blob: d45dccedb6a48c8e3f76a9746494d1cb24283621 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson15b39322009-07-13 04:09:18 +000022#include "llvm/LLVMContext.h"
Owen Anderson1636de92007-09-07 04:06:50 +000023#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000024#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000025#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000027#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/LiveVariables.h"
David Greene138ae532009-11-12 20:55:29 +000029#include "llvm/CodeGen/PseudoSourceValue.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000030#include "llvm/Support/CommandLine.h"
Edwin Török3cb88482009-07-08 18:01:40 +000031#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
Evan Cheng950aac02007-09-25 01:57:46 +000033#include "llvm/Target/TargetOptions.h"
Chris Lattner621c44d2009-08-22 20:48:53 +000034#include "llvm/MC/MCAsmInfo.h"
David Greene138ae532009-11-12 20:55:29 +000035
36#include <limits>
37
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038using namespace llvm;
39
Chris Lattnerd71b0b02009-08-23 03:41:05 +000040static cl::opt<bool>
41NoFusing("disable-spill-fusing",
42 cl::desc("Disable fusing of spill code into instructions"));
43static cl::opt<bool>
44PrintFailedFusing("print-failed-fuse-candidates",
45 cl::desc("Print instructions that the allocator wants to"
46 " fuse, but the X86 backend currently can't"),
47 cl::Hidden);
48static cl::opt<bool>
49ReMatPICStubLoad("remat-pic-stub-load",
50 cl::desc("Re-materialize load from stub in PIC mode"),
51 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000052
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000054 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000055 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000056 SmallVector<unsigned,16> AmbEntries;
57 static const unsigned OpTbl2Addr[][2] = {
58 { X86::ADC32ri, X86::ADC32mi },
59 { X86::ADC32ri8, X86::ADC32mi8 },
60 { X86::ADC32rr, X86::ADC32mr },
61 { X86::ADC64ri32, X86::ADC64mi32 },
62 { X86::ADC64ri8, X86::ADC64mi8 },
63 { X86::ADC64rr, X86::ADC64mr },
64 { X86::ADD16ri, X86::ADD16mi },
65 { X86::ADD16ri8, X86::ADD16mi8 },
66 { X86::ADD16rr, X86::ADD16mr },
67 { X86::ADD32ri, X86::ADD32mi },
68 { X86::ADD32ri8, X86::ADD32mi8 },
69 { X86::ADD32rr, X86::ADD32mr },
70 { X86::ADD64ri32, X86::ADD64mi32 },
71 { X86::ADD64ri8, X86::ADD64mi8 },
72 { X86::ADD64rr, X86::ADD64mr },
73 { X86::ADD8ri, X86::ADD8mi },
74 { X86::ADD8rr, X86::ADD8mr },
75 { X86::AND16ri, X86::AND16mi },
76 { X86::AND16ri8, X86::AND16mi8 },
77 { X86::AND16rr, X86::AND16mr },
78 { X86::AND32ri, X86::AND32mi },
79 { X86::AND32ri8, X86::AND32mi8 },
80 { X86::AND32rr, X86::AND32mr },
81 { X86::AND64ri32, X86::AND64mi32 },
82 { X86::AND64ri8, X86::AND64mi8 },
83 { X86::AND64rr, X86::AND64mr },
84 { X86::AND8ri, X86::AND8mi },
85 { X86::AND8rr, X86::AND8mr },
86 { X86::DEC16r, X86::DEC16m },
87 { X86::DEC32r, X86::DEC32m },
88 { X86::DEC64_16r, X86::DEC64_16m },
89 { X86::DEC64_32r, X86::DEC64_32m },
90 { X86::DEC64r, X86::DEC64m },
91 { X86::DEC8r, X86::DEC8m },
92 { X86::INC16r, X86::INC16m },
93 { X86::INC32r, X86::INC32m },
94 { X86::INC64_16r, X86::INC64_16m },
95 { X86::INC64_32r, X86::INC64_32m },
96 { X86::INC64r, X86::INC64m },
97 { X86::INC8r, X86::INC8m },
98 { X86::NEG16r, X86::NEG16m },
99 { X86::NEG32r, X86::NEG32m },
100 { X86::NEG64r, X86::NEG64m },
101 { X86::NEG8r, X86::NEG8m },
102 { X86::NOT16r, X86::NOT16m },
103 { X86::NOT32r, X86::NOT32m },
104 { X86::NOT64r, X86::NOT64m },
105 { X86::NOT8r, X86::NOT8m },
106 { X86::OR16ri, X86::OR16mi },
107 { X86::OR16ri8, X86::OR16mi8 },
108 { X86::OR16rr, X86::OR16mr },
109 { X86::OR32ri, X86::OR32mi },
110 { X86::OR32ri8, X86::OR32mi8 },
111 { X86::OR32rr, X86::OR32mr },
112 { X86::OR64ri32, X86::OR64mi32 },
113 { X86::OR64ri8, X86::OR64mi8 },
114 { X86::OR64rr, X86::OR64mr },
115 { X86::OR8ri, X86::OR8mi },
116 { X86::OR8rr, X86::OR8mr },
117 { X86::ROL16r1, X86::ROL16m1 },
118 { X86::ROL16rCL, X86::ROL16mCL },
119 { X86::ROL16ri, X86::ROL16mi },
120 { X86::ROL32r1, X86::ROL32m1 },
121 { X86::ROL32rCL, X86::ROL32mCL },
122 { X86::ROL32ri, X86::ROL32mi },
123 { X86::ROL64r1, X86::ROL64m1 },
124 { X86::ROL64rCL, X86::ROL64mCL },
125 { X86::ROL64ri, X86::ROL64mi },
126 { X86::ROL8r1, X86::ROL8m1 },
127 { X86::ROL8rCL, X86::ROL8mCL },
128 { X86::ROL8ri, X86::ROL8mi },
129 { X86::ROR16r1, X86::ROR16m1 },
130 { X86::ROR16rCL, X86::ROR16mCL },
131 { X86::ROR16ri, X86::ROR16mi },
132 { X86::ROR32r1, X86::ROR32m1 },
133 { X86::ROR32rCL, X86::ROR32mCL },
134 { X86::ROR32ri, X86::ROR32mi },
135 { X86::ROR64r1, X86::ROR64m1 },
136 { X86::ROR64rCL, X86::ROR64mCL },
137 { X86::ROR64ri, X86::ROR64mi },
138 { X86::ROR8r1, X86::ROR8m1 },
139 { X86::ROR8rCL, X86::ROR8mCL },
140 { X86::ROR8ri, X86::ROR8mi },
141 { X86::SAR16r1, X86::SAR16m1 },
142 { X86::SAR16rCL, X86::SAR16mCL },
143 { X86::SAR16ri, X86::SAR16mi },
144 { X86::SAR32r1, X86::SAR32m1 },
145 { X86::SAR32rCL, X86::SAR32mCL },
146 { X86::SAR32ri, X86::SAR32mi },
147 { X86::SAR64r1, X86::SAR64m1 },
148 { X86::SAR64rCL, X86::SAR64mCL },
149 { X86::SAR64ri, X86::SAR64mi },
150 { X86::SAR8r1, X86::SAR8m1 },
151 { X86::SAR8rCL, X86::SAR8mCL },
152 { X86::SAR8ri, X86::SAR8mi },
153 { X86::SBB32ri, X86::SBB32mi },
154 { X86::SBB32ri8, X86::SBB32mi8 },
155 { X86::SBB32rr, X86::SBB32mr },
156 { X86::SBB64ri32, X86::SBB64mi32 },
157 { X86::SBB64ri8, X86::SBB64mi8 },
158 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL16rCL, X86::SHL16mCL },
160 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL32rCL, X86::SHL32mCL },
162 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000163 { X86::SHL64rCL, X86::SHL64mCL },
164 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000165 { X86::SHL8rCL, X86::SHL8mCL },
166 { X86::SHL8ri, X86::SHL8mi },
167 { X86::SHLD16rrCL, X86::SHLD16mrCL },
168 { X86::SHLD16rri8, X86::SHLD16mri8 },
169 { X86::SHLD32rrCL, X86::SHLD32mrCL },
170 { X86::SHLD32rri8, X86::SHLD32mri8 },
171 { X86::SHLD64rrCL, X86::SHLD64mrCL },
172 { X86::SHLD64rri8, X86::SHLD64mri8 },
173 { X86::SHR16r1, X86::SHR16m1 },
174 { X86::SHR16rCL, X86::SHR16mCL },
175 { X86::SHR16ri, X86::SHR16mi },
176 { X86::SHR32r1, X86::SHR32m1 },
177 { X86::SHR32rCL, X86::SHR32mCL },
178 { X86::SHR32ri, X86::SHR32mi },
179 { X86::SHR64r1, X86::SHR64m1 },
180 { X86::SHR64rCL, X86::SHR64mCL },
181 { X86::SHR64ri, X86::SHR64mi },
182 { X86::SHR8r1, X86::SHR8m1 },
183 { X86::SHR8rCL, X86::SHR8mCL },
184 { X86::SHR8ri, X86::SHR8mi },
185 { X86::SHRD16rrCL, X86::SHRD16mrCL },
186 { X86::SHRD16rri8, X86::SHRD16mri8 },
187 { X86::SHRD32rrCL, X86::SHRD32mrCL },
188 { X86::SHRD32rri8, X86::SHRD32mri8 },
189 { X86::SHRD64rrCL, X86::SHRD64mrCL },
190 { X86::SHRD64rri8, X86::SHRD64mri8 },
191 { X86::SUB16ri, X86::SUB16mi },
192 { X86::SUB16ri8, X86::SUB16mi8 },
193 { X86::SUB16rr, X86::SUB16mr },
194 { X86::SUB32ri, X86::SUB32mi },
195 { X86::SUB32ri8, X86::SUB32mi8 },
196 { X86::SUB32rr, X86::SUB32mr },
197 { X86::SUB64ri32, X86::SUB64mi32 },
198 { X86::SUB64ri8, X86::SUB64mi8 },
199 { X86::SUB64rr, X86::SUB64mr },
200 { X86::SUB8ri, X86::SUB8mi },
201 { X86::SUB8rr, X86::SUB8mr },
202 { X86::XOR16ri, X86::XOR16mi },
203 { X86::XOR16ri8, X86::XOR16mi8 },
204 { X86::XOR16rr, X86::XOR16mr },
205 { X86::XOR32ri, X86::XOR32mi },
206 { X86::XOR32ri8, X86::XOR32mi8 },
207 { X86::XOR32rr, X86::XOR32mr },
208 { X86::XOR64ri32, X86::XOR64mi32 },
209 { X86::XOR64ri8, X86::XOR64mi8 },
210 { X86::XOR64rr, X86::XOR64mr },
211 { X86::XOR8ri, X86::XOR8mi },
212 { X86::XOR8rr, X86::XOR8mr }
213 };
214
215 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
216 unsigned RegOp = OpTbl2Addr[i][0];
217 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000218 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000219 std::make_pair(MemOp,0))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000220 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000221 // Index 0, folded load and store, no alignment requirement.
222 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000223 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000224 std::make_pair(RegOp,
225 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000226 AmbEntries.push_back(MemOp);
227 }
228
229 // If the third value is 1, then it's folding either a load or a store.
Evan Chenga5853792009-07-15 06:10:07 +0000230 static const unsigned OpTbl0[][4] = {
231 { X86::BT16ri8, X86::BT16mi8, 1, 0 },
232 { X86::BT32ri8, X86::BT32mi8, 1, 0 },
233 { X86::BT64ri8, X86::BT64mi8, 1, 0 },
234 { X86::CALL32r, X86::CALL32m, 1, 0 },
235 { X86::CALL64r, X86::CALL64m, 1, 0 },
236 { X86::CMP16ri, X86::CMP16mi, 1, 0 },
237 { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
238 { X86::CMP16rr, X86::CMP16mr, 1, 0 },
239 { X86::CMP32ri, X86::CMP32mi, 1, 0 },
240 { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
241 { X86::CMP32rr, X86::CMP32mr, 1, 0 },
242 { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
243 { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
244 { X86::CMP64rr, X86::CMP64mr, 1, 0 },
245 { X86::CMP8ri, X86::CMP8mi, 1, 0 },
246 { X86::CMP8rr, X86::CMP8mr, 1, 0 },
247 { X86::DIV16r, X86::DIV16m, 1, 0 },
248 { X86::DIV32r, X86::DIV32m, 1, 0 },
249 { X86::DIV64r, X86::DIV64m, 1, 0 },
250 { X86::DIV8r, X86::DIV8m, 1, 0 },
251 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
252 { X86::FsMOVAPDrr, X86::MOVSDmr, 0, 0 },
253 { X86::FsMOVAPSrr, X86::MOVSSmr, 0, 0 },
254 { X86::IDIV16r, X86::IDIV16m, 1, 0 },
255 { X86::IDIV32r, X86::IDIV32m, 1, 0 },
256 { X86::IDIV64r, X86::IDIV64m, 1, 0 },
257 { X86::IDIV8r, X86::IDIV8m, 1, 0 },
258 { X86::IMUL16r, X86::IMUL16m, 1, 0 },
259 { X86::IMUL32r, X86::IMUL32m, 1, 0 },
260 { X86::IMUL64r, X86::IMUL64m, 1, 0 },
261 { X86::IMUL8r, X86::IMUL8m, 1, 0 },
262 { X86::JMP32r, X86::JMP32m, 1, 0 },
263 { X86::JMP64r, X86::JMP64m, 1, 0 },
264 { X86::MOV16ri, X86::MOV16mi, 0, 0 },
265 { X86::MOV16rr, X86::MOV16mr, 0, 0 },
266 { X86::MOV32ri, X86::MOV32mi, 0, 0 },
267 { X86::MOV32rr, X86::MOV32mr, 0, 0 },
268 { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
269 { X86::MOV64rr, X86::MOV64mr, 0, 0 },
270 { X86::MOV8ri, X86::MOV8mi, 0, 0 },
271 { X86::MOV8rr, X86::MOV8mr, 0, 0 },
272 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
273 { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
274 { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
275 { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
276 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
277 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
278 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0, 0 },
279 { X86::MOVSDrr, X86::MOVSDmr, 0, 0 },
280 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
281 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
282 { X86::MOVSSrr, X86::MOVSSmr, 0, 0 },
283 { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
284 { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
285 { X86::MUL16r, X86::MUL16m, 1, 0 },
286 { X86::MUL32r, X86::MUL32m, 1, 0 },
287 { X86::MUL64r, X86::MUL64m, 1, 0 },
288 { X86::MUL8r, X86::MUL8m, 1, 0 },
289 { X86::SETAEr, X86::SETAEm, 0, 0 },
290 { X86::SETAr, X86::SETAm, 0, 0 },
291 { X86::SETBEr, X86::SETBEm, 0, 0 },
292 { X86::SETBr, X86::SETBm, 0, 0 },
293 { X86::SETEr, X86::SETEm, 0, 0 },
294 { X86::SETGEr, X86::SETGEm, 0, 0 },
295 { X86::SETGr, X86::SETGm, 0, 0 },
296 { X86::SETLEr, X86::SETLEm, 0, 0 },
297 { X86::SETLr, X86::SETLm, 0, 0 },
298 { X86::SETNEr, X86::SETNEm, 0, 0 },
299 { X86::SETNOr, X86::SETNOm, 0, 0 },
300 { X86::SETNPr, X86::SETNPm, 0, 0 },
301 { X86::SETNSr, X86::SETNSm, 0, 0 },
302 { X86::SETOr, X86::SETOm, 0, 0 },
303 { X86::SETPr, X86::SETPm, 0, 0 },
304 { X86::SETSr, X86::SETSm, 0, 0 },
305 { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
306 { X86::TEST16ri, X86::TEST16mi, 1, 0 },
307 { X86::TEST32ri, X86::TEST32mi, 1, 0 },
308 { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
309 { X86::TEST8ri, X86::TEST8mi, 1, 0 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000310 };
311
312 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
313 unsigned RegOp = OpTbl0[i][0];
314 unsigned MemOp = OpTbl0[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000315 unsigned Align = OpTbl0[i][3];
Dan Gohman55d19662008-07-07 17:46:23 +0000316 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000317 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000318 assert(false && "Duplicated entries?");
319 unsigned FoldedLoad = OpTbl0[i][2];
320 // Index 0, folded load or store.
321 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
322 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
323 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000324 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000325 AmbEntries.push_back(MemOp);
326 }
327
Evan Chenga5853792009-07-15 06:10:07 +0000328 static const unsigned OpTbl1[][3] = {
329 { X86::CMP16rr, X86::CMP16rm, 0 },
330 { X86::CMP32rr, X86::CMP32rm, 0 },
331 { X86::CMP64rr, X86::CMP64rm, 0 },
332 { X86::CMP8rr, X86::CMP8rm, 0 },
333 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
334 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
335 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
336 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
337 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
338 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
339 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
340 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
341 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
342 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
343 { X86::FsMOVAPDrr, X86::MOVSDrm, 0 },
344 { X86::FsMOVAPSrr, X86::MOVSSrm, 0 },
345 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
346 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
347 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
348 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
349 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
350 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
351 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
352 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
353 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
354 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
355 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
356 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
357 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
358 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
359 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
360 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
361 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
362 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, 0 },
363 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
364 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
365 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
366 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
367 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
368 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
369 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
370 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
371 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
372 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
373 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
374 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
375 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
376 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
377 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
378 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
379 { X86::MOV16rr, X86::MOV16rm, 0 },
380 { X86::MOV32rr, X86::MOV32rm, 0 },
381 { X86::MOV64rr, X86::MOV64rm, 0 },
382 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
383 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
384 { X86::MOV8rr, X86::MOV8rm, 0 },
385 { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
386 { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
387 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
388 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
389 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
390 { X86::MOVDQArr, X86::MOVDQArm, 16 },
391 { X86::MOVSD2PDrr, X86::MOVSD2PDrm, 0 },
392 { X86::MOVSDrr, X86::MOVSDrm, 0 },
393 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
394 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
395 { X86::MOVSS2PSrr, X86::MOVSS2PSrm, 0 },
396 { X86::MOVSSrr, X86::MOVSSrm, 0 },
397 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
398 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
399 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
400 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
401 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
402 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
403 { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
404 { X86::MOVUPSrr, X86::MOVUPSrm, 16 },
405 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
406 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
407 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
408 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
409 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
410 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
411 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
412 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
413 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
414 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
415 { X86::PSHUFDri, X86::PSHUFDmi, 16 },
416 { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
417 { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
418 { X86::RCPPSr, X86::RCPPSm, 16 },
419 { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
420 { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
421 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
422 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
423 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
424 { X86::SQRTPDr, X86::SQRTPDm, 16 },
425 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
426 { X86::SQRTPSr, X86::SQRTPSm, 16 },
427 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
428 { X86::SQRTSDr, X86::SQRTSDm, 0 },
429 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
430 { X86::SQRTSSr, X86::SQRTSSm, 0 },
431 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
432 { X86::TEST16rr, X86::TEST16rm, 0 },
433 { X86::TEST32rr, X86::TEST32rm, 0 },
434 { X86::TEST64rr, X86::TEST64rm, 0 },
435 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000436 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Evan Chenga5853792009-07-15 06:10:07 +0000437 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
438 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000439 };
440
441 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
442 unsigned RegOp = OpTbl1[i][0];
443 unsigned MemOp = OpTbl1[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000444 unsigned Align = OpTbl1[i][2];
Dan Gohman55d19662008-07-07 17:46:23 +0000445 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000446 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000447 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000448 // Index 1, folded load
449 unsigned AuxInfo = 1 | (1 << 4);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000450 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
451 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000452 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000453 AmbEntries.push_back(MemOp);
454 }
455
Evan Chenga5853792009-07-15 06:10:07 +0000456 static const unsigned OpTbl2[][3] = {
457 { X86::ADC32rr, X86::ADC32rm, 0 },
458 { X86::ADC64rr, X86::ADC64rm, 0 },
459 { X86::ADD16rr, X86::ADD16rm, 0 },
460 { X86::ADD32rr, X86::ADD32rm, 0 },
461 { X86::ADD64rr, X86::ADD64rm, 0 },
462 { X86::ADD8rr, X86::ADD8rm, 0 },
463 { X86::ADDPDrr, X86::ADDPDrm, 16 },
464 { X86::ADDPSrr, X86::ADDPSrm, 16 },
465 { X86::ADDSDrr, X86::ADDSDrm, 0 },
466 { X86::ADDSSrr, X86::ADDSSrm, 0 },
467 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
468 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
469 { X86::AND16rr, X86::AND16rm, 0 },
470 { X86::AND32rr, X86::AND32rm, 0 },
471 { X86::AND64rr, X86::AND64rm, 0 },
472 { X86::AND8rr, X86::AND8rm, 0 },
473 { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
474 { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
475 { X86::ANDPDrr, X86::ANDPDrm, 16 },
476 { X86::ANDPSrr, X86::ANDPSrm, 16 },
477 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
478 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
479 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
480 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
481 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
482 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
483 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
484 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
485 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
486 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
487 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
488 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
489 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
490 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
491 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
492 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
493 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
494 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
495 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
496 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
497 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
498 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
499 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
500 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
501 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
502 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
503 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
504 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
505 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
506 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
507 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
508 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
509 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
510 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
511 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
512 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
513 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
514 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
515 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
516 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
517 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
518 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
519 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
520 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
521 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
522 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
523 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
524 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
525 { X86::CMPPDrri, X86::CMPPDrmi, 16 },
526 { X86::CMPPSrri, X86::CMPPSrmi, 16 },
527 { X86::CMPSDrr, X86::CMPSDrm, 0 },
528 { X86::CMPSSrr, X86::CMPSSrm, 0 },
529 { X86::DIVPDrr, X86::DIVPDrm, 16 },
530 { X86::DIVPSrr, X86::DIVPSrm, 16 },
531 { X86::DIVSDrr, X86::DIVSDrm, 0 },
532 { X86::DIVSSrr, X86::DIVSSrm, 0 },
533 { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
534 { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
535 { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
536 { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
537 { X86::FsORPDrr, X86::FsORPDrm, 16 },
538 { X86::FsORPSrr, X86::FsORPSrm, 16 },
539 { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
540 { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
541 { X86::HADDPDrr, X86::HADDPDrm, 16 },
542 { X86::HADDPSrr, X86::HADDPSrm, 16 },
543 { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
544 { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
545 { X86::IMUL16rr, X86::IMUL16rm, 0 },
546 { X86::IMUL32rr, X86::IMUL32rm, 0 },
547 { X86::IMUL64rr, X86::IMUL64rm, 0 },
548 { X86::MAXPDrr, X86::MAXPDrm, 16 },
549 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
550 { X86::MAXPSrr, X86::MAXPSrm, 16 },
551 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
552 { X86::MAXSDrr, X86::MAXSDrm, 0 },
553 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
554 { X86::MAXSSrr, X86::MAXSSrm, 0 },
555 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
556 { X86::MINPDrr, X86::MINPDrm, 16 },
557 { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
558 { X86::MINPSrr, X86::MINPSrm, 16 },
559 { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
560 { X86::MINSDrr, X86::MINSDrm, 0 },
561 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
562 { X86::MINSSrr, X86::MINSSrm, 0 },
563 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
564 { X86::MULPDrr, X86::MULPDrm, 16 },
565 { X86::MULPSrr, X86::MULPSrm, 16 },
566 { X86::MULSDrr, X86::MULSDrm, 0 },
567 { X86::MULSSrr, X86::MULSSrm, 0 },
568 { X86::OR16rr, X86::OR16rm, 0 },
569 { X86::OR32rr, X86::OR32rm, 0 },
570 { X86::OR64rr, X86::OR64rm, 0 },
571 { X86::OR8rr, X86::OR8rm, 0 },
572 { X86::ORPDrr, X86::ORPDrm, 16 },
573 { X86::ORPSrr, X86::ORPSrm, 16 },
574 { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
575 { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
576 { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
577 { X86::PADDBrr, X86::PADDBrm, 16 },
578 { X86::PADDDrr, X86::PADDDrm, 16 },
579 { X86::PADDQrr, X86::PADDQrm, 16 },
580 { X86::PADDSBrr, X86::PADDSBrm, 16 },
581 { X86::PADDSWrr, X86::PADDSWrm, 16 },
582 { X86::PADDWrr, X86::PADDWrm, 16 },
583 { X86::PANDNrr, X86::PANDNrm, 16 },
584 { X86::PANDrr, X86::PANDrm, 16 },
585 { X86::PAVGBrr, X86::PAVGBrm, 16 },
586 { X86::PAVGWrr, X86::PAVGWrm, 16 },
587 { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
588 { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
589 { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
590 { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
591 { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
592 { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
593 { X86::PINSRWrri, X86::PINSRWrmi, 16 },
594 { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
595 { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
596 { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
597 { X86::PMINSWrr, X86::PMINSWrm, 16 },
598 { X86::PMINUBrr, X86::PMINUBrm, 16 },
599 { X86::PMULDQrr, X86::PMULDQrm, 16 },
600 { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
601 { X86::PMULHWrr, X86::PMULHWrm, 16 },
602 { X86::PMULLDrr, X86::PMULLDrm, 16 },
603 { X86::PMULLDrr_int, X86::PMULLDrm_int, 16 },
604 { X86::PMULLWrr, X86::PMULLWrm, 16 },
605 { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
606 { X86::PORrr, X86::PORrm, 16 },
607 { X86::PSADBWrr, X86::PSADBWrm, 16 },
608 { X86::PSLLDrr, X86::PSLLDrm, 16 },
609 { X86::PSLLQrr, X86::PSLLQrm, 16 },
610 { X86::PSLLWrr, X86::PSLLWrm, 16 },
611 { X86::PSRADrr, X86::PSRADrm, 16 },
612 { X86::PSRAWrr, X86::PSRAWrm, 16 },
613 { X86::PSRLDrr, X86::PSRLDrm, 16 },
614 { X86::PSRLQrr, X86::PSRLQrm, 16 },
615 { X86::PSRLWrr, X86::PSRLWrm, 16 },
616 { X86::PSUBBrr, X86::PSUBBrm, 16 },
617 { X86::PSUBDrr, X86::PSUBDrm, 16 },
618 { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
619 { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
620 { X86::PSUBWrr, X86::PSUBWrm, 16 },
621 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
622 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
623 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
624 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
625 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
626 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
627 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
628 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
629 { X86::PXORrr, X86::PXORrm, 16 },
630 { X86::SBB32rr, X86::SBB32rm, 0 },
631 { X86::SBB64rr, X86::SBB64rm, 0 },
632 { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
633 { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
634 { X86::SUB16rr, X86::SUB16rm, 0 },
635 { X86::SUB32rr, X86::SUB32rm, 0 },
636 { X86::SUB64rr, X86::SUB64rm, 0 },
637 { X86::SUB8rr, X86::SUB8rm, 0 },
638 { X86::SUBPDrr, X86::SUBPDrm, 16 },
639 { X86::SUBPSrr, X86::SUBPSrm, 16 },
640 { X86::SUBSDrr, X86::SUBSDrm, 0 },
641 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000642 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Evan Chenga5853792009-07-15 06:10:07 +0000643 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
644 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
645 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
646 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
647 { X86::XOR16rr, X86::XOR16rm, 0 },
648 { X86::XOR32rr, X86::XOR32rm, 0 },
649 { X86::XOR64rr, X86::XOR64rm, 0 },
650 { X86::XOR8rr, X86::XOR8rm, 0 },
651 { X86::XORPDrr, X86::XORPDrm, 16 },
652 { X86::XORPSrr, X86::XORPSrm, 16 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000653 };
654
655 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
656 unsigned RegOp = OpTbl2[i][0];
657 unsigned MemOp = OpTbl2[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000658 unsigned Align = OpTbl2[i][2];
Dan Gohman55d19662008-07-07 17:46:23 +0000659 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000660 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000661 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000662 // Index 2, folded load
663 unsigned AuxInfo = 2 | (1 << 4);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000664 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000665 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000666 AmbEntries.push_back(MemOp);
667 }
668
669 // Remove ambiguous entries.
670 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000671}
672
673bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
Evan Chengf97496a2009-01-20 19:12:24 +0000674 unsigned &SrcReg, unsigned &DstReg,
675 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000676 switch (MI.getOpcode()) {
677 default:
678 return false;
679 case X86::MOV8rr:
Bill Wendling2d1c8222009-04-17 22:40:38 +0000680 case X86::MOV8rr_NOREX:
Chris Lattnerff195282008-03-11 19:28:17 +0000681 case X86::MOV16rr:
682 case X86::MOV32rr:
683 case X86::MOV64rr:
Chris Lattnerff195282008-03-11 19:28:17 +0000684 case X86::MOVSSrr:
685 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000686
687 // FP Stack register class copies
688 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
689 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
690 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
691
Chris Lattnerff195282008-03-11 19:28:17 +0000692 case X86::FsMOVAPSrr:
693 case X86::FsMOVAPDrr:
694 case X86::MOVAPSrr:
695 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000696 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000697 case X86::MOVSS2PSrr:
698 case X86::MOVSD2PDrr:
699 case X86::MOVPS2SSrr:
700 case X86::MOVPD2SDrr:
Chris Lattnerff195282008-03-11 19:28:17 +0000701 case X86::MMX_MOVQ64rr:
702 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000703 MI.getOperand(0).isReg() &&
704 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000705 "invalid register-register move instruction");
Evan Chengf97496a2009-01-20 19:12:24 +0000706 SrcReg = MI.getOperand(1).getReg();
707 DstReg = MI.getOperand(0).getReg();
708 SrcSubIdx = MI.getOperand(1).getSubReg();
709 DstSubIdx = MI.getOperand(0).getSubReg();
Chris Lattnerff195282008-03-11 19:28:17 +0000710 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712}
713
David Greene138ae532009-11-12 20:55:29 +0000714/// isFrameOperand - Return true and the FrameIndex if the specified
715/// operand and follow operands form a reference to the stack frame.
716bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
717 int &FrameIndex) const {
718 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
719 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
720 MI->getOperand(Op+1).getImm() == 1 &&
721 MI->getOperand(Op+2).getReg() == 0 &&
722 MI->getOperand(Op+3).getImm() == 0) {
723 FrameIndex = MI->getOperand(Op).getIndex();
724 return true;
725 }
726 return false;
727}
728
David Greene98c70f72009-11-13 00:29:53 +0000729static bool isFrameLoadOpcode(int Opcode) {
730 switch (Opcode) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000731 default: break;
732 case X86::MOV8rm:
733 case X86::MOV16rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734 case X86::MOV32rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735 case X86::MOV64rm:
736 case X86::LD_Fp64m:
737 case X86::MOVSSrm:
738 case X86::MOVSDrm:
739 case X86::MOVAPSrm:
740 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000741 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 case X86::MMX_MOVD64rm:
743 case X86::MMX_MOVQ64rm:
David Greene98c70f72009-11-13 00:29:53 +0000744 return true;
745 break;
746 }
747 return false;
748}
749
750static bool isFrameStoreOpcode(int Opcode) {
751 switch (Opcode) {
752 default: break;
753 case X86::MOV8mr:
754 case X86::MOV16mr:
755 case X86::MOV32mr:
756 case X86::MOV64mr:
757 case X86::ST_FpP64m:
758 case X86::MOVSSmr:
759 case X86::MOVSDmr:
760 case X86::MOVAPSmr:
761 case X86::MOVAPDmr:
762 case X86::MOVDQAmr:
763 case X86::MMX_MOVD64mr:
764 case X86::MMX_MOVQ64mr:
765 case X86::MMX_MOVNTQmr:
766 return true;
767 }
768 return false;
769}
770
771unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
772 int &FrameIndex) const {
773 if (isFrameLoadOpcode(MI->getOpcode()))
774 if (isFrameOperand(MI, 1, FrameIndex))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775 return MI->getOperand(0).getReg();
David Greene98c70f72009-11-13 00:29:53 +0000776 return 0;
777}
778
779unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
780 int &FrameIndex) const {
781 if (isFrameLoadOpcode(MI->getOpcode())) {
782 unsigned Reg;
783 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
784 return Reg;
David Greene138ae532009-11-12 20:55:29 +0000785 // Check for post-frame index elimination operations
David Greene647636f2009-12-04 22:38:46 +0000786 const MachineMemOperand *Dummy;
787 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 }
789 return 0;
790}
791
David Greene138ae532009-11-12 20:55:29 +0000792bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
David Greene647636f2009-12-04 22:38:46 +0000793 const MachineMemOperand *&MMO,
David Greene138ae532009-11-12 20:55:29 +0000794 int &FrameIndex) const {
795 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
796 oe = MI->memoperands_end();
797 o != oe;
798 ++o) {
799 if ((*o)->isLoad() && (*o)->getValue())
800 if (const FixedStackPseudoSourceValue *Value =
801 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
802 FrameIndex = Value->getFrameIndex();
David Greene647636f2009-12-04 22:38:46 +0000803 MMO = *o;
David Greene138ae532009-11-12 20:55:29 +0000804 return true;
805 }
806 }
807 return false;
808}
809
Dan Gohman90feee22008-11-18 19:49:32 +0000810unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000811 int &FrameIndex) const {
David Greene98c70f72009-11-13 00:29:53 +0000812 if (isFrameStoreOpcode(MI->getOpcode()))
813 if (isFrameOperand(MI, 0, FrameIndex))
Rafael Espindola7f69c042009-03-28 17:03:24 +0000814 return MI->getOperand(X86AddrNumOperands).getReg();
David Greene98c70f72009-11-13 00:29:53 +0000815 return 0;
816}
817
818unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
819 int &FrameIndex) const {
820 if (isFrameStoreOpcode(MI->getOpcode())) {
821 unsigned Reg;
822 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
823 return Reg;
David Greene138ae532009-11-12 20:55:29 +0000824 // Check for post-frame index elimination operations
David Greene647636f2009-12-04 22:38:46 +0000825 const MachineMemOperand *Dummy;
826 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000827 }
828 return 0;
829}
830
David Greene138ae532009-11-12 20:55:29 +0000831bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
David Greene647636f2009-12-04 22:38:46 +0000832 const MachineMemOperand *&MMO,
David Greene138ae532009-11-12 20:55:29 +0000833 int &FrameIndex) const {
834 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
835 oe = MI->memoperands_end();
836 o != oe;
837 ++o) {
838 if ((*o)->isStore() && (*o)->getValue())
839 if (const FixedStackPseudoSourceValue *Value =
840 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
841 FrameIndex = Value->getFrameIndex();
David Greene647636f2009-12-04 22:38:46 +0000842 MMO = *o;
David Greene138ae532009-11-12 20:55:29 +0000843 return true;
844 }
845 }
846 return false;
847}
848
Evan Chengb819a512008-03-27 01:45:11 +0000849/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
850/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000851static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000852 bool isPICBase = false;
853 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
854 E = MRI.def_end(); I != E; ++I) {
855 MachineInstr *DefMI = I.getOperand().getParent();
856 if (DefMI->getOpcode() != X86::MOVPC32r)
857 return false;
858 assert(!isPICBase && "More than one PIC base?");
859 isPICBase = true;
860 }
861 return isPICBase;
862}
Evan Chenge9caab52008-03-31 07:54:19 +0000863
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000864bool
Dan Gohman1ef18852009-10-10 00:34:18 +0000865X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
866 AliasAnalysis *AA) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000867 switch (MI->getOpcode()) {
868 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000869 case X86::MOV8rm:
870 case X86::MOV16rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000871 case X86::MOV32rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000872 case X86::MOV64rm:
873 case X86::LD_Fp64m:
874 case X86::MOVSSrm:
875 case X86::MOVSDrm:
876 case X86::MOVAPSrm:
Evan Cheng9d7cd4e2009-11-16 21:56:03 +0000877 case X86::MOVUPSrm:
Evan Cheng8e664712009-11-17 09:51:18 +0000878 case X86::MOVUPSrm_Int:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000879 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000880 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000881 case X86::MMX_MOVD64rm:
Evan Cheng8e664712009-11-17 09:51:18 +0000882 case X86::MMX_MOVQ64rm:
883 case X86::FsMOVAPSrm:
884 case X86::FsMOVAPDrm: {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000885 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000886 if (MI->getOperand(1).isReg() &&
887 MI->getOperand(2).isImm() &&
888 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Dan Gohman1ef18852009-10-10 00:34:18 +0000889 MI->isInvariantLoad(AA)) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000890 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattnerdc6fc472009-06-27 04:16:01 +0000891 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000892 return true;
893 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000894 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000895 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000896 const MachineFunction &MF = *MI->getParent()->getParent();
897 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000898 bool isPICBase = false;
899 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
900 E = MRI.def_end(); I != E; ++I) {
901 MachineInstr *DefMI = I.getOperand().getParent();
902 if (DefMI->getOpcode() != X86::MOVPC32r)
903 return false;
904 assert(!isPICBase && "More than one PIC base?");
905 isPICBase = true;
906 }
907 return isPICBase;
908 }
909 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000910 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000911
912 case X86::LEA32r:
913 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000914 if (MI->getOperand(2).isImm() &&
915 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
916 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000917 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000918 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000919 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000920 unsigned BaseReg = MI->getOperand(1).getReg();
921 if (BaseReg == 0)
922 return true;
923 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000924 const MachineFunction &MF = *MI->getParent()->getParent();
925 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000926 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000927 }
928 return false;
929 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000931
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000932 // All other instructions marked M_REMATERIALIZABLE are always trivially
933 // rematerializable.
934 return true;
935}
936
Evan Chengc564ded2008-06-24 07:10:51 +0000937/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
938/// would clobber the EFLAGS condition register. Note the result may be
939/// conservative. If it cannot definitely determine the safety after visiting
Dan Gohmanf20cb162009-10-14 00:08:59 +0000940/// a few instructions in each direction it assumes it's not safe.
Evan Chengc564ded2008-06-24 07:10:51 +0000941static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
942 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000943 // It's always safe to clobber EFLAGS at the end of a block.
944 if (I == MBB.end())
945 return true;
946
Evan Chengc564ded2008-06-24 07:10:51 +0000947 // For compile time consideration, if we are not able to determine the
Dan Gohmanf20cb162009-10-14 00:08:59 +0000948 // safety after visiting 4 instructions in each direction, we will assume
949 // it's not safe.
950 MachineBasicBlock::iterator Iter = I;
951 for (unsigned i = 0; i < 4; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000952 bool SeenDef = false;
Dan Gohmanf20cb162009-10-14 00:08:59 +0000953 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
954 MachineOperand &MO = Iter->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000955 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000956 continue;
957 if (MO.getReg() == X86::EFLAGS) {
958 if (MO.isUse())
959 return false;
960 SeenDef = true;
961 }
962 }
963
964 if (SeenDef)
965 // This instruction defines EFLAGS, no need to look any further.
966 return true;
Dan Gohmanf20cb162009-10-14 00:08:59 +0000967 ++Iter;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000968
969 // If we make it to the end of the block, it's safe to clobber EFLAGS.
Dan Gohmanf20cb162009-10-14 00:08:59 +0000970 if (Iter == MBB.end())
971 return true;
972 }
973
974 Iter = I;
975 for (unsigned i = 0; i < 4; ++i) {
976 // If we make it to the beginning of the block, it's safe to clobber
977 // EFLAGS iff EFLAGS is not live-in.
978 if (Iter == MBB.begin())
979 return !MBB.isLiveIn(X86::EFLAGS);
980
981 --Iter;
982 bool SawKill = false;
983 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
984 MachineOperand &MO = Iter->getOperand(j);
985 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
986 if (MO.isDef()) return MO.isDead();
987 if (MO.isKill()) SawKill = true;
988 }
989 }
990
991 if (SawKill)
992 // This instruction kills EFLAGS and doesn't redefine it, so
993 // there's no need to look further.
Dan Gohman3588f9d2008-10-21 03:24:31 +0000994 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000995 }
996
997 // Conservative answer.
998 return false;
999}
1000
Evan Cheng7d73efc2008-03-31 20:40:39 +00001001void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1002 MachineBasicBlock::iterator I,
Evan Cheng463a3e42009-07-16 09:20:10 +00001003 unsigned DestReg, unsigned SubIdx,
Evan Chenga88d1ac2009-11-14 02:55:43 +00001004 const MachineInstr *Orig,
1005 const TargetRegisterInfo *TRI) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001006 DebugLoc DL = DebugLoc::getUnknownLoc();
1007 if (I != MBB.end()) DL = I->getDebugLoc();
1008
Evan Cheng1c32d2d2008-04-16 23:44:44 +00001009 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
Evan Chenga88d1ac2009-11-14 02:55:43 +00001010 DestReg = TRI->getSubReg(DestReg, SubIdx);
Evan Cheng1c32d2d2008-04-16 23:44:44 +00001011 SubIdx = 0;
1012 }
1013
Evan Cheng7d73efc2008-03-31 20:40:39 +00001014 // MOV32r0 etc. are implemented with xor which clobbers condition code.
1015 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng463a3e42009-07-16 09:20:10 +00001016 bool Clone = true;
1017 unsigned Opc = Orig->getOpcode();
1018 switch (Opc) {
Evan Chengc564ded2008-06-24 07:10:51 +00001019 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +00001020 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +00001021 case X86::MOV16r0:
Chris Lattner17f62252009-07-14 20:19:57 +00001022 case X86::MOV32r0: {
Evan Chengc564ded2008-06-24 07:10:51 +00001023 if (!isSafeToClobberEFLAGS(MBB, I)) {
Evan Cheng463a3e42009-07-16 09:20:10 +00001024 switch (Opc) {
Evan Chengc564ded2008-06-24 07:10:51 +00001025 default: break;
1026 case X86::MOV8r0: Opc = X86::MOV8ri; break;
1027 case X86::MOV16r0: Opc = X86::MOV16ri; break;
1028 case X86::MOV32r0: Opc = X86::MOV32ri; break;
Evan Chengc564ded2008-06-24 07:10:51 +00001029 }
Evan Cheng463a3e42009-07-16 09:20:10 +00001030 Clone = false;
Evan Chengc564ded2008-06-24 07:10:51 +00001031 }
Evan Cheng7d73efc2008-03-31 20:40:39 +00001032 break;
Evan Chengc564ded2008-06-24 07:10:51 +00001033 }
1034 }
1035
Evan Cheng463a3e42009-07-16 09:20:10 +00001036 if (Clone) {
Dan Gohman221a4372008-07-07 23:14:23 +00001037 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +00001038 MI->getOperand(0).setReg(DestReg);
1039 MBB.insert(I, MI);
Evan Cheng463a3e42009-07-16 09:20:10 +00001040 } else {
1041 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
Evan Cheng7d73efc2008-03-31 20:40:39 +00001042 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +00001043
Evan Cheng463a3e42009-07-16 09:20:10 +00001044 MachineInstr *NewMI = prior(I);
1045 NewMI->getOperand(0).setSubReg(SubIdx);
Evan Cheng7d73efc2008-03-31 20:40:39 +00001046}
1047
Evan Chengfa1a4952007-10-05 08:04:01 +00001048/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1049/// is not marked dead.
1050static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +00001051 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1052 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001053 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +00001054 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1055 return true;
1056 }
1057 }
1058 return false;
1059}
1060
Evan Chengf031da82009-12-11 06:01:48 +00001061/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when 16-bit
1062/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1063/// to a 32-bit superregister and then truncating back down to a 16-bit
1064/// subregister.
1065MachineInstr *
1066X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1067 MachineFunction::iterator &MFI,
1068 MachineBasicBlock::iterator &MBBI,
1069 LiveVariables *LV) const {
1070 MachineInstr *MI = MBBI;
1071 unsigned Dest = MI->getOperand(0).getReg();
1072 unsigned Src = MI->getOperand(1).getReg();
1073 bool isDead = MI->getOperand(0).isDead();
1074 bool isKill = MI->getOperand(1).isKill();
1075
1076 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1077 ? X86::LEA64_32r : X86::LEA32r;
1078 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1079 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1080 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1081
1082 // Build and insert into an implicit UNDEF value. This is OK because
1083 // well be shifting and then extracting the lower 16-bits.
1084 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1085 MachineInstr *InsMI =
1086 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1087 .addReg(leaInReg)
1088 .addReg(Src, getKillRegState(isKill))
1089 .addImm(X86::SUBREG_16BIT);
1090
1091 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1092 get(Opc), leaOutReg);
1093 switch (MIOpc) {
1094 default:
1095 llvm_unreachable(0);
1096 break;
1097 case X86::SHL16ri: {
1098 unsigned ShAmt = MI->getOperand(2).getImm();
1099 MIB.addReg(0).addImm(1 << ShAmt)
1100 .addReg(leaInReg, RegState::Kill).addImm(0);
1101 break;
1102 }
1103 case X86::INC16r:
1104 case X86::INC64_16r:
1105 addLeaRegOffset(MIB, leaInReg, true, 1);
1106 break;
1107 case X86::DEC16r:
1108 case X86::DEC64_16r:
1109 addLeaRegOffset(MIB, leaInReg, true, -1);
1110 break;
1111 case X86::ADD16ri:
1112 case X86::ADD16ri8:
1113 addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1114 break;
1115 case X86::ADD16rr: {
1116 unsigned Src2 = MI->getOperand(2).getReg();
1117 bool isKill2 = MI->getOperand(2).isKill();
1118 unsigned leaInReg2 = 0;
1119 MachineInstr *InsMI2 = 0;
1120 if (Src == Src2) {
1121 // ADD16rr %reg1028<kill>, %reg1028
1122 // just a single insert_subreg.
1123 addRegReg(MIB, leaInReg, true, leaInReg, false);
1124 } else {
1125 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1126 // Build and insert into an implicit UNDEF value. This is OK because
1127 // well be shifting and then extracting the lower 16-bits.
1128 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1129 InsMI2 =
1130 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2)
1131 .addReg(leaInReg2)
1132 .addReg(Src2, getKillRegState(isKill2))
1133 .addImm(X86::SUBREG_16BIT);
1134 addRegReg(MIB, leaInReg, true, leaInReg2, true);
1135 }
1136 if (LV && isKill2 && InsMI2)
1137 LV->replaceKillInstruction(Src2, MI, InsMI2);
1138 break;
1139 }
1140 }
1141
1142 MachineInstr *NewMI = MIB;
1143 MachineInstr *ExtMI =
1144 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1145 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1146 .addReg(leaOutReg, RegState::Kill)
1147 .addImm(X86::SUBREG_16BIT);
1148
1149 if (LV) {
1150 // Update live variables
1151 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1152 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1153 if (isKill)
1154 LV->replaceKillInstruction(Src, MI, InsMI);
1155 if (isDead)
1156 LV->replaceKillInstruction(Dest, MI, ExtMI);
1157 }
1158
1159 return ExtMI;
1160}
1161
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001162/// convertToThreeAddress - This method must be implemented by targets that
1163/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1164/// may be able to convert a two-address instruction into a true
1165/// three-address instruction on demand. This allows the X86 target (for
1166/// example) to convert ADD and SHL instructions into LEA instructions if they
1167/// would require register copies due to two-addressness.
1168///
1169/// This method returns a null pointer if the transformation cannot be
1170/// performed, otherwise it returns the new instruction.
1171///
1172MachineInstr *
1173X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1174 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001175 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001176 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001177 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001178 // All instructions input are two-addr instructions. Get the known operands.
1179 unsigned Dest = MI->getOperand(0).getReg();
1180 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001181 bool isDead = MI->getOperand(0).isDead();
1182 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001183
1184 MachineInstr *NewMI = NULL;
1185 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1186 // we have better subtarget support, enable the 16-bit LEA generation here.
1187 bool DisableLEA16 = true;
1188
Evan Cheng6b96ed32007-10-05 20:34:26 +00001189 unsigned MIOpc = MI->getOpcode();
1190 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001191 case X86::SHUFPSrri: {
1192 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1193 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1194
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 unsigned B = MI->getOperand(1).getReg();
1196 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001197 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001198 unsigned A = MI->getOperand(0).getReg();
1199 unsigned M = MI->getOperand(3).getImm();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001200 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling2b739762009-05-13 21:33:08 +00001201 .addReg(A, RegState::Define | getDeadRegState(isDead))
1202 .addReg(B, getKillRegState(isKill)).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001203 break;
1204 }
1205 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001206 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001207 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1208 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001209 unsigned ShAmt = MI->getOperand(2).getImm();
1210 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001211
Bill Wendling13ee2e42009-02-11 21:51:19 +00001212 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001213 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1214 .addReg(0).addImm(1 << ShAmt)
1215 .addReg(Src, getKillRegState(isKill))
1216 .addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001217 break;
1218 }
1219 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001220 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001221 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1222 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223 unsigned ShAmt = MI->getOperand(2).getImm();
1224 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001225
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001226 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1227 X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001228 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001229 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001230 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001231 .addReg(Src, getKillRegState(isKill)).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001232 break;
1233 }
1234 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001235 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001236 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1237 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001238 unsigned ShAmt = MI->getOperand(2).getImm();
1239 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001240
Evan Chengf031da82009-12-11 06:01:48 +00001241 if (DisableLEA16)
1242 return convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV);
1243 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1244 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1245 .addReg(0).addImm(1 << ShAmt)
1246 .addReg(Src, getKillRegState(isKill))
1247 .addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 break;
1249 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001250 default: {
1251 // The following opcodes also sets the condition code register(s). Only
1252 // convert them to equivalent lea if the condition code register def's
1253 // are dead!
1254 if (hasLiveCondCodeDef(MI))
1255 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001256
Evan Chenga28a9562007-10-09 07:14:53 +00001257 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001258 switch (MIOpc) {
1259 default: return 0;
1260 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001261 case X86::INC32r:
1262 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001263 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001264 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1265 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001266 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001267 .addReg(Dest, RegState::Define |
1268 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001269 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001270 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001272 case X86::INC16r:
1273 case X86::INC64_16r:
Evan Chengf031da82009-12-11 06:01:48 +00001274 if (DisableLEA16)
1275 return convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001276 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001277 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001278 .addReg(Dest, RegState::Define |
1279 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001280 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001281 break;
1282 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001283 case X86::DEC32r:
1284 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001285 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001286 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1287 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001288 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001289 .addReg(Dest, RegState::Define |
1290 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001291 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001292 break;
1293 }
1294 case X86::DEC16r:
1295 case X86::DEC64_16r:
Evan Chengf031da82009-12-11 06:01:48 +00001296 if (DisableLEA16)
1297 return convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001298 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001299 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001300 .addReg(Dest, RegState::Define |
1301 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001302 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001303 break;
1304 case X86::ADD64rr:
1305 case X86::ADD32rr: {
1306 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001307 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1308 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001309 unsigned Src2 = MI->getOperand(2).getReg();
1310 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001311 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001312 .addReg(Dest, RegState::Define |
1313 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001314 Src, isKill, Src2, isKill2);
1315 if (LV && isKill2)
1316 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001317 break;
1318 }
Evan Chenge52c1912008-07-03 09:09:37 +00001319 case X86::ADD16rr: {
Evan Chengf031da82009-12-11 06:01:48 +00001320 if (DisableLEA16)
1321 return convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001322 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001323 unsigned Src2 = MI->getOperand(2).getReg();
1324 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001325 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001326 .addReg(Dest, RegState::Define |
1327 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001328 Src, isKill, Src2, isKill2);
1329 if (LV && isKill2)
1330 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001331 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001332 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001333 case X86::ADD64ri32:
1334 case X86::ADD64ri8:
1335 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengf031da82009-12-11 06:01:48 +00001336 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1337 .addReg(Dest, RegState::Define |
1338 getDeadRegState(isDead)),
1339 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001340 break;
1341 case X86::ADD32ri:
Evan Chengf031da82009-12-11 06:01:48 +00001342 case X86::ADD32ri8: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001343 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengf031da82009-12-11 06:01:48 +00001344 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1345 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1346 .addReg(Dest, RegState::Define |
1347 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001348 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001349 break;
1350 }
Evan Chengf031da82009-12-11 06:01:48 +00001351 case X86::ADD16ri:
1352 case X86::ADD16ri8:
1353 if (DisableLEA16)
1354 return convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV);
1355 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1356 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1357 .addReg(Dest, RegState::Define |
1358 getDeadRegState(isDead)),
1359 Src, isKill, MI->getOperand(2).getImm());
1360 break;
Evan Cheng6b96ed32007-10-05 20:34:26 +00001361 }
1362 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001363 }
1364
Evan Chengc3cb24d2008-02-07 08:29:53 +00001365 if (!NewMI) return 0;
1366
Evan Chenge52c1912008-07-03 09:09:37 +00001367 if (LV) { // Update live variables
1368 if (isKill)
1369 LV->replaceKillInstruction(Src, MI, NewMI);
1370 if (isDead)
1371 LV->replaceKillInstruction(Dest, MI, NewMI);
1372 }
1373
Evan Cheng6b96ed32007-10-05 20:34:26 +00001374 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001375 return NewMI;
1376}
1377
1378/// commuteInstruction - We have a few instructions that must be hacked on to
1379/// commute them.
1380///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001381MachineInstr *
1382X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001383 switch (MI->getOpcode()) {
1384 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1385 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1386 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001387 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1388 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1389 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390 unsigned Opc;
1391 unsigned Size;
1392 switch (MI->getOpcode()) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001393 default: llvm_unreachable("Unreachable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001394 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1395 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1396 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1397 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001398 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1399 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001400 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001401 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001402 if (NewMI) {
1403 MachineFunction &MF = *MI->getParent()->getParent();
1404 MI = MF.CloneMachineInstr(MI);
1405 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001406 }
Dan Gohman921581d2008-10-17 01:23:35 +00001407 MI->setDesc(get(Opc));
1408 MI->getOperand(3).setImm(Size-Amt);
1409 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001410 }
Evan Cheng926658c2007-10-05 23:13:21 +00001411 case X86::CMOVB16rr:
1412 case X86::CMOVB32rr:
1413 case X86::CMOVB64rr:
1414 case X86::CMOVAE16rr:
1415 case X86::CMOVAE32rr:
1416 case X86::CMOVAE64rr:
1417 case X86::CMOVE16rr:
1418 case X86::CMOVE32rr:
1419 case X86::CMOVE64rr:
1420 case X86::CMOVNE16rr:
1421 case X86::CMOVNE32rr:
1422 case X86::CMOVNE64rr:
1423 case X86::CMOVBE16rr:
1424 case X86::CMOVBE32rr:
1425 case X86::CMOVBE64rr:
1426 case X86::CMOVA16rr:
1427 case X86::CMOVA32rr:
1428 case X86::CMOVA64rr:
1429 case X86::CMOVL16rr:
1430 case X86::CMOVL32rr:
1431 case X86::CMOVL64rr:
1432 case X86::CMOVGE16rr:
1433 case X86::CMOVGE32rr:
1434 case X86::CMOVGE64rr:
1435 case X86::CMOVLE16rr:
1436 case X86::CMOVLE32rr:
1437 case X86::CMOVLE64rr:
1438 case X86::CMOVG16rr:
1439 case X86::CMOVG32rr:
1440 case X86::CMOVG64rr:
1441 case X86::CMOVS16rr:
1442 case X86::CMOVS32rr:
1443 case X86::CMOVS64rr:
1444 case X86::CMOVNS16rr:
1445 case X86::CMOVNS32rr:
1446 case X86::CMOVNS64rr:
1447 case X86::CMOVP16rr:
1448 case X86::CMOVP32rr:
1449 case X86::CMOVP64rr:
1450 case X86::CMOVNP16rr:
1451 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001452 case X86::CMOVNP64rr:
1453 case X86::CMOVO16rr:
1454 case X86::CMOVO32rr:
1455 case X86::CMOVO64rr:
1456 case X86::CMOVNO16rr:
1457 case X86::CMOVNO32rr:
1458 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001459 unsigned Opc = 0;
1460 switch (MI->getOpcode()) {
1461 default: break;
1462 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1463 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1464 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1465 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1466 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1467 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1468 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1469 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1470 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1471 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1472 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1473 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1474 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1475 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1476 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1477 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1478 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1479 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1480 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1481 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1482 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1483 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1484 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1485 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1486 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1487 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1488 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1489 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1490 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1491 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1492 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1493 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001494 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001495 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1496 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1497 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1498 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1499 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001500 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001501 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1502 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1503 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001504 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1505 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001506 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001507 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1508 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1509 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001510 }
Dan Gohman921581d2008-10-17 01:23:35 +00001511 if (NewMI) {
1512 MachineFunction &MF = *MI->getParent()->getParent();
1513 MI = MF.CloneMachineInstr(MI);
1514 NewMI = false;
1515 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001516 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001517 // Fallthrough intended.
1518 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001519 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001520 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001521 }
1522}
1523
1524static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1525 switch (BrOpc) {
1526 default: return X86::COND_INVALID;
1527 case X86::JE: return X86::COND_E;
1528 case X86::JNE: return X86::COND_NE;
1529 case X86::JL: return X86::COND_L;
1530 case X86::JLE: return X86::COND_LE;
1531 case X86::JG: return X86::COND_G;
1532 case X86::JGE: return X86::COND_GE;
1533 case X86::JB: return X86::COND_B;
1534 case X86::JBE: return X86::COND_BE;
1535 case X86::JA: return X86::COND_A;
1536 case X86::JAE: return X86::COND_AE;
1537 case X86::JS: return X86::COND_S;
1538 case X86::JNS: return X86::COND_NS;
1539 case X86::JP: return X86::COND_P;
1540 case X86::JNP: return X86::COND_NP;
1541 case X86::JO: return X86::COND_O;
1542 case X86::JNO: return X86::COND_NO;
1543 }
1544}
1545
1546unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1547 switch (CC) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001548 default: llvm_unreachable("Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001549 case X86::COND_E: return X86::JE;
1550 case X86::COND_NE: return X86::JNE;
1551 case X86::COND_L: return X86::JL;
1552 case X86::COND_LE: return X86::JLE;
1553 case X86::COND_G: return X86::JG;
1554 case X86::COND_GE: return X86::JGE;
1555 case X86::COND_B: return X86::JB;
1556 case X86::COND_BE: return X86::JBE;
1557 case X86::COND_A: return X86::JA;
1558 case X86::COND_AE: return X86::JAE;
1559 case X86::COND_S: return X86::JS;
1560 case X86::COND_NS: return X86::JNS;
1561 case X86::COND_P: return X86::JP;
1562 case X86::COND_NP: return X86::JNP;
1563 case X86::COND_O: return X86::JO;
1564 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565 }
1566}
1567
1568/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1569/// e.g. turning COND_E to COND_NE.
1570X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1571 switch (CC) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001572 default: llvm_unreachable("Illegal condition code!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573 case X86::COND_E: return X86::COND_NE;
1574 case X86::COND_NE: return X86::COND_E;
1575 case X86::COND_L: return X86::COND_GE;
1576 case X86::COND_LE: return X86::COND_G;
1577 case X86::COND_G: return X86::COND_LE;
1578 case X86::COND_GE: return X86::COND_L;
1579 case X86::COND_B: return X86::COND_AE;
1580 case X86::COND_BE: return X86::COND_A;
1581 case X86::COND_A: return X86::COND_BE;
1582 case X86::COND_AE: return X86::COND_B;
1583 case X86::COND_S: return X86::COND_NS;
1584 case X86::COND_NS: return X86::COND_S;
1585 case X86::COND_P: return X86::COND_NP;
1586 case X86::COND_NP: return X86::COND_P;
1587 case X86::COND_O: return X86::COND_NO;
1588 case X86::COND_NO: return X86::COND_O;
1589 }
1590}
1591
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001593 const TargetInstrDesc &TID = MI->getDesc();
1594 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001595
1596 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001597 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001598 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001599 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001600 return true;
1601 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602}
1603
Evan Cheng12515792007-07-26 17:32:14 +00001604// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1605static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1606 const X86InstrInfo &TII) {
1607 if (MI->getOpcode() == X86::FP_REG_KILL)
1608 return false;
1609 return TII.isUnpredicatedTerminator(MI);
1610}
1611
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001612bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1613 MachineBasicBlock *&TBB,
1614 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +00001615 SmallVectorImpl<MachineOperand> &Cond,
1616 bool AllowModify) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001617 // Start from the bottom of the block and work up, examining the
1618 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001619 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001620 while (I != MBB.begin()) {
1621 --I;
1622 // Working from the bottom, when we see a non-terminator
1623 // instruction, we're done.
1624 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1625 break;
1626 // A terminator that isn't a branch can't easily be handled
1627 // by this analysis.
1628 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001629 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001630 // Handle unconditional branches.
1631 if (I->getOpcode() == X86::JMP) {
Evan Chengeac31642009-02-09 07:14:22 +00001632 if (!AllowModify) {
1633 TBB = I->getOperand(0).getMBB();
Evan Cheng67bf8e22009-05-08 06:34:09 +00001634 continue;
Evan Chengeac31642009-02-09 07:14:22 +00001635 }
1636
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001637 // If the block has any instructions after a JMP, delete them.
Chris Lattnerb44b4292009-12-03 00:50:42 +00001638 while (llvm::next(I) != MBB.end())
1639 llvm::next(I)->eraseFromParent();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001640 Cond.clear();
1641 FBB = 0;
1642 // Delete the JMP if it's equivalent to a fall-through.
1643 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1644 TBB = 0;
1645 I->eraseFromParent();
1646 I = MBB.end();
1647 continue;
1648 }
1649 // TBB is used to indicate the unconditinal destination.
1650 TBB = I->getOperand(0).getMBB();
1651 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001652 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001653 // Handle conditional branches.
1654 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001655 if (BranchCode == X86::COND_INVALID)
1656 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001657 // Working from the bottom, handle the first conditional branch.
1658 if (Cond.empty()) {
1659 FBB = TBB;
1660 TBB = I->getOperand(0).getMBB();
1661 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1662 continue;
1663 }
1664 // Handle subsequent conditional branches. Only handle the case
1665 // where all conditional branches branch to the same destination
1666 // and their condition opcodes fit one of the special
1667 // multi-branch idioms.
1668 assert(Cond.size() == 1);
1669 assert(TBB);
1670 // Only handle the case where all conditional branches branch to
1671 // the same destination.
1672 if (TBB != I->getOperand(0).getMBB())
1673 return true;
1674 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1675 // If the conditions are the same, we can leave them alone.
1676 if (OldBranchCode == BranchCode)
1677 continue;
1678 // If they differ, see if they fit one of the known patterns.
1679 // Theoretically we could handle more patterns here, but
1680 // we shouldn't expect to see them if instruction selection
1681 // has done a reasonable job.
1682 if ((OldBranchCode == X86::COND_NP &&
1683 BranchCode == X86::COND_E) ||
1684 (OldBranchCode == X86::COND_E &&
1685 BranchCode == X86::COND_NP))
1686 BranchCode = X86::COND_NP_OR_E;
1687 else if ((OldBranchCode == X86::COND_P &&
1688 BranchCode == X86::COND_NE) ||
1689 (OldBranchCode == X86::COND_NE &&
1690 BranchCode == X86::COND_P))
1691 BranchCode = X86::COND_NE_OR_P;
1692 else
1693 return true;
1694 // Update the MachineOperand.
1695 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001696 }
1697
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001698 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699}
1700
1701unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1702 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001703 unsigned Count = 0;
1704
1705 while (I != MBB.begin()) {
1706 --I;
1707 if (I->getOpcode() != X86::JMP &&
1708 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1709 break;
1710 // Remove the branch.
1711 I->eraseFromParent();
1712 I = MBB.end();
1713 ++Count;
1714 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001716 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001717}
1718
1719unsigned
1720X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1721 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001722 const SmallVectorImpl<MachineOperand> &Cond) const {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001723 // FIXME this should probably have a DebugLoc operand
1724 DebugLoc dl = DebugLoc::getUnknownLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001725 // Shouldn't be a fall through.
1726 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1727 assert((Cond.size() == 1 || Cond.size() == 0) &&
1728 "X86 branch conditions have one component!");
1729
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001730 if (Cond.empty()) {
1731 // Unconditional branch?
1732 assert(!FBB && "Unconditional branch with multiple successors!");
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001733 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001734 return 1;
1735 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001736
1737 // Conditional branch.
1738 unsigned Count = 0;
1739 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1740 switch (CC) {
1741 case X86::COND_NP_OR_E:
1742 // Synthesize NP_OR_E with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001743 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001744 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001745 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001746 ++Count;
1747 break;
1748 case X86::COND_NE_OR_P:
1749 // Synthesize NE_OR_P with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001750 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001751 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001752 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001753 ++Count;
1754 break;
1755 default: {
1756 unsigned Opc = GetCondBranchFromCond(CC);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001757 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001758 ++Count;
1759 }
1760 }
1761 if (FBB) {
1762 // Two-way Conditional branch. Insert the second branch.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001763 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001764 ++Count;
1765 }
1766 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001767}
1768
Dan Gohman2da0db32009-04-15 00:04:23 +00001769/// isHReg - Test if the given register is a physical h register.
1770static bool isHReg(unsigned Reg) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001771 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman2da0db32009-04-15 00:04:23 +00001772}
1773
Owen Anderson9fa72d92008-08-26 18:03:31 +00001774bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001775 MachineBasicBlock::iterator MI,
1776 unsigned DestReg, unsigned SrcReg,
1777 const TargetRegisterClass *DestRC,
1778 const TargetRegisterClass *SrcRC) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001779 DebugLoc DL = DebugLoc::getUnknownLoc();
1780 if (MI != MBB.end()) DL = MI->getDebugLoc();
1781
Dan Gohmand4df6252009-04-20 22:54:34 +00001782 // Determine if DstRC and SrcRC have a common superclass in common.
1783 const TargetRegisterClass *CommonRC = DestRC;
1784 if (DestRC == SrcRC)
1785 /* Source and destination have the same register class. */;
1786 else if (CommonRC->hasSuperClass(SrcRC))
1787 CommonRC = SrcRC;
Dan Gohmanfe606822009-07-30 01:56:29 +00001788 else if (!DestRC->hasSubClass(SrcRC)) {
1789 // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
Dan Gohman861ed262009-08-05 22:18:26 +00001790 // but we want to copy then as GR64. Similarly, for GR32_NOREX and
1791 // GR32_NOSP, copy as GR32.
Dan Gohmande9c0562009-08-11 15:59:48 +00001792 if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1793 DestRC->hasSuperClass(&X86::GR64RegClass))
Dan Gohmanfe606822009-07-30 01:56:29 +00001794 CommonRC = &X86::GR64RegClass;
Dan Gohmande9c0562009-08-11 15:59:48 +00001795 else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1796 DestRC->hasSuperClass(&X86::GR32RegClass))
Dan Gohman861ed262009-08-05 22:18:26 +00001797 CommonRC = &X86::GR32RegClass;
Dan Gohmanfe606822009-07-30 01:56:29 +00001798 else
1799 CommonRC = 0;
1800 }
Dan Gohmand4df6252009-04-20 22:54:34 +00001801
1802 if (CommonRC) {
Chris Lattner59707122008-03-09 07:58:04 +00001803 unsigned Opc;
Dan Gohmanfe606822009-07-30 01:56:29 +00001804 if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001805 Opc = X86::MOV64rr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001806 } else if (CommonRC == &X86::GR32RegClass ||
1807 CommonRC == &X86::GR32_NOSPRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001808 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001809 } else if (CommonRC == &X86::GR16RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001810 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001811 } else if (CommonRC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001812 // Copying to or from a physical H register on x86-64 requires a NOREX
Bill Wendling2d1c8222009-04-17 22:40:38 +00001813 // move. Otherwise use a normal move.
1814 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1815 TM.getSubtarget<X86Subtarget>().is64Bit())
Dan Gohman2da0db32009-04-15 00:04:23 +00001816 Opc = X86::MOV8rr_NOREX;
1817 else
1818 Opc = X86::MOV8rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001819 } else if (CommonRC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001820 Opc = X86::MOV64rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001821 } else if (CommonRC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001822 Opc = X86::MOV32rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001823 } else if (CommonRC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001824 Opc = X86::MOV16rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001825 } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001826 Opc = X86::MOV8rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001827 } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1828 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1829 Opc = X86::MOV8rr_NOREX;
1830 else
1831 Opc = X86::MOV8rr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001832 } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1833 CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001834 Opc = X86::MOV64rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001835 } else if (CommonRC == &X86::GR32_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001836 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001837 } else if (CommonRC == &X86::GR16_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001838 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001839 } else if (CommonRC == &X86::GR8_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001840 Opc = X86::MOV8rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001841 } else if (CommonRC == &X86::RFP32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001842 Opc = X86::MOV_Fp3232;
Dan Gohmand4df6252009-04-20 22:54:34 +00001843 } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001844 Opc = X86::MOV_Fp6464;
Dan Gohmand4df6252009-04-20 22:54:34 +00001845 } else if (CommonRC == &X86::RFP80RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001846 Opc = X86::MOV_Fp8080;
Dan Gohmand4df6252009-04-20 22:54:34 +00001847 } else if (CommonRC == &X86::FR32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001848 Opc = X86::FsMOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001849 } else if (CommonRC == &X86::FR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001850 Opc = X86::FsMOVAPDrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001851 } else if (CommonRC == &X86::VR128RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001852 Opc = X86::MOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001853 } else if (CommonRC == &X86::VR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001854 Opc = X86::MMX_MOVQ64rr;
1855 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001856 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001857 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001858 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001859 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001860 }
Dan Gohmanfe606822009-07-30 01:56:29 +00001861
Chris Lattner59707122008-03-09 07:58:04 +00001862 // Moving EFLAGS to / from another register requires a push and a pop.
1863 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001864 if (SrcReg != X86::EFLAGS)
1865 return false;
Dan Gohmanfe606822009-07-30 01:56:29 +00001866 if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001867 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1868 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001869 return true;
Dan Gohmanfe606822009-07-30 01:56:29 +00001870 } else if (DestRC == &X86::GR32RegClass ||
1871 DestRC == &X86::GR32_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001872 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1873 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001874 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001875 }
1876 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001877 if (DestReg != X86::EFLAGS)
1878 return false;
Dan Gohmanfe606822009-07-30 01:56:29 +00001879 if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001880 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1881 BuildMI(MBB, MI, DL, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001882 return true;
Dan Gohmanfe606822009-07-30 01:56:29 +00001883 } else if (SrcRC == &X86::GR32RegClass ||
1884 DestRC == &X86::GR32_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001885 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1886 BuildMI(MBB, MI, DL, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001887 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001888 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001889 }
Dan Gohman744d4622009-04-13 16:09:41 +00001890
Chris Lattner0d128722008-03-09 09:15:31 +00001891 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001892 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001893 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001894 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1895 // Can only copy from ST(0)/ST(1) right now
1896 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001897 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001898 unsigned Opc;
1899 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001900 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001901 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001902 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001903 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001904 if (DestRC != &X86::RFP80RegClass)
1905 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001906 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001907 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001908 BuildMI(MBB, MI, DL, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001909 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001910 }
Chris Lattner0d128722008-03-09 09:15:31 +00001911
1912 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1913 if (DestRC == &X86::RSTRegClass) {
Evan Cheng307a72e2009-02-09 23:32:07 +00001914 // Copying to ST(0) / ST(1).
1915 if (DestReg != X86::ST0 && DestReg != X86::ST1)
Owen Anderson9fa72d92008-08-26 18:03:31 +00001916 // Can only copy to TOS right now
1917 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001918 bool isST0 = DestReg == X86::ST0;
Chris Lattner0d128722008-03-09 09:15:31 +00001919 unsigned Opc;
1920 if (SrcRC == &X86::RFP32RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001921 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
Chris Lattner0d128722008-03-09 09:15:31 +00001922 else if (SrcRC == &X86::RFP64RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001923 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
Chris Lattner0d128722008-03-09 09:15:31 +00001924 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001925 if (SrcRC != &X86::RFP80RegClass)
1926 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001927 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
Chris Lattner0d128722008-03-09 09:15:31 +00001928 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001929 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001930 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001931 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001932
Owen Anderson9fa72d92008-08-26 18:03:31 +00001933 // Not yet supported!
1934 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001935}
1936
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001937static unsigned getStoreRegOpcode(unsigned SrcReg,
1938 const TargetRegisterClass *RC,
1939 bool isStackAligned,
1940 TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001941 unsigned Opc = 0;
Dan Gohmanfe606822009-07-30 01:56:29 +00001942 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001943 Opc = X86::MOV64mr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001944 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001945 Opc = X86::MOV32mr;
1946 } else if (RC == &X86::GR16RegClass) {
1947 Opc = X86::MOV16mr;
1948 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001949 // Copying to or from a physical H register on x86-64 requires a NOREX
1950 // move. Otherwise use a normal move.
1951 if (isHReg(SrcReg) &&
1952 TM.getSubtarget<X86Subtarget>().is64Bit())
1953 Opc = X86::MOV8mr_NOREX;
1954 else
1955 Opc = X86::MOV8mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001956 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001957 Opc = X86::MOV64mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001958 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001959 Opc = X86::MOV32mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001960 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001961 Opc = X86::MOV16mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001962 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001963 Opc = X86::MOV8mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001964 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1965 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1966 Opc = X86::MOV8mr_NOREX;
1967 else
1968 Opc = X86::MOV8mr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001969 } else if (RC == &X86::GR64_NOREXRegClass ||
1970 RC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001971 Opc = X86::MOV64mr;
1972 } else if (RC == &X86::GR32_NOREXRegClass) {
1973 Opc = X86::MOV32mr;
1974 } else if (RC == &X86::GR16_NOREXRegClass) {
1975 Opc = X86::MOV16mr;
1976 } else if (RC == &X86::GR8_NOREXRegClass) {
1977 Opc = X86::MOV8mr;
Owen Anderson81875432008-01-01 21:11:32 +00001978 } else if (RC == &X86::RFP80RegClass) {
1979 Opc = X86::ST_FpP80m; // pops
1980 } else if (RC == &X86::RFP64RegClass) {
1981 Opc = X86::ST_Fp64m;
1982 } else if (RC == &X86::RFP32RegClass) {
1983 Opc = X86::ST_Fp32m;
1984 } else if (RC == &X86::FR32RegClass) {
1985 Opc = X86::MOVSSmr;
1986 } else if (RC == &X86::FR64RegClass) {
1987 Opc = X86::MOVSDmr;
1988 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001989 // If stack is realigned we can use aligned stores.
1990 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001991 } else if (RC == &X86::VR64RegClass) {
1992 Opc = X86::MMX_MOVQ64mr;
1993 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00001994 llvm_unreachable("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00001995 }
1996
1997 return Opc;
1998}
1999
2000void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2001 MachineBasicBlock::iterator MI,
2002 unsigned SrcReg, bool isKill, int FrameIdx,
2003 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002004 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00002005 bool isAligned = (RI.getStackAlignment() >= 16) ||
2006 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002007 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00002008 DebugLoc DL = DebugLoc::getUnknownLoc();
2009 if (MI != MBB.end()) DL = MI->getDebugLoc();
2010 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling2b739762009-05-13 21:33:08 +00002011 .addReg(SrcReg, getKillRegState(isKill));
Owen Anderson81875432008-01-01 21:11:32 +00002012}
2013
2014void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2015 bool isKill,
2016 SmallVectorImpl<MachineOperand> &Addr,
2017 const TargetRegisterClass *RC,
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002018 MachineInstr::mmo_iterator MMOBegin,
2019 MachineInstr::mmo_iterator MMOEnd,
Owen Anderson81875432008-01-01 21:11:32 +00002020 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng9d7cd4e2009-11-16 21:56:03 +00002021 bool isAligned = (*MMOBegin)->getAlignment() >= 16;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002022 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002023 DebugLoc DL = DebugLoc::getUnknownLoc();
2024 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00002025 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002026 MIB.addOperand(Addr[i]);
Bill Wendling2b739762009-05-13 21:33:08 +00002027 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002028 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Anderson81875432008-01-01 21:11:32 +00002029 NewMIs.push_back(MIB);
2030}
2031
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002032static unsigned getLoadRegOpcode(unsigned DestReg,
2033 const TargetRegisterClass *RC,
2034 bool isStackAligned,
2035 const TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00002036 unsigned Opc = 0;
Dan Gohmanfe606822009-07-30 01:56:29 +00002037 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00002038 Opc = X86::MOV64rm;
Dan Gohmanfe606822009-07-30 01:56:29 +00002039 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00002040 Opc = X86::MOV32rm;
2041 } else if (RC == &X86::GR16RegClass) {
2042 Opc = X86::MOV16rm;
2043 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002044 // Copying to or from a physical H register on x86-64 requires a NOREX
2045 // move. Otherwise use a normal move.
2046 if (isHReg(DestReg) &&
2047 TM.getSubtarget<X86Subtarget>().is64Bit())
2048 Opc = X86::MOV8rm_NOREX;
2049 else
2050 Opc = X86::MOV8rm;
Dan Gohman6e438702009-04-27 16:33:14 +00002051 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002052 Opc = X86::MOV64rm;
Dan Gohman6e438702009-04-27 16:33:14 +00002053 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002054 Opc = X86::MOV32rm;
Dan Gohman6e438702009-04-27 16:33:14 +00002055 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002056 Opc = X86::MOV16rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002057 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002058 Opc = X86::MOV8rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002059 } else if (RC == &X86::GR8_ABCD_HRegClass) {
2060 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2061 Opc = X86::MOV8rm_NOREX;
2062 else
2063 Opc = X86::MOV8rm;
Dan Gohmanfe606822009-07-30 01:56:29 +00002064 } else if (RC == &X86::GR64_NOREXRegClass ||
2065 RC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002066 Opc = X86::MOV64rm;
2067 } else if (RC == &X86::GR32_NOREXRegClass) {
2068 Opc = X86::MOV32rm;
2069 } else if (RC == &X86::GR16_NOREXRegClass) {
2070 Opc = X86::MOV16rm;
2071 } else if (RC == &X86::GR8_NOREXRegClass) {
2072 Opc = X86::MOV8rm;
Owen Anderson81875432008-01-01 21:11:32 +00002073 } else if (RC == &X86::RFP80RegClass) {
2074 Opc = X86::LD_Fp80m;
2075 } else if (RC == &X86::RFP64RegClass) {
2076 Opc = X86::LD_Fp64m;
2077 } else if (RC == &X86::RFP32RegClass) {
2078 Opc = X86::LD_Fp32m;
2079 } else if (RC == &X86::FR32RegClass) {
2080 Opc = X86::MOVSSrm;
2081 } else if (RC == &X86::FR64RegClass) {
2082 Opc = X86::MOVSDrm;
2083 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002084 // If stack is realigned we can use aligned loads.
2085 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00002086 } else if (RC == &X86::VR64RegClass) {
2087 Opc = X86::MMX_MOVQ64rm;
2088 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00002089 llvm_unreachable("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00002090 }
2091
2092 return Opc;
2093}
2094
2095void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002096 MachineBasicBlock::iterator MI,
2097 unsigned DestReg, int FrameIdx,
2098 const TargetRegisterClass *RC) const{
2099 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00002100 bool isAligned = (RI.getStackAlignment() >= 16) ||
2101 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002102 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00002103 DebugLoc DL = DebugLoc::getUnknownLoc();
2104 if (MI != MBB.end()) DL = MI->getDebugLoc();
2105 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Anderson81875432008-01-01 21:11:32 +00002106}
2107
2108void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00002109 SmallVectorImpl<MachineOperand> &Addr,
2110 const TargetRegisterClass *RC,
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002111 MachineInstr::mmo_iterator MMOBegin,
2112 MachineInstr::mmo_iterator MMOEnd,
Owen Anderson81875432008-01-01 21:11:32 +00002113 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng9d7cd4e2009-11-16 21:56:03 +00002114 bool isAligned = (*MMOBegin)->getAlignment() >= 16;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002115 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002116 DebugLoc DL = DebugLoc::getUnknownLoc();
2117 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00002118 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002119 MIB.addOperand(Addr[i]);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002120 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Anderson81875432008-01-01 21:11:32 +00002121 NewMIs.push_back(MIB);
2122}
2123
Owen Anderson6690c7f2008-01-04 23:57:37 +00002124bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002125 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00002126 const std::vector<CalleeSavedInfo> &CSI) const {
2127 if (CSI.empty())
2128 return false;
2129
Bill Wendling13ee2e42009-02-11 21:51:19 +00002130 DebugLoc DL = DebugLoc::getUnknownLoc();
2131 if (MI != MBB.end()) DL = MI->getDebugLoc();
2132
Evan Chengc275cf62008-09-26 19:14:21 +00002133 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002134 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002135 unsigned SlotSize = is64Bit ? 8 : 4;
2136
2137 MachineFunction &MF = *MBB.getParent();
Evan Cheng10b8d222009-07-09 06:53:48 +00002138 unsigned FPReg = RI.getFrameRegister(MF);
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002139 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
Eli Friedman65b88222009-06-04 02:32:04 +00002140 unsigned CalleeFrameSize = 0;
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002141
Owen Anderson6690c7f2008-01-04 23:57:37 +00002142 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2143 for (unsigned i = CSI.size(); i != 0; --i) {
2144 unsigned Reg = CSI[i-1].getReg();
Eli Friedman65b88222009-06-04 02:32:04 +00002145 const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002146 // Add the callee-saved register as live-in. It's killed at the spill.
2147 MBB.addLiveIn(Reg);
Evan Cheng10b8d222009-07-09 06:53:48 +00002148 if (Reg == FPReg)
2149 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2150 continue;
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002151 if (RegClass != &X86::VR128RegClass && !isWin64) {
Eli Friedman65b88222009-06-04 02:32:04 +00002152 CalleeFrameSize += SlotSize;
Evan Cheng10b8d222009-07-09 06:53:48 +00002153 BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
Eli Friedman65b88222009-06-04 02:32:04 +00002154 } else {
2155 storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2156 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002157 }
Eli Friedman65b88222009-06-04 02:32:04 +00002158
2159 X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002160 return true;
2161}
2162
2163bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002164 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00002165 const std::vector<CalleeSavedInfo> &CSI) const {
2166 if (CSI.empty())
2167 return false;
Bill Wendling13ee2e42009-02-11 21:51:19 +00002168
2169 DebugLoc DL = DebugLoc::getUnknownLoc();
2170 if (MI != MBB.end()) DL = MI->getDebugLoc();
2171
Evan Cheng10b8d222009-07-09 06:53:48 +00002172 MachineFunction &MF = *MBB.getParent();
2173 unsigned FPReg = RI.getFrameRegister(MF);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002174 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002175 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002176 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2177 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2178 unsigned Reg = CSI[i].getReg();
Evan Cheng10b8d222009-07-09 06:53:48 +00002179 if (Reg == FPReg)
2180 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2181 continue;
Eli Friedman65b88222009-06-04 02:32:04 +00002182 const TargetRegisterClass *RegClass = CSI[i].getRegClass();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002183 if (RegClass != &X86::VR128RegClass && !isWin64) {
Eli Friedman65b88222009-06-04 02:32:04 +00002184 BuildMI(MBB, MI, DL, get(Opc), Reg);
2185 } else {
2186 loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2187 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002188 }
2189 return true;
2190}
2191
Dan Gohman221a4372008-07-07 23:14:23 +00002192static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002193 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002194 MachineInstr *MI,
2195 const TargetInstrInfo &TII) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002196 // Create the base instruction with the memory operand as the first part.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002197 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2198 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002199 MachineInstrBuilder MIB(NewMI);
2200 unsigned NumAddrOps = MOs.size();
2201 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002202 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002203 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002204 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002205
2206 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00002207 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002208 for (unsigned i = 0; i != NumOps; ++i) {
2209 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002210 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002211 }
2212 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2213 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002214 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002215 }
2216 return MIB;
2217}
2218
Dan Gohman221a4372008-07-07 23:14:23 +00002219static MachineInstr *FuseInst(MachineFunction &MF,
2220 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002221 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002222 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002223 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2224 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002225 MachineInstrBuilder MIB(NewMI);
2226
2227 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2228 MachineOperand &MO = MI->getOperand(i);
2229 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002230 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00002231 unsigned NumAddrOps = MOs.size();
2232 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002233 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002234 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002235 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002236 } else {
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002237 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002238 }
2239 }
2240 return MIB;
2241}
2242
2243static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002244 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002245 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00002246 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling13ee2e42009-02-11 21:51:19 +00002247 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002248
2249 unsigned NumAddrOps = MOs.size();
2250 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002251 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002252 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002253 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002254 return MIB.addImm(0);
2255}
2256
2257MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002258X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2259 MachineInstr *MI, unsigned i,
Evan Chenga5853792009-07-15 06:10:07 +00002260 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng8f0797f2009-09-11 00:39:26 +00002261 unsigned Size, unsigned Align) const {
Evan Chenga5853792009-07-15 06:10:07 +00002262 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002263 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002264 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002265 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002266 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002267
2268 MachineInstr *NewMI = NULL;
2269 // Folding a memory location into the two-address part of a two-address
2270 // instruction is different than folding it other places. It requires
2271 // replacing the *two* registers with the memory location.
2272 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002273 MI->getOperand(0).isReg() &&
2274 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002275 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2276 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2277 isTwoAddrFold = true;
2278 } else if (i == 0) { // If operand 0
2279 if (MI->getOpcode() == X86::MOV16r0)
2280 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2281 else if (MI->getOpcode() == X86::MOV32r0)
2282 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002283 else if (MI->getOpcode() == X86::MOV8r0)
2284 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002285 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002286 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002287
2288 OpcodeTablePtr = &RegOp2MemOpTable0;
2289 } else if (i == 1) {
2290 OpcodeTablePtr = &RegOp2MemOpTable1;
2291 } else if (i == 2) {
2292 OpcodeTablePtr = &RegOp2MemOpTable2;
2293 }
2294
2295 // If table selected...
2296 if (OpcodeTablePtr) {
2297 // Find the Opcode to fuse
Jeffrey Yasskin8154d2e2009-11-10 01:02:17 +00002298 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002299 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2300 if (I != OpcodeTablePtr->end()) {
Evan Cheng8f0797f2009-09-11 00:39:26 +00002301 unsigned Opcode = I->second.first;
Evan Chenga5853792009-07-15 06:10:07 +00002302 unsigned MinAlign = I->second.second;
2303 if (Align < MinAlign)
2304 return NULL;
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002305 bool NarrowToMOV32rm = false;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002306 if (Size) {
2307 unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2308 if (Size < RCSize) {
2309 // Check if it's safe to fold the load. If the size of the object is
2310 // narrower than the load width, then it's not.
2311 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2312 return NULL;
2313 // If this is a 64-bit load, but the spill slot is 32, then we can do
2314 // a 32-bit load which is implicitly zero-extended. This likely is due
2315 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002316 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2317 return NULL;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002318 Opcode = X86::MOV32rm;
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002319 NarrowToMOV32rm = true;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002320 }
2321 }
2322
Owen Anderson9a184ef2008-01-07 01:35:02 +00002323 if (isTwoAddrFold)
Evan Cheng8f0797f2009-09-11 00:39:26 +00002324 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002325 else
Evan Cheng8f0797f2009-09-11 00:39:26 +00002326 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002327
2328 if (NarrowToMOV32rm) {
2329 // If this is the special case where we use a MOV32rm to load a 32-bit
2330 // value and zero-extend the top bits. Change the destination register
2331 // to a 32-bit one.
2332 unsigned DstReg = NewMI->getOperand(0).getReg();
2333 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2334 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2335 4/*x86_subreg_32bit*/));
2336 else
2337 NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2338 }
Owen Anderson9a184ef2008-01-07 01:35:02 +00002339 return NewMI;
2340 }
2341 }
2342
2343 // No fusion
2344 if (PrintFailedFusing)
Chris Lattnerd71b0b02009-08-23 03:41:05 +00002345 errs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002346 return NULL;
2347}
2348
2349
Dan Gohmanedc83d62008-12-03 18:43:12 +00002350MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2351 MachineInstr *MI,
Evan Chenga5853792009-07-15 06:10:07 +00002352 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanedc83d62008-12-03 18:43:12 +00002353 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002354 // Check switch flag
2355 if (NoFusing) return NULL;
2356
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002357 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng8f0797f2009-09-11 00:39:26 +00002358 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002359 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002360 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2361 unsigned NewOpc = 0;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002362 unsigned RCSize = 0;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002363 switch (MI->getOpcode()) {
2364 default: return NULL;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002365 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
2366 case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
2367 case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
2368 case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002369 }
Evan Cheng8f0797f2009-09-11 00:39:26 +00002370 // Check if it's safe to fold the load. If the size of the object is
2371 // narrower than the load width, then it's not.
2372 if (Size < RCSize)
2373 return NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002374 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002375 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002376 MI->getOperand(1).ChangeToImmediate(0);
2377 } else if (Ops.size() != 1)
2378 return NULL;
2379
2380 SmallVector<MachineOperand,4> MOs;
2381 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng8f0797f2009-09-11 00:39:26 +00002382 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002383}
2384
Dan Gohmanedc83d62008-12-03 18:43:12 +00002385MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2386 MachineInstr *MI,
Evan Chenga5853792009-07-15 06:10:07 +00002387 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanedc83d62008-12-03 18:43:12 +00002388 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002389 // Check switch flag
2390 if (NoFusing) return NULL;
2391
Dan Gohmand0e8c752008-07-12 00:10:52 +00002392 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002393 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002394 if (LoadMI->hasOneMemOperand())
Dan Gohman4e3bb1b2009-09-25 20:36:54 +00002395 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman51dbce62009-09-21 18:30:38 +00002396 else
2397 switch (LoadMI->getOpcode()) {
2398 case X86::V_SET0:
2399 case X86::V_SETALLONES:
2400 Alignment = 16;
2401 break;
2402 case X86::FsFLD0SD:
2403 Alignment = 8;
2404 break;
2405 case X86::FsFLD0SS:
2406 Alignment = 4;
2407 break;
2408 default:
2409 llvm_unreachable("Don't know how to fold this instruction!");
2410 }
Owen Anderson9a184ef2008-01-07 01:35:02 +00002411 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2412 unsigned NewOpc = 0;
2413 switch (MI->getOpcode()) {
2414 default: return NULL;
2415 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2416 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2417 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2418 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2419 }
2420 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002421 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002422 MI->getOperand(1).ChangeToImmediate(0);
2423 } else if (Ops.size() != 1)
2424 return NULL;
2425
Rafael Espindolabca99f72009-04-08 21:14:34 +00002426 SmallVector<MachineOperand,X86AddrNumOperands> MOs;
Dan Gohman51dbce62009-09-21 18:30:38 +00002427 switch (LoadMI->getOpcode()) {
2428 case X86::V_SET0:
2429 case X86::V_SETALLONES:
2430 case X86::FsFLD0SD:
2431 case X86::FsFLD0SS: {
Dan Gohman37eb6c82008-12-03 05:21:24 +00002432 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2433 // Create a constant-pool entry and operands to load from it.
2434
2435 // x86-32 PIC requires a PIC base register for constant pools.
2436 unsigned PICBase = 0;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002437 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Cheng3b570332009-07-16 18:44:05 +00002438 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2439 PICBase = X86::RIP;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002440 else
Evan Cheng3b570332009-07-16 18:44:05 +00002441 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2442 // This doesn't work for several reasons.
2443 // 1. GlobalBaseReg may have been spilled.
2444 // 2. It may not be live at MI.
Dan Gohman51dbce62009-09-21 18:30:38 +00002445 return NULL;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002446 }
Dan Gohman37eb6c82008-12-03 05:21:24 +00002447
Dan Gohman51dbce62009-09-21 18:30:38 +00002448 // Create a constant-pool entry.
Dan Gohman37eb6c82008-12-03 05:21:24 +00002449 MachineConstantPool &MCP = *MF.getConstantPool();
Dan Gohman51dbce62009-09-21 18:30:38 +00002450 const Type *Ty;
2451 if (LoadMI->getOpcode() == X86::FsFLD0SS)
2452 Ty = Type::getFloatTy(MF.getFunction()->getContext());
2453 else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2454 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2455 else
2456 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2457 Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2458 Constant::getAllOnesValue(Ty) :
2459 Constant::getNullValue(Ty);
2460 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohman37eb6c82008-12-03 05:21:24 +00002461
2462 // Create operands to load from the constant pool entry.
2463 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2464 MOs.push_back(MachineOperand::CreateImm(1));
2465 MOs.push_back(MachineOperand::CreateReg(0, false));
2466 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindolabca99f72009-04-08 21:14:34 +00002467 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman51dbce62009-09-21 18:30:38 +00002468 break;
2469 }
2470 default: {
Dan Gohman37eb6c82008-12-03 05:21:24 +00002471 // Folding a normal load. Just copy the load's address operands.
2472 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002473 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
Dan Gohman37eb6c82008-12-03 05:21:24 +00002474 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman51dbce62009-09-21 18:30:38 +00002475 break;
2476 }
Dan Gohman37eb6c82008-12-03 05:21:24 +00002477 }
Evan Cheng8f0797f2009-09-11 00:39:26 +00002478 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002479}
2480
2481
Dan Gohman46b948e2008-10-16 01:49:15 +00002482bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2483 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002484 // Check switch flag
2485 if (NoFusing) return 0;
2486
2487 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2488 switch (MI->getOpcode()) {
2489 default: return false;
2490 case X86::TEST8rr:
2491 case X86::TEST16rr:
2492 case X86::TEST32rr:
2493 case X86::TEST64rr:
2494 return true;
2495 }
2496 }
2497
2498 if (Ops.size() != 1)
2499 return false;
2500
2501 unsigned OpNum = Ops[0];
2502 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002503 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002504 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002505 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002506
2507 // Folding a memory location into the two-address part of a two-address
2508 // instruction is different than folding it other places. It requires
2509 // replacing the *two* registers with the memory location.
Evan Chenga5853792009-07-15 06:10:07 +00002510 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002511 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2512 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2513 } else if (OpNum == 0) { // If operand 0
2514 switch (Opc) {
Chris Lattner17f62252009-07-14 20:19:57 +00002515 case X86::MOV8r0:
Owen Anderson9a184ef2008-01-07 01:35:02 +00002516 case X86::MOV16r0:
2517 case X86::MOV32r0:
Owen Anderson9a184ef2008-01-07 01:35:02 +00002518 return true;
2519 default: break;
2520 }
2521 OpcodeTablePtr = &RegOp2MemOpTable0;
2522 } else if (OpNum == 1) {
2523 OpcodeTablePtr = &RegOp2MemOpTable1;
2524 } else if (OpNum == 2) {
2525 OpcodeTablePtr = &RegOp2MemOpTable2;
2526 }
2527
2528 if (OpcodeTablePtr) {
2529 // Find the Opcode to fuse
Jeffrey Yasskin8154d2e2009-11-10 01:02:17 +00002530 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002531 OpcodeTablePtr->find((unsigned*)Opc);
2532 if (I != OpcodeTablePtr->end())
2533 return true;
2534 }
2535 return false;
2536}
2537
2538bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2539 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002540 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Jeffrey Yasskin8154d2e2009-11-10 01:02:17 +00002541 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002542 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2543 if (I == MemOp2RegOpTable.end())
2544 return false;
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002545 DebugLoc dl = MI->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002546 unsigned Opc = I->second.first;
2547 unsigned Index = I->second.second & 0xf;
2548 bool FoldedLoad = I->second.second & (1 << 4);
2549 bool FoldedStore = I->second.second & (1 << 5);
2550 if (UnfoldLoad && !FoldedLoad)
2551 return false;
2552 UnfoldLoad &= FoldedLoad;
2553 if (UnfoldStore && !FoldedStore)
2554 return false;
2555 UnfoldStore &= FoldedStore;
2556
Chris Lattner5b930372008-01-07 07:27:27 +00002557 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002558 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner6a66b292009-07-29 21:10:12 +00002559 const TargetRegisterClass *RC = TOI.getRegClass(&RI);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002560 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002561 SmallVector<MachineOperand,2> BeforeOps;
2562 SmallVector<MachineOperand,2> AfterOps;
2563 SmallVector<MachineOperand,4> ImpOps;
2564 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2565 MachineOperand &Op = MI->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002566 if (i >= Index && i < Index + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002567 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002568 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002569 ImpOps.push_back(Op);
2570 else if (i < Index)
2571 BeforeOps.push_back(Op);
2572 else if (i > Index)
2573 AfterOps.push_back(Op);
2574 }
2575
2576 // Emit the load instruction.
2577 if (UnfoldLoad) {
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002578 std::pair<MachineInstr::mmo_iterator,
2579 MachineInstr::mmo_iterator> MMOs =
2580 MF.extractLoadMemRefs(MI->memoperands_begin(),
2581 MI->memoperands_end());
2582 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002583 if (UnfoldStore) {
2584 // Address operands cannot be marked isKill.
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002585 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002586 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002587 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002588 MO.setIsKill(false);
2589 }
2590 }
2591 }
2592
2593 // Emit the data processing instruction.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002594 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002595 MachineInstrBuilder MIB(DataMI);
2596
2597 if (FoldedStore)
Bill Wendling2b739762009-05-13 21:33:08 +00002598 MIB.addReg(Reg, RegState::Define);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002599 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002600 MIB.addOperand(BeforeOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002601 if (FoldedLoad)
2602 MIB.addReg(Reg);
2603 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002604 MIB.addOperand(AfterOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002605 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2606 MachineOperand &MO = ImpOps[i];
Bill Wendling2b739762009-05-13 21:33:08 +00002607 MIB.addReg(MO.getReg(),
2608 getDefRegState(MO.isDef()) |
2609 RegState::Implicit |
2610 getKillRegState(MO.isKill()) |
Evan Cheng9c73db12009-06-30 08:49:04 +00002611 getDeadRegState(MO.isDead()) |
2612 getUndefRegState(MO.isUndef()));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002613 }
2614 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2615 unsigned NewOpc = 0;
2616 switch (DataMI->getOpcode()) {
2617 default: break;
2618 case X86::CMP64ri32:
2619 case X86::CMP32ri:
2620 case X86::CMP16ri:
2621 case X86::CMP8ri: {
2622 MachineOperand &MO0 = DataMI->getOperand(0);
2623 MachineOperand &MO1 = DataMI->getOperand(1);
2624 if (MO1.getImm() == 0) {
2625 switch (DataMI->getOpcode()) {
2626 default: break;
2627 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2628 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2629 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2630 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2631 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002632 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002633 MO1.ChangeToRegister(MO0.getReg(), false);
2634 }
2635 }
2636 }
2637 NewMIs.push_back(DataMI);
2638
2639 // Emit the store instruction.
2640 if (UnfoldStore) {
Chris Lattner6a66b292009-07-29 21:10:12 +00002641 const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002642 std::pair<MachineInstr::mmo_iterator,
2643 MachineInstr::mmo_iterator> MMOs =
2644 MF.extractStoreMemRefs(MI->memoperands_begin(),
2645 MI->memoperands_end());
2646 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002647 }
2648
2649 return true;
2650}
2651
2652bool
2653X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002654 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002655 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002656 return false;
2657
Jeffrey Yasskin8154d2e2009-11-10 01:02:17 +00002658 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002659 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002660 if (I == MemOp2RegOpTable.end())
2661 return false;
2662 unsigned Opc = I->second.first;
2663 unsigned Index = I->second.second & 0xf;
2664 bool FoldedLoad = I->second.second & (1 << 4);
2665 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002666 const TargetInstrDesc &TID = get(Opc);
Chris Lattner6a66b292009-07-29 21:10:12 +00002667 const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
Dan Gohman31b70a62009-03-04 19:23:38 +00002668 unsigned NumDefs = TID.NumDefs;
Dan Gohman8181bd12008-07-27 21:46:04 +00002669 std::vector<SDValue> AddrOps;
2670 std::vector<SDValue> BeforeOps;
2671 std::vector<SDValue> AfterOps;
Dale Johannesen913ba762009-02-06 01:31:28 +00002672 DebugLoc dl = N->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002673 unsigned NumOps = N->getNumOperands();
Dan Gohman4e3bb1b2009-09-25 20:36:54 +00002674 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002675 SDValue Op = N->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002676 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002677 AddrOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002678 else if (i < Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002679 BeforeOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002680 else if (i > Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002681 AfterOps.push_back(Op);
2682 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002683 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002684 AddrOps.push_back(Chain);
2685
2686 // Emit the load instruction.
2687 SDNode *Load = 0;
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002688 MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002689 if (FoldedLoad) {
Owen Andersonac9de032009-08-10 22:56:29 +00002690 EVT VT = *RC->vt_begin();
Evan Cheng9d7cd4e2009-11-16 21:56:03 +00002691 std::pair<MachineInstr::mmo_iterator,
2692 MachineInstr::mmo_iterator> MMOs =
2693 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2694 cast<MachineSDNode>(N)->memoperands_end());
2695 bool isAligned = (*MMOs.first)->getAlignment() >= 16;
Dan Gohman61fda0d2009-09-25 18:54:59 +00002696 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2697 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002698 NewNodes.push_back(Load);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002699
2700 // Preserve memory reference information.
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002701 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002702 }
2703
2704 // Emit the data processing instruction.
Owen Andersonac9de032009-08-10 22:56:29 +00002705 std::vector<EVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002706 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002707 if (TID.getNumDefs() > 0) {
Chris Lattner6a66b292009-07-29 21:10:12 +00002708 DstRC = TID.OpInfo[0].getRegClass(&RI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002709 VTs.push_back(*DstRC->vt_begin());
2710 }
2711 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Andersonac9de032009-08-10 22:56:29 +00002712 EVT VT = N->getValueType(i);
Owen Anderson36e3a6e2009-08-11 20:47:22 +00002713 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002714 VTs.push_back(VT);
2715 }
2716 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002717 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002718 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dan Gohman61fda0d2009-09-25 18:54:59 +00002719 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2720 BeforeOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002721 NewNodes.push_back(NewNode);
2722
2723 // Emit the store instruction.
2724 if (FoldedStore) {
2725 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002726 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002727 AddrOps.push_back(Chain);
Evan Cheng9d7cd4e2009-11-16 21:56:03 +00002728 std::pair<MachineInstr::mmo_iterator,
2729 MachineInstr::mmo_iterator> MMOs =
2730 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2731 cast<MachineSDNode>(N)->memoperands_end());
2732 bool isAligned = (*MMOs.first)->getAlignment() >= 16;
Dan Gohman61fda0d2009-09-25 18:54:59 +00002733 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2734 isAligned, TM),
2735 dl, MVT::Other,
2736 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002737 NewNodes.push_back(Store);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002738
2739 // Preserve memory reference information.
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002740 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002741 }
2742
2743 return true;
2744}
2745
2746unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohmanf0116582009-10-30 22:18:41 +00002747 bool UnfoldLoad, bool UnfoldStore,
2748 unsigned *LoadRegIndex) const {
Jeffrey Yasskin8154d2e2009-11-10 01:02:17 +00002749 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002750 MemOp2RegOpTable.find((unsigned*)Opc);
2751 if (I == MemOp2RegOpTable.end())
2752 return 0;
2753 bool FoldedLoad = I->second.second & (1 << 4);
2754 bool FoldedStore = I->second.second & (1 << 5);
2755 if (UnfoldLoad && !FoldedLoad)
2756 return 0;
2757 if (UnfoldStore && !FoldedStore)
2758 return 0;
Dan Gohmanf0116582009-10-30 22:18:41 +00002759 if (LoadRegIndex)
2760 *LoadRegIndex = I->second.second & 0xf;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002761 return I->second.first;
2762}
2763
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002764bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002765ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002766 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002767 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002768 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2769 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002770 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002771 return false;
2772}
2773
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002774bool X86InstrInfo::
Evan Chengf5a8a362009-02-06 17:17:30 +00002775isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2776 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002777 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengf5a8a362009-02-06 17:17:30 +00002778 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2779 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002780}
2781
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002782unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2783 switch (Desc->TSFlags & X86II::ImmMask) {
2784 case X86II::Imm8: return 1;
2785 case X86II::Imm16: return 2;
2786 case X86II::Imm32: return 4;
2787 case X86II::Imm64: return 8;
Edwin Törökbd448e32009-07-14 16:55:14 +00002788 default: llvm_unreachable("Immediate size not set!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002789 return 0;
2790 }
2791}
2792
2793/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2794/// e.g. r8, xmm8, etc.
2795bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002796 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002797 switch (MO.getReg()) {
2798 default: break;
2799 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2800 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2801 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2802 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2803 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2804 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2805 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2806 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2807 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2808 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2809 return true;
2810 }
2811 return false;
2812}
2813
2814
2815/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2816/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2817/// size, and 3) use of X86-64 extended registers.
2818unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2819 unsigned REX = 0;
2820 const TargetInstrDesc &Desc = MI.getDesc();
2821
2822 // Pseudo instructions do not need REX prefix byte.
2823 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2824 return 0;
2825 if (Desc.TSFlags & X86II::REX_W)
2826 REX |= 1 << 3;
2827
2828 unsigned NumOps = Desc.getNumOperands();
2829 if (NumOps) {
2830 bool isTwoAddr = NumOps > 1 &&
2831 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2832
2833 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2834 unsigned i = isTwoAddr ? 1 : 0;
2835 for (unsigned e = NumOps; i != e; ++i) {
2836 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002837 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002838 unsigned Reg = MO.getReg();
2839 if (isX86_64NonExtLowByteReg(Reg))
2840 REX |= 0x40;
2841 }
2842 }
2843
2844 switch (Desc.TSFlags & X86II::FormMask) {
2845 case X86II::MRMInitReg:
2846 if (isX86_64ExtendedReg(MI.getOperand(0)))
2847 REX |= (1 << 0) | (1 << 2);
2848 break;
2849 case X86II::MRMSrcReg: {
2850 if (isX86_64ExtendedReg(MI.getOperand(0)))
2851 REX |= 1 << 2;
2852 i = isTwoAddr ? 2 : 1;
2853 for (unsigned e = NumOps; i != e; ++i) {
2854 const MachineOperand& MO = MI.getOperand(i);
2855 if (isX86_64ExtendedReg(MO))
2856 REX |= 1 << 0;
2857 }
2858 break;
2859 }
2860 case X86II::MRMSrcMem: {
2861 if (isX86_64ExtendedReg(MI.getOperand(0)))
2862 REX |= 1 << 2;
2863 unsigned Bit = 0;
2864 i = isTwoAddr ? 2 : 1;
2865 for (; i != NumOps; ++i) {
2866 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002867 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002868 if (isX86_64ExtendedReg(MO))
2869 REX |= 1 << Bit;
2870 Bit++;
2871 }
2872 }
2873 break;
2874 }
2875 case X86II::MRM0m: case X86II::MRM1m:
2876 case X86II::MRM2m: case X86II::MRM3m:
2877 case X86II::MRM4m: case X86II::MRM5m:
2878 case X86II::MRM6m: case X86II::MRM7m:
2879 case X86II::MRMDestMem: {
Dan Gohman2eff7042009-04-13 15:04:25 +00002880 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002881 i = isTwoAddr ? 1 : 0;
2882 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2883 REX |= 1 << 2;
2884 unsigned Bit = 0;
2885 for (; i != e; ++i) {
2886 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002887 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002888 if (isX86_64ExtendedReg(MO))
2889 REX |= 1 << Bit;
2890 Bit++;
2891 }
2892 }
2893 break;
2894 }
2895 default: {
2896 if (isX86_64ExtendedReg(MI.getOperand(0)))
2897 REX |= 1 << 0;
2898 i = isTwoAddr ? 2 : 1;
2899 for (unsigned e = NumOps; i != e; ++i) {
2900 const MachineOperand& MO = MI.getOperand(i);
2901 if (isX86_64ExtendedReg(MO))
2902 REX |= 1 << 2;
2903 }
2904 break;
2905 }
2906 }
2907 }
2908 return REX;
2909}
2910
2911/// sizePCRelativeBlockAddress - This method returns the size of a PC
2912/// relative block address instruction
2913///
2914static unsigned sizePCRelativeBlockAddress() {
2915 return 4;
2916}
2917
2918/// sizeGlobalAddress - Give the size of the emission of this global address
2919///
2920static unsigned sizeGlobalAddress(bool dword) {
2921 return dword ? 8 : 4;
2922}
2923
2924/// sizeConstPoolAddress - Give the size of the emission of this constant
2925/// pool address
2926///
2927static unsigned sizeConstPoolAddress(bool dword) {
2928 return dword ? 8 : 4;
2929}
2930
2931/// sizeExternalSymbolAddress - Give the size of the emission of this external
2932/// symbol
2933///
2934static unsigned sizeExternalSymbolAddress(bool dword) {
2935 return dword ? 8 : 4;
2936}
2937
2938/// sizeJumpTableAddress - Give the size of the emission of this jump
2939/// table address
2940///
2941static unsigned sizeJumpTableAddress(bool dword) {
2942 return dword ? 8 : 4;
2943}
2944
2945static unsigned sizeConstant(unsigned Size) {
2946 return Size;
2947}
2948
2949static unsigned sizeRegModRMByte(){
2950 return 1;
2951}
2952
2953static unsigned sizeSIBByte(){
2954 return 1;
2955}
2956
2957static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2958 unsigned FinalSize = 0;
2959 // If this is a simple integer displacement that doesn't require a relocation.
2960 if (!RelocOp) {
2961 FinalSize += sizeConstant(4);
2962 return FinalSize;
2963 }
2964
2965 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002966 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002967 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002968 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002969 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002970 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002971 FinalSize += sizeJumpTableAddress(false);
2972 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00002973 llvm_unreachable("Unknown value to relocate!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002974 }
2975 return FinalSize;
2976}
2977
2978static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2979 bool IsPIC, bool Is64BitMode) {
2980 const MachineOperand &Op3 = MI.getOperand(Op+3);
2981 int DispVal = 0;
2982 const MachineOperand *DispForReloc = 0;
2983 unsigned FinalSize = 0;
2984
2985 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002986 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002987 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002988 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002989 if (Is64BitMode || IsPIC) {
2990 DispForReloc = &Op3;
2991 } else {
2992 DispVal = 1;
2993 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002994 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002995 if (Is64BitMode || IsPIC) {
2996 DispForReloc = &Op3;
2997 } else {
2998 DispVal = 1;
2999 }
3000 } else {
3001 DispVal = 1;
3002 }
3003
3004 const MachineOperand &Base = MI.getOperand(Op);
3005 const MachineOperand &IndexReg = MI.getOperand(Op+2);
3006
3007 unsigned BaseReg = Base.getReg();
3008
3009 // Is a SIB byte needed?
Evan Cheng92569ce2009-05-12 00:07:35 +00003010 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
3011 IndexReg.getReg() == 0 &&
Evan Cheng099109d2009-05-04 22:49:16 +00003012 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003013 if (BaseReg == 0) { // Just a displacement?
3014 // Emit special case [disp32] encoding
3015 ++FinalSize;
3016 FinalSize += getDisplacementFieldSize(DispForReloc);
3017 } else {
3018 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
3019 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
3020 // Emit simple indirect register encoding... [EAX] f.e.
3021 ++FinalSize;
3022 // Be pessimistic and assume it's a disp32, not a disp8
3023 } else {
3024 // Emit the most general non-SIB encoding: [REG+disp32]
3025 ++FinalSize;
3026 FinalSize += getDisplacementFieldSize(DispForReloc);
3027 }
3028 }
3029
3030 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
3031 assert(IndexReg.getReg() != X86::ESP &&
3032 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
3033
3034 bool ForceDisp32 = false;
3035 if (BaseReg == 0 || DispForReloc) {
3036 // Emit the normal disp32 encoding.
3037 ++FinalSize;
3038 ForceDisp32 = true;
3039 } else {
3040 ++FinalSize;
3041 }
3042
3043 FinalSize += sizeSIBByte();
3044
3045 // Do we need to output a displacement?
3046 if (DispVal != 0 || ForceDisp32) {
3047 FinalSize += getDisplacementFieldSize(DispForReloc);
3048 }
3049 }
3050 return FinalSize;
3051}
3052
3053
3054static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
3055 const TargetInstrDesc *Desc,
3056 bool IsPIC, bool Is64BitMode) {
3057
3058 unsigned Opcode = Desc->Opcode;
3059 unsigned FinalSize = 0;
3060
3061 // Emit the lock opcode prefix as needed.
3062 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
3063
Bill Wendling6ee76552009-05-28 23:40:46 +00003064 // Emit segment override opcode prefix as needed.
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00003065 switch (Desc->TSFlags & X86II::SegOvrMask) {
3066 case X86II::FS:
3067 case X86II::GS:
3068 ++FinalSize;
3069 break;
Edwin Törökbd448e32009-07-14 16:55:14 +00003070 default: llvm_unreachable("Invalid segment!");
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00003071 case 0: break; // No segment override!
3072 }
3073
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003074 // Emit the repeat opcode prefix as needed.
3075 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
3076
3077 // Emit the operand size opcode prefix as needed.
3078 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
3079
3080 // Emit the address size opcode prefix as needed.
3081 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
3082
3083 bool Need0FPrefix = false;
3084 switch (Desc->TSFlags & X86II::Op0Mask) {
3085 case X86II::TB: // Two-byte opcode prefix
3086 case X86II::T8: // 0F 38
3087 case X86II::TA: // 0F 3A
3088 Need0FPrefix = true;
3089 break;
Eric Christopherb5f948c2009-08-08 21:55:08 +00003090 case X86II::TF: // F2 0F 38
3091 ++FinalSize;
3092 Need0FPrefix = true;
3093 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003094 case X86II::REP: break; // already handled.
3095 case X86II::XS: // F3 0F
3096 ++FinalSize;
3097 Need0FPrefix = true;
3098 break;
3099 case X86II::XD: // F2 0F
3100 ++FinalSize;
3101 Need0FPrefix = true;
3102 break;
3103 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
3104 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3105 ++FinalSize;
3106 break; // Two-byte opcode prefix
Edwin Törökbd448e32009-07-14 16:55:14 +00003107 default: llvm_unreachable("Invalid prefix!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003108 case 0: break; // No prefix!
3109 }
3110
3111 if (Is64BitMode) {
3112 // REX prefix
3113 unsigned REX = X86InstrInfo::determineREX(MI);
3114 if (REX)
3115 ++FinalSize;
3116 }
3117
3118 // 0x0F escape code must be emitted just before the opcode.
3119 if (Need0FPrefix)
3120 ++FinalSize;
3121
3122 switch (Desc->TSFlags & X86II::Op0Mask) {
3123 case X86II::T8: // 0F 38
3124 ++FinalSize;
3125 break;
Bill Wendling6ee76552009-05-28 23:40:46 +00003126 case X86II::TA: // 0F 3A
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003127 ++FinalSize;
3128 break;
Eric Christopherb5f948c2009-08-08 21:55:08 +00003129 case X86II::TF: // F2 0F 38
3130 ++FinalSize;
3131 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003132 }
3133
3134 // If this is a two-address instruction, skip one of the register operands.
3135 unsigned NumOps = Desc->getNumOperands();
3136 unsigned CurOp = 0;
3137 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3138 CurOp++;
Evan Cheng099109d2009-05-04 22:49:16 +00003139 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3140 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3141 --NumOps;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003142
3143 switch (Desc->TSFlags & X86II::FormMask) {
Edwin Törökbd448e32009-07-14 16:55:14 +00003144 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003145 case X86II::Pseudo:
3146 // Remember the current PC offset, this is the PIC relocation
3147 // base address.
3148 switch (Opcode) {
3149 default:
3150 break;
3151 case TargetInstrInfo::INLINEASM: {
3152 const MachineFunction *MF = MI.getParent()->getParent();
Chris Lattner5f1fdb32009-08-02 05:20:37 +00003153 const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3154 FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
Chris Lattner621c44d2009-08-22 20:48:53 +00003155 *MF->getTarget().getMCAsmInfo());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003156 break;
3157 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00003158 case TargetInstrInfo::DBG_LABEL:
3159 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003160 break;
3161 case TargetInstrInfo::IMPLICIT_DEF:
Jakob Stoklund Olesen8f12c7c2009-09-28 20:32:26 +00003162 case TargetInstrInfo::KILL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003163 case X86::FP_REG_KILL:
3164 break;
3165 case X86::MOVPC32r: {
3166 // This emits the "call" portion of this pseudo instruction.
3167 ++FinalSize;
3168 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3169 break;
3170 }
3171 }
3172 CurOp = NumOps;
3173 break;
3174 case X86II::RawFrm:
3175 ++FinalSize;
3176
3177 if (CurOp != NumOps) {
3178 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003179 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003180 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003181 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003182 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003183 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003184 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003185 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003186 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3187 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00003188 llvm_unreachable("Unknown RawFrm operand!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003189 }
3190 }
3191 break;
3192
3193 case X86II::AddRegFrm:
3194 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003195 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003196
3197 if (CurOp != NumOps) {
3198 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3199 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003200 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003201 FinalSize += sizeConstant(Size);
3202 else {
3203 bool dword = false;
3204 if (Opcode == X86::MOV64ri)
3205 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003206 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003207 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003208 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003209 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003210 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003211 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003212 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003213 FinalSize += sizeJumpTableAddress(dword);
3214 }
3215 }
3216 break;
3217
3218 case X86II::MRMDestReg: {
3219 ++FinalSize;
3220 FinalSize += sizeRegModRMByte();
3221 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003222 if (CurOp != NumOps) {
3223 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003224 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003225 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003226 break;
3227 }
3228 case X86II::MRMDestMem: {
3229 ++FinalSize;
3230 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003231 CurOp += X86AddrNumOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003232 if (CurOp != NumOps) {
3233 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003234 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003235 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003236 break;
3237 }
3238
3239 case X86II::MRMSrcReg:
3240 ++FinalSize;
3241 FinalSize += sizeRegModRMByte();
3242 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003243 if (CurOp != NumOps) {
3244 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003245 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003246 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003247 break;
3248
3249 case X86II::MRMSrcMem: {
Evan Cheng099109d2009-05-04 22:49:16 +00003250 int AddrOperands;
3251 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3252 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3253 AddrOperands = X86AddrNumOperands - 1; // No segment register
3254 else
3255 AddrOperands = X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003256
3257 ++FinalSize;
3258 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003259 CurOp += AddrOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003260 if (CurOp != NumOps) {
3261 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003262 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003263 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003264 break;
3265 }
3266
3267 case X86II::MRM0r: case X86II::MRM1r:
3268 case X86II::MRM2r: case X86II::MRM3r:
3269 case X86II::MRM4r: case X86II::MRM5r:
3270 case X86II::MRM6r: case X86II::MRM7r:
3271 ++FinalSize;
Evan Cheng099109d2009-05-04 22:49:16 +00003272 if (Desc->getOpcode() == X86::LFENCE ||
Bill Wendling6ee76552009-05-28 23:40:46 +00003273 Desc->getOpcode() == X86::MFENCE) {
3274 // Special handling of lfence and mfence;
Evan Cheng099109d2009-05-04 22:49:16 +00003275 FinalSize += sizeRegModRMByte();
Bill Wendling6ee76552009-05-28 23:40:46 +00003276 } else if (Desc->getOpcode() == X86::MONITOR ||
3277 Desc->getOpcode() == X86::MWAIT) {
3278 // Special handling of monitor and mwait.
3279 FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3280 } else {
Evan Cheng099109d2009-05-04 22:49:16 +00003281 ++CurOp;
3282 FinalSize += sizeRegModRMByte();
3283 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003284
3285 if (CurOp != NumOps) {
3286 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3287 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003288 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003289 FinalSize += sizeConstant(Size);
3290 else {
3291 bool dword = false;
3292 if (Opcode == X86::MOV64ri32)
3293 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003294 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003295 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003296 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003297 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003298 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003299 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003300 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003301 FinalSize += sizeJumpTableAddress(dword);
3302 }
3303 }
3304 break;
3305
3306 case X86II::MRM0m: case X86II::MRM1m:
3307 case X86II::MRM2m: case X86II::MRM3m:
3308 case X86II::MRM4m: case X86II::MRM5m:
3309 case X86II::MRM6m: case X86II::MRM7m: {
3310
3311 ++FinalSize;
3312 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003313 CurOp += X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003314
3315 if (CurOp != NumOps) {
3316 const MachineOperand &MO = MI.getOperand(CurOp++);
3317 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003318 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003319 FinalSize += sizeConstant(Size);
3320 else {
3321 bool dword = false;
3322 if (Opcode == X86::MOV64mi32)
3323 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003324 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003325 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003326 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003327 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003328 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003329 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003330 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003331 FinalSize += sizeJumpTableAddress(dword);
3332 }
3333 }
3334 break;
3335 }
3336
3337 case X86II::MRMInitReg:
3338 ++FinalSize;
3339 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3340 FinalSize += sizeRegModRMByte();
3341 ++CurOp;
3342 break;
3343 }
3344
3345 if (!Desc->isVariadic() && CurOp != NumOps) {
Edwin Török3cb88482009-07-08 18:01:40 +00003346 std::string msg;
3347 raw_string_ostream Msg(msg);
3348 Msg << "Cannot determine size: " << MI;
3349 llvm_report_error(Msg.str());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003350 }
3351
3352
3353 return FinalSize;
3354}
3355
3356
3357unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3358 const TargetInstrDesc &Desc = MI->getDesc();
Chris Lattner144e3482009-07-10 20:53:38 +00003359 bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003360 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003361 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
Chris Lattner739b0102009-06-25 17:28:07 +00003362 if (Desc.getOpcode() == X86::MOVPC32r)
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003363 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003364 return Size;
3365}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003366
Dan Gohman882ab732008-09-30 00:58:23 +00003367/// getGlobalBaseReg - Return a virtual register initialized with the
3368/// the global base register value. Output instructions required to
3369/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003370///
Dan Gohman882ab732008-09-30 00:58:23 +00003371unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3372 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3373 "X86-64 PIC uses RIP relative addressing");
3374
3375 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3376 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3377 if (GlobalBaseReg != 0)
3378 return GlobalBaseReg;
3379
Dan Gohmanb60482f2008-09-23 18:22:58 +00003380 // Insert the set of GlobalBaseReg into the first MBB of the function
3381 MachineBasicBlock &FirstMBB = MF->front();
3382 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Bill Wendling13ee2e42009-02-11 21:51:19 +00003383 DebugLoc DL = DebugLoc::getUnknownLoc();
3384 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
Dan Gohmanb60482f2008-09-23 18:22:58 +00003385 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3386 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3387
3388 const TargetInstrInfo *TII = TM.getInstrInfo();
3389 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3390 // only used in JIT code emission as displacement to pc.
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003391 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
Dan Gohmanb60482f2008-09-23 18:22:58 +00003392
3393 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003394 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
Chris Lattner5d1f2572009-07-09 04:39:06 +00003395 if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003396 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3397 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
Bill Wendling13ee2e42009-02-11 21:51:19 +00003398 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
Daniel Dunbar9f086b92009-09-01 22:06:46 +00003399 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003400 X86II::MO_GOT_ABSOLUTE_ADDRESS);
Dan Gohman882ab732008-09-30 00:58:23 +00003401 } else {
3402 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003403 }
3404
Dan Gohman882ab732008-09-30 00:58:23 +00003405 X86FI->setGlobalBaseReg(GlobalBaseReg);
3406 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003407}