blob: 4e713fb1218d3bad25674df0cf2af10ef18410c6 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Chandler Carruth66b31302015-01-04 12:03:27 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruthb98f63d2015-01-15 10:41:28 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000678namespace {
679struct FindSCEVSize {
680 int Size;
681 FindSCEVSize() : Size(0) {}
682
683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
688 bool isDone() const {
689 return false;
690 }
691};
692}
693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700}
701
702namespace {
703
David Majnemer4e879362014-12-14 09:12:33 +0000704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
David Majnemer4e879362014-12-14 09:12:33 +0000713 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getValue()->getValue();
768 APInt DenominatorVal = D->getValue()->getValue();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 assert(Numerator->isAffine() && "Numerator should be affine");
789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792 Numerator->getNoWrapFlags());
793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 }
796
797 void visitAddExpr(const SCEVAddExpr *Numerator) {
798 SmallVector<const SCEV *, 2> Qs, Rs;
799 Type *Ty = Denominator->getType();
800
801 for (const SCEV *Op : Numerator->operands()) {
802 const SCEV *Q, *R;
803 divide(SE, Op, Denominator, &Q, &R);
804
805 // Bail out if types do not match.
806 if (Ty != Q->getType() || Ty != R->getType()) {
807 Quotient = Zero;
808 Remainder = Numerator;
809 return;
810 }
811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
833 if (Ty != Op->getType()) {
834 Quotient = Zero;
835 Remainder = Numerator;
836 return;
837 }
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 FoundDenominatorTerm = true;
860 Qs.push_back(Q);
861 }
862
863 if (FoundDenominatorTerm) {
864 Remainder = Zero;
865 if (Qs.size() == 1)
866 Quotient = Qs[0];
867 else
868 Quotient = SE.getMulExpr(Qs);
869 return;
870 }
871
872 if (!isa<SCEVUnknown>(Denominator)) {
873 Quotient = Zero;
874 Remainder = Numerator;
875 return;
876 }
877
878 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879 ValueToValueMap RewriteMap;
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(Zero)->getValue();
882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884 if (Remainder->isZero()) {
885 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887 cast<SCEVConstant>(One)->getValue();
888 Quotient =
889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890 return;
891 }
892
893 // Quotient is (Numerator - Remainder) divided by Denominator.
894 const SCEV *Q, *R;
895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897 // This SCEV does not seem to simplify: fail the division here.
898 Quotient = Zero;
899 Remainder = Numerator;
900 return;
901 }
902 divide(SE, Diff, Denominator, &Q, &R);
903 assert(R == Zero &&
904 "(Numerator - Remainder) should evenly divide Denominator");
905 Quotient = Q;
906 }
907
908private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910 const SCEV *Denominator)
911 : SE(S), Denominator(Denominator) {
912 Zero = SE.getConstant(Denominator->getType(), 0);
913 One = SE.getConstant(Denominator->getType(), 1);
914
915 // By default, we don't know how to divide Expr by Denominator.
916 // Providing the default here simplifies the rest of the code.
917 Quotient = Zero;
918 Remainder = Numerator;
919 }
920
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921 ScalarEvolution &SE;
922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000923};
924
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000925}
926
Chris Lattnerd934c702004-04-02 20:23:17 +0000927//===----------------------------------------------------------------------===//
928// Simple SCEV method implementations
929//===----------------------------------------------------------------------===//
930
Eli Friedman61f67622008-08-04 23:49:06 +0000931/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000932/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000933static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000934 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000935 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000936 // Handle the simplest case efficiently.
937 if (K == 1)
938 return SE.getTruncateOrZeroExtend(It, ResultTy);
939
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000940 // We are using the following formula for BC(It, K):
941 //
942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // Suppose, W is the bitwidth of the return value. We must be prepared for
945 // overflow. Hence, we must assure that the result of our computation is
946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
947 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000950 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000955 //
Eli Friedman61f67622008-08-04 23:49:06 +0000956 // This formula is trivially equivalent to the previous formula. However,
957 // this formula can be implemented much more efficiently. The trick is that
958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959 // arithmetic. To do exact division in modular arithmetic, all we have
960 // to do is multiply by the inverse. Therefore, this step can be done at
961 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000962 //
Eli Friedman61f67622008-08-04 23:49:06 +0000963 // The next issue is how to safely do the division by 2^T. The way this
964 // is done is by doing the multiplication step at a width of at least W + T
965 // bits. This way, the bottom W+T bits of the product are accurate. Then,
966 // when we perform the division by 2^T (which is equivalent to a right shift
967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
968 // truncated out after the division by 2^T.
969 //
970 // In comparison to just directly using the first formula, this technique
971 // is much more efficient; using the first formula requires W * K bits,
972 // but this formula less than W + K bits. Also, the first formula requires
973 // a division step, whereas this formula only requires multiplies and shifts.
974 //
975 // It doesn't matter whether the subtraction step is done in the calculation
976 // width or the input iteration count's width; if the subtraction overflows,
977 // the result must be zero anyway. We prefer here to do it in the width of
978 // the induction variable because it helps a lot for certain cases; CodeGen
979 // isn't smart enough to ignore the overflow, which leads to much less
980 // efficient code if the width of the subtraction is wider than the native
981 // register width.
982 //
983 // (It's possible to not widen at all by pulling out factors of 2 before
984 // the multiplication; for example, K=2 can be calculated as
985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986 // extra arithmetic, so it's not an obvious win, and it gets
987 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Eli Friedman61f67622008-08-04 23:49:06 +0000989 // Protection from insane SCEVs; this bound is conservative,
990 // but it probably doesn't matter.
991 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000992 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000994 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000995
Eli Friedman61f67622008-08-04 23:49:06 +0000996 // Calculate K! / 2^T and T; we divide out the factors of two before
997 // multiplying for calculating K! / 2^T to avoid overflow.
998 // Other overflow doesn't matter because we only care about the bottom
999 // W bits of the result.
1000 APInt OddFactorial(W, 1);
1001 unsigned T = 1;
1002 for (unsigned i = 3; i <= K; ++i) {
1003 APInt Mult(W, i);
1004 unsigned TwoFactors = Mult.countTrailingZeros();
1005 T += TwoFactors;
1006 Mult = Mult.lshr(TwoFactors);
1007 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001008 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001009
Eli Friedman61f67622008-08-04 23:49:06 +00001010 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001011 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001012
Dan Gohman8b0a4192010-03-01 17:49:51 +00001013 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001015
1016 // Calculate the multiplicative inverse of K! / 2^T;
1017 // this multiplication factor will perform the exact division by
1018 // K! / 2^T.
1019 APInt Mod = APInt::getSignedMinValue(W+1);
1020 APInt MultiplyFactor = OddFactorial.zext(W+1);
1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022 MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001026 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001028 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001030 Dividend = SE.getMulExpr(Dividend,
1031 SE.getTruncateOrZeroExtend(S, CalculationTy));
1032 }
1033
1034 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001036
1037 // Truncate the result, and divide by K! / 2^T.
1038
1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001041}
1042
Chris Lattnerd934c702004-04-02 20:23:17 +00001043/// evaluateAtIteration - Return the value of this chain of recurrences at
1044/// the specified iteration number. We can evaluate this recurrence by
1045/// multiplying each element in the chain by the binomial coefficient
1046/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001051///
Dan Gohmanaf752342009-07-07 17:06:11 +00001052const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001053 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001056 // The computation is correct in the face of overflow provided that the
1057 // multiplication is performed _after_ the evaluation of the binomial
1058 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001060 if (isa<SCEVCouldNotCompute>(Coeff))
1061 return Coeff;
1062
1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001064 }
1065 return Result;
1066}
1067
Chris Lattnerd934c702004-04-02 20:23:17 +00001068//===----------------------------------------------------------------------===//
1069// SCEV Expression folder implementations
1070//===----------------------------------------------------------------------===//
1071
Dan Gohmanaf752342009-07-07 17:06:11 +00001072const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001073 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001075 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001076 assert(isSCEVable(Ty) &&
1077 "This is not a conversion to a SCEVable type!");
1078 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001079
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 FoldingSetNodeID ID;
1081 ID.AddInteger(scTruncate);
1082 ID.AddPointer(Op);
1083 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001084 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
Dan Gohman3423e722009-06-30 20:13:32 +00001087 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001089 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001091
Dan Gohman79af8542009-04-22 16:20:48 +00001092 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001094 return getTruncateExpr(ST->getOperand(), Ty);
1095
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001105 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107 SmallVector<const SCEV *, 4> Operands;
1108 bool hasTrunc = false;
1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001111 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1112 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001113 Operands.push_back(S);
1114 }
1115 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001116 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001117 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001118 }
1119
Nick Lewycky5c901f32011-01-19 18:56:00 +00001120 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001121 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001122 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1123 SmallVector<const SCEV *, 4> Operands;
1124 bool hasTrunc = false;
1125 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1126 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001127 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1128 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001129 Operands.push_back(S);
1130 }
1131 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001132 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001133 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001134 }
1135
Dan Gohman5a728c92009-06-18 16:24:47 +00001136 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001137 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001138 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001139 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001140 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001141 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001142 }
1143
Dan Gohman89dd42a2010-06-25 18:47:08 +00001144 // The cast wasn't folded; create an explicit cast node. We can reuse
1145 // the existing insert position since if we get here, we won't have
1146 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001147 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1148 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001149 UniqueSCEVs.InsertNode(S, IP);
1150 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001151}
1152
Sanjoy Das4153f472015-02-18 01:47:07 +00001153// Get the limit of a recurrence such that incrementing by Step cannot cause
1154// signed overflow as long as the value of the recurrence within the
1155// loop does not exceed this limit before incrementing.
1156static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1157 ICmpInst::Predicate *Pred,
1158 ScalarEvolution *SE) {
1159 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1160 if (SE->isKnownPositive(Step)) {
1161 *Pred = ICmpInst::ICMP_SLT;
1162 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1163 SE->getSignedRange(Step).getSignedMax());
1164 }
1165 if (SE->isKnownNegative(Step)) {
1166 *Pred = ICmpInst::ICMP_SGT;
1167 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1168 SE->getSignedRange(Step).getSignedMin());
1169 }
1170 return nullptr;
1171}
1172
1173// Get the limit of a recurrence such that incrementing by Step cannot cause
1174// unsigned overflow as long as the value of the recurrence within the loop does
1175// not exceed this limit before incrementing.
1176static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1177 ICmpInst::Predicate *Pred,
1178 ScalarEvolution *SE) {
1179 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1180 *Pred = ICmpInst::ICMP_ULT;
1181
1182 return SE->getConstant(APInt::getMinValue(BitWidth) -
1183 SE->getUnsignedRange(Step).getUnsignedMax());
1184}
1185
1186namespace {
1187
1188struct ExtendOpTraitsBase {
1189 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1190};
1191
1192// Used to make code generic over signed and unsigned overflow.
1193template <typename ExtendOp> struct ExtendOpTraits {
1194 // Members present:
1195 //
1196 // static const SCEV::NoWrapFlags WrapType;
1197 //
1198 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1199 //
1200 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1201 // ICmpInst::Predicate *Pred,
1202 // ScalarEvolution *SE);
1203};
1204
1205template <>
1206struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1207 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1208
1209 static const GetExtendExprTy GetExtendExpr;
1210
1211 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1212 ICmpInst::Predicate *Pred,
1213 ScalarEvolution *SE) {
1214 return getSignedOverflowLimitForStep(Step, Pred, SE);
1215 }
1216};
1217
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001218const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001219 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1220
1221template <>
1222struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1223 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1224
1225 static const GetExtendExprTy GetExtendExpr;
1226
1227 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1228 ICmpInst::Predicate *Pred,
1229 ScalarEvolution *SE) {
1230 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1231 }
1232};
1233
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001234const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001235 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1236}
1237
1238// The recurrence AR has been shown to have no signed/unsigned wrap or something
1239// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1240// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1241// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1242// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1243// expression "Step + sext/zext(PreIncAR)" is congruent with
1244// "sext/zext(PostIncAR)"
1245template <typename ExtendOpTy>
1246static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1247 ScalarEvolution *SE) {
1248 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1249 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1250
1251 const Loop *L = AR->getLoop();
1252 const SCEV *Start = AR->getStart();
1253 const SCEV *Step = AR->getStepRecurrence(*SE);
1254
1255 // Check for a simple looking step prior to loop entry.
1256 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1257 if (!SA)
1258 return nullptr;
1259
1260 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1261 // subtraction is expensive. For this purpose, perform a quick and dirty
1262 // difference, by checking for Step in the operand list.
1263 SmallVector<const SCEV *, 4> DiffOps;
1264 for (const SCEV *Op : SA->operands())
1265 if (Op != Step)
1266 DiffOps.push_back(Op);
1267
1268 if (DiffOps.size() == SA->getNumOperands())
1269 return nullptr;
1270
1271 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1272 // `Step`:
1273
1274 // 1. NSW/NUW flags on the step increment.
1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001281 //
1282
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001283 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001286 return PreStart;
1287
1288 // 2. Direct overflow check on the step operation's expression.
1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291 const SCEV *OperandExtendedStart =
1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293 (SE->*GetExtendExpr)(Step, WideTy));
1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300 }
1301 return PreStart;
1302 }
1303
1304 // 3. Loop precondition.
1305 ICmpInst::Predicate Pred;
1306 const SCEV *OverflowLimit =
1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308
1309 if (OverflowLimit &&
1310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1311 return PreStart;
1312 }
1313 return nullptr;
1314}
1315
1316// Get the normalized zero or sign extended expression for this AddRec's Start.
1317template <typename ExtendOpTy>
1318static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319 ScalarEvolution *SE) {
1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321
1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323 if (!PreStart)
1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325
1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327 (SE->*GetExtendExpr)(PreStart, Ty));
1328}
1329
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001330// Try to prove away overflow by looking at "nearby" add recurrences. A
1331// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333//
1334// Formally:
1335//
1336// {S,+,X} == {S-T,+,X} + T
1337// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338//
1339// If ({S-T,+,X} + T) does not overflow ... (1)
1340//
1341// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342//
1343// If {S-T,+,X} does not overflow ... (2)
1344//
1345// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346// == {Ext(S-T)+Ext(T),+,Ext(X)}
1347//
1348// If (S-T)+T does not overflow ... (3)
1349//
1350// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351// == {Ext(S),+,Ext(X)} == LHS
1352//
1353// Thus, if (1), (2) and (3) are true for some T, then
1354// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355//
1356// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357// does not overflow" restricted to the 0th iteration. Therefore we only need
1358// to check for (1) and (2).
1359//
1360// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361// is `Delta` (defined below).
1362//
1363template <typename ExtendOpTy>
1364bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365 const SCEV *Step,
1366 const Loop *L) {
1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368
1369 // We restrict `Start` to a constant to prevent SCEV from spending too much
1370 // time here. It is correct (but more expensive) to continue with a
1371 // non-constant `Start` and do a general SCEV subtraction to compute
1372 // `PreStart` below.
1373 //
1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375 if (!StartC)
1376 return false;
1377
1378 APInt StartAI = StartC->getValue()->getValue();
1379
1380 for (unsigned Delta : {-2, -1, 1, 2}) {
1381 const SCEV *PreStart = getConstant(StartAI - Delta);
1382
1383 // Give up if we don't already have the add recurrence we need because
1384 // actually constructing an add recurrence is relatively expensive.
1385 const SCEVAddRecExpr *PreAR = [&]() {
1386 FoldingSetNodeID ID;
1387 ID.AddInteger(scAddRecExpr);
1388 ID.AddPointer(PreStart);
1389 ID.AddPointer(Step);
1390 ID.AddPointer(L);
1391 void *IP = nullptr;
1392 return static_cast<SCEVAddRecExpr *>(
NAKAMURA Takumi8f49dd32015-03-05 01:02:45 +00001393 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001394 }();
1395
1396 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1397 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1398 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1399 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1400 DeltaS, &Pred, this);
1401 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1402 return true;
1403 }
1404 }
1405
1406 return false;
1407}
1408
Dan Gohmanaf752342009-07-07 17:06:11 +00001409const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001410 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001411 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001412 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001413 assert(isSCEVable(Ty) &&
1414 "This is not a conversion to a SCEVable type!");
1415 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001416
Dan Gohman3423e722009-06-30 20:13:32 +00001417 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001418 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1419 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001420 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001421
Dan Gohman79af8542009-04-22 16:20:48 +00001422 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001423 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001424 return getZeroExtendExpr(SZ->getOperand(), Ty);
1425
Dan Gohman74a0ba12009-07-13 20:55:53 +00001426 // Before doing any expensive analysis, check to see if we've already
1427 // computed a SCEV for this Op and Ty.
1428 FoldingSetNodeID ID;
1429 ID.AddInteger(scZeroExtend);
1430 ID.AddPointer(Op);
1431 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001432 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001433 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1434
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001435 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1436 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1437 // It's possible the bits taken off by the truncate were all zero bits. If
1438 // so, we should be able to simplify this further.
1439 const SCEV *X = ST->getOperand();
1440 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001441 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1442 unsigned NewBits = getTypeSizeInBits(Ty);
1443 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001444 CR.zextOrTrunc(NewBits)))
1445 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001446 }
1447
Dan Gohman76466372009-04-27 20:16:15 +00001448 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001449 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001450 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001451 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001452 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001453 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001454 const SCEV *Start = AR->getStart();
1455 const SCEV *Step = AR->getStepRecurrence(*this);
1456 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1457 const Loop *L = AR->getLoop();
1458
Dan Gohman62ef6a72009-07-25 01:22:26 +00001459 // If we have special knowledge that this addrec won't overflow,
1460 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001461 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001462 return getAddRecExpr(
1463 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001465
Dan Gohman76466372009-04-27 20:16:15 +00001466 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467 // Note that this serves two purposes: It filters out loops that are
1468 // simply not analyzable, and it covers the case where this code is
1469 // being called from within backedge-taken count analysis, such that
1470 // attempting to ask for the backedge-taken count would likely result
1471 // in infinite recursion. In the later case, the analysis code will
1472 // cope with a conservative value, and it will take care to purge
1473 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001474 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001475 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001476 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001477 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001478
1479 // Check whether the backedge-taken count can be losslessly casted to
1480 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001481 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001482 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001483 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001484 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001486 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001487 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001488 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001489 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491 const SCEV *WideMaxBECount =
1492 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001493 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001494 getAddExpr(WideStart,
1495 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001496 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001497 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001498 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001500 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001501 return getAddRecExpr(
1502 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001504 }
Dan Gohman76466372009-04-27 20:16:15 +00001505 // Similar to above, only this time treat the step value as signed.
1506 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001507 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001508 getAddExpr(WideStart,
1509 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001510 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001511 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001512 // Cache knowledge of AR NW, which is propagated to this AddRec.
1513 // Negative step causes unsigned wrap, but it still can't self-wrap.
1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001515 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001516 return getAddRecExpr(
1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001519 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001520 }
1521
1522 // If the backedge is guarded by a comparison with the pre-inc value
1523 // the addrec is safe. Also, if the entry is guarded by a comparison
1524 // with the start value and the backedge is guarded by a comparison
1525 // with the post-inc value, the addrec is safe.
1526 if (isKnownPositive(Step)) {
1527 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1528 getUnsignedRange(Step).getUnsignedMax());
1529 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001530 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001531 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001532 AR->getPostIncExpr(*this), N))) {
1533 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1534 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001535 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001536 return getAddRecExpr(
1537 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1538 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001539 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001540 } else if (isKnownNegative(Step)) {
1541 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1542 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001543 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1544 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001545 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001546 AR->getPostIncExpr(*this), N))) {
1547 // Cache knowledge of AR NW, which is propagated to this AddRec.
1548 // Negative step causes unsigned wrap, but it still can't self-wrap.
1549 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1550 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001551 return getAddRecExpr(
1552 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1553 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001554 }
Dan Gohman76466372009-04-27 20:16:15 +00001555 }
1556 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001557
1558 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1559 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1560 return getAddRecExpr(
1561 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1562 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1563 }
Dan Gohman76466372009-04-27 20:16:15 +00001564 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001565
Dan Gohman74a0ba12009-07-13 20:55:53 +00001566 // The cast wasn't folded; create an explicit cast node.
1567 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001568 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001569 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1570 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001571 UniqueSCEVs.InsertNode(S, IP);
1572 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001573}
1574
Dan Gohmanaf752342009-07-07 17:06:11 +00001575const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001576 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001577 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001578 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001579 assert(isSCEVable(Ty) &&
1580 "This is not a conversion to a SCEVable type!");
1581 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001582
Dan Gohman3423e722009-06-30 20:13:32 +00001583 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001584 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1585 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001586 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001587
Dan Gohman79af8542009-04-22 16:20:48 +00001588 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001589 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001590 return getSignExtendExpr(SS->getOperand(), Ty);
1591
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001592 // sext(zext(x)) --> zext(x)
1593 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1594 return getZeroExtendExpr(SZ->getOperand(), Ty);
1595
Dan Gohman74a0ba12009-07-13 20:55:53 +00001596 // Before doing any expensive analysis, check to see if we've already
1597 // computed a SCEV for this Op and Ty.
1598 FoldingSetNodeID ID;
1599 ID.AddInteger(scSignExtend);
1600 ID.AddPointer(Op);
1601 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001602 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001603 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1604
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001605 // If the input value is provably positive, build a zext instead.
1606 if (isKnownNonNegative(Op))
1607 return getZeroExtendExpr(Op, Ty);
1608
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001609 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1610 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1611 // It's possible the bits taken off by the truncate were all sign bits. If
1612 // so, we should be able to simplify this further.
1613 const SCEV *X = ST->getOperand();
1614 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001615 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1616 unsigned NewBits = getTypeSizeInBits(Ty);
1617 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001618 CR.sextOrTrunc(NewBits)))
1619 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001620 }
1621
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001622 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1623 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1624 if (SA->getNumOperands() == 2) {
1625 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1626 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1627 if (SMul && SC1) {
1628 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001629 const APInt &C1 = SC1->getValue()->getValue();
1630 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001631 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001632 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001633 return getAddExpr(getSignExtendExpr(SC1, Ty),
1634 getSignExtendExpr(SMul, Ty));
1635 }
1636 }
1637 }
1638 }
Dan Gohman76466372009-04-27 20:16:15 +00001639 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001640 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001641 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001642 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001643 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001644 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001645 const SCEV *Start = AR->getStart();
1646 const SCEV *Step = AR->getStepRecurrence(*this);
1647 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1648 const Loop *L = AR->getLoop();
1649
Dan Gohman62ef6a72009-07-25 01:22:26 +00001650 // If we have special knowledge that this addrec won't overflow,
1651 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001652 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001653 return getAddRecExpr(
1654 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1655 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001656
Dan Gohman76466372009-04-27 20:16:15 +00001657 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1658 // Note that this serves two purposes: It filters out loops that are
1659 // simply not analyzable, and it covers the case where this code is
1660 // being called from within backedge-taken count analysis, such that
1661 // attempting to ask for the backedge-taken count would likely result
1662 // in infinite recursion. In the later case, the analysis code will
1663 // cope with a conservative value, and it will take care to purge
1664 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001665 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001666 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001667 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001668 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001669
1670 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001671 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001672 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001673 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001674 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001675 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1676 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001677 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001678 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001679 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001680 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1681 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1682 const SCEV *WideMaxBECount =
1683 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001684 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001685 getAddExpr(WideStart,
1686 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001687 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001688 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001689 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1690 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001691 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001692 return getAddRecExpr(
1693 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1694 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001695 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001696 // Similar to above, only this time treat the step value as unsigned.
1697 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001698 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001699 getAddExpr(WideStart,
1700 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001701 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001702 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001703 // If AR wraps around then
1704 //
1705 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1706 // => SAdd != OperandExtendedAdd
1707 //
1708 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1709 // (SAdd == OperandExtendedAdd => AR is NW)
1710
1711 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1712
Dan Gohman8c129d72009-07-16 17:34:36 +00001713 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001714 return getAddRecExpr(
1715 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1716 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001717 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001718 }
1719
1720 // If the backedge is guarded by a comparison with the pre-inc value
1721 // the addrec is safe. Also, if the entry is guarded by a comparison
1722 // with the start value and the backedge is guarded by a comparison
1723 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001724 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001725 const SCEV *OverflowLimit =
1726 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001727 if (OverflowLimit &&
1728 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1729 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1730 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1731 OverflowLimit)))) {
1732 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1733 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001734 return getAddRecExpr(
1735 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1736 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001737 }
1738 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001739 // If Start and Step are constants, check if we can apply this
1740 // transformation:
1741 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1742 auto SC1 = dyn_cast<SCEVConstant>(Start);
1743 auto SC2 = dyn_cast<SCEVConstant>(Step);
1744 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001745 const APInt &C1 = SC1->getValue()->getValue();
1746 const APInt &C2 = SC2->getValue()->getValue();
1747 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1748 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001749 Start = getSignExtendExpr(Start, Ty);
1750 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1751 L, AR->getNoWrapFlags());
1752 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1753 }
1754 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001755
1756 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1757 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1758 return getAddRecExpr(
1759 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1760 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1761 }
Dan Gohman76466372009-04-27 20:16:15 +00001762 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001763
Dan Gohman74a0ba12009-07-13 20:55:53 +00001764 // The cast wasn't folded; create an explicit cast node.
1765 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001766 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001767 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1768 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001769 UniqueSCEVs.InsertNode(S, IP);
1770 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001771}
1772
Dan Gohman8db2edc2009-06-13 15:56:47 +00001773/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1774/// unspecified bits out to the given type.
1775///
Dan Gohmanaf752342009-07-07 17:06:11 +00001776const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001777 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001778 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1779 "This is not an extending conversion!");
1780 assert(isSCEVable(Ty) &&
1781 "This is not a conversion to a SCEVable type!");
1782 Ty = getEffectiveSCEVType(Ty);
1783
1784 // Sign-extend negative constants.
1785 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1786 if (SC->getValue()->getValue().isNegative())
1787 return getSignExtendExpr(Op, Ty);
1788
1789 // Peel off a truncate cast.
1790 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001791 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001792 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1793 return getAnyExtendExpr(NewOp, Ty);
1794 return getTruncateOrNoop(NewOp, Ty);
1795 }
1796
1797 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001798 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001799 if (!isa<SCEVZeroExtendExpr>(ZExt))
1800 return ZExt;
1801
1802 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001803 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001804 if (!isa<SCEVSignExtendExpr>(SExt))
1805 return SExt;
1806
Dan Gohman51ad99d2010-01-21 02:09:26 +00001807 // Force the cast to be folded into the operands of an addrec.
1808 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1809 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001810 for (const SCEV *Op : AR->operands())
1811 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001812 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001813 }
1814
Dan Gohman8db2edc2009-06-13 15:56:47 +00001815 // If the expression is obviously signed, use the sext cast value.
1816 if (isa<SCEVSMaxExpr>(Op))
1817 return SExt;
1818
1819 // Absent any other information, use the zext cast value.
1820 return ZExt;
1821}
1822
Dan Gohman038d02e2009-06-14 22:58:51 +00001823/// CollectAddOperandsWithScales - Process the given Ops list, which is
1824/// a list of operands to be added under the given scale, update the given
1825/// map. This is a helper function for getAddRecExpr. As an example of
1826/// what it does, given a sequence of operands that would form an add
1827/// expression like this:
1828///
Tobias Grosserba49e422014-03-05 10:37:17 +00001829/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001830///
1831/// where A and B are constants, update the map with these values:
1832///
1833/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1834///
1835/// and add 13 + A*B*29 to AccumulatedConstant.
1836/// This will allow getAddRecExpr to produce this:
1837///
1838/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1839///
1840/// This form often exposes folding opportunities that are hidden in
1841/// the original operand list.
1842///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001843/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001844/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1845/// the common case where no interesting opportunities are present, and
1846/// is also used as a check to avoid infinite recursion.
1847///
1848static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001849CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001850 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001851 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001852 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001853 const APInt &Scale,
1854 ScalarEvolution &SE) {
1855 bool Interesting = false;
1856
Dan Gohman45073042010-06-18 19:12:32 +00001857 // Iterate over the add operands. They are sorted, with constants first.
1858 unsigned i = 0;
1859 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1860 ++i;
1861 // Pull a buried constant out to the outside.
1862 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1863 Interesting = true;
1864 AccumulatedConstant += Scale * C->getValue()->getValue();
1865 }
1866
1867 // Next comes everything else. We're especially interested in multiplies
1868 // here, but they're in the middle, so just visit the rest with one loop.
1869 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001870 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1871 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1872 APInt NewScale =
1873 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1874 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1875 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001876 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001877 Interesting |=
1878 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001879 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001880 NewScale, SE);
1881 } else {
1882 // A multiplication of a constant with some other value. Update
1883 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001884 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1885 const SCEV *Key = SE.getMulExpr(MulOps);
1886 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001887 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001888 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001889 NewOps.push_back(Pair.first->first);
1890 } else {
1891 Pair.first->second += NewScale;
1892 // The map already had an entry for this value, which may indicate
1893 // a folding opportunity.
1894 Interesting = true;
1895 }
1896 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001897 } else {
1898 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001899 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001900 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001901 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001902 NewOps.push_back(Pair.first->first);
1903 } else {
1904 Pair.first->second += Scale;
1905 // The map already had an entry for this value, which may indicate
1906 // a folding opportunity.
1907 Interesting = true;
1908 }
1909 }
1910 }
1911
1912 return Interesting;
1913}
1914
1915namespace {
1916 struct APIntCompare {
1917 bool operator()(const APInt &LHS, const APInt &RHS) const {
1918 return LHS.ult(RHS);
1919 }
1920 };
1921}
1922
Sanjoy Das81401d42015-01-10 23:41:24 +00001923// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1924// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1925// can't-overflow flags for the operation if possible.
1926static SCEV::NoWrapFlags
1927StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1928 const SmallVectorImpl<const SCEV *> &Ops,
1929 SCEV::NoWrapFlags OldFlags) {
1930 using namespace std::placeholders;
1931
1932 bool CanAnalyze =
1933 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1934 (void)CanAnalyze;
1935 assert(CanAnalyze && "don't call from other places!");
1936
1937 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1938 SCEV::NoWrapFlags SignOrUnsignWrap =
1939 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1940
1941 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1942 auto IsKnownNonNegative =
1943 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1944
1945 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1946 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1947 return ScalarEvolution::setFlags(OldFlags,
1948 (SCEV::NoWrapFlags)SignOrUnsignMask);
1949
1950 return OldFlags;
1951}
1952
Dan Gohman4d5435d2009-05-24 23:45:28 +00001953/// getAddExpr - Get a canonical add expression, or something simpler if
1954/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001955const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001956 SCEV::NoWrapFlags Flags) {
1957 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1958 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001959 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001960 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001961#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001962 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001963 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001964 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001965 "SCEVAddExpr operand types don't match!");
1966#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001967
Sanjoy Das81401d42015-01-10 23:41:24 +00001968 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001969
Chris Lattnerd934c702004-04-02 20:23:17 +00001970 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001971 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001972
1973 // If there are any constants, fold them together.
1974 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001975 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001976 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001977 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001978 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001979 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001980 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1981 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001982 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001983 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001984 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001985 }
1986
1987 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001988 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001989 Ops.erase(Ops.begin());
1990 --Idx;
1991 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001992
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001993 if (Ops.size() == 1) return Ops[0];
1994 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001995
Dan Gohman15871f22010-08-27 21:39:59 +00001996 // Okay, check to see if the same value occurs in the operand list more than
1997 // once. If so, merge them together into an multiply expression. Since we
1998 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001999 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002000 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002001 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002002 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002003 // Scan ahead to count how many equal operands there are.
2004 unsigned Count = 2;
2005 while (i+Count != e && Ops[i+Count] == Ops[i])
2006 ++Count;
2007 // Merge the values into a multiply.
2008 const SCEV *Scale = getConstant(Ty, Count);
2009 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2010 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002012 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002013 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002014 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002015 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002016 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002017 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002018 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002019
Dan Gohman2e55cc52009-05-08 21:03:19 +00002020 // Check for truncates. If all the operands are truncated from the same
2021 // type, see if factoring out the truncate would permit the result to be
2022 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2023 // if the contents of the resulting outer trunc fold to something simple.
2024 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2025 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002026 Type *DstType = Trunc->getType();
2027 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002028 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002029 bool Ok = true;
2030 // Check all the operands to see if they can be represented in the
2031 // source type of the truncate.
2032 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2033 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2034 if (T->getOperand()->getType() != SrcType) {
2035 Ok = false;
2036 break;
2037 }
2038 LargeOps.push_back(T->getOperand());
2039 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002040 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002041 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002042 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002043 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2044 if (const SCEVTruncateExpr *T =
2045 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2046 if (T->getOperand()->getType() != SrcType) {
2047 Ok = false;
2048 break;
2049 }
2050 LargeMulOps.push_back(T->getOperand());
2051 } else if (const SCEVConstant *C =
2052 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002053 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002054 } else {
2055 Ok = false;
2056 break;
2057 }
2058 }
2059 if (Ok)
2060 LargeOps.push_back(getMulExpr(LargeMulOps));
2061 } else {
2062 Ok = false;
2063 break;
2064 }
2065 }
2066 if (Ok) {
2067 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002068 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002069 // If it folds to something simple, use it. Otherwise, don't.
2070 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2071 return getTruncateExpr(Fold, DstType);
2072 }
2073 }
2074
2075 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002076 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2077 ++Idx;
2078
2079 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002080 if (Idx < Ops.size()) {
2081 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002082 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002083 // If we have an add, expand the add operands onto the end of the operands
2084 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002085 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002086 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002087 DeletedAdd = true;
2088 }
2089
2090 // If we deleted at least one add, we added operands to the end of the list,
2091 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002092 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002093 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002094 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002095 }
2096
2097 // Skip over the add expression until we get to a multiply.
2098 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2099 ++Idx;
2100
Dan Gohman038d02e2009-06-14 22:58:51 +00002101 // Check to see if there are any folding opportunities present with
2102 // operands multiplied by constant values.
2103 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2104 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002105 DenseMap<const SCEV *, APInt> M;
2106 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002107 APInt AccumulatedConstant(BitWidth, 0);
2108 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002109 Ops.data(), Ops.size(),
2110 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002111 // Some interesting folding opportunity is present, so its worthwhile to
2112 // re-generate the operands list. Group the operands by constant scale,
2113 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002114 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002115 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002116 E = NewOps.end(); I != E; ++I)
2117 MulOpLists[M.find(*I)->second].push_back(*I);
2118 // Re-generate the operands list.
2119 Ops.clear();
2120 if (AccumulatedConstant != 0)
2121 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002122 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2123 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002124 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002125 Ops.push_back(getMulExpr(getConstant(I->first),
2126 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002127 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00002128 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00002129 if (Ops.size() == 1)
2130 return Ops[0];
2131 return getAddExpr(Ops);
2132 }
2133 }
2134
Chris Lattnerd934c702004-04-02 20:23:17 +00002135 // If we are adding something to a multiply expression, make sure the
2136 // something is not already an operand of the multiply. If so, merge it into
2137 // the multiply.
2138 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002139 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002140 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002141 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002142 if (isa<SCEVConstant>(MulOpSCEV))
2143 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002144 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002145 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002146 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002147 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002148 if (Mul->getNumOperands() != 2) {
2149 // If the multiply has more than two operands, we must get the
2150 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002151 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2152 Mul->op_begin()+MulOp);
2153 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002154 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002155 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00002156 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002157 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002158 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002159 if (Ops.size() == 2) return OuterMul;
2160 if (AddOp < Idx) {
2161 Ops.erase(Ops.begin()+AddOp);
2162 Ops.erase(Ops.begin()+Idx-1);
2163 } else {
2164 Ops.erase(Ops.begin()+Idx);
2165 Ops.erase(Ops.begin()+AddOp-1);
2166 }
2167 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002168 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002169 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002170
Chris Lattnerd934c702004-04-02 20:23:17 +00002171 // Check this multiply against other multiplies being added together.
2172 for (unsigned OtherMulIdx = Idx+1;
2173 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2174 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002175 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002176 // If MulOp occurs in OtherMul, we can fold the two multiplies
2177 // together.
2178 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2179 OMulOp != e; ++OMulOp)
2180 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2181 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002182 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002183 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002184 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002185 Mul->op_begin()+MulOp);
2186 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002187 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002188 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002189 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002190 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002191 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002192 OtherMul->op_begin()+OMulOp);
2193 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002194 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002195 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002196 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2197 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002199 Ops.erase(Ops.begin()+Idx);
2200 Ops.erase(Ops.begin()+OtherMulIdx-1);
2201 Ops.push_back(OuterMul);
2202 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002203 }
2204 }
2205 }
2206 }
2207
2208 // If there are any add recurrences in the operands list, see if any other
2209 // added values are loop invariant. If so, we can fold them into the
2210 // recurrence.
2211 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2212 ++Idx;
2213
2214 // Scan over all recurrences, trying to fold loop invariants into them.
2215 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2216 // Scan all of the other operands to this add and add them to the vector if
2217 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002218 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002219 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002220 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002221 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002222 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002223 LIOps.push_back(Ops[i]);
2224 Ops.erase(Ops.begin()+i);
2225 --i; --e;
2226 }
2227
2228 // If we found some loop invariants, fold them into the recurrence.
2229 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002230 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002231 LIOps.push_back(AddRec->getStart());
2232
Dan Gohmanaf752342009-07-07 17:06:11 +00002233 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002234 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002235 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002236
Dan Gohman16206132010-06-30 07:16:37 +00002237 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002238 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002239 // Always propagate NW.
2240 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002241 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002242
Chris Lattnerd934c702004-04-02 20:23:17 +00002243 // If all of the other operands were loop invariant, we are done.
2244 if (Ops.size() == 1) return NewRec;
2245
Nick Lewyckydb66b822011-09-06 05:08:09 +00002246 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002247 for (unsigned i = 0;; ++i)
2248 if (Ops[i] == AddRec) {
2249 Ops[i] = NewRec;
2250 break;
2251 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002252 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002253 }
2254
2255 // Okay, if there weren't any loop invariants to be folded, check to see if
2256 // there are multiple AddRec's with the same loop induction variable being
2257 // added together. If so, we can fold them.
2258 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002259 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2260 ++OtherIdx)
2261 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2262 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2263 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2264 AddRec->op_end());
2265 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2266 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002267 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002268 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002269 if (OtherAddRec->getLoop() == AddRecLoop) {
2270 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2271 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002272 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002273 AddRecOps.append(OtherAddRec->op_begin()+i,
2274 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002275 break;
2276 }
Dan Gohman028c1812010-08-29 14:53:34 +00002277 AddRecOps[i] = getAddExpr(AddRecOps[i],
2278 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002279 }
2280 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002281 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002282 // Step size has changed, so we cannot guarantee no self-wraparound.
2283 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002284 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002285 }
2286
2287 // Otherwise couldn't fold anything into this recurrence. Move onto the
2288 // next one.
2289 }
2290
2291 // Okay, it looks like we really DO need an add expr. Check to see if we
2292 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002293 FoldingSetNodeID ID;
2294 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002295 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2296 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002297 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002298 SCEVAddExpr *S =
2299 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2300 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002301 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2302 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002303 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2304 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002305 UniqueSCEVs.InsertNode(S, IP);
2306 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002307 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002308 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002309}
2310
Nick Lewycky287682e2011-10-04 06:51:26 +00002311static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2312 uint64_t k = i*j;
2313 if (j > 1 && k / j != i) Overflow = true;
2314 return k;
2315}
2316
2317/// Compute the result of "n choose k", the binomial coefficient. If an
2318/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002319/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002320static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2321 // We use the multiplicative formula:
2322 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2323 // At each iteration, we take the n-th term of the numeral and divide by the
2324 // (k-n)th term of the denominator. This division will always produce an
2325 // integral result, and helps reduce the chance of overflow in the
2326 // intermediate computations. However, we can still overflow even when the
2327 // final result would fit.
2328
2329 if (n == 0 || n == k) return 1;
2330 if (k > n) return 0;
2331
2332 if (k > n/2)
2333 k = n-k;
2334
2335 uint64_t r = 1;
2336 for (uint64_t i = 1; i <= k; ++i) {
2337 r = umul_ov(r, n-(i-1), Overflow);
2338 r /= i;
2339 }
2340 return r;
2341}
2342
Nick Lewycky05044c22014-12-06 00:45:50 +00002343/// Determine if any of the operands in this SCEV are a constant or if
2344/// any of the add or multiply expressions in this SCEV contain a constant.
2345static bool containsConstantSomewhere(const SCEV *StartExpr) {
2346 SmallVector<const SCEV *, 4> Ops;
2347 Ops.push_back(StartExpr);
2348 while (!Ops.empty()) {
2349 const SCEV *CurrentExpr = Ops.pop_back_val();
2350 if (isa<SCEVConstant>(*CurrentExpr))
2351 return true;
2352
2353 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2354 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002355 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002356 }
2357 }
2358 return false;
2359}
2360
Dan Gohman4d5435d2009-05-24 23:45:28 +00002361/// getMulExpr - Get a canonical multiply expression, or something simpler if
2362/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002363const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002364 SCEV::NoWrapFlags Flags) {
2365 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2366 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002367 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002368 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002369#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002370 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002371 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002372 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002373 "SCEVMulExpr operand types don't match!");
2374#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002375
Sanjoy Das81401d42015-01-10 23:41:24 +00002376 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002377
Chris Lattnerd934c702004-04-02 20:23:17 +00002378 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002379 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002380
2381 // If there are any constants, fold them together.
2382 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002383 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002384
2385 // C1*(C2+V) -> C1*C2 + C1*V
2386 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002387 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2388 // If any of Add's ops are Adds or Muls with a constant,
2389 // apply this transformation as well.
2390 if (Add->getNumOperands() == 2)
2391 if (containsConstantSomewhere(Add))
2392 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2393 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002394
Chris Lattnerd934c702004-04-02 20:23:17 +00002395 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002396 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002397 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002398 ConstantInt *Fold = ConstantInt::get(getContext(),
2399 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002400 RHSC->getValue()->getValue());
2401 Ops[0] = getConstant(Fold);
2402 Ops.erase(Ops.begin()+1); // Erase the folded element
2403 if (Ops.size() == 1) return Ops[0];
2404 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002405 }
2406
2407 // If we are left with a constant one being multiplied, strip it off.
2408 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2409 Ops.erase(Ops.begin());
2410 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002411 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002412 // If we have a multiply of zero, it will always be zero.
2413 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002414 } else if (Ops[0]->isAllOnesValue()) {
2415 // If we have a mul by -1 of an add, try distributing the -1 among the
2416 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002417 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002418 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2419 SmallVector<const SCEV *, 4> NewOps;
2420 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002421 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2422 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002423 const SCEV *Mul = getMulExpr(Ops[0], *I);
2424 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2425 NewOps.push_back(Mul);
2426 }
2427 if (AnyFolded)
2428 return getAddExpr(NewOps);
2429 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002430 else if (const SCEVAddRecExpr *
2431 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2432 // Negation preserves a recurrence's no self-wrap property.
2433 SmallVector<const SCEV *, 4> Operands;
2434 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2435 E = AddRec->op_end(); I != E; ++I) {
2436 Operands.push_back(getMulExpr(Ops[0], *I));
2437 }
2438 return getAddRecExpr(Operands, AddRec->getLoop(),
2439 AddRec->getNoWrapFlags(SCEV::FlagNW));
2440 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002441 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002442 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002443
2444 if (Ops.size() == 1)
2445 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002446 }
2447
2448 // Skip over the add expression until we get to a multiply.
2449 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2450 ++Idx;
2451
Chris Lattnerd934c702004-04-02 20:23:17 +00002452 // If there are mul operands inline them all into this expression.
2453 if (Idx < Ops.size()) {
2454 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002455 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002456 // If we have an mul, expand the mul operands onto the end of the operands
2457 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002458 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002459 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002460 DeletedMul = true;
2461 }
2462
2463 // If we deleted at least one mul, we added operands to the end of the list,
2464 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002465 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002466 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002467 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002468 }
2469
2470 // If there are any add recurrences in the operands list, see if any other
2471 // added values are loop invariant. If so, we can fold them into the
2472 // recurrence.
2473 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2474 ++Idx;
2475
2476 // Scan over all recurrences, trying to fold loop invariants into them.
2477 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2478 // Scan all of the other operands to this mul and add them to the vector if
2479 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002480 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002481 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002482 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002483 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002484 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002485 LIOps.push_back(Ops[i]);
2486 Ops.erase(Ops.begin()+i);
2487 --i; --e;
2488 }
2489
2490 // If we found some loop invariants, fold them into the recurrence.
2491 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002492 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002493 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002494 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002495 const SCEV *Scale = getMulExpr(LIOps);
2496 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2497 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002498
Dan Gohman16206132010-06-30 07:16:37 +00002499 // Build the new addrec. Propagate the NUW and NSW flags if both the
2500 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002501 //
2502 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002503 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002504 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2505 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002506
2507 // If all of the other operands were loop invariant, we are done.
2508 if (Ops.size() == 1) return NewRec;
2509
Nick Lewyckydb66b822011-09-06 05:08:09 +00002510 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002511 for (unsigned i = 0;; ++i)
2512 if (Ops[i] == AddRec) {
2513 Ops[i] = NewRec;
2514 break;
2515 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002516 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002517 }
2518
2519 // Okay, if there weren't any loop invariants to be folded, check to see if
2520 // there are multiple AddRec's with the same loop induction variable being
2521 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002522
2523 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2524 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2525 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2526 // ]]],+,...up to x=2n}.
2527 // Note that the arguments to choose() are always integers with values
2528 // known at compile time, never SCEV objects.
2529 //
2530 // The implementation avoids pointless extra computations when the two
2531 // addrec's are of different length (mathematically, it's equivalent to
2532 // an infinite stream of zeros on the right).
2533 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002534 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002535 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002536 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002537 const SCEVAddRecExpr *OtherAddRec =
2538 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2539 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002540 continue;
2541
Nick Lewycky97756402014-09-01 05:17:15 +00002542 bool Overflow = false;
2543 Type *Ty = AddRec->getType();
2544 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2545 SmallVector<const SCEV*, 7> AddRecOps;
2546 for (int x = 0, xe = AddRec->getNumOperands() +
2547 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2548 const SCEV *Term = getConstant(Ty, 0);
2549 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2550 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2551 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2552 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2553 z < ze && !Overflow; ++z) {
2554 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2555 uint64_t Coeff;
2556 if (LargerThan64Bits)
2557 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2558 else
2559 Coeff = Coeff1*Coeff2;
2560 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2561 const SCEV *Term1 = AddRec->getOperand(y-z);
2562 const SCEV *Term2 = OtherAddRec->getOperand(z);
2563 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002564 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002565 }
Nick Lewycky97756402014-09-01 05:17:15 +00002566 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002567 }
Nick Lewycky97756402014-09-01 05:17:15 +00002568 if (!Overflow) {
2569 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2570 SCEV::FlagAnyWrap);
2571 if (Ops.size() == 2) return NewAddRec;
2572 Ops[Idx] = NewAddRec;
2573 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2574 OpsModified = true;
2575 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2576 if (!AddRec)
2577 break;
2578 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002579 }
Nick Lewycky97756402014-09-01 05:17:15 +00002580 if (OpsModified)
2581 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002582
2583 // Otherwise couldn't fold anything into this recurrence. Move onto the
2584 // next one.
2585 }
2586
2587 // Okay, it looks like we really DO need an mul expr. Check to see if we
2588 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002589 FoldingSetNodeID ID;
2590 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002591 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2592 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002593 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002594 SCEVMulExpr *S =
2595 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2596 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002597 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2598 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002599 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2600 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002601 UniqueSCEVs.InsertNode(S, IP);
2602 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002603 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002604 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002605}
2606
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002607/// getUDivExpr - Get a canonical unsigned division expression, or something
2608/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002609const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2610 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002611 assert(getEffectiveSCEVType(LHS->getType()) ==
2612 getEffectiveSCEVType(RHS->getType()) &&
2613 "SCEVUDivExpr operand types don't match!");
2614
Dan Gohmana30370b2009-05-04 22:02:23 +00002615 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002616 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002617 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002618 // If the denominator is zero, the result of the udiv is undefined. Don't
2619 // try to analyze it, because the resolution chosen here may differ from
2620 // the resolution chosen in other parts of the compiler.
2621 if (!RHSC->getValue()->isZero()) {
2622 // Determine if the division can be folded into the operands of
2623 // its operands.
2624 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002625 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002626 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002627 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002628 // For non-power-of-two values, effectively round the value up to the
2629 // nearest power of two.
2630 if (!RHSC->getValue()->getValue().isPowerOf2())
2631 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002632 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002633 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002634 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2635 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002636 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2637 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2638 const APInt &StepInt = Step->getValue()->getValue();
2639 const APInt &DivInt = RHSC->getValue()->getValue();
2640 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002641 getZeroExtendExpr(AR, ExtTy) ==
2642 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2643 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002644 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002645 SmallVector<const SCEV *, 4> Operands;
2646 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2647 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002648 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002649 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002650 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002651 /// Get a canonical UDivExpr for a recurrence.
2652 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2653 // We can currently only fold X%N if X is constant.
2654 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2655 if (StartC && !DivInt.urem(StepInt) &&
2656 getZeroExtendExpr(AR, ExtTy) ==
2657 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2658 getZeroExtendExpr(Step, ExtTy),
2659 AR->getLoop(), SCEV::FlagAnyWrap)) {
2660 const APInt &StartInt = StartC->getValue()->getValue();
2661 const APInt &StartRem = StartInt.urem(StepInt);
2662 if (StartRem != 0)
2663 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2664 AR->getLoop(), SCEV::FlagNW);
2665 }
2666 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002667 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2668 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2669 SmallVector<const SCEV *, 4> Operands;
2670 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2671 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2672 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2673 // Find an operand that's safely divisible.
2674 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2675 const SCEV *Op = M->getOperand(i);
2676 const SCEV *Div = getUDivExpr(Op, RHSC);
2677 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2678 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2679 M->op_end());
2680 Operands[i] = Div;
2681 return getMulExpr(Operands);
2682 }
2683 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002684 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002685 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002686 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002687 SmallVector<const SCEV *, 4> Operands;
2688 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2689 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2690 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2691 Operands.clear();
2692 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2693 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2694 if (isa<SCEVUDivExpr>(Op) ||
2695 getMulExpr(Op, RHS) != A->getOperand(i))
2696 break;
2697 Operands.push_back(Op);
2698 }
2699 if (Operands.size() == A->getNumOperands())
2700 return getAddExpr(Operands);
2701 }
2702 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002703
Dan Gohmanacd700a2010-04-22 01:35:11 +00002704 // Fold if both operands are constant.
2705 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2706 Constant *LHSCV = LHSC->getValue();
2707 Constant *RHSCV = RHSC->getValue();
2708 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2709 RHSCV)));
2710 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002711 }
2712 }
2713
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002714 FoldingSetNodeID ID;
2715 ID.AddInteger(scUDivExpr);
2716 ID.AddPointer(LHS);
2717 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002718 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002719 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002720 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2721 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002722 UniqueSCEVs.InsertNode(S, IP);
2723 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002724}
2725
Nick Lewycky31eaca52014-01-27 10:04:03 +00002726static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2727 APInt A = C1->getValue()->getValue().abs();
2728 APInt B = C2->getValue()->getValue().abs();
2729 uint32_t ABW = A.getBitWidth();
2730 uint32_t BBW = B.getBitWidth();
2731
2732 if (ABW > BBW)
2733 B = B.zext(ABW);
2734 else if (ABW < BBW)
2735 A = A.zext(BBW);
2736
2737 return APIntOps::GreatestCommonDivisor(A, B);
2738}
2739
2740/// getUDivExactExpr - Get a canonical unsigned division expression, or
2741/// something simpler if possible. There is no representation for an exact udiv
2742/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2743/// We can't do this when it's not exact because the udiv may be clearing bits.
2744const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2745 const SCEV *RHS) {
2746 // TODO: we could try to find factors in all sorts of things, but for now we
2747 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2748 // end of this file for inspiration.
2749
2750 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2751 if (!Mul)
2752 return getUDivExpr(LHS, RHS);
2753
2754 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2755 // If the mulexpr multiplies by a constant, then that constant must be the
2756 // first element of the mulexpr.
2757 if (const SCEVConstant *LHSCst =
2758 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2759 if (LHSCst == RHSCst) {
2760 SmallVector<const SCEV *, 2> Operands;
2761 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2762 return getMulExpr(Operands);
2763 }
2764
2765 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2766 // that there's a factor provided by one of the other terms. We need to
2767 // check.
2768 APInt Factor = gcd(LHSCst, RHSCst);
2769 if (!Factor.isIntN(1)) {
2770 LHSCst = cast<SCEVConstant>(
2771 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2772 RHSCst = cast<SCEVConstant>(
2773 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2774 SmallVector<const SCEV *, 2> Operands;
2775 Operands.push_back(LHSCst);
2776 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2777 LHS = getMulExpr(Operands);
2778 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002779 Mul = dyn_cast<SCEVMulExpr>(LHS);
2780 if (!Mul)
2781 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002782 }
2783 }
2784 }
2785
2786 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2787 if (Mul->getOperand(i) == RHS) {
2788 SmallVector<const SCEV *, 2> Operands;
2789 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2790 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2791 return getMulExpr(Operands);
2792 }
2793 }
2794
2795 return getUDivExpr(LHS, RHS);
2796}
Chris Lattnerd934c702004-04-02 20:23:17 +00002797
Dan Gohman4d5435d2009-05-24 23:45:28 +00002798/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2799/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002800const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2801 const Loop *L,
2802 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002803 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002804 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002805 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002806 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002807 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002808 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002809 }
2810
2811 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002812 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002813}
2814
Dan Gohman4d5435d2009-05-24 23:45:28 +00002815/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2816/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002817const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002818ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002819 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002820 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002821#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002822 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002823 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002824 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002825 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002826 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002827 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002828 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002829#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002830
Dan Gohmanbe928e32008-06-18 16:23:07 +00002831 if (Operands.back()->isZero()) {
2832 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002833 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002834 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002835
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002836 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2837 // use that information to infer NUW and NSW flags. However, computing a
2838 // BE count requires calling getAddRecExpr, so we may not yet have a
2839 // meaningful BE count at this point (and if we don't, we'd be stuck
2840 // with a SCEVCouldNotCompute as the cached BE count).
2841
Sanjoy Das81401d42015-01-10 23:41:24 +00002842 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002843
Dan Gohman223a5d22008-08-08 18:33:12 +00002844 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002845 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002846 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002847 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002848 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002849 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002850 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002851 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002852 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002853 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002854 // AddRecs require their operands be loop-invariant with respect to their
2855 // loops. Don't perform this transformation if it would break this
2856 // requirement.
2857 bool AllInvariant = true;
2858 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002859 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002860 AllInvariant = false;
2861 break;
2862 }
2863 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002864 // Create a recurrence for the outer loop with the same step size.
2865 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002866 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2867 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002868 SCEV::NoWrapFlags OuterFlags =
2869 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002870
2871 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002872 AllInvariant = true;
2873 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002874 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002875 AllInvariant = false;
2876 break;
2877 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002878 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002879 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002880 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002881 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2882 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002883 SCEV::NoWrapFlags InnerFlags =
2884 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002885 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2886 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002887 }
2888 // Reset Operands to its original state.
2889 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002890 }
2891 }
2892
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002893 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2894 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002895 FoldingSetNodeID ID;
2896 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002897 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2898 ID.AddPointer(Operands[i]);
2899 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002900 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002901 SCEVAddRecExpr *S =
2902 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2903 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002904 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2905 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002906 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2907 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002908 UniqueSCEVs.InsertNode(S, IP);
2909 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002910 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002911 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002912}
2913
Dan Gohmanabd17092009-06-24 14:49:00 +00002914const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2915 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002916 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002917 Ops.push_back(LHS);
2918 Ops.push_back(RHS);
2919 return getSMaxExpr(Ops);
2920}
2921
Dan Gohmanaf752342009-07-07 17:06:11 +00002922const SCEV *
2923ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002924 assert(!Ops.empty() && "Cannot get empty smax!");
2925 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002926#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002927 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002928 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002929 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002930 "SCEVSMaxExpr operand types don't match!");
2931#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002932
2933 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002934 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002935
2936 // If there are any constants, fold them together.
2937 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002938 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002939 ++Idx;
2940 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002941 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002942 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002943 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002944 APIntOps::smax(LHSC->getValue()->getValue(),
2945 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002946 Ops[0] = getConstant(Fold);
2947 Ops.erase(Ops.begin()+1); // Erase the folded element
2948 if (Ops.size() == 1) return Ops[0];
2949 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002950 }
2951
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002952 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002953 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2954 Ops.erase(Ops.begin());
2955 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002956 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2957 // If we have an smax with a constant maximum-int, it will always be
2958 // maximum-int.
2959 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002960 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002961
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002962 if (Ops.size() == 1) return Ops[0];
2963 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002964
2965 // Find the first SMax
2966 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2967 ++Idx;
2968
2969 // Check to see if one of the operands is an SMax. If so, expand its operands
2970 // onto our operand list, and recurse to simplify.
2971 if (Idx < Ops.size()) {
2972 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002973 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002974 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002975 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002976 DeletedSMax = true;
2977 }
2978
2979 if (DeletedSMax)
2980 return getSMaxExpr(Ops);
2981 }
2982
2983 // Okay, check to see if the same value occurs in the operand list twice. If
2984 // so, delete one. Since we sorted the list, these values are required to
2985 // be adjacent.
2986 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002987 // X smax Y smax Y --> X smax Y
2988 // X smax Y --> X, if X is always greater than Y
2989 if (Ops[i] == Ops[i+1] ||
2990 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2991 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2992 --i; --e;
2993 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002994 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2995 --i; --e;
2996 }
2997
2998 if (Ops.size() == 1) return Ops[0];
2999
3000 assert(!Ops.empty() && "Reduced smax down to nothing!");
3001
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003002 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003003 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003004 FoldingSetNodeID ID;
3005 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003006 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3007 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003008 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003009 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003010 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3011 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003012 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3013 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003014 UniqueSCEVs.InsertNode(S, IP);
3015 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003016}
3017
Dan Gohmanabd17092009-06-24 14:49:00 +00003018const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3019 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003020 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003021 Ops.push_back(LHS);
3022 Ops.push_back(RHS);
3023 return getUMaxExpr(Ops);
3024}
3025
Dan Gohmanaf752342009-07-07 17:06:11 +00003026const SCEV *
3027ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003028 assert(!Ops.empty() && "Cannot get empty umax!");
3029 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003030#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003031 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003032 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003033 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003034 "SCEVUMaxExpr operand types don't match!");
3035#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003036
3037 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00003038 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003039
3040 // If there are any constants, fold them together.
3041 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003042 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003043 ++Idx;
3044 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003045 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003046 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003047 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003048 APIntOps::umax(LHSC->getValue()->getValue(),
3049 RHSC->getValue()->getValue()));
3050 Ops[0] = getConstant(Fold);
3051 Ops.erase(Ops.begin()+1); // Erase the folded element
3052 if (Ops.size() == 1) return Ops[0];
3053 LHSC = cast<SCEVConstant>(Ops[0]);
3054 }
3055
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003056 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003057 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3058 Ops.erase(Ops.begin());
3059 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003060 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3061 // If we have an umax with a constant maximum-int, it will always be
3062 // maximum-int.
3063 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003064 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003065
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003066 if (Ops.size() == 1) return Ops[0];
3067 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003068
3069 // Find the first UMax
3070 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3071 ++Idx;
3072
3073 // Check to see if one of the operands is a UMax. If so, expand its operands
3074 // onto our operand list, and recurse to simplify.
3075 if (Idx < Ops.size()) {
3076 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003077 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003078 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003079 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003080 DeletedUMax = true;
3081 }
3082
3083 if (DeletedUMax)
3084 return getUMaxExpr(Ops);
3085 }
3086
3087 // Okay, check to see if the same value occurs in the operand list twice. If
3088 // so, delete one. Since we sorted the list, these values are required to
3089 // be adjacent.
3090 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003091 // X umax Y umax Y --> X umax Y
3092 // X umax Y --> X, if X is always greater than Y
3093 if (Ops[i] == Ops[i+1] ||
3094 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3095 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3096 --i; --e;
3097 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003098 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3099 --i; --e;
3100 }
3101
3102 if (Ops.size() == 1) return Ops[0];
3103
3104 assert(!Ops.empty() && "Reduced umax down to nothing!");
3105
3106 // Okay, it looks like we really DO need a umax expr. Check to see if we
3107 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003108 FoldingSetNodeID ID;
3109 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003110 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3111 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003112 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003113 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3115 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003116 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3117 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003118 UniqueSCEVs.InsertNode(S, IP);
3119 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003120}
3121
Dan Gohmanabd17092009-06-24 14:49:00 +00003122const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3123 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003124 // ~smax(~x, ~y) == smin(x, y).
3125 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3126}
3127
Dan Gohmanabd17092009-06-24 14:49:00 +00003128const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3129 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003130 // ~umax(~x, ~y) == umin(x, y)
3131 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3132}
3133
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003134const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003135 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003136 // constant expression and then folding it back into a ConstantInt.
3137 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003138 return getConstant(IntTy,
3139 F->getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003140}
3141
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003142const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3143 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003144 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003145 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003146 // constant expression and then folding it back into a ConstantInt.
3147 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003148 return getConstant(
3149 IntTy,
3150 F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
3151 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003152}
3153
Dan Gohmanaf752342009-07-07 17:06:11 +00003154const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003155 // Don't attempt to do anything other than create a SCEVUnknown object
3156 // here. createSCEV only calls getUnknown after checking for all other
3157 // interesting possibilities, and any other code that calls getUnknown
3158 // is doing so in order to hide a value from SCEV canonicalization.
3159
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003160 FoldingSetNodeID ID;
3161 ID.AddInteger(scUnknown);
3162 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003163 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003164 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3165 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3166 "Stale SCEVUnknown in uniquing map!");
3167 return S;
3168 }
3169 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3170 FirstUnknown);
3171 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003172 UniqueSCEVs.InsertNode(S, IP);
3173 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003174}
3175
Chris Lattnerd934c702004-04-02 20:23:17 +00003176//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003177// Basic SCEV Analysis and PHI Idiom Recognition Code
3178//
3179
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003180/// isSCEVable - Test if values of the given type are analyzable within
3181/// the SCEV framework. This primarily includes integer types, and it
3182/// can optionally include pointer types if the ScalarEvolution class
3183/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003184bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003185 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003186 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003187}
3188
3189/// getTypeSizeInBits - Return the size in bits of the specified type,
3190/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003191uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003192 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003193 return F->getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003194}
3195
3196/// getEffectiveSCEVType - Return a type with the same bitwidth as
3197/// the given type and which represents how SCEV will treat the given
3198/// type, for which isSCEVable must return true. For pointer types,
3199/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003200Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003201 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3202
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003203 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003204 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003205 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003206
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003207 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003208 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003209 return F->getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003210}
Chris Lattnerd934c702004-04-02 20:23:17 +00003211
Dan Gohmanaf752342009-07-07 17:06:11 +00003212const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003213 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003214}
3215
Shuxin Yangefc4c012013-07-08 17:33:13 +00003216namespace {
3217 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3218 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3219 // is set iff if find such SCEVUnknown.
3220 //
3221 struct FindInvalidSCEVUnknown {
3222 bool FindOne;
3223 FindInvalidSCEVUnknown() { FindOne = false; }
3224 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003225 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003226 case scConstant:
3227 return false;
3228 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003229 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003230 FindOne = true;
3231 return false;
3232 default:
3233 return true;
3234 }
3235 }
3236 bool isDone() const { return FindOne; }
3237 };
3238}
3239
3240bool ScalarEvolution::checkValidity(const SCEV *S) const {
3241 FindInvalidSCEVUnknown F;
3242 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3243 ST.visitAll(S);
3244
3245 return !F.FindOne;
3246}
3247
Chris Lattnerd934c702004-04-02 20:23:17 +00003248/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3249/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003250const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003251 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003252
Shuxin Yangefc4c012013-07-08 17:33:13 +00003253 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3254 if (I != ValueExprMap.end()) {
3255 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003256 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003257 return S;
3258 else
3259 ValueExprMap.erase(I);
3260 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003261 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003262
3263 // The process of creating a SCEV for V may have caused other SCEVs
3264 // to have been created, so it's necessary to insert the new entry
3265 // from scratch, rather than trying to remember the insert position
3266 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003267 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003268 return S;
3269}
3270
Dan Gohman0a40ad92009-04-16 03:18:22 +00003271/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3272///
Dan Gohmanaf752342009-07-07 17:06:11 +00003273const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003274 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003275 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003276 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003277
Chris Lattner229907c2011-07-18 04:54:35 +00003278 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003279 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003280 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003281 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003282}
3283
3284/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003285const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003286 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003287 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003288 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003289
Chris Lattner229907c2011-07-18 04:54:35 +00003290 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003291 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003292 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003293 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003294 return getMinusSCEV(AllOnes, V);
3295}
3296
Andrew Trick8b55b732011-03-14 16:50:06 +00003297/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003298const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003299 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003300 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3301
Dan Gohman46f00a22010-07-20 16:53:00 +00003302 // Fast path: X - X --> 0.
3303 if (LHS == RHS)
3304 return getConstant(LHS->getType(), 0);
3305
Sanjoy Dascb473662015-01-22 00:48:47 +00003306 // X - Y --> X + -Y.
3307 // X -(nsw || nuw) Y --> X + -Y.
3308 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003309}
3310
3311/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3312/// input value to the specified type. If the type must be extended, it is zero
3313/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003314const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003315ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3316 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003317 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003319 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003320 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003321 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003322 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003323 return getTruncateExpr(V, Ty);
3324 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003325}
3326
3327/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3328/// input value to the specified type. If the type must be extended, it is sign
3329/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003330const SCEV *
3331ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003332 Type *Ty) {
3333 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003334 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3335 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003336 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003337 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003338 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003339 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003340 return getTruncateExpr(V, Ty);
3341 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003342}
3343
Dan Gohmane712a2f2009-05-13 03:46:30 +00003344/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3345/// input value to the specified type. If the type must be extended, it is zero
3346/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003347const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003348ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3349 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003350 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003352 "Cannot noop or zero extend with non-integer arguments!");
3353 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3354 "getNoopOrZeroExtend cannot truncate!");
3355 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3356 return V; // No conversion
3357 return getZeroExtendExpr(V, Ty);
3358}
3359
3360/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3361/// input value to the specified type. If the type must be extended, it is sign
3362/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003363const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003364ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3365 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003366 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3367 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003368 "Cannot noop or sign extend with non-integer arguments!");
3369 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3370 "getNoopOrSignExtend cannot truncate!");
3371 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3372 return V; // No conversion
3373 return getSignExtendExpr(V, Ty);
3374}
3375
Dan Gohman8db2edc2009-06-13 15:56:47 +00003376/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3377/// the input value to the specified type. If the type must be extended,
3378/// it is extended with unspecified bits. The conversion must not be
3379/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003380const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003381ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3382 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003383 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3384 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003385 "Cannot noop or any extend with non-integer arguments!");
3386 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3387 "getNoopOrAnyExtend cannot truncate!");
3388 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3389 return V; // No conversion
3390 return getAnyExtendExpr(V, Ty);
3391}
3392
Dan Gohmane712a2f2009-05-13 03:46:30 +00003393/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3394/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003395const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003396ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3397 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003398 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3399 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003400 "Cannot truncate or noop with non-integer arguments!");
3401 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3402 "getTruncateOrNoop cannot extend!");
3403 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3404 return V; // No conversion
3405 return getTruncateExpr(V, Ty);
3406}
3407
Dan Gohman96212b62009-06-22 00:31:57 +00003408/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3409/// the types using zero-extension, and then perform a umax operation
3410/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003411const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3412 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003413 const SCEV *PromotedLHS = LHS;
3414 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003415
3416 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3417 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3418 else
3419 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3420
3421 return getUMaxExpr(PromotedLHS, PromotedRHS);
3422}
3423
Dan Gohman2bc22302009-06-22 15:03:27 +00003424/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3425/// the types using zero-extension, and then perform a umin operation
3426/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003427const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3428 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003429 const SCEV *PromotedLHS = LHS;
3430 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003431
3432 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3433 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3434 else
3435 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3436
3437 return getUMinExpr(PromotedLHS, PromotedRHS);
3438}
3439
Andrew Trick87716c92011-03-17 23:51:11 +00003440/// getPointerBase - Transitively follow the chain of pointer-type operands
3441/// until reaching a SCEV that does not have a single pointer operand. This
3442/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3443/// but corner cases do exist.
3444const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3445 // A pointer operand may evaluate to a nonpointer expression, such as null.
3446 if (!V->getType()->isPointerTy())
3447 return V;
3448
3449 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3450 return getPointerBase(Cast->getOperand());
3451 }
3452 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003453 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003454 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3455 I != E; ++I) {
3456 if ((*I)->getType()->isPointerTy()) {
3457 // Cannot find the base of an expression with multiple pointer operands.
3458 if (PtrOp)
3459 return V;
3460 PtrOp = *I;
3461 }
3462 }
3463 if (!PtrOp)
3464 return V;
3465 return getPointerBase(PtrOp);
3466 }
3467 return V;
3468}
3469
Dan Gohman0b89dff2009-07-25 01:13:03 +00003470/// PushDefUseChildren - Push users of the given Instruction
3471/// onto the given Worklist.
3472static void
3473PushDefUseChildren(Instruction *I,
3474 SmallVectorImpl<Instruction *> &Worklist) {
3475 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003476 for (User *U : I->users())
3477 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003478}
3479
3480/// ForgetSymbolicValue - This looks up computed SCEV values for all
3481/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003482/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003483/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003484void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003485ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003486 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003487 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003488
Dan Gohman0b89dff2009-07-25 01:13:03 +00003489 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003490 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003491 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003492 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003493 if (!Visited.insert(I).second)
3494 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003495
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003496 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003497 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003498 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003499 const SCEV *Old = It->second;
3500
Dan Gohman0b89dff2009-07-25 01:13:03 +00003501 // Short-circuit the def-use traversal if the symbolic name
3502 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003503 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003504 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003505
Dan Gohman0b89dff2009-07-25 01:13:03 +00003506 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003507 // structure, it's a PHI that's in the progress of being computed
3508 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3509 // additional loop trip count information isn't going to change anything.
3510 // In the second case, createNodeForPHI will perform the necessary
3511 // updates on its own when it gets to that point. In the third, we do
3512 // want to forget the SCEVUnknown.
3513 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003514 !isa<SCEVUnknown>(Old) ||
3515 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003516 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003517 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003518 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003519 }
3520
3521 PushDefUseChildren(I, Worklist);
3522 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003523}
Chris Lattnerd934c702004-04-02 20:23:17 +00003524
3525/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3526/// a loop header, making it a potential recurrence, or it doesn't.
3527///
Dan Gohmanaf752342009-07-07 17:06:11 +00003528const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003529 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3530 if (L->getHeader() == PN->getParent()) {
3531 // The loop may have multiple entrances or multiple exits; we can analyze
3532 // this phi as an addrec if it has a unique entry value and a unique
3533 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003534 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003535 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3536 Value *V = PN->getIncomingValue(i);
3537 if (L->contains(PN->getIncomingBlock(i))) {
3538 if (!BEValueV) {
3539 BEValueV = V;
3540 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003541 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003542 break;
3543 }
3544 } else if (!StartValueV) {
3545 StartValueV = V;
3546 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003547 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003548 break;
3549 }
3550 }
3551 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003552 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003553 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003554 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003555 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003556 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003557
3558 // Using this symbolic name for the PHI, analyze the value coming around
3559 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003560 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003561
3562 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3563 // has a special value for the first iteration of the loop.
3564
3565 // If the value coming around the backedge is an add with the symbolic
3566 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003567 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003568 // If there is a single occurrence of the symbolic value, replace it
3569 // with a recurrence.
3570 unsigned FoundIndex = Add->getNumOperands();
3571 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3572 if (Add->getOperand(i) == SymbolicName)
3573 if (FoundIndex == e) {
3574 FoundIndex = i;
3575 break;
3576 }
3577
3578 if (FoundIndex != Add->getNumOperands()) {
3579 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003580 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003581 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3582 if (i != FoundIndex)
3583 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003584 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003585
3586 // This is not a valid addrec if the step amount is varying each
3587 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003588 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003589 (isa<SCEVAddRecExpr>(Accum) &&
3590 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003591 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003592
3593 // If the increment doesn't overflow, then neither the addrec nor
3594 // the post-increment will overflow.
3595 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003596 if (OBO->getOperand(0) == PN) {
3597 if (OBO->hasNoUnsignedWrap())
3598 Flags = setFlags(Flags, SCEV::FlagNUW);
3599 if (OBO->hasNoSignedWrap())
3600 Flags = setFlags(Flags, SCEV::FlagNSW);
3601 }
Benjamin Kramer6094f302013-10-28 07:30:06 +00003602 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003603 // If the increment is an inbounds GEP, then we know the address
3604 // space cannot be wrapped around. We cannot make any guarantee
3605 // about signed or unsigned overflow because pointers are
3606 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003607 // pointer. We can guarantee that no unsigned wrap occurs if the
3608 // indices form a positive value.
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003609 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003610 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003611
3612 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3613 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3614 Flags = setFlags(Flags, SCEV::FlagNUW);
3615 }
Sanjoy Dascb473662015-01-22 00:48:47 +00003616
3617 // We cannot transfer nuw and nsw flags from subtraction
3618 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3619 // for instance.
Dan Gohman51ad99d2010-01-21 02:09:26 +00003620 }
3621
Dan Gohman6635bb22010-04-12 07:49:36 +00003622 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003623 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003624
Dan Gohman51ad99d2010-01-21 02:09:26 +00003625 // Since the no-wrap flags are on the increment, they apply to the
3626 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003627 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003628 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003629 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003630
3631 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003632 // to be symbolic. We now need to go back and purge all of the
3633 // entries for the scalars that use the symbolic expression.
3634 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003635 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003636 return PHISCEV;
3637 }
3638 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003639 } else if (const SCEVAddRecExpr *AddRec =
3640 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003641 // Otherwise, this could be a loop like this:
3642 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3643 // In this case, j = {1,+,1} and BEValue is j.
3644 // Because the other in-value of i (0) fits the evolution of BEValue
3645 // i really is an addrec evolution.
3646 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003647 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003648
3649 // If StartVal = j.start - j.stride, we can use StartVal as the
3650 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003651 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003652 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003653 // FIXME: For constant StartVal, we should be able to infer
3654 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003655 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003656 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3657 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003658
3659 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003660 // to be symbolic. We now need to go back and purge all of the
3661 // entries for the scalars that use the symbolic expression.
3662 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003663 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003664 return PHISCEV;
3665 }
3666 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003667 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003668 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003669 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003670
Dan Gohmana9c205c2010-02-25 06:57:05 +00003671 // If the PHI has a single incoming value, follow that value, unless the
3672 // PHI's incoming blocks are in a different loop, in which case doing so
3673 // risks breaking LCSSA form. Instcombine would normally zap these, but
3674 // it doesn't have DominatorTree information, so it may miss cases.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003675 if (Value *V =
3676 SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003677 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003678 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003679
Chris Lattnerd934c702004-04-02 20:23:17 +00003680 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003681 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003682}
3683
Dan Gohmanee750d12009-05-08 20:26:55 +00003684/// createNodeForGEP - Expand GEP instructions into add and multiply
3685/// operations. This allows them to be analyzed by regular SCEV code.
3686///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003687const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003688 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003689 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003690 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003691 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003692 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003693
3694 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3695 // Add expression, because the Instruction may be guarded by control flow
3696 // and the no-overflow bits may not be valid for the expression in any
3697 // context.
3698 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3699
Dan Gohman1d2ded72010-05-03 22:09:21 +00003700 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003701 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003702 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003703 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003704 I != E; ++I) {
3705 Value *Index = *I;
3706 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003707 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003708 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003709 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003710 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003711
Dan Gohman16206132010-06-30 07:16:37 +00003712 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003713 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003714 } else {
3715 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003716 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003717 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003718 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003719 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3720
Dan Gohman16206132010-06-30 07:16:37 +00003721 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003722 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003723
3724 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003725 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003726 }
3727 }
Dan Gohman16206132010-06-30 07:16:37 +00003728
3729 // Get the SCEV for the GEP base.
3730 const SCEV *BaseS = getSCEV(Base);
3731
Dan Gohman16206132010-06-30 07:16:37 +00003732 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003733 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003734}
3735
Nick Lewycky3783b462007-11-22 07:59:40 +00003736/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3737/// guaranteed to end in (at every loop iteration). It is, at the same time,
3738/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3739/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003740uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003741ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003742 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003743 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003744
Dan Gohmana30370b2009-05-04 22:02:23 +00003745 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003746 return std::min(GetMinTrailingZeros(T->getOperand()),
3747 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003748
Dan Gohmana30370b2009-05-04 22:02:23 +00003749 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003750 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3751 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3752 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003753 }
3754
Dan Gohmana30370b2009-05-04 22:02:23 +00003755 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003756 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3757 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3758 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003759 }
3760
Dan Gohmana30370b2009-05-04 22:02:23 +00003761 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003762 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003763 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003764 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003765 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003766 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003767 }
3768
Dan Gohmana30370b2009-05-04 22:02:23 +00003769 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003770 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003771 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3772 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003773 for (unsigned i = 1, e = M->getNumOperands();
3774 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003775 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003776 BitWidth);
3777 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003778 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003779
Dan Gohmana30370b2009-05-04 22:02:23 +00003780 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003781 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003782 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003783 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003784 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003785 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003786 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003787
Dan Gohmana30370b2009-05-04 22:02:23 +00003788 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003789 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003790 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003791 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003792 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003793 return MinOpRes;
3794 }
3795
Dan Gohmana30370b2009-05-04 22:02:23 +00003796 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003797 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003798 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003799 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003800 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003801 return MinOpRes;
3802 }
3803
Dan Gohmanc702fc02009-06-19 23:29:04 +00003804 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3805 // For a SCEVUnknown, ask ValueTracking.
3806 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003807 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003808 computeKnownBits(U->getValue(), Zeros, Ones,
3809 F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003810 return Zeros.countTrailingOnes();
3811 }
3812
3813 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003814 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003815}
Chris Lattnerd934c702004-04-02 20:23:17 +00003816
Sanjoy Das1f05c512014-10-10 21:22:34 +00003817/// GetRangeFromMetadata - Helper method to assign a range to V from
3818/// metadata present in the IR.
3819static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3820 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003821 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003822 ConstantRange TotalRange(
3823 cast<IntegerType>(I->getType())->getBitWidth(), false);
3824
3825 unsigned NumRanges = MD->getNumOperands() / 2;
3826 assert(NumRanges >= 1);
3827
3828 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003829 ConstantInt *Lower =
3830 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3831 ConstantInt *Upper =
3832 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003833 ConstantRange Range(Lower->getValue(), Upper->getValue());
3834 TotalRange = TotalRange.unionWith(Range);
3835 }
3836
3837 return TotalRange;
3838 }
3839 }
3840
3841 return None;
3842}
3843
Sanjoy Das91b54772015-03-09 21:43:43 +00003844/// getRange - Determine the range for a particular SCEV. If SignHint is
3845/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
3846/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00003847///
3848ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00003849ScalarEvolution::getRange(const SCEV *S,
3850 ScalarEvolution::RangeSignHint SignHint) {
3851 DenseMap<const SCEV *, ConstantRange> &Cache =
3852 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
3853 : SignedRanges;
3854
Dan Gohman761065e2010-11-17 02:44:44 +00003855 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00003856 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
3857 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00003858 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003859
3860 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00003861 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003862
Dan Gohman85be4332010-01-26 19:19:05 +00003863 unsigned BitWidth = getTypeSizeInBits(S->getType());
3864 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3865
Sanjoy Das91b54772015-03-09 21:43:43 +00003866 // If the value has known zeros, the maximum value will have those known zeros
3867 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00003868 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00003869 if (TZ != 0) {
3870 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
3871 ConservativeResult =
3872 ConstantRange(APInt::getMinValue(BitWidth),
3873 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3874 else
3875 ConservativeResult = ConstantRange(
3876 APInt::getSignedMinValue(BitWidth),
3877 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3878 }
Dan Gohman85be4332010-01-26 19:19:05 +00003879
Dan Gohmane65c9172009-07-13 21:35:55 +00003880 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003881 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003882 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003883 X = X.add(getRange(Add->getOperand(i), SignHint));
3884 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003885 }
3886
3887 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003888 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003889 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003890 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
3891 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003892 }
3893
3894 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003895 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003896 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003897 X = X.smax(getRange(SMax->getOperand(i), SignHint));
3898 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003899 }
3900
3901 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003902 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003903 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003904 X = X.umax(getRange(UMax->getOperand(i), SignHint));
3905 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003906 }
3907
3908 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003909 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
3910 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
3911 return setRange(UDiv, SignHint,
3912 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003913 }
3914
3915 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003916 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
3917 return setRange(ZExt, SignHint,
3918 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003919 }
3920
3921 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003922 ConstantRange X = getRange(SExt->getOperand(), SignHint);
3923 return setRange(SExt, SignHint,
3924 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003925 }
3926
3927 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003928 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
3929 return setRange(Trunc, SignHint,
3930 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003931 }
3932
Dan Gohmane65c9172009-07-13 21:35:55 +00003933 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003934 // If there's no unsigned wrap, the value will never be less than its
3935 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003936 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003937 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003938 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003939 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003940 ConservativeResult.intersectWith(
3941 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003942
Dan Gohman51ad99d2010-01-21 02:09:26 +00003943 // If there's no signed wrap, and all the operands have the same sign or
3944 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003945 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003946 bool AllNonNeg = true;
3947 bool AllNonPos = true;
3948 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3949 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3950 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3951 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003952 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003953 ConservativeResult = ConservativeResult.intersectWith(
3954 ConstantRange(APInt(BitWidth, 0),
3955 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003956 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003957 ConservativeResult = ConservativeResult.intersectWith(
3958 ConstantRange(APInt::getSignedMinValue(BitWidth),
3959 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003960 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003961
3962 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003963 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003964 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003966 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3967 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003968
3969 // Check for overflow. This must be done with ConstantRange arithmetic
3970 // because we could be called from within the ScalarEvolution overflow
3971 // checking code.
3972
Dan Gohmane65c9172009-07-13 21:35:55 +00003973 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00003974 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3975 ConstantRange ZExtMaxBECountRange =
3976 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00003977
3978 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003979 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00003980 ConstantRange StepSRange = getSignedRange(Step);
3981 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00003982
Sanjoy Das91b54772015-03-09 21:43:43 +00003983 ConstantRange StartURange = getUnsignedRange(Start);
3984 ConstantRange EndURange =
3985 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00003986
Sanjoy Das91b54772015-03-09 21:43:43 +00003987 // Check for unsigned overflow.
3988 ConstantRange ZExtStartURange =
3989 StartURange.zextOrTrunc(BitWidth * 2 + 1);
3990 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
3991 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
3992 ZExtEndURange) {
3993 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
3994 EndURange.getUnsignedMin());
3995 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
3996 EndURange.getUnsignedMax());
3997 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
3998 if (!IsFullRange)
3999 ConservativeResult =
4000 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4001 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004002
Sanjoy Das91b54772015-03-09 21:43:43 +00004003 ConstantRange StartSRange = getSignedRange(Start);
4004 ConstantRange EndSRange =
4005 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4006
4007 // Check for signed overflow. This must be done with ConstantRange
4008 // arithmetic because we could be called from within the ScalarEvolution
4009 // overflow checking code.
4010 ConstantRange SExtStartSRange =
4011 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4012 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4013 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4014 SExtEndSRange) {
4015 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4016 EndSRange.getSignedMin());
4017 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4018 EndSRange.getSignedMax());
4019 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4020 if (!IsFullRange)
4021 ConservativeResult =
4022 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4023 }
Dan Gohmand261d272009-06-24 01:05:09 +00004024 }
Dan Gohmand261d272009-06-24 01:05:09 +00004025 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004026
Sanjoy Das91b54772015-03-09 21:43:43 +00004027 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004028 }
4029
Dan Gohmanc702fc02009-06-19 23:29:04 +00004030 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004031 // Check if the IR explicitly contains !range metadata.
4032 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4033 if (MDRange.hasValue())
4034 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4035
Sanjoy Das91b54772015-03-09 21:43:43 +00004036 // Split here to avoid paying the compile-time cost of calling both
4037 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4038 // if needed.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004039 const DataLayout &DL = F->getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004040 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4041 // For a SCEVUnknown, ask ValueTracking.
4042 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4043 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
4044 if (Ones != ~Zeros + 1)
4045 ConservativeResult =
4046 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4047 } else {
4048 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4049 "generalize as needed!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004050 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
4051 if (NS > 1)
4052 ConservativeResult = ConservativeResult.intersectWith(
4053 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4054 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004055 }
4056
4057 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004058 }
4059
Sanjoy Das91b54772015-03-09 21:43:43 +00004060 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004061}
4062
Chris Lattnerd934c702004-04-02 20:23:17 +00004063/// createSCEV - We know that there is no SCEV for the specified value.
4064/// Analyze the expression.
4065///
Dan Gohmanaf752342009-07-07 17:06:11 +00004066const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004067 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004068 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004069
Dan Gohman05e89732008-06-22 19:56:46 +00004070 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004071 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004072 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004073
4074 // Don't attempt to analyze instructions in blocks that aren't
4075 // reachable. Such instructions don't matter, and they aren't required
4076 // to obey basic rules for definitions dominating uses which this
4077 // analysis depends on.
4078 if (!DT->isReachableFromEntry(I->getParent()))
4079 return getUnknown(V);
4080 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004081 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004082 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4083 return getConstant(CI);
4084 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004085 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004086 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4087 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004088 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004089 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004090
Dan Gohman80ca01c2009-07-17 20:47:02 +00004091 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004092 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004093 case Instruction::Add: {
4094 // The simple thing to do would be to just call getSCEV on both operands
4095 // and call getAddExpr with the result. However if we're looking at a
4096 // bunch of things all added together, this can be quite inefficient,
4097 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4098 // Instead, gather up all the operands and make a single getAddExpr call.
4099 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004100 //
4101 // Don't apply this instruction's NSW or NUW flags to the new
4102 // expression. The instruction may be guarded by control flow that the
4103 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4104 // mapped to the same SCEV expression, and it would be incorrect to transfer
4105 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004106 SmallVector<const SCEV *, 4> AddOps;
4107 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004108 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4109 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4110 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4111 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004112 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004113 const SCEV *Op1 = getSCEV(U->getOperand(1));
4114 if (Opcode == Instruction::Sub)
4115 AddOps.push_back(getNegativeSCEV(Op1));
4116 else
4117 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004118 }
4119 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004120 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004121 }
4122 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004123 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004124 SmallVector<const SCEV *, 4> MulOps;
4125 MulOps.push_back(getSCEV(U->getOperand(1)));
4126 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004127 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004128 Op = U->getOperand(0)) {
4129 U = cast<Operator>(Op);
4130 MulOps.push_back(getSCEV(U->getOperand(1)));
4131 }
4132 MulOps.push_back(getSCEV(U->getOperand(0)));
4133 return getMulExpr(MulOps);
4134 }
Dan Gohman05e89732008-06-22 19:56:46 +00004135 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004136 return getUDivExpr(getSCEV(U->getOperand(0)),
4137 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004138 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004139 return getMinusSCEV(getSCEV(U->getOperand(0)),
4140 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004141 case Instruction::And:
4142 // For an expression like x&255 that merely masks off the high bits,
4143 // use zext(trunc(x)) as the SCEV expression.
4144 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004145 if (CI->isNullValue())
4146 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004147 if (CI->isAllOnesValue())
4148 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004149 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004150
4151 // Instcombine's ShrinkDemandedConstant may strip bits out of
4152 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004153 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004154 // knew about to reconstruct a low-bits mask value.
4155 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004156 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004157 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004158 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004159 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
4160 F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004161
Nick Lewycky31eaca52014-01-27 10:04:03 +00004162 APInt EffectiveMask =
4163 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4164 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4165 const SCEV *MulCount = getConstant(
4166 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4167 return getMulExpr(
4168 getZeroExtendExpr(
4169 getTruncateExpr(
4170 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4171 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4172 U->getType()),
4173 MulCount);
4174 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004175 }
4176 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004177
Dan Gohman05e89732008-06-22 19:56:46 +00004178 case Instruction::Or:
4179 // If the RHS of the Or is a constant, we may have something like:
4180 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4181 // optimizations will transparently handle this case.
4182 //
4183 // In order for this transformation to be safe, the LHS must be of the
4184 // form X*(2^n) and the Or constant must be less than 2^n.
4185 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004186 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004187 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004188 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004189 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4190 // Build a plain add SCEV.
4191 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4192 // If the LHS of the add was an addrec and it has no-wrap flags,
4193 // transfer the no-wrap flags, since an or won't introduce a wrap.
4194 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4195 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004196 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4197 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004198 }
4199 return S;
4200 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004201 }
Dan Gohman05e89732008-06-22 19:56:46 +00004202 break;
4203 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004204 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004205 // If the RHS of the xor is a signbit, then this is just an add.
4206 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004207 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004208 return getAddExpr(getSCEV(U->getOperand(0)),
4209 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004210
4211 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004212 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004213 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004214
4215 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4216 // This is a variant of the check for xor with -1, and it handles
4217 // the case where instcombine has trimmed non-demanded bits out
4218 // of an xor with -1.
4219 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4220 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4221 if (BO->getOpcode() == Instruction::And &&
4222 LCI->getValue() == CI->getValue())
4223 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004224 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004225 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004226 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004227 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004228 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4229
Dan Gohman8b0a4192010-03-01 17:49:51 +00004230 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004231 // mask off the high bits. Complement the operand and
4232 // re-apply the zext.
4233 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4234 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4235
4236 // If C is a single bit, it may be in the sign-bit position
4237 // before the zero-extend. In this case, represent the xor
4238 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004239 APInt Trunc = CI->getValue().trunc(Z0TySize);
4240 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004241 Trunc.isSignBit())
4242 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4243 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004244 }
Dan Gohman05e89732008-06-22 19:56:46 +00004245 }
4246 break;
4247
4248 case Instruction::Shl:
4249 // Turn shift left of a constant amount into a multiply.
4250 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004251 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004252
4253 // If the shift count is not less than the bitwidth, the result of
4254 // the shift is undefined. Don't try to analyze it, because the
4255 // resolution chosen here may differ from the resolution chosen in
4256 // other parts of the compiler.
4257 if (SA->getValue().uge(BitWidth))
4258 break;
4259
Owen Andersonedb4a702009-07-24 23:12:02 +00004260 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004261 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004262 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004263 }
4264 break;
4265
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004266 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004267 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004268 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004269 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004270
4271 // If the shift count is not less than the bitwidth, the result of
4272 // the shift is undefined. Don't try to analyze it, because the
4273 // resolution chosen here may differ from the resolution chosen in
4274 // other parts of the compiler.
4275 if (SA->getValue().uge(BitWidth))
4276 break;
4277
Owen Andersonedb4a702009-07-24 23:12:02 +00004278 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004279 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004280 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004281 }
4282 break;
4283
Dan Gohman0ec05372009-04-21 02:26:00 +00004284 case Instruction::AShr:
4285 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4286 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004287 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004288 if (L->getOpcode() == Instruction::Shl &&
4289 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004290 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4291
4292 // If the shift count is not less than the bitwidth, the result of
4293 // the shift is undefined. Don't try to analyze it, because the
4294 // resolution chosen here may differ from the resolution chosen in
4295 // other parts of the compiler.
4296 if (CI->getValue().uge(BitWidth))
4297 break;
4298
Dan Gohmandf199482009-04-25 17:05:40 +00004299 uint64_t Amt = BitWidth - CI->getZExtValue();
4300 if (Amt == BitWidth)
4301 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004302 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004303 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004304 IntegerType::get(getContext(),
4305 Amt)),
4306 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004307 }
4308 break;
4309
Dan Gohman05e89732008-06-22 19:56:46 +00004310 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004311 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004312
4313 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004314 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004315
4316 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004317 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004318
4319 case Instruction::BitCast:
4320 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004321 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004322 return getSCEV(U->getOperand(0));
4323 break;
4324
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004325 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4326 // lead to pointer expressions which cannot safely be expanded to GEPs,
4327 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4328 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004329
Dan Gohmanee750d12009-05-08 20:26:55 +00004330 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004331 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004332
Dan Gohman05e89732008-06-22 19:56:46 +00004333 case Instruction::PHI:
4334 return createNodeForPHI(cast<PHINode>(U));
4335
4336 case Instruction::Select:
4337 // This could be a smax or umax that was lowered earlier.
4338 // Try to recover it.
4339 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4340 Value *LHS = ICI->getOperand(0);
4341 Value *RHS = ICI->getOperand(1);
4342 switch (ICI->getPredicate()) {
4343 case ICmpInst::ICMP_SLT:
4344 case ICmpInst::ICMP_SLE:
4345 std::swap(LHS, RHS);
4346 // fall through
4347 case ICmpInst::ICMP_SGT:
4348 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004349 // a >s b ? a+x : b+x -> smax(a, b)+x
4350 // a >s b ? b+x : a+x -> smin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004351 if (getTypeSizeInBits(LHS->getType()) <=
4352 getTypeSizeInBits(U->getType())) {
4353 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4354 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004355 const SCEV *LA = getSCEV(U->getOperand(1));
4356 const SCEV *RA = getSCEV(U->getOperand(2));
4357 const SCEV *LDiff = getMinusSCEV(LA, LS);
4358 const SCEV *RDiff = getMinusSCEV(RA, RS);
4359 if (LDiff == RDiff)
4360 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4361 LDiff = getMinusSCEV(LA, RS);
4362 RDiff = getMinusSCEV(RA, LS);
4363 if (LDiff == RDiff)
4364 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4365 }
Dan Gohman05e89732008-06-22 19:56:46 +00004366 break;
4367 case ICmpInst::ICMP_ULT:
4368 case ICmpInst::ICMP_ULE:
4369 std::swap(LHS, RHS);
4370 // fall through
4371 case ICmpInst::ICMP_UGT:
4372 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004373 // a >u b ? a+x : b+x -> umax(a, b)+x
4374 // a >u b ? b+x : a+x -> umin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004375 if (getTypeSizeInBits(LHS->getType()) <=
4376 getTypeSizeInBits(U->getType())) {
4377 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4378 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004379 const SCEV *LA = getSCEV(U->getOperand(1));
4380 const SCEV *RA = getSCEV(U->getOperand(2));
4381 const SCEV *LDiff = getMinusSCEV(LA, LS);
4382 const SCEV *RDiff = getMinusSCEV(RA, RS);
4383 if (LDiff == RDiff)
4384 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4385 LDiff = getMinusSCEV(LA, RS);
4386 RDiff = getMinusSCEV(RA, LS);
4387 if (LDiff == RDiff)
4388 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4389 }
Dan Gohman05e89732008-06-22 19:56:46 +00004390 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004391 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004392 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004393 if (getTypeSizeInBits(LHS->getType()) <=
4394 getTypeSizeInBits(U->getType()) &&
4395 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4396 const SCEV *One = getConstant(U->getType(), 1);
4397 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004398 const SCEV *LA = getSCEV(U->getOperand(1));
4399 const SCEV *RA = getSCEV(U->getOperand(2));
4400 const SCEV *LDiff = getMinusSCEV(LA, LS);
4401 const SCEV *RDiff = getMinusSCEV(RA, One);
4402 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004403 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004404 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004405 break;
4406 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004407 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004408 if (getTypeSizeInBits(LHS->getType()) <=
4409 getTypeSizeInBits(U->getType()) &&
4410 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4411 const SCEV *One = getConstant(U->getType(), 1);
4412 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004413 const SCEV *LA = getSCEV(U->getOperand(1));
4414 const SCEV *RA = getSCEV(U->getOperand(2));
4415 const SCEV *LDiff = getMinusSCEV(LA, One);
4416 const SCEV *RDiff = getMinusSCEV(RA, LS);
4417 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004418 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004419 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004420 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004421 default:
4422 break;
4423 }
4424 }
4425
4426 default: // We cannot analyze this expression.
4427 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004428 }
4429
Dan Gohmanc8e23622009-04-21 23:15:49 +00004430 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004431}
4432
4433
4434
4435//===----------------------------------------------------------------------===//
4436// Iteration Count Computation Code
4437//
4438
Chandler Carruth6666c272014-10-11 00:12:11 +00004439unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4440 if (BasicBlock *ExitingBB = L->getExitingBlock())
4441 return getSmallConstantTripCount(L, ExitingBB);
4442
4443 // No trip count information for multiple exits.
4444 return 0;
4445}
4446
Andrew Trick2b6860f2011-08-11 23:36:16 +00004447/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004448/// normal unsigned value. Returns 0 if the trip count is unknown or not
4449/// constant. Will also return 0 if the maximum trip count is very large (>=
4450/// 2^32).
4451///
4452/// This "trip count" assumes that control exits via ExitingBlock. More
4453/// precisely, it is the number of times that control may reach ExitingBlock
4454/// before taking the branch. For loops with multiple exits, it may not be the
4455/// number times that the loop header executes because the loop may exit
4456/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004457unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4458 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004459 assert(ExitingBlock && "Must pass a non-null exiting block!");
4460 assert(L->isLoopExiting(ExitingBlock) &&
4461 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004462 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004463 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004464 if (!ExitCount)
4465 return 0;
4466
4467 ConstantInt *ExitConst = ExitCount->getValue();
4468
4469 // Guard against huge trip counts.
4470 if (ExitConst->getValue().getActiveBits() > 32)
4471 return 0;
4472
4473 // In case of integer overflow, this returns 0, which is correct.
4474 return ((unsigned)ExitConst->getZExtValue()) + 1;
4475}
4476
Chandler Carruth6666c272014-10-11 00:12:11 +00004477unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4478 if (BasicBlock *ExitingBB = L->getExitingBlock())
4479 return getSmallConstantTripMultiple(L, ExitingBB);
4480
4481 // No trip multiple information for multiple exits.
4482 return 0;
4483}
4484
Andrew Trick2b6860f2011-08-11 23:36:16 +00004485/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4486/// trip count of this loop as a normal unsigned value, if possible. This
4487/// means that the actual trip count is always a multiple of the returned
4488/// value (don't forget the trip count could very well be zero as well!).
4489///
4490/// Returns 1 if the trip count is unknown or not guaranteed to be the
4491/// multiple of a constant (which is also the case if the trip count is simply
4492/// constant, use getSmallConstantTripCount for that case), Will also return 1
4493/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004494///
4495/// As explained in the comments for getSmallConstantTripCount, this assumes
4496/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004497unsigned
4498ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4499 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004500 assert(ExitingBlock && "Must pass a non-null exiting block!");
4501 assert(L->isLoopExiting(ExitingBlock) &&
4502 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004503 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004504 if (ExitCount == getCouldNotCompute())
4505 return 1;
4506
4507 // Get the trip count from the BE count by adding 1.
4508 const SCEV *TCMul = getAddExpr(ExitCount,
4509 getConstant(ExitCount->getType(), 1));
4510 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4511 // to factor simple cases.
4512 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4513 TCMul = Mul->getOperand(0);
4514
4515 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4516 if (!MulC)
4517 return 1;
4518
4519 ConstantInt *Result = MulC->getValue();
4520
Hal Finkel30bd9342012-10-24 19:46:44 +00004521 // Guard against huge trip counts (this requires checking
4522 // for zero to handle the case where the trip count == -1 and the
4523 // addition wraps).
4524 if (!Result || Result->getValue().getActiveBits() > 32 ||
4525 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004526 return 1;
4527
4528 return (unsigned)Result->getZExtValue();
4529}
4530
Andrew Trick3ca3f982011-07-26 17:19:55 +00004531// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004532// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004533// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004534const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4535 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004536}
4537
Dan Gohman0bddac12009-02-24 18:55:53 +00004538/// getBackedgeTakenCount - If the specified loop has a predictable
4539/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4540/// object. The backedge-taken count is the number of times the loop header
4541/// will be branched to from within the loop. This is one less than the
4542/// trip count of the loop, since it doesn't count the first iteration,
4543/// when the header is branched to from outside the loop.
4544///
4545/// Note that it is not valid to call this method on a loop without a
4546/// loop-invariant backedge-taken count (see
4547/// hasLoopInvariantBackedgeTakenCount).
4548///
Dan Gohmanaf752342009-07-07 17:06:11 +00004549const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004550 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004551}
4552
4553/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4554/// return the least SCEV value that is known never to be less than the
4555/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004556const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004557 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004558}
4559
Dan Gohmandc191042009-07-08 19:23:34 +00004560/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4561/// onto the given Worklist.
4562static void
4563PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4564 BasicBlock *Header = L->getHeader();
4565
4566 // Push all Loop-header PHIs onto the Worklist stack.
4567 for (BasicBlock::iterator I = Header->begin();
4568 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4569 Worklist.push_back(PN);
4570}
4571
Dan Gohman2b8da352009-04-30 20:47:05 +00004572const ScalarEvolution::BackedgeTakenInfo &
4573ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004574 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004575 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004576 // update the value. The temporary CouldNotCompute value tells SCEV
4577 // code elsewhere that it shouldn't attempt to request a new
4578 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004579 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004580 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004581 if (!Pair.second)
4582 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004583
Andrew Trick3ca3f982011-07-26 17:19:55 +00004584 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4585 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4586 // must be cleared in this scope.
4587 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4588
4589 if (Result.getExact(this) != getCouldNotCompute()) {
4590 assert(isLoopInvariant(Result.getExact(this), L) &&
4591 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004592 "Computed backedge-taken count isn't loop invariant for loop!");
4593 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004594 }
4595 else if (Result.getMax(this) == getCouldNotCompute() &&
4596 isa<PHINode>(L->getHeader()->begin())) {
4597 // Only count loops that have phi nodes as not being computable.
4598 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004599 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004600
Chris Lattnera337f5e2011-01-09 02:16:18 +00004601 // Now that we know more about the trip count for this loop, forget any
4602 // existing SCEV values for PHI nodes in this loop since they are only
4603 // conservative estimates made without the benefit of trip count
4604 // information. This is similar to the code in forgetLoop, except that
4605 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004606 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004607 SmallVector<Instruction *, 16> Worklist;
4608 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004609
Chris Lattnera337f5e2011-01-09 02:16:18 +00004610 SmallPtrSet<Instruction *, 8> Visited;
4611 while (!Worklist.empty()) {
4612 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004613 if (!Visited.insert(I).second)
4614 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004615
Chris Lattnera337f5e2011-01-09 02:16:18 +00004616 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004617 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004618 if (It != ValueExprMap.end()) {
4619 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004620
Chris Lattnera337f5e2011-01-09 02:16:18 +00004621 // SCEVUnknown for a PHI either means that it has an unrecognized
4622 // structure, or it's a PHI that's in the progress of being computed
4623 // by createNodeForPHI. In the former case, additional loop trip
4624 // count information isn't going to change anything. In the later
4625 // case, createNodeForPHI will perform the necessary updates on its
4626 // own when it gets to that point.
4627 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4628 forgetMemoizedResults(Old);
4629 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004630 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004631 if (PHINode *PN = dyn_cast<PHINode>(I))
4632 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004633 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004634
4635 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004636 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004637 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004638
4639 // Re-lookup the insert position, since the call to
4640 // ComputeBackedgeTakenCount above could result in a
4641 // recusive call to getBackedgeTakenInfo (on a different
4642 // loop), which would invalidate the iterator computed
4643 // earlier.
4644 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004645}
4646
Dan Gohman880c92a2009-10-31 15:04:55 +00004647/// forgetLoop - This method should be called by the client when it has
4648/// changed a loop in a way that may effect ScalarEvolution's ability to
4649/// compute a trip count, or if the loop is deleted.
4650void ScalarEvolution::forgetLoop(const Loop *L) {
4651 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004652 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4653 BackedgeTakenCounts.find(L);
4654 if (BTCPos != BackedgeTakenCounts.end()) {
4655 BTCPos->second.clear();
4656 BackedgeTakenCounts.erase(BTCPos);
4657 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004658
Dan Gohman880c92a2009-10-31 15:04:55 +00004659 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004660 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004661 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004662
Dan Gohmandc191042009-07-08 19:23:34 +00004663 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004664 while (!Worklist.empty()) {
4665 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004666 if (!Visited.insert(I).second)
4667 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004668
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004669 ValueExprMapType::iterator It =
4670 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004671 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004672 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004673 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004674 if (PHINode *PN = dyn_cast<PHINode>(I))
4675 ConstantEvolutionLoopExitValue.erase(PN);
4676 }
4677
4678 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004679 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004680
4681 // Forget all contained loops too, to avoid dangling entries in the
4682 // ValuesAtScopes map.
4683 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4684 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004685}
4686
Eric Christopheref6d5932010-07-29 01:25:38 +00004687/// forgetValue - This method should be called by the client when it has
4688/// changed a value in a way that may effect its value, or which may
4689/// disconnect it from a def-use chain linking it to a loop.
4690void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004691 Instruction *I = dyn_cast<Instruction>(V);
4692 if (!I) return;
4693
4694 // Drop information about expressions based on loop-header PHIs.
4695 SmallVector<Instruction *, 16> Worklist;
4696 Worklist.push_back(I);
4697
4698 SmallPtrSet<Instruction *, 8> Visited;
4699 while (!Worklist.empty()) {
4700 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004701 if (!Visited.insert(I).second)
4702 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004703
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004704 ValueExprMapType::iterator It =
4705 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004706 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004707 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004708 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004709 if (PHINode *PN = dyn_cast<PHINode>(I))
4710 ConstantEvolutionLoopExitValue.erase(PN);
4711 }
4712
4713 PushDefUseChildren(I, Worklist);
4714 }
4715}
4716
Andrew Trick3ca3f982011-07-26 17:19:55 +00004717/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004718/// exits. A computable result can only be return for loops with a single exit.
4719/// Returning the minimum taken count among all exits is incorrect because one
4720/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4721/// the limit of each loop test is never skipped. This is a valid assumption as
4722/// long as the loop exits via that test. For precise results, it is the
4723/// caller's responsibility to specify the relevant loop exit using
4724/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004725const SCEV *
4726ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4727 // If any exits were not computable, the loop is not computable.
4728 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4729
Andrew Trick90c7a102011-11-16 00:52:40 +00004730 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004731 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004732 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4733
Craig Topper9f008862014-04-15 04:59:12 +00004734 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004735 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004736 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004737
4738 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4739
4740 if (!BECount)
4741 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004742 else if (BECount != ENT->ExactNotTaken)
4743 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004744 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004745 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004746 return BECount;
4747}
4748
4749/// getExact - Get the exact not taken count for this loop exit.
4750const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004751ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004752 ScalarEvolution *SE) const {
4753 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004754 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004755
Andrew Trick77c55422011-08-02 04:23:35 +00004756 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004757 return ENT->ExactNotTaken;
4758 }
4759 return SE->getCouldNotCompute();
4760}
4761
4762/// getMax - Get the max backedge taken count for the loop.
4763const SCEV *
4764ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4765 return Max ? Max : SE->getCouldNotCompute();
4766}
4767
Andrew Trick9093e152013-03-26 03:14:53 +00004768bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4769 ScalarEvolution *SE) const {
4770 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4771 return true;
4772
4773 if (!ExitNotTaken.ExitingBlock)
4774 return false;
4775
4776 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004777 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004778
4779 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4780 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4781 return true;
4782 }
4783 }
4784 return false;
4785}
4786
Andrew Trick3ca3f982011-07-26 17:19:55 +00004787/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4788/// computable exit into a persistent ExitNotTakenInfo array.
4789ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4790 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4791 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4792
4793 if (!Complete)
4794 ExitNotTaken.setIncomplete();
4795
4796 unsigned NumExits = ExitCounts.size();
4797 if (NumExits == 0) return;
4798
Andrew Trick77c55422011-08-02 04:23:35 +00004799 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004800 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4801 if (NumExits == 1) return;
4802
4803 // Handle the rare case of multiple computable exits.
4804 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4805
4806 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4807 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4808 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004809 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004810 ENT->ExactNotTaken = ExitCounts[i].second;
4811 }
4812}
4813
4814/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4815void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004816 ExitNotTaken.ExitingBlock = nullptr;
4817 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004818 delete[] ExitNotTaken.getNextExit();
4819}
4820
Dan Gohman0bddac12009-02-24 18:55:53 +00004821/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4822/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004823ScalarEvolution::BackedgeTakenInfo
4824ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004825 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004826 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004827
Andrew Trick839e30b2014-05-23 19:47:13 +00004828 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004829 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004830 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004831 const SCEV *MustExitMaxBECount = nullptr;
4832 const SCEV *MayExitMaxBECount = nullptr;
4833
4834 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4835 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004836 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004837 BasicBlock *ExitBB = ExitingBlocks[i];
4838 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4839
4840 // 1. For each exit that can be computed, add an entry to ExitCounts.
4841 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004842 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004843 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004844 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004845 CouldComputeBECount = false;
4846 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004847 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004848
Andrew Trick839e30b2014-05-23 19:47:13 +00004849 // 2. Derive the loop's MaxBECount from each exit's max number of
4850 // non-exiting iterations. Partition the loop exits into two kinds:
4851 // LoopMustExits and LoopMayExits.
4852 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004853 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4854 // is a LoopMayExit. If any computable LoopMustExit is found, then
4855 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4856 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4857 // considered greater than any computable EL.Max.
4858 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004859 DT->dominates(ExitBB, Latch)) {
4860 if (!MustExitMaxBECount)
4861 MustExitMaxBECount = EL.Max;
4862 else {
4863 MustExitMaxBECount =
4864 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004865 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004866 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4867 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4868 MayExitMaxBECount = EL.Max;
4869 else {
4870 MayExitMaxBECount =
4871 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4872 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004873 }
Dan Gohman96212b62009-06-22 00:31:57 +00004874 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004875 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4876 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004877 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004878}
4879
Andrew Trick3ca3f982011-07-26 17:19:55 +00004880/// ComputeExitLimit - Compute the number of times the backedge of the specified
4881/// loop will execute if it exits via the specified block.
4882ScalarEvolution::ExitLimit
4883ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004884
4885 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004886 // exit at this block and remember the exit block and whether all other targets
4887 // lead to the loop header.
4888 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004889 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004890 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4891 SI != SE; ++SI)
4892 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004893 if (Exit) // Multiple exit successors.
4894 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004895 Exit = *SI;
4896 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004897 MustExecuteLoopHeader = false;
4898 }
Dan Gohmance973df2009-06-24 04:48:43 +00004899
Chris Lattner18954852007-01-07 02:24:26 +00004900 // At this point, we know we have a conditional branch that determines whether
4901 // the loop is exited. However, we don't know if the branch is executed each
4902 // time through the loop. If not, then the execution count of the branch will
4903 // not be equal to the trip count of the loop.
4904 //
4905 // Currently we check for this by checking to see if the Exit branch goes to
4906 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004907 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004908 // loop header. This is common for un-rotated loops.
4909 //
4910 // If both of those tests fail, walk up the unique predecessor chain to the
4911 // header, stopping if there is an edge that doesn't exit the loop. If the
4912 // header is reached, the execution count of the branch will be equal to the
4913 // trip count of the loop.
4914 //
4915 // More extensive analysis could be done to handle more cases here.
4916 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004917 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004918 // The simple checks failed, try climbing the unique predecessor chain
4919 // up to the header.
4920 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004921 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004922 BasicBlock *Pred = BB->getUniquePredecessor();
4923 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004924 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004925 TerminatorInst *PredTerm = Pred->getTerminator();
4926 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4927 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4928 if (PredSucc == BB)
4929 continue;
4930 // If the predecessor has a successor that isn't BB and isn't
4931 // outside the loop, assume the worst.
4932 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004933 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004934 }
4935 if (Pred == L->getHeader()) {
4936 Ok = true;
4937 break;
4938 }
4939 BB = Pred;
4940 }
4941 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004942 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004943 }
4944
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004945 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004946 TerminatorInst *Term = ExitingBlock->getTerminator();
4947 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4948 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4949 // Proceed to the next level to examine the exit condition expression.
4950 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4951 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004952 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004953 }
4954
4955 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4956 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004957 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004958
4959 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004960}
4961
Andrew Trick3ca3f982011-07-26 17:19:55 +00004962/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004963/// backedge of the specified loop will execute if its exit condition
4964/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004965///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004966/// @param ControlsExit is true if ExitCond directly controls the exit
4967/// branch. In this case, we can assume that the loop exits only if the
4968/// condition is true and can infer that failing to meet the condition prior to
4969/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004970ScalarEvolution::ExitLimit
4971ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4972 Value *ExitCond,
4973 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004974 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004975 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004976 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004977 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4978 if (BO->getOpcode() == Instruction::And) {
4979 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004980 bool EitherMayExit = L->contains(TBB);
4981 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004982 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004983 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004984 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004985 const SCEV *BECount = getCouldNotCompute();
4986 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004987 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004988 // Both conditions must be true for the loop to continue executing.
4989 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004990 if (EL0.Exact == getCouldNotCompute() ||
4991 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004992 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004993 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004994 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4995 if (EL0.Max == getCouldNotCompute())
4996 MaxBECount = EL1.Max;
4997 else if (EL1.Max == getCouldNotCompute())
4998 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004999 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005000 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005001 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005002 // Both conditions must be true at the same time for the loop to exit.
5003 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005004 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005005 if (EL0.Max == EL1.Max)
5006 MaxBECount = EL0.Max;
5007 if (EL0.Exact == EL1.Exact)
5008 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005009 }
5010
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005011 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005012 }
5013 if (BO->getOpcode() == Instruction::Or) {
5014 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005015 bool EitherMayExit = L->contains(FBB);
5016 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005017 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005018 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005019 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005020 const SCEV *BECount = getCouldNotCompute();
5021 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005022 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005023 // Both conditions must be false for the loop to continue executing.
5024 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005025 if (EL0.Exact == getCouldNotCompute() ||
5026 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005027 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005028 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005029 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5030 if (EL0.Max == getCouldNotCompute())
5031 MaxBECount = EL1.Max;
5032 else if (EL1.Max == getCouldNotCompute())
5033 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005034 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005035 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005036 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005037 // Both conditions must be false at the same time for the loop to exit.
5038 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005039 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005040 if (EL0.Max == EL1.Max)
5041 MaxBECount = EL0.Max;
5042 if (EL0.Exact == EL1.Exact)
5043 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005044 }
5045
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005046 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005047 }
5048 }
5049
5050 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005051 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005052 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005053 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005054
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005055 // Check for a constant condition. These are normally stripped out by
5056 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5057 // preserve the CFG and is temporarily leaving constant conditions
5058 // in place.
5059 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5060 if (L->contains(FBB) == !CI->getZExtValue())
5061 // The backedge is always taken.
5062 return getCouldNotCompute();
5063 else
5064 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005065 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005066 }
5067
Eli Friedmanebf98b02009-05-09 12:32:42 +00005068 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005069 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005070}
5071
Andrew Trick3ca3f982011-07-26 17:19:55 +00005072/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005073/// backedge of the specified loop will execute if its exit condition
5074/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005075ScalarEvolution::ExitLimit
5076ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5077 ICmpInst *ExitCond,
5078 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005079 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005080 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005081
Reid Spencer266e42b2006-12-23 06:05:41 +00005082 // If the condition was exit on true, convert the condition to exit on false
5083 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005084 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005085 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005086 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005087 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005088
5089 // Handle common loops like: for (X = "string"; *X; ++X)
5090 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5091 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005092 ExitLimit ItCnt =
5093 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005094 if (ItCnt.hasAnyInfo())
5095 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005096 }
5097
Dan Gohmanaf752342009-07-07 17:06:11 +00005098 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5099 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005100
5101 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005102 LHS = getSCEVAtScope(LHS, L);
5103 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005104
Dan Gohmance973df2009-06-24 04:48:43 +00005105 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005106 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005107 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005108 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005109 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005110 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005111 }
5112
Dan Gohman81585c12010-05-03 16:35:17 +00005113 // Simplify the operands before analyzing them.
5114 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5115
Chris Lattnerd934c702004-04-02 20:23:17 +00005116 // If we have a comparison of a chrec against a constant, try to use value
5117 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005118 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5119 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005120 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005121 // Form the constant range.
5122 ConstantRange CompRange(
5123 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005124
Dan Gohmanaf752342009-07-07 17:06:11 +00005125 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005126 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005127 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005128
Chris Lattnerd934c702004-04-02 20:23:17 +00005129 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005130 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005131 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005132 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005133 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005134 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005135 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005136 case ICmpInst::ICMP_EQ: { // while (X == Y)
5137 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005138 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5139 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005140 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005141 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005142 case ICmpInst::ICMP_SLT:
5143 case ICmpInst::ICMP_ULT: { // while (X < Y)
5144 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005145 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005146 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005147 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005148 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005149 case ICmpInst::ICMP_SGT:
5150 case ICmpInst::ICMP_UGT: { // while (X > Y)
5151 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005152 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005153 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005154 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005155 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005156 default:
Chris Lattner09169212004-04-02 20:26:46 +00005157#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005158 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005159 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005160 dbgs() << "[unsigned] ";
5161 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005162 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005163 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005164#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005165 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005166 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005167 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005168}
5169
Benjamin Kramer5a188542014-02-11 15:44:32 +00005170ScalarEvolution::ExitLimit
5171ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5172 SwitchInst *Switch,
5173 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005174 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005175 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5176
5177 // Give up if the exit is the default dest of a switch.
5178 if (Switch->getDefaultDest() == ExitingBlock)
5179 return getCouldNotCompute();
5180
5181 assert(L->contains(Switch->getDefaultDest()) &&
5182 "Default case must not exit the loop!");
5183 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5184 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5185
5186 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005187 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005188 if (EL.hasAnyInfo())
5189 return EL;
5190
5191 return getCouldNotCompute();
5192}
5193
Chris Lattnerec901cc2004-10-12 01:49:27 +00005194static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005195EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5196 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005197 const SCEV *InVal = SE.getConstant(C);
5198 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005199 assert(isa<SCEVConstant>(Val) &&
5200 "Evaluation of SCEV at constant didn't fold correctly?");
5201 return cast<SCEVConstant>(Val)->getValue();
5202}
5203
Andrew Trick3ca3f982011-07-26 17:19:55 +00005204/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005205/// 'icmp op load X, cst', try to see if we can compute the backedge
5206/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005207ScalarEvolution::ExitLimit
5208ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5209 LoadInst *LI,
5210 Constant *RHS,
5211 const Loop *L,
5212 ICmpInst::Predicate predicate) {
5213
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005214 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005215
5216 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005217 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005218 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005219 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005220
5221 // Make sure that it is really a constant global we are gepping, with an
5222 // initializer, and make sure the first IDX is really 0.
5223 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005224 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005225 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5226 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005227 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005228
5229 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005230 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005231 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005232 unsigned VarIdxNum = 0;
5233 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5234 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5235 Indexes.push_back(CI);
5236 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005237 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005238 VarIdx = GEP->getOperand(i);
5239 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005240 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005241 }
5242
Andrew Trick7004e4b2012-03-26 22:33:59 +00005243 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5244 if (!VarIdx)
5245 return getCouldNotCompute();
5246
Chris Lattnerec901cc2004-10-12 01:49:27 +00005247 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5248 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005249 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005250 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005251
5252 // We can only recognize very limited forms of loop index expressions, in
5253 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005254 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005255 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005256 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5257 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005258 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005259
5260 unsigned MaxSteps = MaxBruteForceIterations;
5261 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005262 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005263 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005264 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005265
5266 // Form the GEP offset.
5267 Indexes[VarIdxNum] = Val;
5268
Chris Lattnere166a852012-01-24 05:49:24 +00005269 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5270 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005271 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005272
5273 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005274 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005275 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005276 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005277#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005278 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005279 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5280 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005281#endif
5282 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005283 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005284 }
5285 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005286 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005287}
5288
5289
Chris Lattnerdd730472004-04-17 22:58:41 +00005290/// CanConstantFold - Return true if we can constant fold an instruction of the
5291/// specified type, assuming that all operands were constants.
5292static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005293 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005294 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5295 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005296 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005297
Chris Lattnerdd730472004-04-17 22:58:41 +00005298 if (const CallInst *CI = dyn_cast<CallInst>(I))
5299 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005300 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005301 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005302}
5303
Andrew Trick3a86ba72011-10-05 03:25:31 +00005304/// Determine whether this instruction can constant evolve within this loop
5305/// assuming its operands can all constant evolve.
5306static bool canConstantEvolve(Instruction *I, const Loop *L) {
5307 // An instruction outside of the loop can't be derived from a loop PHI.
5308 if (!L->contains(I)) return false;
5309
5310 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005311 // We don't currently keep track of the control flow needed to evaluate
5312 // PHIs, so we cannot handle PHIs inside of loops.
5313 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005314 }
5315
5316 // If we won't be able to constant fold this expression even if the operands
5317 // are constants, bail early.
5318 return CanConstantFold(I);
5319}
5320
5321/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5322/// recursing through each instruction operand until reaching a loop header phi.
5323static PHINode *
5324getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005325 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005326
5327 // Otherwise, we can evaluate this instruction if all of its operands are
5328 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005329 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005330 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5331 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5332
5333 if (isa<Constant>(*OpI)) continue;
5334
5335 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005336 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005337
5338 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005339 if (!P)
5340 // If this operand is already visited, reuse the prior result.
5341 // We may have P != PHI if this is the deepest point at which the
5342 // inconsistent paths meet.
5343 P = PHIMap.lookup(OpInst);
5344 if (!P) {
5345 // Recurse and memoize the results, whether a phi is found or not.
5346 // This recursive call invalidates pointers into PHIMap.
5347 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5348 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005349 }
Craig Topper9f008862014-04-15 04:59:12 +00005350 if (!P)
5351 return nullptr; // Not evolving from PHI
5352 if (PHI && PHI != P)
5353 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005354 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005355 }
5356 // This is a expression evolving from a constant PHI!
5357 return PHI;
5358}
5359
Chris Lattnerdd730472004-04-17 22:58:41 +00005360/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5361/// in the loop that V is derived from. We allow arbitrary operations along the
5362/// way, but the operands of an operation must either be constants or a value
5363/// derived from a constant PHI. If this expression does not fit with these
5364/// constraints, return null.
5365static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005366 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005367 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005368
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005369 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005370 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005371 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005372
Andrew Trick3a86ba72011-10-05 03:25:31 +00005373 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005374 DenseMap<Instruction *, PHINode *> PHIMap;
5375 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005376}
5377
5378/// EvaluateExpression - Given an expression that passes the
5379/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5380/// in the loop has the value PHIVal. If we can't fold this expression for some
5381/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005382static Constant *EvaluateExpression(Value *V, const Loop *L,
5383 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005384 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005385 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005386 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005387 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005388 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005389 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005390
Andrew Trick3a86ba72011-10-05 03:25:31 +00005391 if (Constant *C = Vals.lookup(I)) return C;
5392
Nick Lewyckya6674c72011-10-22 19:58:20 +00005393 // An instruction inside the loop depends on a value outside the loop that we
5394 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005395 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005396
5397 // An unmapped PHI can be due to a branch or another loop inside this loop,
5398 // or due to this not being the initial iteration through a loop where we
5399 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005400 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005401
Dan Gohmanf820bd32010-06-22 13:15:46 +00005402 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005403
5404 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005405 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5406 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005407 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005408 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005409 continue;
5410 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005411 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005412 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005413 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005414 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005415 }
5416
Nick Lewyckya6674c72011-10-22 19:58:20 +00005417 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005418 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005419 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005420 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5421 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005422 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005423 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005424 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005425 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005426}
5427
5428/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5429/// in the header of its containing loop, we know the loop executes a
5430/// constant number of times, and the PHI node is just a recurrence
5431/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005432Constant *
5433ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005434 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005435 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005436 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005437 ConstantEvolutionLoopExitValue.find(PN);
5438 if (I != ConstantEvolutionLoopExitValue.end())
5439 return I->second;
5440
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005441 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005442 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005443
5444 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5445
Andrew Trick3a86ba72011-10-05 03:25:31 +00005446 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005447 BasicBlock *Header = L->getHeader();
5448 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005449
Chris Lattnerdd730472004-04-17 22:58:41 +00005450 // Since the loop is canonicalized, the PHI node must have two entries. One
5451 // entry must be a constant (coming in from outside of the loop), and the
5452 // second must be derived from the same PHI.
5453 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005454 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005455 for (BasicBlock::iterator I = Header->begin();
5456 (PHI = dyn_cast<PHINode>(I)); ++I) {
5457 Constant *StartCST =
5458 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005459 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005460 CurrentIterVals[PHI] = StartCST;
5461 }
5462 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005463 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005464
5465 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005466
5467 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005468 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005469 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005470
Dan Gohman0bddac12009-02-24 18:55:53 +00005471 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005472 unsigned IterationNum = 0;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005473 const DataLayout &DL = F->getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005474 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005475 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005476 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005477
Nick Lewyckya6674c72011-10-22 19:58:20 +00005478 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005479 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005480 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005481 Constant *NextPHI =
5482 EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005483 if (!NextPHI)
5484 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005485 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005486
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005487 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5488
Nick Lewyckya6674c72011-10-22 19:58:20 +00005489 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5490 // cease to be able to evaluate one of them or if they stop evolving,
5491 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005492 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005493 for (DenseMap<Instruction *, Constant *>::const_iterator
5494 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5495 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005496 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005497 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5498 }
5499 // We use two distinct loops because EvaluateExpression may invalidate any
5500 // iterators into CurrentIterVals.
5501 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5502 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5503 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005504 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005505 if (!NextPHI) { // Not already computed.
5506 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005507 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005508 }
5509 if (NextPHI != I->second)
5510 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005511 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005512
5513 // If all entries in CurrentIterVals == NextIterVals then we can stop
5514 // iterating, the loop can't continue to change.
5515 if (StoppedEvolving)
5516 return RetVal = CurrentIterVals[PN];
5517
Andrew Trick3a86ba72011-10-05 03:25:31 +00005518 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005519 }
5520}
5521
Andrew Trick3ca3f982011-07-26 17:19:55 +00005522/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005523/// constant number of times (the condition evolves only from constants),
5524/// try to evaluate a few iterations of the loop until we get the exit
5525/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005526/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005527const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5528 Value *Cond,
5529 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005530 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005531 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005532
Dan Gohman866971e2010-06-19 14:17:24 +00005533 // If the loop is canonicalized, the PHI will have exactly two entries.
5534 // That's the only form we support here.
5535 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5536
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005537 DenseMap<Instruction *, Constant *> CurrentIterVals;
5538 BasicBlock *Header = L->getHeader();
5539 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5540
Dan Gohman866971e2010-06-19 14:17:24 +00005541 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005542 // second must be derived from the same PHI.
5543 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005544 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005545 for (BasicBlock::iterator I = Header->begin();
5546 (PHI = dyn_cast<PHINode>(I)); ++I) {
5547 Constant *StartCST =
5548 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005549 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005550 CurrentIterVals[PHI] = StartCST;
5551 }
5552 if (!CurrentIterVals.count(PN))
5553 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005554
5555 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5556 // the loop symbolically to determine when the condition gets a value of
5557 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005558 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005559 const DataLayout &DL = F->getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005560 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005561 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
5562 EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005563
Zhou Sheng75b871f2007-01-11 12:24:14 +00005564 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005565 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005566
Reid Spencer983e3b32007-03-01 07:25:48 +00005567 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005568 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005569 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005570 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005571
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005572 // Update all the PHI nodes for the next iteration.
5573 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005574
5575 // Create a list of which PHIs we need to compute. We want to do this before
5576 // calling EvaluateExpression on them because that may invalidate iterators
5577 // into CurrentIterVals.
5578 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005579 for (DenseMap<Instruction *, Constant *>::const_iterator
5580 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5581 PHINode *PHI = dyn_cast<PHINode>(I->first);
5582 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005583 PHIsToCompute.push_back(PHI);
5584 }
5585 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5586 E = PHIsToCompute.end(); I != E; ++I) {
5587 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005588 Constant *&NextPHI = NextIterVals[PHI];
5589 if (NextPHI) continue; // Already computed!
5590
5591 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005592 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005593 }
5594 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005595 }
5596
5597 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005598 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005599}
5600
Dan Gohman237d9e52009-09-03 15:00:26 +00005601/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005602/// at the specified scope in the program. The L value specifies a loop
5603/// nest to evaluate the expression at, where null is the top-level or a
5604/// specified loop is immediately inside of the loop.
5605///
5606/// This method can be used to compute the exit value for a variable defined
5607/// in a loop by querying what the value will hold in the parent loop.
5608///
Dan Gohman8ca08852009-05-24 23:25:42 +00005609/// In the case that a relevant loop exit value cannot be computed, the
5610/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005611const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005612 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005613 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5614 for (unsigned u = 0; u < Values.size(); u++) {
5615 if (Values[u].first == L)
5616 return Values[u].second ? Values[u].second : V;
5617 }
Craig Topper9f008862014-04-15 04:59:12 +00005618 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005619 // Otherwise compute it.
5620 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005621 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5622 for (unsigned u = Values2.size(); u > 0; u--) {
5623 if (Values2[u - 1].first == L) {
5624 Values2[u - 1].second = C;
5625 break;
5626 }
5627 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005628 return C;
5629}
5630
Nick Lewyckya6674c72011-10-22 19:58:20 +00005631/// This builds up a Constant using the ConstantExpr interface. That way, we
5632/// will return Constants for objects which aren't represented by a
5633/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5634/// Returns NULL if the SCEV isn't representable as a Constant.
5635static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005636 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005637 case scCouldNotCompute:
5638 case scAddRecExpr:
5639 break;
5640 case scConstant:
5641 return cast<SCEVConstant>(V)->getValue();
5642 case scUnknown:
5643 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5644 case scSignExtend: {
5645 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5646 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5647 return ConstantExpr::getSExt(CastOp, SS->getType());
5648 break;
5649 }
5650 case scZeroExtend: {
5651 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5652 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5653 return ConstantExpr::getZExt(CastOp, SZ->getType());
5654 break;
5655 }
5656 case scTruncate: {
5657 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5658 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5659 return ConstantExpr::getTrunc(CastOp, ST->getType());
5660 break;
5661 }
5662 case scAddExpr: {
5663 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5664 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005665 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5666 unsigned AS = PTy->getAddressSpace();
5667 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5668 C = ConstantExpr::getBitCast(C, DestPtrTy);
5669 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005670 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5671 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005672 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005673
5674 // First pointer!
5675 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005676 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005677 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005678 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005679 // The offsets have been converted to bytes. We can add bytes to an
5680 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005681 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005682 }
5683
5684 // Don't bother trying to sum two pointers. We probably can't
5685 // statically compute a load that results from it anyway.
5686 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005687 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005688
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005689 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5690 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005691 C2 = ConstantExpr::getIntegerCast(
5692 C2, Type::getInt32Ty(C->getContext()), true);
5693 C = ConstantExpr::getGetElementPtr(C, C2);
5694 } else
5695 C = ConstantExpr::getAdd(C, C2);
5696 }
5697 return C;
5698 }
5699 break;
5700 }
5701 case scMulExpr: {
5702 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5703 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5704 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005705 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005706 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5707 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005708 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005709 C = ConstantExpr::getMul(C, C2);
5710 }
5711 return C;
5712 }
5713 break;
5714 }
5715 case scUDivExpr: {
5716 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5717 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5718 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5719 if (LHS->getType() == RHS->getType())
5720 return ConstantExpr::getUDiv(LHS, RHS);
5721 break;
5722 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005723 case scSMaxExpr:
5724 case scUMaxExpr:
5725 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005726 }
Craig Topper9f008862014-04-15 04:59:12 +00005727 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005728}
5729
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005730const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005731 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005732
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005733 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005734 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005735 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005736 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005737 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005738 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5739 if (PHINode *PN = dyn_cast<PHINode>(I))
5740 if (PN->getParent() == LI->getHeader()) {
5741 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005742 // to see if the loop that contains it has a known backedge-taken
5743 // count. If so, we may be able to force computation of the exit
5744 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005745 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005746 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005747 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005748 // Okay, we know how many times the containing loop executes. If
5749 // this is a constant evolving PHI node, get the final value at
5750 // the specified iteration number.
5751 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005752 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005753 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005754 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005755 }
5756 }
5757
Reid Spencere6328ca2006-12-04 21:33:23 +00005758 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005759 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005760 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005761 // result. This is particularly useful for computing loop exit values.
5762 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005763 SmallVector<Constant *, 4> Operands;
5764 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005765 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5766 Value *Op = I->getOperand(i);
5767 if (Constant *C = dyn_cast<Constant>(Op)) {
5768 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005769 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005770 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005771
5772 // If any of the operands is non-constant and if they are
5773 // non-integer and non-pointer, don't even try to analyze them
5774 // with scev techniques.
5775 if (!isSCEVable(Op->getType()))
5776 return V;
5777
5778 const SCEV *OrigV = getSCEV(Op);
5779 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5780 MadeImprovement |= OrigV != OpV;
5781
Nick Lewyckya6674c72011-10-22 19:58:20 +00005782 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005783 if (!C) return V;
5784 if (C->getType() != Op->getType())
5785 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5786 Op->getType(),
5787 false),
5788 C, Op->getType());
5789 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005790 }
Dan Gohmance973df2009-06-24 04:48:43 +00005791
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005792 // Check to see if getSCEVAtScope actually made an improvement.
5793 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005794 Constant *C = nullptr;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005795 const DataLayout &DL = F->getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005796 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005797 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5798 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005799 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5800 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005801 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005802 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005803 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
5804 DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005805 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005806 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005807 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005808 }
5809 }
5810
5811 // This is some other type of SCEVUnknown, just return it.
5812 return V;
5813 }
5814
Dan Gohmana30370b2009-05-04 22:02:23 +00005815 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005816 // Avoid performing the look-up in the common case where the specified
5817 // expression has no loop-variant portions.
5818 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005819 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005820 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005821 // Okay, at least one of these operands is loop variant but might be
5822 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005823 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5824 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005825 NewOps.push_back(OpAtScope);
5826
5827 for (++i; i != e; ++i) {
5828 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005829 NewOps.push_back(OpAtScope);
5830 }
5831 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005832 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005833 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005834 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005835 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005836 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005837 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005838 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005839 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005840 }
5841 }
5842 // If we got here, all operands are loop invariant.
5843 return Comm;
5844 }
5845
Dan Gohmana30370b2009-05-04 22:02:23 +00005846 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005847 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5848 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005849 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5850 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005851 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005852 }
5853
5854 // If this is a loop recurrence for a loop that does not contain L, then we
5855 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005857 // First, attempt to evaluate each operand.
5858 // Avoid performing the look-up in the common case where the specified
5859 // expression has no loop-variant portions.
5860 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5861 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5862 if (OpAtScope == AddRec->getOperand(i))
5863 continue;
5864
5865 // Okay, at least one of these operands is loop variant but might be
5866 // foldable. Build a new instance of the folded commutative expression.
5867 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5868 AddRec->op_begin()+i);
5869 NewOps.push_back(OpAtScope);
5870 for (++i; i != e; ++i)
5871 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5872
Andrew Trick759ba082011-04-27 01:21:25 +00005873 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005874 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005875 AddRec->getNoWrapFlags(SCEV::FlagNW));
5876 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005877 // The addrec may be folded to a nonrecurrence, for example, if the
5878 // induction variable is multiplied by zero after constant folding. Go
5879 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005880 if (!AddRec)
5881 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005882 break;
5883 }
5884
5885 // If the scope is outside the addrec's loop, evaluate it by using the
5886 // loop exit value of the addrec.
5887 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005888 // To evaluate this recurrence, we need to know how many times the AddRec
5889 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005890 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005891 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005892
Eli Friedman61f67622008-08-04 23:49:06 +00005893 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005894 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005895 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005896
Dan Gohman8ca08852009-05-24 23:25:42 +00005897 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005898 }
5899
Dan Gohmana30370b2009-05-04 22:02:23 +00005900 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005901 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005902 if (Op == Cast->getOperand())
5903 return Cast; // must be loop invariant
5904 return getZeroExtendExpr(Op, Cast->getType());
5905 }
5906
Dan Gohmana30370b2009-05-04 22:02:23 +00005907 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005908 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005909 if (Op == Cast->getOperand())
5910 return Cast; // must be loop invariant
5911 return getSignExtendExpr(Op, Cast->getType());
5912 }
5913
Dan Gohmana30370b2009-05-04 22:02:23 +00005914 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005915 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005916 if (Op == Cast->getOperand())
5917 return Cast; // must be loop invariant
5918 return getTruncateExpr(Op, Cast->getType());
5919 }
5920
Torok Edwinfbcc6632009-07-14 16:55:14 +00005921 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005922}
5923
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005924/// getSCEVAtScope - This is a convenience function which does
5925/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005926const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005927 return getSCEVAtScope(getSCEV(V), L);
5928}
5929
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005930/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5931/// following equation:
5932///
5933/// A * X = B (mod N)
5934///
5935/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5936/// A and B isn't important.
5937///
5938/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005939static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005940 ScalarEvolution &SE) {
5941 uint32_t BW = A.getBitWidth();
5942 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5943 assert(A != 0 && "A must be non-zero.");
5944
5945 // 1. D = gcd(A, N)
5946 //
5947 // The gcd of A and N may have only one prime factor: 2. The number of
5948 // trailing zeros in A is its multiplicity
5949 uint32_t Mult2 = A.countTrailingZeros();
5950 // D = 2^Mult2
5951
5952 // 2. Check if B is divisible by D.
5953 //
5954 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5955 // is not less than multiplicity of this prime factor for D.
5956 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005957 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005958
5959 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5960 // modulo (N / D).
5961 //
5962 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5963 // bit width during computations.
5964 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5965 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005966 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005967 APInt I = AD.multiplicativeInverse(Mod);
5968
5969 // 4. Compute the minimum unsigned root of the equation:
5970 // I * (B / D) mod (N / D)
5971 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5972
5973 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5974 // bits.
5975 return SE.getConstant(Result.trunc(BW));
5976}
Chris Lattnerd934c702004-04-02 20:23:17 +00005977
5978/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5979/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5980/// might be the same) or two SCEVCouldNotCompute objects.
5981///
Dan Gohmanaf752342009-07-07 17:06:11 +00005982static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005983SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005984 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005985 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5986 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5987 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005988
Chris Lattnerd934c702004-04-02 20:23:17 +00005989 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005990 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005991 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005992 return std::make_pair(CNC, CNC);
5993 }
5994
Reid Spencer983e3b32007-03-01 07:25:48 +00005995 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005996 const APInt &L = LC->getValue()->getValue();
5997 const APInt &M = MC->getValue()->getValue();
5998 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005999 APInt Two(BitWidth, 2);
6000 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006001
Dan Gohmance973df2009-06-24 04:48:43 +00006002 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006003 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006004 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006005 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6006 // The B coefficient is M-N/2
6007 APInt B(M);
6008 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006009
Reid Spencer983e3b32007-03-01 07:25:48 +00006010 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006011 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006012
Reid Spencer983e3b32007-03-01 07:25:48 +00006013 // Compute the B^2-4ac term.
6014 APInt SqrtTerm(B);
6015 SqrtTerm *= B;
6016 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006017
Nick Lewyckyfb780832012-08-01 09:14:36 +00006018 if (SqrtTerm.isNegative()) {
6019 // The loop is provably infinite.
6020 const SCEV *CNC = SE.getCouldNotCompute();
6021 return std::make_pair(CNC, CNC);
6022 }
6023
Reid Spencer983e3b32007-03-01 07:25:48 +00006024 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6025 // integer value or else APInt::sqrt() will assert.
6026 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006027
Dan Gohmance973df2009-06-24 04:48:43 +00006028 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006029 // The divisions must be performed as signed divisions.
6030 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006031 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006032 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006033 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006034 return std::make_pair(CNC, CNC);
6035 }
6036
Owen Anderson47db9412009-07-22 00:24:57 +00006037 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006038
6039 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006040 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006041 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006042 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006043
Dan Gohmance973df2009-06-24 04:48:43 +00006044 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006045 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006046 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006047}
6048
6049/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006050/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006051///
6052/// This is only used for loops with a "x != y" exit test. The exit condition is
6053/// now expressed as a single expression, V = x-y. So the exit test is
6054/// effectively V != 0. We know and take advantage of the fact that this
6055/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006056ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006057ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006058 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006059 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006060 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006061 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006062 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006063 }
6064
Dan Gohman48f82222009-05-04 22:30:44 +00006065 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006066 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006067 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006068
Chris Lattnerdff679f2011-01-09 22:39:48 +00006069 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6070 // the quadratic equation to solve it.
6071 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6072 std::pair<const SCEV *,const SCEV *> Roots =
6073 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006074 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6075 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006076 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006077#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006078 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006079 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006080#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006081 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006082 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006083 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6084 R1->getValue(),
6085 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006086 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006087 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006088
Chris Lattnerd934c702004-04-02 20:23:17 +00006089 // We can only use this value if the chrec ends up with an exact zero
6090 // value at this index. When solving for "X*X != 5", for example, we
6091 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006092 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006093 if (Val->isZero())
6094 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006095 }
6096 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006097 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006098 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006099
Chris Lattnerdff679f2011-01-09 22:39:48 +00006100 // Otherwise we can only handle this if it is affine.
6101 if (!AddRec->isAffine())
6102 return getCouldNotCompute();
6103
6104 // If this is an affine expression, the execution count of this branch is
6105 // the minimum unsigned root of the following equation:
6106 //
6107 // Start + Step*N = 0 (mod 2^BW)
6108 //
6109 // equivalent to:
6110 //
6111 // Step*N = -Start (mod 2^BW)
6112 //
6113 // where BW is the common bit width of Start and Step.
6114
6115 // Get the initial value for the loop.
6116 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6117 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6118
6119 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006120 //
6121 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6122 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6123 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6124 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006125 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006126 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006127 return getCouldNotCompute();
6128
Andrew Trick8b55b732011-03-14 16:50:06 +00006129 // For positive steps (counting up until unsigned overflow):
6130 // N = -Start/Step (as unsigned)
6131 // For negative steps (counting down to zero):
6132 // N = Start/-Step
6133 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006134 bool CountDown = StepC->getValue()->getValue().isNegative();
6135 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006136
6137 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006138 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6139 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006140 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6141 ConstantRange CR = getUnsignedRange(Start);
6142 const SCEV *MaxBECount;
6143 if (!CountDown && CR.getUnsignedMin().isMinValue())
6144 // When counting up, the worst starting value is 1, not 0.
6145 MaxBECount = CR.getUnsignedMax().isMinValue()
6146 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6147 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6148 else
6149 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6150 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006151 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006152 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006153
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006154 // As a special case, handle the instance where Step is a positive power of
6155 // two. In this case, determining whether Step divides Distance evenly can be
6156 // done by counting and comparing the number of trailing zeros of Step and
6157 // Distance.
6158 if (!CountDown) {
6159 const APInt &StepV = StepC->getValue()->getValue();
6160 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6161 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6162 // case is not handled as this code is guarded by !CountDown.
6163 if (StepV.isPowerOf2() &&
6164 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6165 return getUDivExactExpr(Distance, Step);
6166 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006167
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006168 // If the condition controls loop exit (the loop exits only if the expression
6169 // is true) and the addition is no-wrap we can use unsigned divide to
6170 // compute the backedge count. In this case, the step may not divide the
6171 // distance, but we don't care because if the condition is "missed" the loop
6172 // will have undefined behavior due to wrapping.
6173 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6174 const SCEV *Exact =
6175 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6176 return ExitLimit(Exact, Exact);
6177 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006178
Chris Lattnerdff679f2011-01-09 22:39:48 +00006179 // Then, try to solve the above equation provided that Start is constant.
6180 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6181 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6182 -StartC->getValue()->getValue(),
6183 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006184 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006185}
6186
6187/// HowFarToNonZero - Return the number of times a backedge checking the
6188/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006189/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006190ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006191ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006192 // Loops that look like: while (X == 0) are very strange indeed. We don't
6193 // handle them yet except for the trivial case. This could be expanded in the
6194 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006195
Chris Lattnerd934c702004-04-02 20:23:17 +00006196 // If the value is a constant, check to see if it is known to be non-zero
6197 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006198 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006199 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006200 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006201 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006202 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006203
Chris Lattnerd934c702004-04-02 20:23:17 +00006204 // We could implement others, but I really doubt anyone writes loops like
6205 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006206 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006207}
6208
Dan Gohmanf9081a22008-09-15 22:18:04 +00006209/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6210/// (which may not be an immediate predecessor) which has exactly one
6211/// successor from which BB is reachable, or null if no such block is
6212/// found.
6213///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006214std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006215ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006216 // If the block has a unique predecessor, then there is no path from the
6217 // predecessor to the block that does not go through the direct edge
6218 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006219 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006220 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006221
6222 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006223 // If the header has a unique predecessor outside the loop, it must be
6224 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006225 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006226 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006227
Dan Gohman4e3c1132010-04-15 16:19:08 +00006228 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006229}
6230
Dan Gohman450f4e02009-06-20 00:35:32 +00006231/// HasSameValue - SCEV structural equivalence is usually sufficient for
6232/// testing whether two expressions are equal, however for the purposes of
6233/// looking for a condition guarding a loop, it can be useful to be a little
6234/// more general, since a front-end may have replicated the controlling
6235/// expression.
6236///
Dan Gohmanaf752342009-07-07 17:06:11 +00006237static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006238 // Quick check to see if they are the same SCEV.
6239 if (A == B) return true;
6240
6241 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6242 // two different instructions with the same value. Check for this case.
6243 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6244 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6245 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6246 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006247 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006248 return true;
6249
6250 // Otherwise assume they may have a different value.
6251 return false;
6252}
6253
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006254/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006255/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006256///
6257bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006258 const SCEV *&LHS, const SCEV *&RHS,
6259 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006260 bool Changed = false;
6261
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006262 // If we hit the max recursion limit bail out.
6263 if (Depth >= 3)
6264 return false;
6265
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006266 // Canonicalize a constant to the right side.
6267 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6268 // Check for both operands constant.
6269 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6270 if (ConstantExpr::getICmp(Pred,
6271 LHSC->getValue(),
6272 RHSC->getValue())->isNullValue())
6273 goto trivially_false;
6274 else
6275 goto trivially_true;
6276 }
6277 // Otherwise swap the operands to put the constant on the right.
6278 std::swap(LHS, RHS);
6279 Pred = ICmpInst::getSwappedPredicate(Pred);
6280 Changed = true;
6281 }
6282
6283 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006284 // addrec's loop, put the addrec on the left. Also make a dominance check,
6285 // as both operands could be addrecs loop-invariant in each other's loop.
6286 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6287 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006288 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006289 std::swap(LHS, RHS);
6290 Pred = ICmpInst::getSwappedPredicate(Pred);
6291 Changed = true;
6292 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006293 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006294
6295 // If there's a constant operand, canonicalize comparisons with boundary
6296 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6297 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6298 const APInt &RA = RC->getValue()->getValue();
6299 switch (Pred) {
6300 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6301 case ICmpInst::ICMP_EQ:
6302 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006303 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6304 if (!RA)
6305 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6306 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006307 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6308 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006309 RHS = AE->getOperand(1);
6310 LHS = ME->getOperand(1);
6311 Changed = true;
6312 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006313 break;
6314 case ICmpInst::ICMP_UGE:
6315 if ((RA - 1).isMinValue()) {
6316 Pred = ICmpInst::ICMP_NE;
6317 RHS = getConstant(RA - 1);
6318 Changed = true;
6319 break;
6320 }
6321 if (RA.isMaxValue()) {
6322 Pred = ICmpInst::ICMP_EQ;
6323 Changed = true;
6324 break;
6325 }
6326 if (RA.isMinValue()) goto trivially_true;
6327
6328 Pred = ICmpInst::ICMP_UGT;
6329 RHS = getConstant(RA - 1);
6330 Changed = true;
6331 break;
6332 case ICmpInst::ICMP_ULE:
6333 if ((RA + 1).isMaxValue()) {
6334 Pred = ICmpInst::ICMP_NE;
6335 RHS = getConstant(RA + 1);
6336 Changed = true;
6337 break;
6338 }
6339 if (RA.isMinValue()) {
6340 Pred = ICmpInst::ICMP_EQ;
6341 Changed = true;
6342 break;
6343 }
6344 if (RA.isMaxValue()) goto trivially_true;
6345
6346 Pred = ICmpInst::ICMP_ULT;
6347 RHS = getConstant(RA + 1);
6348 Changed = true;
6349 break;
6350 case ICmpInst::ICMP_SGE:
6351 if ((RA - 1).isMinSignedValue()) {
6352 Pred = ICmpInst::ICMP_NE;
6353 RHS = getConstant(RA - 1);
6354 Changed = true;
6355 break;
6356 }
6357 if (RA.isMaxSignedValue()) {
6358 Pred = ICmpInst::ICMP_EQ;
6359 Changed = true;
6360 break;
6361 }
6362 if (RA.isMinSignedValue()) goto trivially_true;
6363
6364 Pred = ICmpInst::ICMP_SGT;
6365 RHS = getConstant(RA - 1);
6366 Changed = true;
6367 break;
6368 case ICmpInst::ICMP_SLE:
6369 if ((RA + 1).isMaxSignedValue()) {
6370 Pred = ICmpInst::ICMP_NE;
6371 RHS = getConstant(RA + 1);
6372 Changed = true;
6373 break;
6374 }
6375 if (RA.isMinSignedValue()) {
6376 Pred = ICmpInst::ICMP_EQ;
6377 Changed = true;
6378 break;
6379 }
6380 if (RA.isMaxSignedValue()) goto trivially_true;
6381
6382 Pred = ICmpInst::ICMP_SLT;
6383 RHS = getConstant(RA + 1);
6384 Changed = true;
6385 break;
6386 case ICmpInst::ICMP_UGT:
6387 if (RA.isMinValue()) {
6388 Pred = ICmpInst::ICMP_NE;
6389 Changed = true;
6390 break;
6391 }
6392 if ((RA + 1).isMaxValue()) {
6393 Pred = ICmpInst::ICMP_EQ;
6394 RHS = getConstant(RA + 1);
6395 Changed = true;
6396 break;
6397 }
6398 if (RA.isMaxValue()) goto trivially_false;
6399 break;
6400 case ICmpInst::ICMP_ULT:
6401 if (RA.isMaxValue()) {
6402 Pred = ICmpInst::ICMP_NE;
6403 Changed = true;
6404 break;
6405 }
6406 if ((RA - 1).isMinValue()) {
6407 Pred = ICmpInst::ICMP_EQ;
6408 RHS = getConstant(RA - 1);
6409 Changed = true;
6410 break;
6411 }
6412 if (RA.isMinValue()) goto trivially_false;
6413 break;
6414 case ICmpInst::ICMP_SGT:
6415 if (RA.isMinSignedValue()) {
6416 Pred = ICmpInst::ICMP_NE;
6417 Changed = true;
6418 break;
6419 }
6420 if ((RA + 1).isMaxSignedValue()) {
6421 Pred = ICmpInst::ICMP_EQ;
6422 RHS = getConstant(RA + 1);
6423 Changed = true;
6424 break;
6425 }
6426 if (RA.isMaxSignedValue()) goto trivially_false;
6427 break;
6428 case ICmpInst::ICMP_SLT:
6429 if (RA.isMaxSignedValue()) {
6430 Pred = ICmpInst::ICMP_NE;
6431 Changed = true;
6432 break;
6433 }
6434 if ((RA - 1).isMinSignedValue()) {
6435 Pred = ICmpInst::ICMP_EQ;
6436 RHS = getConstant(RA - 1);
6437 Changed = true;
6438 break;
6439 }
6440 if (RA.isMinSignedValue()) goto trivially_false;
6441 break;
6442 }
6443 }
6444
6445 // Check for obvious equality.
6446 if (HasSameValue(LHS, RHS)) {
6447 if (ICmpInst::isTrueWhenEqual(Pred))
6448 goto trivially_true;
6449 if (ICmpInst::isFalseWhenEqual(Pred))
6450 goto trivially_false;
6451 }
6452
Dan Gohman81585c12010-05-03 16:35:17 +00006453 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6454 // adding or subtracting 1 from one of the operands.
6455 switch (Pred) {
6456 case ICmpInst::ICMP_SLE:
6457 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6458 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006459 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006460 Pred = ICmpInst::ICMP_SLT;
6461 Changed = true;
6462 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006463 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006464 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006465 Pred = ICmpInst::ICMP_SLT;
6466 Changed = true;
6467 }
6468 break;
6469 case ICmpInst::ICMP_SGE:
6470 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006471 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006472 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006473 Pred = ICmpInst::ICMP_SGT;
6474 Changed = true;
6475 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6476 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006477 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006478 Pred = ICmpInst::ICMP_SGT;
6479 Changed = true;
6480 }
6481 break;
6482 case ICmpInst::ICMP_ULE:
6483 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006484 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006485 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006486 Pred = ICmpInst::ICMP_ULT;
6487 Changed = true;
6488 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006489 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006490 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006491 Pred = ICmpInst::ICMP_ULT;
6492 Changed = true;
6493 }
6494 break;
6495 case ICmpInst::ICMP_UGE:
6496 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006497 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006498 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006499 Pred = ICmpInst::ICMP_UGT;
6500 Changed = true;
6501 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006502 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006503 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006504 Pred = ICmpInst::ICMP_UGT;
6505 Changed = true;
6506 }
6507 break;
6508 default:
6509 break;
6510 }
6511
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006512 // TODO: More simplifications are possible here.
6513
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006514 // Recursively simplify until we either hit a recursion limit or nothing
6515 // changes.
6516 if (Changed)
6517 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6518
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006519 return Changed;
6520
6521trivially_true:
6522 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006523 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006524 Pred = ICmpInst::ICMP_EQ;
6525 return true;
6526
6527trivially_false:
6528 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006529 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006530 Pred = ICmpInst::ICMP_NE;
6531 return true;
6532}
6533
Dan Gohmane65c9172009-07-13 21:35:55 +00006534bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6535 return getSignedRange(S).getSignedMax().isNegative();
6536}
6537
6538bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6539 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6540}
6541
6542bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6543 return !getSignedRange(S).getSignedMin().isNegative();
6544}
6545
6546bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6547 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6548}
6549
6550bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6551 return isKnownNegative(S) || isKnownPositive(S);
6552}
6553
6554bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6555 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006556 // Canonicalize the inputs first.
6557 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6558
Dan Gohman07591692010-04-11 22:16:48 +00006559 // If LHS or RHS is an addrec, check to see if the condition is true in
6560 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006561 // If LHS and RHS are both addrec, both conditions must be true in
6562 // every iteration of the loop.
6563 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6564 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6565 bool LeftGuarded = false;
6566 bool RightGuarded = false;
6567 if (LAR) {
6568 const Loop *L = LAR->getLoop();
6569 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6570 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6571 if (!RAR) return true;
6572 LeftGuarded = true;
6573 }
6574 }
6575 if (RAR) {
6576 const Loop *L = RAR->getLoop();
6577 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6578 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6579 if (!LAR) return true;
6580 RightGuarded = true;
6581 }
6582 }
6583 if (LeftGuarded && RightGuarded)
6584 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006585
Dan Gohman07591692010-04-11 22:16:48 +00006586 // Otherwise see what can be done with known constant ranges.
6587 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6588}
6589
6590bool
6591ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6592 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006593 if (HasSameValue(LHS, RHS))
6594 return ICmpInst::isTrueWhenEqual(Pred);
6595
Dan Gohman07591692010-04-11 22:16:48 +00006596 // This code is split out from isKnownPredicate because it is called from
6597 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006598 switch (Pred) {
6599 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006600 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006601 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006602 std::swap(LHS, RHS);
6603 case ICmpInst::ICMP_SLT: {
6604 ConstantRange LHSRange = getSignedRange(LHS);
6605 ConstantRange RHSRange = getSignedRange(RHS);
6606 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6607 return true;
6608 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6609 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006610 break;
6611 }
6612 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006613 std::swap(LHS, RHS);
6614 case ICmpInst::ICMP_SLE: {
6615 ConstantRange LHSRange = getSignedRange(LHS);
6616 ConstantRange RHSRange = getSignedRange(RHS);
6617 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6618 return true;
6619 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6620 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006621 break;
6622 }
6623 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006624 std::swap(LHS, RHS);
6625 case ICmpInst::ICMP_ULT: {
6626 ConstantRange LHSRange = getUnsignedRange(LHS);
6627 ConstantRange RHSRange = getUnsignedRange(RHS);
6628 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6629 return true;
6630 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6631 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006632 break;
6633 }
6634 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006635 std::swap(LHS, RHS);
6636 case ICmpInst::ICMP_ULE: {
6637 ConstantRange LHSRange = getUnsignedRange(LHS);
6638 ConstantRange RHSRange = getUnsignedRange(RHS);
6639 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6640 return true;
6641 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6642 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006643 break;
6644 }
6645 case ICmpInst::ICMP_NE: {
6646 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6647 return true;
6648 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6649 return true;
6650
6651 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6652 if (isKnownNonZero(Diff))
6653 return true;
6654 break;
6655 }
6656 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006657 // The check at the top of the function catches the case where
6658 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006659 break;
6660 }
6661 return false;
6662}
6663
6664/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6665/// protected by a conditional between LHS and RHS. This is used to
6666/// to eliminate casts.
6667bool
6668ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6669 ICmpInst::Predicate Pred,
6670 const SCEV *LHS, const SCEV *RHS) {
6671 // Interpret a null as meaning no loop, where there is obviously no guard
6672 // (interprocedural conditions notwithstanding).
6673 if (!L) return true;
6674
Sanjoy Das1f05c512014-10-10 21:22:34 +00006675 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6676
Dan Gohmane65c9172009-07-13 21:35:55 +00006677 BasicBlock *Latch = L->getLoopLatch();
6678 if (!Latch)
6679 return false;
6680
6681 BranchInst *LoopContinuePredicate =
6682 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006683 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6684 isImpliedCond(Pred, LHS, RHS,
6685 LoopContinuePredicate->getCondition(),
6686 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6687 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006688
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006689 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006690 for (auto &AssumeVH : AC->assumptions()) {
6691 if (!AssumeVH)
6692 continue;
6693 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006694 if (!DT->dominates(CI, Latch->getTerminator()))
6695 continue;
6696
6697 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6698 return true;
6699 }
6700
6701 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006702}
6703
Dan Gohmanb50349a2010-04-11 19:27:13 +00006704/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006705/// by a conditional between LHS and RHS. This is used to help avoid max
6706/// expressions in loop trip counts, and to eliminate casts.
6707bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006708ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6709 ICmpInst::Predicate Pred,
6710 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006711 // Interpret a null as meaning no loop, where there is obviously no guard
6712 // (interprocedural conditions notwithstanding).
6713 if (!L) return false;
6714
Sanjoy Das1f05c512014-10-10 21:22:34 +00006715 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6716
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006717 // Starting at the loop predecessor, climb up the predecessor chain, as long
6718 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006719 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006720 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006721 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006722 Pair.first;
6723 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006724
6725 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006726 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006727 if (!LoopEntryPredicate ||
6728 LoopEntryPredicate->isUnconditional())
6729 continue;
6730
Dan Gohmane18c2d62010-08-10 23:46:30 +00006731 if (isImpliedCond(Pred, LHS, RHS,
6732 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006733 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006734 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006735 }
6736
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006737 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006738 for (auto &AssumeVH : AC->assumptions()) {
6739 if (!AssumeVH)
6740 continue;
6741 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006742 if (!DT->dominates(CI, L->getHeader()))
6743 continue;
6744
6745 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6746 return true;
6747 }
6748
Dan Gohman2a62fd92008-08-12 20:17:31 +00006749 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006750}
6751
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006752/// RAII wrapper to prevent recursive application of isImpliedCond.
6753/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6754/// currently evaluating isImpliedCond.
6755struct MarkPendingLoopPredicate {
6756 Value *Cond;
6757 DenseSet<Value*> &LoopPreds;
6758 bool Pending;
6759
6760 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6761 : Cond(C), LoopPreds(LP) {
6762 Pending = !LoopPreds.insert(Cond).second;
6763 }
6764 ~MarkPendingLoopPredicate() {
6765 if (!Pending)
6766 LoopPreds.erase(Cond);
6767 }
6768};
6769
Dan Gohman430f0cc2009-07-21 23:03:19 +00006770/// isImpliedCond - Test whether the condition described by Pred, LHS,
6771/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006772bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006773 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006774 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006775 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006776 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6777 if (Mark.Pending)
6778 return false;
6779
Dan Gohman8b0a4192010-03-01 17:49:51 +00006780 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006781 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006782 if (BO->getOpcode() == Instruction::And) {
6783 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006784 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6785 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006786 } else if (BO->getOpcode() == Instruction::Or) {
6787 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006788 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6789 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006790 }
6791 }
6792
Dan Gohmane18c2d62010-08-10 23:46:30 +00006793 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006794 if (!ICI) return false;
6795
Andrew Trickfa594032012-11-29 18:35:13 +00006796 // Now that we found a conditional branch that dominates the loop or controls
6797 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006798 ICmpInst::Predicate FoundPred;
6799 if (Inverse)
6800 FoundPred = ICI->getInversePredicate();
6801 else
6802 FoundPred = ICI->getPredicate();
6803
6804 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6805 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006806
Sanjoy Das14598832015-03-26 17:28:26 +00006807 // Balance the types.
6808 if (getTypeSizeInBits(LHS->getType()) <
6809 getTypeSizeInBits(FoundLHS->getType())) {
6810 if (CmpInst::isSigned(Pred)) {
6811 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
6812 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
6813 } else {
6814 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
6815 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
6816 }
6817 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00006818 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006819 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006820 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6821 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6822 } else {
6823 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6824 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6825 }
6826 }
6827
Dan Gohman430f0cc2009-07-21 23:03:19 +00006828 // Canonicalize the query to match the way instcombine will have
6829 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006830 if (SimplifyICmpOperands(Pred, LHS, RHS))
6831 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006832 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006833 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6834 if (FoundLHS == FoundRHS)
6835 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006836
6837 // Check to see if we can make the LHS or RHS match.
6838 if (LHS == FoundRHS || RHS == FoundLHS) {
6839 if (isa<SCEVConstant>(RHS)) {
6840 std::swap(FoundLHS, FoundRHS);
6841 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6842 } else {
6843 std::swap(LHS, RHS);
6844 Pred = ICmpInst::getSwappedPredicate(Pred);
6845 }
6846 }
6847
6848 // Check whether the found predicate is the same as the desired predicate.
6849 if (FoundPred == Pred)
6850 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6851
6852 // Check whether swapping the found predicate makes it the same as the
6853 // desired predicate.
6854 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6855 if (isa<SCEVConstant>(RHS))
6856 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6857 else
6858 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6859 RHS, LHS, FoundLHS, FoundRHS);
6860 }
6861
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006862 // Check if we can make progress by sharpening ranges.
6863 if (FoundPred == ICmpInst::ICMP_NE &&
6864 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6865
6866 const SCEVConstant *C = nullptr;
6867 const SCEV *V = nullptr;
6868
6869 if (isa<SCEVConstant>(FoundLHS)) {
6870 C = cast<SCEVConstant>(FoundLHS);
6871 V = FoundRHS;
6872 } else {
6873 C = cast<SCEVConstant>(FoundRHS);
6874 V = FoundLHS;
6875 }
6876
6877 // The guarding predicate tells us that C != V. If the known range
6878 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6879 // range we consider has to correspond to same signedness as the
6880 // predicate we're interested in folding.
6881
6882 APInt Min = ICmpInst::isSigned(Pred) ?
6883 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6884
6885 if (Min == C->getValue()->getValue()) {
6886 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6887 // This is true even if (Min + 1) wraps around -- in case of
6888 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6889
6890 APInt SharperMin = Min + 1;
6891
6892 switch (Pred) {
6893 case ICmpInst::ICMP_SGE:
6894 case ICmpInst::ICMP_UGE:
6895 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6896 // RHS, we're done.
6897 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6898 getConstant(SharperMin)))
6899 return true;
6900
6901 case ICmpInst::ICMP_SGT:
6902 case ICmpInst::ICMP_UGT:
6903 // We know from the range information that (V `Pred` Min ||
6904 // V == Min). We know from the guarding condition that !(V
6905 // == Min). This gives us
6906 //
6907 // V `Pred` Min || V == Min && !(V == Min)
6908 // => V `Pred` Min
6909 //
6910 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6911
6912 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6913 return true;
6914
6915 default:
6916 // No change
6917 break;
6918 }
6919 }
6920 }
6921
Dan Gohman430f0cc2009-07-21 23:03:19 +00006922 // Check whether the actual condition is beyond sufficient.
6923 if (FoundPred == ICmpInst::ICMP_EQ)
6924 if (ICmpInst::isTrueWhenEqual(Pred))
6925 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6926 return true;
6927 if (Pred == ICmpInst::ICMP_NE)
6928 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6929 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6930 return true;
6931
6932 // Otherwise assume the worst.
6933 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006934}
6935
Dan Gohman430f0cc2009-07-21 23:03:19 +00006936/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006937/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006938/// and FoundRHS is true.
6939bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6940 const SCEV *LHS, const SCEV *RHS,
6941 const SCEV *FoundLHS,
6942 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00006943 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
6944 return true;
6945
Dan Gohman430f0cc2009-07-21 23:03:19 +00006946 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6947 FoundLHS, FoundRHS) ||
6948 // ~x < ~y --> x > y
6949 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6950 getNotSCEV(FoundRHS),
6951 getNotSCEV(FoundLHS));
6952}
6953
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006954
6955/// If Expr computes ~A, return A else return nullptr
6956static const SCEV *MatchNotExpr(const SCEV *Expr) {
6957 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6958 if (!Add || Add->getNumOperands() != 2) return nullptr;
6959
6960 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6961 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6962 return nullptr;
6963
6964 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6965 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6966
6967 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6968 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6969 return nullptr;
6970
6971 return AddRHS->getOperand(1);
6972}
6973
6974
6975/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
6976template<typename MaxExprType>
6977static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
6978 const SCEV *Candidate) {
6979 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
6980 if (!MaxExpr) return false;
6981
6982 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
6983 return It != MaxExpr->op_end();
6984}
6985
6986
6987/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
6988template<typename MaxExprType>
6989static bool IsMinConsistingOf(ScalarEvolution &SE,
6990 const SCEV *MaybeMinExpr,
6991 const SCEV *Candidate) {
6992 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
6993 if (!MaybeMaxExpr)
6994 return false;
6995
6996 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
6997}
6998
6999
7000/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7001/// expression?
7002static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7003 ICmpInst::Predicate Pred,
7004 const SCEV *LHS, const SCEV *RHS) {
7005 switch (Pred) {
7006 default:
7007 return false;
7008
7009 case ICmpInst::ICMP_SGE:
7010 std::swap(LHS, RHS);
7011 // fall through
7012 case ICmpInst::ICMP_SLE:
7013 return
7014 // min(A, ...) <= A
7015 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7016 // A <= max(A, ...)
7017 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7018
7019 case ICmpInst::ICMP_UGE:
7020 std::swap(LHS, RHS);
7021 // fall through
7022 case ICmpInst::ICMP_ULE:
7023 return
7024 // min(A, ...) <= A
7025 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7026 // A <= max(A, ...)
7027 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7028 }
7029
7030 llvm_unreachable("covered switch fell through?!");
7031}
7032
Dan Gohman430f0cc2009-07-21 23:03:19 +00007033/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007034/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007035/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007036bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007037ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7038 const SCEV *LHS, const SCEV *RHS,
7039 const SCEV *FoundLHS,
7040 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007041 auto IsKnownPredicateFull =
7042 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7043 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
7044 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
7045 };
7046
Dan Gohmane65c9172009-07-13 21:35:55 +00007047 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007048 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7049 case ICmpInst::ICMP_EQ:
7050 case ICmpInst::ICMP_NE:
7051 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7052 return true;
7053 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007054 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007055 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007056 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7057 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007058 return true;
7059 break;
7060 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007061 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007062 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7063 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007064 return true;
7065 break;
7066 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007067 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007068 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7069 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007070 return true;
7071 break;
7072 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007073 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007074 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7075 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007076 return true;
7077 break;
7078 }
7079
7080 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007081}
7082
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007083/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7084/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7085bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7086 const SCEV *LHS,
7087 const SCEV *RHS,
7088 const SCEV *FoundLHS,
7089 const SCEV *FoundRHS) {
7090 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7091 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7092 // reduce the compile time impact of this optimization.
7093 return false;
7094
7095 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7096 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7097 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7098 return false;
7099
7100 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7101
7102 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7103 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7104 ConstantRange FoundLHSRange =
7105 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7106
7107 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7108 // for `LHS`:
7109 APInt Addend =
7110 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7111 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7112
7113 // We can also compute the range of values for `LHS` that satisfy the
7114 // consequent, "`LHS` `Pred` `RHS`":
7115 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7116 ConstantRange SatisfyingLHSRange =
7117 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7118
7119 // The antecedent implies the consequent if every value of `LHS` that
7120 // satisfies the antecedent also satisfies the consequent.
7121 return SatisfyingLHSRange.contains(LHSRange);
7122}
7123
Johannes Doerfert2683e562015-02-09 12:34:23 +00007124// Verify if an linear IV with positive stride can overflow when in a
7125// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007126// stride and the knowledge of NSW/NUW flags on the recurrence.
7127bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7128 bool IsSigned, bool NoWrap) {
7129 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007130
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007131 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7132 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007133
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007134 if (IsSigned) {
7135 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7136 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7137 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7138 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007139
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007140 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7141 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007142 }
Dan Gohman01048422009-06-21 23:46:38 +00007143
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007144 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7145 APInt MaxValue = APInt::getMaxValue(BitWidth);
7146 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7147 .getUnsignedMax();
7148
7149 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7150 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7151}
7152
Johannes Doerfert2683e562015-02-09 12:34:23 +00007153// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007154// greater-than comparison, knowing the invariant term of the comparison,
7155// the stride and the knowledge of NSW/NUW flags on the recurrence.
7156bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7157 bool IsSigned, bool NoWrap) {
7158 if (NoWrap) return false;
7159
7160 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7161 const SCEV *One = getConstant(Stride->getType(), 1);
7162
7163 if (IsSigned) {
7164 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7165 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7166 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7167 .getSignedMax();
7168
7169 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7170 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7171 }
7172
7173 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7174 APInt MinValue = APInt::getMinValue(BitWidth);
7175 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7176 .getUnsignedMax();
7177
7178 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7179 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7180}
7181
7182// Compute the backedge taken count knowing the interval difference, the
7183// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007184const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007185 bool Equality) {
7186 const SCEV *One = getConstant(Step->getType(), 1);
7187 Delta = Equality ? getAddExpr(Delta, Step)
7188 : getAddExpr(Delta, getMinusSCEV(Step, One));
7189 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007190}
7191
Chris Lattner587a75b2005-08-15 23:33:51 +00007192/// HowManyLessThans - Return the number of times a backedge containing the
7193/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007194/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007195///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007196/// @param ControlsExit is true when the LHS < RHS condition directly controls
7197/// the branch (loops exits only if condition is true). In this case, we can use
7198/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007199ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007200ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007201 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007202 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007203 // We handle only IV < Invariant
7204 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007205 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007206
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007207 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007208
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007209 // Avoid weird loops
7210 if (!IV || IV->getLoop() != L || !IV->isAffine())
7211 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007212
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007213 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007214 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007215
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007216 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007217
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007218 // Avoid negative or zero stride values
7219 if (!isKnownPositive(Stride))
7220 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007221
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007222 // Avoid proven overflow cases: this will ensure that the backedge taken count
7223 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007224 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007225 // behaviors like the case of C language.
7226 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7227 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007228
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007229 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7230 : ICmpInst::ICMP_ULT;
7231 const SCEV *Start = IV->getStart();
7232 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007233 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7234 const SCEV *Diff = getMinusSCEV(RHS, Start);
7235 // If we have NoWrap set, then we can assume that the increment won't
7236 // overflow, in which case if RHS - Start is a constant, we don't need to
7237 // do a max operation since we can just figure it out statically
7238 if (NoWrap && isa<SCEVConstant>(Diff)) {
7239 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7240 if (D.isNegative())
7241 End = Start;
7242 } else
7243 End = IsSigned ? getSMaxExpr(RHS, Start)
7244 : getUMaxExpr(RHS, Start);
7245 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007246
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007247 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007248
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007249 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7250 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007251
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007252 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7253 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007254
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007255 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7256 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7257 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007258
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007259 // Although End can be a MAX expression we estimate MaxEnd considering only
7260 // the case End = RHS. This is safe because in the other case (End - Start)
7261 // is zero, leading to a zero maximum backedge taken count.
7262 APInt MaxEnd =
7263 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7264 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7265
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007266 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007267 if (isa<SCEVConstant>(BECount))
7268 MaxBECount = BECount;
7269 else
7270 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7271 getConstant(MinStride), false);
7272
7273 if (isa<SCEVCouldNotCompute>(MaxBECount))
7274 MaxBECount = BECount;
7275
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007276 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007277}
7278
7279ScalarEvolution::ExitLimit
7280ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7281 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007282 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007283 // We handle only IV > Invariant
7284 if (!isLoopInvariant(RHS, L))
7285 return getCouldNotCompute();
7286
7287 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7288
7289 // Avoid weird loops
7290 if (!IV || IV->getLoop() != L || !IV->isAffine())
7291 return getCouldNotCompute();
7292
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007293 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007294 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7295
7296 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7297
7298 // Avoid negative or zero stride values
7299 if (!isKnownPositive(Stride))
7300 return getCouldNotCompute();
7301
7302 // Avoid proven overflow cases: this will ensure that the backedge taken count
7303 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007304 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007305 // behaviors like the case of C language.
7306 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7307 return getCouldNotCompute();
7308
7309 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7310 : ICmpInst::ICMP_UGT;
7311
7312 const SCEV *Start = IV->getStart();
7313 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007314 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7315 const SCEV *Diff = getMinusSCEV(RHS, Start);
7316 // If we have NoWrap set, then we can assume that the increment won't
7317 // overflow, in which case if RHS - Start is a constant, we don't need to
7318 // do a max operation since we can just figure it out statically
7319 if (NoWrap && isa<SCEVConstant>(Diff)) {
7320 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7321 if (!D.isNegative())
7322 End = Start;
7323 } else
7324 End = IsSigned ? getSMinExpr(RHS, Start)
7325 : getUMinExpr(RHS, Start);
7326 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007327
7328 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7329
7330 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7331 : getUnsignedRange(Start).getUnsignedMax();
7332
7333 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7334 : getUnsignedRange(Stride).getUnsignedMin();
7335
7336 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7337 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7338 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7339
7340 // Although End can be a MIN expression we estimate MinEnd considering only
7341 // the case End = RHS. This is safe because in the other case (Start - End)
7342 // is zero, leading to a zero maximum backedge taken count.
7343 APInt MinEnd =
7344 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7345 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7346
7347
7348 const SCEV *MaxBECount = getCouldNotCompute();
7349 if (isa<SCEVConstant>(BECount))
7350 MaxBECount = BECount;
7351 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00007352 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007353 getConstant(MinStride), false);
7354
7355 if (isa<SCEVCouldNotCompute>(MaxBECount))
7356 MaxBECount = BECount;
7357
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007358 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007359}
7360
Chris Lattnerd934c702004-04-02 20:23:17 +00007361/// getNumIterationsInRange - Return the number of iterations of this loop that
7362/// produce values in the specified constant range. Another way of looking at
7363/// this is that it returns the first iteration number where the value is not in
7364/// the condition, thus computing the exit count. If the iteration count can't
7365/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007366const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007367 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007368 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007369 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007370
7371 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007372 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007373 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007374 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007375 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007376 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007377 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007378 if (const SCEVAddRecExpr *ShiftedAddRec =
7379 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007380 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007381 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007382 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007383 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007384 }
7385
7386 // The only time we can solve this is when we have all constant indices.
7387 // Otherwise, we cannot determine the overflow conditions.
7388 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7389 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007390 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007391
7392
7393 // Okay at this point we know that all elements of the chrec are constants and
7394 // that the start element is zero.
7395
7396 // First check to see if the range contains zero. If not, the first
7397 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007398 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007399 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007400 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007401
Chris Lattnerd934c702004-04-02 20:23:17 +00007402 if (isAffine()) {
7403 // If this is an affine expression then we have this situation:
7404 // Solve {0,+,A} in Range === Ax in Range
7405
Nick Lewycky52460262007-07-16 02:08:00 +00007406 // We know that zero is in the range. If A is positive then we know that
7407 // the upper value of the range must be the first possible exit value.
7408 // If A is negative then the lower of the range is the last possible loop
7409 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007410 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007411 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7412 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007413
Nick Lewycky52460262007-07-16 02:08:00 +00007414 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007415 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007416 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007417
7418 // Evaluate at the exit value. If we really did fall out of the valid
7419 // range, then we computed our trip count, otherwise wrap around or other
7420 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007421 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007422 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007423 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007424
7425 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007426 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007427 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007428 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007429 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007430 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007431 } else if (isQuadratic()) {
7432 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7433 // quadratic equation to solve it. To do this, we must frame our problem in
7434 // terms of figuring out when zero is crossed, instead of when
7435 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007436 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007437 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007438 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7439 // getNoWrapFlags(FlagNW)
7440 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007441
7442 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007443 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007444 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007445 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7446 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007447 if (R1) {
7448 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007449 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007450 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007451 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007452 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00007453 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007454
Chris Lattnerd934c702004-04-02 20:23:17 +00007455 // Make sure the root is not off by one. The returned iteration should
7456 // not be in the range, but the previous one should be. When solving
7457 // for "X*X < 5", for example, we should not return a root of 2.
7458 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007459 R1->getValue(),
7460 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007461 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007462 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007463 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007464 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007465
Dan Gohmana37eaf22007-10-22 18:31:58 +00007466 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007467 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007468 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007469 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007470 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007471
Chris Lattnerd934c702004-04-02 20:23:17 +00007472 // If R1 was not in the range, then it is a good return value. Make
7473 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007474 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007475 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007476 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007477 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007478 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007479 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007480 }
7481 }
7482 }
7483
Dan Gohman31efa302009-04-18 17:58:19 +00007484 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007485}
7486
Sebastian Pop448712b2014-05-07 18:01:20 +00007487namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007488struct FindUndefs {
7489 bool Found;
7490 FindUndefs() : Found(false) {}
7491
7492 bool follow(const SCEV *S) {
7493 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7494 if (isa<UndefValue>(C->getValue()))
7495 Found = true;
7496 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7497 if (isa<UndefValue>(C->getValue()))
7498 Found = true;
7499 }
7500
7501 // Keep looking if we haven't found it yet.
7502 return !Found;
7503 }
7504 bool isDone() const {
7505 // Stop recursion if we have found an undef.
7506 return Found;
7507 }
7508};
7509}
7510
7511// Return true when S contains at least an undef value.
7512static inline bool
7513containsUndefs(const SCEV *S) {
7514 FindUndefs F;
7515 SCEVTraversal<FindUndefs> ST(F);
7516 ST.visitAll(S);
7517
7518 return F.Found;
7519}
7520
7521namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007522// Collect all steps of SCEV expressions.
7523struct SCEVCollectStrides {
7524 ScalarEvolution &SE;
7525 SmallVectorImpl<const SCEV *> &Strides;
7526
7527 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7528 : SE(SE), Strides(S) {}
7529
7530 bool follow(const SCEV *S) {
7531 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7532 Strides.push_back(AR->getStepRecurrence(SE));
7533 return true;
7534 }
7535 bool isDone() const { return false; }
7536};
7537
7538// Collect all SCEVUnknown and SCEVMulExpr expressions.
7539struct SCEVCollectTerms {
7540 SmallVectorImpl<const SCEV *> &Terms;
7541
7542 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7543 : Terms(T) {}
7544
7545 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007546 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007547 if (!containsUndefs(S))
7548 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007549
7550 // Stop recursion: once we collected a term, do not walk its operands.
7551 return false;
7552 }
7553
7554 // Keep looking.
7555 return true;
7556 }
7557 bool isDone() const { return false; }
7558};
7559}
7560
7561/// Find parametric terms in this SCEVAddRecExpr.
7562void SCEVAddRecExpr::collectParametricTerms(
7563 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7564 SmallVector<const SCEV *, 4> Strides;
7565 SCEVCollectStrides StrideCollector(SE, Strides);
7566 visitAll(this, StrideCollector);
7567
7568 DEBUG({
7569 dbgs() << "Strides:\n";
7570 for (const SCEV *S : Strides)
7571 dbgs() << *S << "\n";
7572 });
7573
7574 for (const SCEV *S : Strides) {
7575 SCEVCollectTerms TermCollector(Terms);
7576 visitAll(S, TermCollector);
7577 }
7578
7579 DEBUG({
7580 dbgs() << "Terms:\n";
7581 for (const SCEV *T : Terms)
7582 dbgs() << *T << "\n";
7583 });
7584}
7585
Sebastian Popb1a548f2014-05-12 19:01:53 +00007586static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007587 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007588 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007589 int Last = Terms.size() - 1;
7590 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007591
Sebastian Pop448712b2014-05-07 18:01:20 +00007592 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007593 if (Last == 0) {
7594 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007595 SmallVector<const SCEV *, 2> Qs;
7596 for (const SCEV *Op : M->operands())
7597 if (!isa<SCEVConstant>(Op))
7598 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007599
Sebastian Pope30bd352014-05-27 22:41:56 +00007600 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007601 }
7602
Sebastian Pope30bd352014-05-27 22:41:56 +00007603 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007604 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007605 }
7606
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007607 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007608 // Normalize the terms before the next call to findArrayDimensionsRec.
7609 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007610 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007611
7612 // Bail out when GCD does not evenly divide one of the terms.
7613 if (!R->isZero())
7614 return false;
7615
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007616 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007617 }
7618
Tobias Grosser3080cf12014-05-08 07:55:34 +00007619 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007620 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7621 return isa<SCEVConstant>(E);
7622 }),
7623 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007624
Sebastian Pop448712b2014-05-07 18:01:20 +00007625 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007626 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7627 return false;
7628
Sebastian Pope30bd352014-05-27 22:41:56 +00007629 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007630 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007631}
Sebastian Popc62c6792013-11-12 22:47:20 +00007632
Sebastian Pop448712b2014-05-07 18:01:20 +00007633namespace {
7634struct FindParameter {
7635 bool FoundParameter;
7636 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007637
Sebastian Pop448712b2014-05-07 18:01:20 +00007638 bool follow(const SCEV *S) {
7639 if (isa<SCEVUnknown>(S)) {
7640 FoundParameter = true;
7641 // Stop recursion: we found a parameter.
7642 return false;
7643 }
7644 // Keep looking.
7645 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007646 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007647 bool isDone() const {
7648 // Stop recursion if we have found a parameter.
7649 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007650 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007651};
7652}
7653
Sebastian Pop448712b2014-05-07 18:01:20 +00007654// Returns true when S contains at least a SCEVUnknown parameter.
7655static inline bool
7656containsParameters(const SCEV *S) {
7657 FindParameter F;
7658 SCEVTraversal<FindParameter> ST(F);
7659 ST.visitAll(S);
7660
7661 return F.FoundParameter;
7662}
7663
7664// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7665static inline bool
7666containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7667 for (const SCEV *T : Terms)
7668 if (containsParameters(T))
7669 return true;
7670 return false;
7671}
7672
7673// Return the number of product terms in S.
7674static inline int numberOfTerms(const SCEV *S) {
7675 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7676 return Expr->getNumOperands();
7677 return 1;
7678}
7679
Sebastian Popa6e58602014-05-27 22:41:45 +00007680static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7681 if (isa<SCEVConstant>(T))
7682 return nullptr;
7683
7684 if (isa<SCEVUnknown>(T))
7685 return T;
7686
7687 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7688 SmallVector<const SCEV *, 2> Factors;
7689 for (const SCEV *Op : M->operands())
7690 if (!isa<SCEVConstant>(Op))
7691 Factors.push_back(Op);
7692
7693 return SE.getMulExpr(Factors);
7694 }
7695
7696 return T;
7697}
7698
7699/// Return the size of an element read or written by Inst.
7700const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7701 Type *Ty;
7702 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7703 Ty = Store->getValueOperand()->getType();
7704 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007705 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007706 else
7707 return nullptr;
7708
7709 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7710 return getSizeOfExpr(ETy, Ty);
7711}
7712
Sebastian Pop448712b2014-05-07 18:01:20 +00007713/// Second step of delinearization: compute the array dimensions Sizes from the
7714/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007715void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7716 SmallVectorImpl<const SCEV *> &Sizes,
7717 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007718
Sebastian Pop53524082014-05-29 19:44:05 +00007719 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007720 return;
7721
7722 // Early return when Terms do not contain parameters: we do not delinearize
7723 // non parametric SCEVs.
7724 if (!containsParameters(Terms))
7725 return;
7726
7727 DEBUG({
7728 dbgs() << "Terms:\n";
7729 for (const SCEV *T : Terms)
7730 dbgs() << *T << "\n";
7731 });
7732
7733 // Remove duplicates.
7734 std::sort(Terms.begin(), Terms.end());
7735 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7736
7737 // Put larger terms first.
7738 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7739 return numberOfTerms(LHS) > numberOfTerms(RHS);
7740 });
7741
Sebastian Popa6e58602014-05-27 22:41:45 +00007742 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7743
7744 // Divide all terms by the element size.
7745 for (const SCEV *&Term : Terms) {
7746 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007747 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007748 Term = Q;
7749 }
7750
7751 SmallVector<const SCEV *, 4> NewTerms;
7752
7753 // Remove constant factors.
7754 for (const SCEV *T : Terms)
7755 if (const SCEV *NewT = removeConstantFactors(SE, T))
7756 NewTerms.push_back(NewT);
7757
Sebastian Pop448712b2014-05-07 18:01:20 +00007758 DEBUG({
7759 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007760 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007761 dbgs() << *T << "\n";
7762 });
7763
Sebastian Popa6e58602014-05-27 22:41:45 +00007764 if (NewTerms.empty() ||
7765 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007766 Sizes.clear();
7767 return;
7768 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007769
Sebastian Popa6e58602014-05-27 22:41:45 +00007770 // The last element to be pushed into Sizes is the size of an element.
7771 Sizes.push_back(ElementSize);
7772
Sebastian Pop448712b2014-05-07 18:01:20 +00007773 DEBUG({
7774 dbgs() << "Sizes:\n";
7775 for (const SCEV *S : Sizes)
7776 dbgs() << *S << "\n";
7777 });
7778}
7779
7780/// Third step of delinearization: compute the access functions for the
7781/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007782void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007783 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7784 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007785
Sebastian Popb1a548f2014-05-12 19:01:53 +00007786 // Early exit in case this SCEV is not an affine multivariate function.
7787 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007788 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007789
Sebastian Pop28e6b972014-05-27 22:41:51 +00007790 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007791 int Last = Sizes.size() - 1;
7792 for (int i = Last; i >= 0; i--) {
7793 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007794 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007795
7796 DEBUG({
7797 dbgs() << "Res: " << *Res << "\n";
7798 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7799 dbgs() << "Res divided by Sizes[i]:\n";
7800 dbgs() << "Quotient: " << *Q << "\n";
7801 dbgs() << "Remainder: " << *R << "\n";
7802 });
7803
7804 Res = Q;
7805
Sebastian Popa6e58602014-05-27 22:41:45 +00007806 // Do not record the last subscript corresponding to the size of elements in
7807 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007808 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007809
7810 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007811 if (isa<SCEVAddRecExpr>(R)) {
7812 Subscripts.clear();
7813 Sizes.clear();
7814 return;
7815 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007816
Sebastian Pop448712b2014-05-07 18:01:20 +00007817 continue;
7818 }
7819
7820 // Record the access function for the current subscript.
7821 Subscripts.push_back(R);
7822 }
7823
7824 // Also push in last position the remainder of the last division: it will be
7825 // the access function of the innermost dimension.
7826 Subscripts.push_back(Res);
7827
7828 std::reverse(Subscripts.begin(), Subscripts.end());
7829
7830 DEBUG({
7831 dbgs() << "Subscripts:\n";
7832 for (const SCEV *S : Subscripts)
7833 dbgs() << *S << "\n";
7834 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007835}
7836
Sebastian Popc62c6792013-11-12 22:47:20 +00007837/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7838/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007839/// is the offset start of the array. The SCEV->delinearize algorithm computes
7840/// the multiples of SCEV coefficients: that is a pattern matching of sub
7841/// expressions in the stride and base of a SCEV corresponding to the
7842/// computation of a GCD (greatest common divisor) of base and stride. When
7843/// SCEV->delinearize fails, it returns the SCEV unchanged.
7844///
7845/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7846///
7847/// void foo(long n, long m, long o, double A[n][m][o]) {
7848///
7849/// for (long i = 0; i < n; i++)
7850/// for (long j = 0; j < m; j++)
7851/// for (long k = 0; k < o; k++)
7852/// A[i][j][k] = 1.0;
7853/// }
7854///
7855/// the delinearization input is the following AddRec SCEV:
7856///
7857/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7858///
7859/// From this SCEV, we are able to say that the base offset of the access is %A
7860/// because it appears as an offset that does not divide any of the strides in
7861/// the loops:
7862///
7863/// CHECK: Base offset: %A
7864///
7865/// and then SCEV->delinearize determines the size of some of the dimensions of
7866/// the array as these are the multiples by which the strides are happening:
7867///
7868/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7869///
7870/// Note that the outermost dimension remains of UnknownSize because there are
7871/// no strides that would help identifying the size of the last dimension: when
7872/// the array has been statically allocated, one could compute the size of that
7873/// dimension by dividing the overall size of the array by the size of the known
7874/// dimensions: %m * %o * 8.
7875///
7876/// Finally delinearize provides the access functions for the array reference
7877/// that does correspond to A[i][j][k] of the above C testcase:
7878///
7879/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7880///
7881/// The testcases are checking the output of a function pass:
7882/// DelinearizationPass that walks through all loads and stores of a function
7883/// asking for the SCEV of the memory access with respect to all enclosing
7884/// loops, calling SCEV->delinearize on that and printing the results.
7885
Sebastian Pop28e6b972014-05-27 22:41:51 +00007886void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7887 SmallVectorImpl<const SCEV *> &Subscripts,
7888 SmallVectorImpl<const SCEV *> &Sizes,
7889 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007890 // First step: collect parametric terms.
7891 SmallVector<const SCEV *, 4> Terms;
7892 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007893
Sebastian Popb1a548f2014-05-12 19:01:53 +00007894 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007895 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007896
Sebastian Pop448712b2014-05-07 18:01:20 +00007897 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007898 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007899
Sebastian Popb1a548f2014-05-12 19:01:53 +00007900 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007901 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007902
Sebastian Pop448712b2014-05-07 18:01:20 +00007903 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007904 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007905
Sebastian Pop28e6b972014-05-27 22:41:51 +00007906 if (Subscripts.empty())
7907 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007908
Sebastian Pop448712b2014-05-07 18:01:20 +00007909 DEBUG({
7910 dbgs() << "succeeded to delinearize " << *this << "\n";
7911 dbgs() << "ArrayDecl[UnknownSize]";
7912 for (const SCEV *S : Sizes)
7913 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007914
Sebastian Pop444621a2014-05-09 22:45:02 +00007915 dbgs() << "\nArrayRef";
7916 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007917 dbgs() << "[" << *S << "]";
7918 dbgs() << "\n";
7919 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007920}
Chris Lattnerd934c702004-04-02 20:23:17 +00007921
7922//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007923// SCEVCallbackVH Class Implementation
7924//===----------------------------------------------------------------------===//
7925
Dan Gohmand33a0902009-05-19 19:22:47 +00007926void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007927 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007928 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7929 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007930 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007931 // this now dangles!
7932}
7933
Dan Gohman7a066722010-07-28 01:09:07 +00007934void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007935 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007936
Dan Gohman48f82222009-05-04 22:30:44 +00007937 // Forget all the expressions associated with users of the old value,
7938 // so that future queries will recompute the expressions using the new
7939 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007940 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007941 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007942 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007943 while (!Worklist.empty()) {
7944 User *U = Worklist.pop_back_val();
7945 // Deleting the Old value will cause this to dangle. Postpone
7946 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007947 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007948 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00007949 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00007950 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007951 if (PHINode *PN = dyn_cast<PHINode>(U))
7952 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007953 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007954 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007955 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007956 // Delete the Old value.
7957 if (PHINode *PN = dyn_cast<PHINode>(Old))
7958 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007959 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007960 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007961}
7962
Dan Gohmand33a0902009-05-19 19:22:47 +00007963ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007964 : CallbackVH(V), SE(se) {}
7965
7966//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007967// ScalarEvolution Class Implementation
7968//===----------------------------------------------------------------------===//
7969
Dan Gohmanc8e23622009-04-21 23:15:49 +00007970ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007971 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7972 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007973 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007974}
7975
Chris Lattnerd934c702004-04-02 20:23:17 +00007976bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007977 this->F = &F;
Chandler Carruth66b31302015-01-04 12:03:27 +00007978 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth4f8f3072015-01-17 14:16:18 +00007979 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00007980 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Chandler Carruth73523022014-01-13 13:07:17 +00007981 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007982 return false;
7983}
7984
7985void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007986 // Iterate through all the SCEVUnknown instances and call their
7987 // destructors, so that they release their references to their values.
7988 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7989 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007990 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007991
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007992 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007993
7994 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7995 // that a loop had multiple computable exits.
7996 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7997 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7998 I != E; ++I) {
7999 I->second.clear();
8000 }
8001
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008002 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
8003
Dan Gohmanc8e23622009-04-21 23:15:49 +00008004 BackedgeTakenCounts.clear();
8005 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00008006 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008007 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008008 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00008009 UnsignedRanges.clear();
8010 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008011 UniqueSCEVs.clear();
8012 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00008013}
8014
8015void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
8016 AU.setPreservesAll();
Chandler Carruth66b31302015-01-04 12:03:27 +00008017 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +00008018 AU.addRequiredTransitive<LoopInfoWrapperPass>();
Chandler Carruth73523022014-01-13 13:07:17 +00008019 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00008020 AU.addRequired<TargetLibraryInfoWrapperPass>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00008021}
8022
Dan Gohmanc8e23622009-04-21 23:15:49 +00008023bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008024 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008025}
8026
Dan Gohmanc8e23622009-04-21 23:15:49 +00008027static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008028 const Loop *L) {
8029 // Print all inner loops first
8030 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8031 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008032
Dan Gohmanbc694912010-01-09 18:17:45 +00008033 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008034 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008035 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008036
Dan Gohmancb0efec2009-12-18 01:14:11 +00008037 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008038 L->getExitBlocks(ExitBlocks);
8039 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008040 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008041
Dan Gohman0bddac12009-02-24 18:55:53 +00008042 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8043 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008044 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008045 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008046 }
8047
Dan Gohmanbc694912010-01-09 18:17:45 +00008048 OS << "\n"
8049 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008050 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008051 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008052
8053 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8054 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8055 } else {
8056 OS << "Unpredictable max backedge-taken count. ";
8057 }
8058
8059 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008060}
8061
Dan Gohmancb0efec2009-12-18 01:14:11 +00008062void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008063 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008064 // out SCEV values of all instructions that are interesting. Doing
8065 // this potentially causes it to create new SCEV objects though,
8066 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008067 // observable from outside the class though, so casting away the
8068 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008069 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008070
Dan Gohmanbc694912010-01-09 18:17:45 +00008071 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008072 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008073 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008074 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00008075 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00008076 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008077 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008078 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008079 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008080 if (!isa<SCEVCouldNotCompute>(SV)) {
8081 OS << " U: ";
8082 SE.getUnsignedRange(SV).print(OS);
8083 OS << " S: ";
8084 SE.getSignedRange(SV).print(OS);
8085 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008086
Dan Gohmanb9063a82009-06-19 17:49:54 +00008087 const Loop *L = LI->getLoopFor((*I).getParent());
8088
Dan Gohmanaf752342009-07-07 17:06:11 +00008089 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008090 if (AtUse != SV) {
8091 OS << " --> ";
8092 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008093 if (!isa<SCEVCouldNotCompute>(AtUse)) {
8094 OS << " U: ";
8095 SE.getUnsignedRange(AtUse).print(OS);
8096 OS << " S: ";
8097 SE.getSignedRange(AtUse).print(OS);
8098 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00008099 }
8100
8101 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008102 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008103 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008104 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008105 OS << "<<Unknown>>";
8106 } else {
8107 OS << *ExitValue;
8108 }
8109 }
8110
Chris Lattnerd934c702004-04-02 20:23:17 +00008111 OS << "\n";
8112 }
8113
Dan Gohmanbc694912010-01-09 18:17:45 +00008114 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008115 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008116 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00008117 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8118 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008119}
Dan Gohmane20f8242009-04-21 00:47:46 +00008120
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008121ScalarEvolution::LoopDisposition
8122ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008123 auto &Values = LoopDispositions[S];
8124 for (auto &V : Values) {
8125 if (V.getPointer() == L)
8126 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008127 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008128 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008129 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008130 auto &Values2 = LoopDispositions[S];
8131 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8132 if (V.getPointer() == L) {
8133 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008134 break;
8135 }
8136 }
8137 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008138}
8139
8140ScalarEvolution::LoopDisposition
8141ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008142 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008143 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008144 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008145 case scTruncate:
8146 case scZeroExtend:
8147 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008148 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008149 case scAddRecExpr: {
8150 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8151
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008152 // If L is the addrec's loop, it's computable.
8153 if (AR->getLoop() == L)
8154 return LoopComputable;
8155
Dan Gohmanafd6db92010-11-17 21:23:15 +00008156 // Add recurrences are never invariant in the function-body (null loop).
8157 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008158 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008159
8160 // This recurrence is variant w.r.t. L if L contains AR's loop.
8161 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008162 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008163
8164 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8165 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008166 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008167
8168 // This recurrence is variant w.r.t. L if any of its operands
8169 // are variant.
8170 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8171 I != E; ++I)
8172 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008173 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008174
8175 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008176 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008177 }
8178 case scAddExpr:
8179 case scMulExpr:
8180 case scUMaxExpr:
8181 case scSMaxExpr: {
8182 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008183 bool HasVarying = false;
8184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8185 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008186 LoopDisposition D = getLoopDisposition(*I, L);
8187 if (D == LoopVariant)
8188 return LoopVariant;
8189 if (D == LoopComputable)
8190 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008191 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008192 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008193 }
8194 case scUDivExpr: {
8195 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008196 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8197 if (LD == LoopVariant)
8198 return LoopVariant;
8199 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8200 if (RD == LoopVariant)
8201 return LoopVariant;
8202 return (LD == LoopInvariant && RD == LoopInvariant) ?
8203 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008204 }
8205 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008206 // All non-instruction values are loop invariant. All instructions are loop
8207 // invariant if they are not contained in the specified loop.
8208 // Instructions are never considered invariant in the function body
8209 // (null loop) because they are defined within the "loop".
8210 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8211 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8212 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008213 case scCouldNotCompute:
8214 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008215 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008216 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008217}
8218
8219bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8220 return getLoopDisposition(S, L) == LoopInvariant;
8221}
8222
8223bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8224 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008225}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008226
Dan Gohman8ea83d82010-11-18 00:34:22 +00008227ScalarEvolution::BlockDisposition
8228ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008229 auto &Values = BlockDispositions[S];
8230 for (auto &V : Values) {
8231 if (V.getPointer() == BB)
8232 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008233 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008234 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008235 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008236 auto &Values2 = BlockDispositions[S];
8237 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8238 if (V.getPointer() == BB) {
8239 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008240 break;
8241 }
8242 }
8243 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008244}
8245
Dan Gohman8ea83d82010-11-18 00:34:22 +00008246ScalarEvolution::BlockDisposition
8247ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008248 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008249 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008250 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008251 case scTruncate:
8252 case scZeroExtend:
8253 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008254 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008255 case scAddRecExpr: {
8256 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008257 // to test for proper dominance too, because the instruction which
8258 // produces the addrec's value is a PHI, and a PHI effectively properly
8259 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008260 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8261 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008262 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008263 }
8264 // FALL THROUGH into SCEVNAryExpr handling.
8265 case scAddExpr:
8266 case scMulExpr:
8267 case scUMaxExpr:
8268 case scSMaxExpr: {
8269 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008270 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008271 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008272 I != E; ++I) {
8273 BlockDisposition D = getBlockDisposition(*I, BB);
8274 if (D == DoesNotDominateBlock)
8275 return DoesNotDominateBlock;
8276 if (D == DominatesBlock)
8277 Proper = false;
8278 }
8279 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008280 }
8281 case scUDivExpr: {
8282 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008283 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8284 BlockDisposition LD = getBlockDisposition(LHS, BB);
8285 if (LD == DoesNotDominateBlock)
8286 return DoesNotDominateBlock;
8287 BlockDisposition RD = getBlockDisposition(RHS, BB);
8288 if (RD == DoesNotDominateBlock)
8289 return DoesNotDominateBlock;
8290 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8291 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008292 }
8293 case scUnknown:
8294 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008295 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8296 if (I->getParent() == BB)
8297 return DominatesBlock;
8298 if (DT->properlyDominates(I->getParent(), BB))
8299 return ProperlyDominatesBlock;
8300 return DoesNotDominateBlock;
8301 }
8302 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008303 case scCouldNotCompute:
8304 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008305 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008306 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008307}
8308
8309bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8310 return getBlockDisposition(S, BB) >= DominatesBlock;
8311}
8312
8313bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8314 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008315}
Dan Gohman534749b2010-11-17 22:27:42 +00008316
Andrew Trick365e31c2012-07-13 23:33:03 +00008317namespace {
8318// Search for a SCEV expression node within an expression tree.
8319// Implements SCEVTraversal::Visitor.
8320struct SCEVSearch {
8321 const SCEV *Node;
8322 bool IsFound;
8323
8324 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8325
8326 bool follow(const SCEV *S) {
8327 IsFound |= (S == Node);
8328 return !IsFound;
8329 }
8330 bool isDone() const { return IsFound; }
8331};
8332}
8333
Dan Gohman534749b2010-11-17 22:27:42 +00008334bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008335 SCEVSearch Search(Op);
8336 visitAll(S, Search);
8337 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008338}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008339
8340void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8341 ValuesAtScopes.erase(S);
8342 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008343 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008344 UnsignedRanges.erase(S);
8345 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008346
8347 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8348 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8349 BackedgeTakenInfo &BEInfo = I->second;
8350 if (BEInfo.hasOperand(S, this)) {
8351 BEInfo.clear();
8352 BackedgeTakenCounts.erase(I++);
8353 }
8354 else
8355 ++I;
8356 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008357}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008358
8359typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008360
Alp Tokercb402912014-01-24 17:20:08 +00008361/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008362static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8363 size_t Pos = 0;
8364 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8365 Str.replace(Pos, From.size(), To.data(), To.size());
8366 Pos += To.size();
8367 }
8368}
8369
Benjamin Kramer214935e2012-10-26 17:31:32 +00008370/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8371static void
8372getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8373 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8374 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8375
8376 std::string &S = Map[L];
8377 if (S.empty()) {
8378 raw_string_ostream OS(S);
8379 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008380
8381 // false and 0 are semantically equivalent. This can happen in dead loops.
8382 replaceSubString(OS.str(), "false", "0");
8383 // Remove wrap flags, their use in SCEV is highly fragile.
8384 // FIXME: Remove this when SCEV gets smarter about them.
8385 replaceSubString(OS.str(), "<nw>", "");
8386 replaceSubString(OS.str(), "<nsw>", "");
8387 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008388 }
8389 }
8390}
8391
8392void ScalarEvolution::verifyAnalysis() const {
8393 if (!VerifySCEV)
8394 return;
8395
8396 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8397
8398 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8399 // FIXME: It would be much better to store actual values instead of strings,
8400 // but SCEV pointers will change if we drop the caches.
8401 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8402 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8403 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8404
8405 // Gather stringified backedge taken counts for all loops without using
8406 // SCEV's caches.
8407 SE.releaseMemory();
8408 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8409 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8410
8411 // Now compare whether they're the same with and without caches. This allows
8412 // verifying that no pass changed the cache.
8413 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8414 "New loops suddenly appeared!");
8415
8416 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8417 OldE = BackedgeDumpsOld.end(),
8418 NewI = BackedgeDumpsNew.begin();
8419 OldI != OldE; ++OldI, ++NewI) {
8420 assert(OldI->first == NewI->first && "Loop order changed!");
8421
8422 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8423 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008424 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008425 // means that a pass is buggy or SCEV has to learn a new pattern but is
8426 // usually not harmful.
8427 if (OldI->second != NewI->second &&
8428 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008429 NewI->second.find("undef") == std::string::npos &&
8430 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008431 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008432 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008433 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008434 << "' changed from '" << OldI->second
8435 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008436 std::abort();
8437 }
8438 }
8439
8440 // TODO: Verify more things.
8441}