blob: d735448f1ddae7980471cd62507a6d76cd46d914 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
122static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
125void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Jingyue Wuca321902015-05-14 23:53:19 +0000133bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146}
147
Hal Finkel60db0582014-09-07 18:57:58 +0000148static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000149 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000150
151void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000152 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000153 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000154 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000157}
158
159static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000161
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const Instruction *CxtI,
165 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168}
169
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171
172bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Jingyue Wu10fcea52015-08-20 18:27:04 +0000178bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184}
185
Philip Reames8f12eba2016-03-09 21:31:47 +0000186bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000191
Philip Reames8f12eba2016-03-09 21:31:47 +0000192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196}
197
Nick Lewycky762f8a82016-04-21 00:53:14 +0000198bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199 AssumptionCache *AC, const Instruction *CxtI,
200 const DominatorTree *DT) {
201 bool NonNegative, Negative;
202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203 return Negative;
204}
205
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000206static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000207
208bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209 AssumptionCache *AC, const Instruction *CxtI,
210 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000211 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212 safeCxtI(V1, safeCxtI(V2, CxtI)),
213 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000214}
215
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000216static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000218
219bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 return ::MaskedValueIsZero(V, Mask, Depth,
223 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000224}
225
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000226static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227
228unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229 unsigned Depth, AssumptionCache *AC,
230 const Instruction *CxtI,
231 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000233}
234
Jay Foada0653a32014-05-14 21:14:37 +0000235static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236 APInt &KnownZero, APInt &KnownOne,
237 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000239 if (!Add) {
240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241 // We know that the top bits of C-X are clear if X contains less bits
242 // than C (i.e. no wrap-around can happen). For example, 20-X is
243 // positive if we can prove that X is >= 0 and < 16.
244 if (!CLHS->getValue().isNegative()) {
245 unsigned BitWidth = KnownZero.getBitWidth();
246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247 // NLZ can't be BitWidth with no sign bit
248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000250
251 // If all of the MaskV bits are known to be zero, then we know the
252 // output top bits are zero, because we now know that the output is
253 // from [0-C].
254 if ((KnownZero2 & MaskV) == MaskV) {
255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256 // Top bits known zero.
257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258 }
259 }
260 }
261 }
262
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000263 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // If an initial sequence of bits in the result is not needed, the
266 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000270
David Majnemer97ddca32014-08-22 00:40:43 +0000271 // Carry in a 1 for a subtract, rather than a 0.
272 APInt CarryIn(BitWidth, 0);
273 if (!Add) {
274 // Sum = LHS + ~RHS + 1
275 std::swap(KnownZero2, KnownOne2);
276 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277 }
278
David Majnemer97ddca32014-08-22 00:40:43 +0000279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281
282 // Compute known bits of the carry.
283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285
286 // Compute set of known bits (where all three relevant bits are known).
287 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288 APInt RHSKnown = KnownZero2 | KnownOne2;
289 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290 APInt Known = LHSKnown & RHSKnown & CarryKnown;
291
292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293 "known bits of sum differ");
294
295 // Compute known bits of the result.
296 KnownZero = ~PossibleSumOne & Known;
297 KnownOne = PossibleSumOne & Known;
298
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000299 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000300 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000301 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000302 // Adding two non-negative numbers, or subtracting a negative number from
303 // a non-negative one, can't wrap into negative.
304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305 KnownZero |= APInt::getSignBit(BitWidth);
306 // Adding two negative numbers, or subtracting a non-negative number from
307 // a negative one, can't wrap into non-negative.
308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000310 }
311 }
312}
313
Jay Foada0653a32014-05-14 21:14:37 +0000314static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315 APInt &KnownZero, APInt &KnownOne,
316 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000318 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
330 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332 bool isKnownNegativeOp1 = KnownOne.isNegative();
333 bool isKnownNegativeOp0 = KnownOne2.isNegative();
334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000348 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
351 KnownOne.clearAllBits();
352 unsigned TrailZ = KnownZero.countTrailingOnes() +
353 KnownZero2.countTrailingOnes();
354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
355 KnownZero2.countLeadingOnes(),
356 BitWidth) - BitWidth;
357
358 TrailZ = std::min(TrailZ, BitWidth);
359 LeadZ = std::min(LeadZ, BitWidth);
360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
368 if (isKnownNonNegative && !KnownOne.isNegative())
369 KnownZero.setBit(BitWidth - 1);
370 else if (isKnownNegative && !KnownZero.isNegative())
371 KnownOne.setBit(BitWidth - 1);
372}
373
Jingyue Wu37fcb592014-06-19 16:50:16 +0000374void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000375 APInt &KnownZero,
376 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000378 unsigned NumRanges = Ranges.getNumOperands() / 2;
379 assert(NumRanges >= 1);
380
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000381 KnownZero.setAllBits();
382 KnownOne.setAllBits();
383
Rafael Espindola53190532012-03-30 15:52:11 +0000384 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000385 ConstantInt *Lower =
386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387 ConstantInt *Upper =
388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000389 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000390
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000391 // The first CommonPrefixBits of all values in Range are equal.
392 unsigned CommonPrefixBits =
393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394
395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396 KnownOne &= Range.getUnsignedMax() & Mask;
397 KnownZero &= ~Range.getUnsignedMax() & Mask;
398 }
Rafael Espindola53190532012-03-30 15:52:11 +0000399}
Jay Foad5a29c362014-05-15 12:12:55 +0000400
Hal Finkel60db0582014-09-07 18:57:58 +0000401static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402 SmallVector<const Value *, 16> WorkSet(1, I);
403 SmallPtrSet<const Value *, 32> Visited;
404 SmallPtrSet<const Value *, 16> EphValues;
405
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 // The instruction defining an assumption's condition itself is always
407 // considered ephemeral to that assumption (even if it has other
408 // non-ephemeral users). See r246696's test case for an example.
409 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410 return true;
411
Hal Finkel60db0582014-09-07 18:57:58 +0000412 while (!WorkSet.empty()) {
413 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000414 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000415 continue;
416
417 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000418 if (std::all_of(V->user_begin(), V->user_end(),
419 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000420 if (V == E)
421 return true;
422
423 EphValues.insert(V);
424 if (const User *U = dyn_cast<User>(V))
425 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426 J != JE; ++J) {
427 if (isSafeToSpeculativelyExecute(*J))
428 WorkSet.push_back(*J);
429 }
430 }
431 }
432
433 return false;
434}
435
436// Is this an intrinsic that cannot be speculated but also cannot trap?
437static bool isAssumeLikeIntrinsic(const Instruction *I) {
438 if (const CallInst *CI = dyn_cast<CallInst>(I))
439 if (Function *F = CI->getCalledFunction())
440 switch (F->getIntrinsicID()) {
441 default: break;
442 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443 case Intrinsic::assume:
444 case Intrinsic::dbg_declare:
445 case Intrinsic::dbg_value:
446 case Intrinsic::invariant_start:
447 case Intrinsic::invariant_end:
448 case Intrinsic::lifetime_start:
449 case Intrinsic::lifetime_end:
450 case Intrinsic::objectsize:
451 case Intrinsic::ptr_annotation:
452 case Intrinsic::var_annotation:
453 return true;
454 }
455
456 return false;
457}
458
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000459static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000461 Instruction *Inv = cast<Instruction>(V);
462
463 // There are two restrictions on the use of an assume:
464 // 1. The assume must dominate the context (or the control flow must
465 // reach the assume whenever it reaches the context).
466 // 2. The context must not be in the assume's set of ephemeral values
467 // (otherwise we will use the assume to prove that the condition
468 // feeding the assume is trivially true, thus causing the removal of
469 // the assume).
470
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000471 if (DT) {
472 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000473 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000474 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000475 // The context comes first, but they're both in the same block. Make sure
476 // there is nothing in between that might interrupt the control flow.
477 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000478 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000479 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000480 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000481 return false;
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000484 }
485
486 return false;
487 }
488
489 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000490 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000491 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000492 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000493 // Search forward from the assume until we reach the context (or the end
494 // of the block); the common case is that the assume will come first.
495 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000497 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000498 return true;
499
500 // The context must come first...
501 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000502 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000504 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return false;
506
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000507 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000508 }
509
510 return false;
511}
512
513bool llvm::isValidAssumeForContext(const Instruction *I,
514 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000515 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000516 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Hal Finkel60db0582014-09-07 18:57:58 +0000519static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Chandler Carruth66b31302015-01-04 12:03:27 +0000529 for (auto &AssumeVH : Q.AC->assumptions()) {
530 if (!AssumeVH)
531 continue;
532 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000535 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000536 continue;
537
Philip Reames00d3b272014-11-24 23:44:28 +0000538 // Warning: This loop can end up being somewhat performance sensetive.
539 // We're running this loop for once for each value queried resulting in a
540 // runtime of ~O(#assumes * #values).
541
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000543 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000544
Philip Reames00d3b272014-11-24 23:44:28 +0000545 Value *Arg = I->getArgOperand(0);
546
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000548 assert(BitWidth == 1 && "assume operand is not i1?");
549 KnownZero.clearAllBits();
550 KnownOne.setAllBits();
551 return;
552 }
553
David Majnemer9b609752014-12-12 23:59:29 +0000554 // The remaining tests are all recursive, so bail out if we hit the limit.
555 if (Depth == MaxDepth)
556 continue;
557
Hal Finkel60db0582014-09-07 18:57:58 +0000558 Value *A, *B;
559 auto m_V = m_CombineOr(m_Specific(V),
560 m_CombineOr(m_PtrToInt(m_Specific(V)),
561 m_BitCast(m_Specific(V))));
562
563 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000564 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000565 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000570 KnownZero |= RHSKnownZero;
571 KnownOne |= RHSKnownOne;
572 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000573 } else if (match(Arg,
574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 Pred == ICmpInst::ICMP_EQ &&
576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000581
582 // For those bits in the mask that are known to be one, we can propagate
583 // known bits from the RHS to V.
584 KnownZero |= RHSKnownZero & MaskKnownOne;
585 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 Pred == ICmpInst::ICMP_EQ &&
590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000595
596 // For those bits in the mask that are known to be one, we can propagate
597 // inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownOne & MaskKnownOne;
599 KnownOne |= RHSKnownZero & MaskKnownOne;
600 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000601 } else if (match(Arg,
602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000603 Pred == ICmpInst::ICMP_EQ &&
604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609
610 // For those bits in B that are known to be zero, we can propagate known
611 // bits from the RHS to V.
612 KnownZero |= RHSKnownZero & BKnownZero;
613 KnownOne |= RHSKnownOne & BKnownZero;
614 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000617 Pred == ICmpInst::ICMP_EQ &&
618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623
624 // For those bits in B that are known to be zero, we can propagate
625 // inverted known bits from the RHS to V.
626 KnownZero |= RHSKnownOne & BKnownZero;
627 KnownOne |= RHSKnownZero & BKnownZero;
628 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000629 } else if (match(Arg,
630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000631 Pred == ICmpInst::ICMP_EQ &&
632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637
638 // For those bits in B that are known to be zero, we can propagate known
639 // bits from the RHS to V. For those bits in B that are known to be one,
640 // we can propagate inverted known bits from the RHS to V.
641 KnownZero |= RHSKnownZero & BKnownZero;
642 KnownOne |= RHSKnownOne & BKnownZero;
643 KnownZero |= RHSKnownOne & BKnownOne;
644 KnownOne |= RHSKnownZero & BKnownOne;
645 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000648 Pred == ICmpInst::ICMP_EQ &&
649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654
655 // For those bits in B that are known to be zero, we can propagate
656 // inverted known bits from the RHS to V. For those bits in B that are
657 // known to be one, we can propagate known bits from the RHS to V.
658 KnownZero |= RHSKnownOne & BKnownZero;
659 KnownOne |= RHSKnownZero & BKnownZero;
660 KnownZero |= RHSKnownZero & BKnownOne;
661 KnownOne |= RHSKnownOne & BKnownOne;
662 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 // For those bits in RHS that are known, we can propagate them to known
670 // bits in V shifted to the right by C.
671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
673 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them inverted
681 // to known bits in V shifted to the right by C.
682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
684 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg,
686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000687 m_AShr(m_V, m_ConstantInt(C))),
688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 KnownZero |= RHSKnownZero << C->getZExtValue();
696 KnownOne |= RHSKnownOne << C->getZExtValue();
697 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000699 m_LShr(m_V, m_ConstantInt(C)),
700 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000701 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 Pred == ICmpInst::ICMP_EQ &&
703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
708 KnownZero |= RHSKnownOne << C->getZExtValue();
709 KnownOne |= RHSKnownZero << C->getZExtValue();
710 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_SGE &&
713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
717 if (RHSKnownZero.isNegative()) {
718 // We know that the sign bit is zero.
719 KnownZero |= APInt::getSignBit(BitWidth);
720 }
721 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_SGT &&
724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727
728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729 // We know that the sign bit is zero.
730 KnownZero |= APInt::getSignBit(BitWidth);
731 }
732 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 Pred == ICmpInst::ICMP_SLE &&
735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738
739 if (RHSKnownOne.isNegative()) {
740 // We know that the sign bit is one.
741 KnownOne |= APInt::getSignBit(BitWidth);
742 }
743 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 Pred == ICmpInst::ICMP_SLT &&
746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749
750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751 // We know that the sign bit is one.
752 KnownOne |= APInt::getSignBit(BitWidth);
753 }
754 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_ULE &&
757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760
761 // Whatever high bits in c are zero are known to be zero.
762 KnownZero |=
763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULT &&
767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero (if c is a power
772 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 KnownZero |=
775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776 else
777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
781}
782
Hal Finkelf2199b22015-10-23 20:37:08 +0000783// Compute known bits from a shift operator, including those with a
784// non-constant shift amount. KnownZero and KnownOne are the outputs of this
785// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787// functors that, given the known-zero or known-one bits respectively, and a
788// shift amount, compute the implied known-zero or known-one bits of the shift
789// operator's result respectively for that shift amount. The results from calling
790// KZF and KOF are conservatively combined for all permitted shift amounts.
791template <typename KZFunctor, typename KOFunctor>
792static void computeKnownBitsFromShiftOperator(Operator *I,
793 APInt &KnownZero, APInt &KnownOne,
794 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000795 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 unsigned BitWidth = KnownZero.getBitWidth();
797
798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000802 KnownZero = KZF(KnownZero, ShiftAmt);
803 KnownOne = KOF(KnownOne, ShiftAmt);
804 return;
805 }
806
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000807 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000808
809 // Note: We cannot use KnownZero.getLimitedValue() here, because if
810 // BitWidth > 64 and any upper bits are known, we'll end up returning the
811 // limit value (which implies all bits are known).
812 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814
815 // It would be more-clearly correct to use the two temporaries for this
816 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000817 KnownZero.clearAllBits();
818 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000819
James Molloy493e57d2015-10-26 14:10:46 +0000820 // If we know the shifter operand is nonzero, we can sometimes infer more
821 // known bits. However this is expensive to compute, so be lazy about it and
822 // only compute it when absolutely necessary.
823 Optional<bool> ShifterOperandIsNonZero;
824
Hal Finkelf2199b22015-10-23 20:37:08 +0000825 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000826 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000828 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000829 if (!*ShifterOperandIsNonZero)
830 return;
831 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000832
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000833 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000834
835 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837 // Combine the shifted known input bits only for those shift amounts
838 // compatible with its known constraints.
839 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840 continue;
841 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000843 // If we know the shifter is nonzero, we may be able to infer more known
844 // bits. This check is sunk down as far as possible to avoid the expensive
845 // call to isKnownNonZero if the cheaper checks above fail.
846 if (ShiftAmt == 0) {
847 if (!ShifterOperandIsNonZero.hasValue())
848 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000849 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000850 if (*ShifterOperandIsNonZero)
851 continue;
852 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000853
854 KnownZero &= KZF(KnownZero2, ShiftAmt);
855 KnownOne &= KOF(KnownOne2, ShiftAmt);
856 }
857
858 // If there are no compatible shift amounts, then we've proven that the shift
859 // amount must be >= the BitWidth, and the result is undefined. We could
860 // return anything we'd like, but we need to make sure the sets of known bits
861 // stay disjoint (it should be better for some other code to actually
862 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000863 if ((KnownZero & KnownOne) != 0) {
864 KnownZero.clearAllBits();
865 KnownOne.clearAllBits();
866 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000867}
868
Jingyue Wu12b0c282015-06-15 05:46:29 +0000869static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000870 APInt &KnownOne, unsigned Depth,
871 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000872 unsigned BitWidth = KnownZero.getBitWidth();
873
Chris Lattner965c7692008-06-02 01:18:21 +0000874 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000875 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000876 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000877 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000878 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000879 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000880 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000881 case Instruction::And: {
882 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000883 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000885
Chris Lattner965c7692008-06-02 01:18:21 +0000886 // Output known-1 bits are only known if set in both the LHS & RHS.
887 KnownOne &= KnownOne2;
888 // Output known-0 are known to be clear if zero in either the LHS | RHS.
889 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000890
891 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892 // here we handle the more general case of adding any odd number by
893 // matching the form add(x, add(x, y)) where y is odd.
894 // TODO: This could be generalized to clearing any bit set in y where the
895 // following bit is known to be unset in y.
896 Value *Y = nullptr;
897 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898 m_Value(Y))) ||
899 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900 m_Value(Y)))) {
901 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000902 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000903 if (KnownOne3.countTrailingOnes() > 0)
904 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905 }
Jay Foad5a29c362014-05-15 12:12:55 +0000906 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000907 }
908 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000909 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000911
Chris Lattner965c7692008-06-02 01:18:21 +0000912 // Output known-0 bits are only known if clear in both the LHS & RHS.
913 KnownZero &= KnownZero2;
914 // Output known-1 are known to be set if set in either the LHS | RHS.
915 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000916 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000917 }
918 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000919 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000921
Chris Lattner965c7692008-06-02 01:18:21 +0000922 // Output known-0 bits are known if clear or set in both the LHS & RHS.
923 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924 // Output known-1 are known to be set if set in only one of the LHS, RHS.
925 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000927 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000928 }
929 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000930 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000931 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000932 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000933 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000934 }
935 case Instruction::UDiv: {
936 // For the purposes of computing leading zeros we can conservatively
937 // treat a udiv as a logical right shift by the power of 2 known to
938 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000940 unsigned LeadZ = KnownZero2.countLeadingOnes();
941
Jay Foad25a5e4c2010-12-01 08:53:58 +0000942 KnownOne2.clearAllBits();
943 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000945 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946 if (RHSUnknownLeadingOnes != BitWidth)
947 LeadZ = std::min(BitWidth,
948 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000950 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000951 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 }
James Molloyc5eded52016-01-14 15:49:32 +0000953 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000954 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000956
957 // Only known if known in both the LHS and RHS.
958 KnownOne &= KnownOne2;
959 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000960 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000961 case Instruction::FPTrunc:
962 case Instruction::FPExt:
963 case Instruction::FPToUI:
964 case Instruction::FPToSI:
965 case Instruction::SIToFP:
966 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000967 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000968 case Instruction::PtrToInt:
969 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000970 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000971 // FALL THROUGH and handle them the same as zext/trunc.
972 case Instruction::ZExt:
973 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000974 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000975
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000976 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000977 // Note that we handle pointer operands here because of inttoptr/ptrtoint
978 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000979 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +0000980
981 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000982 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000984 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000985 KnownZero = KnownZero.zextOrTrunc(BitWidth);
986 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000987 // Any top bits are known to be zero.
988 if (BitWidth > SrcBitWidth)
989 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000990 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000991 }
992 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000993 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +0000994 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000995 // TODO: For now, not handling conversions like:
996 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000997 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000998 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000999 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001000 }
1001 break;
1002 }
1003 case Instruction::SExt: {
1004 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001005 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001006
Jay Foad583abbc2010-12-07 08:25:19 +00001007 KnownZero = KnownZero.trunc(SrcBitWidth);
1008 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001009 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001010 KnownZero = KnownZero.zext(BitWidth);
1011 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001012
1013 // If the sign bit of the input is known set or clear, then we know the
1014 // top bits of the result.
1015 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1016 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1017 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1018 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001019 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001020 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001021 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001022 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001023 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1024 return (KnownZero << ShiftAmt) |
1025 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1026 };
1027
1028 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1029 return KnownOne << ShiftAmt;
1030 };
1031
1032 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001033 KnownZero2, KnownOne2, Depth, Q, KZF,
1034 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001035 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001036 }
1037 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001038 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001039 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1040 return APIntOps::lshr(KnownZero, ShiftAmt) |
1041 // High bits known zero.
1042 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1043 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001044
Hal Finkelf2199b22015-10-23 20:37:08 +00001045 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1046 return APIntOps::lshr(KnownOne, ShiftAmt);
1047 };
1048
1049 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001050 KnownZero2, KnownOne2, Depth, Q, KZF,
1051 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001052 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001053 }
1054 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001055 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001056 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1057 return APIntOps::ashr(KnownZero, ShiftAmt);
1058 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001059
Hal Finkelf2199b22015-10-23 20:37:08 +00001060 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1061 return APIntOps::ashr(KnownOne, ShiftAmt);
1062 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001063
Hal Finkelf2199b22015-10-23 20:37:08 +00001064 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001065 KnownZero2, KnownOne2, Depth, Q, KZF,
1066 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001067 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001068 }
Chris Lattner965c7692008-06-02 01:18:21 +00001069 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001070 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001071 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001072 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1073 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001074 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001075 }
Chris Lattner965c7692008-06-02 01:18:21 +00001076 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001077 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001078 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001079 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1080 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001081 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001082 }
1083 case Instruction::SRem:
1084 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001085 APInt RA = Rem->getValue().abs();
1086 if (RA.isPowerOf2()) {
1087 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001088 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001089 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001090
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001091 // The low bits of the first operand are unchanged by the srem.
1092 KnownZero = KnownZero2 & LowBits;
1093 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001094
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001095 // If the first operand is non-negative or has all low bits zero, then
1096 // the upper bits are all zero.
1097 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1098 KnownZero |= ~LowBits;
1099
1100 // If the first operand is negative and not all low bits are zero, then
1101 // the upper bits are all one.
1102 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1103 KnownOne |= ~LowBits;
1104
Craig Topper1bef2c82012-12-22 19:15:35 +00001105 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001106 }
1107 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001108
1109 // The sign bit is the LHS's sign bit, except when the result of the
1110 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001111 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001112 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001113 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1114 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001115 // If it's known zero, our sign bit is also zero.
1116 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001117 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001118 }
1119
Chris Lattner965c7692008-06-02 01:18:21 +00001120 break;
1121 case Instruction::URem: {
1122 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001123 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001124 if (RA.isPowerOf2()) {
1125 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001126 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001127 KnownZero |= ~LowBits;
1128 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001129 break;
1130 }
1131 }
1132
1133 // Since the result is less than or equal to either operand, any leading
1134 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001135 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1136 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001137
Chris Lattner4612ae12009-01-20 18:22:57 +00001138 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001139 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001140 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001141 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001142 break;
1143 }
1144
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001145 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001146 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001147 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001148 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001149 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001150
Chris Lattner965c7692008-06-02 01:18:21 +00001151 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001152 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001153 break;
1154 }
1155 case Instruction::GetElementPtr: {
1156 // Analyze all of the subscripts of this getelementptr instruction
1157 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001158 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001159 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1160 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001161 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1162
1163 gep_type_iterator GTI = gep_type_begin(I);
1164 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1165 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001166 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001167 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001168
1169 // Handle case when index is vector zeroinitializer
1170 Constant *CIndex = cast<Constant>(Index);
1171 if (CIndex->isZeroValue())
1172 continue;
1173
1174 if (CIndex->getType()->isVectorTy())
1175 Index = CIndex->getSplatValue();
1176
Chris Lattner965c7692008-06-02 01:18:21 +00001177 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001178 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001179 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001180 TrailZ = std::min<unsigned>(TrailZ,
1181 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001182 } else {
1183 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001184 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001185 if (!IndexedTy->isSized()) {
1186 TrailZ = 0;
1187 break;
1188 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001189 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001190 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001191 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001192 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001193 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001194 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001195 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001196 }
1197 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001198
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001199 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001200 break;
1201 }
1202 case Instruction::PHI: {
1203 PHINode *P = cast<PHINode>(I);
1204 // Handle the case of a simple two-predecessor recurrence PHI.
1205 // There's a lot more that could theoretically be done here, but
1206 // this is sufficient to catch some interesting cases.
1207 if (P->getNumIncomingValues() == 2) {
1208 for (unsigned i = 0; i != 2; ++i) {
1209 Value *L = P->getIncomingValue(i);
1210 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001211 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001212 if (!LU)
1213 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001214 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001215 // Check for operations that have the property that if
1216 // both their operands have low zero bits, the result
1217 // will have low zero bits.
1218 if (Opcode == Instruction::Add ||
1219 Opcode == Instruction::Sub ||
1220 Opcode == Instruction::And ||
1221 Opcode == Instruction::Or ||
1222 Opcode == Instruction::Mul) {
1223 Value *LL = LU->getOperand(0);
1224 Value *LR = LU->getOperand(1);
1225 // Find a recurrence.
1226 if (LL == I)
1227 L = LR;
1228 else if (LR == I)
1229 L = LL;
1230 else
1231 break;
1232 // Ok, we have a PHI of the form L op= R. Check for low
1233 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001234 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001235
1236 // We need to take the minimum number of known bits
1237 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001238 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001239
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001240 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001241 std::min(KnownZero2.countTrailingOnes(),
1242 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001243 break;
1244 }
1245 }
1246 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001247
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001248 // Unreachable blocks may have zero-operand PHI nodes.
1249 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001250 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001251
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001252 // Otherwise take the unions of the known bit sets of the operands,
1253 // taking conservative care to avoid excessive recursion.
1254 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001255 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001256 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001257 break;
1258
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001259 KnownZero = APInt::getAllOnesValue(BitWidth);
1260 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001261 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001262 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001263 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001264
1265 KnownZero2 = APInt(BitWidth, 0);
1266 KnownOne2 = APInt(BitWidth, 0);
1267 // Recurse, but cap the recursion to one level, because we don't
1268 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001269 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001270 KnownZero &= KnownZero2;
1271 KnownOne &= KnownOne2;
1272 // If all bits have been ruled out, there's no need to check
1273 // more operands.
1274 if (!KnownZero && !KnownOne)
1275 break;
1276 }
1277 }
Chris Lattner965c7692008-06-02 01:18:21 +00001278 break;
1279 }
1280 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001281 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001282 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001283 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001284 // If a range metadata is attached to this IntrinsicInst, intersect the
1285 // explicit range specified by the metadata and the implicit range of
1286 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001287 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1288 switch (II->getIntrinsicID()) {
1289 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001290 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001291 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001292 KnownZero |= KnownZero2.byteSwap();
1293 KnownOne |= KnownOne2.byteSwap();
1294 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001295 case Intrinsic::ctlz:
1296 case Intrinsic::cttz: {
1297 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001298 // If this call is undefined for 0, the result will be less than 2^n.
1299 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1300 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001301 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001302 break;
1303 }
1304 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001305 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001306 // We can bound the space the count needs. Also, bits known to be zero
1307 // can't contribute to the population.
1308 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1309 unsigned LeadingZeros =
1310 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001311 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001312 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1313 KnownOne &= ~KnownZero;
1314 // TODO: we could bound KnownOne using the lower bound on the number
1315 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001316 break;
1317 }
Chad Rosierb3628842011-05-26 23:13:19 +00001318 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001319 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001320 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001321 }
1322 }
1323 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001324 case Instruction::ExtractValue:
1325 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1326 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1327 if (EVI->getNumIndices() != 1) break;
1328 if (EVI->getIndices()[0] == 0) {
1329 switch (II->getIntrinsicID()) {
1330 default: break;
1331 case Intrinsic::uadd_with_overflow:
1332 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001333 computeKnownBitsAddSub(true, II->getArgOperand(0),
1334 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001335 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001336 break;
1337 case Intrinsic::usub_with_overflow:
1338 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001339 computeKnownBitsAddSub(false, II->getArgOperand(0),
1340 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001341 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001342 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001343 case Intrinsic::umul_with_overflow:
1344 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001345 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001346 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1347 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001348 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001349 }
1350 }
1351 }
Chris Lattner965c7692008-06-02 01:18:21 +00001352 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001353}
1354
1355/// Determine which bits of V are known to be either zero or one and return
1356/// them in the KnownZero/KnownOne bit sets.
1357///
1358/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1359/// we cannot optimize based on the assumption that it is zero without changing
1360/// it to be an explicit zero. If we don't change it to zero, other code could
1361/// optimized based on the contradictory assumption that it is non-zero.
1362/// Because instcombine aggressively folds operations with undef args anyway,
1363/// this won't lose us code quality.
1364///
1365/// This function is defined on values with integer type, values with pointer
1366/// type, and vectors of integers. In the case
1367/// where V is a vector, known zero, and known one values are the
1368/// same width as the vector element, and the bit is set only if it is true
1369/// for all of the elements in the vector.
1370void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001371 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001372 assert(V && "No Value?");
1373 assert(Depth <= MaxDepth && "Limit Search Depth");
1374 unsigned BitWidth = KnownZero.getBitWidth();
1375
1376 assert((V->getType()->isIntOrIntVectorTy() ||
1377 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001378 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001379 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001380 (!V->getType()->isIntOrIntVectorTy() ||
1381 V->getType()->getScalarSizeInBits() == BitWidth) &&
1382 KnownZero.getBitWidth() == BitWidth &&
1383 KnownOne.getBitWidth() == BitWidth &&
1384 "V, KnownOne and KnownZero should have same BitWidth");
1385
1386 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1387 // We know all of the bits for a constant!
1388 KnownOne = CI->getValue();
1389 KnownZero = ~KnownOne;
1390 return;
1391 }
1392 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001393 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001394 KnownOne.clearAllBits();
1395 KnownZero = APInt::getAllOnesValue(BitWidth);
1396 return;
1397 }
1398 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001399 // each element.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001400 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1401 // We know that CDS must be a vector of integers. Take the intersection of
1402 // each element.
1403 KnownZero.setAllBits(); KnownOne.setAllBits();
1404 APInt Elt(KnownZero.getBitWidth(), 0);
1405 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1406 Elt = CDS->getElementAsInteger(i);
1407 KnownZero &= ~Elt;
1408 KnownOne &= Elt;
1409 }
1410 return;
1411 }
1412
David Majnemer3918cdd2016-05-04 06:13:33 +00001413 if (auto *CV = dyn_cast<ConstantVector>(V)) {
1414 // We know that CV must be a vector of integers. Take the intersection of
1415 // each element.
1416 KnownZero.setAllBits(); KnownOne.setAllBits();
1417 APInt Elt(KnownZero.getBitWidth(), 0);
1418 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1419 Constant *Element = CV->getAggregateElement(i);
1420 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1421 if (!ElementCI) {
1422 KnownZero.clearAllBits();
1423 KnownOne.clearAllBits();
1424 return;
1425 }
1426 Elt = ElementCI->getValue();
1427 KnownZero &= ~Elt;
1428 KnownOne &= Elt;
1429 }
1430 return;
1431 }
1432
Jingyue Wu12b0c282015-06-15 05:46:29 +00001433 // Start out not knowing anything.
1434 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1435
1436 // Limit search depth.
1437 // All recursive calls that increase depth must come after this.
1438 if (Depth == MaxDepth)
1439 return;
1440
1441 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1442 // the bits of its aliasee.
1443 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001444 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001445 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001446 return;
1447 }
1448
1449 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001450 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001451
Artur Pilipenko029d8532015-09-30 11:55:45 +00001452 // Aligned pointers have trailing zeros - refine KnownZero set
1453 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001454 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001455 if (Align)
1456 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1457 }
1458
Philip Reames146307e2016-03-03 19:44:06 +00001459 // computeKnownBitsFromAssume strictly refines KnownZero and
1460 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001461
1462 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001463 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001464
Jay Foad5a29c362014-05-15 12:12:55 +00001465 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001466}
1467
Sanjay Patelaee84212014-11-04 16:27:42 +00001468/// Determine whether the sign bit is known to be zero or one.
1469/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001470void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001471 unsigned Depth, const Query &Q) {
1472 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001473 if (!BitWidth) {
1474 KnownZero = false;
1475 KnownOne = false;
1476 return;
1477 }
1478 APInt ZeroBits(BitWidth, 0);
1479 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001480 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001481 KnownOne = OneBits[BitWidth - 1];
1482 KnownZero = ZeroBits[BitWidth - 1];
1483}
1484
Sanjay Patelaee84212014-11-04 16:27:42 +00001485/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001486/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001487/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001488/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001489bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001490 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001491 if (Constant *C = dyn_cast<Constant>(V)) {
1492 if (C->isNullValue())
1493 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001494
1495 const APInt *ConstIntOrConstSplatInt;
1496 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1497 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001498 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001499
1500 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1501 // it is shifted off the end then the result is undefined.
1502 if (match(V, m_Shl(m_One(), m_Value())))
1503 return true;
1504
1505 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1506 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001507 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001508 return true;
1509
1510 // The remaining tests are all recursive, so bail out if we hit the limit.
1511 if (Depth++ == MaxDepth)
1512 return false;
1513
Craig Topper9f008862014-04-15 04:59:12 +00001514 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001515 // A shift left or a logical shift right of a power of two is a power of two
1516 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001517 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001518 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001519 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001520
Duncan Sandsd3951082011-01-25 09:38:29 +00001521 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001522 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001523
1524 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001525 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1526 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001527
Duncan Sandsba286d72011-10-26 20:55:21 +00001528 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1529 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001530 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1531 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001532 return true;
1533 // X & (-X) is always a power of two or zero.
1534 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1535 return true;
1536 return false;
1537 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001538
David Majnemerb7d54092013-07-30 21:01:36 +00001539 // Adding a power-of-two or zero to the same power-of-two or zero yields
1540 // either the original power-of-two, a larger power-of-two or zero.
1541 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1542 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1543 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1544 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1545 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001546 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001547 return true;
1548 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1549 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001550 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001551 return true;
1552
1553 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1554 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001555 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001556
1557 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001558 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001559 // If i8 V is a power of two or zero:
1560 // ZeroBits: 1 1 1 0 1 1 1 1
1561 // ~ZeroBits: 0 0 0 1 0 0 0 0
1562 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1563 // If OrZero isn't set, we cannot give back a zero result.
1564 // Make sure either the LHS or RHS has a bit set.
1565 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1566 return true;
1567 }
1568 }
David Majnemerbeab5672013-05-18 19:30:37 +00001569
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001570 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001571 // is a power of two only if the first operand is a power of two and not
1572 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001573 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1574 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001575 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001576 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001577 }
1578
Duncan Sandsd3951082011-01-25 09:38:29 +00001579 return false;
1580}
1581
Chandler Carruth80d3e562012-12-07 02:08:58 +00001582/// \brief Test whether a GEP's result is known to be non-null.
1583///
1584/// Uses properties inherent in a GEP to try to determine whether it is known
1585/// to be non-null.
1586///
1587/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001588static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1589 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001590 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1591 return false;
1592
1593 // FIXME: Support vector-GEPs.
1594 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1595
1596 // If the base pointer is non-null, we cannot walk to a null address with an
1597 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001598 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001599 return true;
1600
Chandler Carruth80d3e562012-12-07 02:08:58 +00001601 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1602 // If so, then the GEP cannot produce a null pointer, as doing so would
1603 // inherently violate the inbounds contract within address space zero.
1604 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1605 GTI != GTE; ++GTI) {
1606 // Struct types are easy -- they must always be indexed by a constant.
1607 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1608 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1609 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001610 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001611 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1612 if (ElementOffset > 0)
1613 return true;
1614 continue;
1615 }
1616
1617 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001618 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001619 continue;
1620
1621 // Fast path the constant operand case both for efficiency and so we don't
1622 // increment Depth when just zipping down an all-constant GEP.
1623 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1624 if (!OpC->isZero())
1625 return true;
1626 continue;
1627 }
1628
1629 // We post-increment Depth here because while isKnownNonZero increments it
1630 // as well, when we pop back up that increment won't persist. We don't want
1631 // to recurse 10k times just because we have 10k GEP operands. We don't
1632 // bail completely out because we want to handle constant GEPs regardless
1633 // of depth.
1634 if (Depth++ >= MaxDepth)
1635 continue;
1636
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001637 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001638 return true;
1639 }
1640
1641 return false;
1642}
1643
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001644/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1645/// ensure that the value it's attached to is never Value? 'RangeType' is
1646/// is the type of the value described by the range.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001647static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001648 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1649 assert(NumRanges >= 1);
1650 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001651 ConstantInt *Lower =
1652 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1653 ConstantInt *Upper =
1654 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001655 ConstantRange Range(Lower->getValue(), Upper->getValue());
1656 if (Range.contains(Value))
1657 return false;
1658 }
1659 return true;
1660}
1661
Sanjay Patelaee84212014-11-04 16:27:42 +00001662/// Return true if the given value is known to be non-zero when defined.
1663/// For vectors return true if every element is known to be non-zero when
1664/// defined. Supports values with integer or pointer type and vectors of
1665/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001666bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001667 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001668 if (C->isNullValue())
1669 return false;
1670 if (isa<ConstantInt>(C))
1671 // Must be non-zero due to null test above.
1672 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001673
1674 // For constant vectors, check that all elements are undefined or known
1675 // non-zero to determine that the whole vector is known non-zero.
1676 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1677 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1678 Constant *Elt = C->getAggregateElement(i);
1679 if (!Elt || Elt->isNullValue())
1680 return false;
1681 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1682 return false;
1683 }
1684 return true;
1685 }
1686
Duncan Sandsd3951082011-01-25 09:38:29 +00001687 return false;
1688 }
1689
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001690 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001691 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001692 // If the possible ranges don't contain zero, then the value is
1693 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001694 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001695 const APInt ZeroValue(Ty->getBitWidth(), 0);
1696 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1697 return true;
1698 }
1699 }
1700 }
1701
Duncan Sandsd3951082011-01-25 09:38:29 +00001702 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001703 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001704 return false;
1705
Chandler Carruth80d3e562012-12-07 02:08:58 +00001706 // Check for pointer simplifications.
1707 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001708 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001709 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001710 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001712 return true;
1713 }
1714
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001715 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001716
1717 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001718 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001719 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001720 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001721
1722 // ext X != 0 if X != 0.
1723 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001724 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001725
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001726 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001727 // if the lowest bit is shifted off the end.
1728 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001729 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001730 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001731 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001732 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001733
Duncan Sandsd3951082011-01-25 09:38:29 +00001734 APInt KnownZero(BitWidth, 0);
1735 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001736 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001737 if (KnownOne[0])
1738 return true;
1739 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001740 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001741 // defined if the sign bit is shifted off the end.
1742 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001743 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001744 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001745 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001746 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001747
Duncan Sandsd3951082011-01-25 09:38:29 +00001748 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001749 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001750 if (XKnownNegative)
1751 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001752
1753 // If the shifter operand is a constant, and all of the bits shifted
1754 // out are known to be zero, and X is known non-zero then at least one
1755 // non-zero bit must remain.
1756 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1757 APInt KnownZero(BitWidth, 0);
1758 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001759 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001760
James Molloyb6be1eb2015-09-24 16:06:32 +00001761 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1762 // Is there a known one in the portion not shifted out?
1763 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1764 return true;
1765 // Are all the bits to be shifted out known zero?
1766 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001767 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001768 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001769 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001770 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001771 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001772 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001773 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001774 // X + Y.
1775 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1776 bool XKnownNonNegative, XKnownNegative;
1777 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001778 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1779 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001780
1781 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001782 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001783 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001784 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001785 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001786
1787 // If X and Y are both negative (as signed values) then their sum is not
1788 // zero unless both X and Y equal INT_MIN.
1789 if (BitWidth && XKnownNegative && YKnownNegative) {
1790 APInt KnownZero(BitWidth, 0);
1791 APInt KnownOne(BitWidth, 0);
1792 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1793 // The sign bit of X is set. If some other bit is set then X is not equal
1794 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001795 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001796 if ((KnownOne & Mask) != 0)
1797 return true;
1798 // The sign bit of Y is set. If some other bit is set then Y is not equal
1799 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001800 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001801 if ((KnownOne & Mask) != 0)
1802 return true;
1803 }
1804
1805 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001806 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001807 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001808 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001809 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001810 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001811 return true;
1812 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001813 // X * Y.
1814 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1815 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1816 // If X and Y are non-zero then so is X * Y as long as the multiplication
1817 // does not overflow.
1818 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001819 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001820 return true;
1821 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001822 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1823 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001824 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1825 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001826 return true;
1827 }
James Molloy897048b2015-09-29 14:08:45 +00001828 // PHI
1829 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1830 // Try and detect a recurrence that monotonically increases from a
1831 // starting value, as these are common as induction variables.
1832 if (PN->getNumIncomingValues() == 2) {
1833 Value *Start = PN->getIncomingValue(0);
1834 Value *Induction = PN->getIncomingValue(1);
1835 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1836 std::swap(Start, Induction);
1837 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1838 if (!C->isZero() && !C->isNegative()) {
1839 ConstantInt *X;
1840 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1841 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1842 !X->isNegative())
1843 return true;
1844 }
1845 }
1846 }
Jun Bum Limca832662016-02-01 17:03:07 +00001847 // Check if all incoming values are non-zero constant.
1848 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1849 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1850 });
1851 if (AllNonZeroConstants)
1852 return true;
James Molloy897048b2015-09-29 14:08:45 +00001853 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001854
1855 if (!BitWidth) return false;
1856 APInt KnownZero(BitWidth, 0);
1857 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001858 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001859 return KnownOne != 0;
1860}
1861
James Molloy1d88d6f2015-10-22 13:18:42 +00001862/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001863static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001864 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1865 if (!BO || BO->getOpcode() != Instruction::Add)
1866 return false;
1867 Value *Op = nullptr;
1868 if (V2 == BO->getOperand(0))
1869 Op = BO->getOperand(1);
1870 else if (V2 == BO->getOperand(1))
1871 Op = BO->getOperand(0);
1872 else
1873 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001874 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001875}
1876
1877/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001878static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001879 if (V1->getType()->isVectorTy() || V1 == V2)
1880 return false;
1881 if (V1->getType() != V2->getType())
1882 // We can't look through casts yet.
1883 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001884 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001885 return true;
1886
1887 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1888 // Are any known bits in V1 contradictory to known bits in V2? If V1
1889 // has a known zero where V2 has a known one, they must not be equal.
1890 auto BitWidth = Ty->getBitWidth();
1891 APInt KnownZero1(BitWidth, 0);
1892 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001893 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001894 APInt KnownZero2(BitWidth, 0);
1895 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001896 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001897
1898 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1899 if (OppositeBits.getBoolValue())
1900 return true;
1901 }
1902 return false;
1903}
1904
Sanjay Patelaee84212014-11-04 16:27:42 +00001905/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1906/// simplify operations downstream. Mask is known to be zero for bits that V
1907/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001908///
1909/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001910/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001911/// where V is a vector, the mask, known zero, and known one values are the
1912/// same width as the vector element, and the bit is set only if it is true
1913/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001914bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1915 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001916 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001917 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001918 return (KnownZero & Mask) == Mask;
1919}
1920
1921
1922
Sanjay Patelaee84212014-11-04 16:27:42 +00001923/// Return the number of times the sign bit of the register is replicated into
1924/// the other bits. We know that at least 1 bit is always equal to the sign bit
1925/// (itself), but other cases can give us information. For example, immediately
1926/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1927/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001928///
1929/// 'Op' must have a scalar integer type.
1930///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001931unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1932 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001933 unsigned Tmp, Tmp2;
1934 unsigned FirstAnswer = 1;
1935
Jay Foada0653a32014-05-14 21:14:37 +00001936 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001937 // below.
1938
Chris Lattner965c7692008-06-02 01:18:21 +00001939 if (Depth == 6)
1940 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001941
Dan Gohman80ca01c2009-07-17 20:47:02 +00001942 Operator *U = dyn_cast<Operator>(V);
1943 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001944 default: break;
1945 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001946 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001947 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001948
Nadav Rotemc99a3872015-03-06 00:23:58 +00001949 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001950 const APInt *Denominator;
1951 // sdiv X, C -> adds log(C) sign bits.
1952 if (match(U->getOperand(1), m_APInt(Denominator))) {
1953
1954 // Ignore non-positive denominator.
1955 if (!Denominator->isStrictlyPositive())
1956 break;
1957
1958 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001959 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001960
1961 // Add floor(log(C)) bits to the numerator bits.
1962 return std::min(TyBits, NumBits + Denominator->logBase2());
1963 }
1964 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001965 }
1966
1967 case Instruction::SRem: {
1968 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001969 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1970 // positive constant. This let us put a lower bound on the number of sign
1971 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001972 if (match(U->getOperand(1), m_APInt(Denominator))) {
1973
1974 // Ignore non-positive denominator.
1975 if (!Denominator->isStrictlyPositive())
1976 break;
1977
1978 // Calculate the incoming numerator bits. SRem by a positive constant
1979 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001980 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001981 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00001982
1983 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00001984 // denominator. Given that the denominator is positive, there are two
1985 // cases:
1986 //
1987 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
1988 // (1 << ceilLogBase2(C)).
1989 //
1990 // 2. the numerator is negative. Then the result range is (-C,0] and
1991 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1992 //
1993 // Thus a lower bound on the number of sign bits is `TyBits -
1994 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001995
Sanjoy Dase561fee2015-03-25 22:33:53 +00001996 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00001997 return std::max(NumrBits, ResBits);
1998 }
1999 break;
2000 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002001
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002002 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002003 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002004 // ashr X, C -> adds C sign bits. Vectors too.
2005 const APInt *ShAmt;
2006 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2007 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002008 if (Tmp > TyBits) Tmp = TyBits;
2009 }
2010 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002011 }
2012 case Instruction::Shl: {
2013 const APInt *ShAmt;
2014 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002015 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002016 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002017 Tmp2 = ShAmt->getZExtValue();
2018 if (Tmp2 >= TyBits || // Bad shift.
2019 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2020 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002021 }
2022 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002023 }
Chris Lattner965c7692008-06-02 01:18:21 +00002024 case Instruction::And:
2025 case Instruction::Or:
2026 case Instruction::Xor: // NOT is handled here.
2027 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002028 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002029 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002030 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002031 FirstAnswer = std::min(Tmp, Tmp2);
2032 // We computed what we know about the sign bits as our first
2033 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002034 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002035 }
2036 break;
2037
2038 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002039 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002040 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002041 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002042 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002043
Chris Lattner965c7692008-06-02 01:18:21 +00002044 case Instruction::Add:
2045 // Add can have at most one carry bit. Thus we know that the output
2046 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002047 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002048 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002049
Chris Lattner965c7692008-06-02 01:18:21 +00002050 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002051 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002052 if (CRHS->isAllOnesValue()) {
2053 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002054 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002055
Chris Lattner965c7692008-06-02 01:18:21 +00002056 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2057 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002058 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002059 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002060
Chris Lattner965c7692008-06-02 01:18:21 +00002061 // If we are subtracting one from a positive number, there is no carry
2062 // out of the result.
2063 if (KnownZero.isNegative())
2064 return Tmp;
2065 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002066
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002067 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002068 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002069 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002070
Chris Lattner965c7692008-06-02 01:18:21 +00002071 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002072 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002073 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002074
Chris Lattner965c7692008-06-02 01:18:21 +00002075 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002076 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002077 if (CLHS->isNullValue()) {
2078 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002079 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002080 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2081 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002082 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002083 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002084
Chris Lattner965c7692008-06-02 01:18:21 +00002085 // If the input is known to be positive (the sign bit is known clear),
2086 // the output of the NEG has the same number of sign bits as the input.
2087 if (KnownZero.isNegative())
2088 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002089
Chris Lattner965c7692008-06-02 01:18:21 +00002090 // Otherwise, we treat this like a SUB.
2091 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002092
Chris Lattner965c7692008-06-02 01:18:21 +00002093 // Sub can have at most one carry bit. Thus we know that the output
2094 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002095 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002096 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002097 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002098
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002099 case Instruction::PHI: {
2100 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002101 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002102 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002103 if (NumIncomingValues > 4) break;
2104 // Unreachable blocks may have zero-operand PHI nodes.
2105 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002106
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002107 // Take the minimum of all incoming values. This can't infinitely loop
2108 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002109 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002110 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002111 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002112 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002113 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002114 }
2115 return Tmp;
2116 }
2117
Chris Lattner965c7692008-06-02 01:18:21 +00002118 case Instruction::Trunc:
2119 // FIXME: it's tricky to do anything useful for this, but it is an important
2120 // case for targets like X86.
2121 break;
2122 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002123
Chris Lattner965c7692008-06-02 01:18:21 +00002124 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2125 // use this information.
2126 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002127 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002128 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002129
Chris Lattner965c7692008-06-02 01:18:21 +00002130 if (KnownZero.isNegative()) { // sign bit is 0
2131 Mask = KnownZero;
2132 } else if (KnownOne.isNegative()) { // sign bit is 1;
2133 Mask = KnownOne;
2134 } else {
2135 // Nothing known.
2136 return FirstAnswer;
2137 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002138
Chris Lattner965c7692008-06-02 01:18:21 +00002139 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2140 // the number of identical bits in the top of the input value.
2141 Mask = ~Mask;
2142 Mask <<= Mask.getBitWidth()-TyBits;
2143 // Return # leading zeros. We use 'min' here in case Val was zero before
2144 // shifting. We don't want to return '64' as for an i32 "0".
2145 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2146}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002147
Sanjay Patelaee84212014-11-04 16:27:42 +00002148/// This function computes the integer multiple of Base that equals V.
2149/// If successful, it returns true and returns the multiple in
2150/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002151/// through SExt instructions only if LookThroughSExt is true.
2152bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002153 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002154 const unsigned MaxDepth = 6;
2155
Dan Gohman6a976bb2009-11-18 00:58:27 +00002156 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002157 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002158 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002159
Chris Lattner229907c2011-07-18 04:54:35 +00002160 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002161
Dan Gohman6a976bb2009-11-18 00:58:27 +00002162 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002163
2164 if (Base == 0)
2165 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002166
Victor Hernandez47444882009-11-10 08:28:35 +00002167 if (Base == 1) {
2168 Multiple = V;
2169 return true;
2170 }
2171
2172 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2173 Constant *BaseVal = ConstantInt::get(T, Base);
2174 if (CO && CO == BaseVal) {
2175 // Multiple is 1.
2176 Multiple = ConstantInt::get(T, 1);
2177 return true;
2178 }
2179
2180 if (CI && CI->getZExtValue() % Base == 0) {
2181 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002182 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002183 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002184
Victor Hernandez47444882009-11-10 08:28:35 +00002185 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002186
Victor Hernandez47444882009-11-10 08:28:35 +00002187 Operator *I = dyn_cast<Operator>(V);
2188 if (!I) return false;
2189
2190 switch (I->getOpcode()) {
2191 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002192 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002193 if (!LookThroughSExt) return false;
2194 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002195 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002196 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2197 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002198 case Instruction::Shl:
2199 case Instruction::Mul: {
2200 Value *Op0 = I->getOperand(0);
2201 Value *Op1 = I->getOperand(1);
2202
2203 if (I->getOpcode() == Instruction::Shl) {
2204 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2205 if (!Op1CI) return false;
2206 // Turn Op0 << Op1 into Op0 * 2^Op1
2207 APInt Op1Int = Op1CI->getValue();
2208 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002209 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002210 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002211 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002212 }
2213
Craig Topper9f008862014-04-15 04:59:12 +00002214 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002215 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2216 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2217 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002218 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002219 MulC->getType()->getPrimitiveSizeInBits())
2220 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002221 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002222 MulC->getType()->getPrimitiveSizeInBits())
2223 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002224
Chris Lattner72d283c2010-09-05 17:20:46 +00002225 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2226 Multiple = ConstantExpr::getMul(MulC, Op1C);
2227 return true;
2228 }
Victor Hernandez47444882009-11-10 08:28:35 +00002229
2230 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2231 if (Mul0CI->getValue() == 1) {
2232 // V == Base * Op1, so return Op1
2233 Multiple = Op1;
2234 return true;
2235 }
2236 }
2237
Craig Topper9f008862014-04-15 04:59:12 +00002238 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002239 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2240 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2241 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002242 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002243 MulC->getType()->getPrimitiveSizeInBits())
2244 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002245 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002246 MulC->getType()->getPrimitiveSizeInBits())
2247 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002248
Chris Lattner72d283c2010-09-05 17:20:46 +00002249 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2250 Multiple = ConstantExpr::getMul(MulC, Op0C);
2251 return true;
2252 }
Victor Hernandez47444882009-11-10 08:28:35 +00002253
2254 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2255 if (Mul1CI->getValue() == 1) {
2256 // V == Base * Op0, so return Op0
2257 Multiple = Op0;
2258 return true;
2259 }
2260 }
Victor Hernandez47444882009-11-10 08:28:35 +00002261 }
2262 }
2263
2264 // We could not determine if V is a multiple of Base.
2265 return false;
2266}
2267
David Majnemerb4b27232016-04-19 19:10:21 +00002268Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2269 const TargetLibraryInfo *TLI) {
2270 const Function *F = ICS.getCalledFunction();
2271 if (!F)
2272 return Intrinsic::not_intrinsic;
2273
2274 if (F->isIntrinsic())
2275 return F->getIntrinsicID();
2276
2277 if (!TLI)
2278 return Intrinsic::not_intrinsic;
2279
2280 LibFunc::Func Func;
2281 // We're going to make assumptions on the semantics of the functions, check
2282 // that the target knows that it's available in this environment and it does
2283 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002284 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2285 return Intrinsic::not_intrinsic;
2286
2287 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002288 return Intrinsic::not_intrinsic;
2289
2290 // Otherwise check if we have a call to a function that can be turned into a
2291 // vector intrinsic.
2292 switch (Func) {
2293 default:
2294 break;
2295 case LibFunc::sin:
2296 case LibFunc::sinf:
2297 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002298 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002299 case LibFunc::cos:
2300 case LibFunc::cosf:
2301 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002302 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002303 case LibFunc::exp:
2304 case LibFunc::expf:
2305 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002306 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002307 case LibFunc::exp2:
2308 case LibFunc::exp2f:
2309 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002310 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002311 case LibFunc::log:
2312 case LibFunc::logf:
2313 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002314 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002315 case LibFunc::log10:
2316 case LibFunc::log10f:
2317 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002318 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002319 case LibFunc::log2:
2320 case LibFunc::log2f:
2321 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002322 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002323 case LibFunc::fabs:
2324 case LibFunc::fabsf:
2325 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002326 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002327 case LibFunc::fmin:
2328 case LibFunc::fminf:
2329 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002330 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002331 case LibFunc::fmax:
2332 case LibFunc::fmaxf:
2333 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002334 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002335 case LibFunc::copysign:
2336 case LibFunc::copysignf:
2337 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002338 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002339 case LibFunc::floor:
2340 case LibFunc::floorf:
2341 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002342 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002343 case LibFunc::ceil:
2344 case LibFunc::ceilf:
2345 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002346 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002347 case LibFunc::trunc:
2348 case LibFunc::truncf:
2349 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002350 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002351 case LibFunc::rint:
2352 case LibFunc::rintf:
2353 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002354 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002355 case LibFunc::nearbyint:
2356 case LibFunc::nearbyintf:
2357 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002358 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002359 case LibFunc::round:
2360 case LibFunc::roundf:
2361 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002362 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002363 case LibFunc::pow:
2364 case LibFunc::powf:
2365 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002366 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002367 case LibFunc::sqrt:
2368 case LibFunc::sqrtf:
2369 case LibFunc::sqrtl:
2370 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002371 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002372 return Intrinsic::not_intrinsic;
2373 }
2374
2375 return Intrinsic::not_intrinsic;
2376}
2377
Sanjay Patelaee84212014-11-04 16:27:42 +00002378/// Return true if we can prove that the specified FP value is never equal to
2379/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002380///
2381/// NOTE: this function will need to be revisited when we support non-default
2382/// rounding modes!
2383///
David Majnemer3ee5f342016-04-13 06:55:52 +00002384bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2385 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002386 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2387 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002388
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002389 // FIXME: Magic number! At the least, this should be given a name because it's
2390 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2391 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002392 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002393 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002394
Dan Gohman80ca01c2009-07-17 20:47:02 +00002395 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002396 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002397
2398 // Check if the nsz fast-math flag is set
2399 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2400 if (FPO->hasNoSignedZeros())
2401 return true;
2402
Chris Lattnera12a6de2008-06-02 01:29:46 +00002403 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002404 if (I->getOpcode() == Instruction::FAdd)
2405 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2406 if (CFP->isNullValue())
2407 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002408
Chris Lattnera12a6de2008-06-02 01:29:46 +00002409 // sitofp and uitofp turn into +0.0 for zero.
2410 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2411 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002412
David Majnemer3ee5f342016-04-13 06:55:52 +00002413 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002414 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002415 switch (IID) {
2416 default:
2417 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002418 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002419 case Intrinsic::sqrt:
2420 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2421 // fabs(x) != -0.0
2422 case Intrinsic::fabs:
2423 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002424 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002425 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002426
Chris Lattnera12a6de2008-06-02 01:29:46 +00002427 return false;
2428}
2429
David Majnemer3ee5f342016-04-13 06:55:52 +00002430bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2431 const TargetLibraryInfo *TLI,
2432 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002433 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2434 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2435
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002436 // FIXME: Magic number! At the least, this should be given a name because it's
2437 // used similarly in CannotBeNegativeZero(). A better fix may be to
2438 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002439 if (Depth == 6)
2440 return false; // Limit search depth.
2441
2442 const Operator *I = dyn_cast<Operator>(V);
2443 if (!I) return false;
2444
2445 switch (I->getOpcode()) {
2446 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002447 // Unsigned integers are always nonnegative.
2448 case Instruction::UIToFP:
2449 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002450 case Instruction::FMul:
2451 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002452 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002453 return true;
2454 // Fall through
2455 case Instruction::FAdd:
2456 case Instruction::FDiv:
2457 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002458 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2459 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002460 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002461 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2462 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002463 case Instruction::FPExt:
2464 case Instruction::FPTrunc:
2465 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002466 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2467 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002468 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002469 switch (IID) {
2470 default:
2471 break;
2472 case Intrinsic::maxnum:
2473 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2474 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2475 case Intrinsic::minnum:
2476 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2477 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2478 case Intrinsic::exp:
2479 case Intrinsic::exp2:
2480 case Intrinsic::fabs:
2481 case Intrinsic::sqrt:
2482 return true;
2483 case Intrinsic::powi:
2484 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2485 // powi(x,n) is non-negative if n is even.
2486 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2487 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002488 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002489 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2490 case Intrinsic::fma:
2491 case Intrinsic::fmuladd:
2492 // x*x+y is non-negative if y is non-negative.
2493 return I->getOperand(0) == I->getOperand(1) &&
2494 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2495 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002496 break;
2497 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002498 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002499}
2500
Sanjay Patelaee84212014-11-04 16:27:42 +00002501/// If the specified value can be set by repeating the same byte in memory,
2502/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002503/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2504/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2505/// byte store (e.g. i16 0x1234), return null.
2506Value *llvm::isBytewiseValue(Value *V) {
2507 // All byte-wide stores are splatable, even of arbitrary variables.
2508 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002509
2510 // Handle 'null' ConstantArrayZero etc.
2511 if (Constant *C = dyn_cast<Constant>(V))
2512 if (C->isNullValue())
2513 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002514
Chris Lattner9cb10352010-12-26 20:15:01 +00002515 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002516 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002517 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2518 if (CFP->getType()->isFloatTy())
2519 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2520 if (CFP->getType()->isDoubleTy())
2521 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2522 // Don't handle long double formats, which have strange constraints.
2523 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002524
Benjamin Kramer17d90152015-02-07 19:29:02 +00002525 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002526 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002527 if (CI->getBitWidth() % 8 == 0) {
2528 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002529
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002530 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002531 return nullptr;
2532 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002533 }
2534 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002535
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002536 // A ConstantDataArray/Vector is splatable if all its members are equal and
2537 // also splatable.
2538 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2539 Value *Elt = CA->getElementAsConstant(0);
2540 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002541 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002542 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002543
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002544 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2545 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002546 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002547
Chris Lattner9cb10352010-12-26 20:15:01 +00002548 return Val;
2549 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002550
Chris Lattner9cb10352010-12-26 20:15:01 +00002551 // Conceptually, we could handle things like:
2552 // %a = zext i8 %X to i16
2553 // %b = shl i16 %a, 8
2554 // %c = or i16 %a, %b
2555 // but until there is an example that actually needs this, it doesn't seem
2556 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002557 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002558}
2559
2560
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002561// This is the recursive version of BuildSubAggregate. It takes a few different
2562// arguments. Idxs is the index within the nested struct From that we are
2563// looking at now (which is of type IndexedType). IdxSkip is the number of
2564// indices from Idxs that should be left out when inserting into the resulting
2565// struct. To is the result struct built so far, new insertvalue instructions
2566// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002567static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002568 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002569 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002570 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002571 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002572 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002573 // Save the original To argument so we can modify it
2574 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002575 // General case, the type indexed by Idxs is a struct
2576 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2577 // Process each struct element recursively
2578 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002579 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002580 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002581 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002582 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002583 if (!To) {
2584 // Couldn't find any inserted value for this index? Cleanup
2585 while (PrevTo != OrigTo) {
2586 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2587 PrevTo = Del->getAggregateOperand();
2588 Del->eraseFromParent();
2589 }
2590 // Stop processing elements
2591 break;
2592 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002593 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002594 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002595 if (To)
2596 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002597 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002598 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2599 // the struct's elements had a value that was inserted directly. In the latter
2600 // case, perhaps we can't determine each of the subelements individually, but
2601 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002602
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002603 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002604 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002605
2606 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002607 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002608
2609 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002610 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002611 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002612}
2613
2614// This helper takes a nested struct and extracts a part of it (which is again a
2615// struct) into a new value. For example, given the struct:
2616// { a, { b, { c, d }, e } }
2617// and the indices "1, 1" this returns
2618// { c, d }.
2619//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002620// It does this by inserting an insertvalue for each element in the resulting
2621// struct, as opposed to just inserting a single struct. This will only work if
2622// each of the elements of the substruct are known (ie, inserted into From by an
2623// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002624//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002625// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002626static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002627 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002628 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002629 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002630 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002631 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002632 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002633 unsigned IdxSkip = Idxs.size();
2634
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002635 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002636}
2637
Sanjay Patelaee84212014-11-04 16:27:42 +00002638/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002639/// the scalar value indexed is already around as a register, for example if it
2640/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002641///
2642/// If InsertBefore is not null, this function will duplicate (modified)
2643/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002644Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2645 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002646 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002647 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002648 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002649 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002650 // We have indices, so V should have an indexable type.
2651 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2652 "Not looking at a struct or array?");
2653 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2654 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002655
Chris Lattner67058832012-01-25 06:48:06 +00002656 if (Constant *C = dyn_cast<Constant>(V)) {
2657 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002658 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002659 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2660 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002661
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002662 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002663 // Loop the indices for the insertvalue instruction in parallel with the
2664 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002665 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002666 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2667 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002668 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002669 // We can't handle this without inserting insertvalues
2670 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002671 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002672
2673 // The requested index identifies a part of a nested aggregate. Handle
2674 // this specially. For example,
2675 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2676 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2677 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2678 // This can be changed into
2679 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2680 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2681 // which allows the unused 0,0 element from the nested struct to be
2682 // removed.
2683 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2684 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002685 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002686
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002687 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002688 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002689 // looking for, then.
2690 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002691 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002692 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002693 }
2694 // If we end up here, the indices of the insertvalue match with those
2695 // requested (though possibly only partially). Now we recursively look at
2696 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002697 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002698 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002699 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002700 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002701
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002702 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002703 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002704 // something else, we can extract from that something else directly instead.
2705 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002706
2707 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002708 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002709 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002710 SmallVector<unsigned, 5> Idxs;
2711 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002712 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002713 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002714
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002715 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002716 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002717
Craig Topper1bef2c82012-12-22 19:15:35 +00002718 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002719 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002720
Jay Foad57aa6362011-07-13 10:26:04 +00002721 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002722 }
2723 // Otherwise, we don't know (such as, extracting from a function return value
2724 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002725 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002726}
Evan Chengda3db112008-06-30 07:31:25 +00002727
Sanjay Patelaee84212014-11-04 16:27:42 +00002728/// Analyze the specified pointer to see if it can be expressed as a base
2729/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002730Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002731 const DataLayout &DL) {
2732 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002733 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002734
2735 // We walk up the defs but use a visited set to handle unreachable code. In
2736 // that case, we stop after accumulating the cycle once (not that it
2737 // matters).
2738 SmallPtrSet<Value *, 16> Visited;
2739 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002740 if (Ptr->getType()->isVectorTy())
2741 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002742
Nuno Lopes368c4d02012-12-31 20:48:35 +00002743 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002744 APInt GEPOffset(BitWidth, 0);
2745 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2746 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002747
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002748 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002749
Nuno Lopes368c4d02012-12-31 20:48:35 +00002750 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002751 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2752 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002753 Ptr = cast<Operator>(Ptr)->getOperand(0);
2754 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002755 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002756 break;
2757 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002758 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002759 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002760 }
2761 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002762 Offset = ByteOffset.getSExtValue();
2763 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002764}
2765
David L Kreitzer752c1442016-04-13 14:31:06 +00002766bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2767 // Make sure the GEP has exactly three arguments.
2768 if (GEP->getNumOperands() != 3)
2769 return false;
2770
2771 // Make sure the index-ee is a pointer to array of i8.
2772 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2773 if (!AT || !AT->getElementType()->isIntegerTy(8))
2774 return false;
2775
2776 // Check to make sure that the first operand of the GEP is an integer and
2777 // has value 0 so that we are sure we're indexing into the initializer.
2778 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2779 if (!FirstIdx || !FirstIdx->isZero())
2780 return false;
2781
2782 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002783}
Chris Lattnere28618d2010-11-30 22:25:26 +00002784
Sanjay Patelaee84212014-11-04 16:27:42 +00002785/// This function computes the length of a null-terminated C string pointed to
2786/// by V. If successful, it returns true and returns the string in Str.
2787/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002788bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2789 uint64_t Offset, bool TrimAtNul) {
2790 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002791
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002792 // Look through bitcast instructions and geps.
2793 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002794
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002795 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002796 // offset.
2797 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002798 // The GEP operator should be based on a pointer to string constant, and is
2799 // indexing into the string constant.
2800 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002801 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002802
Evan Chengda3db112008-06-30 07:31:25 +00002803 // If the second index isn't a ConstantInt, then this is a variable index
2804 // into the array. If this occurs, we can't say anything meaningful about
2805 // the string.
2806 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002807 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002808 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002809 else
2810 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002811 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2812 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002813 }
Nick Lewycky46209882011-10-20 00:34:35 +00002814
Evan Chengda3db112008-06-30 07:31:25 +00002815 // The GEP instruction, constant or instruction, must reference a global
2816 // variable that is a constant and is initialized. The referenced constant
2817 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002818 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002819 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002820 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002821
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002822 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002823 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002824 // This is a degenerate case. The initializer is constant zero so the
2825 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002826 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002827 return true;
2828 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002829
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002830 // This must be a ConstantDataArray.
2831 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002832 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002833 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002834
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002835 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002836 uint64_t NumElts = Array->getType()->getArrayNumElements();
2837
2838 // Start out with the entire array in the StringRef.
2839 Str = Array->getAsString();
2840
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002841 if (Offset > NumElts)
2842 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002843
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002844 // Skip over 'offset' bytes.
2845 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002846
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002847 if (TrimAtNul) {
2848 // Trim off the \0 and anything after it. If the array is not nul
2849 // terminated, we just return the whole end of string. The client may know
2850 // some other way that the string is length-bound.
2851 Str = Str.substr(0, Str.find('\0'));
2852 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002853 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002854}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002855
2856// These next two are very similar to the above, but also look through PHI
2857// nodes.
2858// TODO: See if we can integrate these two together.
2859
Sanjay Patelaee84212014-11-04 16:27:42 +00002860/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002861/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002862static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002863 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002864 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002865
2866 // If this is a PHI node, there are two cases: either we have already seen it
2867 // or we haven't.
2868 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002869 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002870 return ~0ULL; // already in the set.
2871
2872 // If it was new, see if all the input strings are the same length.
2873 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002874 for (Value *IncValue : PN->incoming_values()) {
2875 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002876 if (Len == 0) return 0; // Unknown length -> unknown.
2877
2878 if (Len == ~0ULL) continue;
2879
2880 if (Len != LenSoFar && LenSoFar != ~0ULL)
2881 return 0; // Disagree -> unknown.
2882 LenSoFar = Len;
2883 }
2884
2885 // Success, all agree.
2886 return LenSoFar;
2887 }
2888
2889 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2890 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2891 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2892 if (Len1 == 0) return 0;
2893 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2894 if (Len2 == 0) return 0;
2895 if (Len1 == ~0ULL) return Len2;
2896 if (Len2 == ~0ULL) return Len1;
2897 if (Len1 != Len2) return 0;
2898 return Len1;
2899 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002900
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002901 // Otherwise, see if we can read the string.
2902 StringRef StrData;
2903 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002904 return 0;
2905
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002906 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002907}
2908
Sanjay Patelaee84212014-11-04 16:27:42 +00002909/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002910/// the specified pointer, return 'len+1'. If we can't, return 0.
2911uint64_t llvm::GetStringLength(Value *V) {
2912 if (!V->getType()->isPointerTy()) return 0;
2913
2914 SmallPtrSet<PHINode*, 32> PHIs;
2915 uint64_t Len = GetStringLengthH(V, PHIs);
2916 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2917 // an empty string as a length.
2918 return Len == ~0ULL ? 1 : Len;
2919}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002920
Adam Nemete2b885c2015-04-23 20:09:20 +00002921/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2922/// previous iteration of the loop was referring to the same object as \p PN.
2923static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2924 // Find the loop-defined value.
2925 Loop *L = LI->getLoopFor(PN->getParent());
2926 if (PN->getNumIncomingValues() != 2)
2927 return true;
2928
2929 // Find the value from previous iteration.
2930 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2931 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2932 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2933 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2934 return true;
2935
2936 // If a new pointer is loaded in the loop, the pointer references a different
2937 // object in every iteration. E.g.:
2938 // for (i)
2939 // int *p = a[i];
2940 // ...
2941 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2942 if (!L->isLoopInvariant(Load->getPointerOperand()))
2943 return false;
2944 return true;
2945}
2946
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002947Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2948 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002949 if (!V->getType()->isPointerTy())
2950 return V;
2951 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2952 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2953 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002954 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2955 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002956 V = cast<Operator>(V)->getOperand(0);
2957 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002958 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00002959 return V;
2960 V = GA->getAliasee();
2961 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002962 // See if InstructionSimplify knows any relevant tricks.
2963 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002964 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002965 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002966 V = Simplified;
2967 continue;
2968 }
2969
Dan Gohmana4fcd242010-12-15 20:02:24 +00002970 return V;
2971 }
2972 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2973 }
2974 return V;
2975}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002976
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002977void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002978 const DataLayout &DL, LoopInfo *LI,
2979 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002980 SmallPtrSet<Value *, 4> Visited;
2981 SmallVector<Value *, 4> Worklist;
2982 Worklist.push_back(V);
2983 do {
2984 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002985 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002986
David Blaikie70573dc2014-11-19 07:49:26 +00002987 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002988 continue;
2989
2990 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2991 Worklist.push_back(SI->getTrueValue());
2992 Worklist.push_back(SI->getFalseValue());
2993 continue;
2994 }
2995
2996 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002997 // If this PHI changes the underlying object in every iteration of the
2998 // loop, don't look through it. Consider:
2999 // int **A;
3000 // for (i) {
3001 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3002 // Curr = A[i];
3003 // *Prev, *Curr;
3004 //
3005 // Prev is tracking Curr one iteration behind so they refer to different
3006 // underlying objects.
3007 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3008 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003009 for (Value *IncValue : PN->incoming_values())
3010 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003011 continue;
3012 }
3013
3014 Objects.push_back(P);
3015 } while (!Worklist.empty());
3016}
3017
Sanjay Patelaee84212014-11-04 16:27:42 +00003018/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003019bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003020 for (const User *U : V->users()) {
3021 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003022 if (!II) return false;
3023
3024 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3025 II->getIntrinsicID() != Intrinsic::lifetime_end)
3026 return false;
3027 }
3028 return true;
3029}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003030
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003031bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3032 const Instruction *CtxI,
3033 const DominatorTree *DT,
3034 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003035 const Operator *Inst = dyn_cast<Operator>(V);
3036 if (!Inst)
3037 return false;
3038
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003039 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3040 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3041 if (C->canTrap())
3042 return false;
3043
3044 switch (Inst->getOpcode()) {
3045 default:
3046 return true;
3047 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003048 case Instruction::URem: {
3049 // x / y is undefined if y == 0.
3050 const APInt *V;
3051 if (match(Inst->getOperand(1), m_APInt(V)))
3052 return *V != 0;
3053 return false;
3054 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003055 case Instruction::SDiv:
3056 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003057 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003058 const APInt *Numerator, *Denominator;
3059 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3060 return false;
3061 // We cannot hoist this division if the denominator is 0.
3062 if (*Denominator == 0)
3063 return false;
3064 // It's safe to hoist if the denominator is not 0 or -1.
3065 if (*Denominator != -1)
3066 return true;
3067 // At this point we know that the denominator is -1. It is safe to hoist as
3068 // long we know that the numerator is not INT_MIN.
3069 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3070 return !Numerator->isMinSignedValue();
3071 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003072 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003073 }
3074 case Instruction::Load: {
3075 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003076 if (!LI->isUnordered() ||
3077 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003078 LI->getParent()->getParent()->hasFnAttribute(
3079 Attribute::SanitizeThread) ||
3080 // Speculative load may load data from dirty regions.
3081 LI->getParent()->getParent()->hasFnAttribute(
3082 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003083 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003084 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003085 return isDereferenceableAndAlignedPointer(
3086 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003087 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003088 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003089 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3090 switch (II->getIntrinsicID()) {
3091 // These synthetic intrinsics have no side-effects and just mark
3092 // information about their operands.
3093 // FIXME: There are other no-op synthetic instructions that potentially
3094 // should be considered at least *safe* to speculate...
3095 case Intrinsic::dbg_declare:
3096 case Intrinsic::dbg_value:
3097 return true;
3098
3099 case Intrinsic::bswap:
3100 case Intrinsic::ctlz:
3101 case Intrinsic::ctpop:
3102 case Intrinsic::cttz:
3103 case Intrinsic::objectsize:
3104 case Intrinsic::sadd_with_overflow:
3105 case Intrinsic::smul_with_overflow:
3106 case Intrinsic::ssub_with_overflow:
3107 case Intrinsic::uadd_with_overflow:
3108 case Intrinsic::umul_with_overflow:
3109 case Intrinsic::usub_with_overflow:
3110 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003111 // These intrinsics are defined to have the same behavior as libm
3112 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003113 case Intrinsic::sqrt:
3114 case Intrinsic::fma:
3115 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003116 return true;
3117 // These intrinsics are defined to have the same behavior as libm
3118 // functions, and the corresponding libm functions never set errno.
3119 case Intrinsic::trunc:
3120 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003121 case Intrinsic::fabs:
3122 case Intrinsic::minnum:
3123 case Intrinsic::maxnum:
3124 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003125 // These intrinsics are defined to have the same behavior as libm
3126 // functions, which never overflow when operating on the IEEE754 types
3127 // that we support, and never set errno otherwise.
3128 case Intrinsic::ceil:
3129 case Intrinsic::floor:
3130 case Intrinsic::nearbyint:
3131 case Intrinsic::rint:
3132 case Intrinsic::round:
3133 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003134 // TODO: are convert_{from,to}_fp16 safe?
3135 // TODO: can we list target-specific intrinsics here?
3136 default: break;
3137 }
3138 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003139 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003140 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003141 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003142 case Instruction::VAArg:
3143 case Instruction::Alloca:
3144 case Instruction::Invoke:
3145 case Instruction::PHI:
3146 case Instruction::Store:
3147 case Instruction::Ret:
3148 case Instruction::Br:
3149 case Instruction::IndirectBr:
3150 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003151 case Instruction::Unreachable:
3152 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003153 case Instruction::AtomicRMW:
3154 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003155 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003156 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003157 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003158 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003159 case Instruction::CatchRet:
3160 case Instruction::CleanupPad:
3161 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003162 return false; // Misc instructions which have effects
3163 }
3164}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003165
Quentin Colombet6443cce2015-08-06 18:44:34 +00003166bool llvm::mayBeMemoryDependent(const Instruction &I) {
3167 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3168}
3169
Sanjay Patelaee84212014-11-04 16:27:42 +00003170/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003171bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003172 assert(V->getType()->isPointerTy() && "V must be pointer type");
3173
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003174 // Alloca never returns null, malloc might.
3175 if (isa<AllocaInst>(V)) return true;
3176
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003177 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003178 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003179 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003180
Pete Cooper6b716212015-08-27 03:16:29 +00003181 // A global variable in address space 0 is non null unless extern weak.
3182 // Other address spaces may have null as a valid address for a global,
3183 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003184 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003185 return !GV->hasExternalWeakLinkage() &&
3186 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003187
Sanjoy Das5056e192016-05-07 02:08:22 +00003188 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003189 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003190 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003191
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003192 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003193 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003194 return true;
3195
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003196 return false;
3197}
David Majnemer491331a2015-01-02 07:29:43 +00003198
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003199static bool isKnownNonNullFromDominatingCondition(const Value *V,
3200 const Instruction *CtxI,
3201 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003202 assert(V->getType()->isPointerTy() && "V must be pointer type");
3203
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003204 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003205 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003206 // Avoid massive lists
3207 if (NumUsesExplored >= DomConditionsMaxUses)
3208 break;
3209 NumUsesExplored++;
3210 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003211 CmpInst::Predicate Pred;
3212 if (!match(const_cast<User *>(U),
3213 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3214 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003215 continue;
3216
Sanjoy Das987aaa12016-05-07 02:08:24 +00003217 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003218 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3219 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003220
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003221 BasicBlock *NonNullSuccessor =
3222 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3223 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3224 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3225 return true;
3226 } else if (Pred == ICmpInst::ICMP_NE &&
3227 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3228 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003229 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003230 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003231 }
3232 }
3233
3234 return false;
3235}
3236
3237bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3238 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3239 if (isKnownNonNull(V, TLI))
3240 return true;
3241
3242 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3243}
3244
David Majnemer491331a2015-01-02 07:29:43 +00003245OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003246 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003247 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003248 const Instruction *CxtI,
3249 const DominatorTree *DT) {
3250 // Multiplying n * m significant bits yields a result of n + m significant
3251 // bits. If the total number of significant bits does not exceed the
3252 // result bit width (minus 1), there is no overflow.
3253 // This means if we have enough leading zero bits in the operands
3254 // we can guarantee that the result does not overflow.
3255 // Ref: "Hacker's Delight" by Henry Warren
3256 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3257 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003258 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003259 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003260 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003261 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3262 DT);
3263 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3264 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003265 // Note that underestimating the number of zero bits gives a more
3266 // conservative answer.
3267 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3268 RHSKnownZero.countLeadingOnes();
3269 // First handle the easy case: if we have enough zero bits there's
3270 // definitely no overflow.
3271 if (ZeroBits >= BitWidth)
3272 return OverflowResult::NeverOverflows;
3273
3274 // Get the largest possible values for each operand.
3275 APInt LHSMax = ~LHSKnownZero;
3276 APInt RHSMax = ~RHSKnownZero;
3277
3278 // We know the multiply operation doesn't overflow if the maximum values for
3279 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003280 bool MaxOverflow;
3281 LHSMax.umul_ov(RHSMax, MaxOverflow);
3282 if (!MaxOverflow)
3283 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003284
David Majnemerc8a576b2015-01-02 07:29:47 +00003285 // We know it always overflows if multiplying the smallest possible values for
3286 // the operands also results in overflow.
3287 bool MinOverflow;
3288 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3289 if (MinOverflow)
3290 return OverflowResult::AlwaysOverflows;
3291
3292 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003293}
David Majnemer5310c1e2015-01-07 00:39:50 +00003294
3295OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003296 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003297 AssumptionCache *AC,
3298 const Instruction *CxtI,
3299 const DominatorTree *DT) {
3300 bool LHSKnownNonNegative, LHSKnownNegative;
3301 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3302 AC, CxtI, DT);
3303 if (LHSKnownNonNegative || LHSKnownNegative) {
3304 bool RHSKnownNonNegative, RHSKnownNegative;
3305 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3306 AC, CxtI, DT);
3307
3308 if (LHSKnownNegative && RHSKnownNegative) {
3309 // The sign bit is set in both cases: this MUST overflow.
3310 // Create a simple add instruction, and insert it into the struct.
3311 return OverflowResult::AlwaysOverflows;
3312 }
3313
3314 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3315 // The sign bit is clear in both cases: this CANNOT overflow.
3316 // Create a simple add instruction, and insert it into the struct.
3317 return OverflowResult::NeverOverflows;
3318 }
3319 }
3320
3321 return OverflowResult::MayOverflow;
3322}
James Molloy71b91c22015-05-11 14:42:20 +00003323
Jingyue Wu10fcea52015-08-20 18:27:04 +00003324static OverflowResult computeOverflowForSignedAdd(
3325 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3326 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3327 if (Add && Add->hasNoSignedWrap()) {
3328 return OverflowResult::NeverOverflows;
3329 }
3330
3331 bool LHSKnownNonNegative, LHSKnownNegative;
3332 bool RHSKnownNonNegative, RHSKnownNegative;
3333 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3334 AC, CxtI, DT);
3335 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3336 AC, CxtI, DT);
3337
3338 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3339 (LHSKnownNegative && RHSKnownNonNegative)) {
3340 // The sign bits are opposite: this CANNOT overflow.
3341 return OverflowResult::NeverOverflows;
3342 }
3343
3344 // The remaining code needs Add to be available. Early returns if not so.
3345 if (!Add)
3346 return OverflowResult::MayOverflow;
3347
3348 // If the sign of Add is the same as at least one of the operands, this add
3349 // CANNOT overflow. This is particularly useful when the sum is
3350 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3351 // operands.
3352 bool LHSOrRHSKnownNonNegative =
3353 (LHSKnownNonNegative || RHSKnownNonNegative);
3354 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3355 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3356 bool AddKnownNonNegative, AddKnownNegative;
3357 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3358 /*Depth=*/0, AC, CxtI, DT);
3359 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3360 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3361 return OverflowResult::NeverOverflows;
3362 }
3363 }
3364
3365 return OverflowResult::MayOverflow;
3366}
3367
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003368bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
3369#ifndef NDEBUG
3370 auto IID = II->getIntrinsicID();
3371 assert((IID == Intrinsic::sadd_with_overflow ||
3372 IID == Intrinsic::uadd_with_overflow ||
3373 IID == Intrinsic::ssub_with_overflow ||
3374 IID == Intrinsic::usub_with_overflow ||
3375 IID == Intrinsic::smul_with_overflow ||
3376 IID == Intrinsic::umul_with_overflow) &&
3377 "Not an overflow intrinsic!");
3378#endif
3379
3380 SmallVector<BranchInst *, 2> GuardingBranches;
3381 SmallVector<ExtractValueInst *, 2> Results;
3382
3383 for (User *U : II->users()) {
3384 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3385 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3386
3387 if (EVI->getIndices()[0] == 0)
3388 Results.push_back(EVI);
3389 else {
3390 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3391
3392 for (auto *U : EVI->users())
3393 if (auto *B = dyn_cast<BranchInst>(U)) {
3394 assert(B->isConditional() && "How else is it using an i1?");
3395 GuardingBranches.push_back(B);
3396 }
3397 }
3398 } else {
3399 // We are using the aggregate directly in a way we don't want to analyze
3400 // here (storing it to a global, say).
3401 return false;
3402 }
3403 }
3404
3405 auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
3406 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3407 if (!NoWrapEdge.isSingleEdge())
3408 return false;
3409
3410 // Check if all users of the add are provably no-wrap.
3411 for (auto *Result : Results) {
3412 // If the extractvalue itself is not executed on overflow, the we don't
3413 // need to check each use separately, since domination is transitive.
3414 if (DT.dominates(NoWrapEdge, Result->getParent()))
3415 continue;
3416
3417 for (auto &RU : Result->uses())
3418 if (!DT.dominates(NoWrapEdge, RU))
3419 return false;
3420 }
3421
3422 return true;
3423 };
3424
3425 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3426}
3427
3428
Jingyue Wu10fcea52015-08-20 18:27:04 +00003429OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3430 const DataLayout &DL,
3431 AssumptionCache *AC,
3432 const Instruction *CxtI,
3433 const DominatorTree *DT) {
3434 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3435 Add, DL, AC, CxtI, DT);
3436}
3437
3438OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3439 const DataLayout &DL,
3440 AssumptionCache *AC,
3441 const Instruction *CxtI,
3442 const DominatorTree *DT) {
3443 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3444}
3445
Jingyue Wu42f1d672015-07-28 18:22:40 +00003446bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3447 // FIXME: This conservative implementation can be relaxed. E.g. most
3448 // atomic operations are guaranteed to terminate on most platforms
3449 // and most functions terminate.
3450
3451 return !I->isAtomic() && // atomics may never succeed on some platforms
3452 !isa<CallInst>(I) && // could throw and might not terminate
3453 !isa<InvokeInst>(I) && // might not terminate and could throw to
3454 // non-successor (see bug 24185 for details).
3455 !isa<ResumeInst>(I) && // has no successors
3456 !isa<ReturnInst>(I); // has no successors
3457}
3458
3459bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3460 const Loop *L) {
3461 // The loop header is guaranteed to be executed for every iteration.
3462 //
3463 // FIXME: Relax this constraint to cover all basic blocks that are
3464 // guaranteed to be executed at every iteration.
3465 if (I->getParent() != L->getHeader()) return false;
3466
3467 for (const Instruction &LI : *L->getHeader()) {
3468 if (&LI == I) return true;
3469 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3470 }
3471 llvm_unreachable("Instruction not contained in its own parent basic block.");
3472}
3473
3474bool llvm::propagatesFullPoison(const Instruction *I) {
3475 switch (I->getOpcode()) {
3476 case Instruction::Add:
3477 case Instruction::Sub:
3478 case Instruction::Xor:
3479 case Instruction::Trunc:
3480 case Instruction::BitCast:
3481 case Instruction::AddrSpaceCast:
3482 // These operations all propagate poison unconditionally. Note that poison
3483 // is not any particular value, so xor or subtraction of poison with
3484 // itself still yields poison, not zero.
3485 return true;
3486
3487 case Instruction::AShr:
3488 case Instruction::SExt:
3489 // For these operations, one bit of the input is replicated across
3490 // multiple output bits. A replicated poison bit is still poison.
3491 return true;
3492
3493 case Instruction::Shl: {
3494 // Left shift *by* a poison value is poison. The number of
3495 // positions to shift is unsigned, so no negative values are
3496 // possible there. Left shift by zero places preserves poison. So
3497 // it only remains to consider left shift of poison by a positive
3498 // number of places.
3499 //
3500 // A left shift by a positive number of places leaves the lowest order bit
3501 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3502 // make the poison operand violate that flag, yielding a fresh full-poison
3503 // value.
3504 auto *OBO = cast<OverflowingBinaryOperator>(I);
3505 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3506 }
3507
3508 case Instruction::Mul: {
3509 // A multiplication by zero yields a non-poison zero result, so we need to
3510 // rule out zero as an operand. Conservatively, multiplication by a
3511 // non-zero constant is not multiplication by zero.
3512 //
3513 // Multiplication by a non-zero constant can leave some bits
3514 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3515 // order bit unpoisoned. So we need to consider that.
3516 //
3517 // Multiplication by 1 preserves poison. If the multiplication has a
3518 // no-wrap flag, then we can make the poison operand violate that flag
3519 // when multiplied by any integer other than 0 and 1.
3520 auto *OBO = cast<OverflowingBinaryOperator>(I);
3521 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3522 for (Value *V : OBO->operands()) {
3523 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3524 // A ConstantInt cannot yield poison, so we can assume that it is
3525 // the other operand that is poison.
3526 return !CI->isZero();
3527 }
3528 }
3529 }
3530 return false;
3531 }
3532
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003533 case Instruction::ICmp:
3534 // Comparing poison with any value yields poison. This is why, for
3535 // instance, x s< (x +nsw 1) can be folded to true.
3536 return true;
3537
Jingyue Wu42f1d672015-07-28 18:22:40 +00003538 case Instruction::GetElementPtr:
3539 // A GEP implicitly represents a sequence of additions, subtractions,
3540 // truncations, sign extensions and multiplications. The multiplications
3541 // are by the non-zero sizes of some set of types, so we do not have to be
3542 // concerned with multiplication by zero. If the GEP is in-bounds, then
3543 // these operations are implicitly no-signed-wrap so poison is propagated
3544 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3545 return cast<GEPOperator>(I)->isInBounds();
3546
3547 default:
3548 return false;
3549 }
3550}
3551
3552const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3553 switch (I->getOpcode()) {
3554 case Instruction::Store:
3555 return cast<StoreInst>(I)->getPointerOperand();
3556
3557 case Instruction::Load:
3558 return cast<LoadInst>(I)->getPointerOperand();
3559
3560 case Instruction::AtomicCmpXchg:
3561 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3562
3563 case Instruction::AtomicRMW:
3564 return cast<AtomicRMWInst>(I)->getPointerOperand();
3565
3566 case Instruction::UDiv:
3567 case Instruction::SDiv:
3568 case Instruction::URem:
3569 case Instruction::SRem:
3570 return I->getOperand(1);
3571
3572 default:
3573 return nullptr;
3574 }
3575}
3576
3577bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3578 // We currently only look for uses of poison values within the same basic
3579 // block, as that makes it easier to guarantee that the uses will be
3580 // executed given that PoisonI is executed.
3581 //
3582 // FIXME: Expand this to consider uses beyond the same basic block. To do
3583 // this, look out for the distinction between post-dominance and strong
3584 // post-dominance.
3585 const BasicBlock *BB = PoisonI->getParent();
3586
3587 // Set of instructions that we have proved will yield poison if PoisonI
3588 // does.
3589 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003590 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003591 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003592 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003593
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003594 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003595
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003596 unsigned Iter = 0;
3597 while (Iter++ < MaxDepth) {
3598 for (auto &I : make_range(Begin, End)) {
3599 if (&I != PoisonI) {
3600 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3601 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3602 return true;
3603 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3604 return false;
3605 }
3606
3607 // Mark poison that propagates from I through uses of I.
3608 if (YieldsPoison.count(&I)) {
3609 for (const User *User : I.users()) {
3610 const Instruction *UserI = cast<Instruction>(User);
3611 if (propagatesFullPoison(UserI))
3612 YieldsPoison.insert(User);
3613 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003614 }
3615 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003616
3617 if (auto *NextBB = BB->getSingleSuccessor()) {
3618 if (Visited.insert(NextBB).second) {
3619 BB = NextBB;
3620 Begin = BB->getFirstNonPHI()->getIterator();
3621 End = BB->end();
3622 continue;
3623 }
3624 }
3625
3626 break;
3627 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003628 return false;
3629}
3630
James Molloy134bec22015-08-11 09:12:57 +00003631static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3632 if (FMF.noNaNs())
3633 return true;
3634
3635 if (auto *C = dyn_cast<ConstantFP>(V))
3636 return !C->isNaN();
3637 return false;
3638}
3639
3640static bool isKnownNonZero(Value *V) {
3641 if (auto *C = dyn_cast<ConstantFP>(V))
3642 return !C->isZero();
3643 return false;
3644}
3645
3646static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3647 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003648 Value *CmpLHS, Value *CmpRHS,
3649 Value *TrueVal, Value *FalseVal,
3650 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003651 LHS = CmpLHS;
3652 RHS = CmpRHS;
3653
James Molloy134bec22015-08-11 09:12:57 +00003654 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3655 // return inconsistent results between implementations.
3656 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3657 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3658 // Therefore we behave conservatively and only proceed if at least one of the
3659 // operands is known to not be zero, or if we don't care about signed zeroes.
3660 switch (Pred) {
3661 default: break;
3662 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3663 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3664 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3665 !isKnownNonZero(CmpRHS))
3666 return {SPF_UNKNOWN, SPNB_NA, false};
3667 }
3668
3669 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3670 bool Ordered = false;
3671
3672 // When given one NaN and one non-NaN input:
3673 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3674 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3675 // ordered comparison fails), which could be NaN or non-NaN.
3676 // so here we discover exactly what NaN behavior is required/accepted.
3677 if (CmpInst::isFPPredicate(Pred)) {
3678 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3679 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3680
3681 if (LHSSafe && RHSSafe) {
3682 // Both operands are known non-NaN.
3683 NaNBehavior = SPNB_RETURNS_ANY;
3684 } else if (CmpInst::isOrdered(Pred)) {
3685 // An ordered comparison will return false when given a NaN, so it
3686 // returns the RHS.
3687 Ordered = true;
3688 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003689 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003690 NaNBehavior = SPNB_RETURNS_NAN;
3691 else if (RHSSafe)
3692 NaNBehavior = SPNB_RETURNS_OTHER;
3693 else
3694 // Completely unsafe.
3695 return {SPF_UNKNOWN, SPNB_NA, false};
3696 } else {
3697 Ordered = false;
3698 // An unordered comparison will return true when given a NaN, so it
3699 // returns the LHS.
3700 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003701 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003702 NaNBehavior = SPNB_RETURNS_OTHER;
3703 else if (RHSSafe)
3704 NaNBehavior = SPNB_RETURNS_NAN;
3705 else
3706 // Completely unsafe.
3707 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003708 }
3709 }
3710
James Molloy71b91c22015-05-11 14:42:20 +00003711 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003712 std::swap(CmpLHS, CmpRHS);
3713 Pred = CmpInst::getSwappedPredicate(Pred);
3714 if (NaNBehavior == SPNB_RETURNS_NAN)
3715 NaNBehavior = SPNB_RETURNS_OTHER;
3716 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3717 NaNBehavior = SPNB_RETURNS_NAN;
3718 Ordered = !Ordered;
3719 }
3720
3721 // ([if]cmp X, Y) ? X : Y
3722 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003723 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003724 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003725 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003726 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003727 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003728 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003729 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003730 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003731 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003732 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3733 case FCmpInst::FCMP_UGT:
3734 case FCmpInst::FCMP_UGE:
3735 case FCmpInst::FCMP_OGT:
3736 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3737 case FCmpInst::FCMP_ULT:
3738 case FCmpInst::FCMP_ULE:
3739 case FCmpInst::FCMP_OLT:
3740 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003741 }
3742 }
3743
3744 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3745 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3746 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3747
3748 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3749 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3750 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003751 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003752 }
3753
3754 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3755 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3756 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003757 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003758 }
3759 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003760
James Molloy71b91c22015-05-11 14:42:20 +00003761 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3762 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003763 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3764 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003765 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3766 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3767 LHS = TrueVal;
3768 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003769 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003770 }
3771 }
3772 }
3773
3774 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3775
James Molloy134bec22015-08-11 09:12:57 +00003776 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003777}
James Molloy270ef8c2015-05-15 16:04:50 +00003778
James Molloy569cea62015-09-02 17:25:25 +00003779static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3780 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003781 CastInst *CI = dyn_cast<CastInst>(V1);
3782 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003783 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003784 return nullptr;
3785 *CastOp = CI->getOpcode();
3786
David Majnemerd2a074b2016-04-29 18:40:34 +00003787 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003788 // If V1 and V2 are both the same cast from the same type, we can look
3789 // through V1.
3790 if (CI2->getOpcode() == CI->getOpcode() &&
3791 CI2->getSrcTy() == CI->getSrcTy())
3792 return CI2->getOperand(0);
3793 return nullptr;
3794 } else if (!C) {
3795 return nullptr;
3796 }
3797
David Majnemerd2a074b2016-04-29 18:40:34 +00003798 Constant *CastedTo = nullptr;
3799
David Majnemer826e9832016-04-29 21:22:04 +00003800 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3801 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3802
David Majnemerd2a074b2016-04-29 18:40:34 +00003803 if (isa<SExtInst>(CI) && CmpI->isSigned())
3804 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3805
David Majnemer826e9832016-04-29 21:22:04 +00003806 if (isa<TruncInst>(CI))
3807 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3808
3809 if (isa<FPTruncInst>(CI))
3810 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3811
3812 if (isa<FPExtInst>(CI))
3813 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3814
David Majnemerd2a074b2016-04-29 18:40:34 +00003815 if (isa<FPToUIInst>(CI))
3816 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3817
3818 if (isa<FPToSIInst>(CI))
3819 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3820
3821 if (isa<UIToFPInst>(CI))
3822 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3823
3824 if (isa<SIToFPInst>(CI))
3825 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3826
3827 if (!CastedTo)
3828 return nullptr;
3829
3830 Constant *CastedBack =
3831 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3832 // Make sure the cast doesn't lose any information.
3833 if (CastedBack != C)
3834 return nullptr;
3835
3836 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003837}
3838
Sanjay Patele8dc0902016-05-23 17:57:54 +00003839SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003840 Instruction::CastOps *CastOp) {
3841 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003842 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003843
James Molloy134bec22015-08-11 09:12:57 +00003844 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3845 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003846
James Molloy134bec22015-08-11 09:12:57 +00003847 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003848 Value *CmpLHS = CmpI->getOperand(0);
3849 Value *CmpRHS = CmpI->getOperand(1);
3850 Value *TrueVal = SI->getTrueValue();
3851 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003852 FastMathFlags FMF;
3853 if (isa<FPMathOperator>(CmpI))
3854 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003855
3856 // Bail out early.
3857 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003858 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003859
3860 // Deal with type mismatches.
3861 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003862 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003863 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003864 cast<CastInst>(TrueVal)->getOperand(0), C,
3865 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003866 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003867 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003868 C, cast<CastInst>(FalseVal)->getOperand(0),
3869 LHS, RHS);
3870 }
James Molloy134bec22015-08-11 09:12:57 +00003871 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003872 LHS, RHS);
3873}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00003874
3875ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3876 const unsigned NumRanges = Ranges.getNumOperands() / 2;
3877 assert(NumRanges >= 1 && "Must have at least one range!");
3878 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3879
3880 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3881 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3882
3883 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3884
3885 for (unsigned i = 1; i < NumRanges; ++i) {
3886 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3887 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3888
3889 // Note: unionWith will potentially create a range that contains values not
3890 // contained in any of the original N ranges.
3891 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3892 }
3893
3894 return CR;
3895}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003896
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003897/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003898static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3899 const DataLayout &DL, unsigned Depth,
3900 AssumptionCache *AC, const Instruction *CxtI,
3901 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003902 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003903 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3904 return true;
3905
3906 switch (Pred) {
3907 default:
3908 return false;
3909
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003910 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003911 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003912
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003913 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003914 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003915 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003916 return false;
3917 }
3918
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003919 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003920 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003921
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003922 // LHS u<= LHS +_{nuw} C for any C
3923 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00003924 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00003925
3926 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3927 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3928 const APInt *&CA, const APInt *&CB) {
3929 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3930 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3931 return true;
3932
3933 // If X & C == 0 then (X | C) == X +_{nuw} C
3934 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3935 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3936 unsigned BitWidth = CA->getBitWidth();
3937 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3938 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3939
3940 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3941 return true;
3942 }
3943
3944 return false;
3945 };
3946
3947 Value *X;
3948 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003949 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3950 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00003951
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003952 return false;
3953 }
3954 }
3955}
3956
3957/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00003958/// ALHS ARHS" is true. Otherwise, return None.
3959static Optional<bool>
3960isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3961 Value *BLHS, Value *BRHS, const DataLayout &DL,
3962 unsigned Depth, AssumptionCache *AC,
3963 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003964 switch (Pred) {
3965 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003966 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003967
3968 case CmpInst::ICMP_SLT:
3969 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003970 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3971 DT) &&
3972 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3973 return true;
3974 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003975
3976 case CmpInst::ICMP_ULT:
3977 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003978 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3979 DT) &&
3980 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3981 return true;
3982 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003983 }
3984}
3985
Chad Rosier226a7342016-05-05 17:41:19 +00003986/// Return true if the operands of the two compares match. IsSwappedOps is true
3987/// when the operands match, but are swapped.
3988static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
3989 bool &IsSwappedOps) {
3990
3991 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
3992 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
3993 return IsMatchingOps || IsSwappedOps;
3994}
3995
Chad Rosier41dd31f2016-04-20 19:15:26 +00003996/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
3997/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
3998/// BRHS" is false. Otherwise, return None if we can't infer anything.
3999static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4000 Value *ALHS, Value *ARHS,
4001 CmpInst::Predicate BPred,
Chad Rosier226a7342016-05-05 17:41:19 +00004002 Value *BLHS, Value *BRHS,
4003 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004004 // Canonicalize the operands so they're matching.
4005 if (IsSwappedOps) {
4006 std::swap(BLHS, BRHS);
4007 BPred = ICmpInst::getSwappedPredicate(BPred);
4008 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004009 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004010 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004011 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004012 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004013
Chad Rosier41dd31f2016-04-20 19:15:26 +00004014 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004015}
4016
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004017/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4018/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4019/// C2" is false. Otherwise, return None if we can't infer anything.
4020static Optional<bool>
4021isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
4022 ConstantInt *C1, CmpInst::Predicate BPred,
4023 Value *BLHS, ConstantInt *C2) {
4024 assert(ALHS == BLHS && "LHS operands must match.");
4025 ConstantRange DomCR =
4026 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4027 ConstantRange CR =
4028 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4029 ConstantRange Intersection = DomCR.intersectWith(CR);
4030 ConstantRange Difference = DomCR.difference(CR);
4031 if (Intersection.isEmptySet())
4032 return false;
4033 if (Difference.isEmptySet())
4034 return true;
4035 return None;
4036}
4037
Chad Rosier41dd31f2016-04-20 19:15:26 +00004038Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004039 const DataLayout &DL, bool InvertAPred,
4040 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004041 const Instruction *CxtI,
4042 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004043 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4044 if (LHS->getType() != RHS->getType())
4045 return None;
4046
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004047 Type *OpTy = LHS->getType();
4048 assert(OpTy->getScalarType()->isIntegerTy(1));
4049
4050 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004051 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004052 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004053
4054 if (OpTy->isVectorTy())
4055 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004056 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004057 assert(OpTy->isIntegerTy(1) && "implied by above");
4058
4059 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004060 Value *ALHS, *ARHS;
4061 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004062
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004063 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4064 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004065 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004066
Chad Rosiere2cbd132016-04-25 17:23:36 +00004067 if (InvertAPred)
4068 APred = CmpInst::getInversePredicate(APred);
4069
Chad Rosier226a7342016-05-05 17:41:19 +00004070 // Can we infer anything when the two compares have matching operands?
4071 bool IsSwappedOps;
4072 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4073 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4074 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004075 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004076 // No amount of additional analysis will infer the second condition, so
4077 // early exit.
4078 return None;
4079 }
4080
4081 // Can we infer anything when the LHS operands match and the RHS operands are
4082 // constants (not necessarily matching)?
4083 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4084 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4085 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4086 cast<ConstantInt>(BRHS)))
4087 return Implication;
4088 // No amount of additional analysis will infer the second condition, so
4089 // early exit.
4090 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004091 }
4092
Chad Rosier41dd31f2016-04-20 19:15:26 +00004093 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004094 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4095 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004096
Chad Rosier41dd31f2016-04-20 19:15:26 +00004097 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004098}