blob: 14437d50837922a9dbf28492351d75722487a13b [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
Bill Wendlingb4d076e2011-10-11 06:41:28 +000038 <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000039 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Eli Friedman35b54aa2011-07-20 21:35:53 +000056 <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
Eli Friedmanc9a551e2011-07-28 21:48:00 +000057 <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000058 </ol>
59 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000060 <li><a href="#typesystem">Type System</a>
61 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000062 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000063 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000065 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000067 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000068 <li><a href="#t_void">Void Type</a></li>
69 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000070 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#t_derived">Derived Types</a>
74 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000075 <li><a href="#t_aggregate">Aggregate Types</a>
76 <ol>
77 <li><a href="#t_array">Array Type</a></li>
78 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattner2a843822011-07-23 19:59:08 +000079 <li><a href="#t_opaque">Opaque Structure Types</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000080 <li><a href="#t_vector">Vector Type</a></li>
81 </ol>
82 </li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#t_function">Function Type</a></li>
84 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 </ol>
86 </li>
87 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohman9a2a0932011-12-06 03:18:47 +000095 <li><a href="#poisonvalues">Poison Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104 <ol>
105 <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +0000106 <li><a href="#fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000107 </ol>
108 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000109 </ol>
110 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000111 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
112 <ol>
113 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000114 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
115 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000116 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
117 Global Variable</a></li>
118 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
119 Global Variable</a></li>
120 </ol>
121 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000122 <li><a href="#instref">Instruction Reference</a>
123 <ol>
124 <li><a href="#terminators">Terminator Instructions</a>
125 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
127 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000128 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000129 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000130 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000131 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Bill Wendlingf891bf82011-07-31 06:30:59 +0000132 <li><a href="#i_resume">'<tt>resume</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000133 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000134 </ol>
135 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000136 <li><a href="#binaryops">Binary Operations</a>
137 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000138 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000139 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000140 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000141 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000142 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000143 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000144 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
145 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
146 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000147 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
148 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
149 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000150 </ol>
151 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000152 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
153 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000154 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
155 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
156 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000157 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000158 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000159 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000160 </ol>
161 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000162 <li><a href="#vectorops">Vector Operations</a>
163 <ol>
164 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
165 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
166 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000167 </ol>
168 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000169 <li><a href="#aggregateops">Aggregate Operations</a>
170 <ol>
171 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
172 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
173 </ol>
174 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000175 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000176 <ol>
Eli Friedmanc9a551e2011-07-28 21:48:00 +0000177 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
178 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
179 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
180 <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
181 <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
182 <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000183 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000184 </ol>
185 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000186 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000187 <ol>
188 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
189 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
190 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
191 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
192 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000193 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
194 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
195 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
196 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000197 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
198 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000199 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000200 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000201 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000202 <li><a href="#otherops">Other Operations</a>
203 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000204 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
205 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000206 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000207 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000208 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000209 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +0000210 <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000211 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000212 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000213 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000214 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000215 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000216 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000217 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
218 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000219 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
220 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
221 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000222 </ol>
223 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000224 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
225 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000226 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
227 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
228 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000229 </ol>
230 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000231 <li><a href="#int_codegen">Code Generator Intrinsics</a>
232 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000233 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
234 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
235 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
236 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
237 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
238 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000239 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000240 </ol>
241 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000242 <li><a href="#int_libc">Standard C Library Intrinsics</a>
243 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000244 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
245 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
246 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
247 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
248 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000249 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
250 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
251 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmane635c522011-05-27 00:36:31 +0000252 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
253 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
Cameron Zwarichf03fa182011-07-08 21:39:21 +0000254 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000255 </ol>
256 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000257 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000258 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000259 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000260 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
261 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
262 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000263 </ol>
264 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000265 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
266 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000267 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
268 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
269 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
270 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
271 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000272 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000273 </ol>
274 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000275 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
276 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000277 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
278 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000279 </ol>
280 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000281 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000282 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000283 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000284 <ol>
285 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000286 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000287 </ol>
288 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000289 <li><a href="#int_memorymarkers">Memory Use Markers</a>
290 <ol>
Jakub Staszak5fd147f2011-12-04 20:44:25 +0000291 <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li>
292 <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li>
293 <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li>
294 <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000295 </ol>
296 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000297 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000298 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000299 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000300 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000301 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000302 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000303 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000304 '<tt>llvm.trap</tt>' Intrinsic</a></li>
305 <li><a href="#int_stackprotector">
306 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000307 <li><a href="#int_objectsize">
308 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Jakub Staszak5fef7922011-12-04 18:29:26 +0000309 <li><a href="#int_expect">
310 '<tt>llvm.expect</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000311 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000312 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000313 </ol>
314 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000315</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000316
317<div class="doc_author">
318 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
319 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000320</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000321
Chris Lattner2f7c9632001-06-06 20:29:01 +0000322<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000323<h2><a name="abstract">Abstract</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000324<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000325
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000326<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000327
328<p>This document is a reference manual for the LLVM assembly language. LLVM is
329 a Static Single Assignment (SSA) based representation that provides type
330 safety, low-level operations, flexibility, and the capability of representing
331 'all' high-level languages cleanly. It is the common code representation
332 used throughout all phases of the LLVM compilation strategy.</p>
333
Misha Brukman76307852003-11-08 01:05:38 +0000334</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000335
Chris Lattner2f7c9632001-06-06 20:29:01 +0000336<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000337<h2><a name="introduction">Introduction</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000338<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000339
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000340<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000341
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000342<p>The LLVM code representation is designed to be used in three different forms:
343 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
344 for fast loading by a Just-In-Time compiler), and as a human readable
345 assembly language representation. This allows LLVM to provide a powerful
346 intermediate representation for efficient compiler transformations and
347 analysis, while providing a natural means to debug and visualize the
348 transformations. The three different forms of LLVM are all equivalent. This
349 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000350
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000351<p>The LLVM representation aims to be light-weight and low-level while being
352 expressive, typed, and extensible at the same time. It aims to be a
353 "universal IR" of sorts, by being at a low enough level that high-level ideas
354 may be cleanly mapped to it (similar to how microprocessors are "universal
355 IR's", allowing many source languages to be mapped to them). By providing
356 type information, LLVM can be used as the target of optimizations: for
357 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000358 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000359 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000360
Chris Lattner2f7c9632001-06-06 20:29:01 +0000361<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000362<h4>
363 <a name="wellformed">Well-Formedness</a>
364</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000365
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000366<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000367
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000368<p>It is important to note that this document describes 'well formed' LLVM
369 assembly language. There is a difference between what the parser accepts and
370 what is considered 'well formed'. For example, the following instruction is
371 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000372
Benjamin Kramer79698be2010-07-13 12:26:09 +0000373<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000374%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000375</pre>
376
Bill Wendling7f4a3362009-11-02 00:24:16 +0000377<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
378 LLVM infrastructure provides a verification pass that may be used to verify
379 that an LLVM module is well formed. This pass is automatically run by the
380 parser after parsing input assembly and by the optimizer before it outputs
381 bitcode. The violations pointed out by the verifier pass indicate bugs in
382 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000383
Bill Wendling3716c5d2007-05-29 09:04:49 +0000384</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000385
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000386</div>
387
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000388<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000389
Chris Lattner2f7c9632001-06-06 20:29:01 +0000390<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000391<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000392<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000393
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000394<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000395
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000396<p>LLVM identifiers come in two basic types: global and local. Global
397 identifiers (functions, global variables) begin with the <tt>'@'</tt>
398 character. Local identifiers (register names, types) begin with
399 the <tt>'%'</tt> character. Additionally, there are three different formats
400 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000401
Chris Lattner2f7c9632001-06-06 20:29:01 +0000402<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000403 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000404 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
405 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
406 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
407 other characters in their names can be surrounded with quotes. Special
408 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
409 ASCII code for the character in hexadecimal. In this way, any character
410 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000411
Reid Spencerb23b65f2007-08-07 14:34:28 +0000412 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000413 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000414
Reid Spencer8f08d802004-12-09 18:02:53 +0000415 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000416 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000417</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000418
Reid Spencerb23b65f2007-08-07 14:34:28 +0000419<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000420 don't need to worry about name clashes with reserved words, and the set of
421 reserved words may be expanded in the future without penalty. Additionally,
422 unnamed identifiers allow a compiler to quickly come up with a temporary
423 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000424
Chris Lattner48b383b02003-11-25 01:02:51 +0000425<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000426 languages. There are keywords for different opcodes
427 ('<tt><a href="#i_add">add</a></tt>',
428 '<tt><a href="#i_bitcast">bitcast</a></tt>',
429 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
430 ('<tt><a href="#t_void">void</a></tt>',
431 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
432 reserved words cannot conflict with variable names, because none of them
433 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000434
435<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000436 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000437
Misha Brukman76307852003-11-08 01:05:38 +0000438<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000439
Benjamin Kramer79698be2010-07-13 12:26:09 +0000440<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000441%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000442</pre>
443
Misha Brukman76307852003-11-08 01:05:38 +0000444<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000445
Benjamin Kramer79698be2010-07-13 12:26:09 +0000446<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000447%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000448</pre>
449
Misha Brukman76307852003-11-08 01:05:38 +0000450<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000451
Benjamin Kramer79698be2010-07-13 12:26:09 +0000452<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000453%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
454%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000455%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000456</pre>
457
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000458<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
459 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000460
Chris Lattner2f7c9632001-06-06 20:29:01 +0000461<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000462 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000463 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000464
465 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000466 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000467
Misha Brukman76307852003-11-08 01:05:38 +0000468 <li>Unnamed temporaries are numbered sequentially</li>
469</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000470
Bill Wendling7f4a3362009-11-02 00:24:16 +0000471<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000472 demonstrating instructions, we will follow an instruction with a comment that
473 defines the type and name of value produced. Comments are shown in italic
474 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000475
Misha Brukman76307852003-11-08 01:05:38 +0000476</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000477
478<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000479<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattner6af02f32004-12-09 16:11:40 +0000480<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000481<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000482<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000483<h3>
484 <a name="modulestructure">Module Structure</a>
485</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000486
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000487<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000488
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000489<p>LLVM programs are composed of "Module"s, each of which is a translation unit
490 of the input programs. Each module consists of functions, global variables,
491 and symbol table entries. Modules may be combined together with the LLVM
492 linker, which merges function (and global variable) definitions, resolves
493 forward declarations, and merges symbol table entries. Here is an example of
494 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000495
Benjamin Kramer79698be2010-07-13 12:26:09 +0000496<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000497<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckyfea7ddc2011-01-29 01:09:53 +0000498<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000499
Chris Lattner54a7be72010-08-17 17:13:42 +0000500<i>; External declaration of the puts function</i>&nbsp;
501<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000502
503<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000504define i32 @main() { <i>; i32()* </i>&nbsp;
505 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
506 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000507
Chris Lattner54a7be72010-08-17 17:13:42 +0000508 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
509 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
510 <a href="#i_ret">ret</a> i32 0&nbsp;
511}
Devang Pateld1a89692010-01-11 19:35:55 +0000512
513<i>; Named metadata</i>
514!1 = metadata !{i32 41}
515!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000516</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000517
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000518<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000519 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000520 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000521 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
522 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000523
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000524<p>In general, a module is made up of a list of global values, where both
525 functions and global variables are global values. Global values are
526 represented by a pointer to a memory location (in this case, a pointer to an
527 array of char, and a pointer to a function), and have one of the
528 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000529
Chris Lattnerd79749a2004-12-09 16:36:40 +0000530</div>
531
532<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000533<h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000534 <a name="linkage">Linkage Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000535</h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000536
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000537<div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000538
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000539<p>All Global Variables and Functions have one of the following types of
540 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000541
542<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000543 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000544 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
545 by objects in the current module. In particular, linking code into a
546 module with an private global value may cause the private to be renamed as
547 necessary to avoid collisions. Because the symbol is private to the
548 module, all references can be updated. This doesn't show up in any symbol
549 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000550
Bill Wendling7f4a3362009-11-02 00:24:16 +0000551 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000552 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
553 assembler and evaluated by the linker. Unlike normal strong symbols, they
554 are removed by the linker from the final linked image (executable or
555 dynamic library).</dd>
556
557 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
558 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
559 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
560 linker. The symbols are removed by the linker from the final linked image
561 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000562
Bill Wendling578ee402010-08-20 22:05:50 +0000563 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
564 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
565 of the object is not taken. For instance, functions that had an inline
566 definition, but the compiler decided not to inline it. Note,
567 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
568 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
569 visibility. The symbols are removed by the linker from the final linked
570 image (executable or dynamic library).</dd>
571
Bill Wendling7f4a3362009-11-02 00:24:16 +0000572 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000573 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000574 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
575 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000576
Bill Wendling7f4a3362009-11-02 00:24:16 +0000577 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000578 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000579 into the object file corresponding to the LLVM module. They exist to
580 allow inlining and other optimizations to take place given knowledge of
581 the definition of the global, which is known to be somewhere outside the
582 module. Globals with <tt>available_externally</tt> linkage are allowed to
583 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
584 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000585
Bill Wendling7f4a3362009-11-02 00:24:16 +0000586 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000587 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000588 the same name when linkage occurs. This can be used to implement
589 some forms of inline functions, templates, or other code which must be
590 generated in each translation unit that uses it, but where the body may
591 be overridden with a more definitive definition later. Unreferenced
592 <tt>linkonce</tt> globals are allowed to be discarded. Note that
593 <tt>linkonce</tt> linkage does not actually allow the optimizer to
594 inline the body of this function into callers because it doesn't know if
595 this definition of the function is the definitive definition within the
596 program or whether it will be overridden by a stronger definition.
597 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
598 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000599
Bill Wendling7f4a3362009-11-02 00:24:16 +0000600 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000601 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
602 <tt>linkonce</tt> linkage, except that unreferenced globals with
603 <tt>weak</tt> linkage may not be discarded. This is used for globals that
604 are declared "weak" in C source code.</dd>
605
Bill Wendling7f4a3362009-11-02 00:24:16 +0000606 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000607 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
608 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
609 global scope.
610 Symbols with "<tt>common</tt>" linkage are merged in the same way as
611 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000612 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000613 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000614 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
615 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000616
Chris Lattnerd79749a2004-12-09 16:36:40 +0000617
Bill Wendling7f4a3362009-11-02 00:24:16 +0000618 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000619 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000620 pointer to array type. When two global variables with appending linkage
621 are linked together, the two global arrays are appended together. This is
622 the LLVM, typesafe, equivalent of having the system linker append together
623 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000624
Bill Wendling7f4a3362009-11-02 00:24:16 +0000625 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000626 <dd>The semantics of this linkage follow the ELF object file model: the symbol
627 is weak until linked, if not linked, the symbol becomes null instead of
628 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000629
Bill Wendling7f4a3362009-11-02 00:24:16 +0000630 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
631 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000632 <dd>Some languages allow differing globals to be merged, such as two functions
633 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000634 that only equivalent globals are ever merged (the "one definition rule"
635 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000636 and <tt>weak_odr</tt> linkage types to indicate that the global will only
637 be merged with equivalent globals. These linkage types are otherwise the
638 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000639
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000640 <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000641 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000642 visible, meaning that it participates in linkage and can be used to
643 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000644</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000645
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000646<p>The next two types of linkage are targeted for Microsoft Windows platform
647 only. They are designed to support importing (exporting) symbols from (to)
648 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000649
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000650<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000651 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000652 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000653 or variable via a global pointer to a pointer that is set up by the DLL
654 exporting the symbol. On Microsoft Windows targets, the pointer name is
655 formed by combining <code>__imp_</code> and the function or variable
656 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000657
Bill Wendling7f4a3362009-11-02 00:24:16 +0000658 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000659 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000660 pointer to a pointer in a DLL, so that it can be referenced with the
661 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
662 name is formed by combining <code>__imp_</code> and the function or
663 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000664</dl>
665
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000666<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
667 another module defined a "<tt>.LC0</tt>" variable and was linked with this
668 one, one of the two would be renamed, preventing a collision. Since
669 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
670 declarations), they are accessible outside of the current module.</p>
671
672<p>It is illegal for a function <i>declaration</i> to have any linkage type
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000673 other than <tt>external</tt>, <tt>dllimport</tt>
674 or <tt>extern_weak</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000675
Duncan Sands12da8ce2009-03-07 15:45:40 +0000676<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000677 or <tt>weak_odr</tt> linkages.</p>
678
Chris Lattner6af02f32004-12-09 16:11:40 +0000679</div>
680
681<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000682<h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000683 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000684</h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000685
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000686<div>
Chris Lattner0132aff2005-05-06 22:57:40 +0000687
688<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000689 and <a href="#i_invoke">invokes</a> can all have an optional calling
690 convention specified for the call. The calling convention of any pair of
691 dynamic caller/callee must match, or the behavior of the program is
692 undefined. The following calling conventions are supported by LLVM, and more
693 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000694
695<dl>
696 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000697 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000698 specified) matches the target C calling conventions. This calling
699 convention supports varargs function calls and tolerates some mismatch in
700 the declared prototype and implemented declaration of the function (as
701 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000702
703 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000704 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000705 (e.g. by passing things in registers). This calling convention allows the
706 target to use whatever tricks it wants to produce fast code for the
707 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000708 (Application Binary Interface).
709 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000710 when this or the GHC convention is used.</a> This calling convention
711 does not support varargs and requires the prototype of all callees to
712 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000713
714 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000715 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000716 as possible under the assumption that the call is not commonly executed.
717 As such, these calls often preserve all registers so that the call does
718 not break any live ranges in the caller side. This calling convention
719 does not support varargs and requires the prototype of all callees to
720 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000721
Chris Lattnera179e4d2010-03-11 00:22:57 +0000722 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
723 <dd>This calling convention has been implemented specifically for use by the
724 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
725 It passes everything in registers, going to extremes to achieve this by
726 disabling callee save registers. This calling convention should not be
727 used lightly but only for specific situations such as an alternative to
728 the <em>register pinning</em> performance technique often used when
729 implementing functional programming languages.At the moment only X86
730 supports this convention and it has the following limitations:
731 <ul>
732 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
733 floating point types are supported.</li>
734 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
735 6 floating point parameters.</li>
736 </ul>
737 This calling convention supports
738 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
739 requires both the caller and callee are using it.
740 </dd>
741
Chris Lattner573f64e2005-05-07 01:46:40 +0000742 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000743 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000744 target-specific calling conventions to be used. Target specific calling
745 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000746</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000747
748<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000749 support Pascal conventions or any other well-known target-independent
750 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000751
752</div>
753
754<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000755<h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000756 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000757</h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000758
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000759<div>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000760
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000761<p>All Global Variables and Functions have one of the following visibility
762 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000763
764<dl>
765 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000766 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000767 that the declaration is visible to other modules and, in shared libraries,
768 means that the declared entity may be overridden. On Darwin, default
769 visibility means that the declaration is visible to other modules. Default
770 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000771
772 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000773 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000774 object if they are in the same shared object. Usually, hidden visibility
775 indicates that the symbol will not be placed into the dynamic symbol
776 table, so no other module (executable or shared library) can reference it
777 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000778
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000779 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000780 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000781 the dynamic symbol table, but that references within the defining module
782 will bind to the local symbol. That is, the symbol cannot be overridden by
783 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000784</dl>
785
786</div>
787
788<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000789<h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000790 <a name="namedtypes">Named Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000791</h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000792
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000793<div>
Chris Lattnerbc088212009-01-11 20:53:49 +0000794
795<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000796 it easier to read the IR and make the IR more condensed (particularly when
797 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000798
Benjamin Kramer79698be2010-07-13 12:26:09 +0000799<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000800%mytype = type { %mytype*, i32 }
801</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000802
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000803<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000804 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000805 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000806
807<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000808 and that you can therefore specify multiple names for the same type. This
809 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
810 uses structural typing, the name is not part of the type. When printing out
811 LLVM IR, the printer will pick <em>one name</em> to render all types of a
812 particular shape. This means that if you have code where two different
813 source types end up having the same LLVM type, that the dumper will sometimes
814 print the "wrong" or unexpected type. This is an important design point and
815 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000816
817</div>
818
Chris Lattnerbc088212009-01-11 20:53:49 +0000819<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000820<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000821 <a name="globalvars">Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000822</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000823
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000824<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000825
Chris Lattner5d5aede2005-02-12 19:30:21 +0000826<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000827 instead of run-time. Global variables may optionally be initialized, may
828 have an explicit section to be placed in, and may have an optional explicit
829 alignment specified. A variable may be defined as "thread_local", which
830 means that it will not be shared by threads (each thread will have a
831 separated copy of the variable). A variable may be defined as a global
832 "constant," which indicates that the contents of the variable
833 will <b>never</b> be modified (enabling better optimization, allowing the
834 global data to be placed in the read-only section of an executable, etc).
835 Note that variables that need runtime initialization cannot be marked
836 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000837
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000838<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
839 constant, even if the final definition of the global is not. This capability
840 can be used to enable slightly better optimization of the program, but
841 requires the language definition to guarantee that optimizations based on the
842 'constantness' are valid for the translation units that do not include the
843 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000844
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000845<p>As SSA values, global variables define pointer values that are in scope
846 (i.e. they dominate) all basic blocks in the program. Global variables
847 always define a pointer to their "content" type because they describe a
848 region of memory, and all memory objects in LLVM are accessed through
849 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000850
Rafael Espindola45e6c192011-01-08 16:42:36 +0000851<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
852 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000853 like this can be merged with other constants if they have the same
854 initializer. Note that a constant with significant address <em>can</em>
855 be merged with a <tt>unnamed_addr</tt> constant, the result being a
856 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000857
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000858<p>A global variable may be declared to reside in a target-specific numbered
859 address space. For targets that support them, address spaces may affect how
860 optimizations are performed and/or what target instructions are used to
861 access the variable. The default address space is zero. The address space
862 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000863
Chris Lattner662c8722005-11-12 00:45:07 +0000864<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000865 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000866
Chris Lattner78e00bc2010-04-28 00:13:42 +0000867<p>An explicit alignment may be specified for a global, which must be a power
868 of 2. If not present, or if the alignment is set to zero, the alignment of
869 the global is set by the target to whatever it feels convenient. If an
870 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000871 alignment. Targets and optimizers are not allowed to over-align the global
872 if the global has an assigned section. In this case, the extra alignment
873 could be observable: for example, code could assume that the globals are
874 densely packed in their section and try to iterate over them as an array,
875 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000876
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000877<p>For example, the following defines a global in a numbered address space with
878 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000879
Benjamin Kramer79698be2010-07-13 12:26:09 +0000880<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000881@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000882</pre>
883
Chris Lattner6af02f32004-12-09 16:11:40 +0000884</div>
885
886
887<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000888<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000889 <a name="functionstructure">Functions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000890</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000891
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000892<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000893
Dan Gohmana269a0a2010-03-01 17:41:39 +0000894<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000895 optional <a href="#linkage">linkage type</a>, an optional
896 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000897 <a href="#callingconv">calling convention</a>,
898 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000899 <a href="#paramattrs">parameter attribute</a> for the return type, a function
900 name, a (possibly empty) argument list (each with optional
901 <a href="#paramattrs">parameter attributes</a>), optional
902 <a href="#fnattrs">function attributes</a>, an optional section, an optional
903 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
904 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000905
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000906<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
907 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000908 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000909 <a href="#callingconv">calling convention</a>,
910 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000911 <a href="#paramattrs">parameter attribute</a> for the return type, a function
912 name, a possibly empty list of arguments, an optional alignment, and an
913 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000914
Chris Lattner67c37d12008-08-05 18:29:16 +0000915<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000916 (Control Flow Graph) for the function. Each basic block may optionally start
917 with a label (giving the basic block a symbol table entry), contains a list
918 of instructions, and ends with a <a href="#terminators">terminator</a>
919 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000920
Chris Lattnera59fb102007-06-08 16:52:14 +0000921<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000922 executed on entrance to the function, and it is not allowed to have
923 predecessor basic blocks (i.e. there can not be any branches to the entry
924 block of a function). Because the block can have no predecessors, it also
925 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000926
Chris Lattner662c8722005-11-12 00:45:07 +0000927<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000928 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000929
Chris Lattner54611b42005-11-06 08:02:57 +0000930<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000931 the alignment is set to zero, the alignment of the function is set by the
932 target to whatever it feels convenient. If an explicit alignment is
933 specified, the function is forced to have at least that much alignment. All
934 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000935
Rafael Espindola45e6c192011-01-08 16:42:36 +0000936<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000937 be significant and two identical functions can be merged.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000938
Bill Wendling30235112009-07-20 02:39:26 +0000939<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000940<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000941define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000942 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
943 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
944 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
945 [<a href="#gc">gc</a>] { ... }
946</pre>
Devang Patel02256232008-10-07 17:48:33 +0000947
Chris Lattner6af02f32004-12-09 16:11:40 +0000948</div>
949
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000950<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000951<h3>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000952 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000953</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000954
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000955<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000956
957<p>Aliases act as "second name" for the aliasee value (which can be either
958 function, global variable, another alias or bitcast of global value). Aliases
959 may have an optional <a href="#linkage">linkage type</a>, and an
960 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000961
Bill Wendling30235112009-07-20 02:39:26 +0000962<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000963<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000964@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000965</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000966
967</div>
968
Chris Lattner91c15c42006-01-23 23:23:47 +0000969<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000970<h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000971 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000972</h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000973
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000974<div>
Devang Pateld1a89692010-01-11 19:35:55 +0000975
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000976<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000977 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000978 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000979
980<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000981<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000982; Some unnamed metadata nodes, which are referenced by the named metadata.
983!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000984!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000985!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000986; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000987!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000988</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000989
990</div>
991
992<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000993<h3>
994 <a name="paramattrs">Parameter Attributes</a>
995</h3>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000996
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000997<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000998
999<p>The return type and each parameter of a function type may have a set of
1000 <i>parameter attributes</i> associated with them. Parameter attributes are
1001 used to communicate additional information about the result or parameters of
1002 a function. Parameter attributes are considered to be part of the function,
1003 not of the function type, so functions with different parameter attributes
1004 can have the same function type.</p>
1005
1006<p>Parameter attributes are simple keywords that follow the type specified. If
1007 multiple parameter attributes are needed, they are space separated. For
1008 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001009
Benjamin Kramer79698be2010-07-13 12:26:09 +00001010<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001011declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001012declare i32 @atoi(i8 zeroext)
1013declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001014</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001015
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001016<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1017 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001018
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001019<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001020
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001021<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001022 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001023 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichac106272011-03-16 22:20:18 +00001024 should be zero-extended to the extent required by the target's ABI (which
1025 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1026 parameter) or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001027
Bill Wendling7f4a3362009-11-02 00:24:16 +00001028 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001029 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich341c36d2011-03-17 14:21:58 +00001030 should be sign-extended to the extent required by the target's ABI (which
1031 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1032 return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001033
Bill Wendling7f4a3362009-11-02 00:24:16 +00001034 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001035 <dd>This indicates that this parameter or return value should be treated in a
1036 special target-dependent fashion during while emitting code for a function
1037 call or return (usually, by putting it in a register as opposed to memory,
1038 though some targets use it to distinguish between two different kinds of
1039 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001040
Bill Wendling7f4a3362009-11-02 00:24:16 +00001041 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001042 <dd><p>This indicates that the pointer parameter should really be passed by
1043 value to the function. The attribute implies that a hidden copy of the
1044 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001045 is made between the caller and the callee, so the callee is unable to
1046 modify the value in the callee. This attribute is only valid on LLVM
1047 pointer arguments. It is generally used to pass structs and arrays by
1048 value, but is also valid on pointers to scalars. The copy is considered
1049 to belong to the caller not the callee (for example,
1050 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1051 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001052 values.</p>
1053
1054 <p>The byval attribute also supports specifying an alignment with
1055 the align attribute. It indicates the alignment of the stack slot to
1056 form and the known alignment of the pointer specified to the call site. If
1057 the alignment is not specified, then the code generator makes a
1058 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001059
Dan Gohman3770af52010-07-02 23:18:08 +00001060 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001061 <dd>This indicates that the pointer parameter specifies the address of a
1062 structure that is the return value of the function in the source program.
1063 This pointer must be guaranteed by the caller to be valid: loads and
1064 stores to the structure may be assumed by the callee to not to trap. This
1065 may only be applied to the first parameter. This is not a valid attribute
1066 for return values. </dd>
1067
Dan Gohman3770af52010-07-02 23:18:08 +00001068 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001069 <dd>This indicates that pointer values
1070 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001071 value do not alias pointer values which are not <i>based</i> on it,
1072 ignoring certain "irrelevant" dependencies.
1073 For a call to the parent function, dependencies between memory
1074 references from before or after the call and from those during the call
1075 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1076 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001077 The caller shares the responsibility with the callee for ensuring that
1078 these requirements are met.
1079 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001080 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1081<br>
John McCall72ed8902010-07-06 21:07:14 +00001082 Note that this definition of <tt>noalias</tt> is intentionally
1083 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001084 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001085<br>
1086 For function return values, C99's <tt>restrict</tt> is not meaningful,
1087 while LLVM's <tt>noalias</tt> is.
1088 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001089
Dan Gohman3770af52010-07-02 23:18:08 +00001090 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001091 <dd>This indicates that the callee does not make any copies of the pointer
1092 that outlive the callee itself. This is not a valid attribute for return
1093 values.</dd>
1094
Dan Gohman3770af52010-07-02 23:18:08 +00001095 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001096 <dd>This indicates that the pointer parameter can be excised using the
1097 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1098 attribute for return values.</dd>
1099</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001100
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001101</div>
1102
1103<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001104<h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001105 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001106</h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001107
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001108<div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001109
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001110<p>Each function may specify a garbage collector name, which is simply a
1111 string:</p>
1112
Benjamin Kramer79698be2010-07-13 12:26:09 +00001113<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001114define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001115</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001116
1117<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001118 collector which will cause the compiler to alter its output in order to
1119 support the named garbage collection algorithm.</p>
1120
Gordon Henriksen71183b62007-12-10 03:18:06 +00001121</div>
1122
1123<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001124<h3>
Devang Patel9eb525d2008-09-26 23:51:19 +00001125 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001126</h3>
Devang Patelcaacdba2008-09-04 23:05:13 +00001127
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001128<div>
Devang Patel9eb525d2008-09-26 23:51:19 +00001129
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001130<p>Function attributes are set to communicate additional information about a
1131 function. Function attributes are considered to be part of the function, not
1132 of the function type, so functions with different parameter attributes can
1133 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001134
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001135<p>Function attributes are simple keywords that follow the type specified. If
1136 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001137
Benjamin Kramer79698be2010-07-13 12:26:09 +00001138<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001139define void @f() noinline { ... }
1140define void @f() alwaysinline { ... }
1141define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001142define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001143</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001144
Bill Wendlingb175fa42008-09-07 10:26:33 +00001145<dl>
Kostya Serebryanya5054ad2012-01-20 17:56:17 +00001146 <dt><tt><b>address_safety</b></tt></dt>
1147 <dd>This attribute indicates that the address safety analysis
1148 is enabled for this function. </dd>
1149
Charles Davisbe5557e2010-02-12 00:31:15 +00001150 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1151 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1152 the backend should forcibly align the stack pointer. Specify the
1153 desired alignment, which must be a power of two, in parentheses.
1154
Bill Wendling7f4a3362009-11-02 00:24:16 +00001155 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001156 <dd>This attribute indicates that the inliner should attempt to inline this
1157 function into callers whenever possible, ignoring any active inlining size
1158 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001159
Dan Gohman8bd11f12011-06-16 16:03:13 +00001160 <dt><tt><b>nonlazybind</b></tt></dt>
1161 <dd>This attribute suppresses lazy symbol binding for the function. This
1162 may make calls to the function faster, at the cost of extra program
1163 startup time if the function is not called during program startup.</dd>
1164
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001165 <dt><tt><b>inlinehint</b></tt></dt>
1166 <dd>This attribute indicates that the source code contained a hint that inlining
1167 this function is desirable (such as the "inline" keyword in C/C++). It
1168 is just a hint; it imposes no requirements on the inliner.</dd>
1169
Nick Lewycky14b58da2010-07-06 18:24:09 +00001170 <dt><tt><b>naked</b></tt></dt>
1171 <dd>This attribute disables prologue / epilogue emission for the function.
1172 This can have very system-specific consequences.</dd>
1173
1174 <dt><tt><b>noimplicitfloat</b></tt></dt>
1175 <dd>This attributes disables implicit floating point instructions.</dd>
1176
Bill Wendling7f4a3362009-11-02 00:24:16 +00001177 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001178 <dd>This attribute indicates that the inliner should never inline this
1179 function in any situation. This attribute may not be used together with
1180 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001181
Nick Lewycky14b58da2010-07-06 18:24:09 +00001182 <dt><tt><b>noredzone</b></tt></dt>
1183 <dd>This attribute indicates that the code generator should not use a red
1184 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001185
Bill Wendling7f4a3362009-11-02 00:24:16 +00001186 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001187 <dd>This function attribute indicates that the function never returns
1188 normally. This produces undefined behavior at runtime if the function
1189 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001190
Bill Wendling7f4a3362009-11-02 00:24:16 +00001191 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001192 <dd>This function attribute indicates that the function never returns with an
1193 unwind or exceptional control flow. If the function does unwind, its
1194 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001195
Nick Lewycky14b58da2010-07-06 18:24:09 +00001196 <dt><tt><b>optsize</b></tt></dt>
1197 <dd>This attribute suggests that optimization passes and code generator passes
1198 make choices that keep the code size of this function low, and otherwise
1199 do optimizations specifically to reduce code size.</dd>
1200
Bill Wendling7f4a3362009-11-02 00:24:16 +00001201 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001202 <dd>This attribute indicates that the function computes its result (or decides
1203 to unwind an exception) based strictly on its arguments, without
1204 dereferencing any pointer arguments or otherwise accessing any mutable
1205 state (e.g. memory, control registers, etc) visible to caller functions.
1206 It does not write through any pointer arguments
1207 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1208 changes any state visible to callers. This means that it cannot unwind
1209 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1210 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001211
Bill Wendling7f4a3362009-11-02 00:24:16 +00001212 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001213 <dd>This attribute indicates that the function does not write through any
1214 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1215 arguments) or otherwise modify any state (e.g. memory, control registers,
1216 etc) visible to caller functions. It may dereference pointer arguments
1217 and read state that may be set in the caller. A readonly function always
1218 returns the same value (or unwinds an exception identically) when called
1219 with the same set of arguments and global state. It cannot unwind an
1220 exception by calling the <tt>C++</tt> exception throwing methods, but may
1221 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001222
Bill Wendlingb437ab82011-12-05 21:27:54 +00001223 <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1224 <dd>This attribute indicates that this function can return twice. The
1225 C <code>setjmp</code> is an example of such a function. The compiler
1226 disables some optimizations (like tail calls) in the caller of these
1227 functions.</dd>
1228
Bill Wendling7f4a3362009-11-02 00:24:16 +00001229 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001230 <dd>This attribute indicates that the function should emit a stack smashing
1231 protector. It is in the form of a "canary"&mdash;a random value placed on
1232 the stack before the local variables that's checked upon return from the
1233 function to see if it has been overwritten. A heuristic is used to
1234 determine if a function needs stack protectors or not.<br>
1235<br>
1236 If a function that has an <tt>ssp</tt> attribute is inlined into a
1237 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1238 function will have an <tt>ssp</tt> attribute.</dd>
1239
Bill Wendling7f4a3362009-11-02 00:24:16 +00001240 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001241 <dd>This attribute indicates that the function should <em>always</em> emit a
1242 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001243 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1244<br>
1245 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1246 function that doesn't have an <tt>sspreq</tt> attribute or which has
1247 an <tt>ssp</tt> attribute, then the resulting function will have
1248 an <tt>sspreq</tt> attribute.</dd>
Rafael Espindola163d6752011-07-25 15:27:59 +00001249
1250 <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1251 <dd>This attribute indicates that the ABI being targeted requires that
1252 an unwind table entry be produce for this function even if we can
1253 show that no exceptions passes by it. This is normally the case for
1254 the ELF x86-64 abi, but it can be disabled for some compilation
1255 units.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001256</dl>
1257
Devang Patelcaacdba2008-09-04 23:05:13 +00001258</div>
1259
1260<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001261<h3>
Chris Lattner93564892006-04-08 04:40:53 +00001262 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001263</h3>
Chris Lattner91c15c42006-01-23 23:23:47 +00001264
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001265<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001266
1267<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1268 the GCC "file scope inline asm" blocks. These blocks are internally
1269 concatenated by LLVM and treated as a single unit, but may be separated in
1270 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001271
Benjamin Kramer79698be2010-07-13 12:26:09 +00001272<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001273module asm "inline asm code goes here"
1274module asm "more can go here"
1275</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001276
1277<p>The strings can contain any character by escaping non-printable characters.
1278 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001279 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001280
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001281<p>The inline asm code is simply printed to the machine code .s file when
1282 assembly code is generated.</p>
1283
Chris Lattner91c15c42006-01-23 23:23:47 +00001284</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001285
Reid Spencer50c723a2007-02-19 23:54:10 +00001286<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001287<h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001288 <a name="datalayout">Data Layout</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001289</h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001290
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001291<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001292
Reid Spencer50c723a2007-02-19 23:54:10 +00001293<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001294 data is to be laid out in memory. The syntax for the data layout is
1295 simply:</p>
1296
Benjamin Kramer79698be2010-07-13 12:26:09 +00001297<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001298target datalayout = "<i>layout specification</i>"
1299</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001300
1301<p>The <i>layout specification</i> consists of a list of specifications
1302 separated by the minus sign character ('-'). Each specification starts with
1303 a letter and may include other information after the letter to define some
1304 aspect of the data layout. The specifications accepted are as follows:</p>
1305
Reid Spencer50c723a2007-02-19 23:54:10 +00001306<dl>
1307 <dt><tt>E</tt></dt>
1308 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001309 bits with the most significance have the lowest address location.</dd>
1310
Reid Spencer50c723a2007-02-19 23:54:10 +00001311 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001312 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001313 the bits with the least significance have the lowest address
1314 location.</dd>
1315
Lang Hamesde7ab802011-10-10 23:42:08 +00001316 <dt><tt>S<i>size</i></tt></dt>
1317 <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1318 of stack variables is limited to the natural stack alignment to avoid
1319 dynamic stack realignment. The stack alignment must be a multiple of
Lang Hamesff2c52c2011-10-11 17:50:14 +00001320 8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1321 which does not prevent any alignment promotions.</dd>
Lang Hamesde7ab802011-10-10 23:42:08 +00001322
Reid Spencer50c723a2007-02-19 23:54:10 +00001323 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001324 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001325 <i>preferred</i> alignments. All sizes are in bits. Specifying
1326 the <i>pref</i> alignment is optional. If omitted, the
1327 preceding <tt>:</tt> should be omitted too.</dd>
1328
Reid Spencer50c723a2007-02-19 23:54:10 +00001329 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1330 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001331 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1332
Reid Spencer50c723a2007-02-19 23:54:10 +00001333 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001334 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001335 <i>size</i>.</dd>
1336
Reid Spencer50c723a2007-02-19 23:54:10 +00001337 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001338 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001339 <i>size</i>. Only values of <i>size</i> that are supported by the target
1340 will work. 32 (float) and 64 (double) are supported on all targets;
1341 80 or 128 (different flavors of long double) are also supported on some
1342 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001343
Reid Spencer50c723a2007-02-19 23:54:10 +00001344 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1345 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001346 <i>size</i>.</dd>
1347
Daniel Dunbar7921a592009-06-08 22:17:53 +00001348 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1349 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001350 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001351
1352 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1353 <dd>This specifies a set of native integer widths for the target CPU
1354 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1355 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001356 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001357 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001358</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001359
Reid Spencer50c723a2007-02-19 23:54:10 +00001360<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001361 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001362 specifications in the <tt>datalayout</tt> keyword. The default specifications
1363 are given in this list:</p>
1364
Reid Spencer50c723a2007-02-19 23:54:10 +00001365<ul>
1366 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001367 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001368 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1369 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1370 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1371 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001372 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001373 alignment of 64-bits</li>
1374 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1375 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1376 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1377 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1378 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001379 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001380</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001381
1382<p>When LLVM is determining the alignment for a given type, it uses the
1383 following rules:</p>
1384
Reid Spencer50c723a2007-02-19 23:54:10 +00001385<ol>
1386 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001387 specification is used.</li>
1388
Reid Spencer50c723a2007-02-19 23:54:10 +00001389 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001390 smallest integer type that is larger than the bitwidth of the sought type
1391 is used. If none of the specifications are larger than the bitwidth then
1392 the the largest integer type is used. For example, given the default
1393 specifications above, the i7 type will use the alignment of i8 (next
1394 largest) while both i65 and i256 will use the alignment of i64 (largest
1395 specified).</li>
1396
Reid Spencer50c723a2007-02-19 23:54:10 +00001397 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001398 largest vector type that is smaller than the sought vector type will be
1399 used as a fall back. This happens because &lt;128 x double&gt; can be
1400 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001401</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001402
Chris Lattner48797402011-10-11 23:01:39 +00001403<p>The function of the data layout string may not be what you expect. Notably,
1404 this is not a specification from the frontend of what alignment the code
1405 generator should use.</p>
1406
1407<p>Instead, if specified, the target data layout is required to match what the
1408 ultimate <em>code generator</em> expects. This string is used by the
1409 mid-level optimizers to
1410 improve code, and this only works if it matches what the ultimate code
1411 generator uses. If you would like to generate IR that does not embed this
1412 target-specific detail into the IR, then you don't have to specify the
1413 string. This will disable some optimizations that require precise layout
1414 information, but this also prevents those optimizations from introducing
1415 target specificity into the IR.</p>
1416
1417
1418
Reid Spencer50c723a2007-02-19 23:54:10 +00001419</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001420
Dan Gohman6154a012009-07-27 18:07:55 +00001421<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001422<h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001423 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001424</h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001425
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001426<div>
Dan Gohman6154a012009-07-27 18:07:55 +00001427
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001428<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001429with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001430is undefined. Pointer values are associated with address ranges
1431according to the following rules:</p>
1432
1433<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001434 <li>A pointer value is associated with the addresses associated with
1435 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001436 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001437 range of the variable's storage.</li>
1438 <li>The result value of an allocation instruction is associated with
1439 the address range of the allocated storage.</li>
1440 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001441 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001442 <li>An integer constant other than zero or a pointer value returned
1443 from a function not defined within LLVM may be associated with address
1444 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001445 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001446 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001447</ul>
1448
1449<p>A pointer value is <i>based</i> on another pointer value according
1450 to the following rules:</p>
1451
1452<ul>
1453 <li>A pointer value formed from a
1454 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1455 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1456 <li>The result value of a
1457 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1458 of the <tt>bitcast</tt>.</li>
1459 <li>A pointer value formed by an
1460 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1461 pointer values that contribute (directly or indirectly) to the
1462 computation of the pointer's value.</li>
1463 <li>The "<i>based</i> on" relationship is transitive.</li>
1464</ul>
1465
1466<p>Note that this definition of <i>"based"</i> is intentionally
1467 similar to the definition of <i>"based"</i> in C99, though it is
1468 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001469
1470<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001471<tt><a href="#i_load">load</a></tt> merely indicates the size and
1472alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001473interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001474<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1475and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001476
1477<p>Consequently, type-based alias analysis, aka TBAA, aka
1478<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1479LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1480additional information which specialized optimization passes may use
1481to implement type-based alias analysis.</p>
1482
1483</div>
1484
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001485<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001486<h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001487 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001488</h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001489
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001490<div>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001491
1492<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1493href="#i_store"><tt>store</tt></a>s, and <a
1494href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1495The optimizers must not change the number of volatile operations or change their
1496order of execution relative to other volatile operations. The optimizers
1497<i>may</i> change the order of volatile operations relative to non-volatile
1498operations. This is not Java's "volatile" and has no cross-thread
1499synchronization behavior.</p>
1500
1501</div>
1502
Eli Friedman35b54aa2011-07-20 21:35:53 +00001503<!-- ======================================================================= -->
1504<h3>
1505 <a name="memmodel">Memory Model for Concurrent Operations</a>
1506</h3>
1507
1508<div>
1509
1510<p>The LLVM IR does not define any way to start parallel threads of execution
1511or to register signal handlers. Nonetheless, there are platform-specific
1512ways to create them, and we define LLVM IR's behavior in their presence. This
1513model is inspired by the C++0x memory model.</p>
1514
Eli Friedman95f69a42011-08-22 21:35:27 +00001515<p>For a more informal introduction to this model, see the
1516<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1517
Eli Friedman35b54aa2011-07-20 21:35:53 +00001518<p>We define a <i>happens-before</i> partial order as the least partial order
1519that</p>
1520<ul>
1521 <li>Is a superset of single-thread program order, and</li>
1522 <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1523 <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1524 by platform-specific techniques, like pthread locks, thread
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001525 creation, thread joining, etc., and by atomic instructions.
1526 (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1527 </li>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001528</ul>
1529
1530<p>Note that program order does not introduce <i>happens-before</i> edges
1531between a thread and signals executing inside that thread.</p>
1532
1533<p>Every (defined) read operation (load instructions, memcpy, atomic
1534loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1535(defined) write operations (store instructions, atomic
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001536stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1537initialized globals are considered to have a write of the initializer which is
1538atomic and happens before any other read or write of the memory in question.
1539For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1540any write to the same byte, except:</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001541
1542<ul>
1543 <li>If <var>write<sub>1</sub></var> happens before
1544 <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1545 before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001546 does not see <var>write<sub>1</sub></var>.
Bill Wendling537603b2011-07-31 06:45:03 +00001547 <li>If <var>R<sub>byte</sub></var> happens before
1548 <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1549 see <var>write<sub>3</sub></var>.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001550</ul>
1551
1552<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1553<ul>
Eli Friedman95f69a42011-08-22 21:35:27 +00001554 <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1555 is supposed to give guarantees which can support
1556 <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1557 addresses which do not behave like normal memory. It does not generally
1558 provide cross-thread synchronization.)
1559 <li>Otherwise, if there is no write to the same byte that happens before
Eli Friedman35b54aa2011-07-20 21:35:53 +00001560 <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1561 <tt>undef</tt> for that byte.
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001562 <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
Eli Friedman35b54aa2011-07-20 21:35:53 +00001563 <var>R<sub>byte</sub></var> returns the value written by that
1564 write.</li>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001565 <li>Otherwise, if <var>R</var> is atomic, and all the writes
1566 <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001567 values written. See the <a href="#ordering">Atomic Memory Ordering
1568 Constraints</a> section for additional constraints on how the choice
1569 is made.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001570 <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1571</ul>
1572
1573<p><var>R</var> returns the value composed of the series of bytes it read.
1574This implies that some bytes within the value may be <tt>undef</tt>
1575<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1576defines the semantics of the operation; it doesn't mean that targets will
1577emit more than one instruction to read the series of bytes.</p>
1578
1579<p>Note that in cases where none of the atomic intrinsics are used, this model
1580places only one restriction on IR transformations on top of what is required
1581for single-threaded execution: introducing a store to a byte which might not
Eli Friedman4bc9f3c2011-08-02 01:15:34 +00001582otherwise be stored is not allowed in general. (Specifically, in the case
1583where another thread might write to and read from an address, introducing a
1584store can change a load that may see exactly one write into a load that may
1585see multiple writes.)</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001586
1587<!-- FIXME: This model assumes all targets where concurrency is relevant have
1588a byte-size store which doesn't affect adjacent bytes. As far as I can tell,
1589none of the backends currently in the tree fall into this category; however,
1590there might be targets which care. If there are, we want a paragraph
1591like the following:
1592
1593Targets may specify that stores narrower than a certain width are not
1594available; on such a target, for the purposes of this model, treat any
1595non-atomic write with an alignment or width less than the minimum width
1596as if it writes to the relevant surrounding bytes.
1597-->
1598
1599</div>
1600
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001601<!-- ======================================================================= -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001602<h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001603 <a name="ordering">Atomic Memory Ordering Constraints</a>
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001604</h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001605
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001606<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001607
1608<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
Eli Friedman59b66882011-08-09 23:02:53 +00001609<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1610<a href="#i_fence"><code>fence</code></a>,
1611<a href="#i_load"><code>atomic load</code></a>, and
Eli Friedman75362532011-08-09 23:26:12 +00001612<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001613that determines which other atomic instructions on the same address they
1614<i>synchronize with</i>. These semantics are borrowed from Java and C++0x,
1615but are somewhat more colloquial. If these descriptions aren't precise enough,
Eli Friedman95f69a42011-08-22 21:35:27 +00001616check those specs (see spec references in the
Nick Lewycky75499f52012-01-23 08:47:21 +00001617<a href="Atomics.html#introduction">atomics guide</a>).
Eli Friedman95f69a42011-08-22 21:35:27 +00001618<a href="#i_fence"><code>fence</code></a> instructions
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001619treat these orderings somewhat differently since they don't take an address.
1620See that instruction's documentation for details.</p>
1621
Eli Friedman95f69a42011-08-22 21:35:27 +00001622<p>For a simpler introduction to the ordering constraints, see the
1623<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1624
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001625<dl>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001626<dt><code>unordered</code></dt>
1627<dd>The set of values that can be read is governed by the happens-before
1628partial order. A value cannot be read unless some operation wrote it.
1629This is intended to provide a guarantee strong enough to model Java's
1630non-volatile shared variables. This ordering cannot be specified for
1631read-modify-write operations; it is not strong enough to make them atomic
1632in any interesting way.</dd>
1633<dt><code>monotonic</code></dt>
1634<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1635total order for modifications by <code>monotonic</code> operations on each
1636address. All modification orders must be compatible with the happens-before
1637order. There is no guarantee that the modification orders can be combined to
1638a global total order for the whole program (and this often will not be
1639possible). The read in an atomic read-modify-write operation
1640(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1641<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1642reads the value in the modification order immediately before the value it
1643writes. If one atomic read happens before another atomic read of the same
1644address, the later read must see the same value or a later value in the
1645address's modification order. This disallows reordering of
1646<code>monotonic</code> (or stronger) operations on the same address. If an
1647address is written <code>monotonic</code>ally by one thread, and other threads
1648<code>monotonic</code>ally read that address repeatedly, the other threads must
Eli Friedman95f69a42011-08-22 21:35:27 +00001649eventually see the write. This corresponds to the C++0x/C1x
1650<code>memory_order_relaxed</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001651<dt><code>acquire</code></dt>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001652<dd>In addition to the guarantees of <code>monotonic</code>,
Eli Friedman0cb3b562011-08-24 20:28:39 +00001653a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1654operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1655<dt><code>release</code></dt>
1656<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1657writes a value which is subsequently read by an <code>acquire</code> operation,
1658it <i>synchronizes-with</i> that operation. (This isn't a complete
1659description; see the C++0x definition of a release sequence.) This corresponds
1660to the C++0x/C1x <code>memory_order_release</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001661<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
Eli Friedman95f69a42011-08-22 21:35:27 +00001662<code>acquire</code> and <code>release</code> operation on its address.
1663This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001664<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1665<dd>In addition to the guarantees of <code>acq_rel</code>
1666(<code>acquire</code> for an operation which only reads, <code>release</code>
1667for an operation which only writes), there is a global total order on all
1668sequentially-consistent operations on all addresses, which is consistent with
1669the <i>happens-before</i> partial order and with the modification orders of
1670all the affected addresses. Each sequentially-consistent read sees the last
Eli Friedman95f69a42011-08-22 21:35:27 +00001671preceding write to the same address in this global order. This corresponds
1672to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001673</dl>
1674
1675<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1676it only <i>synchronizes with</i> or participates in modification and seq_cst
1677total orderings with other operations running in the same thread (for example,
1678in signal handlers).</p>
1679
1680</div>
1681
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001682</div>
1683
Chris Lattner2f7c9632001-06-06 20:29:01 +00001684<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001685<h2><a name="typesystem">Type System</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00001686<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001687
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001688<div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001689
Misha Brukman76307852003-11-08 01:05:38 +00001690<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001691 intermediate representation. Being typed enables a number of optimizations
1692 to be performed on the intermediate representation directly, without having
1693 to do extra analyses on the side before the transformation. A strong type
1694 system makes it easier to read the generated code and enables novel analyses
1695 and transformations that are not feasible to perform on normal three address
1696 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001697
Chris Lattner2f7c9632001-06-06 20:29:01 +00001698<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001699<h3>
1700 <a name="t_classifications">Type Classifications</a>
1701</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001702
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001703<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001704
1705<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001706
1707<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001708 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001709 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001710 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001711 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001712 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001713 </tr>
1714 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001715 <td><a href="#t_floating">floating point</a></td>
Dan Gohman518cda42011-12-17 00:04:22 +00001716 <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001717 </tr>
1718 <tr>
1719 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001720 <td><a href="#t_integer">integer</a>,
1721 <a href="#t_floating">floating point</a>,
1722 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001723 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001724 <a href="#t_struct">structure</a>,
1725 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001726 <a href="#t_label">label</a>,
1727 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001728 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001729 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001730 <tr>
1731 <td><a href="#t_primitive">primitive</a></td>
1732 <td><a href="#t_label">label</a>,
1733 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001734 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001735 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001736 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001737 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001738 </tr>
1739 <tr>
1740 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001741 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001742 <a href="#t_function">function</a>,
1743 <a href="#t_pointer">pointer</a>,
1744 <a href="#t_struct">structure</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001745 <a href="#t_vector">vector</a>,
1746 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001747 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001748 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001749 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001750</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001751
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001752<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1753 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001754 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001755
Misha Brukman76307852003-11-08 01:05:38 +00001756</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001757
Chris Lattner2f7c9632001-06-06 20:29:01 +00001758<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001759<h3>
1760 <a name="t_primitive">Primitive Types</a>
1761</h3>
Chris Lattner43542b32008-01-04 04:34:14 +00001762
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001763<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001764
Chris Lattner7824d182008-01-04 04:32:38 +00001765<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001766 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001767
1768<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001769<h4>
1770 <a name="t_integer">Integer Type</a>
1771</h4>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001772
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001773<div>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001774
1775<h5>Overview:</h5>
1776<p>The integer type is a very simple type that simply specifies an arbitrary
1777 bit width for the integer type desired. Any bit width from 1 bit to
1778 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1779
1780<h5>Syntax:</h5>
1781<pre>
1782 iN
1783</pre>
1784
1785<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1786 value.</p>
1787
1788<h5>Examples:</h5>
1789<table class="layout">
1790 <tr class="layout">
1791 <td class="left"><tt>i1</tt></td>
1792 <td class="left">a single-bit integer.</td>
1793 </tr>
1794 <tr class="layout">
1795 <td class="left"><tt>i32</tt></td>
1796 <td class="left">a 32-bit integer.</td>
1797 </tr>
1798 <tr class="layout">
1799 <td class="left"><tt>i1942652</tt></td>
1800 <td class="left">a really big integer of over 1 million bits.</td>
1801 </tr>
1802</table>
1803
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001804</div>
1805
1806<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001807<h4>
1808 <a name="t_floating">Floating Point Types</a>
1809</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001810
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001811<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001812
1813<table>
1814 <tbody>
1815 <tr><th>Type</th><th>Description</th></tr>
Dan Gohman518cda42011-12-17 00:04:22 +00001816 <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001817 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1818 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1819 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1820 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1821 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1822 </tbody>
1823</table>
1824
Chris Lattner7824d182008-01-04 04:32:38 +00001825</div>
1826
1827<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001828<h4>
1829 <a name="t_x86mmx">X86mmx Type</a>
1830</h4>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001831
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001832<div>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001833
1834<h5>Overview:</h5>
1835<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1836
1837<h5>Syntax:</h5>
1838<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001839 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001840</pre>
1841
1842</div>
1843
1844<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001845<h4>
1846 <a name="t_void">Void Type</a>
1847</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001848
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001849<div>
Bill Wendling30235112009-07-20 02:39:26 +00001850
Chris Lattner7824d182008-01-04 04:32:38 +00001851<h5>Overview:</h5>
1852<p>The void type does not represent any value and has no size.</p>
1853
1854<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001855<pre>
1856 void
1857</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001858
Chris Lattner7824d182008-01-04 04:32:38 +00001859</div>
1860
1861<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001862<h4>
1863 <a name="t_label">Label Type</a>
1864</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001865
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001866<div>
Bill Wendling30235112009-07-20 02:39:26 +00001867
Chris Lattner7824d182008-01-04 04:32:38 +00001868<h5>Overview:</h5>
1869<p>The label type represents code labels.</p>
1870
1871<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001872<pre>
1873 label
1874</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001875
Chris Lattner7824d182008-01-04 04:32:38 +00001876</div>
1877
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001878<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001879<h4>
1880 <a name="t_metadata">Metadata Type</a>
1881</h4>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001882
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001883<div>
Bill Wendling30235112009-07-20 02:39:26 +00001884
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001885<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001886<p>The metadata type represents embedded metadata. No derived types may be
1887 created from metadata except for <a href="#t_function">function</a>
1888 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001889
1890<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001891<pre>
1892 metadata
1893</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001894
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001895</div>
1896
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001897</div>
Chris Lattner7824d182008-01-04 04:32:38 +00001898
1899<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001900<h3>
1901 <a name="t_derived">Derived Types</a>
1902</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00001903
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001904<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001905
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001906<p>The real power in LLVM comes from the derived types in the system. This is
1907 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001908 useful types. Each of these types contain one or more element types which
1909 may be a primitive type, or another derived type. For example, it is
1910 possible to have a two dimensional array, using an array as the element type
1911 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001912
Chris Lattner392be582010-02-12 20:49:41 +00001913<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001914<h4>
1915 <a name="t_aggregate">Aggregate Types</a>
1916</h4>
Chris Lattner392be582010-02-12 20:49:41 +00001917
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001918<div>
Chris Lattner392be582010-02-12 20:49:41 +00001919
1920<p>Aggregate Types are a subset of derived types that can contain multiple
Duncan Sands9aaec152011-12-14 15:44:20 +00001921 member types. <a href="#t_array">Arrays</a> and
1922 <a href="#t_struct">structs</a> are aggregate types.
1923 <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001924
1925</div>
1926
Reid Spencer138249b2007-05-16 18:44:01 +00001927<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001928<h4>
1929 <a name="t_array">Array Type</a>
1930</h4>
Chris Lattner74d3f822004-12-09 17:30:23 +00001931
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001932<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001933
Chris Lattner2f7c9632001-06-06 20:29:01 +00001934<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001935<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001936 sequentially in memory. The array type requires a size (number of elements)
1937 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001938
Chris Lattner590645f2002-04-14 06:13:44 +00001939<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001940<pre>
1941 [&lt;# elements&gt; x &lt;elementtype&gt;]
1942</pre>
1943
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001944<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1945 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001946
Chris Lattner590645f2002-04-14 06:13:44 +00001947<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001948<table class="layout">
1949 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001950 <td class="left"><tt>[40 x i32]</tt></td>
1951 <td class="left">Array of 40 32-bit integer values.</td>
1952 </tr>
1953 <tr class="layout">
1954 <td class="left"><tt>[41 x i32]</tt></td>
1955 <td class="left">Array of 41 32-bit integer values.</td>
1956 </tr>
1957 <tr class="layout">
1958 <td class="left"><tt>[4 x i8]</tt></td>
1959 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001960 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001961</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001962<p>Here are some examples of multidimensional arrays:</p>
1963<table class="layout">
1964 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001965 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1966 <td class="left">3x4 array of 32-bit integer values.</td>
1967 </tr>
1968 <tr class="layout">
1969 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1970 <td class="left">12x10 array of single precision floating point values.</td>
1971 </tr>
1972 <tr class="layout">
1973 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1974 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001975 </tr>
1976</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001977
Dan Gohmanc74bc282009-11-09 19:01:53 +00001978<p>There is no restriction on indexing beyond the end of the array implied by
1979 a static type (though there are restrictions on indexing beyond the bounds
1980 of an allocated object in some cases). This means that single-dimension
1981 'variable sized array' addressing can be implemented in LLVM with a zero
1982 length array type. An implementation of 'pascal style arrays' in LLVM could
1983 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001984
Misha Brukman76307852003-11-08 01:05:38 +00001985</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001986
Chris Lattner2f7c9632001-06-06 20:29:01 +00001987<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001988<h4>
1989 <a name="t_function">Function Type</a>
1990</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001991
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001992<div>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001993
Chris Lattner2f7c9632001-06-06 20:29:01 +00001994<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001995<p>The function type can be thought of as a function signature. It consists of
1996 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00001997 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001998
Chris Lattner2f7c9632001-06-06 20:29:01 +00001999<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002000<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002001 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00002002</pre>
2003
John Criswell4c0cf7f2005-10-24 16:17:18 +00002004<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002005 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
2006 which indicates that the function takes a variable number of arguments.
2007 Variable argument functions can access their arguments with
2008 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00002009 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00002010 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002011
Chris Lattner2f7c9632001-06-06 20:29:01 +00002012<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002013<table class="layout">
2014 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00002015 <td class="left"><tt>i32 (i32)</tt></td>
2016 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002017 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00002018 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00002019 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00002020 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002021 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00002022 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2023 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00002024 </td>
2025 </tr><tr class="layout">
2026 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002027 <td class="left">A vararg function that takes at least one
2028 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2029 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00002030 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002031 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00002032 </tr><tr class="layout">
2033 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002034 <td class="left">A function taking an <tt>i32</tt>, returning a
2035 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00002036 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002037 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002038</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002039
Misha Brukman76307852003-11-08 01:05:38 +00002040</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002041
Chris Lattner2f7c9632001-06-06 20:29:01 +00002042<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002043<h4>
2044 <a name="t_struct">Structure Type</a>
2045</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002046
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002047<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002048
Chris Lattner2f7c9632001-06-06 20:29:01 +00002049<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002050<p>The structure type is used to represent a collection of data members together
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002051 in memory. The elements of a structure may be any type that has a size.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002052
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00002053<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2054 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2055 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2056 Structures in registers are accessed using the
2057 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2058 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002059
2060<p>Structures may optionally be "packed" structures, which indicate that the
2061 alignment of the struct is one byte, and that there is no padding between
Chris Lattner190552d2011-08-12 17:31:02 +00002062 the elements. In non-packed structs, padding between field types is inserted
2063 as defined by the TargetData string in the module, which is required to match
Chris Lattner7bd0ea32011-10-11 23:02:17 +00002064 what the underlying code generator expects.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002065
Chris Lattner190552d2011-08-12 17:31:02 +00002066<p>Structures can either be "literal" or "identified". A literal structure is
2067 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2068 types are always defined at the top level with a name. Literal types are
2069 uniqued by their contents and can never be recursive or opaque since there is
Chris Lattner32531732011-08-12 18:12:40 +00002070 no way to write one. Identified types can be recursive, can be opaqued, and are
Chris Lattner190552d2011-08-12 17:31:02 +00002071 never uniqued.
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002072</p>
2073
Chris Lattner2f7c9632001-06-06 20:29:01 +00002074<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002075<pre>
Chris Lattner190552d2011-08-12 17:31:02 +00002076 %T1 = type { &lt;type list&gt; } <i>; Identified normal struct type</i>
2077 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Identified packed struct type</i>
Bill Wendling30235112009-07-20 02:39:26 +00002078</pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002079
Chris Lattner2f7c9632001-06-06 20:29:01 +00002080<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002081<table class="layout">
2082 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002083 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2084 <td class="left">A triple of three <tt>i32</tt> values</td>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002085 </tr>
2086 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002087 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2088 <td class="left">A pair, where the first element is a <tt>float</tt> and the
2089 second element is a <a href="#t_pointer">pointer</a> to a
2090 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2091 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002092 </tr>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002093 <tr class="layout">
2094 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2095 <td class="left">A packed struct known to be 5 bytes in size.</td>
2096 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002097</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002098
Misha Brukman76307852003-11-08 01:05:38 +00002099</div>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002100
Chris Lattner2f7c9632001-06-06 20:29:01 +00002101<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002102<h4>
Chris Lattner2a843822011-07-23 19:59:08 +00002103 <a name="t_opaque">Opaque Structure Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002104</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002105
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002106<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002107
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002108<h5>Overview:</h5>
Chris Lattner2a843822011-07-23 19:59:08 +00002109<p>Opaque structure types are used to represent named structure types that do
2110 not have a body specified. This corresponds (for example) to the C notion of
2111 a forward declared structure.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002112
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002113<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002114<pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002115 %X = type opaque
2116 %52 = type opaque
Bill Wendling30235112009-07-20 02:39:26 +00002117</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002118
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002119<h5>Examples:</h5>
2120<table class="layout">
2121 <tr class="layout">
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002122 <td class="left"><tt>opaque</tt></td>
2123 <td class="left">An opaque type.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002124 </tr>
2125</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002126
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002127</div>
2128
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002129
2130
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002131<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002132<h4>
2133 <a name="t_pointer">Pointer Type</a>
2134</h4>
Chris Lattner4a67c912009-02-08 19:53:29 +00002135
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002136<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002137
2138<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00002139<p>The pointer type is used to specify memory locations.
2140 Pointers are commonly used to reference objects in memory.</p>
2141
2142<p>Pointer types may have an optional address space attribute defining the
2143 numbered address space where the pointed-to object resides. The default
2144 address space is number zero. The semantics of non-zero address
2145 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002146
2147<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2148 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00002149
Chris Lattner590645f2002-04-14 06:13:44 +00002150<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002151<pre>
2152 &lt;type&gt; *
2153</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002154
Chris Lattner590645f2002-04-14 06:13:44 +00002155<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002156<table class="layout">
2157 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00002158 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002159 <td class="left">A <a href="#t_pointer">pointer</a> to <a
2160 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2161 </tr>
2162 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00002163 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002164 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002165 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00002166 <tt>i32</tt>.</td>
2167 </tr>
2168 <tr class="layout">
2169 <td class="left"><tt>i32 addrspace(5)*</tt></td>
2170 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2171 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002172 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00002173</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002174
Misha Brukman76307852003-11-08 01:05:38 +00002175</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002176
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002177<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002178<h4>
2179 <a name="t_vector">Vector Type</a>
2180</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002181
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002182<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002183
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002184<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002185<p>A vector type is a simple derived type that represents a vector of elements.
2186 Vector types are used when multiple primitive data are operated in parallel
2187 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00002188 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002189 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002190
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002191<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002192<pre>
2193 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2194</pre>
2195
Chris Lattnerf11031a2010-10-10 18:20:35 +00002196<p>The number of elements is a constant integer value larger than 0; elementtype
Nadav Rotem3924cb02011-12-05 06:29:09 +00002197 may be any integer or floating point type, or a pointer to these types.
2198 Vectors of size zero are not allowed. </p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002199
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002200<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002201<table class="layout">
2202 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002203 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2204 <td class="left">Vector of 4 32-bit integer values.</td>
2205 </tr>
2206 <tr class="layout">
2207 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2208 <td class="left">Vector of 8 32-bit floating-point values.</td>
2209 </tr>
2210 <tr class="layout">
2211 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2212 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002213 </tr>
Nadav Rotem3924cb02011-12-05 06:29:09 +00002214 <tr class="layout">
2215 <td class="left"><tt>&lt;4 x i64*&gt;</tt></td>
2216 <td class="left">Vector of 4 pointers to 64-bit integer values.</td>
2217 </tr>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002218</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002219
Misha Brukman76307852003-11-08 01:05:38 +00002220</div>
2221
Bill Wendlingae8b5ea2011-07-31 06:47:33 +00002222</div>
2223
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00002224</div>
2225
Chris Lattner74d3f822004-12-09 17:30:23 +00002226<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002227<h2><a name="constants">Constants</a></h2>
Chris Lattner74d3f822004-12-09 17:30:23 +00002228<!-- *********************************************************************** -->
2229
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002230<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002231
2232<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002233 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002234
Chris Lattner74d3f822004-12-09 17:30:23 +00002235<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002236<h3>
2237 <a name="simpleconstants">Simple Constants</a>
2238</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002239
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002240<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002241
2242<dl>
2243 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002244 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002245 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002246
2247 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002248 <dd>Standard integers (such as '4') are constants of
2249 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2250 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002251
2252 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002253 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002254 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2255 notation (see below). The assembler requires the exact decimal value of a
2256 floating-point constant. For example, the assembler accepts 1.25 but
2257 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2258 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002259
2260 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002261 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002262 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002263</dl>
2264
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002265<p>The one non-intuitive notation for constants is the hexadecimal form of
2266 floating point constants. For example, the form '<tt>double
2267 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2268 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2269 constants are required (and the only time that they are generated by the
2270 disassembler) is when a floating point constant must be emitted but it cannot
2271 be represented as a decimal floating point number in a reasonable number of
2272 digits. For example, NaN's, infinities, and other special values are
2273 represented in their IEEE hexadecimal format so that assembly and disassembly
2274 do not cause any bits to change in the constants.</p>
2275
Dan Gohman518cda42011-12-17 00:04:22 +00002276<p>When using the hexadecimal form, constants of types half, float, and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002277 represented using the 16-digit form shown above (which matches the IEEE754
Dan Gohman518cda42011-12-17 00:04:22 +00002278 representation for double); half and float values must, however, be exactly
2279 representable as IEE754 half and single precision, respectively.
2280 Hexadecimal format is always used
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002281 for long double, and there are three forms of long double. The 80-bit format
2282 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2283 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2284 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2285 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2286 currently supported target uses this format. Long doubles will only work if
2287 they match the long double format on your target. All hexadecimal formats
2288 are big-endian (sign bit at the left).</p>
2289
Dale Johannesen33e5c352010-10-01 00:48:59 +00002290<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002291</div>
2292
2293<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002294<h3>
Bill Wendling972b7202009-07-20 02:32:41 +00002295<a name="aggregateconstants"></a> <!-- old anchor -->
2296<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002297</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002298
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002299<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002300
Chris Lattner361bfcd2009-02-28 18:32:25 +00002301<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002302 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002303
2304<dl>
2305 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002306 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002307 type definitions (a comma separated list of elements, surrounded by braces
2308 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2309 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2310 Structure constants must have <a href="#t_struct">structure type</a>, and
2311 the number and types of elements must match those specified by the
2312 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002313
2314 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002315 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002316 definitions (a comma separated list of elements, surrounded by square
2317 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2318 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2319 the number and types of elements must match those specified by the
2320 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002321
Reid Spencer404a3252007-02-15 03:07:05 +00002322 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002323 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002324 definitions (a comma separated list of elements, surrounded by
2325 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2326 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2327 have <a href="#t_vector">vector type</a>, and the number and types of
2328 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002329
2330 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002331 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002332 value to zero of <em>any</em> type, including scalar and
2333 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002334 This is often used to avoid having to print large zero initializers
2335 (e.g. for large arrays) and is always exactly equivalent to using explicit
2336 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002337
2338 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002339 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002340 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2341 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2342 be interpreted as part of the instruction stream, metadata is a place to
2343 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002344</dl>
2345
2346</div>
2347
2348<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002349<h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002350 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002351</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002352
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002353<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002354
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002355<p>The addresses of <a href="#globalvars">global variables</a>
2356 and <a href="#functionstructure">functions</a> are always implicitly valid
2357 (link-time) constants. These constants are explicitly referenced when
2358 the <a href="#identifiers">identifier for the global</a> is used and always
2359 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2360 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002361
Benjamin Kramer79698be2010-07-13 12:26:09 +00002362<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002363@X = global i32 17
2364@Y = global i32 42
2365@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002366</pre>
2367
2368</div>
2369
2370<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002371<h3>
2372 <a name="undefvalues">Undefined Values</a>
2373</h3>
2374
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002375<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002376
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002377<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002378 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002379 Undefined values may be of any type (other than '<tt>label</tt>'
2380 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002381
Chris Lattner92ada5d2009-09-11 01:49:31 +00002382<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002383 program is well defined no matter what value is used. This gives the
2384 compiler more freedom to optimize. Here are some examples of (potentially
2385 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002386
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002387
Benjamin Kramer79698be2010-07-13 12:26:09 +00002388<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002389 %A = add %X, undef
2390 %B = sub %X, undef
2391 %C = xor %X, undef
2392Safe:
2393 %A = undef
2394 %B = undef
2395 %C = undef
2396</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002397
2398<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002399 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002400
Benjamin Kramer79698be2010-07-13 12:26:09 +00002401<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002402 %A = or %X, undef
2403 %B = and %X, undef
2404Safe:
2405 %A = -1
2406 %B = 0
2407Unsafe:
2408 %A = undef
2409 %B = undef
2410</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002411
2412<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002413 For example, if <tt>%X</tt> has a zero bit, then the output of the
2414 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2415 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2416 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2417 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2418 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2419 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2420 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002421
Benjamin Kramer79698be2010-07-13 12:26:09 +00002422<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002423 %A = select undef, %X, %Y
2424 %B = select undef, 42, %Y
2425 %C = select %X, %Y, undef
2426Safe:
2427 %A = %X (or %Y)
2428 %B = 42 (or %Y)
2429 %C = %Y
2430Unsafe:
2431 %A = undef
2432 %B = undef
2433 %C = undef
2434</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002435
Bill Wendling6bbe0912010-10-27 01:07:41 +00002436<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2437 branch) conditions can go <em>either way</em>, but they have to come from one
2438 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2439 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2440 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2441 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2442 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2443 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002444
Benjamin Kramer79698be2010-07-13 12:26:09 +00002445<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002446 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002447
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002448 %B = undef
2449 %C = xor %B, %B
2450
2451 %D = undef
2452 %E = icmp lt %D, 4
2453 %F = icmp gte %D, 4
2454
2455Safe:
2456 %A = undef
2457 %B = undef
2458 %C = undef
2459 %D = undef
2460 %E = undef
2461 %F = undef
2462</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002463
Bill Wendling6bbe0912010-10-27 01:07:41 +00002464<p>This example points out that two '<tt>undef</tt>' operands are not
2465 necessarily the same. This can be surprising to people (and also matches C
2466 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2467 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2468 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2469 its value over its "live range". This is true because the variable doesn't
2470 actually <em>have a live range</em>. Instead, the value is logically read
2471 from arbitrary registers that happen to be around when needed, so the value
2472 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2473 need to have the same semantics or the core LLVM "replace all uses with"
2474 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002475
Benjamin Kramer79698be2010-07-13 12:26:09 +00002476<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002477 %A = fdiv undef, %X
2478 %B = fdiv %X, undef
2479Safe:
2480 %A = undef
2481b: unreachable
2482</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002483
2484<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002485 value</em> and <em>undefined behavior</em>. An undefined value (like
2486 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2487 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2488 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2489 defined on SNaN's. However, in the second example, we can make a more
2490 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2491 arbitrary value, we are allowed to assume that it could be zero. Since a
2492 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2493 the operation does not execute at all. This allows us to delete the divide and
2494 all code after it. Because the undefined operation "can't happen", the
2495 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002496
Benjamin Kramer79698be2010-07-13 12:26:09 +00002497<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002498a: store undef -> %X
2499b: store %X -> undef
2500Safe:
2501a: &lt;deleted&gt;
2502b: unreachable
2503</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002504
Bill Wendling6bbe0912010-10-27 01:07:41 +00002505<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2506 undefined value can be assumed to not have any effect; we can assume that the
2507 value is overwritten with bits that happen to match what was already there.
2508 However, a store <em>to</em> an undefined location could clobber arbitrary
2509 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002510
Chris Lattner74d3f822004-12-09 17:30:23 +00002511</div>
2512
2513<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002514<h3>
Dan Gohman9a2a0932011-12-06 03:18:47 +00002515 <a name="poisonvalues">Poison Values</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002516</h3>
2517
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002518<div>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002519
Dan Gohman9a2a0932011-12-06 03:18:47 +00002520<p>Poison values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohman32772f72011-12-06 03:35:58 +00002521 they also represent the fact that an instruction or constant expression which
2522 cannot evoke side effects has nevertheless detected a condition which results
2523 in undefined behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002524
Dan Gohman9a2a0932011-12-06 03:18:47 +00002525<p>There is currently no way of representing a poison value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002526 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002527 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002528
Dan Gohman9a2a0932011-12-06 03:18:47 +00002529<p>Poison value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002530
Dan Gohman2f1ae062010-04-28 00:49:41 +00002531<ul>
2532<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2533 their operands.</li>
2534
2535<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2536 to their dynamic predecessor basic block.</li>
2537
2538<li>Function arguments depend on the corresponding actual argument values in
2539 the dynamic callers of their functions.</li>
2540
2541<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2542 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2543 control back to them.</li>
2544
Dan Gohman7292a752010-05-03 14:55:22 +00002545<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2546 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2547 or exception-throwing call instructions that dynamically transfer control
2548 back to them.</li>
2549
Dan Gohman2f1ae062010-04-28 00:49:41 +00002550<li>Non-volatile loads and stores depend on the most recent stores to all of the
2551 referenced memory addresses, following the order in the IR
2552 (including loads and stores implied by intrinsics such as
2553 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2554
Dan Gohman3513ea52010-05-03 14:59:34 +00002555<!-- TODO: In the case of multiple threads, this only applies if the store
2556 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002557
Dan Gohman2f1ae062010-04-28 00:49:41 +00002558<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002559
Dan Gohman2f1ae062010-04-28 00:49:41 +00002560<li>An instruction with externally visible side effects depends on the most
2561 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002562 the order in the IR. (This includes
2563 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002564
Dan Gohman7292a752010-05-03 14:55:22 +00002565<li>An instruction <i>control-depends</i> on a
2566 <a href="#terminators">terminator instruction</a>
2567 if the terminator instruction has multiple successors and the instruction
2568 is always executed when control transfers to one of the successors, and
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002569 may not be executed when control is transferred to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002570
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002571<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2572 instruction if the set of instructions it otherwise depends on would be
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002573 different if the terminator had transferred control to a different
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002574 successor.</li>
2575
Dan Gohman2f1ae062010-04-28 00:49:41 +00002576<li>Dependence is transitive.</li>
2577
2578</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002579
Dan Gohman32772f72011-12-06 03:35:58 +00002580<p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>,
2581 with the additional affect that any instruction which has a <i>dependence</i>
2582 on a poison value has undefined behavior.</p>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002583
2584<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002585
Benjamin Kramer79698be2010-07-13 12:26:09 +00002586<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002587entry:
Dan Gohman9a2a0932011-12-06 03:18:47 +00002588 %poison = sub nuw i32 0, 1 ; Results in a poison value.
Dan Gohman32772f72011-12-06 03:35:58 +00002589 %still_poison = and i32 %poison, 0 ; 0, but also poison.
Dan Gohman9a2a0932011-12-06 03:18:47 +00002590 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
Dan Gohman32772f72011-12-06 03:35:58 +00002591 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
Dan Gohman2f1ae062010-04-28 00:49:41 +00002592
Dan Gohman32772f72011-12-06 03:35:58 +00002593 store i32 %poison, i32* @g ; Poison value stored to memory.
2594 %poison2 = load i32* @g ; Poison value loaded back from memory.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002595
Dan Gohman9a2a0932011-12-06 03:18:47 +00002596 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002597
2598 %narrowaddr = bitcast i32* @g to i16*
2599 %wideaddr = bitcast i32* @g to i64*
Dan Gohman9a2a0932011-12-06 03:18:47 +00002600 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2601 %poison4 = load i64* %wideaddr ; Returns a poison value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002602
Dan Gohman5f115a72011-12-06 03:31:14 +00002603 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2604 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002605
2606true:
Dan Gohman5f115a72011-12-06 03:31:14 +00002607 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2608 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002609 br label %end
2610
2611end:
2612 %p = phi i32 [ 0, %entry ], [ 1, %true ]
Dan Gohman5f115a72011-12-06 03:31:14 +00002613 ; Both edges into this PHI are
2614 ; control-dependent on %cmp, so this
2615 ; always results in a poison value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002616
Dan Gohman5f115a72011-12-06 03:31:14 +00002617 store volatile i32 0, i32* @g ; This would depend on the store in %true
2618 ; if %cmp is true, or the store in %entry
2619 ; otherwise, so this is undefined behavior.
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002620
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002621 br i1 %cmp, label %second_true, label %second_end
Dan Gohman5f115a72011-12-06 03:31:14 +00002622 ; The same branch again, but this time the
2623 ; true block doesn't have side effects.
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002624
2625second_true:
2626 ; No side effects!
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002627 ret void
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002628
2629second_end:
Dan Gohman5f115a72011-12-06 03:31:14 +00002630 store volatile i32 0, i32* @g ; This time, the instruction always depends
2631 ; on the store in %end. Also, it is
2632 ; control-equivalent to %end, so this is
Dan Gohman32772f72011-12-06 03:35:58 +00002633 ; well-defined (ignoring earlier undefined
2634 ; behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002635</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002636
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002637</div>
2638
2639<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002640<h3>
2641 <a name="blockaddress">Addresses of Basic Blocks</a>
2642</h3>
2643
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002644<div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002645
Chris Lattneraa99c942009-11-01 01:27:45 +00002646<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002647
2648<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002649 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002650 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002651
Chris Lattnere4801f72009-10-27 21:01:34 +00002652<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002653 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2654 comparisons against null. Pointer equality tests between labels addresses
2655 results in undefined behavior &mdash; though, again, comparison against null
2656 is ok, and no label is equal to the null pointer. This may be passed around
2657 as an opaque pointer sized value as long as the bits are not inspected. This
2658 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2659 long as the original value is reconstituted before the <tt>indirectbr</tt>
2660 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002661
Bill Wendling6bbe0912010-10-27 01:07:41 +00002662<p>Finally, some targets may provide defined semantics when using the value as
2663 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002664
2665</div>
2666
2667
2668<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002669<h3>
2670 <a name="constantexprs">Constant Expressions</a>
2671</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002672
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002673<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002674
2675<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002676 to be used as constants. Constant expressions may be of
2677 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2678 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002679 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002680
2681<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002682 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002683 <dd>Truncate a constant to another type. The bit size of CST must be larger
2684 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002685
Dan Gohmand6a6f612010-05-28 17:07:41 +00002686 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002687 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002688 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002689
Dan Gohmand6a6f612010-05-28 17:07:41 +00002690 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002691 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002692 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002693
Dan Gohmand6a6f612010-05-28 17:07:41 +00002694 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002695 <dd>Truncate a floating point constant to another floating point type. The
2696 size of CST must be larger than the size of TYPE. Both types must be
2697 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002698
Dan Gohmand6a6f612010-05-28 17:07:41 +00002699 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002700 <dd>Floating point extend a constant to another type. The size of CST must be
2701 smaller or equal to the size of TYPE. Both types must be floating
2702 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002703
Dan Gohmand6a6f612010-05-28 17:07:41 +00002704 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002705 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002706 constant. TYPE must be a scalar or vector integer type. CST must be of
2707 scalar or vector floating point type. Both CST and TYPE must be scalars,
2708 or vectors of the same number of elements. If the value won't fit in the
2709 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002710
Dan Gohmand6a6f612010-05-28 17:07:41 +00002711 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002712 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002713 constant. TYPE must be a scalar or vector integer type. CST must be of
2714 scalar or vector floating point type. Both CST and TYPE must be scalars,
2715 or vectors of the same number of elements. If the value won't fit in the
2716 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002717
Dan Gohmand6a6f612010-05-28 17:07:41 +00002718 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002719 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002720 constant. TYPE must be a scalar or vector floating point type. CST must be
2721 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2722 vectors of the same number of elements. If the value won't fit in the
2723 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002724
Dan Gohmand6a6f612010-05-28 17:07:41 +00002725 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002726 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002727 constant. TYPE must be a scalar or vector floating point type. CST must be
2728 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2729 vectors of the same number of elements. If the value won't fit in the
2730 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002731
Dan Gohmand6a6f612010-05-28 17:07:41 +00002732 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002733 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002734 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2735 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2736 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002737
Dan Gohmand6a6f612010-05-28 17:07:41 +00002738 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002739 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2740 type. CST must be of integer type. The CST value is zero extended,
2741 truncated, or unchanged to make it fit in a pointer size. This one is
2742 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002743
Dan Gohmand6a6f612010-05-28 17:07:41 +00002744 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002745 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2746 are the same as those for the <a href="#i_bitcast">bitcast
2747 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002748
Dan Gohmand6a6f612010-05-28 17:07:41 +00002749 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2750 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002751 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002752 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2753 instruction, the index list may have zero or more indexes, which are
2754 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002755
Dan Gohmand6a6f612010-05-28 17:07:41 +00002756 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002757 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002758
Dan Gohmand6a6f612010-05-28 17:07:41 +00002759 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002760 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2761
Dan Gohmand6a6f612010-05-28 17:07:41 +00002762 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002763 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002764
Dan Gohmand6a6f612010-05-28 17:07:41 +00002765 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002766 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2767 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002768
Dan Gohmand6a6f612010-05-28 17:07:41 +00002769 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002770 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2771 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002772
Dan Gohmand6a6f612010-05-28 17:07:41 +00002773 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002774 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2775 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002776
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002777 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2778 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2779 constants. The index list is interpreted in a similar manner as indices in
2780 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2781 index value must be specified.</dd>
2782
2783 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2784 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2785 constants. The index list is interpreted in a similar manner as indices in
2786 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2787 index value must be specified.</dd>
2788
Dan Gohmand6a6f612010-05-28 17:07:41 +00002789 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002790 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2791 be any of the <a href="#binaryops">binary</a>
2792 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2793 on operands are the same as those for the corresponding instruction
2794 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002795</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002796
Chris Lattner74d3f822004-12-09 17:30:23 +00002797</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002798
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002799</div>
2800
Chris Lattner2f7c9632001-06-06 20:29:01 +00002801<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002802<h2><a name="othervalues">Other Values</a></h2>
Chris Lattner98f013c2006-01-25 23:47:57 +00002803<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002804<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002805<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002806<h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002807<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002808</h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002809
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002810<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002811
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002812<p>LLVM supports inline assembler expressions (as opposed
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002813 to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002814 a special value. This value represents the inline assembler as a string
2815 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002816 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002817 expression has side effects, and a flag indicating whether the function
2818 containing the asm needs to align its stack conservatively. An example
2819 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002820
Benjamin Kramer79698be2010-07-13 12:26:09 +00002821<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002822i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002823</pre>
2824
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002825<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2826 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2827 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002828
Benjamin Kramer79698be2010-07-13 12:26:09 +00002829<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002830%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002831</pre>
2832
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002833<p>Inline asms with side effects not visible in the constraint list must be
2834 marked as having side effects. This is done through the use of the
2835 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002836
Benjamin Kramer79698be2010-07-13 12:26:09 +00002837<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002838call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002839</pre>
2840
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002841<p>In some cases inline asms will contain code that will not work unless the
2842 stack is aligned in some way, such as calls or SSE instructions on x86,
2843 yet will not contain code that does that alignment within the asm.
2844 The compiler should make conservative assumptions about what the asm might
2845 contain and should generate its usual stack alignment code in the prologue
2846 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002847
Benjamin Kramer79698be2010-07-13 12:26:09 +00002848<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002849call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002850</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002851
2852<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2853 first.</p>
2854
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002855<!--
Chris Lattner98f013c2006-01-25 23:47:57 +00002856<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002857 documented here. Constraints on what can be done (e.g. duplication, moving,
2858 etc need to be documented). This is probably best done by reference to
2859 another document that covers inline asm from a holistic perspective.</p>
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002860 -->
Chris Lattner51065562010-04-07 05:38:05 +00002861
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002862<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002863<h4>
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002864 <a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002865</h4>
Chris Lattner51065562010-04-07 05:38:05 +00002866
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002867<div>
Chris Lattner51065562010-04-07 05:38:05 +00002868
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002869<p>The call instructions that wrap inline asm nodes may have a
2870 "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant
2871 integers. If present, the code generator will use the integer as the
2872 location cookie value when report errors through the <tt>LLVMContext</tt>
2873 error reporting mechanisms. This allows a front-end to correlate backend
2874 errors that occur with inline asm back to the source code that produced it.
2875 For example:</p>
Chris Lattner51065562010-04-07 05:38:05 +00002876
Benjamin Kramer79698be2010-07-13 12:26:09 +00002877<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002878call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2879...
2880!42 = !{ i32 1234567 }
2881</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002882
2883<p>It is up to the front-end to make sense of the magic numbers it places in the
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002884 IR. If the MDNode contains multiple constants, the code generator will use
Chris Lattner79ffdc72010-11-17 08:20:42 +00002885 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002886
2887</div>
2888
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002889</div>
2890
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002891<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002892<h3>
2893 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2894</h3>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002895
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002896<div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002897
2898<p>LLVM IR allows metadata to be attached to instructions in the program that
2899 can convey extra information about the code to the optimizers and code
2900 generator. One example application of metadata is source-level debug
2901 information. There are two metadata primitives: strings and nodes. All
2902 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2903 preceding exclamation point ('<tt>!</tt>').</p>
2904
2905<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlingb6c22202011-11-30 21:43:43 +00002906 any character by escaping non-printable characters with "<tt>\xx</tt>" where
2907 "<tt>xx</tt>" is the two digit hex code. For example:
2908 "<tt>!"test\00"</tt>".</p>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002909
2910<p>Metadata nodes are represented with notation similar to structure constants
2911 (a comma separated list of elements, surrounded by braces and preceded by an
Bill Wendlingb6c22202011-11-30 21:43:43 +00002912 exclamation point). Metadata nodes can have any values as their operand. For
2913 example:</p>
2914
2915<div class="doc_code">
2916<pre>
2917!{ metadata !"test\00", i32 10}
2918</pre>
2919</div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002920
2921<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2922 metadata nodes, which can be looked up in the module symbol table. For
Bill Wendlingb6c22202011-11-30 21:43:43 +00002923 example:</p>
2924
2925<div class="doc_code">
2926<pre>
2927!foo = metadata !{!4, !3}
2928</pre>
2929</div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002930
Devang Patel9984bd62010-03-04 23:44:48 +00002931<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Bill Wendlingb6c22202011-11-30 21:43:43 +00002932 function is using two metadata arguments:</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002933
Bill Wendlingc0e10672011-03-02 02:17:11 +00002934<div class="doc_code">
2935<pre>
2936call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2937</pre>
2938</div>
Devang Patel9984bd62010-03-04 23:44:48 +00002939
2940<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Bill Wendlingb6c22202011-11-30 21:43:43 +00002941 attached to the <tt>add</tt> instruction using the <tt>!dbg</tt>
2942 identifier:</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002943
Bill Wendlingc0e10672011-03-02 02:17:11 +00002944<div class="doc_code">
2945<pre>
2946%indvar.next = add i64 %indvar, 1, !dbg !21
2947</pre>
2948</div>
2949
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002950<p>More information about specific metadata nodes recognized by the optimizers
2951 and code generator is found below.</p>
2952
Bill Wendlingb6c22202011-11-30 21:43:43 +00002953<!-- _______________________________________________________________________ -->
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002954<h4>
2955 <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
2956</h4>
2957
2958<div>
2959
2960<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
2961 suitable for doing TBAA. Instead, metadata is added to the IR to describe
2962 a type system of a higher level language. This can be used to implement
2963 typical C/C++ TBAA, but it can also be used to implement custom alias
2964 analysis behavior for other languages.</p>
2965
2966<p>The current metadata format is very simple. TBAA metadata nodes have up to
2967 three fields, e.g.:</p>
2968
2969<div class="doc_code">
2970<pre>
2971!0 = metadata !{ metadata !"an example type tree" }
2972!1 = metadata !{ metadata !"int", metadata !0 }
2973!2 = metadata !{ metadata !"float", metadata !0 }
2974!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2975</pre>
2976</div>
2977
2978<p>The first field is an identity field. It can be any value, usually
2979 a metadata string, which uniquely identifies the type. The most important
2980 name in the tree is the name of the root node. Two trees with
2981 different root node names are entirely disjoint, even if they
2982 have leaves with common names.</p>
2983
2984<p>The second field identifies the type's parent node in the tree, or
2985 is null or omitted for a root node. A type is considered to alias
2986 all of its descendants and all of its ancestors in the tree. Also,
2987 a type is considered to alias all types in other trees, so that
2988 bitcode produced from multiple front-ends is handled conservatively.</p>
2989
2990<p>If the third field is present, it's an integer which if equal to 1
2991 indicates that the type is "constant" (meaning
2992 <tt>pointsToConstantMemory</tt> should return true; see
2993 <a href="AliasAnalysis.html#OtherItfs">other useful
2994 <tt>AliasAnalysis</tt> methods</a>).</p>
2995
2996</div>
2997
Bill Wendlingb6c22202011-11-30 21:43:43 +00002998<!-- _______________________________________________________________________ -->
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00002999<h4>
3000 <a name="fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a>
3001</h4>
3002
3003<div>
3004
3005<p><tt>fpaccuracy</tt> metadata may be attached to any instruction of floating
3006 point type. It expresses the maximum relative error of the result of
3007 that instruction, in ULPs. ULP is defined as follows:</p>
3008
Bill Wendling302d7ce2011-11-09 19:33:56 +00003009<blockquote>
3010
3011<p>If <tt>x</tt> is a real number that lies between two finite consecutive
3012 floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
3013 of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
3014 distance between the two non-equal finite floating-point numbers nearest
3015 <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
3016
3017</blockquote>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003018
3019<p>The maximum relative error may be any rational number. The metadata node
3020 shall consist of a pair of unsigned integers respectively representing
3021 the numerator and denominator. For example, 2.5 ULP:</p>
3022
3023<div class="doc_code">
3024<pre>
3025!0 = metadata !{ i32 5, i32 2 }
3026</pre>
3027</div>
3028
3029</div>
3030
Chris Lattnerc2f8f162010-01-15 21:50:19 +00003031</div>
3032
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003033</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003034
3035<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003036<h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003037 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003038</h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003039<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003040<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003041<p>LLVM has a number of "magic" global variables that contain data that affect
3042code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00003043of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
3044section and all globals that start with "<tt>llvm.</tt>" are reserved for use
3045by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003046
3047<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003048<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003049<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003050</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003051
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003052<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003053
3054<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
3055href="#linkage_appending">appending linkage</a>. This array contains a list of
3056pointers to global variables and functions which may optionally have a pointer
3057cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
3058
Bill Wendling1654bb22011-11-08 00:32:45 +00003059<div class="doc_code">
Chris Lattnerae76db52009-07-20 05:55:19 +00003060<pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003061@X = global i8 4
3062@Y = global i32 123
Chris Lattnerae76db52009-07-20 05:55:19 +00003063
Bill Wendling1654bb22011-11-08 00:32:45 +00003064@llvm.used = appending global [2 x i8*] [
3065 i8* @X,
3066 i8* bitcast (i32* @Y to i8*)
3067], section "llvm.metadata"
Chris Lattnerae76db52009-07-20 05:55:19 +00003068</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003069</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003070
3071<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
Bill Wendling1654bb22011-11-08 00:32:45 +00003072 compiler, assembler, and linker are required to treat the symbol as if there
3073 is a reference to the global that it cannot see. For example, if a variable
3074 has internal linkage and no references other than that from
3075 the <tt>@llvm.used</tt> list, it cannot be deleted. This is commonly used to
3076 represent references from inline asms and other things the compiler cannot
3077 "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003078
3079<p>On some targets, the code generator must emit a directive to the assembler or
Bill Wendling1654bb22011-11-08 00:32:45 +00003080 object file to prevent the assembler and linker from molesting the
3081 symbol.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003082
3083</div>
3084
3085<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003086<h3>
3087 <a name="intg_compiler_used">
3088 The '<tt>llvm.compiler.used</tt>' Global Variable
3089 </a>
3090</h3>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003091
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003092<div>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003093
3094<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
Bill Wendling1654bb22011-11-08 00:32:45 +00003095 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3096 touching the symbol. On targets that support it, this allows an intelligent
3097 linker to optimize references to the symbol without being impeded as it would
3098 be by <tt>@llvm.used</tt>.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003099
3100<p>This is a rare construct that should only be used in rare circumstances, and
Bill Wendling1654bb22011-11-08 00:32:45 +00003101 should not be exposed to source languages.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003102
3103</div>
3104
3105<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003106<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003107<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003108</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003109
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003110<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003111
3112<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003113<pre>
3114%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003115@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003116</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003117</div>
3118
3119<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
3120 functions and associated priorities. The functions referenced by this array
3121 will be called in ascending order of priority (i.e. lowest first) when the
3122 module is loaded. The order of functions with the same priority is not
3123 defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003124
3125</div>
3126
3127<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003128<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003129<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003130</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003131
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003132<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003133
3134<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003135<pre>
3136%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003137@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003138</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003139</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003140
Bill Wendling1654bb22011-11-08 00:32:45 +00003141<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
3142 and associated priorities. The functions referenced by this array will be
3143 called in descending order of priority (i.e. highest first) when the module
3144 is loaded. The order of functions with the same priority is not defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003145
3146</div>
3147
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003148</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003149
Chris Lattner98f013c2006-01-25 23:47:57 +00003150<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003151<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00003152<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00003153
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003154<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003155
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003156<p>The LLVM instruction set consists of several different classifications of
3157 instructions: <a href="#terminators">terminator
3158 instructions</a>, <a href="#binaryops">binary instructions</a>,
3159 <a href="#bitwiseops">bitwise binary instructions</a>,
3160 <a href="#memoryops">memory instructions</a>, and
3161 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003162
Chris Lattner2f7c9632001-06-06 20:29:01 +00003163<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003164<h3>
3165 <a name="terminators">Terminator Instructions</a>
3166</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00003167
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003168<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003169
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003170<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3171 in a program ends with a "Terminator" instruction, which indicates which
3172 block should be executed after the current block is finished. These
3173 terminator instructions typically yield a '<tt>void</tt>' value: they produce
3174 control flow, not values (the one exception being the
3175 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3176
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003177<p>The terminator instructions are:
3178 '<a href="#i_ret"><tt>ret</tt></a>',
3179 '<a href="#i_br"><tt>br</tt></a>',
3180 '<a href="#i_switch"><tt>switch</tt></a>',
3181 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3182 '<a href="#i_invoke"><tt>invoke</tt></a>',
3183 '<a href="#i_unwind"><tt>unwind</tt></a>',
3184 '<a href="#i_resume"><tt>resume</tt></a>', and
3185 '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003186
Chris Lattner2f7c9632001-06-06 20:29:01 +00003187<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003188<h4>
3189 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3190</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003191
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003192<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003193
Chris Lattner2f7c9632001-06-06 20:29:01 +00003194<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003195<pre>
3196 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003197 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003198</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003199
Chris Lattner2f7c9632001-06-06 20:29:01 +00003200<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003201<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3202 a value) from a function back to the caller.</p>
3203
3204<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3205 value and then causes control flow, and one that just causes control flow to
3206 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003207
Chris Lattner2f7c9632001-06-06 20:29:01 +00003208<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003209<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3210 return value. The type of the return value must be a
3211 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003212
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003213<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3214 non-void return type and contains a '<tt>ret</tt>' instruction with no return
3215 value or a return value with a type that does not match its type, or if it
3216 has a void return type and contains a '<tt>ret</tt>' instruction with a
3217 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003218
Chris Lattner2f7c9632001-06-06 20:29:01 +00003219<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003220<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3221 the calling function's context. If the caller is a
3222 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3223 instruction after the call. If the caller was an
3224 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3225 the beginning of the "normal" destination block. If the instruction returns
3226 a value, that value shall set the call or invoke instruction's return
3227 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003228
Chris Lattner2f7c9632001-06-06 20:29:01 +00003229<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003230<pre>
3231 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003232 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00003233 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003234</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003235
Misha Brukman76307852003-11-08 01:05:38 +00003236</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003237<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003238<h4>
3239 <a name="i_br">'<tt>br</tt>' Instruction</a>
3240</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003241
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003242<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003243
Chris Lattner2f7c9632001-06-06 20:29:01 +00003244<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003245<pre>
Bill Wendling16b86742011-07-26 10:41:15 +00003246 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3247 br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003248</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003249
Chris Lattner2f7c9632001-06-06 20:29:01 +00003250<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003251<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3252 different basic block in the current function. There are two forms of this
3253 instruction, corresponding to a conditional branch and an unconditional
3254 branch.</p>
3255
Chris Lattner2f7c9632001-06-06 20:29:01 +00003256<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003257<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3258 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
3259 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3260 target.</p>
3261
Chris Lattner2f7c9632001-06-06 20:29:01 +00003262<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003263<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003264 argument is evaluated. If the value is <tt>true</tt>, control flows to the
3265 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
3266 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3267
Chris Lattner2f7c9632001-06-06 20:29:01 +00003268<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00003269<pre>
3270Test:
3271 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3272 br i1 %cond, label %IfEqual, label %IfUnequal
3273IfEqual:
3274 <a href="#i_ret">ret</a> i32 1
3275IfUnequal:
3276 <a href="#i_ret">ret</a> i32 0
3277</pre>
3278
Misha Brukman76307852003-11-08 01:05:38 +00003279</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003280
Chris Lattner2f7c9632001-06-06 20:29:01 +00003281<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003282<h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003283 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003284</h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003285
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003286<div>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003287
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003288<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003289<pre>
3290 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3291</pre>
3292
Chris Lattner2f7c9632001-06-06 20:29:01 +00003293<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003294<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003295 several different places. It is a generalization of the '<tt>br</tt>'
3296 instruction, allowing a branch to occur to one of many possible
3297 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003298
Chris Lattner2f7c9632001-06-06 20:29:01 +00003299<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003300<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003301 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3302 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3303 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003304
Chris Lattner2f7c9632001-06-06 20:29:01 +00003305<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003306<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003307 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3308 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00003309 transferred to the corresponding destination; otherwise, control flow is
3310 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003311
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003312<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003313<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003314 <tt>switch</tt> instruction, this instruction may be code generated in
3315 different ways. For example, it could be generated as a series of chained
3316 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003317
3318<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003319<pre>
3320 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003321 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00003322 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003323
3324 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003325 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003326
3327 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00003328 switch i32 %val, label %otherwise [ i32 0, label %onzero
3329 i32 1, label %onone
3330 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00003331</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003332
Misha Brukman76307852003-11-08 01:05:38 +00003333</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003334
Chris Lattner3ed871f2009-10-27 19:13:16 +00003335
3336<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003337<h4>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003338 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003339</h4>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003341<div>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003342
3343<h5>Syntax:</h5>
3344<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003345 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003346</pre>
3347
3348<h5>Overview:</h5>
3349
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003350<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003351 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003352 "<tt>address</tt>". Address must be derived from a <a
3353 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003354
3355<h5>Arguments:</h5>
3356
3357<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3358 rest of the arguments indicate the full set of possible destinations that the
3359 address may point to. Blocks are allowed to occur multiple times in the
3360 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003361
Chris Lattner3ed871f2009-10-27 19:13:16 +00003362<p>This destination list is required so that dataflow analysis has an accurate
3363 understanding of the CFG.</p>
3364
3365<h5>Semantics:</h5>
3366
3367<p>Control transfers to the block specified in the address argument. All
3368 possible destination blocks must be listed in the label list, otherwise this
3369 instruction has undefined behavior. This implies that jumps to labels
3370 defined in other functions have undefined behavior as well.</p>
3371
3372<h5>Implementation:</h5>
3373
3374<p>This is typically implemented with a jump through a register.</p>
3375
3376<h5>Example:</h5>
3377<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003378 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003379</pre>
3380
3381</div>
3382
3383
Chris Lattner2f7c9632001-06-06 20:29:01 +00003384<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003385<h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003386 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003387</h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003388
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003389<div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003390
Chris Lattner2f7c9632001-06-06 20:29:01 +00003391<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003392<pre>
Devang Patel02256232008-10-07 17:48:33 +00003393 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003394 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003395</pre>
3396
Chris Lattnera8292f32002-05-06 22:08:29 +00003397<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003398<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003399 function, with the possibility of control flow transfer to either the
3400 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3401 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3402 control flow will return to the "normal" label. If the callee (or any
3403 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3404 instruction, control is interrupted and continued at the dynamically nearest
3405 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003406
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003407<p>The '<tt>exception</tt>' label is a
3408 <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3409 exception. As such, '<tt>exception</tt>' label is required to have the
3410 "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
Chad Rosierc28f3e92011-12-09 02:00:44 +00003411 the information about the behavior of the program after unwinding
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003412 happens, as its first non-PHI instruction. The restrictions on the
3413 "<tt>landingpad</tt>" instruction's tightly couples it to the
3414 "<tt>invoke</tt>" instruction, so that the important information contained
3415 within the "<tt>landingpad</tt>" instruction can't be lost through normal
3416 code motion.</p>
3417
Chris Lattner2f7c9632001-06-06 20:29:01 +00003418<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003419<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003420
Chris Lattner2f7c9632001-06-06 20:29:01 +00003421<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003422 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3423 convention</a> the call should use. If none is specified, the call
3424 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003425
3426 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003427 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3428 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003429
Chris Lattner0132aff2005-05-06 22:57:40 +00003430 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003431 function value being invoked. In most cases, this is a direct function
3432 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3433 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003434
3435 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003436 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003437
3438 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003439 signature argument types and parameter attributes. All arguments must be
3440 of <a href="#t_firstclass">first class</a> type. If the function
3441 signature indicates the function accepts a variable number of arguments,
3442 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003443
3444 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003445 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003446
3447 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003448 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003449
Devang Patel02256232008-10-07 17:48:33 +00003450 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003451 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3452 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003453</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003454
Chris Lattner2f7c9632001-06-06 20:29:01 +00003455<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003456<p>This instruction is designed to operate as a standard
3457 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3458 primary difference is that it establishes an association with a label, which
3459 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003460
3461<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003462 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3463 exception. Additionally, this is important for implementation of
3464 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003465
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003466<p>For the purposes of the SSA form, the definition of the value returned by the
3467 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3468 block to the "normal" label. If the callee unwinds then no return value is
3469 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003470
Chris Lattner97257f82010-01-15 18:08:37 +00003471<p>Note that the code generator does not yet completely support unwind, and
3472that the invoke/unwind semantics are likely to change in future versions.</p>
3473
Chris Lattner2f7c9632001-06-06 20:29:01 +00003474<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003475<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003476 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003477 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003478 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003479 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003480</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003481
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003482</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003483
Chris Lattner5ed60612003-09-03 00:41:47 +00003484<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003485
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003486<h4>
3487 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3488</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003489
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003490<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003491
Chris Lattner5ed60612003-09-03 00:41:47 +00003492<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003493<pre>
3494 unwind
3495</pre>
3496
Chris Lattner5ed60612003-09-03 00:41:47 +00003497<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003498<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003499 at the first callee in the dynamic call stack which used
3500 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3501 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003502
Chris Lattner5ed60612003-09-03 00:41:47 +00003503<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003504<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003505 immediately halt. The dynamic call stack is then searched for the
3506 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3507 Once found, execution continues at the "exceptional" destination block
3508 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3509 instruction in the dynamic call chain, undefined behavior results.</p>
3510
Chris Lattner97257f82010-01-15 18:08:37 +00003511<p>Note that the code generator does not yet completely support unwind, and
3512that the invoke/unwind semantics are likely to change in future versions.</p>
3513
Misha Brukman76307852003-11-08 01:05:38 +00003514</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003515
Bill Wendlingf891bf82011-07-31 06:30:59 +00003516 <!-- _______________________________________________________________________ -->
3517
3518<h4>
3519 <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3520</h4>
3521
3522<div>
3523
3524<h5>Syntax:</h5>
3525<pre>
3526 resume &lt;type&gt; &lt;value&gt;
3527</pre>
3528
3529<h5>Overview:</h5>
3530<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3531 successors.</p>
3532
3533<h5>Arguments:</h5>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003534<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
Bill Wendlingc5a13612011-08-03 18:37:32 +00003535 same type as the result of any '<tt>landingpad</tt>' instruction in the same
3536 function.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003537
3538<h5>Semantics:</h5>
3539<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3540 (in-flight) exception whose unwinding was interrupted with
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003541 a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003542
3543<h5>Example:</h5>
3544<pre>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003545 resume { i8*, i32 } %exn
Bill Wendlingf891bf82011-07-31 06:30:59 +00003546</pre>
3547
3548</div>
3549
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003550<!-- _______________________________________________________________________ -->
3551
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003552<h4>
3553 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3554</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003555
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003556<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003557
3558<h5>Syntax:</h5>
3559<pre>
3560 unreachable
3561</pre>
3562
3563<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003564<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003565 instruction is used to inform the optimizer that a particular portion of the
3566 code is not reachable. This can be used to indicate that the code after a
3567 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003568
3569<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003570<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003571
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003572</div>
3573
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003574</div>
3575
Chris Lattner2f7c9632001-06-06 20:29:01 +00003576<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003577<h3>
3578 <a name="binaryops">Binary Operations</a>
3579</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003580
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003581<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003582
3583<p>Binary operators are used to do most of the computation in a program. They
3584 require two operands of the same type, execute an operation on them, and
3585 produce a single value. The operands might represent multiple data, as is
3586 the case with the <a href="#t_vector">vector</a> data type. The result value
3587 has the same type as its operands.</p>
3588
Misha Brukman76307852003-11-08 01:05:38 +00003589<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003590
Chris Lattner2f7c9632001-06-06 20:29:01 +00003591<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003592<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003593 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003594</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003595
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003596<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003597
Chris Lattner2f7c9632001-06-06 20:29:01 +00003598<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003599<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003600 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003601 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3602 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3603 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003604</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003605
Chris Lattner2f7c9632001-06-06 20:29:01 +00003606<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003607<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003608
Chris Lattner2f7c9632001-06-06 20:29:01 +00003609<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003610<p>The two arguments to the '<tt>add</tt>' instruction must
3611 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3612 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003613
Chris Lattner2f7c9632001-06-06 20:29:01 +00003614<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003615<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003616
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003617<p>If the sum has unsigned overflow, the result returned is the mathematical
3618 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003619
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003620<p>Because LLVM integers use a two's complement representation, this instruction
3621 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003622
Dan Gohman902dfff2009-07-22 22:44:56 +00003623<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3624 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3625 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00003626 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003627 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003628
Chris Lattner2f7c9632001-06-06 20:29:01 +00003629<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003630<pre>
3631 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003632</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003633
Misha Brukman76307852003-11-08 01:05:38 +00003634</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003635
Chris Lattner2f7c9632001-06-06 20:29:01 +00003636<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003637<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003638 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003639</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003640
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003641<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003642
3643<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003644<pre>
3645 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3646</pre>
3647
3648<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003649<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3650
3651<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003652<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003653 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3654 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003655
3656<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003657<p>The value produced is the floating point sum of the two operands.</p>
3658
3659<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003660<pre>
3661 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3662</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003663
Dan Gohmana5b96452009-06-04 22:49:04 +00003664</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003665
Dan Gohmana5b96452009-06-04 22:49:04 +00003666<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003667<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003668 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003669</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003670
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003671<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003672
Chris Lattner2f7c9632001-06-06 20:29:01 +00003673<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003674<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003675 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003676 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3677 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3678 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003679</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003680
Chris Lattner2f7c9632001-06-06 20:29:01 +00003681<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003682<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003683 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003684
3685<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003686 '<tt>neg</tt>' instruction present in most other intermediate
3687 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003688
Chris Lattner2f7c9632001-06-06 20:29:01 +00003689<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003690<p>The two arguments to the '<tt>sub</tt>' instruction must
3691 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3692 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003693
Chris Lattner2f7c9632001-06-06 20:29:01 +00003694<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003695<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003696
Dan Gohmana5b96452009-06-04 22:49:04 +00003697<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003698 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3699 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003700
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003701<p>Because LLVM integers use a two's complement representation, this instruction
3702 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003703
Dan Gohman902dfff2009-07-22 22:44:56 +00003704<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3705 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3706 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00003707 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003708 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003709
Chris Lattner2f7c9632001-06-06 20:29:01 +00003710<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003711<pre>
3712 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003713 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003714</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003715
Misha Brukman76307852003-11-08 01:05:38 +00003716</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003717
Chris Lattner2f7c9632001-06-06 20:29:01 +00003718<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003719<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003720 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003721</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003722
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003723<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003724
3725<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003726<pre>
3727 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3728</pre>
3729
3730<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003731<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003732 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003733
3734<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003735 '<tt>fneg</tt>' instruction present in most other intermediate
3736 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003737
3738<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003739<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003740 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3741 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003742
3743<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003744<p>The value produced is the floating point difference of the two operands.</p>
3745
3746<h5>Example:</h5>
3747<pre>
3748 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3749 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3750</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003751
Dan Gohmana5b96452009-06-04 22:49:04 +00003752</div>
3753
3754<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003755<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003756 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003757</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003758
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003759<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003760
Chris Lattner2f7c9632001-06-06 20:29:01 +00003761<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003762<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003763 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003764 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3765 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3766 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003767</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003768
Chris Lattner2f7c9632001-06-06 20:29:01 +00003769<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003770<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003771
Chris Lattner2f7c9632001-06-06 20:29:01 +00003772<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003773<p>The two arguments to the '<tt>mul</tt>' instruction must
3774 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3775 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003776
Chris Lattner2f7c9632001-06-06 20:29:01 +00003777<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003778<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003779
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003780<p>If the result of the multiplication has unsigned overflow, the result
3781 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3782 width of the result.</p>
3783
3784<p>Because LLVM integers use a two's complement representation, and the result
3785 is the same width as the operands, this instruction returns the correct
3786 result for both signed and unsigned integers. If a full product
3787 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3788 be sign-extended or zero-extended as appropriate to the width of the full
3789 product.</p>
3790
Dan Gohman902dfff2009-07-22 22:44:56 +00003791<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3792 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3793 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00003794 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003795 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003796
Chris Lattner2f7c9632001-06-06 20:29:01 +00003797<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003798<pre>
3799 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003800</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003801
Misha Brukman76307852003-11-08 01:05:38 +00003802</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003803
Chris Lattner2f7c9632001-06-06 20:29:01 +00003804<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003805<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003806 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003807</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003808
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003809<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003810
3811<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003812<pre>
3813 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003814</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003815
Dan Gohmana5b96452009-06-04 22:49:04 +00003816<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003817<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003818
3819<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003820<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003821 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3822 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003823
3824<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003825<p>The value produced is the floating point product of the two operands.</p>
3826
3827<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003828<pre>
3829 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003830</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003831
Dan Gohmana5b96452009-06-04 22:49:04 +00003832</div>
3833
3834<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003835<h4>
3836 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3837</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003838
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003839<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003840
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003841<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00003843 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3844 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003845</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003846
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003847<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003848<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003849
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003850<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003851<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003852 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3853 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003854
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003855<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003856<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003857
Chris Lattner2f2427e2008-01-28 00:36:27 +00003858<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003859 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3860
Chris Lattner2f2427e2008-01-28 00:36:27 +00003861<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003862
Chris Lattner35315d02011-02-06 21:44:57 +00003863<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00003864 <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a
Chris Lattner35315d02011-02-06 21:44:57 +00003865 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3866
3867
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003868<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003869<pre>
3870 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003871</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003872
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003873</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003874
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003875<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003876<h4>
3877 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3878</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003879
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003880<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003881
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003882<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003883<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003884 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003885 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003886</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003887
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003888<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003889<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003890
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003891<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003892<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003893 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3894 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003895
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003896<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003897<p>The value produced is the signed integer quotient of the two operands rounded
3898 towards zero.</p>
3899
Chris Lattner2f2427e2008-01-28 00:36:27 +00003900<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003901 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3902
Chris Lattner2f2427e2008-01-28 00:36:27 +00003903<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003904 undefined behavior; this is a rare case, but can occur, for example, by doing
3905 a 32-bit division of -2147483648 by -1.</p>
3906
Dan Gohman71dfd782009-07-22 00:04:19 +00003907<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00003908 <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00003909 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003910
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003911<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003912<pre>
3913 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003914</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003915
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003916</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003917
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003918<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003919<h4>
3920 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3921</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003922
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003923<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003924
Chris Lattner2f7c9632001-06-06 20:29:01 +00003925<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003926<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003927 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003928</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003929
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003930<h5>Overview:</h5>
3931<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003932
Chris Lattner48b383b02003-11-25 01:02:51 +00003933<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003934<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003935 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3936 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003937
Chris Lattner48b383b02003-11-25 01:02:51 +00003938<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003939<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003940
Chris Lattner48b383b02003-11-25 01:02:51 +00003941<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003942<pre>
3943 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003944</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003945
Chris Lattner48b383b02003-11-25 01:02:51 +00003946</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003947
Chris Lattner48b383b02003-11-25 01:02:51 +00003948<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003949<h4>
3950 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3951</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003952
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003953<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003954
Reid Spencer7eb55b32006-11-02 01:53:59 +00003955<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003956<pre>
3957 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003958</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003959
Reid Spencer7eb55b32006-11-02 01:53:59 +00003960<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003961<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3962 division of its two arguments.</p>
3963
Reid Spencer7eb55b32006-11-02 01:53:59 +00003964<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003965<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003966 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3967 values. Both arguments must have identical types.</p>
3968
Reid Spencer7eb55b32006-11-02 01:53:59 +00003969<h5>Semantics:</h5>
3970<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003971 This instruction always performs an unsigned division to get the
3972 remainder.</p>
3973
Chris Lattner2f2427e2008-01-28 00:36:27 +00003974<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003975 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3976
Chris Lattner2f2427e2008-01-28 00:36:27 +00003977<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003978
Reid Spencer7eb55b32006-11-02 01:53:59 +00003979<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003980<pre>
3981 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003982</pre>
3983
3984</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003985
Reid Spencer7eb55b32006-11-02 01:53:59 +00003986<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003987<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003988 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003989</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003990
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003991<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003992
Chris Lattner48b383b02003-11-25 01:02:51 +00003993<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003994<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003995 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003996</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003997
Chris Lattner48b383b02003-11-25 01:02:51 +00003998<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003999<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
4000 division of its two operands. This instruction can also take
4001 <a href="#t_vector">vector</a> versions of the values in which case the
4002 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00004003
Chris Lattner48b383b02003-11-25 01:02:51 +00004004<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004005<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004006 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4007 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004008
Chris Lattner48b383b02003-11-25 01:02:51 +00004009<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004010<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sands2769c6e2011-03-07 09:12:24 +00004011 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
4012 <i>modulo</i> operator (where the result is either zero or has the same sign
4013 as the divisor, <tt>op2</tt>) of a value.
4014 For more information about the difference,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004015 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
4016 Math Forum</a>. For a table of how this is implemented in various languages,
4017 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
4018 Wikipedia: modulo operation</a>.</p>
4019
Chris Lattner2f2427e2008-01-28 00:36:27 +00004020<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004021 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
4022
Chris Lattner2f2427e2008-01-28 00:36:27 +00004023<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004024 Overflow also leads to undefined behavior; this is a rare case, but can
4025 occur, for example, by taking the remainder of a 32-bit division of
4026 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
4027 lets srem be implemented using instructions that return both the result of
4028 the division and the remainder.)</p>
4029
Chris Lattner48b383b02003-11-25 01:02:51 +00004030<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004031<pre>
4032 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004033</pre>
4034
4035</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004036
Reid Spencer7eb55b32006-11-02 01:53:59 +00004037<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004038<h4>
4039 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
4040</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004041
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004042<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004043
Reid Spencer7eb55b32006-11-02 01:53:59 +00004044<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004045<pre>
4046 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004047</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004048
Reid Spencer7eb55b32006-11-02 01:53:59 +00004049<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004050<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
4051 its two operands.</p>
4052
Reid Spencer7eb55b32006-11-02 01:53:59 +00004053<h5>Arguments:</h5>
4054<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004055 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4056 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004057
Reid Spencer7eb55b32006-11-02 01:53:59 +00004058<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004059<p>This instruction returns the <i>remainder</i> of a division. The remainder
4060 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004061
Reid Spencer7eb55b32006-11-02 01:53:59 +00004062<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004063<pre>
4064 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004065</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004066
Misha Brukman76307852003-11-08 01:05:38 +00004067</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00004068
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004069</div>
4070
Reid Spencer2ab01932007-02-02 13:57:07 +00004071<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004072<h3>
4073 <a name="bitwiseops">Bitwise Binary Operations</a>
4074</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004075
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004076<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004077
4078<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4079 program. They are generally very efficient instructions and can commonly be
4080 strength reduced from other instructions. They require two operands of the
4081 same type, execute an operation on them, and produce a single value. The
4082 resulting value is the same type as its operands.</p>
4083
Reid Spencer04e259b2007-01-31 21:39:12 +00004084<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004085<h4>
4086 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4087</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004088
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004089<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004090
Reid Spencer04e259b2007-01-31 21:39:12 +00004091<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004092<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004093 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4094 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4095 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4096 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004097</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004098
Reid Spencer04e259b2007-01-31 21:39:12 +00004099<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004100<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4101 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004102
Reid Spencer04e259b2007-01-31 21:39:12 +00004103<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004104<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4105 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4106 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00004107
Reid Spencer04e259b2007-01-31 21:39:12 +00004108<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004109<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4110 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
4111 is (statically or dynamically) negative or equal to or larger than the number
4112 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4113 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4114 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004115
Chris Lattnera676c0f2011-02-07 16:40:21 +00004116<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
Dan Gohman9a2a0932011-12-06 03:18:47 +00004117 <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00004118 the <tt>nsw</tt> keyword is present, then the shift produces a
Dan Gohman9a2a0932011-12-06 03:18:47 +00004119 <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree
Chris Lattnera676c0f2011-02-07 16:40:21 +00004120 with the resultant sign bit. As such, NUW/NSW have the same semantics as
4121 they would if the shift were expressed as a mul instruction with the same
4122 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4123
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004124<h5>Example:</h5>
4125<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00004126 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
4127 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
4128 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004129 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004130 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004131</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004132
Reid Spencer04e259b2007-01-31 21:39:12 +00004133</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004134
Reid Spencer04e259b2007-01-31 21:39:12 +00004135<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004136<h4>
4137 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4138</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004139
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004140<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004141
Reid Spencer04e259b2007-01-31 21:39:12 +00004142<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004143<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004144 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4145 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004146</pre>
4147
4148<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004149<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4150 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004151
4152<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004153<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004154 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4155 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004156
4157<h5>Semantics:</h5>
4158<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004159 significant bits of the result will be filled with zero bits after the shift.
4160 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4161 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4162 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4163 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004164
Chris Lattnera676c0f2011-02-07 16:40:21 +00004165<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004166 <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
Chris Lattnera676c0f2011-02-07 16:40:21 +00004167 shifted out are non-zero.</p>
4168
4169
Reid Spencer04e259b2007-01-31 21:39:12 +00004170<h5>Example:</h5>
4171<pre>
4172 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
4173 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
4174 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
4175 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004176 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004177 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004178</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004179
Reid Spencer04e259b2007-01-31 21:39:12 +00004180</div>
4181
Reid Spencer2ab01932007-02-02 13:57:07 +00004182<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004183<h4>
4184 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4185</h4>
4186
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004187<div>
Reid Spencer04e259b2007-01-31 21:39:12 +00004188
4189<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004190<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004191 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4192 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004193</pre>
4194
4195<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004196<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4197 operand shifted to the right a specified number of bits with sign
4198 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004199
4200<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004201<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004202 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4203 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004204
4205<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004206<p>This instruction always performs an arithmetic shift right operation, The
4207 most significant bits of the result will be filled with the sign bit
4208 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
4209 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4210 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4211 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004212
Chris Lattnera676c0f2011-02-07 16:40:21 +00004213<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004214 <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
Chris Lattnera676c0f2011-02-07 16:40:21 +00004215 shifted out are non-zero.</p>
4216
Reid Spencer04e259b2007-01-31 21:39:12 +00004217<h5>Example:</h5>
4218<pre>
4219 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
4220 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
4221 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
4222 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004223 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004224 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004225</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004226
Reid Spencer04e259b2007-01-31 21:39:12 +00004227</div>
4228
Chris Lattner2f7c9632001-06-06 20:29:01 +00004229<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004230<h4>
4231 <a name="i_and">'<tt>and</tt>' Instruction</a>
4232</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004233
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004234<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004235
Chris Lattner2f7c9632001-06-06 20:29:01 +00004236<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004237<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004238 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004239</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004240
Chris Lattner2f7c9632001-06-06 20:29:01 +00004241<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004242<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4243 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004244
Chris Lattner2f7c9632001-06-06 20:29:01 +00004245<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004246<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004247 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4248 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004249
Chris Lattner2f7c9632001-06-06 20:29:01 +00004250<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004251<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004252
Misha Brukman76307852003-11-08 01:05:38 +00004253<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00004254 <tbody>
4255 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004256 <th>In0</th>
4257 <th>In1</th>
4258 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004259 </tr>
4260 <tr>
4261 <td>0</td>
4262 <td>0</td>
4263 <td>0</td>
4264 </tr>
4265 <tr>
4266 <td>0</td>
4267 <td>1</td>
4268 <td>0</td>
4269 </tr>
4270 <tr>
4271 <td>1</td>
4272 <td>0</td>
4273 <td>0</td>
4274 </tr>
4275 <tr>
4276 <td>1</td>
4277 <td>1</td>
4278 <td>1</td>
4279 </tr>
4280 </tbody>
4281</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004282
Chris Lattner2f7c9632001-06-06 20:29:01 +00004283<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004284<pre>
4285 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004286 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
4287 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004288</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004289</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004290<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004291<h4>
4292 <a name="i_or">'<tt>or</tt>' Instruction</a>
4293</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004294
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004295<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004296
4297<h5>Syntax:</h5>
4298<pre>
4299 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4300</pre>
4301
4302<h5>Overview:</h5>
4303<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4304 two operands.</p>
4305
4306<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004307<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004308 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4309 values. Both arguments must have identical types.</p>
4310
Chris Lattner2f7c9632001-06-06 20:29:01 +00004311<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004312<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004313
Chris Lattner48b383b02003-11-25 01:02:51 +00004314<table border="1" cellspacing="0" cellpadding="4">
4315 <tbody>
4316 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004317 <th>In0</th>
4318 <th>In1</th>
4319 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004320 </tr>
4321 <tr>
4322 <td>0</td>
4323 <td>0</td>
4324 <td>0</td>
4325 </tr>
4326 <tr>
4327 <td>0</td>
4328 <td>1</td>
4329 <td>1</td>
4330 </tr>
4331 <tr>
4332 <td>1</td>
4333 <td>0</td>
4334 <td>1</td>
4335 </tr>
4336 <tr>
4337 <td>1</td>
4338 <td>1</td>
4339 <td>1</td>
4340 </tr>
4341 </tbody>
4342</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004343
Chris Lattner2f7c9632001-06-06 20:29:01 +00004344<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004345<pre>
4346 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004347 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4348 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004349</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004350
Misha Brukman76307852003-11-08 01:05:38 +00004351</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004352
Chris Lattner2f7c9632001-06-06 20:29:01 +00004353<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004354<h4>
4355 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4356</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004357
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004358<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004359
Chris Lattner2f7c9632001-06-06 20:29:01 +00004360<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004361<pre>
4362 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004363</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004364
Chris Lattner2f7c9632001-06-06 20:29:01 +00004365<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004366<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4367 its two operands. The <tt>xor</tt> is used to implement the "one's
4368 complement" operation, which is the "~" operator in C.</p>
4369
Chris Lattner2f7c9632001-06-06 20:29:01 +00004370<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004371<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004372 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4373 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004374
Chris Lattner2f7c9632001-06-06 20:29:01 +00004375<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004376<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004377
Chris Lattner48b383b02003-11-25 01:02:51 +00004378<table border="1" cellspacing="0" cellpadding="4">
4379 <tbody>
4380 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004381 <th>In0</th>
4382 <th>In1</th>
4383 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004384 </tr>
4385 <tr>
4386 <td>0</td>
4387 <td>0</td>
4388 <td>0</td>
4389 </tr>
4390 <tr>
4391 <td>0</td>
4392 <td>1</td>
4393 <td>1</td>
4394 </tr>
4395 <tr>
4396 <td>1</td>
4397 <td>0</td>
4398 <td>1</td>
4399 </tr>
4400 <tr>
4401 <td>1</td>
4402 <td>1</td>
4403 <td>0</td>
4404 </tr>
4405 </tbody>
4406</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004407
Chris Lattner2f7c9632001-06-06 20:29:01 +00004408<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004409<pre>
4410 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004411 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4412 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4413 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004414</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004415
Misha Brukman76307852003-11-08 01:05:38 +00004416</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004417
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004418</div>
4419
Chris Lattner2f7c9632001-06-06 20:29:01 +00004420<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004421<h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004422 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004423</h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004424
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004425<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004426
4427<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004428 target-independent manner. These instructions cover the element-access and
4429 vector-specific operations needed to process vectors effectively. While LLVM
4430 does directly support these vector operations, many sophisticated algorithms
4431 will want to use target-specific intrinsics to take full advantage of a
4432 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004433
Chris Lattnerce83bff2006-04-08 23:07:04 +00004434<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004435<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004436 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004437</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004438
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004439<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004440
4441<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004442<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004443 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004444</pre>
4445
4446<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004447<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4448 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004449
4450
4451<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004452<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4453 of <a href="#t_vector">vector</a> type. The second operand is an index
4454 indicating the position from which to extract the element. The index may be
4455 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004456
4457<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004458<p>The result is a scalar of the same type as the element type of
4459 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4460 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4461 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004462
4463<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004464<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004465 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004466</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004467
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004468</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004469
4470<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004471<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004472 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004473</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004474
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004475<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004476
4477<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004478<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004479 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004480</pre>
4481
4482<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004483<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4484 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004485
4486<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004487<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4488 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4489 whose type must equal the element type of the first operand. The third
4490 operand is an index indicating the position at which to insert the value.
4491 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004492
4493<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004494<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4495 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4496 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4497 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004498
4499<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004500<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004501 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004502</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004503
Chris Lattnerce83bff2006-04-08 23:07:04 +00004504</div>
4505
4506<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004507<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004508 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004509</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004510
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004511<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004512
4513<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004514<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004515 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004516</pre>
4517
4518<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004519<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4520 from two input vectors, returning a vector with the same element type as the
4521 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004522
4523<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004524<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4525 with types that match each other. The third argument is a shuffle mask whose
4526 element type is always 'i32'. The result of the instruction is a vector
4527 whose length is the same as the shuffle mask and whose element type is the
4528 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004529
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004530<p>The shuffle mask operand is required to be a constant vector with either
4531 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004532
4533<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004534<p>The elements of the two input vectors are numbered from left to right across
4535 both of the vectors. The shuffle mask operand specifies, for each element of
4536 the result vector, which element of the two input vectors the result element
4537 gets. The element selector may be undef (meaning "don't care") and the
4538 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004539
4540<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004541<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004542 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004543 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004544 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004545 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004546 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004547 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004548 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004549 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004550</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004551
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004552</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004553
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004554</div>
4555
Chris Lattnerce83bff2006-04-08 23:07:04 +00004556<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004557<h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004558 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004559</h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004560
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004561<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004562
Chris Lattner392be582010-02-12 20:49:41 +00004563<p>LLVM supports several instructions for working with
4564 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004565
Dan Gohmanb9d66602008-05-12 23:51:09 +00004566<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004567<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004568 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004569</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004570
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004571<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004572
4573<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004574<pre>
4575 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4576</pre>
4577
4578<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004579<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4580 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004581
4582<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004583<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004584 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004585 <a href="#t_array">array</a> type. The operands are constant indices to
4586 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004587 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004588 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4589 <ul>
4590 <li>Since the value being indexed is not a pointer, the first index is
4591 omitted and assumed to be zero.</li>
4592 <li>At least one index must be specified.</li>
4593 <li>Not only struct indices but also array indices must be in
4594 bounds.</li>
4595 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004596
4597<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004598<p>The result is the value at the position in the aggregate specified by the
4599 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004600
4601<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004602<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004603 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004604</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004605
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004606</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004607
4608<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004609<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004610 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004611</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004612
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004613<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004614
4615<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004616<pre>
Bill Wendlingf6a91cf2011-07-26 20:42:28 +00004617 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}* <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004618</pre>
4619
4620<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004621<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4622 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004623
4624<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004625<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004626 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004627 <a href="#t_array">array</a> type. The second operand is a first-class
4628 value to insert. The following operands are constant indices indicating
4629 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004630 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004631 value to insert must have the same type as the value identified by the
4632 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004633
4634<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004635<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4636 that of <tt>val</tt> except that the value at the position specified by the
4637 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004638
4639<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004640<pre>
Chris Lattnerc2e85402011-05-22 07:18:08 +00004641 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4642 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4643 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004644</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004645
Dan Gohmanb9d66602008-05-12 23:51:09 +00004646</div>
4647
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004648</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004649
4650<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004651<h3>
Chris Lattner6ab66722006-08-15 00:45:58 +00004652 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004653</h3>
Chris Lattner54611b42005-11-06 08:02:57 +00004654
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004655<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004656
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004657<p>A key design point of an SSA-based representation is how it represents
4658 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004659 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004660 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004661
Chris Lattner2f7c9632001-06-06 20:29:01 +00004662<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004663<h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004664 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004665</h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004666
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004667<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004668
Chris Lattner2f7c9632001-06-06 20:29:01 +00004669<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004670<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004671 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004672</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004673
Chris Lattner2f7c9632001-06-06 20:29:01 +00004674<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004675<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004676 currently executing function, to be automatically released when this function
4677 returns to its caller. The object is always allocated in the generic address
4678 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004679
Chris Lattner2f7c9632001-06-06 20:29:01 +00004680<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004681<p>The '<tt>alloca</tt>' instruction
4682 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4683 runtime stack, returning a pointer of the appropriate type to the program.
4684 If "NumElements" is specified, it is the number of elements allocated,
4685 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4686 specified, the value result of the allocation is guaranteed to be aligned to
4687 at least that boundary. If not specified, or if zero, the target can choose
4688 to align the allocation on any convenient boundary compatible with the
4689 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004690
Misha Brukman76307852003-11-08 01:05:38 +00004691<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004692
Chris Lattner2f7c9632001-06-06 20:29:01 +00004693<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004694<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004695 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4696 memory is automatically released when the function returns. The
4697 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4698 variables that must have an address available. When the function returns
4699 (either with the <tt><a href="#i_ret">ret</a></tt>
4700 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4701 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004702
Chris Lattner2f7c9632001-06-06 20:29:01 +00004703<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004704<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004705 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4706 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4707 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4708 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004709</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004710
Misha Brukman76307852003-11-08 01:05:38 +00004711</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004712
Chris Lattner2f7c9632001-06-06 20:29:01 +00004713<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004714<h4>
4715 <a name="i_load">'<tt>load</tt>' Instruction</a>
4716</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004717
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004718<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004719
Chris Lattner095735d2002-05-06 03:03:22 +00004720<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004721<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004722 &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4723 &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004724 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004725</pre>
4726
Chris Lattner095735d2002-05-06 03:03:22 +00004727<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004728<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004729
Chris Lattner095735d2002-05-06 03:03:22 +00004730<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004731<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4732 from which to load. The pointer must point to
4733 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4734 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004735 number or order of execution of this <tt>load</tt> with other <a
4736 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004737
Eli Friedman59b66882011-08-09 23:02:53 +00004738<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4739 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4740 argument. The <code>release</code> and <code>acq_rel</code> orderings are
4741 not valid on <code>load</code> instructions. Atomic loads produce <a
4742 href="#memorymodel">defined</a> results when they may see multiple atomic
4743 stores. The type of the pointee must be an integer type whose bit width
4744 is a power of two greater than or equal to eight and less than or equal
4745 to a target-specific size limit. <code>align</code> must be explicitly
4746 specified on atomic loads, and the load has undefined behavior if the
4747 alignment is not set to a value which is at least the size in bytes of
4748 the pointee. <code>!nontemporal</code> does not have any defined semantics
4749 for atomic loads.</p>
4750
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004751<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004752 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004753 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004754 alignment for the target. It is the responsibility of the code emitter to
4755 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004756 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004757 produce less efficient code. An alignment of 1 is always safe.</p>
4758
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004759<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4760 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004761 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004762 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4763 and code generator that this load is not expected to be reused in the cache.
4764 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004765 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004766
Chris Lattner095735d2002-05-06 03:03:22 +00004767<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004768<p>The location of memory pointed to is loaded. If the value being loaded is of
4769 scalar type then the number of bytes read does not exceed the minimum number
4770 of bytes needed to hold all bits of the type. For example, loading an
4771 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4772 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4773 is undefined if the value was not originally written using a store of the
4774 same type.</p>
4775
Chris Lattner095735d2002-05-06 03:03:22 +00004776<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004777<pre>
4778 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4779 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004780 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004781</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004782
Misha Brukman76307852003-11-08 01:05:38 +00004783</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004784
Chris Lattner095735d2002-05-06 03:03:22 +00004785<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004786<h4>
4787 <a name="i_store">'<tt>store</tt>' Instruction</a>
4788</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004789
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004790<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004791
Chris Lattner095735d2002-05-06 03:03:22 +00004792<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004793<pre>
Bill Wendling4517fe52011-12-09 22:41:40 +00004794 store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4795 store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt; <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004796</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004797
Chris Lattner095735d2002-05-06 03:03:22 +00004798<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004799<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004800
Chris Lattner095735d2002-05-06 03:03:22 +00004801<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004802<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4803 and an address at which to store it. The type of the
4804 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4805 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004806 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4807 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4808 order of execution of this <tt>store</tt> with other <a
4809 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004810
Eli Friedman59b66882011-08-09 23:02:53 +00004811<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
4812 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4813 argument. The <code>acquire</code> and <code>acq_rel</code> orderings aren't
4814 valid on <code>store</code> instructions. Atomic loads produce <a
4815 href="#memorymodel">defined</a> results when they may see multiple atomic
4816 stores. The type of the pointee must be an integer type whose bit width
4817 is a power of two greater than or equal to eight and less than or equal
4818 to a target-specific size limit. <code>align</code> must be explicitly
4819 specified on atomic stores, and the store has undefined behavior if the
4820 alignment is not set to a value which is at least the size in bytes of
4821 the pointee. <code>!nontemporal</code> does not have any defined semantics
4822 for atomic stores.</p>
4823
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004824<p>The optional constant "align" argument specifies the alignment of the
4825 operation (that is, the alignment of the memory address). A value of 0 or an
4826 omitted "align" argument means that the operation has the preferential
4827 alignment for the target. It is the responsibility of the code emitter to
4828 ensure that the alignment information is correct. Overestimating the
4829 alignment results in an undefined behavior. Underestimating the alignment may
4830 produce less efficient code. An alignment of 1 is always safe.</p>
4831
David Greene9641d062010-02-16 20:50:18 +00004832<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00004833 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00004834 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00004835 instruction tells the optimizer and code generator that this load is
4836 not expected to be reused in the cache. The code generator may
4837 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00004838 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004839
4840
Chris Lattner48b383b02003-11-25 01:02:51 +00004841<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004842<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4843 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4844 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4845 does not exceed the minimum number of bytes needed to hold all bits of the
4846 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4847 writing a value of a type like <tt>i20</tt> with a size that is not an
4848 integral number of bytes, it is unspecified what happens to the extra bits
4849 that do not belong to the type, but they will typically be overwritten.</p>
4850
Chris Lattner095735d2002-05-06 03:03:22 +00004851<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004852<pre>
4853 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004854 store i32 3, i32* %ptr <i>; yields {void}</i>
4855 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004856</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004857
Reid Spencer443460a2006-11-09 21:15:49 +00004858</div>
4859
Chris Lattner095735d2002-05-06 03:03:22 +00004860<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004861<h4>
4862<a name="i_fence">'<tt>fence</tt>' Instruction</a>
4863</h4>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004864
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004865<div>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004866
4867<h5>Syntax:</h5>
4868<pre>
4869 fence [singlethread] &lt;ordering&gt; <i>; yields {void}</i>
4870</pre>
4871
4872<h5>Overview:</h5>
4873<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
4874between operations.</p>
4875
4876<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
4877href="#ordering">ordering</a> argument which defines what
4878<i>synchronizes-with</i> edges they add. They can only be given
4879<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
4880<code>seq_cst</code> orderings.</p>
4881
4882<h5>Semantics:</h5>
4883<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
4884semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
4885<code>acquire</code> ordering semantics if and only if there exist atomic
4886operations <var>X</var> and <var>Y</var>, both operating on some atomic object
4887<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
4888<var>X</var> modifies <var>M</var> (either directly or through some side effect
4889of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
4890<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
4891<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
4892than an explicit <code>fence</code>, one (but not both) of the atomic operations
4893<var>X</var> or <var>Y</var> might provide a <code>release</code> or
4894<code>acquire</code> (resp.) ordering constraint and still
4895<i>synchronize-with</i> the explicit <code>fence</code> and establish the
4896<i>happens-before</i> edge.</p>
4897
4898<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
4899having both <code>acquire</code> and <code>release</code> semantics specified
4900above, participates in the global program order of other <code>seq_cst</code>
4901operations and/or fences.</p>
4902
4903<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
4904specifies that the fence only synchronizes with other fences in the same
4905thread. (This is useful for interacting with signal handlers.)</p>
4906
Eli Friedmanfee02c62011-07-25 23:16:38 +00004907<h5>Example:</h5>
4908<pre>
4909 fence acquire <i>; yields {void}</i>
4910 fence singlethread seq_cst <i>; yields {void}</i>
4911</pre>
4912
4913</div>
4914
4915<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004916<h4>
4917<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
4918</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004919
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004920<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004921
4922<h5>Syntax:</h5>
4923<pre>
Bill Wendling4517fe52011-12-09 22:41:40 +00004924 cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004925</pre>
4926
4927<h5>Overview:</h5>
4928<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
4929It loads a value in memory and compares it to a given value. If they are
4930equal, it stores a new value into the memory.</p>
4931
4932<h5>Arguments:</h5>
4933<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
4934address to operate on, a value to compare to the value currently be at that
4935address, and a new value to place at that address if the compared values are
4936equal. The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
4937bit width is a power of two greater than or equal to eight and less than
4938or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
4939'<var>&lt;new&gt;</var>' must have the same type, and the type of
4940'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
4941<code>cmpxchg</code> is marked as <code>volatile</code>, then the
4942optimizer is not allowed to modify the number or order of execution
4943of this <code>cmpxchg</code> with other <a href="#volatile">volatile
4944operations</a>.</p>
4945
4946<!-- FIXME: Extend allowed types. -->
4947
4948<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
4949<code>cmpxchg</code> synchronizes with other atomic operations.</p>
4950
4951<p>The optional "<code>singlethread</code>" argument declares that the
4952<code>cmpxchg</code> is only atomic with respect to code (usually signal
4953handlers) running in the same thread as the <code>cmpxchg</code>. Otherwise the
4954cmpxchg is atomic with respect to all other code in the system.</p>
4955
4956<p>The pointer passed into cmpxchg must have alignment greater than or equal to
4957the size in memory of the operand.
4958
4959<h5>Semantics:</h5>
4960<p>The contents of memory at the location specified by the
4961'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
4962'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
4963'<tt>&lt;new&gt;</tt>' is written. The original value at the location
4964is returned.
4965
4966<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
4967purpose of identifying <a href="#release_sequence">release sequences</a>. A
4968failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
4969parameter determined by dropping any <code>release</code> part of the
4970<code>cmpxchg</code>'s ordering.</p>
4971
4972<!--
4973FIXME: Is compare_exchange_weak() necessary? (Consider after we've done
4974optimization work on ARM.)
4975
4976FIXME: Is a weaker ordering constraint on failure helpful in practice?
4977-->
4978
4979<h5>Example:</h5>
4980<pre>
4981entry:
Bill Wendling4517fe52011-12-09 22:41:40 +00004982 %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered <i>; yields {i32}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004983 <a href="#i_br">br</a> label %loop
4984
4985loop:
4986 %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
4987 %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
Bill Wendling4517fe52011-12-09 22:41:40 +00004988 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared <i>; yields {i32}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004989 %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
4990 <a href="#i_br">br</a> i1 %success, label %done, label %loop
4991
4992done:
4993 ...
4994</pre>
4995
4996</div>
4997
4998<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004999<h4>
5000<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
5001</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005002
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005003<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005004
5005<h5>Syntax:</h5>
5006<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00005007 atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005008</pre>
5009
5010<h5>Overview:</h5>
5011<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
5012
5013<h5>Arguments:</h5>
5014<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
5015operation to apply, an address whose value to modify, an argument to the
5016operation. The operation must be one of the following keywords:</p>
5017<ul>
5018 <li>xchg</li>
5019 <li>add</li>
5020 <li>sub</li>
5021 <li>and</li>
5022 <li>nand</li>
5023 <li>or</li>
5024 <li>xor</li>
5025 <li>max</li>
5026 <li>min</li>
5027 <li>umax</li>
5028 <li>umin</li>
5029</ul>
5030
5031<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
5032bit width is a power of two greater than or equal to eight and less than
5033or equal to a target-specific size limit. The type of the
5034'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
5035If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
5036optimizer is not allowed to modify the number or order of execution of this
5037<code>atomicrmw</code> with other <a href="#volatile">volatile
5038 operations</a>.</p>
5039
5040<!-- FIXME: Extend allowed types. -->
5041
5042<h5>Semantics:</h5>
5043<p>The contents of memory at the location specified by the
5044'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
5045back. The original value at the location is returned. The modification is
5046specified by the <var>operation</var> argument:</p>
5047
5048<ul>
5049 <li>xchg: <code>*ptr = val</code></li>
5050 <li>add: <code>*ptr = *ptr + val</code></li>
5051 <li>sub: <code>*ptr = *ptr - val</code></li>
5052 <li>and: <code>*ptr = *ptr &amp; val</code></li>
5053 <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
5054 <li>or: <code>*ptr = *ptr | val</code></li>
5055 <li>xor: <code>*ptr = *ptr ^ val</code></li>
5056 <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
5057 <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
5058 <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5059 <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5060</ul>
5061
5062<h5>Example:</h5>
5063<pre>
5064 %old = atomicrmw add i32* %ptr, i32 1 acquire <i>; yields {i32}</i>
5065</pre>
5066
5067</div>
5068
5069<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005070<h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005071 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005072</h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005073
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005074<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005075
Chris Lattner590645f2002-04-14 06:13:44 +00005076<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005077<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005078 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00005079 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Nadav Rotem3924cb02011-12-05 06:29:09 +00005080 &lt;result&gt; = getelementptr &lt;ptr vector&gt; ptrval, &lt;vector index type&gt; idx
Chris Lattner33fd7022004-04-05 01:30:49 +00005081</pre>
5082
Chris Lattner590645f2002-04-14 06:13:44 +00005083<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005084<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00005085 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5086 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005087
Chris Lattner590645f2002-04-14 06:13:44 +00005088<h5>Arguments:</h5>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005089<p>The first argument is always a pointer or a vector of pointers,
5090 and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00005091 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005092 elements of the aggregate object are indexed. The interpretation of each
5093 index is dependent on the type being indexed into. The first index always
5094 indexes the pointer value given as the first argument, the second index
5095 indexes a value of the type pointed to (not necessarily the value directly
5096 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00005097 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00005098 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00005099 can never be pointers, since that would require loading the pointer before
5100 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005101
5102<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00005103 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00005104 integer <b>constants</b> are allowed. When indexing into an array, pointer
5105 or vector, integers of any width are allowed, and they are not required to be
Eli Friedmand8874dc2011-08-12 23:37:55 +00005106 constant. These integers are treated as signed values where relevant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005107
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005108<p>For example, let's consider a C code fragment and how it gets compiled to
5109 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005110
Benjamin Kramer79698be2010-07-13 12:26:09 +00005111<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00005112struct RT {
5113 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00005114 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00005115 char C;
5116};
5117struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00005118 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00005119 double Y;
5120 struct RT Z;
5121};
Chris Lattner33fd7022004-04-05 01:30:49 +00005122
Chris Lattnera446f1b2007-05-29 15:43:56 +00005123int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005124 return &amp;s[1].Z.B[5][13];
5125}
Chris Lattner33fd7022004-04-05 01:30:49 +00005126</pre>
5127
Bill Wendling7ad1f362011-12-13 01:07:07 +00005128<p>The LLVM code generated by Clang is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005129
Benjamin Kramer79698be2010-07-13 12:26:09 +00005130<pre class="doc_code">
Bill Wendling7ad1f362011-12-13 01:07:07 +00005131%struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 }
5132%struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00005133
Bill Wendling7ad1f362011-12-13 01:07:07 +00005134define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005135entry:
Bill Wendling7ad1f362011-12-13 01:07:07 +00005136 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5137 ret i32* %arrayidx
Bill Wendling3716c5d2007-05-29 09:04:49 +00005138}
Chris Lattner33fd7022004-04-05 01:30:49 +00005139</pre>
5140
Chris Lattner590645f2002-04-14 06:13:44 +00005141<h5>Semantics:</h5>
Bill Wendling7ad1f362011-12-13 01:07:07 +00005142<p>In the example above, the first index is indexing into the
5143 '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a
5144 '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a
5145 structure. The second index indexes into the third element of the structure,
5146 yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>'
5147 type, another structure. The third index indexes into the second element of
5148 the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The
5149 two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>'
5150 type. The '<tt>getelementptr</tt>' instruction returns a pointer to this
5151 element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005152
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005153<p>Note that it is perfectly legal to index partially through a structure,
5154 returning a pointer to an inner element. Because of this, the LLVM code for
5155 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005156
Bill Wendling7ad1f362011-12-13 01:07:07 +00005157<pre class="doc_code">
5158define i32* @foo(%struct.ST* %s) {
5159 %t1 = getelementptr %struct.ST* %s, i32 1 <i>; yields %struct.ST*:%t1</i>
5160 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 <i>; yields %struct.RT*:%t2</i>
5161 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
5162 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
5163 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
5164 ret i32* %t5
5165}
Chris Lattnera8292f32002-05-06 22:08:29 +00005166</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00005167
Dan Gohman1639c392009-07-27 21:53:46 +00005168<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00005169 <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the
Dan Gohman57255802010-04-23 15:23:32 +00005170 base pointer is not an <i>in bounds</i> address of an allocated object,
5171 or if any of the addresses that would be formed by successive addition of
5172 the offsets implied by the indices to the base address with infinitely
Eli Friedmand8874dc2011-08-12 23:37:55 +00005173 precise signed arithmetic are not an <i>in bounds</i> address of that
5174 allocated object. The <i>in bounds</i> addresses for an allocated object
5175 are all the addresses that point into the object, plus the address one
Nadav Rotem3924cb02011-12-05 06:29:09 +00005176 byte past the end.
5177 In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword
5178 applies to each of the computations element-wise. </p>
Dan Gohman1639c392009-07-27 21:53:46 +00005179
5180<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
Eli Friedmand8874dc2011-08-12 23:37:55 +00005181 the base address with silently-wrapping two's complement arithmetic. If the
5182 offsets have a different width from the pointer, they are sign-extended or
5183 truncated to the width of the pointer. The result value of the
5184 <tt>getelementptr</tt> may be outside the object pointed to by the base
5185 pointer. The result value may not necessarily be used to access memory
5186 though, even if it happens to point into allocated storage. See the
5187 <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5188 information.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005189
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005190<p>The getelementptr instruction is often confusing. For some more insight into
5191 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00005192
Chris Lattner590645f2002-04-14 06:13:44 +00005193<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005194<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005195 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005196 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5197 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005198 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005199 <i>; yields i8*:eptr</i>
5200 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00005201 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00005202 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00005203</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005204
Nadav Rotem3924cb02011-12-05 06:29:09 +00005205<p>In cases where the pointer argument is a vector of pointers, only a
5206 single index may be used, and the number of vector elements has to be
5207 the same. For example: </p>
5208<pre class="doc_code">
5209 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5210</pre>
5211
Chris Lattner33fd7022004-04-05 01:30:49 +00005212</div>
Reid Spencer443460a2006-11-09 21:15:49 +00005213
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005214</div>
5215
Chris Lattner2f7c9632001-06-06 20:29:01 +00005216<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005217<h3>
5218 <a name="convertops">Conversion Operations</a>
5219</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005220
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005221<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005222
Reid Spencer97c5fa42006-11-08 01:18:52 +00005223<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005224 which all take a single operand and a type. They perform various bit
5225 conversions on the operand.</p>
5226
Chris Lattnera8292f32002-05-06 22:08:29 +00005227<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005228<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005229 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005230</h4>
5231
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005232<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005233
5234<h5>Syntax:</h5>
5235<pre>
5236 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5237</pre>
5238
5239<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005240<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5241 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005242
5243<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005244<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5245 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5246 of the same number of integers.
5247 The bit size of the <tt>value</tt> must be larger than
5248 the bit size of the destination type, <tt>ty2</tt>.
5249 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005250
5251<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005252<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5253 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5254 source size must be larger than the destination size, <tt>trunc</tt> cannot
5255 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005256
5257<h5>Example:</h5>
5258<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005259 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
5260 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
5261 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
5262 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005263</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005264
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005265</div>
5266
5267<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005268<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005269 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005270</h4>
5271
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005272<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005273
5274<h5>Syntax:</h5>
5275<pre>
5276 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5277</pre>
5278
5279<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005280<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005281 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005282
5283
5284<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005285<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5286 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5287 of the same number of integers.
5288 The bit size of the <tt>value</tt> must be smaller than
5289 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005290 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005291
5292<h5>Semantics:</h5>
5293<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005294 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005295
Reid Spencer07c9c682007-01-12 15:46:11 +00005296<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005297
5298<h5>Example:</h5>
5299<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005300 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005301 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005302 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005303</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005304
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005305</div>
5306
5307<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005308<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005309 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005310</h4>
5311
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005312<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005313
5314<h5>Syntax:</h5>
5315<pre>
5316 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5317</pre>
5318
5319<h5>Overview:</h5>
5320<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5321
5322<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005323<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5324 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5325 of the same number of integers.
5326 The bit size of the <tt>value</tt> must be smaller than
5327 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005328 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005329
5330<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005331<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5332 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5333 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005334
Reid Spencer36a15422007-01-12 03:35:51 +00005335<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005336
5337<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005338<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005339 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005340 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005341 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005342</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005343
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005344</div>
5345
5346<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005347<h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005348 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005349</h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005350
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005351<div>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005352
5353<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005354<pre>
5355 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5356</pre>
5357
5358<h5>Overview:</h5>
5359<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005360 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005361
5362<h5>Arguments:</h5>
5363<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005364 point</a> value to cast and a <a href="#t_floating">floating point</a> type
5365 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00005366 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005367 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005368
5369<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005370<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00005371 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005372 <a href="#t_floating">floating point</a> type. If the value cannot fit
5373 within the destination type, <tt>ty2</tt>, then the results are
5374 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005375
5376<h5>Example:</h5>
5377<pre>
5378 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
5379 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
5380</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005381
Reid Spencer2e2740d2006-11-09 21:48:10 +00005382</div>
5383
5384<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005385<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005386 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005387</h4>
5388
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005389<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005390
5391<h5>Syntax:</h5>
5392<pre>
5393 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5394</pre>
5395
5396<h5>Overview:</h5>
5397<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005398 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005399
5400<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005401<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005402 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5403 a <a href="#t_floating">floating point</a> type to cast it to. The source
5404 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005405
5406<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005407<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005408 <a href="#t_floating">floating point</a> type to a larger
5409 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5410 used to make a <i>no-op cast</i> because it always changes bits. Use
5411 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005412
5413<h5>Example:</h5>
5414<pre>
Nick Lewycky9feca672011-03-31 18:20:19 +00005415 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
5416 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005417</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005418
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005419</div>
5420
5421<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005422<h4>
Reid Spencer2eadb532007-01-21 00:29:26 +00005423 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005424</h4>
5425
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005426<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005427
5428<h5>Syntax:</h5>
5429<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005430 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005431</pre>
5432
5433<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00005434<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005435 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005436
5437<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005438<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5439 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5440 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5441 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5442 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005443
5444<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005445<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005446 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5447 towards zero) unsigned integer value. If the value cannot fit
5448 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005449
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005450<h5>Example:</h5>
5451<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005452 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005453 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005454 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005455</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005456
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005457</div>
5458
5459<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005460<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005461 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005462</h4>
5463
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005464<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005465
5466<h5>Syntax:</h5>
5467<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005468 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005469</pre>
5470
5471<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005472<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005473 <a href="#t_floating">floating point</a> <tt>value</tt> to
5474 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005475
Chris Lattnera8292f32002-05-06 22:08:29 +00005476<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005477<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5478 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5479 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5480 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5481 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005482
Chris Lattnera8292f32002-05-06 22:08:29 +00005483<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005484<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005485 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5486 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5487 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005488
Chris Lattner70de6632001-07-09 00:26:23 +00005489<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005490<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005491 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005492 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005493 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005494</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005495
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005496</div>
5497
5498<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005499<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005500 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005501</h4>
5502
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005503<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005504
5505<h5>Syntax:</h5>
5506<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005507 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005508</pre>
5509
5510<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005511<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005512 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005513
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005514<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005515<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005516 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5517 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5518 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5519 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005520
5521<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005522<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005523 integer quantity and converts it to the corresponding floating point
5524 value. If the value cannot fit in the floating point value, the results are
5525 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005526
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005527<h5>Example:</h5>
5528<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005529 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005530 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005531</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005532
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005533</div>
5534
5535<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005536<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005537 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005538</h4>
5539
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005540<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005541
5542<h5>Syntax:</h5>
5543<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005544 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005545</pre>
5546
5547<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005548<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5549 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005550
5551<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005552<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005553 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5554 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5555 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5556 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005557
5558<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005559<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5560 quantity and converts it to the corresponding floating point value. If the
5561 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005562
5563<h5>Example:</h5>
5564<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005565 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005566 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005567</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005568
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005569</div>
5570
5571<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005572<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005573 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005574</h4>
5575
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005576<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005577
5578<h5>Syntax:</h5>
5579<pre>
5580 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5581</pre>
5582
5583<h5>Overview:</h5>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005584<p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of
5585 pointers <tt>value</tt> to
5586 the integer (or vector of integers) type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005587
5588<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005589<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Nadav Rotem3924cb02011-12-05 06:29:09 +00005590 must be a a value of type <a href="#t_pointer">pointer</a> or a vector of
5591 pointers, and a type to cast it to
5592 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector
5593 of integers type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005594
5595<h5>Semantics:</h5>
5596<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005597 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5598 truncating or zero extending that value to the size of the integer type. If
5599 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5600 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5601 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5602 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005603
5604<h5>Example:</h5>
5605<pre>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005606 %X = ptrtoint i32* %P to i8 <i>; yields truncation on 32-bit architecture</i>
5607 %Y = ptrtoint i32* %P to i64 <i>; yields zero extension on 32-bit architecture</i>
5608 %Z = ptrtoint &lt;4 x i32*&gt; %P to &lt;4 x i64&gt;<i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005609</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005610
Reid Spencerb7344ff2006-11-11 21:00:47 +00005611</div>
5612
5613<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005614<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005615 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005616</h4>
5617
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005618<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005619
5620<h5>Syntax:</h5>
5621<pre>
5622 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5623</pre>
5624
5625<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005626<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5627 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005628
5629<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00005630<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005631 value to cast, and a type to cast it to, which must be a
5632 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005633
5634<h5>Semantics:</h5>
5635<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005636 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5637 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5638 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5639 than the size of a pointer then a zero extension is done. If they are the
5640 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005641
5642<h5>Example:</h5>
5643<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005644 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005645 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5646 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005647 %Z = inttoptr &lt;4 x i32&gt; %G to &lt;4 x i8*&gt;<i>; yields truncation of vector G to four pointers</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005648</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005649
Reid Spencerb7344ff2006-11-11 21:00:47 +00005650</div>
5651
5652<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005653<h4>
Reid Spencer5b950642006-11-11 23:08:07 +00005654 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005655</h4>
5656
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005657<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005658
5659<h5>Syntax:</h5>
5660<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00005661 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005662</pre>
5663
5664<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005665<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005666 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005667
5668<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005669<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5670 non-aggregate first class value, and a type to cast it to, which must also be
5671 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5672 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5673 identical. If the source type is a pointer, the destination type must also be
5674 a pointer. This instruction supports bitwise conversion of vectors to
5675 integers and to vectors of other types (as long as they have the same
5676 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005677
5678<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005679<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005680 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5681 this conversion. The conversion is done as if the <tt>value</tt> had been
Nadav Rotem3924cb02011-12-05 06:29:09 +00005682 stored to memory and read back as type <tt>ty2</tt>.
5683 Pointer (or vector of pointers) types may only be converted to other pointer
5684 (or vector of pointers) types with this instruction. To convert
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005685 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5686 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005687
5688<h5>Example:</h5>
5689<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005690 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005691 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005692 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
5693 %Z = bitcast &lt;2 x i32*&gt; %V to &lt;2 x i64*&gt; <i>; yields &lt;2 x i64*&gt;</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005694</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005695
Misha Brukman76307852003-11-08 01:05:38 +00005696</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005697
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005698</div>
5699
Reid Spencer97c5fa42006-11-08 01:18:52 +00005700<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005701<h3>
5702 <a name="otherops">Other Operations</a>
5703</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005704
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005705<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005706
5707<p>The instructions in this category are the "miscellaneous" instructions, which
5708 defy better classification.</p>
5709
Reid Spencerc828a0e2006-11-18 21:50:54 +00005710<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005711<h4>
5712 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5713</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005714
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005715<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005716
Reid Spencerc828a0e2006-11-18 21:50:54 +00005717<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005718<pre>
5719 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005720</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005721
Reid Spencerc828a0e2006-11-18 21:50:54 +00005722<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005723<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
Nadav Rotem3924cb02011-12-05 06:29:09 +00005724 boolean values based on comparison of its two integer, integer vector,
5725 pointer, or pointer vector operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005726
Reid Spencerc828a0e2006-11-18 21:50:54 +00005727<h5>Arguments:</h5>
5728<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005729 the condition code indicating the kind of comparison to perform. It is not a
5730 value, just a keyword. The possible condition code are:</p>
5731
Reid Spencerc828a0e2006-11-18 21:50:54 +00005732<ol>
5733 <li><tt>eq</tt>: equal</li>
5734 <li><tt>ne</tt>: not equal </li>
5735 <li><tt>ugt</tt>: unsigned greater than</li>
5736 <li><tt>uge</tt>: unsigned greater or equal</li>
5737 <li><tt>ult</tt>: unsigned less than</li>
5738 <li><tt>ule</tt>: unsigned less or equal</li>
5739 <li><tt>sgt</tt>: signed greater than</li>
5740 <li><tt>sge</tt>: signed greater or equal</li>
5741 <li><tt>slt</tt>: signed less than</li>
5742 <li><tt>sle</tt>: signed less or equal</li>
5743</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005744
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005745<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005746 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5747 typed. They must also be identical types.</p>
5748
Reid Spencerc828a0e2006-11-18 21:50:54 +00005749<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005750<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5751 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005752 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005753 result, as follows:</p>
5754
Reid Spencerc828a0e2006-11-18 21:50:54 +00005755<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005756 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005757 <tt>false</tt> otherwise. No sign interpretation is necessary or
5758 performed.</li>
5759
Eric Christopher455c5772009-12-05 02:46:03 +00005760 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005761 <tt>false</tt> otherwise. No sign interpretation is necessary or
5762 performed.</li>
5763
Reid Spencerc828a0e2006-11-18 21:50:54 +00005764 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005765 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5766
Reid Spencerc828a0e2006-11-18 21:50:54 +00005767 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005768 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5769 to <tt>op2</tt>.</li>
5770
Reid Spencerc828a0e2006-11-18 21:50:54 +00005771 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005772 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5773
Reid Spencerc828a0e2006-11-18 21:50:54 +00005774 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005775 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5776
Reid Spencerc828a0e2006-11-18 21:50:54 +00005777 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005778 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5779
Reid Spencerc828a0e2006-11-18 21:50:54 +00005780 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005781 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5782 to <tt>op2</tt>.</li>
5783
Reid Spencerc828a0e2006-11-18 21:50:54 +00005784 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005785 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5786
Reid Spencerc828a0e2006-11-18 21:50:54 +00005787 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005788 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005789</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005790
Reid Spencerc828a0e2006-11-18 21:50:54 +00005791<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005792 values are compared as if they were integers.</p>
5793
5794<p>If the operands are integer vectors, then they are compared element by
5795 element. The result is an <tt>i1</tt> vector with the same number of elements
5796 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005797
5798<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005799<pre>
5800 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005801 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5802 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5803 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5804 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5805 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005806</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005807
5808<p>Note that the code generator does not yet support vector types with
5809 the <tt>icmp</tt> instruction.</p>
5810
Reid Spencerc828a0e2006-11-18 21:50:54 +00005811</div>
5812
5813<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005814<h4>
5815 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5816</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005817
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005818<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005819
Reid Spencerc828a0e2006-11-18 21:50:54 +00005820<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005821<pre>
5822 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005823</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005824
Reid Spencerc828a0e2006-11-18 21:50:54 +00005825<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005826<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5827 values based on comparison of its operands.</p>
5828
5829<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005830(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005831
5832<p>If the operands are floating point vectors, then the result type is a vector
5833 of boolean with the same number of elements as the operands being
5834 compared.</p>
5835
Reid Spencerc828a0e2006-11-18 21:50:54 +00005836<h5>Arguments:</h5>
5837<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005838 the condition code indicating the kind of comparison to perform. It is not a
5839 value, just a keyword. The possible condition code are:</p>
5840
Reid Spencerc828a0e2006-11-18 21:50:54 +00005841<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00005842 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005843 <li><tt>oeq</tt>: ordered and equal</li>
5844 <li><tt>ogt</tt>: ordered and greater than </li>
5845 <li><tt>oge</tt>: ordered and greater than or equal</li>
5846 <li><tt>olt</tt>: ordered and less than </li>
5847 <li><tt>ole</tt>: ordered and less than or equal</li>
5848 <li><tt>one</tt>: ordered and not equal</li>
5849 <li><tt>ord</tt>: ordered (no nans)</li>
5850 <li><tt>ueq</tt>: unordered or equal</li>
5851 <li><tt>ugt</tt>: unordered or greater than </li>
5852 <li><tt>uge</tt>: unordered or greater than or equal</li>
5853 <li><tt>ult</tt>: unordered or less than </li>
5854 <li><tt>ule</tt>: unordered or less than or equal</li>
5855 <li><tt>une</tt>: unordered or not equal</li>
5856 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00005857 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005858</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005859
Jeff Cohen222a8a42007-04-29 01:07:00 +00005860<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005861 <i>unordered</i> means that either operand may be a QNAN.</p>
5862
5863<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5864 a <a href="#t_floating">floating point</a> type or
5865 a <a href="#t_vector">vector</a> of floating point type. They must have
5866 identical types.</p>
5867
Reid Spencerc828a0e2006-11-18 21:50:54 +00005868<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00005869<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005870 according to the condition code given as <tt>cond</tt>. If the operands are
5871 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005872 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005873 follows:</p>
5874
Reid Spencerc828a0e2006-11-18 21:50:54 +00005875<ol>
5876 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005877
Eric Christopher455c5772009-12-05 02:46:03 +00005878 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005879 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5880
Reid Spencerf69acf32006-11-19 03:00:14 +00005881 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00005882 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005883
Eric Christopher455c5772009-12-05 02:46:03 +00005884 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005885 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5886
Eric Christopher455c5772009-12-05 02:46:03 +00005887 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005888 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5889
Eric Christopher455c5772009-12-05 02:46:03 +00005890 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005891 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5892
Eric Christopher455c5772009-12-05 02:46:03 +00005893 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005894 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5895
Reid Spencerf69acf32006-11-19 03:00:14 +00005896 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005897
Eric Christopher455c5772009-12-05 02:46:03 +00005898 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005899 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5900
Eric Christopher455c5772009-12-05 02:46:03 +00005901 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005902 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5903
Eric Christopher455c5772009-12-05 02:46:03 +00005904 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005905 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5906
Eric Christopher455c5772009-12-05 02:46:03 +00005907 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005908 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5909
Eric Christopher455c5772009-12-05 02:46:03 +00005910 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005911 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5912
Eric Christopher455c5772009-12-05 02:46:03 +00005913 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005914 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5915
Reid Spencerf69acf32006-11-19 03:00:14 +00005916 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005917
Reid Spencerc828a0e2006-11-18 21:50:54 +00005918 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5919</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005920
5921<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005922<pre>
5923 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00005924 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5925 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5926 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005927</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005928
5929<p>Note that the code generator does not yet support vector types with
5930 the <tt>fcmp</tt> instruction.</p>
5931
Reid Spencerc828a0e2006-11-18 21:50:54 +00005932</div>
5933
Reid Spencer97c5fa42006-11-08 01:18:52 +00005934<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005935<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005936 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005937</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005938
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005939<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005940
Reid Spencer97c5fa42006-11-08 01:18:52 +00005941<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005942<pre>
5943 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5944</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005945
Reid Spencer97c5fa42006-11-08 01:18:52 +00005946<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005947<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5948 SSA graph representing the function.</p>
5949
Reid Spencer97c5fa42006-11-08 01:18:52 +00005950<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005951<p>The type of the incoming values is specified with the first type field. After
5952 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5953 one pair for each predecessor basic block of the current block. Only values
5954 of <a href="#t_firstclass">first class</a> type may be used as the value
5955 arguments to the PHI node. Only labels may be used as the label
5956 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005957
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005958<p>There must be no non-phi instructions between the start of a basic block and
5959 the PHI instructions: i.e. PHI instructions must be first in a basic
5960 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005961
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005962<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5963 occur on the edge from the corresponding predecessor block to the current
5964 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5965 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005966
Reid Spencer97c5fa42006-11-08 01:18:52 +00005967<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005968<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005969 specified by the pair corresponding to the predecessor basic block that
5970 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005971
Reid Spencer97c5fa42006-11-08 01:18:52 +00005972<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005973<pre>
5974Loop: ; Infinite loop that counts from 0 on up...
5975 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5976 %nextindvar = add i32 %indvar, 1
5977 br label %Loop
5978</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005979
Reid Spencer97c5fa42006-11-08 01:18:52 +00005980</div>
5981
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005982<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005983<h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005984 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005985</h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005986
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005987<div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005988
5989<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005990<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005991 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5992
Dan Gohmanef9462f2008-10-14 16:51:45 +00005993 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005994</pre>
5995
5996<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005997<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5998 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005999
6000
6001<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006002<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
6003 values indicating the condition, and two values of the
6004 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
6005 vectors and the condition is a scalar, then entire vectors are selected, not
6006 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006007
6008<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006009<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
6010 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006011
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006012<p>If the condition is a vector of i1, then the value arguments must be vectors
6013 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006014
6015<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006016<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00006017 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006018</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00006019
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006020</div>
6021
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00006022<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006023<h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00006024 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006025</h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00006026
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006027<div>
Chris Lattnere23c1392005-05-06 05:47:36 +00006028
Chris Lattner2f7c9632001-06-06 20:29:01 +00006029<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006030<pre>
Devang Patel02256232008-10-07 17:48:33 +00006031 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00006032</pre>
6033
Chris Lattner2f7c9632001-06-06 20:29:01 +00006034<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006035<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006036
Chris Lattner2f7c9632001-06-06 20:29:01 +00006037<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006038<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006039
Chris Lattnera8292f32002-05-06 22:08:29 +00006040<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006041 <li>The optional "tail" marker indicates that the callee function does not
6042 access any allocas or varargs in the caller. Note that calls may be
6043 marked "tail" even if they do not occur before
6044 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
6045 present, the function call is eligible for tail call optimization,
6046 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00006047 optimized into a jump</a>. The code generator may optimize calls marked
6048 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
6049 sibling call optimization</a> when the caller and callee have
6050 matching signatures, or 2) forced tail call optimization when the
6051 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006052 <ul>
6053 <li>Caller and callee both have the calling
6054 convention <tt>fastcc</tt>.</li>
6055 <li>The call is in tail position (ret immediately follows call and ret
6056 uses value of call or is void).</li>
6057 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00006058 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006059 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
6060 constraints are met.</a></li>
6061 </ul>
6062 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006063
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006064 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
6065 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006066 defaults to using C calling conventions. The calling convention of the
6067 call must match the calling convention of the target function, or else the
6068 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006069
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006070 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
6071 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
6072 '<tt>inreg</tt>' attributes are valid here.</li>
6073
6074 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
6075 type of the return value. Functions that return no value are marked
6076 <tt><a href="#t_void">void</a></tt>.</li>
6077
6078 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
6079 being invoked. The argument types must match the types implied by this
6080 signature. This type can be omitted if the function is not varargs and if
6081 the function type does not return a pointer to a function.</li>
6082
6083 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
6084 be invoked. In most cases, this is a direct function invocation, but
6085 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
6086 to function value.</li>
6087
6088 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00006089 signature argument types and parameter attributes. All arguments must be
6090 of <a href="#t_firstclass">first class</a> type. If the function
6091 signature indicates the function accepts a variable number of arguments,
6092 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006093
6094 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6095 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6096 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00006097</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00006098
Chris Lattner2f7c9632001-06-06 20:29:01 +00006099<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006100<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6101 a specified function, with its incoming arguments bound to the specified
6102 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6103 function, control flow continues with the instruction after the function
6104 call, and the return value of the function is bound to the result
6105 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006106
Chris Lattner2f7c9632001-06-06 20:29:01 +00006107<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006108<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00006109 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006110 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00006111 %X = tail call i32 @foo() <i>; yields i32</i>
6112 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
6113 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00006114
6115 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00006116 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00006117 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
6118 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00006119 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00006120 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00006121</pre>
6122
Dale Johannesen68f971b2009-09-24 18:38:21 +00006123<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00006124standard C99 library as being the C99 library functions, and may perform
6125optimizations or generate code for them under that assumption. This is
6126something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00006127freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00006128
Misha Brukman76307852003-11-08 01:05:38 +00006129</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006130
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006131<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006132<h4>
Chris Lattner33337472006-01-13 23:26:01 +00006133 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006134</h4>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006135
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006136<div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006137
Chris Lattner26ca62e2003-10-18 05:51:36 +00006138<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006139<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006140 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00006141</pre>
6142
Chris Lattner26ca62e2003-10-18 05:51:36 +00006143<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006144<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006145 the "variable argument" area of a function call. It is used to implement the
6146 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006147
Chris Lattner26ca62e2003-10-18 05:51:36 +00006148<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006149<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6150 argument. It returns a value of the specified argument type and increments
6151 the <tt>va_list</tt> to point to the next argument. The actual type
6152 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006153
Chris Lattner26ca62e2003-10-18 05:51:36 +00006154<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006155<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6156 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6157 to the next argument. For more information, see the variable argument
6158 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006159
6160<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006161 take a variable number of arguments, for example, the <tt>vfprintf</tt>
6162 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006163
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006164<p><tt>va_arg</tt> is an LLVM instruction instead of
6165 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6166 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006167
Chris Lattner26ca62e2003-10-18 05:51:36 +00006168<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006169<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6170
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006171<p>Note that the code generator does not yet fully support va_arg on many
6172 targets. Also, it does not currently support va_arg with aggregate types on
6173 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00006174
Misha Brukman76307852003-11-08 01:05:38 +00006175</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006176
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006177<!-- _______________________________________________________________________ -->
6178<h4>
6179 <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6180</h4>
6181
6182<div>
6183
6184<h5>Syntax:</h5>
6185<pre>
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006186 &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6187 &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
Bill Wendling49bfb122011-08-08 08:06:05 +00006188
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006189 &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
Bill Wendlingfae14752011-08-12 20:24:12 +00006190 &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006191</pre>
6192
6193<h5>Overview:</h5>
6194<p>The '<tt>landingpad</tt>' instruction is used by
6195 <a href="ExceptionHandling.html#overview">LLVM's exception handling
6196 system</a> to specify that a basic block is a landing pad &mdash; one where
6197 the exception lands, and corresponds to the code found in the
6198 <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6199 defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6200 re-entry to the function. The <tt>resultval</tt> has the
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006201 type <tt>resultty</tt>.</p>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006202
6203<h5>Arguments:</h5>
6204<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6205 function associated with the unwinding mechanism. The optional
6206 <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6207
6208<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
Bill Wendlingfae14752011-08-12 20:24:12 +00006209 or <tt>filter</tt> &mdash; and contains the global variable representing the
6210 "type" that may be caught or filtered respectively. Unlike the
6211 <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6212 its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6213 throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006214 one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6215
6216<h5>Semantics:</h5>
6217<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6218 personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6219 therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6220 calling conventions, how the personality function results are represented in
6221 LLVM IR is target specific.</p>
6222
Bill Wendling0524b8d2011-08-03 17:17:06 +00006223<p>The clauses are applied in order from top to bottom. If two
6224 <tt>landingpad</tt> instructions are merged together through inlining, the
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006225 clauses from the calling function are appended to the list of clauses.
6226 When the call stack is being unwound due to an exception being thrown, the
6227 exception is compared against each <tt>clause</tt> in turn. If it doesn't
6228 match any of the clauses, and the <tt>cleanup</tt> flag is not set, then
6229 unwinding continues further up the call stack.</p>
Bill Wendling0524b8d2011-08-03 17:17:06 +00006230
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006231<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6232
6233<ul>
6234 <li>A landing pad block is a basic block which is the unwind destination of an
6235 '<tt>invoke</tt>' instruction.</li>
6236 <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6237 first non-PHI instruction.</li>
6238 <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6239 pad block.</li>
6240 <li>A basic block that is not a landing pad block may not include a
6241 '<tt>landingpad</tt>' instruction.</li>
6242 <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6243 personality function.</li>
6244</ul>
6245
6246<h5>Example:</h5>
6247<pre>
6248 ;; A landing pad which can catch an integer.
6249 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6250 catch i8** @_ZTIi
6251 ;; A landing pad that is a cleanup.
6252 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
Bill Wendlingfae14752011-08-12 20:24:12 +00006253 cleanup
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006254 ;; A landing pad which can catch an integer and can only throw a double.
6255 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6256 catch i8** @_ZTIi
Bill Wendlingfae14752011-08-12 20:24:12 +00006257 filter [1 x i8**] [@_ZTId]
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006258</pre>
6259
6260</div>
6261
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006262</div>
6263
6264</div>
6265
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006266<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006267<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00006268<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00006269
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006270<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006271
6272<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006273 well known names and semantics and are required to follow certain
6274 restrictions. Overall, these intrinsics represent an extension mechanism for
6275 the LLVM language that does not require changing all of the transformations
6276 in LLVM when adding to the language (or the bitcode reader/writer, the
6277 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006278
John Criswell88190562005-05-16 16:17:45 +00006279<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006280 prefix is reserved in LLVM for intrinsic names; thus, function names may not
6281 begin with this prefix. Intrinsic functions must always be external
6282 functions: you cannot define the body of intrinsic functions. Intrinsic
6283 functions may only be used in call or invoke instructions: it is illegal to
6284 take the address of an intrinsic function. Additionally, because intrinsic
6285 functions are part of the LLVM language, it is required if any are added that
6286 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006287
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006288<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6289 family of functions that perform the same operation but on different data
6290 types. Because LLVM can represent over 8 million different integer types,
6291 overloading is used commonly to allow an intrinsic function to operate on any
6292 integer type. One or more of the argument types or the result type can be
6293 overloaded to accept any integer type. Argument types may also be defined as
6294 exactly matching a previous argument's type or the result type. This allows
6295 an intrinsic function which accepts multiple arguments, but needs all of them
6296 to be of the same type, to only be overloaded with respect to a single
6297 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006298
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006299<p>Overloaded intrinsics will have the names of its overloaded argument types
6300 encoded into its function name, each preceded by a period. Only those types
6301 which are overloaded result in a name suffix. Arguments whose type is matched
6302 against another type do not. For example, the <tt>llvm.ctpop</tt> function
6303 can take an integer of any width and returns an integer of exactly the same
6304 integer width. This leads to a family of functions such as
6305 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6306 %val)</tt>. Only one type, the return type, is overloaded, and only one type
6307 suffix is required. Because the argument's type is matched against the return
6308 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006309
Eric Christopher455c5772009-12-05 02:46:03 +00006310<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006311 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006312
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006313<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006314<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006315 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006316</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006317
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006318<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006319
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006320<p>Variable argument support is defined in LLVM with
6321 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6322 intrinsic functions. These functions are related to the similarly named
6323 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006324
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006325<p>All of these functions operate on arguments that use a target-specific value
6326 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
6327 not define what this type is, so all transformations should be prepared to
6328 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006329
Chris Lattner30b868d2006-05-15 17:26:46 +00006330<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006331 instruction and the variable argument handling intrinsic functions are
6332 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006333
Benjamin Kramer79698be2010-07-13 12:26:09 +00006334<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006335define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00006336 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00006337 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006338 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006339 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006340
6341 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00006342 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00006343
6344 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00006345 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006346 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00006347 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006348 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006349
6350 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006351 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006352 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00006353}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006354
6355declare void @llvm.va_start(i8*)
6356declare void @llvm.va_copy(i8*, i8*)
6357declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00006358</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00006359
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006360<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006361<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006362 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006363</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006364
6365
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006366<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006367
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006368<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006369<pre>
6370 declare void %llvm.va_start(i8* &lt;arglist&gt;)
6371</pre>
6372
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006373<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006374<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6375 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006376
6377<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006378<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006379
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006380<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006381<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006382 macro available in C. In a target-dependent way, it initializes
6383 the <tt>va_list</tt> element to which the argument points, so that the next
6384 call to <tt>va_arg</tt> will produce the first variable argument passed to
6385 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6386 need to know the last argument of the function as the compiler can figure
6387 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006388
Misha Brukman76307852003-11-08 01:05:38 +00006389</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006390
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006391<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006392<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006393 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006394</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006395
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006396<div>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006397
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006398<h5>Syntax:</h5>
6399<pre>
6400 declare void @llvm.va_end(i8* &lt;arglist&gt;)
6401</pre>
6402
6403<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006404<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006405 which has been initialized previously
6406 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6407 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006408
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006409<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006410<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006411
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006412<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006413<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006414 macro available in C. In a target-dependent way, it destroys
6415 the <tt>va_list</tt> element to which the argument points. Calls
6416 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6417 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6418 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006419
Misha Brukman76307852003-11-08 01:05:38 +00006420</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006421
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006422<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006423<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006424 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006425</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006426
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006427<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006428
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006429<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006430<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006431 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006432</pre>
6433
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006434<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006435<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006436 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006437
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006438<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006439<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006440 The second argument is a pointer to a <tt>va_list</tt> element to copy
6441 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006442
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006443<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006444<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006445 macro available in C. In a target-dependent way, it copies the
6446 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6447 element. This intrinsic is necessary because
6448 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6449 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006450
Misha Brukman76307852003-11-08 01:05:38 +00006451</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006452
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006453</div>
6454
Chris Lattnerfee11462004-02-12 17:01:32 +00006455<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006456<h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006457 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006458</h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006459
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006460<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006461
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006462<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00006463Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006464intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6465roots on the stack</a>, as well as garbage collector implementations that
6466require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6467barriers. Front-ends for type-safe garbage collected languages should generate
6468these intrinsics to make use of the LLVM garbage collectors. For more details,
6469see <a href="GarbageCollection.html">Accurate Garbage Collection with
6470LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006471
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006472<p>The garbage collection intrinsics only operate on objects in the generic
6473 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006474
Chris Lattner757528b0b2004-05-23 21:06:01 +00006475<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006476<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006477 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006478</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006479
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006480<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006481
6482<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006483<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006484 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006485</pre>
6486
6487<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00006488<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006489 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006490
6491<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006492<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006493 root pointer. The second pointer (which must be either a constant or a
6494 global value address) contains the meta-data to be associated with the
6495 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006496
6497<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00006498<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006499 location. At compile-time, the code generator generates information to allow
6500 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6501 intrinsic may only be used in a function which <a href="#gc">specifies a GC
6502 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006503
6504</div>
6505
Chris Lattner757528b0b2004-05-23 21:06:01 +00006506<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006507<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006508 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006509</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006510
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006511<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006512
6513<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006514<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006515 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006516</pre>
6517
6518<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006519<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006520 locations, allowing garbage collector implementations that require read
6521 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006522
6523<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006524<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006525 allocated from the garbage collector. The first object is a pointer to the
6526 start of the referenced object, if needed by the language runtime (otherwise
6527 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006528
6529<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006530<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006531 instruction, but may be replaced with substantially more complex code by the
6532 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6533 may only be used in a function which <a href="#gc">specifies a GC
6534 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006535
6536</div>
6537
Chris Lattner757528b0b2004-05-23 21:06:01 +00006538<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006539<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006540 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006541</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006542
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006543<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006544
6545<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006546<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006547 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006548</pre>
6549
6550<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006551<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006552 locations, allowing garbage collector implementations that require write
6553 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006554
6555<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006556<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006557 object to store it to, and the third is the address of the field of Obj to
6558 store to. If the runtime does not require a pointer to the object, Obj may
6559 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006560
6561<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006562<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006563 instruction, but may be replaced with substantially more complex code by the
6564 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6565 may only be used in a function which <a href="#gc">specifies a GC
6566 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006567
6568</div>
6569
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006570</div>
6571
Chris Lattner757528b0b2004-05-23 21:06:01 +00006572<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006573<h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006574 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006575</h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006576
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006577<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006578
6579<p>These intrinsics are provided by LLVM to expose special features that may
6580 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006581
Chris Lattner3649c3a2004-02-14 04:08:35 +00006582<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006583<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006584 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006585</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006586
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006587<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006588
6589<h5>Syntax:</h5>
6590<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006591 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006592</pre>
6593
6594<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006595<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6596 target-specific value indicating the return address of the current function
6597 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006598
6599<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006600<p>The argument to this intrinsic indicates which function to return the address
6601 for. Zero indicates the calling function, one indicates its caller, etc.
6602 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006603
6604<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006605<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6606 indicating the return address of the specified call frame, or zero if it
6607 cannot be identified. The value returned by this intrinsic is likely to be
6608 incorrect or 0 for arguments other than zero, so it should only be used for
6609 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006610
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006611<p>Note that calling this intrinsic does not prevent function inlining or other
6612 aggressive transformations, so the value returned may not be that of the
6613 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006614
Chris Lattner3649c3a2004-02-14 04:08:35 +00006615</div>
6616
Chris Lattner3649c3a2004-02-14 04:08:35 +00006617<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006618<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006619 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006620</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006621
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006622<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006623
6624<h5>Syntax:</h5>
6625<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006626 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006627</pre>
6628
6629<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006630<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6631 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006632
6633<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006634<p>The argument to this intrinsic indicates which function to return the frame
6635 pointer for. Zero indicates the calling function, one indicates its caller,
6636 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006637
6638<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006639<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6640 indicating the frame address of the specified call frame, or zero if it
6641 cannot be identified. The value returned by this intrinsic is likely to be
6642 incorrect or 0 for arguments other than zero, so it should only be used for
6643 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006644
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006645<p>Note that calling this intrinsic does not prevent function inlining or other
6646 aggressive transformations, so the value returned may not be that of the
6647 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006648
Chris Lattner3649c3a2004-02-14 04:08:35 +00006649</div>
6650
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006651<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006652<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006653 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006654</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006655
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006656<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006657
6658<h5>Syntax:</h5>
6659<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006660 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00006661</pre>
6662
6663<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006664<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6665 of the function stack, for use
6666 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6667 useful for implementing language features like scoped automatic variable
6668 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006669
6670<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006671<p>This intrinsic returns a opaque pointer value that can be passed
6672 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6673 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6674 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6675 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6676 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6677 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006678
6679</div>
6680
6681<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006682<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006683 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006684</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006685
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006686<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006687
6688<h5>Syntax:</h5>
6689<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006690 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00006691</pre>
6692
6693<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006694<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6695 the function stack to the state it was in when the
6696 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6697 executed. This is useful for implementing language features like scoped
6698 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006699
6700<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006701<p>See the description
6702 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006703
6704</div>
6705
Chris Lattner2f0f0012006-01-13 02:03:13 +00006706<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006707<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006708 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006709</h4>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006710
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006711<div>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006712
6713<h5>Syntax:</h5>
6714<pre>
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006715 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006716</pre>
6717
6718<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006719<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6720 insert a prefetch instruction if supported; otherwise, it is a noop.
6721 Prefetches have no effect on the behavior of the program but can change its
6722 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006723
6724<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006725<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6726 specifier determining if the fetch should be for a read (0) or write (1),
6727 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006728 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6729 specifies whether the prefetch is performed on the data (1) or instruction (0)
6730 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6731 must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006732
6733<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006734<p>This intrinsic does not modify the behavior of the program. In particular,
6735 prefetches cannot trap and do not produce a value. On targets that support
6736 this intrinsic, the prefetch can provide hints to the processor cache for
6737 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006738
6739</div>
6740
Andrew Lenharthb4427912005-03-28 20:05:49 +00006741<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006742<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006743 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006744</h4>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006745
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006746<div>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006747
6748<h5>Syntax:</h5>
6749<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006750 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00006751</pre>
6752
6753<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006754<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6755 Counter (PC) in a region of code to simulators and other tools. The method
6756 is target specific, but it is expected that the marker will use exported
6757 symbols to transmit the PC of the marker. The marker makes no guarantees
6758 that it will remain with any specific instruction after optimizations. It is
6759 possible that the presence of a marker will inhibit optimizations. The
6760 intended use is to be inserted after optimizations to allow correlations of
6761 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006762
6763<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006764<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006765
6766<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006767<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00006768 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006769
6770</div>
6771
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006772<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006773<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006774 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006775</h4>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006776
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006777<div>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006778
6779<h5>Syntax:</h5>
6780<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00006781 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006782</pre>
6783
6784<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006785<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6786 counter register (or similar low latency, high accuracy clocks) on those
6787 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6788 should map to RPCC. As the backing counters overflow quickly (on the order
6789 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006790
6791<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006792<p>When directly supported, reading the cycle counter should not modify any
6793 memory. Implementations are allowed to either return a application specific
6794 value or a system wide value. On backends without support, this is lowered
6795 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006796
6797</div>
6798
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006799</div>
6800
Chris Lattner3649c3a2004-02-14 04:08:35 +00006801<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006802<h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006803 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006804</h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006805
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006806<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006807
6808<p>LLVM provides intrinsics for a few important standard C library functions.
6809 These intrinsics allow source-language front-ends to pass information about
6810 the alignment of the pointer arguments to the code generator, providing
6811 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006812
Chris Lattnerfee11462004-02-12 17:01:32 +00006813<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006814<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006815 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006816</h4>
Chris Lattnerfee11462004-02-12 17:01:32 +00006817
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006818<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006819
6820<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006821<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00006822 integer bit width and for different address spaces. Not all targets support
6823 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006824
Chris Lattnerfee11462004-02-12 17:01:32 +00006825<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006826 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006827 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006828 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006829 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00006830</pre>
6831
6832<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006833<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6834 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006835
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006836<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006837 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6838 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006839
6840<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006841
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006842<p>The first argument is a pointer to the destination, the second is a pointer
6843 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006844 number of bytes to copy, the fourth argument is the alignment of the
6845 source and destination locations, and the fifth is a boolean indicating a
6846 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006847
Dan Gohmana269a0a2010-03-01 17:41:39 +00006848<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006849 then the caller guarantees that both the source and destination pointers are
6850 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006851
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006852<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6853 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6854 The detailed access behavior is not very cleanly specified and it is unwise
6855 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006856
Chris Lattnerfee11462004-02-12 17:01:32 +00006857<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006858
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006859<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6860 source location to the destination location, which are not allowed to
6861 overlap. It copies "len" bytes of memory over. If the argument is known to
6862 be aligned to some boundary, this can be specified as the fourth argument,
6863 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006864
Chris Lattnerfee11462004-02-12 17:01:32 +00006865</div>
6866
Chris Lattnerf30152e2004-02-12 18:10:10 +00006867<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006868<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006869 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006870</h4>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006871
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006872<div>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006873
6874<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006875<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00006876 width and for different address space. Not all targets support all bit
6877 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006878
Chris Lattnerf30152e2004-02-12 18:10:10 +00006879<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006880 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006881 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006882 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006883 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00006884</pre>
6885
6886<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006887<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6888 source location to the destination location. It is similar to the
6889 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6890 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006891
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006892<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006893 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6894 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006895
6896<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006897
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006898<p>The first argument is a pointer to the destination, the second is a pointer
6899 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006900 number of bytes to copy, the fourth argument is the alignment of the
6901 source and destination locations, and the fifth is a boolean indicating a
6902 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006903
Dan Gohmana269a0a2010-03-01 17:41:39 +00006904<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006905 then the caller guarantees that the source and destination pointers are
6906 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006907
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006908<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6909 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6910 The detailed access behavior is not very cleanly specified and it is unwise
6911 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006912
Chris Lattnerf30152e2004-02-12 18:10:10 +00006913<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006914
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006915<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6916 source location to the destination location, which may overlap. It copies
6917 "len" bytes of memory over. If the argument is known to be aligned to some
6918 boundary, this can be specified as the fourth argument, otherwise it should
6919 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006920
Chris Lattnerf30152e2004-02-12 18:10:10 +00006921</div>
6922
Chris Lattner3649c3a2004-02-14 04:08:35 +00006923<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006924<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006925 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006926</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006927
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006928<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006929
6930<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006931<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00006932 width and for different address spaces. However, not all targets support all
6933 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006934
Chris Lattner3649c3a2004-02-14 04:08:35 +00006935<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006936 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006937 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006938 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006939 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006940</pre>
6941
6942<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006943<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6944 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006945
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006946<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00006947 intrinsic does not return a value and takes extra alignment/volatile
6948 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006949
6950<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006951<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00006952 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006953 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00006954 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006955
Dan Gohmana269a0a2010-03-01 17:41:39 +00006956<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006957 then the caller guarantees that the destination pointer is aligned to that
6958 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006959
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006960<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6961 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6962 The detailed access behavior is not very cleanly specified and it is unwise
6963 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006964
Chris Lattner3649c3a2004-02-14 04:08:35 +00006965<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006966<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6967 at the destination location. If the argument is known to be aligned to some
6968 boundary, this can be specified as the fourth argument, otherwise it should
6969 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006970
Chris Lattner3649c3a2004-02-14 04:08:35 +00006971</div>
6972
Chris Lattner3b4f4372004-06-11 02:28:03 +00006973<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006974<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006975 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006976</h4>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006977
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006978<div>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006979
6980<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006981<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6982 floating point or vector of floating point type. Not all targets support all
6983 types however.</p>
6984
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006985<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006986 declare float @llvm.sqrt.f32(float %Val)
6987 declare double @llvm.sqrt.f64(double %Val)
6988 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6989 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6990 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006991</pre>
6992
6993<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006994<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6995 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6996 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6997 behavior for negative numbers other than -0.0 (which allows for better
6998 optimization, because there is no need to worry about errno being
6999 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007000
7001<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007002<p>The argument and return value are floating point numbers of the same
7003 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007004
7005<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007006<p>This function returns the sqrt of the specified operand if it is a
7007 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007008
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007009</div>
7010
Chris Lattner33b73f92006-09-08 06:34:02 +00007011<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007012<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007013 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007014</h4>
Chris Lattner33b73f92006-09-08 06:34:02 +00007015
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007016<div>
Chris Lattner33b73f92006-09-08 06:34:02 +00007017
7018<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007019<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
7020 floating point or vector of floating point type. Not all targets support all
7021 types however.</p>
7022
Chris Lattner33b73f92006-09-08 06:34:02 +00007023<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00007024 declare float @llvm.powi.f32(float %Val, i32 %power)
7025 declare double @llvm.powi.f64(double %Val, i32 %power)
7026 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7027 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7028 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00007029</pre>
7030
7031<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007032<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
7033 specified (positive or negative) power. The order of evaluation of
7034 multiplications is not defined. When a vector of floating point type is
7035 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007036
7037<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007038<p>The second argument is an integer power, and the first is a value to raise to
7039 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007040
7041<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007042<p>This function returns the first value raised to the second power with an
7043 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007044
Chris Lattner33b73f92006-09-08 06:34:02 +00007045</div>
7046
Dan Gohmanb6324c12007-10-15 20:30:11 +00007047<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007048<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007049 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007050</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007051
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007052<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007053
7054<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007055<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
7056 floating point or vector of floating point type. Not all targets support all
7057 types however.</p>
7058
Dan Gohmanb6324c12007-10-15 20:30:11 +00007059<pre>
7060 declare float @llvm.sin.f32(float %Val)
7061 declare double @llvm.sin.f64(double %Val)
7062 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7063 declare fp128 @llvm.sin.f128(fp128 %Val)
7064 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7065</pre>
7066
7067<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007068<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007069
7070<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007071<p>The argument and return value are floating point numbers of the same
7072 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007073
7074<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007075<p>This function returns the sine of the specified operand, returning the same
7076 values as the libm <tt>sin</tt> functions would, and handles error conditions
7077 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007078
Dan Gohmanb6324c12007-10-15 20:30:11 +00007079</div>
7080
7081<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007082<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007083 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007084</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007085
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007086<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007087
7088<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007089<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
7090 floating point or vector of floating point type. Not all targets support all
7091 types however.</p>
7092
Dan Gohmanb6324c12007-10-15 20:30:11 +00007093<pre>
7094 declare float @llvm.cos.f32(float %Val)
7095 declare double @llvm.cos.f64(double %Val)
7096 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7097 declare fp128 @llvm.cos.f128(fp128 %Val)
7098 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7099</pre>
7100
7101<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007102<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007103
7104<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007105<p>The argument and return value are floating point numbers of the same
7106 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007107
7108<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007109<p>This function returns the cosine of the specified operand, returning the same
7110 values as the libm <tt>cos</tt> functions would, and handles error conditions
7111 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007112
Dan Gohmanb6324c12007-10-15 20:30:11 +00007113</div>
7114
7115<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007116<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007117 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007118</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007119
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007120<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007121
7122<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007123<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7124 floating point or vector of floating point type. Not all targets support all
7125 types however.</p>
7126
Dan Gohmanb6324c12007-10-15 20:30:11 +00007127<pre>
7128 declare float @llvm.pow.f32(float %Val, float %Power)
7129 declare double @llvm.pow.f64(double %Val, double %Power)
7130 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7131 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7132 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7133</pre>
7134
7135<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007136<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7137 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007138
7139<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007140<p>The second argument is a floating point power, and the first is a value to
7141 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007142
7143<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007144<p>This function returns the first value raised to the second power, returning
7145 the same values as the libm <tt>pow</tt> functions would, and handles error
7146 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007147
Dan Gohmanb6324c12007-10-15 20:30:11 +00007148</div>
7149
Dan Gohman911fa902011-05-23 21:13:03 +00007150<!-- _______________________________________________________________________ -->
7151<h4>
7152 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7153</h4>
7154
7155<div>
7156
7157<h5>Syntax:</h5>
7158<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7159 floating point or vector of floating point type. Not all targets support all
7160 types however.</p>
7161
7162<pre>
7163 declare float @llvm.exp.f32(float %Val)
7164 declare double @llvm.exp.f64(double %Val)
7165 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7166 declare fp128 @llvm.exp.f128(fp128 %Val)
7167 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7168</pre>
7169
7170<h5>Overview:</h5>
7171<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7172
7173<h5>Arguments:</h5>
7174<p>The argument and return value are floating point numbers of the same
7175 type.</p>
7176
7177<h5>Semantics:</h5>
7178<p>This function returns the same values as the libm <tt>exp</tt> functions
7179 would, and handles error conditions in the same way.</p>
7180
7181</div>
7182
7183<!-- _______________________________________________________________________ -->
7184<h4>
7185 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7186</h4>
7187
7188<div>
7189
7190<h5>Syntax:</h5>
7191<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7192 floating point or vector of floating point type. Not all targets support all
7193 types however.</p>
7194
7195<pre>
7196 declare float @llvm.log.f32(float %Val)
7197 declare double @llvm.log.f64(double %Val)
7198 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7199 declare fp128 @llvm.log.f128(fp128 %Val)
7200 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7201</pre>
7202
7203<h5>Overview:</h5>
7204<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7205
7206<h5>Arguments:</h5>
7207<p>The argument and return value are floating point numbers of the same
7208 type.</p>
7209
7210<h5>Semantics:</h5>
7211<p>This function returns the same values as the libm <tt>log</tt> functions
7212 would, and handles error conditions in the same way.</p>
7213
Nick Lewyckycd196f62011-10-31 01:32:21 +00007214</div>
7215
7216<!-- _______________________________________________________________________ -->
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007217<h4>
7218 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7219</h4>
7220
7221<div>
7222
7223<h5>Syntax:</h5>
7224<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7225 floating point or vector of floating point type. Not all targets support all
7226 types however.</p>
7227
7228<pre>
7229 declare float @llvm.fma.f32(float %a, float %b, float %c)
7230 declare double @llvm.fma.f64(double %a, double %b, double %c)
7231 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7232 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7233 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7234</pre>
7235
7236<h5>Overview:</h5>
Cameron Zwaricha32fd212011-07-08 22:13:55 +00007237<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007238 operation.</p>
7239
7240<h5>Arguments:</h5>
7241<p>The argument and return value are floating point numbers of the same
7242 type.</p>
7243
7244<h5>Semantics:</h5>
7245<p>This function returns the same values as the libm <tt>fma</tt> functions
7246 would.</p>
7247
Dan Gohman911fa902011-05-23 21:13:03 +00007248</div>
7249
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00007250</div>
7251
Andrew Lenharth1d463522005-05-03 18:01:48 +00007252<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007253<h3>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007254 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007255</h3>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007256
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007257<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007258
7259<p>LLVM provides intrinsics for a few important bit manipulation operations.
7260 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007261
Andrew Lenharth1d463522005-05-03 18:01:48 +00007262<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007263<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007264 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007265</h4>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007266
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007267<div>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007268
7269<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007270<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007271 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7272
Nate Begeman0f223bb2006-01-13 23:26:38 +00007273<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007274 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7275 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7276 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00007277</pre>
7278
7279<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007280<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7281 values with an even number of bytes (positive multiple of 16 bits). These
7282 are useful for performing operations on data that is not in the target's
7283 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007284
7285<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007286<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7287 and low byte of the input i16 swapped. Similarly,
7288 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7289 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7290 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7291 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7292 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7293 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007294
7295</div>
7296
7297<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007298<h4>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00007299 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007300</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007301
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007302<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007303
7304<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007305<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007306 width, or on any vector with integer elements. Not all targets support all
7307 bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007308
Andrew Lenharth1d463522005-05-03 18:01:48 +00007309<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007310 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007311 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007312 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007313 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7314 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007315 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007316</pre>
7317
7318<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007319<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7320 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007321
7322<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007323<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007324 integer type, or a vector with integer elements.
7325 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007326
7327<h5>Semantics:</h5>
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007328<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7329 element of a vector.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007330
Andrew Lenharth1d463522005-05-03 18:01:48 +00007331</div>
7332
7333<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007334<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007335 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007336</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007337
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007338<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007339
7340<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007341<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007342 integer bit width, or any vector whose elements are integers. Not all
7343 targets support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007344
Andrew Lenharth1d463522005-05-03 18:01:48 +00007345<pre>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007346 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7347 declare i16 @llvm.ctlz.i16 (i16 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7348 declare i32 @llvm.ctlz.i32 (i32 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7349 declare i64 @llvm.ctlz.i64 (i64 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7350 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7351 declase &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007352</pre>
7353
7354<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007355<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7356 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007357
7358<h5>Arguments:</h5>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007359<p>The first argument is the value to be counted. This argument may be of any
7360 integer type, or a vectory with integer element type. The return type
7361 must match the first argument type.</p>
7362
7363<p>The second argument must be a constant and is a flag to indicate whether the
7364 intrinsic should ensure that a zero as the first argument produces a defined
7365 result. Historically some architectures did not provide a defined result for
7366 zero values as efficiently, and many algorithms are now predicated on
7367 avoiding zero-value inputs.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007368
7369<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007370<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007371 zeros in a variable, or within each element of the vector.
7372 If <tt>src == 0</tt> then the result is the size in bits of the type of
7373 <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7374 For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007375
Andrew Lenharth1d463522005-05-03 18:01:48 +00007376</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00007377
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007378<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007379<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007380 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007381</h4>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007382
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007383<div>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007384
7385<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007386<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007387 integer bit width, or any vector of integer elements. Not all targets
7388 support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007389
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007390<pre>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007391 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7392 declare i16 @llvm.cttz.i16 (i16 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7393 declare i32 @llvm.cttz.i32 (i32 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7394 declare i64 @llvm.cttz.i64 (i64 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7395 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7396 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007397</pre>
7398
7399<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007400<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7401 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007402
7403<h5>Arguments:</h5>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007404<p>The first argument is the value to be counted. This argument may be of any
7405 integer type, or a vectory with integer element type. The return type
7406 must match the first argument type.</p>
7407
7408<p>The second argument must be a constant and is a flag to indicate whether the
7409 intrinsic should ensure that a zero as the first argument produces a defined
7410 result. Historically some architectures did not provide a defined result for
7411 zero values as efficiently, and many algorithms are now predicated on
7412 avoiding zero-value inputs.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007413
7414<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007415<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007416 zeros in a variable, or within each element of a vector.
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007417 If <tt>src == 0</tt> then the result is the size in bits of the type of
7418 <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7419 For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007420
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007421</div>
7422
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007423</div>
7424
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007425<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007426<h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007427 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007428</h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007429
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007430<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007431
7432<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007433
Bill Wendlingf4d70622009-02-08 01:40:31 +00007434<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007435<h4>
7436 <a name="int_sadd_overflow">
7437 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7438 </a>
7439</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007440
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007441<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007442
7443<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007444<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007445 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007446
7447<pre>
7448 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7449 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7450 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7451</pre>
7452
7453<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007454<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007455 a signed addition of the two arguments, and indicate whether an overflow
7456 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007457
7458<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007459<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007460 be of integer types of any bit width, but they must have the same bit
7461 width. The second element of the result structure must be of
7462 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7463 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007464
7465<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007466<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007467 a signed addition of the two variables. They return a structure &mdash; the
7468 first element of which is the signed summation, and the second element of
7469 which is a bit specifying if the signed summation resulted in an
7470 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007471
7472<h5>Examples:</h5>
7473<pre>
7474 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7475 %sum = extractvalue {i32, i1} %res, 0
7476 %obit = extractvalue {i32, i1} %res, 1
7477 br i1 %obit, label %overflow, label %normal
7478</pre>
7479
7480</div>
7481
7482<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007483<h4>
7484 <a name="int_uadd_overflow">
7485 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7486 </a>
7487</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007488
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007489<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007490
7491<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007492<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007493 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007494
7495<pre>
7496 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7497 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7498 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7499</pre>
7500
7501<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007502<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007503 an unsigned addition of the two arguments, and indicate whether a carry
7504 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007505
7506<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007507<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007508 be of integer types of any bit width, but they must have the same bit
7509 width. The second element of the result structure must be of
7510 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7511 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007512
7513<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007514<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007515 an unsigned addition of the two arguments. They return a structure &mdash;
7516 the first element of which is the sum, and the second element of which is a
7517 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007518
7519<h5>Examples:</h5>
7520<pre>
7521 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7522 %sum = extractvalue {i32, i1} %res, 0
7523 %obit = extractvalue {i32, i1} %res, 1
7524 br i1 %obit, label %carry, label %normal
7525</pre>
7526
7527</div>
7528
7529<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007530<h4>
7531 <a name="int_ssub_overflow">
7532 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7533 </a>
7534</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007535
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007536<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007537
7538<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007539<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007540 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007541
7542<pre>
7543 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7544 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7545 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7546</pre>
7547
7548<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007549<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007550 a signed subtraction of the two arguments, and indicate whether an overflow
7551 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007552
7553<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007554<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007555 be of integer types of any bit width, but they must have the same bit
7556 width. The second element of the result structure must be of
7557 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7558 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007559
7560<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007561<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007562 a signed subtraction of the two arguments. They return a structure &mdash;
7563 the first element of which is the subtraction, and the second element of
7564 which is a bit specifying if the signed subtraction resulted in an
7565 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007566
7567<h5>Examples:</h5>
7568<pre>
7569 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7570 %sum = extractvalue {i32, i1} %res, 0
7571 %obit = extractvalue {i32, i1} %res, 1
7572 br i1 %obit, label %overflow, label %normal
7573</pre>
7574
7575</div>
7576
7577<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007578<h4>
7579 <a name="int_usub_overflow">
7580 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7581 </a>
7582</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007583
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007584<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007585
7586<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007587<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007588 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007589
7590<pre>
7591 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7592 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7593 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7594</pre>
7595
7596<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007597<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007598 an unsigned subtraction of the two arguments, and indicate whether an
7599 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007600
7601<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007602<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007603 be of integer types of any bit width, but they must have the same bit
7604 width. The second element of the result structure must be of
7605 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7606 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007607
7608<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007609<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007610 an unsigned subtraction of the two arguments. They return a structure &mdash;
7611 the first element of which is the subtraction, and the second element of
7612 which is a bit specifying if the unsigned subtraction resulted in an
7613 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007614
7615<h5>Examples:</h5>
7616<pre>
7617 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7618 %sum = extractvalue {i32, i1} %res, 0
7619 %obit = extractvalue {i32, i1} %res, 1
7620 br i1 %obit, label %overflow, label %normal
7621</pre>
7622
7623</div>
7624
7625<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007626<h4>
7627 <a name="int_smul_overflow">
7628 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7629 </a>
7630</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007631
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007632<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007633
7634<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007635<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007636 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007637
7638<pre>
7639 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7640 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7641 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7642</pre>
7643
7644<h5>Overview:</h5>
7645
7646<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007647 a signed multiplication of the two arguments, and indicate whether an
7648 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007649
7650<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007651<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007652 be of integer types of any bit width, but they must have the same bit
7653 width. The second element of the result structure must be of
7654 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7655 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007656
7657<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007658<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007659 a signed multiplication of the two arguments. They return a structure &mdash;
7660 the first element of which is the multiplication, and the second element of
7661 which is a bit specifying if the signed multiplication resulted in an
7662 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007663
7664<h5>Examples:</h5>
7665<pre>
7666 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7667 %sum = extractvalue {i32, i1} %res, 0
7668 %obit = extractvalue {i32, i1} %res, 1
7669 br i1 %obit, label %overflow, label %normal
7670</pre>
7671
Reid Spencer5bf54c82007-04-11 23:23:49 +00007672</div>
7673
Bill Wendlingb9a73272009-02-08 23:00:09 +00007674<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007675<h4>
7676 <a name="int_umul_overflow">
7677 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
7678 </a>
7679</h4>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007680
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007681<div>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007682
7683<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007684<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007685 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007686
7687<pre>
7688 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7689 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7690 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7691</pre>
7692
7693<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007694<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007695 a unsigned multiplication of the two arguments, and indicate whether an
7696 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007697
7698<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007699<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007700 be of integer types of any bit width, but they must have the same bit
7701 width. The second element of the result structure must be of
7702 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7703 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007704
7705<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007706<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007707 an unsigned multiplication of the two arguments. They return a structure
7708 &mdash; the first element of which is the multiplication, and the second
7709 element of which is a bit specifying if the unsigned multiplication resulted
7710 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007711
7712<h5>Examples:</h5>
7713<pre>
7714 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7715 %sum = extractvalue {i32, i1} %res, 0
7716 %obit = extractvalue {i32, i1} %res, 1
7717 br i1 %obit, label %overflow, label %normal
7718</pre>
7719
7720</div>
7721
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007722</div>
7723
Chris Lattner941515c2004-01-06 05:31:32 +00007724<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007725<h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007726 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007727</h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007728
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007729<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007730
Chris Lattner022a9fb2010-03-15 04:12:21 +00007731<p>Half precision floating point is a storage-only format. This means that it is
7732 a dense encoding (in memory) but does not support computation in the
7733 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007734
Chris Lattner022a9fb2010-03-15 04:12:21 +00007735<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007736 value as an i16, then convert it to float with <a
7737 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7738 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00007739 double etc). To store the value back to memory, it is first converted to
7740 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007741 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7742 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007743
7744<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007745<h4>
7746 <a name="int_convert_to_fp16">
7747 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7748 </a>
7749</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007750
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007751<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007752
7753<h5>Syntax:</h5>
7754<pre>
7755 declare i16 @llvm.convert.to.fp16(f32 %a)
7756</pre>
7757
7758<h5>Overview:</h5>
7759<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7760 a conversion from single precision floating point format to half precision
7761 floating point format.</p>
7762
7763<h5>Arguments:</h5>
7764<p>The intrinsic function contains single argument - the value to be
7765 converted.</p>
7766
7767<h5>Semantics:</h5>
7768<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7769 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00007770 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007771 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007772
7773<h5>Examples:</h5>
7774<pre>
7775 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7776 store i16 %res, i16* @x, align 2
7777</pre>
7778
7779</div>
7780
7781<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007782<h4>
7783 <a name="int_convert_from_fp16">
7784 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7785 </a>
7786</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007787
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007788<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007789
7790<h5>Syntax:</h5>
7791<pre>
7792 declare f32 @llvm.convert.from.fp16(i16 %a)
7793</pre>
7794
7795<h5>Overview:</h5>
7796<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7797 a conversion from half precision floating point format to single precision
7798 floating point format.</p>
7799
7800<h5>Arguments:</h5>
7801<p>The intrinsic function contains single argument - the value to be
7802 converted.</p>
7803
7804<h5>Semantics:</h5>
7805<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00007806 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007807 precision floating point format. The input half-float value is represented by
7808 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007809
7810<h5>Examples:</h5>
7811<pre>
7812 %a = load i16* @x, align 2
7813 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7814</pre>
7815
7816</div>
7817
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007818</div>
7819
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007820<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007821<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007822 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007823</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007824
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007825<div>
Chris Lattner941515c2004-01-06 05:31:32 +00007826
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007827<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7828 prefix), are described in
7829 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7830 Level Debugging</a> document.</p>
7831
7832</div>
Chris Lattner941515c2004-01-06 05:31:32 +00007833
Jim Laskey2211f492007-03-14 19:31:19 +00007834<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007835<h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007836 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007837</h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007838
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007839<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007840
7841<p>The LLVM exception handling intrinsics (which all start with
7842 <tt>llvm.eh.</tt> prefix), are described in
7843 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7844 Handling</a> document.</p>
7845
Jim Laskey2211f492007-03-14 19:31:19 +00007846</div>
7847
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007848<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007849<h3>
Duncan Sandsa0984362011-09-06 13:37:06 +00007850 <a name="int_trampoline">Trampoline Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007851</h3>
Duncan Sands644f9172007-07-27 12:58:54 +00007852
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007853<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007854
Duncan Sandsa0984362011-09-06 13:37:06 +00007855<p>These intrinsics make it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00007856 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7857 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007858 function pointer lacking the nest parameter - the caller does not need to
7859 provide a value for it. Instead, the value to use is stored in advance in a
7860 "trampoline", a block of memory usually allocated on the stack, which also
7861 contains code to splice the nest value into the argument list. This is used
7862 to implement the GCC nested function address extension.</p>
7863
7864<p>For example, if the function is
7865 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7866 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7867 follows:</p>
7868
Benjamin Kramer79698be2010-07-13 12:26:09 +00007869<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00007870 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7871 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Duncan Sandsa0984362011-09-06 13:37:06 +00007872 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7873 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
Duncan Sands86e01192007-09-11 14:10:23 +00007874 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00007875</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007876
Dan Gohmand6a6f612010-05-28 17:07:41 +00007877<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7878 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007879
Duncan Sands644f9172007-07-27 12:58:54 +00007880<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007881<h4>
7882 <a name="int_it">
7883 '<tt>llvm.init.trampoline</tt>' Intrinsic
7884 </a>
7885</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007886
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007887<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007888
Duncan Sands644f9172007-07-27 12:58:54 +00007889<h5>Syntax:</h5>
7890<pre>
Duncan Sandsa0984362011-09-06 13:37:06 +00007891 declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00007892</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007893
Duncan Sands644f9172007-07-27 12:58:54 +00007894<h5>Overview:</h5>
Duncan Sandsa0984362011-09-06 13:37:06 +00007895<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
7896 turning it into a trampoline.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007897
Duncan Sands644f9172007-07-27 12:58:54 +00007898<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007899<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7900 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7901 sufficiently aligned block of memory; this memory is written to by the
7902 intrinsic. Note that the size and the alignment are target-specific - LLVM
7903 currently provides no portable way of determining them, so a front-end that
7904 generates this intrinsic needs to have some target-specific knowledge.
7905 The <tt>func</tt> argument must hold a function bitcast to
7906 an <tt>i8*</tt>.</p>
7907
Duncan Sands644f9172007-07-27 12:58:54 +00007908<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007909<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsa0984362011-09-06 13:37:06 +00007910 dependent code, turning it into a function. Then <tt>tramp</tt> needs to be
7911 passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
7912 which can be <a href="#int_trampoline">bitcast (to a new function) and
7913 called</a>. The new function's signature is the same as that of
7914 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
7915 removed. At most one such <tt>nest</tt> argument is allowed, and it must be of
7916 pointer type. Calling the new function is equivalent to calling <tt>func</tt>
7917 with the same argument list, but with <tt>nval</tt> used for the missing
7918 <tt>nest</tt> argument. If, after calling <tt>llvm.init.trampoline</tt>, the
7919 memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
7920 to the returned function pointer is undefined.</p>
7921</div>
7922
7923<!-- _______________________________________________________________________ -->
7924<h4>
7925 <a name="int_at">
7926 '<tt>llvm.adjust.trampoline</tt>' Intrinsic
7927 </a>
7928</h4>
7929
7930<div>
7931
7932<h5>Syntax:</h5>
7933<pre>
7934 declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
7935</pre>
7936
7937<h5>Overview:</h5>
7938<p>This performs any required machine-specific adjustment to the address of a
7939 trampoline (passed as <tt>tramp</tt>).</p>
7940
7941<h5>Arguments:</h5>
7942<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
7943 filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
7944 </a>.</p>
7945
7946<h5>Semantics:</h5>
7947<p>On some architectures the address of the code to be executed needs to be
7948 different to the address where the trampoline is actually stored. This
7949 intrinsic returns the executable address corresponding to <tt>tramp</tt>
7950 after performing the required machine specific adjustments.
7951 The pointer returned can then be <a href="#int_trampoline"> bitcast and
7952 executed</a>.
7953</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007954
Duncan Sands644f9172007-07-27 12:58:54 +00007955</div>
7956
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007957</div>
7958
Duncan Sands644f9172007-07-27 12:58:54 +00007959<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007960<h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007961 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007962</h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007963
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007964<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007965
7966<p>This class of intrinsics exists to information about the lifetime of memory
7967 objects and ranges where variables are immutable.</p>
7968
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007969<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007970<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007971 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007972</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007973
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007974<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007975
7976<h5>Syntax:</h5>
7977<pre>
7978 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7979</pre>
7980
7981<h5>Overview:</h5>
7982<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7983 object's lifetime.</p>
7984
7985<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007986<p>The first argument is a constant integer representing the size of the
7987 object, or -1 if it is variable sized. The second argument is a pointer to
7988 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007989
7990<h5>Semantics:</h5>
7991<p>This intrinsic indicates that before this point in the code, the value of the
7992 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007993 never be used and has an undefined value. A load from the pointer that
7994 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007995 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7996
7997</div>
7998
7999<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008000<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008001 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008002</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008003
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008004<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008005
8006<h5>Syntax:</h5>
8007<pre>
8008 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8009</pre>
8010
8011<h5>Overview:</h5>
8012<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
8013 object's lifetime.</p>
8014
8015<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00008016<p>The first argument is a constant integer representing the size of the
8017 object, or -1 if it is variable sized. The second argument is a pointer to
8018 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008019
8020<h5>Semantics:</h5>
8021<p>This intrinsic indicates that after this point in the code, the value of the
8022 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
8023 never be used and has an undefined value. Any stores into the memory object
8024 following this intrinsic may be removed as dead.
8025
8026</div>
8027
8028<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008029<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008030 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008031</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008032
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008033<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008034
8035<h5>Syntax:</h5>
8036<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00008037 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008038</pre>
8039
8040<h5>Overview:</h5>
8041<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
8042 a memory object will not change.</p>
8043
8044<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00008045<p>The first argument is a constant integer representing the size of the
8046 object, or -1 if it is variable sized. The second argument is a pointer to
8047 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008048
8049<h5>Semantics:</h5>
8050<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
8051 the return value, the referenced memory location is constant and
8052 unchanging.</p>
8053
8054</div>
8055
8056<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008057<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008058 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008059</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008060
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008061<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008062
8063<h5>Syntax:</h5>
8064<pre>
8065 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8066</pre>
8067
8068<h5>Overview:</h5>
8069<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
8070 a memory object are mutable.</p>
8071
8072<h5>Arguments:</h5>
8073<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00008074 The second argument is a constant integer representing the size of the
8075 object, or -1 if it is variable sized and the third argument is a pointer
8076 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008077
8078<h5>Semantics:</h5>
8079<p>This intrinsic indicates that the memory is mutable again.</p>
8080
8081</div>
8082
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008083</div>
8084
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00008085<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008086<h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008087 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008088</h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008089
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008090<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008091
8092<p>This class of intrinsics is designed to be generic and has no specific
8093 purpose.</p>
8094
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008095<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008096<h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008097 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008098</h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008099
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008100<div>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008101
8102<h5>Syntax:</h5>
8103<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008104 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008105</pre>
8106
8107<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008108<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008109
8110<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008111<p>The first argument is a pointer to a value, the second is a pointer to a
8112 global string, the third is a pointer to a global string which is the source
8113 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008114
8115<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008116<p>This intrinsic allows annotation of local variables with arbitrary strings.
8117 This can be useful for special purpose optimizations that want to look for
John Criswellf0d536a2011-08-19 16:57:55 +00008118 these annotations. These have no other defined use; they are ignored by code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008119 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008120
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008121</div>
8122
Tanya Lattner293c0372007-09-21 22:59:12 +00008123<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008124<h4>
Tanya Lattner0186a652007-09-21 23:57:59 +00008125 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008126</h4>
Tanya Lattner293c0372007-09-21 22:59:12 +00008127
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008128<div>
Tanya Lattner293c0372007-09-21 22:59:12 +00008129
8130<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008131<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8132 any integer bit width.</p>
8133
Tanya Lattner293c0372007-09-21 22:59:12 +00008134<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008135 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8136 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8137 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8138 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8139 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00008140</pre>
8141
8142<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008143<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008144
8145<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008146<p>The first argument is an integer value (result of some expression), the
8147 second is a pointer to a global string, the third is a pointer to a global
8148 string which is the source file name, and the last argument is the line
8149 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008150
8151<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008152<p>This intrinsic allows annotations to be put on arbitrary expressions with
8153 arbitrary strings. This can be useful for special purpose optimizations that
John Criswellf0d536a2011-08-19 16:57:55 +00008154 want to look for these annotations. These have no other defined use; they
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008155 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008156
Tanya Lattner293c0372007-09-21 22:59:12 +00008157</div>
Jim Laskey2211f492007-03-14 19:31:19 +00008158
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008159<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008160<h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008161 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008162</h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008163
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008164<div>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008165
8166<h5>Syntax:</h5>
8167<pre>
8168 declare void @llvm.trap()
8169</pre>
8170
8171<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008172<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008173
8174<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008175<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008176
8177<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008178<p>This intrinsics is lowered to the target dependent trap instruction. If the
8179 target does not have a trap instruction, this intrinsic will be lowered to
8180 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008181
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008182</div>
8183
Bill Wendling14313312008-11-19 05:56:17 +00008184<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008185<h4>
Misha Brukman50de2b22008-11-22 23:55:29 +00008186 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008187</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008188
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008189<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008190
Bill Wendling14313312008-11-19 05:56:17 +00008191<h5>Syntax:</h5>
8192<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008193 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00008194</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008195
Bill Wendling14313312008-11-19 05:56:17 +00008196<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008197<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8198 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8199 ensure that it is placed on the stack before local variables.</p>
8200
Bill Wendling14313312008-11-19 05:56:17 +00008201<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008202<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8203 arguments. The first argument is the value loaded from the stack
8204 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8205 that has enough space to hold the value of the guard.</p>
8206
Bill Wendling14313312008-11-19 05:56:17 +00008207<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008208<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8209 the <tt>AllocaInst</tt> stack slot to be before local variables on the
8210 stack. This is to ensure that if a local variable on the stack is
8211 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00008212 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008213 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8214 function.</p>
8215
Bill Wendling14313312008-11-19 05:56:17 +00008216</div>
8217
Eric Christopher73484322009-11-30 08:03:53 +00008218<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008219<h4>
Eric Christopher73484322009-11-30 08:03:53 +00008220 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008221</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008222
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008223<div>
Eric Christopher73484322009-11-30 08:03:53 +00008224
8225<h5>Syntax:</h5>
8226<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008227 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
8228 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00008229</pre>
8230
8231<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008232<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8233 the optimizers to determine at compile time whether a) an operation (like
8234 memcpy) will overflow a buffer that corresponds to an object, or b) that a
8235 runtime check for overflow isn't necessary. An object in this context means
8236 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008237
8238<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008239<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00008240 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00008241 is a boolean 0 or 1. This argument determines whether you want the
8242 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00008243 1, variables are not allowed.</p>
8244
Eric Christopher73484322009-11-30 08:03:53 +00008245<h5>Semantics:</h5>
8246<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00008247 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
8248 depending on the <tt>type</tt> argument, if the size cannot be determined at
8249 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008250
8251</div>
Jakub Staszak5fef7922011-12-04 18:29:26 +00008252<!-- _______________________________________________________________________ -->
8253<h4>
8254 <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a>
8255</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008256
Jakub Staszak5fef7922011-12-04 18:29:26 +00008257<div>
8258
8259<h5>Syntax:</h5>
8260<pre>
8261 declare i32 @llvm.expect.i32(i32 &lt;val&gt;, i32 &lt;expected_val&gt;)
8262 declare i64 @llvm.expect.i64(i64 &lt;val&gt;, i64 &lt;expected_val&gt;)
8263</pre>
8264
8265<h5>Overview:</h5>
8266<p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the
8267 most probable) value of <tt>val</tt>, which can be used by optimizers.</p>
8268
8269<h5>Arguments:</h5>
8270<p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first
8271 argument is a value. The second argument is an expected value, this needs to
8272 be a constant value, variables are not allowed.</p>
8273
8274<h5>Semantics:</h5>
8275<p>This intrinsic is lowered to the <tt>val</tt>.</p>
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008276</div>
8277
8278</div>
8279
Jakub Staszak5fef7922011-12-04 18:29:26 +00008280</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00008281<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00008282<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00008283<address>
8284 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008285 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008286 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008287 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008288
8289 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumica46f5a2011-04-09 02:13:37 +00008290 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00008291 Last modified: $Date$
8292</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00008293
Misha Brukman76307852003-11-08 01:05:38 +00008294</body>
8295</html>