343/// protected by a conditional between LHS and RHS. This is used to
4344/// to eliminate casts.
4345bool
4346ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4347 ICmpInst::Predicate Pred,
4348 const SCEV *LHS, const SCEV *RHS) {
4349 // Interpret a null as meaning no loop, where there is obviously no guard
4350 // (interprocedural conditions notwithstanding).
4351 if (!L) return true;
4352
4353 BasicBlock *Latch = L->getLoopLatch();
4354 if (!Latch)
4355 return false;
4356
4357 BranchInst *LoopContinuePredicate =
4358 dyn_cast<BranchInst>(Latch->getTerminator());
4359 if (!LoopContinuePredicate ||
4360 LoopContinuePredicate->isUnconditional())
4361 return false;
4362
Dan Gohman920446d2009-07-21 23:03:19 +00004363 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4364 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004365}
4366
4367/// isLoopGuardedByCond - Test whether entry to the loop is protected
4368/// by a conditional between LHS and RHS. This is used to help avoid max
4369/// expressions in loop trip counts, and to eliminate casts.
4370bool
4371ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4372 ICmpInst::Predicate Pred,
4373 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8b938182009-05-18 16:03:58 +00004374 // Interpret a null as meaning no loop, where there is obviously no guard
4375 // (interprocedural conditions notwithstanding).
4376 if (!L) return false;
4377
Dan Gohmanab157b22009-05-18 15:36:09 +00004378 BasicBlock *Predecessor = getLoopPredecessor(L);
4379 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004380
Dan Gohmanab157b22009-05-18 15:36:09 +00004381 // Starting at the loop predecessor, climb up the predecessor chain, as long
4382 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00004383 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00004384 for (; Predecessor;
4385 PredecessorDest = Predecessor,
4386 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00004387
4388 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00004389 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00004390 if (!LoopEntryPredicate ||
4391 LoopEntryPredicate->isUnconditional())
4392 continue;
4393
Dan Gohman920446d2009-07-21 23:03:19 +00004394 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4395 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohmanab678fb2008-08-12 20:17:31 +00004396 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004397 }
4398
Dan Gohmanab678fb2008-08-12 20:17:31 +00004399 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004400}
4401
Dan Gohman920446d2009-07-21 23:03:19 +00004402/// isImpliedCond - Test whether the condition described by Pred, LHS,
4403/// and RHS is true whenever the given Cond value evaluates to true.
4404bool ScalarEvolution::isImpliedCond(Value *CondValue,
4405 ICmpInst::Predicate Pred,
4406 const SCEV *LHS, const SCEV *RHS,
4407 bool Inverse) {
Dan Gohman423ed6c2009-06-24 01:18:18 +00004408 // Recursivly handle And and Or conditions.
4409 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4410 if (BO->getOpcode() == Instruction::And) {
4411 if (!Inverse)
Dan Gohman920446d2009-07-21 23:03:19 +00004412 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4413 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman423ed6c2009-06-24 01:18:18 +00004414 } else if (BO->getOpcode() == Instruction::Or) {
4415 if (Inverse)
Dan Gohman920446d2009-07-21 23:03:19 +00004416 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4417 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman423ed6c2009-06-24 01:18:18 +00004418 }
4419 }
4420
4421 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4422 if (!ICI) return false;
4423
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004424 // Bail if the ICmp's operands' types are wider than the needed type
4425 // before attempting to call getSCEV on them. This avoids infinite
4426 // recursion, since the analysis of widening casts can require loop
4427 // exit condition information for overflow checking, which would
4428 // lead back here.
4429 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman920446d2009-07-21 23:03:19 +00004430 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004431 return false;
4432
Dan Gohman920446d2009-07-21 23:03:19 +00004433 // Now that we found a conditional branch that dominates the loop, check to
4434 // see if it is the comparison we are looking for.
4435 ICmpInst::Predicate FoundPred;
4436 if (Inverse)
4437 FoundPred = ICI->getInversePredicate();
4438 else
4439 FoundPred = ICI->getPredicate();
4440
4441 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4442 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004443
4444 // Balance the types. The case where FoundLHS' type is wider than
4445 // LHS' type is checked for above.
4446 if (getTypeSizeInBits(LHS->getType()) >
4447 getTypeSizeInBits(FoundLHS->getType())) {
4448 if (CmpInst::isSigned(Pred)) {
4449 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4450 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4451 } else {
4452 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4453 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4454 }
4455 }
4456
Dan Gohman920446d2009-07-21 23:03:19 +00004457 // Canonicalize the query to match the way instcombine will have
4458 // canonicalized the comparison.
4459 // First, put a constant operand on the right.
4460 if (isa<SCEVConstant>(LHS)) {
4461 std::swap(LHS, RHS);
4462 Pred = ICmpInst::getSwappedPredicate(Pred);
4463 }
4464 // Then, canonicalize comparisons with boundary cases.
4465 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4466 const APInt &RA = RC->getValue()->getValue();
4467 switch (Pred) {
4468 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4469 case ICmpInst::ICMP_EQ:
4470 case ICmpInst::ICMP_NE:
4471 break;
4472 case ICmpInst::ICMP_UGE:
4473 if ((RA - 1).isMinValue()) {
4474 Pred = ICmpInst::ICMP_NE;
4475 RHS = getConstant(RA - 1);
4476 break;
4477 }
4478 if (RA.isMaxValue()) {
4479 Pred = ICmpInst::ICMP_EQ;
4480 break;
4481 }
4482 if (RA.isMinValue()) return true;
4483 break;
4484 case ICmpInst::ICMP_ULE:
4485 if ((RA + 1).isMaxValue()) {
4486 Pred = ICmpInst::ICMP_NE;
4487 RHS = getConstant(RA + 1);
4488 break;
4489 }
4490 if (RA.isMinValue()) {
4491 Pred = ICmpInst::ICMP_EQ;
4492 break;
4493 }
4494 if (RA.isMaxValue()) return true;
4495 break;
4496 case ICmpInst::ICMP_SGE:
4497 if ((RA - 1).isMinSignedValue()) {
4498 Pred = ICmpInst::ICMP_NE;
4499 RHS = getConstant(RA - 1);
4500 break;
4501 }
4502 if (RA.isMaxSignedValue()) {
4503 Pred = ICmpInst::ICMP_EQ;
4504 break;
4505 }
4506 if (RA.isMinSignedValue()) return true;
4507 break;
4508 case ICmpInst::ICMP_SLE:
4509 if ((RA + 1).isMaxSignedValue()) {
4510 Pred = ICmpInst::ICMP_NE;
4511 RHS = getConstant(RA + 1);
4512 break;
4513 }
4514 if (RA.isMinSignedValue()) {
4515 Pred = ICmpInst::ICMP_EQ;
4516 break;
4517 }
4518 if (RA.isMaxSignedValue()) return true;
4519 break;
4520 case ICmpInst::ICMP_UGT:
4521 if (RA.isMinValue()) {
4522 Pred = ICmpInst::ICMP_NE;
4523 break;
4524 }
4525 if ((RA + 1).isMaxValue()) {
4526 Pred = ICmpInst::ICMP_EQ;
4527 RHS = getConstant(RA + 1);
4528 break;
4529 }
4530 if (RA.isMaxValue()) return false;
4531 break;
4532 case ICmpInst::ICMP_ULT:
4533 if (RA.isMaxValue()) {
4534 Pred = ICmpInst::ICMP_NE;
4535 break;
4536 }
4537 if ((RA - 1).isMinValue()) {
4538 Pred = ICmpInst::ICMP_EQ;
4539 RHS = getConstant(RA - 1);
4540 break;
4541 }
4542 if (RA.isMinValue()) return false;
4543 break;
4544 case ICmpInst::ICMP_SGT:
4545 if (RA.isMinSignedValue()) {
4546 Pred = ICmpInst::ICMP_NE;
4547 break;
4548 }
4549 if ((RA + 1).isMaxSignedValue()) {
4550 Pred = ICmpInst::ICMP_EQ;
4551 RHS = getConstant(RA + 1);
4552 break;
4553 }
4554 if (RA.isMaxSignedValue()) return false;
4555 break;
4556 case ICmpInst::ICMP_SLT:
4557 if (RA.isMaxSignedValue()) {
4558 Pred = ICmpInst::ICMP_NE;
4559 break;
4560 }
4561 if ((RA - 1).isMinSignedValue()) {
4562 Pred = ICmpInst::ICMP_EQ;
4563 RHS = getConstant(RA - 1);
4564 break;
4565 }
4566 if (RA.isMinSignedValue()) return false;
4567 break;
4568 }
4569 }
4570
4571 // Check to see if we can make the LHS or RHS match.
4572 if (LHS == FoundRHS || RHS == FoundLHS) {
4573 if (isa<SCEVConstant>(RHS)) {
4574 std::swap(FoundLHS, FoundRHS);
4575 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4576 } else {
4577 std::swap(LHS, RHS);
4578 Pred = ICmpInst::getSwappedPredicate(Pred);
4579 }
4580 }
4581
4582 // Check whether the found predicate is the same as the desired predicate.
4583 if (FoundPred == Pred)
4584 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4585
4586 // Check whether swapping the found predicate makes it the same as the
4587 // desired predicate.
4588 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4589 if (isa<SCEVConstant>(RHS))
4590 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4591 else
4592 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4593 RHS, LHS, FoundLHS, FoundRHS);
4594 }
4595
4596 // Check whether the actual condition is beyond sufficient.
4597 if (FoundPred == ICmpInst::ICMP_EQ)
4598 if (ICmpInst::isTrueWhenEqual(Pred))
4599 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4600 return true;
4601 if (Pred == ICmpInst::ICMP_NE)
4602 if (!ICmpInst::isTrueWhenEqual(FoundPred))
4603 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4604 return true;
4605
4606 // Otherwise assume the worst.
4607 return false;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004608}
4609
Dan Gohman920446d2009-07-21 23:03:19 +00004610/// isImpliedCondOperands - Test whether the condition described by Pred,
4611/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4612/// and FoundRHS is true.
4613bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4614 const SCEV *LHS, const SCEV *RHS,
4615 const SCEV *FoundLHS,
4616 const SCEV *FoundRHS) {
4617 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4618 FoundLHS, FoundRHS) ||
4619 // ~x < ~y --> x > y
4620 isImpliedCondOperandsHelper(Pred, LHS, RHS,
4621 getNotSCEV(FoundRHS),
4622 getNotSCEV(FoundLHS));
4623}
4624
4625/// isImpliedCondOperandsHelper - Test whether the condition described by
4626/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4627/// FoundLHS, and FoundRHS is true.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004628bool
Dan Gohman920446d2009-07-21 23:03:19 +00004629ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4630 const SCEV *LHS, const SCEV *RHS,
4631 const SCEV *FoundLHS,
4632 const SCEV *FoundRHS) {
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004633 switch (Pred) {
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004634 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4635 case ICmpInst::ICMP_EQ:
4636 case ICmpInst::ICMP_NE:
4637 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4638 return true;
4639 break;
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004640 case ICmpInst::ICMP_SLT:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004641 case ICmpInst::ICMP_SLE:
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004642 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4643 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4644 return true;
4645 break;
4646 case ICmpInst::ICMP_SGT:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004647 case ICmpInst::ICMP_SGE:
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004648 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4649 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4650 return true;
4651 break;
4652 case ICmpInst::ICMP_ULT:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004653 case ICmpInst::ICMP_ULE:
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004654 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4655 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4656 return true;
4657 break;
4658 case ICmpInst::ICMP_UGT:
Dan Gohman2d4f5b12009-07-16 17:34:36 +00004659 case ICmpInst::ICMP_UGE:
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004660 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4661 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4662 return true;
4663 break;
4664 }
4665
4666 return false;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004667}
4668
Dan Gohmand2b62c42009-06-21 23:46:38 +00004669/// getBECount - Subtract the end and start values and divide by the step,
4670/// rounding up, to get the number of times the backedge is executed. Return
4671/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman161ea032009-07-07 17:06:11 +00004672const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohman69eacc72009-07-13 22:05:32 +00004673 const SCEV *End,
4674 const SCEV *Step) {
Dan Gohmand2b62c42009-06-21 23:46:38 +00004675 const Type *Ty = Start->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00004676 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4677 const SCEV *Diff = getMinusSCEV(End, Start);
4678 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004679
4680 // Add an adjustment to the difference between End and Start so that
4681 // the division will effectively round up.
Dan Gohman161ea032009-07-07 17:06:11 +00004682 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004683
4684 // Check Add for unsigned overflow.
4685 // TODO: More sophisticated things could be done here.
Owen Anderson175b6542009-07-22 00:24:57 +00004686 const Type *WideTy = getContext().getIntegerType(getTypeSizeInBits(Ty) + 1);
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004687 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4688 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4689 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004690 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004691 return getCouldNotCompute();
Dan Gohmand2b62c42009-06-21 23:46:38 +00004692
4693 return getUDivExpr(Add, Step);
4694}
4695
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004696/// HowManyLessThans - Return the number of times a backedge containing the
4697/// specified less-than comparison will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00004698/// CouldNotCompute.
Dan Gohman9bc642f2009-06-24 04:48:43 +00004699ScalarEvolution::BackedgeTakenInfo
4700ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4701 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004702 // Only handle: "ADDREC < LoopInvariant".
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004703 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004704
Dan Gohmanbff6b582009-05-04 22:30:44 +00004705 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004706 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004707 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004708
4709 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00004710 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004711 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman161ea032009-07-07 17:06:11 +00004712 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004713
4714 // TODO: handle non-constant strides.
4715 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4716 if (!CStep || CStep->isZero())
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004717 return getCouldNotCompute();
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00004718 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004719 // With unit stride, the iteration never steps past the limit value.
4720 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4721 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4722 // Test whether a positive iteration iteration can step past the limit
4723 // value and past the maximum value for its type in a single step.
4724 if (isSigned) {
4725 APInt Max = APInt::getSignedMaxValue(BitWidth);
4726 if ((Max - CStep->getValue()->getValue())
4727 .slt(CLimit->getValue()->getValue()))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004728 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004729 } else {
4730 APInt Max = APInt::getMaxValue(BitWidth);
4731 if ((Max - CStep->getValue()->getValue())
4732 .ult(CLimit->getValue()->getValue()))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004733 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004734 }
4735 } else
4736 // TODO: handle non-constant limit values below.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004737 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004738 } else
4739 // TODO: handle negative strides below.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004740 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004741
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004742 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4743 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4744 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00004745 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004746
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004747 // First, we get the value of the LHS in the first iteration: n
Dan Gohman161ea032009-07-07 17:06:11 +00004748 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004749
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004750 // Determine the minimum constant start value.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004751 const SCEV *MinStart = getConstant(isSigned ?
4752 getSignedRange(Start).getSignedMin() :
4753 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004754
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004755 // If we know that the condition is true in order to enter the loop,
4756 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohmanc8a29272009-05-24 23:45:28 +00004757 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4758 // the division must round up.
Dan Gohman161ea032009-07-07 17:06:11 +00004759 const SCEV *End = RHS;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004760 if (!isLoopGuardedByCond(L,
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004761 isSigned ? ICmpInst::ICMP_SLT :
4762 ICmpInst::ICMP_ULT,
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004763 getMinusSCEV(Start, Step), RHS))
4764 End = isSigned ? getSMaxExpr(RHS, Start)
4765 : getUMaxExpr(RHS, Start);
4766
4767 // Determine the maximum constant end value.
Dan Gohman55e2d7e2009-07-13 21:35:55 +00004768 const SCEV *MaxEnd = getConstant(isSigned ?
4769 getSignedRange(End).getSignedMax() :
4770 getUnsignedRange(End).getUnsignedMax());
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004771
4772 // Finally, we subtract these two values and divide, rounding up, to get
4773 // the number of times the backedge is executed.
Dan Gohman161ea032009-07-07 17:06:11 +00004774 const SCEV *BECount = getBECount(Start, End, Step);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004775
4776 // The maximum backedge count is similar, except using the minimum start
4777 // value and the maximum end value.
Dan Gohman161ea032009-07-07 17:06:11 +00004778 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004779
4780 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004781 }
4782
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004783 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004784}
4785
4786/// getNumIterationsInRange - Return the number of iterations of this loop that
4787/// produce values in the specified constant range. Another way of looking at
4788/// this is that it returns the first iteration number where the value is not in
4789/// the condition, thus computing the exit count. If the iteration count can't
4790/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00004791const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman9bc642f2009-06-24 04:48:43 +00004792 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004793 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00004794 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004795
4796 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00004797 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004798 if (!SC->getValue()->isZero()) {
Dan Gohman161ea032009-07-07 17:06:11 +00004799 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00004800 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman161ea032009-07-07 17:06:11 +00004801 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00004802 if (const SCEVAddRecExpr *ShiftedAddRec =
4803 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004804 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00004805 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004806 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00004807 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004808 }
4809
4810 // The only time we can solve this is when we have all constant indices.
4811 // Otherwise, we cannot determine the overflow conditions.
4812 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4813 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00004814 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004815
4816
4817 // Okay at this point we know that all elements of the chrec are constants and
4818 // that the start element is zero.
4819
4820 // First check to see if the range contains zero. If not, the first
4821 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00004822 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00004823 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman8fd520a2009-06-15 22:12:54 +00004824 return SE.getIntegerSCEV(0, getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004825
4826 if (isAffine()) {
4827 // If this is an affine expression then we have this situation:
4828 // Solve {0,+,A} in Range === Ax in Range
4829
4830 // We know that zero is in the range. If A is positive then we know that
4831 // the upper value of the range must be the first possible exit value.
4832 // If A is negative then the lower of the range is the last possible loop
4833 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00004834 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004835 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4836 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4837
4838 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00004839 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneacb44d2009-07-24 23:12:02 +00004840 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004841
4842 // Evaluate at the exit value. If we really did fall out of the valid
4843 // range, then we computed our trip count, otherwise wrap around or other
4844 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00004845 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004846 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00004847 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004848
4849 // Ensure that the previous value is in the range. This is a sanity check.
4850 assert(Range.contains(
Dan Gohman9bc642f2009-06-24 04:48:43 +00004851 EvaluateConstantChrecAtConstant(this,
Owen Andersoneacb44d2009-07-24 23:12:02 +00004852 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004853 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00004854 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004855 } else if (isQuadratic()) {
4856 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4857 // quadratic equation to solve it. To do this, we must frame our problem in
4858 // terms of figuring out when zero is crossed, instead of when
4859 // Range.getUpper() is crossed.
Dan Gohman161ea032009-07-07 17:06:11 +00004860 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00004861 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman161ea032009-07-07 17:06:11 +00004862 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004863
4864 // Next, solve the constructed addrec
Dan Gohman161ea032009-07-07 17:06:11 +00004865 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00004866 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004867 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4868 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004869 if (R1) {
4870 // Pick the smallest positive root value.
4871 if (ConstantInt *CB =
Owen Andersone755b092009-07-06 22:37:39 +00004872 dyn_cast<ConstantInt>(
Owen Anderson175b6542009-07-22 00:24:57 +00004873 SE.getContext().getConstantExprICmp(ICmpInst::ICMP_ULT,
Owen Andersone755b092009-07-06 22:37:39 +00004874 R1->getValue(), R2->getValue()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004875 if (CB->getZExtValue() == false)
4876 std::swap(R1, R2); // R1 is the minimum root now.
4877
4878 // Make sure the root is not off by one. The returned iteration should
4879 // not be in the range, but the previous one should be. When solving
4880 // for "X*X < 5", for example, we should not return a root of 2.
4881 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00004882 R1->getValue(),
4883 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004884 if (Range.contains(R1Val->getValue())) {
4885 // The next iteration must be out of the range...
Owen Andersone755b092009-07-06 22:37:39 +00004886 ConstantInt *NextVal =
Owen Andersoneacb44d2009-07-24 23:12:02 +00004887 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004888
Dan Gohman89f85052007-10-22 18:31:58 +00004889 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004890 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00004891 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00004892 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004893 }
4894
4895 // If R1 was not in the range, then it is a good return value. Make
4896 // sure that R1-1 WAS in the range though, just in case.
Owen Andersone755b092009-07-06 22:37:39 +00004897 ConstantInt *NextVal =
Owen Andersoneacb44d2009-07-24 23:12:02 +00004898 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00004899 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004900 if (Range.contains(R1Val->getValue()))
4901 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00004902 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004903 }
4904 }
4905 }
4906
Dan Gohman0ad08b02009-04-18 17:58:19 +00004907 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004908}
4909
4910
4911
4912//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00004913// SCEVCallbackVH Class Implementation
4914//===----------------------------------------------------------------------===//
4915
Dan Gohman999d14e2009-05-19 19:22:47 +00004916void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohman31b69c12009-07-13 22:20:53 +00004917 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00004918 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4919 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004920 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4921 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004922 SE->Scalars.erase(getValPtr());
4923 // this now dangles!
4924}
4925
Dan Gohman999d14e2009-05-19 19:22:47 +00004926void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohman31b69c12009-07-13 22:20:53 +00004927 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00004928
4929 // Forget all the expressions associated with users of the old value,
4930 // so that future queries will recompute the expressions using the new
4931 // value.
4932 SmallVector<User *, 16> Worklist;
Dan Gohman6b9da312009-07-14 14:34:04 +00004933 SmallPtrSet<User *, 8> Visited;
Dan Gohmanbff6b582009-05-04 22:30:44 +00004934 Value *Old = getValPtr();
4935 bool DeleteOld = false;
4936 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4937 UI != UE; ++UI)
4938 Worklist.push_back(*UI);
4939 while (!Worklist.empty()) {
4940 User *U = Worklist.pop_back_val();
4941 // Deleting the Old value will cause this to dangle. Postpone
4942 // that until everything else is done.
4943 if (U == Old) {
4944 DeleteOld = true;
4945 continue;
4946 }
Dan Gohman6b9da312009-07-14 14:34:04 +00004947 if (!Visited.insert(U))
4948 continue;
Dan Gohmanbff6b582009-05-04 22:30:44 +00004949 if (PHINode *PN = dyn_cast<PHINode>(U))
4950 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004951 if (Instruction *I = dyn_cast<Instruction>(U))
4952 SE->ValuesAtScopes.erase(I);
Dan Gohman6b9da312009-07-14 14:34:04 +00004953 SE->Scalars.erase(U);
4954 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4955 UI != UE; ++UI)
4956 Worklist.push_back(*UI);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004957 }
Dan Gohman6b9da312009-07-14 14:34:04 +00004958 // Delete the Old value if it (indirectly) references itself.
Dan Gohmanbff6b582009-05-04 22:30:44 +00004959 if (DeleteOld) {
4960 if (PHINode *PN = dyn_cast<PHINode>(Old))
4961 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004962 if (Instruction *I = dyn_cast<Instruction>(Old))
4963 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004964 SE->Scalars.erase(Old);
4965 // this now dangles!
4966 }
4967 // this may dangle!
4968}
4969
Dan Gohman999d14e2009-05-19 19:22:47 +00004970ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohmanbff6b582009-05-04 22:30:44 +00004971 : CallbackVH(V), SE(se) {}
4972
4973//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004974// ScalarEvolution Class Implementation
4975//===----------------------------------------------------------------------===//
4976
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004977ScalarEvolution::ScalarEvolution()
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004978 : FunctionPass(&ID) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004979}
4980
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004981bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004982 this->F = &F;
4983 LI = &getAnalysis<LoopInfo>();
4984 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004985 return false;
4986}
4987
4988void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004989 Scalars.clear();
4990 BackedgeTakenCounts.clear();
4991 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00004992 ValuesAtScopes.clear();
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004993 UniqueSCEVs.clear();
4994 SCEVAllocator.Reset();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004995}
4996
4997void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4998 AU.setPreservesAll();
4999 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00005000}
5001
Dan Gohmanffd36ba2009-04-21 23:15:49 +00005002bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00005003 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005004}
5005
Dan Gohmanffd36ba2009-04-21 23:15:49 +00005006static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005007 const Loop *L) {
5008 // Print all inner loops first
5009 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5010 PrintLoopInfo(OS, SE, *I);
5011
Nick Lewyckye5da1912008-01-02 02:49:20 +00005012 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005013
Devang Patel02451fa2007-08-21 00:31:24 +00005014 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005015 L->getExitBlocks(ExitBlocks);
5016 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00005017 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005018
Dan Gohman76d5a0d2009-02-24 18:55:53 +00005019 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5020 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005021 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00005022 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005023 }
5024
Nick Lewyckye5da1912008-01-02 02:49:20 +00005025 OS << "\n";
Dan Gohmanb6b9e9e2009-06-24 00:33:16 +00005026 OS << "Loop " << L->getHeader()->getName() << ": ";
5027
5028 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5029 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5030 } else {
5031 OS << "Unpredictable max backedge-taken count. ";
5032 }
5033
5034 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005035}
5036
Dan Gohman13058cc2009-04-21 00:47:46 +00005037void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00005038 // ScalarEvolution's implementaiton of the print method is to print
5039 // out SCEV values of all instructions that are interesting. Doing
5040 // this potentially causes it to create new SCEV objects though,
5041 // which technically conflicts with the const qualifier. This isn't
Dan Gohmanac2a9d62009-07-10 20:25:29 +00005042 // observable from outside the class though, so casting away the
5043 // const isn't dangerous.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00005044 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005045
Dan Gohmanffd36ba2009-04-21 23:15:49 +00005046 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005047 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00005048 if (isSCEVable(I->getType())) {
Dan Gohman12668ad2009-07-13 23:03:05 +00005049 OS << *I << '\n';
Dan Gohmanabe991f2008-09-14 17:21:12 +00005050 OS << " --> ";
Dan Gohman161ea032009-07-07 17:06:11 +00005051 const SCEV *SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005052 SV->print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005053
Dan Gohman8db598a2009-06-19 17:49:54 +00005054 const Loop *L = LI->getLoopFor((*I).getParent());
5055
Dan Gohman161ea032009-07-07 17:06:11 +00005056 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman8db598a2009-06-19 17:49:54 +00005057 if (AtUse != SV) {
5058 OS << " --> ";
5059 AtUse->print(OS);
5060 }
5061
5062 if (L) {
Dan Gohmane5b60842009-06-18 00:37:45 +00005063 OS << "\t\t" "Exits: ";
Dan Gohman161ea032009-07-07 17:06:11 +00005064 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00005065 if (!ExitValue->isLoopInvariant(L)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005066 OS << "<<Unknown>>";
5067 } else {
5068 OS << *ExitValue;
5069 }
5070 }
5071
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005072 OS << "\n";
5073 }
5074
Dan Gohmanffd36ba2009-04-21 23:15:49 +00005075 OS << "Determining loop execution counts for: " << F->getName() << "\n";
5076 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5077 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005078}
Dan Gohman13058cc2009-04-21 00:47:46 +00005079
5080void ScalarEvolution::print(std::ostream &o, const Module *M) const {
5081 raw_os_ostream OS(o);
5082 print(OS, M);
5083}