blob: b133a532f1cb49bc4f441e6a9d66f75eda872c4e [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
Bill Wendlingb4d076e2011-10-11 06:41:28 +000038 <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000039 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Eli Friedman35b54aa2011-07-20 21:35:53 +000056 <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
Eli Friedmanc9a551e2011-07-28 21:48:00 +000057 <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000058 </ol>
59 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000060 <li><a href="#typesystem">Type System</a>
61 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000062 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000063 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000065 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000067 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000068 <li><a href="#t_void">Void Type</a></li>
69 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000070 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#t_derived">Derived Types</a>
74 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000075 <li><a href="#t_aggregate">Aggregate Types</a>
76 <ol>
77 <li><a href="#t_array">Array Type</a></li>
78 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattner2a843822011-07-23 19:59:08 +000079 <li><a href="#t_opaque">Opaque Structure Types</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000080 <li><a href="#t_vector">Vector Type</a></li>
81 </ol>
82 </li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#t_function">Function Type</a></li>
84 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 </ol>
86 </li>
87 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104 <ol>
105 <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +0000106 <li><a href="#fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000107 </ol>
108 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000109 </ol>
110 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000111 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
112 <ol>
113 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000114 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
115 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000116 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
117 Global Variable</a></li>
118 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
119 Global Variable</a></li>
120 </ol>
121 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000122 <li><a href="#instref">Instruction Reference</a>
123 <ol>
124 <li><a href="#terminators">Terminator Instructions</a>
125 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
127 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000128 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000129 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000130 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000131 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Bill Wendlingf891bf82011-07-31 06:30:59 +0000132 <li><a href="#i_resume">'<tt>resume</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000133 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000134 </ol>
135 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000136 <li><a href="#binaryops">Binary Operations</a>
137 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000138 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000139 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000140 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000141 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000142 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000143 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000144 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
145 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
146 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000147 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
148 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
149 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000150 </ol>
151 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000152 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
153 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000154 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
155 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
156 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000157 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000158 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000159 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000160 </ol>
161 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000162 <li><a href="#vectorops">Vector Operations</a>
163 <ol>
164 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
165 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
166 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000167 </ol>
168 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000169 <li><a href="#aggregateops">Aggregate Operations</a>
170 <ol>
171 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
172 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
173 </ol>
174 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000175 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000176 <ol>
Eli Friedmanc9a551e2011-07-28 21:48:00 +0000177 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
178 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
179 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
180 <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
181 <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
182 <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000183 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000184 </ol>
185 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000186 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000187 <ol>
188 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
189 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
190 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
191 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
192 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000193 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
194 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
195 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
196 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000197 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
198 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000199 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000200 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000201 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000202 <li><a href="#otherops">Other Operations</a>
203 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000204 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
205 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000206 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000207 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000208 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000209 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +0000210 <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000211 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000212 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000213 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000214 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000215 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000216 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000217 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
218 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000219 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
220 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
221 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000222 </ol>
223 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000224 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
225 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000226 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
227 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
228 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000229 </ol>
230 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000231 <li><a href="#int_codegen">Code Generator Intrinsics</a>
232 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000233 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
234 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
235 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
236 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
237 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
238 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000239 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000240 </ol>
241 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000242 <li><a href="#int_libc">Standard C Library Intrinsics</a>
243 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000244 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
245 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
246 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
247 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
248 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000249 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
250 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
251 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmane635c522011-05-27 00:36:31 +0000252 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
253 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
Cameron Zwarichf03fa182011-07-08 21:39:21 +0000254 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000255 </ol>
256 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000257 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000258 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000259 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000260 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
261 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
262 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000263 </ol>
264 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000265 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
266 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000267 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
268 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
269 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
270 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
271 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000272 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000273 </ol>
274 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000275 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
276 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000277 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
278 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000279 </ol>
280 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000281 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000282 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000283 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000284 <ol>
285 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000286 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000287 </ol>
288 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000289 <li><a href="#int_memorymarkers">Memory Use Markers</a>
290 <ol>
291 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
292 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
293 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
294 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
295 </ol>
296 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000297 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000298 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000299 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000300 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000301 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000302 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000303 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000304 '<tt>llvm.trap</tt>' Intrinsic</a></li>
305 <li><a href="#int_stackprotector">
306 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000307 <li><a href="#int_objectsize">
308 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000309 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000310 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000311 </ol>
312 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000313</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000314
315<div class="doc_author">
316 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
317 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000318</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000319
Chris Lattner2f7c9632001-06-06 20:29:01 +0000320<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000321<h2><a name="abstract">Abstract</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000322<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000323
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000324<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000325
326<p>This document is a reference manual for the LLVM assembly language. LLVM is
327 a Static Single Assignment (SSA) based representation that provides type
328 safety, low-level operations, flexibility, and the capability of representing
329 'all' high-level languages cleanly. It is the common code representation
330 used throughout all phases of the LLVM compilation strategy.</p>
331
Misha Brukman76307852003-11-08 01:05:38 +0000332</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000333
Chris Lattner2f7c9632001-06-06 20:29:01 +0000334<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000335<h2><a name="introduction">Introduction</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000336<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000337
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000338<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000339
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000340<p>The LLVM code representation is designed to be used in three different forms:
341 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
342 for fast loading by a Just-In-Time compiler), and as a human readable
343 assembly language representation. This allows LLVM to provide a powerful
344 intermediate representation for efficient compiler transformations and
345 analysis, while providing a natural means to debug and visualize the
346 transformations. The three different forms of LLVM are all equivalent. This
347 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000348
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000349<p>The LLVM representation aims to be light-weight and low-level while being
350 expressive, typed, and extensible at the same time. It aims to be a
351 "universal IR" of sorts, by being at a low enough level that high-level ideas
352 may be cleanly mapped to it (similar to how microprocessors are "universal
353 IR's", allowing many source languages to be mapped to them). By providing
354 type information, LLVM can be used as the target of optimizations: for
355 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000356 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000357 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000358
Chris Lattner2f7c9632001-06-06 20:29:01 +0000359<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000360<h4>
361 <a name="wellformed">Well-Formedness</a>
362</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000363
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000364<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000365
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000366<p>It is important to note that this document describes 'well formed' LLVM
367 assembly language. There is a difference between what the parser accepts and
368 what is considered 'well formed'. For example, the following instruction is
369 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000370
Benjamin Kramer79698be2010-07-13 12:26:09 +0000371<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000372%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000373</pre>
374
Bill Wendling7f4a3362009-11-02 00:24:16 +0000375<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
376 LLVM infrastructure provides a verification pass that may be used to verify
377 that an LLVM module is well formed. This pass is automatically run by the
378 parser after parsing input assembly and by the optimizer before it outputs
379 bitcode. The violations pointed out by the verifier pass indicate bugs in
380 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000381
Bill Wendling3716c5d2007-05-29 09:04:49 +0000382</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000383
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000384</div>
385
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000386<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000387
Chris Lattner2f7c9632001-06-06 20:29:01 +0000388<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000389<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000390<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000391
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000392<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000393
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000394<p>LLVM identifiers come in two basic types: global and local. Global
395 identifiers (functions, global variables) begin with the <tt>'@'</tt>
396 character. Local identifiers (register names, types) begin with
397 the <tt>'%'</tt> character. Additionally, there are three different formats
398 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000399
Chris Lattner2f7c9632001-06-06 20:29:01 +0000400<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000401 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000402 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
403 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
404 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
405 other characters in their names can be surrounded with quotes. Special
406 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
407 ASCII code for the character in hexadecimal. In this way, any character
408 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000409
Reid Spencerb23b65f2007-08-07 14:34:28 +0000410 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000411 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000412
Reid Spencer8f08d802004-12-09 18:02:53 +0000413 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000414 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000415</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000416
Reid Spencerb23b65f2007-08-07 14:34:28 +0000417<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000418 don't need to worry about name clashes with reserved words, and the set of
419 reserved words may be expanded in the future without penalty. Additionally,
420 unnamed identifiers allow a compiler to quickly come up with a temporary
421 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
Chris Lattner48b383b02003-11-25 01:02:51 +0000423<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000424 languages. There are keywords for different opcodes
425 ('<tt><a href="#i_add">add</a></tt>',
426 '<tt><a href="#i_bitcast">bitcast</a></tt>',
427 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
428 ('<tt><a href="#t_void">void</a></tt>',
429 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
430 reserved words cannot conflict with variable names, because none of them
431 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000432
433<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000434 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000435
Misha Brukman76307852003-11-08 01:05:38 +0000436<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000437
Benjamin Kramer79698be2010-07-13 12:26:09 +0000438<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000439%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440</pre>
441
Misha Brukman76307852003-11-08 01:05:38 +0000442<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000443
Benjamin Kramer79698be2010-07-13 12:26:09 +0000444<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000445%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000446</pre>
447
Misha Brukman76307852003-11-08 01:05:38 +0000448<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000449
Benjamin Kramer79698be2010-07-13 12:26:09 +0000450<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000451%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
452%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000453%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000454</pre>
455
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000456<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
457 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000458
Chris Lattner2f7c9632001-06-06 20:29:01 +0000459<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000460 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000461 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000462
463 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000464 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000465
Misha Brukman76307852003-11-08 01:05:38 +0000466 <li>Unnamed temporaries are numbered sequentially</li>
467</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000468
Bill Wendling7f4a3362009-11-02 00:24:16 +0000469<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000470 demonstrating instructions, we will follow an instruction with a comment that
471 defines the type and name of value produced. Comments are shown in italic
472 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000473
Misha Brukman76307852003-11-08 01:05:38 +0000474</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000475
476<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000477<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattner6af02f32004-12-09 16:11:40 +0000478<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000479<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000480<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000481<h3>
482 <a name="modulestructure">Module Structure</a>
483</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000484
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000485<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000486
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000487<p>LLVM programs are composed of "Module"s, each of which is a translation unit
488 of the input programs. Each module consists of functions, global variables,
489 and symbol table entries. Modules may be combined together with the LLVM
490 linker, which merges function (and global variable) definitions, resolves
491 forward declarations, and merges symbol table entries. Here is an example of
492 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493
Benjamin Kramer79698be2010-07-13 12:26:09 +0000494<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000495<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckyfea7ddc2011-01-29 01:09:53 +0000496<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000497
Chris Lattner54a7be72010-08-17 17:13:42 +0000498<i>; External declaration of the puts function</i>&nbsp;
499<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000500
501<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000502define i32 @main() { <i>; i32()* </i>&nbsp;
503 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
504 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000505
Chris Lattner54a7be72010-08-17 17:13:42 +0000506 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
507 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
508 <a href="#i_ret">ret</a> i32 0&nbsp;
509}
Devang Pateld1a89692010-01-11 19:35:55 +0000510
511<i>; Named metadata</i>
512!1 = metadata !{i32 41}
513!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000514</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000515
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000516<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000517 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000518 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000519 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
520 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000521
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000522<p>In general, a module is made up of a list of global values, where both
523 functions and global variables are global values. Global values are
524 represented by a pointer to a memory location (in this case, a pointer to an
525 array of char, and a pointer to a function), and have one of the
526 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000527
Chris Lattnerd79749a2004-12-09 16:36:40 +0000528</div>
529
530<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000531<h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000532 <a name="linkage">Linkage Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000533</h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000534
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000535<div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000536
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000537<p>All Global Variables and Functions have one of the following types of
538 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000539
540<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000541 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000542 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
543 by objects in the current module. In particular, linking code into a
544 module with an private global value may cause the private to be renamed as
545 necessary to avoid collisions. Because the symbol is private to the
546 module, all references can be updated. This doesn't show up in any symbol
547 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000548
Bill Wendling7f4a3362009-11-02 00:24:16 +0000549 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000550 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
551 assembler and evaluated by the linker. Unlike normal strong symbols, they
552 are removed by the linker from the final linked image (executable or
553 dynamic library).</dd>
554
555 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
556 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
557 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
558 linker. The symbols are removed by the linker from the final linked image
559 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000560
Bill Wendling578ee402010-08-20 22:05:50 +0000561 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
562 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
563 of the object is not taken. For instance, functions that had an inline
564 definition, but the compiler decided not to inline it. Note,
565 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
566 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
567 visibility. The symbols are removed by the linker from the final linked
568 image (executable or dynamic library).</dd>
569
Bill Wendling7f4a3362009-11-02 00:24:16 +0000570 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000571 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000572 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
573 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000574
Bill Wendling7f4a3362009-11-02 00:24:16 +0000575 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000576 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000577 into the object file corresponding to the LLVM module. They exist to
578 allow inlining and other optimizations to take place given knowledge of
579 the definition of the global, which is known to be somewhere outside the
580 module. Globals with <tt>available_externally</tt> linkage are allowed to
581 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
582 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000583
Bill Wendling7f4a3362009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000585 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000586 the same name when linkage occurs. This can be used to implement
587 some forms of inline functions, templates, or other code which must be
588 generated in each translation unit that uses it, but where the body may
589 be overridden with a more definitive definition later. Unreferenced
590 <tt>linkonce</tt> globals are allowed to be discarded. Note that
591 <tt>linkonce</tt> linkage does not actually allow the optimizer to
592 inline the body of this function into callers because it doesn't know if
593 this definition of the function is the definitive definition within the
594 program or whether it will be overridden by a stronger definition.
595 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
596 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000597
Bill Wendling7f4a3362009-11-02 00:24:16 +0000598 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000599 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
600 <tt>linkonce</tt> linkage, except that unreferenced globals with
601 <tt>weak</tt> linkage may not be discarded. This is used for globals that
602 are declared "weak" in C source code.</dd>
603
Bill Wendling7f4a3362009-11-02 00:24:16 +0000604 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000605 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
606 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
607 global scope.
608 Symbols with "<tt>common</tt>" linkage are merged in the same way as
609 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000610 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000611 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000612 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
613 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000614
Chris Lattnerd79749a2004-12-09 16:36:40 +0000615
Bill Wendling7f4a3362009-11-02 00:24:16 +0000616 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000617 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000618 pointer to array type. When two global variables with appending linkage
619 are linked together, the two global arrays are appended together. This is
620 the LLVM, typesafe, equivalent of having the system linker append together
621 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000622
Bill Wendling7f4a3362009-11-02 00:24:16 +0000623 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000624 <dd>The semantics of this linkage follow the ELF object file model: the symbol
625 is weak until linked, if not linked, the symbol becomes null instead of
626 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000627
Bill Wendling7f4a3362009-11-02 00:24:16 +0000628 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
629 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000630 <dd>Some languages allow differing globals to be merged, such as two functions
631 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000632 that only equivalent globals are ever merged (the "one definition rule"
633 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000634 and <tt>weak_odr</tt> linkage types to indicate that the global will only
635 be merged with equivalent globals. These linkage types are otherwise the
636 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000637
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000638 <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000639 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000640 visible, meaning that it participates in linkage and can be used to
641 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000642</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000643
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000644<p>The next two types of linkage are targeted for Microsoft Windows platform
645 only. They are designed to support importing (exporting) symbols from (to)
646 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000647
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000648<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000649 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000650 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000651 or variable via a global pointer to a pointer that is set up by the DLL
652 exporting the symbol. On Microsoft Windows targets, the pointer name is
653 formed by combining <code>__imp_</code> and the function or variable
654 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000655
Bill Wendling7f4a3362009-11-02 00:24:16 +0000656 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000657 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000658 pointer to a pointer in a DLL, so that it can be referenced with the
659 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
660 name is formed by combining <code>__imp_</code> and the function or
661 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000662</dl>
663
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000664<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
665 another module defined a "<tt>.LC0</tt>" variable and was linked with this
666 one, one of the two would be renamed, preventing a collision. Since
667 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
668 declarations), they are accessible outside of the current module.</p>
669
670<p>It is illegal for a function <i>declaration</i> to have any linkage type
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000671 other than <tt>external</tt>, <tt>dllimport</tt>
672 or <tt>extern_weak</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000673
Duncan Sands12da8ce2009-03-07 15:45:40 +0000674<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000675 or <tt>weak_odr</tt> linkages.</p>
676
Chris Lattner6af02f32004-12-09 16:11:40 +0000677</div>
678
679<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000680<h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000681 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000682</h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000683
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000684<div>
Chris Lattner0132aff2005-05-06 22:57:40 +0000685
686<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000687 and <a href="#i_invoke">invokes</a> can all have an optional calling
688 convention specified for the call. The calling convention of any pair of
689 dynamic caller/callee must match, or the behavior of the program is
690 undefined. The following calling conventions are supported by LLVM, and more
691 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000692
693<dl>
694 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000695 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000696 specified) matches the target C calling conventions. This calling
697 convention supports varargs function calls and tolerates some mismatch in
698 the declared prototype and implemented declaration of the function (as
699 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000700
701 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000702 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000703 (e.g. by passing things in registers). This calling convention allows the
704 target to use whatever tricks it wants to produce fast code for the
705 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000706 (Application Binary Interface).
707 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000708 when this or the GHC convention is used.</a> This calling convention
709 does not support varargs and requires the prototype of all callees to
710 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000711
712 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000713 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000714 as possible under the assumption that the call is not commonly executed.
715 As such, these calls often preserve all registers so that the call does
716 not break any live ranges in the caller side. This calling convention
717 does not support varargs and requires the prototype of all callees to
718 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000719
Chris Lattnera179e4d2010-03-11 00:22:57 +0000720 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
721 <dd>This calling convention has been implemented specifically for use by the
722 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
723 It passes everything in registers, going to extremes to achieve this by
724 disabling callee save registers. This calling convention should not be
725 used lightly but only for specific situations such as an alternative to
726 the <em>register pinning</em> performance technique often used when
727 implementing functional programming languages.At the moment only X86
728 supports this convention and it has the following limitations:
729 <ul>
730 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
731 floating point types are supported.</li>
732 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
733 6 floating point parameters.</li>
734 </ul>
735 This calling convention supports
736 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
737 requires both the caller and callee are using it.
738 </dd>
739
Chris Lattner573f64e2005-05-07 01:46:40 +0000740 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000741 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000742 target-specific calling conventions to be used. Target specific calling
743 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000744</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000745
746<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000747 support Pascal conventions or any other well-known target-independent
748 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000749
750</div>
751
752<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000753<h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000754 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000755</h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000757<div>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000758
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000759<p>All Global Variables and Functions have one of the following visibility
760 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000761
762<dl>
763 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000764 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000765 that the declaration is visible to other modules and, in shared libraries,
766 means that the declared entity may be overridden. On Darwin, default
767 visibility means that the declaration is visible to other modules. Default
768 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000769
770 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000771 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000772 object if they are in the same shared object. Usually, hidden visibility
773 indicates that the symbol will not be placed into the dynamic symbol
774 table, so no other module (executable or shared library) can reference it
775 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000776
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000777 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000778 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000779 the dynamic symbol table, but that references within the defining module
780 will bind to the local symbol. That is, the symbol cannot be overridden by
781 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000782</dl>
783
784</div>
785
786<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000787<h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000788 <a name="namedtypes">Named Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000789</h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000790
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000791<div>
Chris Lattnerbc088212009-01-11 20:53:49 +0000792
793<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000794 it easier to read the IR and make the IR more condensed (particularly when
795 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000796
Benjamin Kramer79698be2010-07-13 12:26:09 +0000797<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000798%mytype = type { %mytype*, i32 }
799</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000800
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000801<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000802 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000803 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000804
805<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000806 and that you can therefore specify multiple names for the same type. This
807 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
808 uses structural typing, the name is not part of the type. When printing out
809 LLVM IR, the printer will pick <em>one name</em> to render all types of a
810 particular shape. This means that if you have code where two different
811 source types end up having the same LLVM type, that the dumper will sometimes
812 print the "wrong" or unexpected type. This is an important design point and
813 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000814
815</div>
816
Chris Lattnerbc088212009-01-11 20:53:49 +0000817<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000818<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000819 <a name="globalvars">Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000820</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000821
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000822<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000823
Chris Lattner5d5aede2005-02-12 19:30:21 +0000824<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000825 instead of run-time. Global variables may optionally be initialized, may
826 have an explicit section to be placed in, and may have an optional explicit
827 alignment specified. A variable may be defined as "thread_local", which
828 means that it will not be shared by threads (each thread will have a
829 separated copy of the variable). A variable may be defined as a global
830 "constant," which indicates that the contents of the variable
831 will <b>never</b> be modified (enabling better optimization, allowing the
832 global data to be placed in the read-only section of an executable, etc).
833 Note that variables that need runtime initialization cannot be marked
834 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000835
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000836<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
837 constant, even if the final definition of the global is not. This capability
838 can be used to enable slightly better optimization of the program, but
839 requires the language definition to guarantee that optimizations based on the
840 'constantness' are valid for the translation units that do not include the
841 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000842
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000843<p>As SSA values, global variables define pointer values that are in scope
844 (i.e. they dominate) all basic blocks in the program. Global variables
845 always define a pointer to their "content" type because they describe a
846 region of memory, and all memory objects in LLVM are accessed through
847 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000848
Rafael Espindola45e6c192011-01-08 16:42:36 +0000849<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
850 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000851 like this can be merged with other constants if they have the same
852 initializer. Note that a constant with significant address <em>can</em>
853 be merged with a <tt>unnamed_addr</tt> constant, the result being a
854 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000855
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000856<p>A global variable may be declared to reside in a target-specific numbered
857 address space. For targets that support them, address spaces may affect how
858 optimizations are performed and/or what target instructions are used to
859 access the variable. The default address space is zero. The address space
860 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000861
Chris Lattner662c8722005-11-12 00:45:07 +0000862<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000863 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000864
Chris Lattner78e00bc2010-04-28 00:13:42 +0000865<p>An explicit alignment may be specified for a global, which must be a power
866 of 2. If not present, or if the alignment is set to zero, the alignment of
867 the global is set by the target to whatever it feels convenient. If an
868 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000869 alignment. Targets and optimizers are not allowed to over-align the global
870 if the global has an assigned section. In this case, the extra alignment
871 could be observable: for example, code could assume that the globals are
872 densely packed in their section and try to iterate over them as an array,
873 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000874
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000875<p>For example, the following defines a global in a numbered address space with
876 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000877
Benjamin Kramer79698be2010-07-13 12:26:09 +0000878<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000879@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000880</pre>
881
Chris Lattner6af02f32004-12-09 16:11:40 +0000882</div>
883
884
885<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000886<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000887 <a name="functionstructure">Functions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000888</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000890<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000891
Dan Gohmana269a0a2010-03-01 17:41:39 +0000892<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000893 optional <a href="#linkage">linkage type</a>, an optional
894 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000895 <a href="#callingconv">calling convention</a>,
896 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000897 <a href="#paramattrs">parameter attribute</a> for the return type, a function
898 name, a (possibly empty) argument list (each with optional
899 <a href="#paramattrs">parameter attributes</a>), optional
900 <a href="#fnattrs">function attributes</a>, an optional section, an optional
901 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
902 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000903
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000904<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
905 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000906 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000907 <a href="#callingconv">calling convention</a>,
908 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000909 <a href="#paramattrs">parameter attribute</a> for the return type, a function
910 name, a possibly empty list of arguments, an optional alignment, and an
911 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000912
Chris Lattner67c37d12008-08-05 18:29:16 +0000913<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000914 (Control Flow Graph) for the function. Each basic block may optionally start
915 with a label (giving the basic block a symbol table entry), contains a list
916 of instructions, and ends with a <a href="#terminators">terminator</a>
917 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000918
Chris Lattnera59fb102007-06-08 16:52:14 +0000919<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000920 executed on entrance to the function, and it is not allowed to have
921 predecessor basic blocks (i.e. there can not be any branches to the entry
922 block of a function). Because the block can have no predecessors, it also
923 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000924
Chris Lattner662c8722005-11-12 00:45:07 +0000925<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000926 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000927
Chris Lattner54611b42005-11-06 08:02:57 +0000928<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000929 the alignment is set to zero, the alignment of the function is set by the
930 target to whatever it feels convenient. If an explicit alignment is
931 specified, the function is forced to have at least that much alignment. All
932 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000933
Rafael Espindola45e6c192011-01-08 16:42:36 +0000934<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000935 be significant and two identical functions can be merged.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000936
Bill Wendling30235112009-07-20 02:39:26 +0000937<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000938<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000939define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000940 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
941 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
942 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
943 [<a href="#gc">gc</a>] { ... }
944</pre>
Devang Patel02256232008-10-07 17:48:33 +0000945
Chris Lattner6af02f32004-12-09 16:11:40 +0000946</div>
947
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000948<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000949<h3>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000950 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000951</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000952
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000953<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000954
955<p>Aliases act as "second name" for the aliasee value (which can be either
956 function, global variable, another alias or bitcast of global value). Aliases
957 may have an optional <a href="#linkage">linkage type</a>, and an
958 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000959
Bill Wendling30235112009-07-20 02:39:26 +0000960<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000961<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000962@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000963</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000964
965</div>
966
Chris Lattner91c15c42006-01-23 23:23:47 +0000967<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000968<h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000969 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000970</h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000971
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000972<div>
Devang Pateld1a89692010-01-11 19:35:55 +0000973
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000974<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000975 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000976 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000977
978<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000979<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000980; Some unnamed metadata nodes, which are referenced by the named metadata.
981!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000982!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000983!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000984; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000985!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000986</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000987
988</div>
989
990<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000991<h3>
992 <a name="paramattrs">Parameter Attributes</a>
993</h3>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000994
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000995<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000996
997<p>The return type and each parameter of a function type may have a set of
998 <i>parameter attributes</i> associated with them. Parameter attributes are
999 used to communicate additional information about the result or parameters of
1000 a function. Parameter attributes are considered to be part of the function,
1001 not of the function type, so functions with different parameter attributes
1002 can have the same function type.</p>
1003
1004<p>Parameter attributes are simple keywords that follow the type specified. If
1005 multiple parameter attributes are needed, they are space separated. For
1006 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001007
Benjamin Kramer79698be2010-07-13 12:26:09 +00001008<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001009declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001010declare i32 @atoi(i8 zeroext)
1011declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001012</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001013
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001014<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1015 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001016
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001018
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001019<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001020 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001021 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichac106272011-03-16 22:20:18 +00001022 should be zero-extended to the extent required by the target's ABI (which
1023 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1024 parameter) or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001025
Bill Wendling7f4a3362009-11-02 00:24:16 +00001026 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001027 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich341c36d2011-03-17 14:21:58 +00001028 should be sign-extended to the extent required by the target's ABI (which
1029 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1030 return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001031
Bill Wendling7f4a3362009-11-02 00:24:16 +00001032 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001033 <dd>This indicates that this parameter or return value should be treated in a
1034 special target-dependent fashion during while emitting code for a function
1035 call or return (usually, by putting it in a register as opposed to memory,
1036 though some targets use it to distinguish between two different kinds of
1037 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001038
Bill Wendling7f4a3362009-11-02 00:24:16 +00001039 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001040 <dd><p>This indicates that the pointer parameter should really be passed by
1041 value to the function. The attribute implies that a hidden copy of the
1042 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001043 is made between the caller and the callee, so the callee is unable to
1044 modify the value in the callee. This attribute is only valid on LLVM
1045 pointer arguments. It is generally used to pass structs and arrays by
1046 value, but is also valid on pointers to scalars. The copy is considered
1047 to belong to the caller not the callee (for example,
1048 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1049 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001050 values.</p>
1051
1052 <p>The byval attribute also supports specifying an alignment with
1053 the align attribute. It indicates the alignment of the stack slot to
1054 form and the known alignment of the pointer specified to the call site. If
1055 the alignment is not specified, then the code generator makes a
1056 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001057
Dan Gohman3770af52010-07-02 23:18:08 +00001058 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001059 <dd>This indicates that the pointer parameter specifies the address of a
1060 structure that is the return value of the function in the source program.
1061 This pointer must be guaranteed by the caller to be valid: loads and
1062 stores to the structure may be assumed by the callee to not to trap. This
1063 may only be applied to the first parameter. This is not a valid attribute
1064 for return values. </dd>
1065
Dan Gohman3770af52010-07-02 23:18:08 +00001066 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001067 <dd>This indicates that pointer values
1068 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001069 value do not alias pointer values which are not <i>based</i> on it,
1070 ignoring certain "irrelevant" dependencies.
1071 For a call to the parent function, dependencies between memory
1072 references from before or after the call and from those during the call
1073 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1074 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001075 The caller shares the responsibility with the callee for ensuring that
1076 these requirements are met.
1077 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001078 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1079<br>
John McCall72ed8902010-07-06 21:07:14 +00001080 Note that this definition of <tt>noalias</tt> is intentionally
1081 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001082 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001083<br>
1084 For function return values, C99's <tt>restrict</tt> is not meaningful,
1085 while LLVM's <tt>noalias</tt> is.
1086 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001087
Dan Gohman3770af52010-07-02 23:18:08 +00001088 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001089 <dd>This indicates that the callee does not make any copies of the pointer
1090 that outlive the callee itself. This is not a valid attribute for return
1091 values.</dd>
1092
Dan Gohman3770af52010-07-02 23:18:08 +00001093 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001094 <dd>This indicates that the pointer parameter can be excised using the
1095 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1096 attribute for return values.</dd>
1097</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001098
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001099</div>
1100
1101<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001102<h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001103 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001104</h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001105
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001106<div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001107
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001108<p>Each function may specify a garbage collector name, which is simply a
1109 string:</p>
1110
Benjamin Kramer79698be2010-07-13 12:26:09 +00001111<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001112define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001113</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001114
1115<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001116 collector which will cause the compiler to alter its output in order to
1117 support the named garbage collection algorithm.</p>
1118
Gordon Henriksen71183b62007-12-10 03:18:06 +00001119</div>
1120
1121<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001122<h3>
Devang Patel9eb525d2008-09-26 23:51:19 +00001123 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001124</h3>
Devang Patelcaacdba2008-09-04 23:05:13 +00001125
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001126<div>
Devang Patel9eb525d2008-09-26 23:51:19 +00001127
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001128<p>Function attributes are set to communicate additional information about a
1129 function. Function attributes are considered to be part of the function, not
1130 of the function type, so functions with different parameter attributes can
1131 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001132
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001133<p>Function attributes are simple keywords that follow the type specified. If
1134 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001135
Benjamin Kramer79698be2010-07-13 12:26:09 +00001136<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001137define void @f() noinline { ... }
1138define void @f() alwaysinline { ... }
1139define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001140define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001141</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001142
Bill Wendlingb175fa42008-09-07 10:26:33 +00001143<dl>
Charles Davisbe5557e2010-02-12 00:31:15 +00001144 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1145 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1146 the backend should forcibly align the stack pointer. Specify the
1147 desired alignment, which must be a power of two, in parentheses.
1148
Bill Wendling7f4a3362009-11-02 00:24:16 +00001149 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001150 <dd>This attribute indicates that the inliner should attempt to inline this
1151 function into callers whenever possible, ignoring any active inlining size
1152 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001153
Dan Gohman8bd11f12011-06-16 16:03:13 +00001154 <dt><tt><b>nonlazybind</b></tt></dt>
1155 <dd>This attribute suppresses lazy symbol binding for the function. This
1156 may make calls to the function faster, at the cost of extra program
1157 startup time if the function is not called during program startup.</dd>
1158
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001159 <dt><tt><b>inlinehint</b></tt></dt>
1160 <dd>This attribute indicates that the source code contained a hint that inlining
1161 this function is desirable (such as the "inline" keyword in C/C++). It
1162 is just a hint; it imposes no requirements on the inliner.</dd>
1163
Nick Lewycky14b58da2010-07-06 18:24:09 +00001164 <dt><tt><b>naked</b></tt></dt>
1165 <dd>This attribute disables prologue / epilogue emission for the function.
1166 This can have very system-specific consequences.</dd>
1167
1168 <dt><tt><b>noimplicitfloat</b></tt></dt>
1169 <dd>This attributes disables implicit floating point instructions.</dd>
1170
Bill Wendling7f4a3362009-11-02 00:24:16 +00001171 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001172 <dd>This attribute indicates that the inliner should never inline this
1173 function in any situation. This attribute may not be used together with
1174 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001175
Nick Lewycky14b58da2010-07-06 18:24:09 +00001176 <dt><tt><b>noredzone</b></tt></dt>
1177 <dd>This attribute indicates that the code generator should not use a red
1178 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001179
Bill Wendling7f4a3362009-11-02 00:24:16 +00001180 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001181 <dd>This function attribute indicates that the function never returns
1182 normally. This produces undefined behavior at runtime if the function
1183 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001184
Bill Wendling7f4a3362009-11-02 00:24:16 +00001185 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001186 <dd>This function attribute indicates that the function never returns with an
1187 unwind or exceptional control flow. If the function does unwind, its
1188 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001189
Nick Lewycky14b58da2010-07-06 18:24:09 +00001190 <dt><tt><b>optsize</b></tt></dt>
1191 <dd>This attribute suggests that optimization passes and code generator passes
1192 make choices that keep the code size of this function low, and otherwise
1193 do optimizations specifically to reduce code size.</dd>
1194
Bill Wendling7f4a3362009-11-02 00:24:16 +00001195 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001196 <dd>This attribute indicates that the function computes its result (or decides
1197 to unwind an exception) based strictly on its arguments, without
1198 dereferencing any pointer arguments or otherwise accessing any mutable
1199 state (e.g. memory, control registers, etc) visible to caller functions.
1200 It does not write through any pointer arguments
1201 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1202 changes any state visible to callers. This means that it cannot unwind
1203 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1204 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001205
Bill Wendling7f4a3362009-11-02 00:24:16 +00001206 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001207 <dd>This attribute indicates that the function does not write through any
1208 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1209 arguments) or otherwise modify any state (e.g. memory, control registers,
1210 etc) visible to caller functions. It may dereference pointer arguments
1211 and read state that may be set in the caller. A readonly function always
1212 returns the same value (or unwinds an exception identically) when called
1213 with the same set of arguments and global state. It cannot unwind an
1214 exception by calling the <tt>C++</tt> exception throwing methods, but may
1215 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001216
Bill Wendling7f4a3362009-11-02 00:24:16 +00001217 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001218 <dd>This attribute indicates that the function should emit a stack smashing
1219 protector. It is in the form of a "canary"&mdash;a random value placed on
1220 the stack before the local variables that's checked upon return from the
1221 function to see if it has been overwritten. A heuristic is used to
1222 determine if a function needs stack protectors or not.<br>
1223<br>
1224 If a function that has an <tt>ssp</tt> attribute is inlined into a
1225 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1226 function will have an <tt>ssp</tt> attribute.</dd>
1227
Bill Wendling7f4a3362009-11-02 00:24:16 +00001228 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001229 <dd>This attribute indicates that the function should <em>always</em> emit a
1230 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001231 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1232<br>
1233 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1234 function that doesn't have an <tt>sspreq</tt> attribute or which has
1235 an <tt>ssp</tt> attribute, then the resulting function will have
1236 an <tt>sspreq</tt> attribute.</dd>
Rafael Espindola163d6752011-07-25 15:27:59 +00001237
1238 <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1239 <dd>This attribute indicates that the ABI being targeted requires that
1240 an unwind table entry be produce for this function even if we can
1241 show that no exceptions passes by it. This is normally the case for
1242 the ELF x86-64 abi, but it can be disabled for some compilation
1243 units.</dd>
1244
Rafael Espindolacc349c82011-10-03 14:45:37 +00001245 <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1246 <dd>This attribute indicates that this function can return
1247 twice. The C <code>setjmp</code> is an example of such a function.
1248 The compiler disables some optimizations (like tail calls) in the caller of
1249 these functions.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001250</dl>
1251
Devang Patelcaacdba2008-09-04 23:05:13 +00001252</div>
1253
1254<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001255<h3>
Chris Lattner93564892006-04-08 04:40:53 +00001256 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001257</h3>
Chris Lattner91c15c42006-01-23 23:23:47 +00001258
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001259<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001260
1261<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1262 the GCC "file scope inline asm" blocks. These blocks are internally
1263 concatenated by LLVM and treated as a single unit, but may be separated in
1264 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001265
Benjamin Kramer79698be2010-07-13 12:26:09 +00001266<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001267module asm "inline asm code goes here"
1268module asm "more can go here"
1269</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001270
1271<p>The strings can contain any character by escaping non-printable characters.
1272 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001273 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001274
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001275<p>The inline asm code is simply printed to the machine code .s file when
1276 assembly code is generated.</p>
1277
Chris Lattner91c15c42006-01-23 23:23:47 +00001278</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001279
Reid Spencer50c723a2007-02-19 23:54:10 +00001280<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001281<h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001282 <a name="datalayout">Data Layout</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001283</h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001284
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001285<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001286
Reid Spencer50c723a2007-02-19 23:54:10 +00001287<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001288 data is to be laid out in memory. The syntax for the data layout is
1289 simply:</p>
1290
Benjamin Kramer79698be2010-07-13 12:26:09 +00001291<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001292target datalayout = "<i>layout specification</i>"
1293</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001294
1295<p>The <i>layout specification</i> consists of a list of specifications
1296 separated by the minus sign character ('-'). Each specification starts with
1297 a letter and may include other information after the letter to define some
1298 aspect of the data layout. The specifications accepted are as follows:</p>
1299
Reid Spencer50c723a2007-02-19 23:54:10 +00001300<dl>
1301 <dt><tt>E</tt></dt>
1302 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001303 bits with the most significance have the lowest address location.</dd>
1304
Reid Spencer50c723a2007-02-19 23:54:10 +00001305 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001306 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001307 the bits with the least significance have the lowest address
1308 location.</dd>
1309
Lang Hamesde7ab802011-10-10 23:42:08 +00001310 <dt><tt>S<i>size</i></tt></dt>
1311 <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1312 of stack variables is limited to the natural stack alignment to avoid
1313 dynamic stack realignment. The stack alignment must be a multiple of
Lang Hamesff2c52c2011-10-11 17:50:14 +00001314 8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1315 which does not prevent any alignment promotions.</dd>
Lang Hamesde7ab802011-10-10 23:42:08 +00001316
Reid Spencer50c723a2007-02-19 23:54:10 +00001317 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001318 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001319 <i>preferred</i> alignments. All sizes are in bits. Specifying
1320 the <i>pref</i> alignment is optional. If omitted, the
1321 preceding <tt>:</tt> should be omitted too.</dd>
1322
Reid Spencer50c723a2007-02-19 23:54:10 +00001323 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1324 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001325 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1326
Reid Spencer50c723a2007-02-19 23:54:10 +00001327 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001328 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001329 <i>size</i>.</dd>
1330
Reid Spencer50c723a2007-02-19 23:54:10 +00001331 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001332 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001333 <i>size</i>. Only values of <i>size</i> that are supported by the target
1334 will work. 32 (float) and 64 (double) are supported on all targets;
1335 80 or 128 (different flavors of long double) are also supported on some
1336 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001337
Reid Spencer50c723a2007-02-19 23:54:10 +00001338 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1339 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001340 <i>size</i>.</dd>
1341
Daniel Dunbar7921a592009-06-08 22:17:53 +00001342 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1343 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001344 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001345
1346 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1347 <dd>This specifies a set of native integer widths for the target CPU
1348 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1349 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001350 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001351 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001352</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001353
Reid Spencer50c723a2007-02-19 23:54:10 +00001354<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001355 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001356 specifications in the <tt>datalayout</tt> keyword. The default specifications
1357 are given in this list:</p>
1358
Reid Spencer50c723a2007-02-19 23:54:10 +00001359<ul>
1360 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001361 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001362 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1363 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1364 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1365 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001366 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001367 alignment of 64-bits</li>
1368 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1369 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1370 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1371 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1372 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001373 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001374</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001375
1376<p>When LLVM is determining the alignment for a given type, it uses the
1377 following rules:</p>
1378
Reid Spencer50c723a2007-02-19 23:54:10 +00001379<ol>
1380 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001381 specification is used.</li>
1382
Reid Spencer50c723a2007-02-19 23:54:10 +00001383 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001384 smallest integer type that is larger than the bitwidth of the sought type
1385 is used. If none of the specifications are larger than the bitwidth then
1386 the the largest integer type is used. For example, given the default
1387 specifications above, the i7 type will use the alignment of i8 (next
1388 largest) while both i65 and i256 will use the alignment of i64 (largest
1389 specified).</li>
1390
Reid Spencer50c723a2007-02-19 23:54:10 +00001391 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001392 largest vector type that is smaller than the sought vector type will be
1393 used as a fall back. This happens because &lt;128 x double&gt; can be
1394 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001395</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001396
Chris Lattner48797402011-10-11 23:01:39 +00001397<p>The function of the data layout string may not be what you expect. Notably,
1398 this is not a specification from the frontend of what alignment the code
1399 generator should use.</p>
1400
1401<p>Instead, if specified, the target data layout is required to match what the
1402 ultimate <em>code generator</em> expects. This string is used by the
1403 mid-level optimizers to
1404 improve code, and this only works if it matches what the ultimate code
1405 generator uses. If you would like to generate IR that does not embed this
1406 target-specific detail into the IR, then you don't have to specify the
1407 string. This will disable some optimizations that require precise layout
1408 information, but this also prevents those optimizations from introducing
1409 target specificity into the IR.</p>
1410
1411
1412
Reid Spencer50c723a2007-02-19 23:54:10 +00001413</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001414
Dan Gohman6154a012009-07-27 18:07:55 +00001415<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001416<h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001417 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001418</h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001419
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001420<div>
Dan Gohman6154a012009-07-27 18:07:55 +00001421
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001422<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001423with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001424is undefined. Pointer values are associated with address ranges
1425according to the following rules:</p>
1426
1427<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001428 <li>A pointer value is associated with the addresses associated with
1429 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001430 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001431 range of the variable's storage.</li>
1432 <li>The result value of an allocation instruction is associated with
1433 the address range of the allocated storage.</li>
1434 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001435 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001436 <li>An integer constant other than zero or a pointer value returned
1437 from a function not defined within LLVM may be associated with address
1438 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001439 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001440 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001441</ul>
1442
1443<p>A pointer value is <i>based</i> on another pointer value according
1444 to the following rules:</p>
1445
1446<ul>
1447 <li>A pointer value formed from a
1448 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1449 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1450 <li>The result value of a
1451 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1452 of the <tt>bitcast</tt>.</li>
1453 <li>A pointer value formed by an
1454 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1455 pointer values that contribute (directly or indirectly) to the
1456 computation of the pointer's value.</li>
1457 <li>The "<i>based</i> on" relationship is transitive.</li>
1458</ul>
1459
1460<p>Note that this definition of <i>"based"</i> is intentionally
1461 similar to the definition of <i>"based"</i> in C99, though it is
1462 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001463
1464<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001465<tt><a href="#i_load">load</a></tt> merely indicates the size and
1466alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001467interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001468<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1469and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001470
1471<p>Consequently, type-based alias analysis, aka TBAA, aka
1472<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1473LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1474additional information which specialized optimization passes may use
1475to implement type-based alias analysis.</p>
1476
1477</div>
1478
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001479<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001480<h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001481 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001482</h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001483
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001484<div>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001485
1486<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1487href="#i_store"><tt>store</tt></a>s, and <a
1488href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1489The optimizers must not change the number of volatile operations or change their
1490order of execution relative to other volatile operations. The optimizers
1491<i>may</i> change the order of volatile operations relative to non-volatile
1492operations. This is not Java's "volatile" and has no cross-thread
1493synchronization behavior.</p>
1494
1495</div>
1496
Eli Friedman35b54aa2011-07-20 21:35:53 +00001497<!-- ======================================================================= -->
1498<h3>
1499 <a name="memmodel">Memory Model for Concurrent Operations</a>
1500</h3>
1501
1502<div>
1503
1504<p>The LLVM IR does not define any way to start parallel threads of execution
1505or to register signal handlers. Nonetheless, there are platform-specific
1506ways to create them, and we define LLVM IR's behavior in their presence. This
1507model is inspired by the C++0x memory model.</p>
1508
Eli Friedman95f69a42011-08-22 21:35:27 +00001509<p>For a more informal introduction to this model, see the
1510<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1511
Eli Friedman35b54aa2011-07-20 21:35:53 +00001512<p>We define a <i>happens-before</i> partial order as the least partial order
1513that</p>
1514<ul>
1515 <li>Is a superset of single-thread program order, and</li>
1516 <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1517 <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1518 by platform-specific techniques, like pthread locks, thread
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001519 creation, thread joining, etc., and by atomic instructions.
1520 (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1521 </li>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001522</ul>
1523
1524<p>Note that program order does not introduce <i>happens-before</i> edges
1525between a thread and signals executing inside that thread.</p>
1526
1527<p>Every (defined) read operation (load instructions, memcpy, atomic
1528loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1529(defined) write operations (store instructions, atomic
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001530stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1531initialized globals are considered to have a write of the initializer which is
1532atomic and happens before any other read or write of the memory in question.
1533For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1534any write to the same byte, except:</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001535
1536<ul>
1537 <li>If <var>write<sub>1</sub></var> happens before
1538 <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1539 before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001540 does not see <var>write<sub>1</sub></var>.
Bill Wendling537603b2011-07-31 06:45:03 +00001541 <li>If <var>R<sub>byte</sub></var> happens before
1542 <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1543 see <var>write<sub>3</sub></var>.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001544</ul>
1545
1546<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1547<ul>
Eli Friedman95f69a42011-08-22 21:35:27 +00001548 <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1549 is supposed to give guarantees which can support
1550 <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1551 addresses which do not behave like normal memory. It does not generally
1552 provide cross-thread synchronization.)
1553 <li>Otherwise, if there is no write to the same byte that happens before
Eli Friedman35b54aa2011-07-20 21:35:53 +00001554 <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1555 <tt>undef</tt> for that byte.
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001556 <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
Eli Friedman35b54aa2011-07-20 21:35:53 +00001557 <var>R<sub>byte</sub></var> returns the value written by that
1558 write.</li>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001559 <li>Otherwise, if <var>R</var> is atomic, and all the writes
1560 <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001561 values written. See the <a href="#ordering">Atomic Memory Ordering
1562 Constraints</a> section for additional constraints on how the choice
1563 is made.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001564 <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1565</ul>
1566
1567<p><var>R</var> returns the value composed of the series of bytes it read.
1568This implies that some bytes within the value may be <tt>undef</tt>
1569<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1570defines the semantics of the operation; it doesn't mean that targets will
1571emit more than one instruction to read the series of bytes.</p>
1572
1573<p>Note that in cases where none of the atomic intrinsics are used, this model
1574places only one restriction on IR transformations on top of what is required
1575for single-threaded execution: introducing a store to a byte which might not
Eli Friedman4bc9f3c2011-08-02 01:15:34 +00001576otherwise be stored is not allowed in general. (Specifically, in the case
1577where another thread might write to and read from an address, introducing a
1578store can change a load that may see exactly one write into a load that may
1579see multiple writes.)</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001580
1581<!-- FIXME: This model assumes all targets where concurrency is relevant have
1582a byte-size store which doesn't affect adjacent bytes. As far as I can tell,
1583none of the backends currently in the tree fall into this category; however,
1584there might be targets which care. If there are, we want a paragraph
1585like the following:
1586
1587Targets may specify that stores narrower than a certain width are not
1588available; on such a target, for the purposes of this model, treat any
1589non-atomic write with an alignment or width less than the minimum width
1590as if it writes to the relevant surrounding bytes.
1591-->
1592
1593</div>
1594
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001595<!-- ======================================================================= -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001596<h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001597 <a name="ordering">Atomic Memory Ordering Constraints</a>
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001598</h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001599
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001600<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001601
1602<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
Eli Friedman59b66882011-08-09 23:02:53 +00001603<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1604<a href="#i_fence"><code>fence</code></a>,
1605<a href="#i_load"><code>atomic load</code></a>, and
Eli Friedman75362532011-08-09 23:26:12 +00001606<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001607that determines which other atomic instructions on the same address they
1608<i>synchronize with</i>. These semantics are borrowed from Java and C++0x,
1609but are somewhat more colloquial. If these descriptions aren't precise enough,
Eli Friedman95f69a42011-08-22 21:35:27 +00001610check those specs (see spec references in the
1611<a href="Atomic.html#introduction">atomics guide</a>).
1612<a href="#i_fence"><code>fence</code></a> instructions
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001613treat these orderings somewhat differently since they don't take an address.
1614See that instruction's documentation for details.</p>
1615
Eli Friedman95f69a42011-08-22 21:35:27 +00001616<p>For a simpler introduction to the ordering constraints, see the
1617<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1618
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001619<dl>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001620<dt><code>unordered</code></dt>
1621<dd>The set of values that can be read is governed by the happens-before
1622partial order. A value cannot be read unless some operation wrote it.
1623This is intended to provide a guarantee strong enough to model Java's
1624non-volatile shared variables. This ordering cannot be specified for
1625read-modify-write operations; it is not strong enough to make them atomic
1626in any interesting way.</dd>
1627<dt><code>monotonic</code></dt>
1628<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1629total order for modifications by <code>monotonic</code> operations on each
1630address. All modification orders must be compatible with the happens-before
1631order. There is no guarantee that the modification orders can be combined to
1632a global total order for the whole program (and this often will not be
1633possible). The read in an atomic read-modify-write operation
1634(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1635<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1636reads the value in the modification order immediately before the value it
1637writes. If one atomic read happens before another atomic read of the same
1638address, the later read must see the same value or a later value in the
1639address's modification order. This disallows reordering of
1640<code>monotonic</code> (or stronger) operations on the same address. If an
1641address is written <code>monotonic</code>ally by one thread, and other threads
1642<code>monotonic</code>ally read that address repeatedly, the other threads must
Eli Friedman95f69a42011-08-22 21:35:27 +00001643eventually see the write. This corresponds to the C++0x/C1x
1644<code>memory_order_relaxed</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001645<dt><code>acquire</code></dt>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001646<dd>In addition to the guarantees of <code>monotonic</code>,
Eli Friedman0cb3b562011-08-24 20:28:39 +00001647a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1648operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1649<dt><code>release</code></dt>
1650<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1651writes a value which is subsequently read by an <code>acquire</code> operation,
1652it <i>synchronizes-with</i> that operation. (This isn't a complete
1653description; see the C++0x definition of a release sequence.) This corresponds
1654to the C++0x/C1x <code>memory_order_release</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001655<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
Eli Friedman95f69a42011-08-22 21:35:27 +00001656<code>acquire</code> and <code>release</code> operation on its address.
1657This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001658<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1659<dd>In addition to the guarantees of <code>acq_rel</code>
1660(<code>acquire</code> for an operation which only reads, <code>release</code>
1661for an operation which only writes), there is a global total order on all
1662sequentially-consistent operations on all addresses, which is consistent with
1663the <i>happens-before</i> partial order and with the modification orders of
1664all the affected addresses. Each sequentially-consistent read sees the last
Eli Friedman95f69a42011-08-22 21:35:27 +00001665preceding write to the same address in this global order. This corresponds
1666to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001667</dl>
1668
1669<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1670it only <i>synchronizes with</i> or participates in modification and seq_cst
1671total orderings with other operations running in the same thread (for example,
1672in signal handlers).</p>
1673
1674</div>
1675
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001676</div>
1677
Chris Lattner2f7c9632001-06-06 20:29:01 +00001678<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001679<h2><a name="typesystem">Type System</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00001680<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001681
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001682<div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001683
Misha Brukman76307852003-11-08 01:05:38 +00001684<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001685 intermediate representation. Being typed enables a number of optimizations
1686 to be performed on the intermediate representation directly, without having
1687 to do extra analyses on the side before the transformation. A strong type
1688 system makes it easier to read the generated code and enables novel analyses
1689 and transformations that are not feasible to perform on normal three address
1690 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001691
Chris Lattner2f7c9632001-06-06 20:29:01 +00001692<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001693<h3>
1694 <a name="t_classifications">Type Classifications</a>
1695</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001696
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001697<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001698
1699<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001700
1701<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001702 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001703 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001704 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001705 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001706 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001707 </tr>
1708 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001709 <td><a href="#t_floating">floating point</a></td>
1710 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001711 </tr>
1712 <tr>
1713 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001714 <td><a href="#t_integer">integer</a>,
1715 <a href="#t_floating">floating point</a>,
1716 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001717 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001718 <a href="#t_struct">structure</a>,
1719 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001720 <a href="#t_label">label</a>,
1721 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001722 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001723 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001724 <tr>
1725 <td><a href="#t_primitive">primitive</a></td>
1726 <td><a href="#t_label">label</a>,
1727 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001728 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001729 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001730 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001731 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001732 </tr>
1733 <tr>
1734 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001735 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001736 <a href="#t_function">function</a>,
1737 <a href="#t_pointer">pointer</a>,
1738 <a href="#t_struct">structure</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001739 <a href="#t_vector">vector</a>,
1740 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001741 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001742 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001743 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001744</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001745
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001746<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1747 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001748 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001749
Misha Brukman76307852003-11-08 01:05:38 +00001750</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001751
Chris Lattner2f7c9632001-06-06 20:29:01 +00001752<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001753<h3>
1754 <a name="t_primitive">Primitive Types</a>
1755</h3>
Chris Lattner43542b32008-01-04 04:34:14 +00001756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001757<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001758
Chris Lattner7824d182008-01-04 04:32:38 +00001759<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001760 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001761
1762<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001763<h4>
1764 <a name="t_integer">Integer Type</a>
1765</h4>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001766
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001767<div>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001768
1769<h5>Overview:</h5>
1770<p>The integer type is a very simple type that simply specifies an arbitrary
1771 bit width for the integer type desired. Any bit width from 1 bit to
1772 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1773
1774<h5>Syntax:</h5>
1775<pre>
1776 iN
1777</pre>
1778
1779<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1780 value.</p>
1781
1782<h5>Examples:</h5>
1783<table class="layout">
1784 <tr class="layout">
1785 <td class="left"><tt>i1</tt></td>
1786 <td class="left">a single-bit integer.</td>
1787 </tr>
1788 <tr class="layout">
1789 <td class="left"><tt>i32</tt></td>
1790 <td class="left">a 32-bit integer.</td>
1791 </tr>
1792 <tr class="layout">
1793 <td class="left"><tt>i1942652</tt></td>
1794 <td class="left">a really big integer of over 1 million bits.</td>
1795 </tr>
1796</table>
1797
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001798</div>
1799
1800<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001801<h4>
1802 <a name="t_floating">Floating Point Types</a>
1803</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001804
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001805<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001806
1807<table>
1808 <tbody>
1809 <tr><th>Type</th><th>Description</th></tr>
1810 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1811 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1812 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1813 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1814 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1815 </tbody>
1816</table>
1817
Chris Lattner7824d182008-01-04 04:32:38 +00001818</div>
1819
1820<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001821<h4>
1822 <a name="t_x86mmx">X86mmx Type</a>
1823</h4>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001824
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001825<div>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001826
1827<h5>Overview:</h5>
1828<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1829
1830<h5>Syntax:</h5>
1831<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001832 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001833</pre>
1834
1835</div>
1836
1837<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001838<h4>
1839 <a name="t_void">Void Type</a>
1840</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001841
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001842<div>
Bill Wendling30235112009-07-20 02:39:26 +00001843
Chris Lattner7824d182008-01-04 04:32:38 +00001844<h5>Overview:</h5>
1845<p>The void type does not represent any value and has no size.</p>
1846
1847<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001848<pre>
1849 void
1850</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001851
Chris Lattner7824d182008-01-04 04:32:38 +00001852</div>
1853
1854<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001855<h4>
1856 <a name="t_label">Label Type</a>
1857</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001858
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001859<div>
Bill Wendling30235112009-07-20 02:39:26 +00001860
Chris Lattner7824d182008-01-04 04:32:38 +00001861<h5>Overview:</h5>
1862<p>The label type represents code labels.</p>
1863
1864<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001865<pre>
1866 label
1867</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001868
Chris Lattner7824d182008-01-04 04:32:38 +00001869</div>
1870
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001871<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001872<h4>
1873 <a name="t_metadata">Metadata Type</a>
1874</h4>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001875
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001876<div>
Bill Wendling30235112009-07-20 02:39:26 +00001877
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001878<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001879<p>The metadata type represents embedded metadata. No derived types may be
1880 created from metadata except for <a href="#t_function">function</a>
1881 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001882
1883<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001884<pre>
1885 metadata
1886</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001887
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001888</div>
1889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001890</div>
Chris Lattner7824d182008-01-04 04:32:38 +00001891
1892<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001893<h3>
1894 <a name="t_derived">Derived Types</a>
1895</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00001896
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001897<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001898
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001899<p>The real power in LLVM comes from the derived types in the system. This is
1900 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001901 useful types. Each of these types contain one or more element types which
1902 may be a primitive type, or another derived type. For example, it is
1903 possible to have a two dimensional array, using an array as the element type
1904 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001905
Chris Lattner392be582010-02-12 20:49:41 +00001906<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001907<h4>
1908 <a name="t_aggregate">Aggregate Types</a>
1909</h4>
Chris Lattner392be582010-02-12 20:49:41 +00001910
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001911<div>
Chris Lattner392be582010-02-12 20:49:41 +00001912
1913<p>Aggregate Types are a subset of derived types that can contain multiple
1914 member types. <a href="#t_array">Arrays</a>,
Chris Lattner13ee7952010-08-28 04:09:24 +00001915 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1916 aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001917
1918</div>
1919
Reid Spencer138249b2007-05-16 18:44:01 +00001920<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001921<h4>
1922 <a name="t_array">Array Type</a>
1923</h4>
Chris Lattner74d3f822004-12-09 17:30:23 +00001924
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001925<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001926
Chris Lattner2f7c9632001-06-06 20:29:01 +00001927<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001928<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001929 sequentially in memory. The array type requires a size (number of elements)
1930 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001931
Chris Lattner590645f2002-04-14 06:13:44 +00001932<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001933<pre>
1934 [&lt;# elements&gt; x &lt;elementtype&gt;]
1935</pre>
1936
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001937<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1938 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001939
Chris Lattner590645f2002-04-14 06:13:44 +00001940<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001941<table class="layout">
1942 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001943 <td class="left"><tt>[40 x i32]</tt></td>
1944 <td class="left">Array of 40 32-bit integer values.</td>
1945 </tr>
1946 <tr class="layout">
1947 <td class="left"><tt>[41 x i32]</tt></td>
1948 <td class="left">Array of 41 32-bit integer values.</td>
1949 </tr>
1950 <tr class="layout">
1951 <td class="left"><tt>[4 x i8]</tt></td>
1952 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001953 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001954</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001955<p>Here are some examples of multidimensional arrays:</p>
1956<table class="layout">
1957 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001958 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1959 <td class="left">3x4 array of 32-bit integer values.</td>
1960 </tr>
1961 <tr class="layout">
1962 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1963 <td class="left">12x10 array of single precision floating point values.</td>
1964 </tr>
1965 <tr class="layout">
1966 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1967 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001968 </tr>
1969</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001970
Dan Gohmanc74bc282009-11-09 19:01:53 +00001971<p>There is no restriction on indexing beyond the end of the array implied by
1972 a static type (though there are restrictions on indexing beyond the bounds
1973 of an allocated object in some cases). This means that single-dimension
1974 'variable sized array' addressing can be implemented in LLVM with a zero
1975 length array type. An implementation of 'pascal style arrays' in LLVM could
1976 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001977
Misha Brukman76307852003-11-08 01:05:38 +00001978</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001979
Chris Lattner2f7c9632001-06-06 20:29:01 +00001980<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001981<h4>
1982 <a name="t_function">Function Type</a>
1983</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001984
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001985<div>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001986
Chris Lattner2f7c9632001-06-06 20:29:01 +00001987<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001988<p>The function type can be thought of as a function signature. It consists of
1989 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00001990 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001991
Chris Lattner2f7c9632001-06-06 20:29:01 +00001992<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001993<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001994 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001995</pre>
1996
John Criswell4c0cf7f2005-10-24 16:17:18 +00001997<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001998 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1999 which indicates that the function takes a variable number of arguments.
2000 Variable argument functions can access their arguments with
2001 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00002002 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00002003 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002004
Chris Lattner2f7c9632001-06-06 20:29:01 +00002005<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002006<table class="layout">
2007 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00002008 <td class="left"><tt>i32 (i32)</tt></td>
2009 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002010 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00002011 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00002012 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00002013 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002014 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00002015 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2016 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00002017 </td>
2018 </tr><tr class="layout">
2019 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002020 <td class="left">A vararg function that takes at least one
2021 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2022 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00002023 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002024 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00002025 </tr><tr class="layout">
2026 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002027 <td class="left">A function taking an <tt>i32</tt>, returning a
2028 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00002029 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002030 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002031</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002032
Misha Brukman76307852003-11-08 01:05:38 +00002033</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002034
Chris Lattner2f7c9632001-06-06 20:29:01 +00002035<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002036<h4>
2037 <a name="t_struct">Structure Type</a>
2038</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002039
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002040<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002041
Chris Lattner2f7c9632001-06-06 20:29:01 +00002042<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002043<p>The structure type is used to represent a collection of data members together
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002044 in memory. The elements of a structure may be any type that has a size.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002045
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00002046<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2047 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2048 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2049 Structures in registers are accessed using the
2050 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2051 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002052
2053<p>Structures may optionally be "packed" structures, which indicate that the
2054 alignment of the struct is one byte, and that there is no padding between
Chris Lattner190552d2011-08-12 17:31:02 +00002055 the elements. In non-packed structs, padding between field types is inserted
2056 as defined by the TargetData string in the module, which is required to match
Chris Lattner7bd0ea32011-10-11 23:02:17 +00002057 what the underlying code generator expects.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002058
Chris Lattner190552d2011-08-12 17:31:02 +00002059<p>Structures can either be "literal" or "identified". A literal structure is
2060 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2061 types are always defined at the top level with a name. Literal types are
2062 uniqued by their contents and can never be recursive or opaque since there is
Chris Lattner32531732011-08-12 18:12:40 +00002063 no way to write one. Identified types can be recursive, can be opaqued, and are
Chris Lattner190552d2011-08-12 17:31:02 +00002064 never uniqued.
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002065</p>
2066
Chris Lattner2f7c9632001-06-06 20:29:01 +00002067<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002068<pre>
Chris Lattner190552d2011-08-12 17:31:02 +00002069 %T1 = type { &lt;type list&gt; } <i>; Identified normal struct type</i>
2070 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Identified packed struct type</i>
Bill Wendling30235112009-07-20 02:39:26 +00002071</pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002072
Chris Lattner2f7c9632001-06-06 20:29:01 +00002073<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002074<table class="layout">
2075 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002076 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2077 <td class="left">A triple of three <tt>i32</tt> values</td>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002078 </tr>
2079 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002080 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2081 <td class="left">A pair, where the first element is a <tt>float</tt> and the
2082 second element is a <a href="#t_pointer">pointer</a> to a
2083 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2084 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002085 </tr>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002086 <tr class="layout">
2087 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2088 <td class="left">A packed struct known to be 5 bytes in size.</td>
2089 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002090</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002091
Misha Brukman76307852003-11-08 01:05:38 +00002092</div>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002093
Chris Lattner2f7c9632001-06-06 20:29:01 +00002094<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002095<h4>
Chris Lattner2a843822011-07-23 19:59:08 +00002096 <a name="t_opaque">Opaque Structure Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002097</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002098
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002099<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002100
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002101<h5>Overview:</h5>
Chris Lattner2a843822011-07-23 19:59:08 +00002102<p>Opaque structure types are used to represent named structure types that do
2103 not have a body specified. This corresponds (for example) to the C notion of
2104 a forward declared structure.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002105
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002106<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002107<pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002108 %X = type opaque
2109 %52 = type opaque
Bill Wendling30235112009-07-20 02:39:26 +00002110</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002111
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002112<h5>Examples:</h5>
2113<table class="layout">
2114 <tr class="layout">
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002115 <td class="left"><tt>opaque</tt></td>
2116 <td class="left">An opaque type.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002117 </tr>
2118</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002119
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002120</div>
2121
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002122
2123
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002124<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002125<h4>
2126 <a name="t_pointer">Pointer Type</a>
2127</h4>
Chris Lattner4a67c912009-02-08 19:53:29 +00002128
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002129<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002130
2131<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00002132<p>The pointer type is used to specify memory locations.
2133 Pointers are commonly used to reference objects in memory.</p>
2134
2135<p>Pointer types may have an optional address space attribute defining the
2136 numbered address space where the pointed-to object resides. The default
2137 address space is number zero. The semantics of non-zero address
2138 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002139
2140<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2141 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00002142
Chris Lattner590645f2002-04-14 06:13:44 +00002143<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002144<pre>
2145 &lt;type&gt; *
2146</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002147
Chris Lattner590645f2002-04-14 06:13:44 +00002148<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002149<table class="layout">
2150 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00002151 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002152 <td class="left">A <a href="#t_pointer">pointer</a> to <a
2153 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2154 </tr>
2155 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00002156 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002157 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002158 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00002159 <tt>i32</tt>.</td>
2160 </tr>
2161 <tr class="layout">
2162 <td class="left"><tt>i32 addrspace(5)*</tt></td>
2163 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2164 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002165 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00002166</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002167
Misha Brukman76307852003-11-08 01:05:38 +00002168</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002169
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002170<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002171<h4>
2172 <a name="t_vector">Vector Type</a>
2173</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002174
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002175<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002176
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002177<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002178<p>A vector type is a simple derived type that represents a vector of elements.
2179 Vector types are used when multiple primitive data are operated in parallel
2180 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00002181 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002182 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002183
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002184<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002185<pre>
2186 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2187</pre>
2188
Chris Lattnerf11031a2010-10-10 18:20:35 +00002189<p>The number of elements is a constant integer value larger than 0; elementtype
2190 may be any integer or floating point type. Vectors of size zero are not
2191 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002192
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002193<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002194<table class="layout">
2195 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002196 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2197 <td class="left">Vector of 4 32-bit integer values.</td>
2198 </tr>
2199 <tr class="layout">
2200 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2201 <td class="left">Vector of 8 32-bit floating-point values.</td>
2202 </tr>
2203 <tr class="layout">
2204 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2205 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002206 </tr>
2207</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002208
Misha Brukman76307852003-11-08 01:05:38 +00002209</div>
2210
Bill Wendlingae8b5ea2011-07-31 06:47:33 +00002211</div>
2212
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00002213</div>
2214
Chris Lattner74d3f822004-12-09 17:30:23 +00002215<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002216<h2><a name="constants">Constants</a></h2>
Chris Lattner74d3f822004-12-09 17:30:23 +00002217<!-- *********************************************************************** -->
2218
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002219<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002220
2221<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002222 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002223
Chris Lattner74d3f822004-12-09 17:30:23 +00002224<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002225<h3>
2226 <a name="simpleconstants">Simple Constants</a>
2227</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002228
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002229<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002230
2231<dl>
2232 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002233 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002234 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002235
2236 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002237 <dd>Standard integers (such as '4') are constants of
2238 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2239 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002240
2241 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002242 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002243 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2244 notation (see below). The assembler requires the exact decimal value of a
2245 floating-point constant. For example, the assembler accepts 1.25 but
2246 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2247 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002248
2249 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002250 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002251 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002252</dl>
2253
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002254<p>The one non-intuitive notation for constants is the hexadecimal form of
2255 floating point constants. For example, the form '<tt>double
2256 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2257 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2258 constants are required (and the only time that they are generated by the
2259 disassembler) is when a floating point constant must be emitted but it cannot
2260 be represented as a decimal floating point number in a reasonable number of
2261 digits. For example, NaN's, infinities, and other special values are
2262 represented in their IEEE hexadecimal format so that assembly and disassembly
2263 do not cause any bits to change in the constants.</p>
2264
Dale Johannesencd4a3012009-02-11 22:14:51 +00002265<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002266 represented using the 16-digit form shown above (which matches the IEEE754
2267 representation for double); float values must, however, be exactly
2268 representable as IEE754 single precision. Hexadecimal format is always used
2269 for long double, and there are three forms of long double. The 80-bit format
2270 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2271 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2272 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2273 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2274 currently supported target uses this format. Long doubles will only work if
2275 they match the long double format on your target. All hexadecimal formats
2276 are big-endian (sign bit at the left).</p>
2277
Dale Johannesen33e5c352010-10-01 00:48:59 +00002278<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002279</div>
2280
2281<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002282<h3>
Bill Wendling972b7202009-07-20 02:32:41 +00002283<a name="aggregateconstants"></a> <!-- old anchor -->
2284<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002285</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002286
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002287<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002288
Chris Lattner361bfcd2009-02-28 18:32:25 +00002289<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002290 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002291
2292<dl>
2293 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002294 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002295 type definitions (a comma separated list of elements, surrounded by braces
2296 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2297 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2298 Structure constants must have <a href="#t_struct">structure type</a>, and
2299 the number and types of elements must match those specified by the
2300 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002301
2302 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002303 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002304 definitions (a comma separated list of elements, surrounded by square
2305 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2306 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2307 the number and types of elements must match those specified by the
2308 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002309
Reid Spencer404a3252007-02-15 03:07:05 +00002310 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002311 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002312 definitions (a comma separated list of elements, surrounded by
2313 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2314 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2315 have <a href="#t_vector">vector type</a>, and the number and types of
2316 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002317
2318 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002319 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002320 value to zero of <em>any</em> type, including scalar and
2321 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002322 This is often used to avoid having to print large zero initializers
2323 (e.g. for large arrays) and is always exactly equivalent to using explicit
2324 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002325
2326 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002327 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002328 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2329 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2330 be interpreted as part of the instruction stream, metadata is a place to
2331 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002332</dl>
2333
2334</div>
2335
2336<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002337<h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002338 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002339</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002341<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002342
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002343<p>The addresses of <a href="#globalvars">global variables</a>
2344 and <a href="#functionstructure">functions</a> are always implicitly valid
2345 (link-time) constants. These constants are explicitly referenced when
2346 the <a href="#identifiers">identifier for the global</a> is used and always
2347 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2348 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002349
Benjamin Kramer79698be2010-07-13 12:26:09 +00002350<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002351@X = global i32 17
2352@Y = global i32 42
2353@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002354</pre>
2355
2356</div>
2357
2358<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002359<h3>
2360 <a name="undefvalues">Undefined Values</a>
2361</h3>
2362
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002363<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002364
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002365<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002366 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002367 Undefined values may be of any type (other than '<tt>label</tt>'
2368 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002369
Chris Lattner92ada5d2009-09-11 01:49:31 +00002370<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002371 program is well defined no matter what value is used. This gives the
2372 compiler more freedom to optimize. Here are some examples of (potentially
2373 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002374
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002375
Benjamin Kramer79698be2010-07-13 12:26:09 +00002376<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002377 %A = add %X, undef
2378 %B = sub %X, undef
2379 %C = xor %X, undef
2380Safe:
2381 %A = undef
2382 %B = undef
2383 %C = undef
2384</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002385
2386<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002387 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002388
Benjamin Kramer79698be2010-07-13 12:26:09 +00002389<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002390 %A = or %X, undef
2391 %B = and %X, undef
2392Safe:
2393 %A = -1
2394 %B = 0
2395Unsafe:
2396 %A = undef
2397 %B = undef
2398</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002399
2400<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002401 For example, if <tt>%X</tt> has a zero bit, then the output of the
2402 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2403 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2404 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2405 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2406 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2407 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2408 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002409
Benjamin Kramer79698be2010-07-13 12:26:09 +00002410<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002411 %A = select undef, %X, %Y
2412 %B = select undef, 42, %Y
2413 %C = select %X, %Y, undef
2414Safe:
2415 %A = %X (or %Y)
2416 %B = 42 (or %Y)
2417 %C = %Y
2418Unsafe:
2419 %A = undef
2420 %B = undef
2421 %C = undef
2422</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002423
Bill Wendling6bbe0912010-10-27 01:07:41 +00002424<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2425 branch) conditions can go <em>either way</em>, but they have to come from one
2426 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2427 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2428 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2429 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2430 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2431 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002432
Benjamin Kramer79698be2010-07-13 12:26:09 +00002433<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002434 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002435
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002436 %B = undef
2437 %C = xor %B, %B
2438
2439 %D = undef
2440 %E = icmp lt %D, 4
2441 %F = icmp gte %D, 4
2442
2443Safe:
2444 %A = undef
2445 %B = undef
2446 %C = undef
2447 %D = undef
2448 %E = undef
2449 %F = undef
2450</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002451
Bill Wendling6bbe0912010-10-27 01:07:41 +00002452<p>This example points out that two '<tt>undef</tt>' operands are not
2453 necessarily the same. This can be surprising to people (and also matches C
2454 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2455 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2456 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2457 its value over its "live range". This is true because the variable doesn't
2458 actually <em>have a live range</em>. Instead, the value is logically read
2459 from arbitrary registers that happen to be around when needed, so the value
2460 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2461 need to have the same semantics or the core LLVM "replace all uses with"
2462 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002463
Benjamin Kramer79698be2010-07-13 12:26:09 +00002464<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002465 %A = fdiv undef, %X
2466 %B = fdiv %X, undef
2467Safe:
2468 %A = undef
2469b: unreachable
2470</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002471
2472<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002473 value</em> and <em>undefined behavior</em>. An undefined value (like
2474 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2475 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2476 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2477 defined on SNaN's. However, in the second example, we can make a more
2478 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2479 arbitrary value, we are allowed to assume that it could be zero. Since a
2480 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2481 the operation does not execute at all. This allows us to delete the divide and
2482 all code after it. Because the undefined operation "can't happen", the
2483 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002484
Benjamin Kramer79698be2010-07-13 12:26:09 +00002485<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002486a: store undef -> %X
2487b: store %X -> undef
2488Safe:
2489a: &lt;deleted&gt;
2490b: unreachable
2491</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002492
Bill Wendling6bbe0912010-10-27 01:07:41 +00002493<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2494 undefined value can be assumed to not have any effect; we can assume that the
2495 value is overwritten with bits that happen to match what was already there.
2496 However, a store <em>to</em> an undefined location could clobber arbitrary
2497 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002498
Chris Lattner74d3f822004-12-09 17:30:23 +00002499</div>
2500
2501<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002502<h3>
2503 <a name="trapvalues">Trap Values</a>
2504</h3>
2505
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002506<div>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002507
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002508<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002509 instead of representing an unspecified bit pattern, they represent the
2510 fact that an instruction or constant expression which cannot evoke side
2511 effects has nevertheless detected a condition which results in undefined
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002512 behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002513
Dan Gohman2f1ae062010-04-28 00:49:41 +00002514<p>There is currently no way of representing a trap value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002515 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002516 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002517
Dan Gohman2f1ae062010-04-28 00:49:41 +00002518<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002519
Dan Gohman2f1ae062010-04-28 00:49:41 +00002520<ul>
2521<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2522 their operands.</li>
2523
2524<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2525 to their dynamic predecessor basic block.</li>
2526
2527<li>Function arguments depend on the corresponding actual argument values in
2528 the dynamic callers of their functions.</li>
2529
2530<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2531 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2532 control back to them.</li>
2533
Dan Gohman7292a752010-05-03 14:55:22 +00002534<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2535 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2536 or exception-throwing call instructions that dynamically transfer control
2537 back to them.</li>
2538
Dan Gohman2f1ae062010-04-28 00:49:41 +00002539<li>Non-volatile loads and stores depend on the most recent stores to all of the
2540 referenced memory addresses, following the order in the IR
2541 (including loads and stores implied by intrinsics such as
2542 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2543
Dan Gohman3513ea52010-05-03 14:59:34 +00002544<!-- TODO: In the case of multiple threads, this only applies if the store
2545 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002546
Dan Gohman2f1ae062010-04-28 00:49:41 +00002547<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002548
Dan Gohman2f1ae062010-04-28 00:49:41 +00002549<li>An instruction with externally visible side effects depends on the most
2550 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002551 the order in the IR. (This includes
2552 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002553
Dan Gohman7292a752010-05-03 14:55:22 +00002554<li>An instruction <i>control-depends</i> on a
2555 <a href="#terminators">terminator instruction</a>
2556 if the terminator instruction has multiple successors and the instruction
2557 is always executed when control transfers to one of the successors, and
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002558 may not be executed when control is transferred to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002559
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002560<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2561 instruction if the set of instructions it otherwise depends on would be
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002562 different if the terminator had transferred control to a different
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002563 successor.</li>
2564
Dan Gohman2f1ae062010-04-28 00:49:41 +00002565<li>Dependence is transitive.</li>
2566
2567</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002568
2569<p>Whenever a trap value is generated, all values which depend on it evaluate
Lang Hames91fc0902011-10-13 23:04:49 +00002570 to trap. If they have side effects, they evoke their side effects as if each
Dan Gohman2f1ae062010-04-28 00:49:41 +00002571 operand with a trap value were undef. If they have externally-visible side
2572 effects, the behavior is undefined.</p>
2573
2574<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002575
Benjamin Kramer79698be2010-07-13 12:26:09 +00002576<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002577entry:
2578 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002579 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2580 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2581 store i32 0, i32* %trap_yet_again ; undefined behavior
2582
2583 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2584 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2585
Chris Lattnerbc639292011-11-27 06:56:53 +00002586 store volatile i32 %trap, i32* @g ; External observation; undefined behavior.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002587
2588 %narrowaddr = bitcast i32* @g to i16*
2589 %wideaddr = bitcast i32* @g to i64*
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002590 %trap3 = load i16* %narrowaddr ; Returns a trap value.
2591 %trap4 = load i64* %wideaddr ; Returns a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002592
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002593 %cmp = icmp slt i32 %trap, 0 ; Returns a trap value.
2594 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002595
2596true:
Chris Lattnerbc639292011-11-27 06:56:53 +00002597 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
Dan Gohman2f1ae062010-04-28 00:49:41 +00002598 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002599 br label %end
2600
2601end:
2602 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2603 ; Both edges into this PHI are
2604 ; control-dependent on %cmp, so this
Dan Gohman2f1ae062010-04-28 00:49:41 +00002605 ; always results in a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002606
Chris Lattnerbc639292011-11-27 06:56:53 +00002607 store volatile i32 0, i32* @g ; This would depend on the store in %true
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002608 ; if %cmp is true, or the store in %entry
2609 ; otherwise, so this is undefined behavior.
2610
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002611 br i1 %cmp, label %second_true, label %second_end
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002612 ; The same branch again, but this time the
2613 ; true block doesn't have side effects.
2614
2615second_true:
2616 ; No side effects!
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002617 ret void
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002618
2619second_end:
Chris Lattnerbc639292011-11-27 06:56:53 +00002620 store volatile i32 0, i32* @g ; This time, the instruction always depends
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002621 ; on the store in %end. Also, it is
2622 ; control-equivalent to %end, so this is
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002623 ; well-defined (again, ignoring earlier
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002624 ; undefined behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002625</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002626
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002627</div>
2628
2629<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002630<h3>
2631 <a name="blockaddress">Addresses of Basic Blocks</a>
2632</h3>
2633
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002634<div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002635
Chris Lattneraa99c942009-11-01 01:27:45 +00002636<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002637
2638<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002639 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002640 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002641
Chris Lattnere4801f72009-10-27 21:01:34 +00002642<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002643 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2644 comparisons against null. Pointer equality tests between labels addresses
2645 results in undefined behavior &mdash; though, again, comparison against null
2646 is ok, and no label is equal to the null pointer. This may be passed around
2647 as an opaque pointer sized value as long as the bits are not inspected. This
2648 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2649 long as the original value is reconstituted before the <tt>indirectbr</tt>
2650 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002651
Bill Wendling6bbe0912010-10-27 01:07:41 +00002652<p>Finally, some targets may provide defined semantics when using the value as
2653 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002654
2655</div>
2656
2657
2658<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002659<h3>
2660 <a name="constantexprs">Constant Expressions</a>
2661</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002662
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002663<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002664
2665<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002666 to be used as constants. Constant expressions may be of
2667 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2668 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002669 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002670
2671<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002672 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002673 <dd>Truncate a constant to another type. The bit size of CST must be larger
2674 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002675
Dan Gohmand6a6f612010-05-28 17:07:41 +00002676 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002677 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002678 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002679
Dan Gohmand6a6f612010-05-28 17:07:41 +00002680 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002681 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002682 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002683
Dan Gohmand6a6f612010-05-28 17:07:41 +00002684 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002685 <dd>Truncate a floating point constant to another floating point type. The
2686 size of CST must be larger than the size of TYPE. Both types must be
2687 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002688
Dan Gohmand6a6f612010-05-28 17:07:41 +00002689 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002690 <dd>Floating point extend a constant to another type. The size of CST must be
2691 smaller or equal to the size of TYPE. Both types must be floating
2692 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002693
Dan Gohmand6a6f612010-05-28 17:07:41 +00002694 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002695 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002696 constant. TYPE must be a scalar or vector integer type. CST must be of
2697 scalar or vector floating point type. Both CST and TYPE must be scalars,
2698 or vectors of the same number of elements. If the value won't fit in the
2699 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002700
Dan Gohmand6a6f612010-05-28 17:07:41 +00002701 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002702 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002703 constant. TYPE must be a scalar or vector integer type. CST must be of
2704 scalar or vector floating point type. Both CST and TYPE must be scalars,
2705 or vectors of the same number of elements. If the value won't fit in the
2706 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002707
Dan Gohmand6a6f612010-05-28 17:07:41 +00002708 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002709 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002710 constant. TYPE must be a scalar or vector floating point type. CST must be
2711 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2712 vectors of the same number of elements. If the value won't fit in the
2713 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002714
Dan Gohmand6a6f612010-05-28 17:07:41 +00002715 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002716 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002717 constant. TYPE must be a scalar or vector floating point type. CST must be
2718 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2719 vectors of the same number of elements. If the value won't fit in the
2720 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002721
Dan Gohmand6a6f612010-05-28 17:07:41 +00002722 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002723 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002724 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2725 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2726 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002727
Dan Gohmand6a6f612010-05-28 17:07:41 +00002728 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002729 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2730 type. CST must be of integer type. The CST value is zero extended,
2731 truncated, or unchanged to make it fit in a pointer size. This one is
2732 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002733
Dan Gohmand6a6f612010-05-28 17:07:41 +00002734 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002735 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2736 are the same as those for the <a href="#i_bitcast">bitcast
2737 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002738
Dan Gohmand6a6f612010-05-28 17:07:41 +00002739 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2740 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002741 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002742 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2743 instruction, the index list may have zero or more indexes, which are
2744 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002745
Dan Gohmand6a6f612010-05-28 17:07:41 +00002746 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002747 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002748
Dan Gohmand6a6f612010-05-28 17:07:41 +00002749 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002750 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2751
Dan Gohmand6a6f612010-05-28 17:07:41 +00002752 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002753 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002754
Dan Gohmand6a6f612010-05-28 17:07:41 +00002755 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002756 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2757 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002758
Dan Gohmand6a6f612010-05-28 17:07:41 +00002759 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002760 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2761 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002762
Dan Gohmand6a6f612010-05-28 17:07:41 +00002763 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002764 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2765 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002766
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002767 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2768 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2769 constants. The index list is interpreted in a similar manner as indices in
2770 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2771 index value must be specified.</dd>
2772
2773 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2774 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2775 constants. The index list is interpreted in a similar manner as indices in
2776 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2777 index value must be specified.</dd>
2778
Dan Gohmand6a6f612010-05-28 17:07:41 +00002779 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002780 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2781 be any of the <a href="#binaryops">binary</a>
2782 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2783 on operands are the same as those for the corresponding instruction
2784 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002785</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002786
Chris Lattner74d3f822004-12-09 17:30:23 +00002787</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002788
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002789</div>
2790
Chris Lattner2f7c9632001-06-06 20:29:01 +00002791<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002792<h2><a name="othervalues">Other Values</a></h2>
Chris Lattner98f013c2006-01-25 23:47:57 +00002793<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002794<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002795<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002796<h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002797<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002798</h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002799
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002800<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002801
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002802<p>LLVM supports inline assembler expressions (as opposed
2803 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2804 a special value. This value represents the inline assembler as a string
2805 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002806 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002807 expression has side effects, and a flag indicating whether the function
2808 containing the asm needs to align its stack conservatively. An example
2809 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002810
Benjamin Kramer79698be2010-07-13 12:26:09 +00002811<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002812i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002813</pre>
2814
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002815<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2816 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2817 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002818
Benjamin Kramer79698be2010-07-13 12:26:09 +00002819<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002820%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002821</pre>
2822
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002823<p>Inline asms with side effects not visible in the constraint list must be
2824 marked as having side effects. This is done through the use of the
2825 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002826
Benjamin Kramer79698be2010-07-13 12:26:09 +00002827<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002828call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002829</pre>
2830
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002831<p>In some cases inline asms will contain code that will not work unless the
2832 stack is aligned in some way, such as calls or SSE instructions on x86,
2833 yet will not contain code that does that alignment within the asm.
2834 The compiler should make conservative assumptions about what the asm might
2835 contain and should generate its usual stack alignment code in the prologue
2836 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002837
Benjamin Kramer79698be2010-07-13 12:26:09 +00002838<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002839call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002840</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002841
2842<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2843 first.</p>
2844
Chris Lattner98f013c2006-01-25 23:47:57 +00002845<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002846 documented here. Constraints on what can be done (e.g. duplication, moving,
2847 etc need to be documented). This is probably best done by reference to
2848 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner51065562010-04-07 05:38:05 +00002849
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002850<h4>
Chris Lattner51065562010-04-07 05:38:05 +00002851<a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002852</h4>
Chris Lattner51065562010-04-07 05:38:05 +00002853
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002854<div>
Chris Lattner51065562010-04-07 05:38:05 +00002855
2856<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattner79ffdc72010-11-17 08:20:42 +00002857 attached to it that contains a list of constant integers. If present, the
2858 code generator will use the integer as the location cookie value when report
Chris Lattner51065562010-04-07 05:38:05 +00002859 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman61110ae2010-04-28 00:36:01 +00002860 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattner51065562010-04-07 05:38:05 +00002861 source code that produced it. For example:</p>
2862
Benjamin Kramer79698be2010-07-13 12:26:09 +00002863<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002864call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2865...
2866!42 = !{ i32 1234567 }
2867</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002868
2869<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattner79ffdc72010-11-17 08:20:42 +00002870 IR. If the MDNode contains multiple constants, the code generator will use
2871 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002872
2873</div>
2874
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002875</div>
2876
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002877<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002878<h3>
2879 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2880</h3>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002881
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002882<div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002883
2884<p>LLVM IR allows metadata to be attached to instructions in the program that
2885 can convey extra information about the code to the optimizers and code
2886 generator. One example application of metadata is source-level debug
2887 information. There are two metadata primitives: strings and nodes. All
2888 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2889 preceding exclamation point ('<tt>!</tt>').</p>
2890
2891<p>A metadata string is a string surrounded by double quotes. It can contain
2892 any character by escaping non-printable characters with "\xx" where "xx" is
2893 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2894
2895<p>Metadata nodes are represented with notation similar to structure constants
2896 (a comma separated list of elements, surrounded by braces and preceded by an
2897 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2898 10}</tt>". Metadata nodes can have any values as their operand.</p>
2899
2900<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2901 metadata nodes, which can be looked up in the module symbol table. For
2902 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2903
Devang Patel9984bd62010-03-04 23:44:48 +00002904<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer79698be2010-07-13 12:26:09 +00002905 function is using two metadata arguments.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002906
Bill Wendlingc0e10672011-03-02 02:17:11 +00002907<div class="doc_code">
2908<pre>
2909call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2910</pre>
2911</div>
Devang Patel9984bd62010-03-04 23:44:48 +00002912
2913<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer79698be2010-07-13 12:26:09 +00002914 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002915
Bill Wendlingc0e10672011-03-02 02:17:11 +00002916<div class="doc_code">
2917<pre>
2918%indvar.next = add i64 %indvar, 1, !dbg !21
2919</pre>
2920</div>
2921
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002922<p>More information about specific metadata nodes recognized by the optimizers
2923 and code generator is found below.</p>
2924
2925<h4>
2926 <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
2927</h4>
2928
2929<div>
2930
2931<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
2932 suitable for doing TBAA. Instead, metadata is added to the IR to describe
2933 a type system of a higher level language. This can be used to implement
2934 typical C/C++ TBAA, but it can also be used to implement custom alias
2935 analysis behavior for other languages.</p>
2936
2937<p>The current metadata format is very simple. TBAA metadata nodes have up to
2938 three fields, e.g.:</p>
2939
2940<div class="doc_code">
2941<pre>
2942!0 = metadata !{ metadata !"an example type tree" }
2943!1 = metadata !{ metadata !"int", metadata !0 }
2944!2 = metadata !{ metadata !"float", metadata !0 }
2945!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2946</pre>
2947</div>
2948
2949<p>The first field is an identity field. It can be any value, usually
2950 a metadata string, which uniquely identifies the type. The most important
2951 name in the tree is the name of the root node. Two trees with
2952 different root node names are entirely disjoint, even if they
2953 have leaves with common names.</p>
2954
2955<p>The second field identifies the type's parent node in the tree, or
2956 is null or omitted for a root node. A type is considered to alias
2957 all of its descendants and all of its ancestors in the tree. Also,
2958 a type is considered to alias all types in other trees, so that
2959 bitcode produced from multiple front-ends is handled conservatively.</p>
2960
2961<p>If the third field is present, it's an integer which if equal to 1
2962 indicates that the type is "constant" (meaning
2963 <tt>pointsToConstantMemory</tt> should return true; see
2964 <a href="AliasAnalysis.html#OtherItfs">other useful
2965 <tt>AliasAnalysis</tt> methods</a>).</p>
2966
2967</div>
2968
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00002969<h4>
2970 <a name="fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a>
2971</h4>
2972
2973<div>
2974
2975<p><tt>fpaccuracy</tt> metadata may be attached to any instruction of floating
2976 point type. It expresses the maximum relative error of the result of
2977 that instruction, in ULPs. ULP is defined as follows:</p>
2978
Bill Wendling302d7ce2011-11-09 19:33:56 +00002979<blockquote>
2980
2981<p>If <tt>x</tt> is a real number that lies between two finite consecutive
2982 floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
2983 of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
2984 distance between the two non-equal finite floating-point numbers nearest
2985 <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
2986
2987</blockquote>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00002988
2989<p>The maximum relative error may be any rational number. The metadata node
2990 shall consist of a pair of unsigned integers respectively representing
2991 the numerator and denominator. For example, 2.5 ULP:</p>
2992
2993<div class="doc_code">
2994<pre>
2995!0 = metadata !{ i32 5, i32 2 }
2996</pre>
2997</div>
2998
2999</div>
3000
Chris Lattnerc2f8f162010-01-15 21:50:19 +00003001</div>
3002
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003003</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003004
3005<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003006<h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003007 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003008</h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003009<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003010<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003011<p>LLVM has a number of "magic" global variables that contain data that affect
3012code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00003013of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
3014section and all globals that start with "<tt>llvm.</tt>" are reserved for use
3015by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003016
3017<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003018<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003019<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003020</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003021
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003022<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003023
3024<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
3025href="#linkage_appending">appending linkage</a>. This array contains a list of
3026pointers to global variables and functions which may optionally have a pointer
3027cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
3028
Bill Wendling1654bb22011-11-08 00:32:45 +00003029<div class="doc_code">
Chris Lattnerae76db52009-07-20 05:55:19 +00003030<pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003031@X = global i8 4
3032@Y = global i32 123
Chris Lattnerae76db52009-07-20 05:55:19 +00003033
Bill Wendling1654bb22011-11-08 00:32:45 +00003034@llvm.used = appending global [2 x i8*] [
3035 i8* @X,
3036 i8* bitcast (i32* @Y to i8*)
3037], section "llvm.metadata"
Chris Lattnerae76db52009-07-20 05:55:19 +00003038</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003039</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003040
3041<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
Bill Wendling1654bb22011-11-08 00:32:45 +00003042 compiler, assembler, and linker are required to treat the symbol as if there
3043 is a reference to the global that it cannot see. For example, if a variable
3044 has internal linkage and no references other than that from
3045 the <tt>@llvm.used</tt> list, it cannot be deleted. This is commonly used to
3046 represent references from inline asms and other things the compiler cannot
3047 "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003048
3049<p>On some targets, the code generator must emit a directive to the assembler or
Bill Wendling1654bb22011-11-08 00:32:45 +00003050 object file to prevent the assembler and linker from molesting the
3051 symbol.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003052
3053</div>
3054
3055<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003056<h3>
3057 <a name="intg_compiler_used">
3058 The '<tt>llvm.compiler.used</tt>' Global Variable
3059 </a>
3060</h3>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003061
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003062<div>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003063
3064<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
Bill Wendling1654bb22011-11-08 00:32:45 +00003065 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3066 touching the symbol. On targets that support it, this allows an intelligent
3067 linker to optimize references to the symbol without being impeded as it would
3068 be by <tt>@llvm.used</tt>.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003069
3070<p>This is a rare construct that should only be used in rare circumstances, and
Bill Wendling1654bb22011-11-08 00:32:45 +00003071 should not be exposed to source languages.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003072
3073</div>
3074
3075<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003076<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003077<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003078</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003079
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003080<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003081
3082<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003083<pre>
3084%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003085@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003086</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003087</div>
3088
3089<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
3090 functions and associated priorities. The functions referenced by this array
3091 will be called in ascending order of priority (i.e. lowest first) when the
3092 module is loaded. The order of functions with the same priority is not
3093 defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003094
3095</div>
3096
3097<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003098<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003099<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003100</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003101
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003102<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003103
3104<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003105<pre>
3106%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003107@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003108</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003109</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003110
Bill Wendling1654bb22011-11-08 00:32:45 +00003111<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
3112 and associated priorities. The functions referenced by this array will be
3113 called in descending order of priority (i.e. highest first) when the module
3114 is loaded. The order of functions with the same priority is not defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003115
3116</div>
3117
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003118</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003119
Chris Lattner98f013c2006-01-25 23:47:57 +00003120<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003121<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00003122<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00003123
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003124<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003125
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003126<p>The LLVM instruction set consists of several different classifications of
3127 instructions: <a href="#terminators">terminator
3128 instructions</a>, <a href="#binaryops">binary instructions</a>,
3129 <a href="#bitwiseops">bitwise binary instructions</a>,
3130 <a href="#memoryops">memory instructions</a>, and
3131 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003132
Chris Lattner2f7c9632001-06-06 20:29:01 +00003133<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003134<h3>
3135 <a name="terminators">Terminator Instructions</a>
3136</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00003137
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003138<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003139
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003140<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3141 in a program ends with a "Terminator" instruction, which indicates which
3142 block should be executed after the current block is finished. These
3143 terminator instructions typically yield a '<tt>void</tt>' value: they produce
3144 control flow, not values (the one exception being the
3145 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3146
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003147<p>The terminator instructions are:
3148 '<a href="#i_ret"><tt>ret</tt></a>',
3149 '<a href="#i_br"><tt>br</tt></a>',
3150 '<a href="#i_switch"><tt>switch</tt></a>',
3151 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3152 '<a href="#i_invoke"><tt>invoke</tt></a>',
3153 '<a href="#i_unwind"><tt>unwind</tt></a>',
3154 '<a href="#i_resume"><tt>resume</tt></a>', and
3155 '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003156
Chris Lattner2f7c9632001-06-06 20:29:01 +00003157<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003158<h4>
3159 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3160</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003161
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003162<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003163
Chris Lattner2f7c9632001-06-06 20:29:01 +00003164<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003165<pre>
3166 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003167 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003168</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003169
Chris Lattner2f7c9632001-06-06 20:29:01 +00003170<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003171<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3172 a value) from a function back to the caller.</p>
3173
3174<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3175 value and then causes control flow, and one that just causes control flow to
3176 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003177
Chris Lattner2f7c9632001-06-06 20:29:01 +00003178<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003179<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3180 return value. The type of the return value must be a
3181 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003182
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003183<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3184 non-void return type and contains a '<tt>ret</tt>' instruction with no return
3185 value or a return value with a type that does not match its type, or if it
3186 has a void return type and contains a '<tt>ret</tt>' instruction with a
3187 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003188
Chris Lattner2f7c9632001-06-06 20:29:01 +00003189<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003190<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3191 the calling function's context. If the caller is a
3192 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3193 instruction after the call. If the caller was an
3194 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3195 the beginning of the "normal" destination block. If the instruction returns
3196 a value, that value shall set the call or invoke instruction's return
3197 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003198
Chris Lattner2f7c9632001-06-06 20:29:01 +00003199<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003200<pre>
3201 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003202 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00003203 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003204</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003205
Misha Brukman76307852003-11-08 01:05:38 +00003206</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003207<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003208<h4>
3209 <a name="i_br">'<tt>br</tt>' Instruction</a>
3210</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003211
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003212<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003213
Chris Lattner2f7c9632001-06-06 20:29:01 +00003214<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003215<pre>
Bill Wendling16b86742011-07-26 10:41:15 +00003216 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3217 br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003218</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003219
Chris Lattner2f7c9632001-06-06 20:29:01 +00003220<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003221<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3222 different basic block in the current function. There are two forms of this
3223 instruction, corresponding to a conditional branch and an unconditional
3224 branch.</p>
3225
Chris Lattner2f7c9632001-06-06 20:29:01 +00003226<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003227<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3228 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
3229 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3230 target.</p>
3231
Chris Lattner2f7c9632001-06-06 20:29:01 +00003232<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003233<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003234 argument is evaluated. If the value is <tt>true</tt>, control flows to the
3235 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
3236 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3237
Chris Lattner2f7c9632001-06-06 20:29:01 +00003238<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00003239<pre>
3240Test:
3241 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3242 br i1 %cond, label %IfEqual, label %IfUnequal
3243IfEqual:
3244 <a href="#i_ret">ret</a> i32 1
3245IfUnequal:
3246 <a href="#i_ret">ret</a> i32 0
3247</pre>
3248
Misha Brukman76307852003-11-08 01:05:38 +00003249</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003250
Chris Lattner2f7c9632001-06-06 20:29:01 +00003251<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003252<h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003253 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003254</h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003255
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003256<div>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003257
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003258<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003259<pre>
3260 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3261</pre>
3262
Chris Lattner2f7c9632001-06-06 20:29:01 +00003263<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003264<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003265 several different places. It is a generalization of the '<tt>br</tt>'
3266 instruction, allowing a branch to occur to one of many possible
3267 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003268
Chris Lattner2f7c9632001-06-06 20:29:01 +00003269<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003270<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003271 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3272 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3273 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003274
Chris Lattner2f7c9632001-06-06 20:29:01 +00003275<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003276<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003277 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3278 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00003279 transferred to the corresponding destination; otherwise, control flow is
3280 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003281
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003282<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003283<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003284 <tt>switch</tt> instruction, this instruction may be code generated in
3285 different ways. For example, it could be generated as a series of chained
3286 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003287
3288<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003289<pre>
3290 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003291 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00003292 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003293
3294 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003295 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003296
3297 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00003298 switch i32 %val, label %otherwise [ i32 0, label %onzero
3299 i32 1, label %onone
3300 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00003301</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003302
Misha Brukman76307852003-11-08 01:05:38 +00003303</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003304
Chris Lattner3ed871f2009-10-27 19:13:16 +00003305
3306<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003307<h4>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003308 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003309</h4>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003310
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003311<div>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003312
3313<h5>Syntax:</h5>
3314<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003315 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003316</pre>
3317
3318<h5>Overview:</h5>
3319
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003320<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003321 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003322 "<tt>address</tt>". Address must be derived from a <a
3323 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003324
3325<h5>Arguments:</h5>
3326
3327<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3328 rest of the arguments indicate the full set of possible destinations that the
3329 address may point to. Blocks are allowed to occur multiple times in the
3330 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003331
Chris Lattner3ed871f2009-10-27 19:13:16 +00003332<p>This destination list is required so that dataflow analysis has an accurate
3333 understanding of the CFG.</p>
3334
3335<h5>Semantics:</h5>
3336
3337<p>Control transfers to the block specified in the address argument. All
3338 possible destination blocks must be listed in the label list, otherwise this
3339 instruction has undefined behavior. This implies that jumps to labels
3340 defined in other functions have undefined behavior as well.</p>
3341
3342<h5>Implementation:</h5>
3343
3344<p>This is typically implemented with a jump through a register.</p>
3345
3346<h5>Example:</h5>
3347<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003348 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003349</pre>
3350
3351</div>
3352
3353
Chris Lattner2f7c9632001-06-06 20:29:01 +00003354<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003355<h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003356 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003357</h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003358
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003359<div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003360
Chris Lattner2f7c9632001-06-06 20:29:01 +00003361<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003362<pre>
Devang Patel02256232008-10-07 17:48:33 +00003363 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003364 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003365</pre>
3366
Chris Lattnera8292f32002-05-06 22:08:29 +00003367<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003368<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003369 function, with the possibility of control flow transfer to either the
3370 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3371 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3372 control flow will return to the "normal" label. If the callee (or any
3373 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3374 instruction, control is interrupted and continued at the dynamically nearest
3375 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003376
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003377<p>The '<tt>exception</tt>' label is a
3378 <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3379 exception. As such, '<tt>exception</tt>' label is required to have the
3380 "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
3381 the information about about the behavior of the program after unwinding
3382 happens, as its first non-PHI instruction. The restrictions on the
3383 "<tt>landingpad</tt>" instruction's tightly couples it to the
3384 "<tt>invoke</tt>" instruction, so that the important information contained
3385 within the "<tt>landingpad</tt>" instruction can't be lost through normal
3386 code motion.</p>
3387
Chris Lattner2f7c9632001-06-06 20:29:01 +00003388<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003389<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003390
Chris Lattner2f7c9632001-06-06 20:29:01 +00003391<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003392 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3393 convention</a> the call should use. If none is specified, the call
3394 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003395
3396 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003397 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3398 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003399
Chris Lattner0132aff2005-05-06 22:57:40 +00003400 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003401 function value being invoked. In most cases, this is a direct function
3402 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3403 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003404
3405 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003406 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003407
3408 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003409 signature argument types and parameter attributes. All arguments must be
3410 of <a href="#t_firstclass">first class</a> type. If the function
3411 signature indicates the function accepts a variable number of arguments,
3412 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003413
3414 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003415 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003416
3417 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003418 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003419
Devang Patel02256232008-10-07 17:48:33 +00003420 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003421 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3422 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003423</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003424
Chris Lattner2f7c9632001-06-06 20:29:01 +00003425<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003426<p>This instruction is designed to operate as a standard
3427 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3428 primary difference is that it establishes an association with a label, which
3429 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003430
3431<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003432 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3433 exception. Additionally, this is important for implementation of
3434 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003435
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003436<p>For the purposes of the SSA form, the definition of the value returned by the
3437 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3438 block to the "normal" label. If the callee unwinds then no return value is
3439 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003440
Chris Lattner97257f82010-01-15 18:08:37 +00003441<p>Note that the code generator does not yet completely support unwind, and
3442that the invoke/unwind semantics are likely to change in future versions.</p>
3443
Chris Lattner2f7c9632001-06-06 20:29:01 +00003444<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003445<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003446 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003447 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003448 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003449 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003450</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003451
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003452</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003453
Chris Lattner5ed60612003-09-03 00:41:47 +00003454<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003455
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003456<h4>
3457 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3458</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003459
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003460<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003461
Chris Lattner5ed60612003-09-03 00:41:47 +00003462<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003463<pre>
3464 unwind
3465</pre>
3466
Chris Lattner5ed60612003-09-03 00:41:47 +00003467<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003468<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003469 at the first callee in the dynamic call stack which used
3470 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3471 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003472
Chris Lattner5ed60612003-09-03 00:41:47 +00003473<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003474<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003475 immediately halt. The dynamic call stack is then searched for the
3476 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3477 Once found, execution continues at the "exceptional" destination block
3478 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3479 instruction in the dynamic call chain, undefined behavior results.</p>
3480
Chris Lattner97257f82010-01-15 18:08:37 +00003481<p>Note that the code generator does not yet completely support unwind, and
3482that the invoke/unwind semantics are likely to change in future versions.</p>
3483
Misha Brukman76307852003-11-08 01:05:38 +00003484</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003485
Bill Wendlingf891bf82011-07-31 06:30:59 +00003486 <!-- _______________________________________________________________________ -->
3487
3488<h4>
3489 <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3490</h4>
3491
3492<div>
3493
3494<h5>Syntax:</h5>
3495<pre>
3496 resume &lt;type&gt; &lt;value&gt;
3497</pre>
3498
3499<h5>Overview:</h5>
3500<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3501 successors.</p>
3502
3503<h5>Arguments:</h5>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003504<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
Bill Wendlingc5a13612011-08-03 18:37:32 +00003505 same type as the result of any '<tt>landingpad</tt>' instruction in the same
3506 function.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003507
3508<h5>Semantics:</h5>
3509<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3510 (in-flight) exception whose unwinding was interrupted with
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003511 a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003512
3513<h5>Example:</h5>
3514<pre>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003515 resume { i8*, i32 } %exn
Bill Wendlingf891bf82011-07-31 06:30:59 +00003516</pre>
3517
3518</div>
3519
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003520<!-- _______________________________________________________________________ -->
3521
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003522<h4>
3523 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3524</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003525
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003526<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003527
3528<h5>Syntax:</h5>
3529<pre>
3530 unreachable
3531</pre>
3532
3533<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003534<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003535 instruction is used to inform the optimizer that a particular portion of the
3536 code is not reachable. This can be used to indicate that the code after a
3537 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003538
3539<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003540<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003541
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003542</div>
3543
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003544</div>
3545
Chris Lattner2f7c9632001-06-06 20:29:01 +00003546<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003547<h3>
3548 <a name="binaryops">Binary Operations</a>
3549</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003550
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003551<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003552
3553<p>Binary operators are used to do most of the computation in a program. They
3554 require two operands of the same type, execute an operation on them, and
3555 produce a single value. The operands might represent multiple data, as is
3556 the case with the <a href="#t_vector">vector</a> data type. The result value
3557 has the same type as its operands.</p>
3558
Misha Brukman76307852003-11-08 01:05:38 +00003559<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003560
Chris Lattner2f7c9632001-06-06 20:29:01 +00003561<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003562<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003563 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003564</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003565
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003566<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003567
Chris Lattner2f7c9632001-06-06 20:29:01 +00003568<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003569<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003570 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003571 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3572 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3573 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003574</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003575
Chris Lattner2f7c9632001-06-06 20:29:01 +00003576<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003577<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003578
Chris Lattner2f7c9632001-06-06 20:29:01 +00003579<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003580<p>The two arguments to the '<tt>add</tt>' instruction must
3581 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3582 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003583
Chris Lattner2f7c9632001-06-06 20:29:01 +00003584<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003585<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003586
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003587<p>If the sum has unsigned overflow, the result returned is the mathematical
3588 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003589
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003590<p>Because LLVM integers use a two's complement representation, this instruction
3591 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003592
Dan Gohman902dfff2009-07-22 22:44:56 +00003593<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3594 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3595 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003596 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3597 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003598
Chris Lattner2f7c9632001-06-06 20:29:01 +00003599<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003600<pre>
3601 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003602</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003603
Misha Brukman76307852003-11-08 01:05:38 +00003604</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003605
Chris Lattner2f7c9632001-06-06 20:29:01 +00003606<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003607<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003608 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003609</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003610
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003611<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003612
3613<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003614<pre>
3615 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3616</pre>
3617
3618<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003619<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3620
3621<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003622<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003623 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3624 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003625
3626<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003627<p>The value produced is the floating point sum of the two operands.</p>
3628
3629<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003630<pre>
3631 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3632</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003633
Dan Gohmana5b96452009-06-04 22:49:04 +00003634</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003635
Dan Gohmana5b96452009-06-04 22:49:04 +00003636<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003637<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003638 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003639</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003640
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003641<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003642
Chris Lattner2f7c9632001-06-06 20:29:01 +00003643<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003644<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003645 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003646 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3647 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3648 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003649</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003650
Chris Lattner2f7c9632001-06-06 20:29:01 +00003651<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003652<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003653 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003654
3655<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003656 '<tt>neg</tt>' instruction present in most other intermediate
3657 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003658
Chris Lattner2f7c9632001-06-06 20:29:01 +00003659<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003660<p>The two arguments to the '<tt>sub</tt>' instruction must
3661 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3662 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003663
Chris Lattner2f7c9632001-06-06 20:29:01 +00003664<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003665<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003666
Dan Gohmana5b96452009-06-04 22:49:04 +00003667<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003668 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3669 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003670
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003671<p>Because LLVM integers use a two's complement representation, this instruction
3672 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003673
Dan Gohman902dfff2009-07-22 22:44:56 +00003674<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3675 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3676 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003677 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3678 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003679
Chris Lattner2f7c9632001-06-06 20:29:01 +00003680<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003681<pre>
3682 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003683 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003684</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003685
Misha Brukman76307852003-11-08 01:05:38 +00003686</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003687
Chris Lattner2f7c9632001-06-06 20:29:01 +00003688<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003689<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003690 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003691</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003692
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003693<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003694
3695<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003696<pre>
3697 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3698</pre>
3699
3700<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003701<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003702 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003703
3704<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003705 '<tt>fneg</tt>' instruction present in most other intermediate
3706 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003707
3708<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003709<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003710 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3711 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003712
3713<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003714<p>The value produced is the floating point difference of the two operands.</p>
3715
3716<h5>Example:</h5>
3717<pre>
3718 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3719 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3720</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003721
Dan Gohmana5b96452009-06-04 22:49:04 +00003722</div>
3723
3724<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003725<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003726 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003727</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003728
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003729<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003730
Chris Lattner2f7c9632001-06-06 20:29:01 +00003731<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003732<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003733 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003734 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3735 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3736 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003737</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003738
Chris Lattner2f7c9632001-06-06 20:29:01 +00003739<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003740<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003741
Chris Lattner2f7c9632001-06-06 20:29:01 +00003742<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003743<p>The two arguments to the '<tt>mul</tt>' instruction must
3744 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3745 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003746
Chris Lattner2f7c9632001-06-06 20:29:01 +00003747<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003748<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003749
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003750<p>If the result of the multiplication has unsigned overflow, the result
3751 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3752 width of the result.</p>
3753
3754<p>Because LLVM integers use a two's complement representation, and the result
3755 is the same width as the operands, this instruction returns the correct
3756 result for both signed and unsigned integers. If a full product
3757 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3758 be sign-extended or zero-extended as appropriate to the width of the full
3759 product.</p>
3760
Dan Gohman902dfff2009-07-22 22:44:56 +00003761<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3762 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3763 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003764 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3765 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003766
Chris Lattner2f7c9632001-06-06 20:29:01 +00003767<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003768<pre>
3769 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003770</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003771
Misha Brukman76307852003-11-08 01:05:38 +00003772</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003773
Chris Lattner2f7c9632001-06-06 20:29:01 +00003774<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003775<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003776 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003777</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003778
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003779<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003780
3781<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003782<pre>
3783 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003784</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003785
Dan Gohmana5b96452009-06-04 22:49:04 +00003786<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003787<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003788
3789<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003790<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003791 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3792 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003793
3794<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003795<p>The value produced is the floating point product of the two operands.</p>
3796
3797<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003798<pre>
3799 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003800</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003801
Dan Gohmana5b96452009-06-04 22:49:04 +00003802</div>
3803
3804<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003805<h4>
3806 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3807</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003808
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003809<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003810
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003811<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003812<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00003813 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3814 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003815</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003816
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003817<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003818<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003819
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003820<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003821<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003822 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3823 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003824
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003825<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003826<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003827
Chris Lattner2f2427e2008-01-28 00:36:27 +00003828<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003829 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3830
Chris Lattner2f2427e2008-01-28 00:36:27 +00003831<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003832
Chris Lattner35315d02011-02-06 21:44:57 +00003833<p>If the <tt>exact</tt> keyword is present, the result value of the
3834 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3835 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3836
3837
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003838<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003839<pre>
3840 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003841</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003843</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003844
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003845<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003846<h4>
3847 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3848</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003849
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003850<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003851
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003852<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003853<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003854 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003855 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003856</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003857
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003858<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003859<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003860
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003861<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003862<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003863 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3864 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003865
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003866<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003867<p>The value produced is the signed integer quotient of the two operands rounded
3868 towards zero.</p>
3869
Chris Lattner2f2427e2008-01-28 00:36:27 +00003870<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003871 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3872
Chris Lattner2f2427e2008-01-28 00:36:27 +00003873<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003874 undefined behavior; this is a rare case, but can occur, for example, by doing
3875 a 32-bit division of -2147483648 by -1.</p>
3876
Dan Gohman71dfd782009-07-22 00:04:19 +00003877<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00003878 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00003879 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003880
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003881<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003882<pre>
3883 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003884</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003885
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003886</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003887
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003888<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003889<h4>
3890 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3891</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003892
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003893<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003894
Chris Lattner2f7c9632001-06-06 20:29:01 +00003895<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003896<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003897 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003898</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003899
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003900<h5>Overview:</h5>
3901<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003902
Chris Lattner48b383b02003-11-25 01:02:51 +00003903<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003904<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003905 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3906 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003907
Chris Lattner48b383b02003-11-25 01:02:51 +00003908<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003909<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003910
Chris Lattner48b383b02003-11-25 01:02:51 +00003911<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003912<pre>
3913 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003914</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003915
Chris Lattner48b383b02003-11-25 01:02:51 +00003916</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003917
Chris Lattner48b383b02003-11-25 01:02:51 +00003918<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003919<h4>
3920 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3921</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003922
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003923<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003924
Reid Spencer7eb55b32006-11-02 01:53:59 +00003925<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003926<pre>
3927 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003928</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003929
Reid Spencer7eb55b32006-11-02 01:53:59 +00003930<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003931<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3932 division of its two arguments.</p>
3933
Reid Spencer7eb55b32006-11-02 01:53:59 +00003934<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003935<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003936 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3937 values. Both arguments must have identical types.</p>
3938
Reid Spencer7eb55b32006-11-02 01:53:59 +00003939<h5>Semantics:</h5>
3940<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003941 This instruction always performs an unsigned division to get the
3942 remainder.</p>
3943
Chris Lattner2f2427e2008-01-28 00:36:27 +00003944<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003945 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3946
Chris Lattner2f2427e2008-01-28 00:36:27 +00003947<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003948
Reid Spencer7eb55b32006-11-02 01:53:59 +00003949<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003950<pre>
3951 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003952</pre>
3953
3954</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003955
Reid Spencer7eb55b32006-11-02 01:53:59 +00003956<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003957<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003958 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003959</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003960
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003961<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003962
Chris Lattner48b383b02003-11-25 01:02:51 +00003963<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003964<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003965 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003966</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003967
Chris Lattner48b383b02003-11-25 01:02:51 +00003968<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003969<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3970 division of its two operands. This instruction can also take
3971 <a href="#t_vector">vector</a> versions of the values in which case the
3972 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003973
Chris Lattner48b383b02003-11-25 01:02:51 +00003974<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003975<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003976 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3977 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003978
Chris Lattner48b383b02003-11-25 01:02:51 +00003979<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003980<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sands2769c6e2011-03-07 09:12:24 +00003981 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3982 <i>modulo</i> operator (where the result is either zero or has the same sign
3983 as the divisor, <tt>op2</tt>) of a value.
3984 For more information about the difference,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003985 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3986 Math Forum</a>. For a table of how this is implemented in various languages,
3987 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3988 Wikipedia: modulo operation</a>.</p>
3989
Chris Lattner2f2427e2008-01-28 00:36:27 +00003990<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003991 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3992
Chris Lattner2f2427e2008-01-28 00:36:27 +00003993<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003994 Overflow also leads to undefined behavior; this is a rare case, but can
3995 occur, for example, by taking the remainder of a 32-bit division of
3996 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3997 lets srem be implemented using instructions that return both the result of
3998 the division and the remainder.)</p>
3999
Chris Lattner48b383b02003-11-25 01:02:51 +00004000<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004001<pre>
4002 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004003</pre>
4004
4005</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004006
Reid Spencer7eb55b32006-11-02 01:53:59 +00004007<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004008<h4>
4009 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
4010</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004011
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004012<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004013
Reid Spencer7eb55b32006-11-02 01:53:59 +00004014<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004015<pre>
4016 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004017</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004018
Reid Spencer7eb55b32006-11-02 01:53:59 +00004019<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004020<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
4021 its two operands.</p>
4022
Reid Spencer7eb55b32006-11-02 01:53:59 +00004023<h5>Arguments:</h5>
4024<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004025 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4026 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004027
Reid Spencer7eb55b32006-11-02 01:53:59 +00004028<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004029<p>This instruction returns the <i>remainder</i> of a division. The remainder
4030 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004031
Reid Spencer7eb55b32006-11-02 01:53:59 +00004032<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004033<pre>
4034 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004035</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004036
Misha Brukman76307852003-11-08 01:05:38 +00004037</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00004038
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004039</div>
4040
Reid Spencer2ab01932007-02-02 13:57:07 +00004041<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004042<h3>
4043 <a name="bitwiseops">Bitwise Binary Operations</a>
4044</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004045
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004046<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004047
4048<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4049 program. They are generally very efficient instructions and can commonly be
4050 strength reduced from other instructions. They require two operands of the
4051 same type, execute an operation on them, and produce a single value. The
4052 resulting value is the same type as its operands.</p>
4053
Reid Spencer04e259b2007-01-31 21:39:12 +00004054<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004055<h4>
4056 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4057</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004058
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004059<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004060
Reid Spencer04e259b2007-01-31 21:39:12 +00004061<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004062<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004063 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4064 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4065 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4066 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004067</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004068
Reid Spencer04e259b2007-01-31 21:39:12 +00004069<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004070<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4071 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004072
Reid Spencer04e259b2007-01-31 21:39:12 +00004073<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004074<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4075 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4076 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00004077
Reid Spencer04e259b2007-01-31 21:39:12 +00004078<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004079<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4080 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
4081 is (statically or dynamically) negative or equal to or larger than the number
4082 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4083 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4084 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004085
Chris Lattnera676c0f2011-02-07 16:40:21 +00004086<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
4087 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00004088 the <tt>nsw</tt> keyword is present, then the shift produces a
Chris Lattnera676c0f2011-02-07 16:40:21 +00004089 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
4090 with the resultant sign bit. As such, NUW/NSW have the same semantics as
4091 they would if the shift were expressed as a mul instruction with the same
4092 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4093
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004094<h5>Example:</h5>
4095<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00004096 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
4097 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
4098 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004099 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004100 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004101</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004102
Reid Spencer04e259b2007-01-31 21:39:12 +00004103</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004104
Reid Spencer04e259b2007-01-31 21:39:12 +00004105<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004106<h4>
4107 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4108</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004109
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004110<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004111
Reid Spencer04e259b2007-01-31 21:39:12 +00004112<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004113<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004114 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4115 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004116</pre>
4117
4118<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004119<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4120 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004121
4122<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004123<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004124 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4125 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004126
4127<h5>Semantics:</h5>
4128<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004129 significant bits of the result will be filled with zero bits after the shift.
4130 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4131 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4132 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4133 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004134
Chris Lattnera676c0f2011-02-07 16:40:21 +00004135<p>If the <tt>exact</tt> keyword is present, the result value of the
4136 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4137 shifted out are non-zero.</p>
4138
4139
Reid Spencer04e259b2007-01-31 21:39:12 +00004140<h5>Example:</h5>
4141<pre>
4142 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
4143 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
4144 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
4145 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004146 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004147 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004148</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004149
Reid Spencer04e259b2007-01-31 21:39:12 +00004150</div>
4151
Reid Spencer2ab01932007-02-02 13:57:07 +00004152<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004153<h4>
4154 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4155</h4>
4156
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004157<div>
Reid Spencer04e259b2007-01-31 21:39:12 +00004158
4159<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004160<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004161 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4162 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004163</pre>
4164
4165<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004166<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4167 operand shifted to the right a specified number of bits with sign
4168 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004169
4170<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004171<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004172 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4173 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004174
4175<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004176<p>This instruction always performs an arithmetic shift right operation, The
4177 most significant bits of the result will be filled with the sign bit
4178 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
4179 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4180 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4181 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004182
Chris Lattnera676c0f2011-02-07 16:40:21 +00004183<p>If the <tt>exact</tt> keyword is present, the result value of the
4184 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4185 shifted out are non-zero.</p>
4186
Reid Spencer04e259b2007-01-31 21:39:12 +00004187<h5>Example:</h5>
4188<pre>
4189 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
4190 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
4191 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
4192 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004193 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004194 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004195</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004196
Reid Spencer04e259b2007-01-31 21:39:12 +00004197</div>
4198
Chris Lattner2f7c9632001-06-06 20:29:01 +00004199<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004200<h4>
4201 <a name="i_and">'<tt>and</tt>' Instruction</a>
4202</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004203
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004204<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004205
Chris Lattner2f7c9632001-06-06 20:29:01 +00004206<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004207<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004208 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004209</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004210
Chris Lattner2f7c9632001-06-06 20:29:01 +00004211<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004212<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4213 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004214
Chris Lattner2f7c9632001-06-06 20:29:01 +00004215<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004216<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004217 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4218 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004219
Chris Lattner2f7c9632001-06-06 20:29:01 +00004220<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004221<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004222
Misha Brukman76307852003-11-08 01:05:38 +00004223<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00004224 <tbody>
4225 <tr>
4226 <td>In0</td>
4227 <td>In1</td>
4228 <td>Out</td>
4229 </tr>
4230 <tr>
4231 <td>0</td>
4232 <td>0</td>
4233 <td>0</td>
4234 </tr>
4235 <tr>
4236 <td>0</td>
4237 <td>1</td>
4238 <td>0</td>
4239 </tr>
4240 <tr>
4241 <td>1</td>
4242 <td>0</td>
4243 <td>0</td>
4244 </tr>
4245 <tr>
4246 <td>1</td>
4247 <td>1</td>
4248 <td>1</td>
4249 </tr>
4250 </tbody>
4251</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004252
Chris Lattner2f7c9632001-06-06 20:29:01 +00004253<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004254<pre>
4255 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004256 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
4257 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004258</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004259</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004260<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004261<h4>
4262 <a name="i_or">'<tt>or</tt>' Instruction</a>
4263</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004264
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004265<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004266
4267<h5>Syntax:</h5>
4268<pre>
4269 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4270</pre>
4271
4272<h5>Overview:</h5>
4273<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4274 two operands.</p>
4275
4276<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004277<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004278 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4279 values. Both arguments must have identical types.</p>
4280
Chris Lattner2f7c9632001-06-06 20:29:01 +00004281<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004282<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004283
Chris Lattner48b383b02003-11-25 01:02:51 +00004284<table border="1" cellspacing="0" cellpadding="4">
4285 <tbody>
4286 <tr>
4287 <td>In0</td>
4288 <td>In1</td>
4289 <td>Out</td>
4290 </tr>
4291 <tr>
4292 <td>0</td>
4293 <td>0</td>
4294 <td>0</td>
4295 </tr>
4296 <tr>
4297 <td>0</td>
4298 <td>1</td>
4299 <td>1</td>
4300 </tr>
4301 <tr>
4302 <td>1</td>
4303 <td>0</td>
4304 <td>1</td>
4305 </tr>
4306 <tr>
4307 <td>1</td>
4308 <td>1</td>
4309 <td>1</td>
4310 </tr>
4311 </tbody>
4312</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004313
Chris Lattner2f7c9632001-06-06 20:29:01 +00004314<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004315<pre>
4316 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004317 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4318 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004319</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004320
Misha Brukman76307852003-11-08 01:05:38 +00004321</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004322
Chris Lattner2f7c9632001-06-06 20:29:01 +00004323<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004324<h4>
4325 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4326</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004327
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004328<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004329
Chris Lattner2f7c9632001-06-06 20:29:01 +00004330<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004331<pre>
4332 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004333</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004334
Chris Lattner2f7c9632001-06-06 20:29:01 +00004335<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004336<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4337 its two operands. The <tt>xor</tt> is used to implement the "one's
4338 complement" operation, which is the "~" operator in C.</p>
4339
Chris Lattner2f7c9632001-06-06 20:29:01 +00004340<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004341<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004342 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4343 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004344
Chris Lattner2f7c9632001-06-06 20:29:01 +00004345<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004346<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004347
Chris Lattner48b383b02003-11-25 01:02:51 +00004348<table border="1" cellspacing="0" cellpadding="4">
4349 <tbody>
4350 <tr>
4351 <td>In0</td>
4352 <td>In1</td>
4353 <td>Out</td>
4354 </tr>
4355 <tr>
4356 <td>0</td>
4357 <td>0</td>
4358 <td>0</td>
4359 </tr>
4360 <tr>
4361 <td>0</td>
4362 <td>1</td>
4363 <td>1</td>
4364 </tr>
4365 <tr>
4366 <td>1</td>
4367 <td>0</td>
4368 <td>1</td>
4369 </tr>
4370 <tr>
4371 <td>1</td>
4372 <td>1</td>
4373 <td>0</td>
4374 </tr>
4375 </tbody>
4376</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004377
Chris Lattner2f7c9632001-06-06 20:29:01 +00004378<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004379<pre>
4380 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004381 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4382 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4383 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004384</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004385
Misha Brukman76307852003-11-08 01:05:38 +00004386</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004387
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004388</div>
4389
Chris Lattner2f7c9632001-06-06 20:29:01 +00004390<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004391<h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004392 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004393</h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004394
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004395<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004396
4397<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004398 target-independent manner. These instructions cover the element-access and
4399 vector-specific operations needed to process vectors effectively. While LLVM
4400 does directly support these vector operations, many sophisticated algorithms
4401 will want to use target-specific intrinsics to take full advantage of a
4402 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004403
Chris Lattnerce83bff2006-04-08 23:07:04 +00004404<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004405<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004406 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004407</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004408
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004409<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004410
4411<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004412<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004413 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004414</pre>
4415
4416<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004417<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4418 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004419
4420
4421<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004422<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4423 of <a href="#t_vector">vector</a> type. The second operand is an index
4424 indicating the position from which to extract the element. The index may be
4425 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004426
4427<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004428<p>The result is a scalar of the same type as the element type of
4429 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4430 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4431 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004432
4433<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004434<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004435 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004436</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004437
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004438</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004439
4440<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004441<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004442 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004443</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004444
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004445<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004446
4447<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004448<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004449 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004450</pre>
4451
4452<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004453<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4454 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004455
4456<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004457<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4458 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4459 whose type must equal the element type of the first operand. The third
4460 operand is an index indicating the position at which to insert the value.
4461 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004462
4463<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004464<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4465 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4466 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4467 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004468
4469<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004470<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004471 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004472</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004473
Chris Lattnerce83bff2006-04-08 23:07:04 +00004474</div>
4475
4476<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004477<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004478 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004479</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004480
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004481<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004482
4483<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004484<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004485 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004486</pre>
4487
4488<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004489<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4490 from two input vectors, returning a vector with the same element type as the
4491 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004492
4493<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004494<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4495 with types that match each other. The third argument is a shuffle mask whose
4496 element type is always 'i32'. The result of the instruction is a vector
4497 whose length is the same as the shuffle mask and whose element type is the
4498 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004499
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004500<p>The shuffle mask operand is required to be a constant vector with either
4501 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004502
4503<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004504<p>The elements of the two input vectors are numbered from left to right across
4505 both of the vectors. The shuffle mask operand specifies, for each element of
4506 the result vector, which element of the two input vectors the result element
4507 gets. The element selector may be undef (meaning "don't care") and the
4508 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004509
4510<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004511<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004512 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004513 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004514 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004515 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004516 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004517 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004518 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004519 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004520</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004521
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004522</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004523
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004524</div>
4525
Chris Lattnerce83bff2006-04-08 23:07:04 +00004526<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004527<h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004528 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004529</h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004530
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004531<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004532
Chris Lattner392be582010-02-12 20:49:41 +00004533<p>LLVM supports several instructions for working with
4534 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004535
Dan Gohmanb9d66602008-05-12 23:51:09 +00004536<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004537<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004538 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004539</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004540
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004541<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004542
4543<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004544<pre>
4545 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4546</pre>
4547
4548<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004549<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4550 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004551
4552<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004553<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004554 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004555 <a href="#t_array">array</a> type. The operands are constant indices to
4556 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004557 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004558 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4559 <ul>
4560 <li>Since the value being indexed is not a pointer, the first index is
4561 omitted and assumed to be zero.</li>
4562 <li>At least one index must be specified.</li>
4563 <li>Not only struct indices but also array indices must be in
4564 bounds.</li>
4565 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004566
4567<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004568<p>The result is the value at the position in the aggregate specified by the
4569 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004570
4571<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004572<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004573 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004574</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004575
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004576</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004577
4578<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004579<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004580 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004581</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004582
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004583<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004584
4585<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004586<pre>
Bill Wendlingf6a91cf2011-07-26 20:42:28 +00004587 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}* <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004588</pre>
4589
4590<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004591<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4592 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004593
4594<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004595<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004596 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004597 <a href="#t_array">array</a> type. The second operand is a first-class
4598 value to insert. The following operands are constant indices indicating
4599 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004600 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004601 value to insert must have the same type as the value identified by the
4602 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004603
4604<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004605<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4606 that of <tt>val</tt> except that the value at the position specified by the
4607 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004608
4609<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004610<pre>
Chris Lattnerc2e85402011-05-22 07:18:08 +00004611 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4612 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4613 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004614</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004615
Dan Gohmanb9d66602008-05-12 23:51:09 +00004616</div>
4617
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004618</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004619
4620<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004621<h3>
Chris Lattner6ab66722006-08-15 00:45:58 +00004622 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004623</h3>
Chris Lattner54611b42005-11-06 08:02:57 +00004624
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004625<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004626
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004627<p>A key design point of an SSA-based representation is how it represents
4628 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004629 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004630 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004631
Chris Lattner2f7c9632001-06-06 20:29:01 +00004632<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004633<h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004634 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004635</h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004636
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004637<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004638
Chris Lattner2f7c9632001-06-06 20:29:01 +00004639<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004640<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004641 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004642</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004643
Chris Lattner2f7c9632001-06-06 20:29:01 +00004644<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004645<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004646 currently executing function, to be automatically released when this function
4647 returns to its caller. The object is always allocated in the generic address
4648 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004649
Chris Lattner2f7c9632001-06-06 20:29:01 +00004650<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004651<p>The '<tt>alloca</tt>' instruction
4652 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4653 runtime stack, returning a pointer of the appropriate type to the program.
4654 If "NumElements" is specified, it is the number of elements allocated,
4655 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4656 specified, the value result of the allocation is guaranteed to be aligned to
4657 at least that boundary. If not specified, or if zero, the target can choose
4658 to align the allocation on any convenient boundary compatible with the
4659 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004660
Misha Brukman76307852003-11-08 01:05:38 +00004661<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004662
Chris Lattner2f7c9632001-06-06 20:29:01 +00004663<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004664<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004665 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4666 memory is automatically released when the function returns. The
4667 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4668 variables that must have an address available. When the function returns
4669 (either with the <tt><a href="#i_ret">ret</a></tt>
4670 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4671 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004672
Chris Lattner2f7c9632001-06-06 20:29:01 +00004673<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004674<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004675 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4676 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4677 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4678 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004679</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004680
Misha Brukman76307852003-11-08 01:05:38 +00004681</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004682
Chris Lattner2f7c9632001-06-06 20:29:01 +00004683<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004684<h4>
4685 <a name="i_load">'<tt>load</tt>' Instruction</a>
4686</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004687
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004688<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004689
Chris Lattner095735d2002-05-06 03:03:22 +00004690<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004691<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004692 &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4693 &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004694 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004695</pre>
4696
Chris Lattner095735d2002-05-06 03:03:22 +00004697<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004698<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004699
Chris Lattner095735d2002-05-06 03:03:22 +00004700<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004701<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4702 from which to load. The pointer must point to
4703 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4704 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004705 number or order of execution of this <tt>load</tt> with other <a
4706 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004707
Eli Friedman59b66882011-08-09 23:02:53 +00004708<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4709 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4710 argument. The <code>release</code> and <code>acq_rel</code> orderings are
4711 not valid on <code>load</code> instructions. Atomic loads produce <a
4712 href="#memorymodel">defined</a> results when they may see multiple atomic
4713 stores. The type of the pointee must be an integer type whose bit width
4714 is a power of two greater than or equal to eight and less than or equal
4715 to a target-specific size limit. <code>align</code> must be explicitly
4716 specified on atomic loads, and the load has undefined behavior if the
4717 alignment is not set to a value which is at least the size in bytes of
4718 the pointee. <code>!nontemporal</code> does not have any defined semantics
4719 for atomic loads.</p>
4720
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004721<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004722 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004723 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004724 alignment for the target. It is the responsibility of the code emitter to
4725 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004726 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004727 produce less efficient code. An alignment of 1 is always safe.</p>
4728
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004729<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4730 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004731 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004732 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4733 and code generator that this load is not expected to be reused in the cache.
4734 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004735 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004736
Chris Lattner095735d2002-05-06 03:03:22 +00004737<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004738<p>The location of memory pointed to is loaded. If the value being loaded is of
4739 scalar type then the number of bytes read does not exceed the minimum number
4740 of bytes needed to hold all bits of the type. For example, loading an
4741 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4742 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4743 is undefined if the value was not originally written using a store of the
4744 same type.</p>
4745
Chris Lattner095735d2002-05-06 03:03:22 +00004746<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004747<pre>
4748 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4749 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004750 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004751</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004752
Misha Brukman76307852003-11-08 01:05:38 +00004753</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004754
Chris Lattner095735d2002-05-06 03:03:22 +00004755<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004756<h4>
4757 <a name="i_store">'<tt>store</tt>' Instruction</a>
4758</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004759
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004760<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004761
Chris Lattner095735d2002-05-06 03:03:22 +00004762<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004763<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004764 store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4765 store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt; <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004766</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004767
Chris Lattner095735d2002-05-06 03:03:22 +00004768<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004769<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004770
Chris Lattner095735d2002-05-06 03:03:22 +00004771<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004772<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4773 and an address at which to store it. The type of the
4774 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4775 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004776 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4777 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4778 order of execution of this <tt>store</tt> with other <a
4779 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004780
Eli Friedman59b66882011-08-09 23:02:53 +00004781<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
4782 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4783 argument. The <code>acquire</code> and <code>acq_rel</code> orderings aren't
4784 valid on <code>store</code> instructions. Atomic loads produce <a
4785 href="#memorymodel">defined</a> results when they may see multiple atomic
4786 stores. The type of the pointee must be an integer type whose bit width
4787 is a power of two greater than or equal to eight and less than or equal
4788 to a target-specific size limit. <code>align</code> must be explicitly
4789 specified on atomic stores, and the store has undefined behavior if the
4790 alignment is not set to a value which is at least the size in bytes of
4791 the pointee. <code>!nontemporal</code> does not have any defined semantics
4792 for atomic stores.</p>
4793
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004794<p>The optional constant "align" argument specifies the alignment of the
4795 operation (that is, the alignment of the memory address). A value of 0 or an
4796 omitted "align" argument means that the operation has the preferential
4797 alignment for the target. It is the responsibility of the code emitter to
4798 ensure that the alignment information is correct. Overestimating the
4799 alignment results in an undefined behavior. Underestimating the alignment may
4800 produce less efficient code. An alignment of 1 is always safe.</p>
4801
David Greene9641d062010-02-16 20:50:18 +00004802<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00004803 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00004804 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00004805 instruction tells the optimizer and code generator that this load is
4806 not expected to be reused in the cache. The code generator may
4807 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00004808 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004809
4810
Chris Lattner48b383b02003-11-25 01:02:51 +00004811<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004812<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4813 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4814 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4815 does not exceed the minimum number of bytes needed to hold all bits of the
4816 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4817 writing a value of a type like <tt>i20</tt> with a size that is not an
4818 integral number of bytes, it is unspecified what happens to the extra bits
4819 that do not belong to the type, but they will typically be overwritten.</p>
4820
Chris Lattner095735d2002-05-06 03:03:22 +00004821<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004822<pre>
4823 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004824 store i32 3, i32* %ptr <i>; yields {void}</i>
4825 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004826</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004827
Reid Spencer443460a2006-11-09 21:15:49 +00004828</div>
4829
Chris Lattner095735d2002-05-06 03:03:22 +00004830<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004831<h4>
4832<a name="i_fence">'<tt>fence</tt>' Instruction</a>
4833</h4>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004834
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004835<div>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004836
4837<h5>Syntax:</h5>
4838<pre>
4839 fence [singlethread] &lt;ordering&gt; <i>; yields {void}</i>
4840</pre>
4841
4842<h5>Overview:</h5>
4843<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
4844between operations.</p>
4845
4846<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
4847href="#ordering">ordering</a> argument which defines what
4848<i>synchronizes-with</i> edges they add. They can only be given
4849<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
4850<code>seq_cst</code> orderings.</p>
4851
4852<h5>Semantics:</h5>
4853<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
4854semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
4855<code>acquire</code> ordering semantics if and only if there exist atomic
4856operations <var>X</var> and <var>Y</var>, both operating on some atomic object
4857<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
4858<var>X</var> modifies <var>M</var> (either directly or through some side effect
4859of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
4860<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
4861<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
4862than an explicit <code>fence</code>, one (but not both) of the atomic operations
4863<var>X</var> or <var>Y</var> might provide a <code>release</code> or
4864<code>acquire</code> (resp.) ordering constraint and still
4865<i>synchronize-with</i> the explicit <code>fence</code> and establish the
4866<i>happens-before</i> edge.</p>
4867
4868<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
4869having both <code>acquire</code> and <code>release</code> semantics specified
4870above, participates in the global program order of other <code>seq_cst</code>
4871operations and/or fences.</p>
4872
4873<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
4874specifies that the fence only synchronizes with other fences in the same
4875thread. (This is useful for interacting with signal handlers.)</p>
4876
Eli Friedmanfee02c62011-07-25 23:16:38 +00004877<h5>Example:</h5>
4878<pre>
4879 fence acquire <i>; yields {void}</i>
4880 fence singlethread seq_cst <i>; yields {void}</i>
4881</pre>
4882
4883</div>
4884
4885<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004886<h4>
4887<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
4888</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004889
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004890<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004891
4892<h5>Syntax:</h5>
4893<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004894 cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004895</pre>
4896
4897<h5>Overview:</h5>
4898<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
4899It loads a value in memory and compares it to a given value. If they are
4900equal, it stores a new value into the memory.</p>
4901
4902<h5>Arguments:</h5>
4903<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
4904address to operate on, a value to compare to the value currently be at that
4905address, and a new value to place at that address if the compared values are
4906equal. The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
4907bit width is a power of two greater than or equal to eight and less than
4908or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
4909'<var>&lt;new&gt;</var>' must have the same type, and the type of
4910'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
4911<code>cmpxchg</code> is marked as <code>volatile</code>, then the
4912optimizer is not allowed to modify the number or order of execution
4913of this <code>cmpxchg</code> with other <a href="#volatile">volatile
4914operations</a>.</p>
4915
4916<!-- FIXME: Extend allowed types. -->
4917
4918<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
4919<code>cmpxchg</code> synchronizes with other atomic operations.</p>
4920
4921<p>The optional "<code>singlethread</code>" argument declares that the
4922<code>cmpxchg</code> is only atomic with respect to code (usually signal
4923handlers) running in the same thread as the <code>cmpxchg</code>. Otherwise the
4924cmpxchg is atomic with respect to all other code in the system.</p>
4925
4926<p>The pointer passed into cmpxchg must have alignment greater than or equal to
4927the size in memory of the operand.
4928
4929<h5>Semantics:</h5>
4930<p>The contents of memory at the location specified by the
4931'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
4932'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
4933'<tt>&lt;new&gt;</tt>' is written. The original value at the location
4934is returned.
4935
4936<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
4937purpose of identifying <a href="#release_sequence">release sequences</a>. A
4938failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
4939parameter determined by dropping any <code>release</code> part of the
4940<code>cmpxchg</code>'s ordering.</p>
4941
4942<!--
4943FIXME: Is compare_exchange_weak() necessary? (Consider after we've done
4944optimization work on ARM.)
4945
4946FIXME: Is a weaker ordering constraint on failure helpful in practice?
4947-->
4948
4949<h5>Example:</h5>
4950<pre>
4951entry:
4952 %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered <i>; yields {i32}</i>
4953 <a href="#i_br">br</a> label %loop
4954
4955loop:
4956 %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
4957 %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
4958 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared <i>; yields {i32}</i>
4959 %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
4960 <a href="#i_br">br</a> i1 %success, label %done, label %loop
4961
4962done:
4963 ...
4964</pre>
4965
4966</div>
4967
4968<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004969<h4>
4970<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
4971</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004972
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004973<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004974
4975<h5>Syntax:</h5>
4976<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004977 atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004978</pre>
4979
4980<h5>Overview:</h5>
4981<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
4982
4983<h5>Arguments:</h5>
4984<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
4985operation to apply, an address whose value to modify, an argument to the
4986operation. The operation must be one of the following keywords:</p>
4987<ul>
4988 <li>xchg</li>
4989 <li>add</li>
4990 <li>sub</li>
4991 <li>and</li>
4992 <li>nand</li>
4993 <li>or</li>
4994 <li>xor</li>
4995 <li>max</li>
4996 <li>min</li>
4997 <li>umax</li>
4998 <li>umin</li>
4999</ul>
5000
5001<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
5002bit width is a power of two greater than or equal to eight and less than
5003or equal to a target-specific size limit. The type of the
5004'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
5005If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
5006optimizer is not allowed to modify the number or order of execution of this
5007<code>atomicrmw</code> with other <a href="#volatile">volatile
5008 operations</a>.</p>
5009
5010<!-- FIXME: Extend allowed types. -->
5011
5012<h5>Semantics:</h5>
5013<p>The contents of memory at the location specified by the
5014'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
5015back. The original value at the location is returned. The modification is
5016specified by the <var>operation</var> argument:</p>
5017
5018<ul>
5019 <li>xchg: <code>*ptr = val</code></li>
5020 <li>add: <code>*ptr = *ptr + val</code></li>
5021 <li>sub: <code>*ptr = *ptr - val</code></li>
5022 <li>and: <code>*ptr = *ptr &amp; val</code></li>
5023 <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
5024 <li>or: <code>*ptr = *ptr | val</code></li>
5025 <li>xor: <code>*ptr = *ptr ^ val</code></li>
5026 <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
5027 <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
5028 <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5029 <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5030</ul>
5031
5032<h5>Example:</h5>
5033<pre>
5034 %old = atomicrmw add i32* %ptr, i32 1 acquire <i>; yields {i32}</i>
5035</pre>
5036
5037</div>
5038
5039<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005040<h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005041 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005042</h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005043
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005044<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005045
Chris Lattner590645f2002-04-14 06:13:44 +00005046<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005047<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005048 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00005049 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00005050</pre>
5051
Chris Lattner590645f2002-04-14 06:13:44 +00005052<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005053<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00005054 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5055 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005056
Chris Lattner590645f2002-04-14 06:13:44 +00005057<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005058<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00005059 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005060 elements of the aggregate object are indexed. The interpretation of each
5061 index is dependent on the type being indexed into. The first index always
5062 indexes the pointer value given as the first argument, the second index
5063 indexes a value of the type pointed to (not necessarily the value directly
5064 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00005065 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00005066 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00005067 can never be pointers, since that would require loading the pointer before
5068 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005069
5070<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00005071 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00005072 integer <b>constants</b> are allowed. When indexing into an array, pointer
5073 or vector, integers of any width are allowed, and they are not required to be
Eli Friedmand8874dc2011-08-12 23:37:55 +00005074 constant. These integers are treated as signed values where relevant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005075
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005076<p>For example, let's consider a C code fragment and how it gets compiled to
5077 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005078
Benjamin Kramer79698be2010-07-13 12:26:09 +00005079<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00005080struct RT {
5081 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00005082 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00005083 char C;
5084};
5085struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00005086 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00005087 double Y;
5088 struct RT Z;
5089};
Chris Lattner33fd7022004-04-05 01:30:49 +00005090
Chris Lattnera446f1b2007-05-29 15:43:56 +00005091int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005092 return &amp;s[1].Z.B[5][13];
5093}
Chris Lattner33fd7022004-04-05 01:30:49 +00005094</pre>
5095
Misha Brukman76307852003-11-08 01:05:38 +00005096<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005097
Benjamin Kramer79698be2010-07-13 12:26:09 +00005098<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +00005099%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
5100%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00005101
Dan Gohman6b867702009-07-25 02:23:48 +00005102define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005103entry:
5104 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
5105 ret i32* %reg
5106}
Chris Lattner33fd7022004-04-05 01:30:49 +00005107</pre>
5108
Chris Lattner590645f2002-04-14 06:13:44 +00005109<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005110<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005111 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
5112 }</tt>' type, a structure. The second index indexes into the third element
5113 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
5114 i8 }</tt>' type, another structure. The third index indexes into the second
5115 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
5116 array. The two dimensions of the array are subscripted into, yielding an
5117 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
5118 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005119
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005120<p>Note that it is perfectly legal to index partially through a structure,
5121 returning a pointer to an inner element. Because of this, the LLVM code for
5122 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005123
5124<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00005125 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005126 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00005127 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
5128 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005129 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
5130 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
5131 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00005132 }
Chris Lattnera8292f32002-05-06 22:08:29 +00005133</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00005134
Dan Gohman1639c392009-07-27 21:53:46 +00005135<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00005136 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
5137 base pointer is not an <i>in bounds</i> address of an allocated object,
5138 or if any of the addresses that would be formed by successive addition of
5139 the offsets implied by the indices to the base address with infinitely
Eli Friedmand8874dc2011-08-12 23:37:55 +00005140 precise signed arithmetic are not an <i>in bounds</i> address of that
5141 allocated object. The <i>in bounds</i> addresses for an allocated object
5142 are all the addresses that point into the object, plus the address one
5143 byte past the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005144
5145<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
Eli Friedmand8874dc2011-08-12 23:37:55 +00005146 the base address with silently-wrapping two's complement arithmetic. If the
5147 offsets have a different width from the pointer, they are sign-extended or
5148 truncated to the width of the pointer. The result value of the
5149 <tt>getelementptr</tt> may be outside the object pointed to by the base
5150 pointer. The result value may not necessarily be used to access memory
5151 though, even if it happens to point into allocated storage. See the
5152 <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5153 information.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005154
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005155<p>The getelementptr instruction is often confusing. For some more insight into
5156 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00005157
Chris Lattner590645f2002-04-14 06:13:44 +00005158<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005159<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005160 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005161 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5162 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005163 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005164 <i>; yields i8*:eptr</i>
5165 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00005166 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00005167 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00005168</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005169
Chris Lattner33fd7022004-04-05 01:30:49 +00005170</div>
Reid Spencer443460a2006-11-09 21:15:49 +00005171
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005172</div>
5173
Chris Lattner2f7c9632001-06-06 20:29:01 +00005174<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005175<h3>
5176 <a name="convertops">Conversion Operations</a>
5177</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005178
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005179<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005180
Reid Spencer97c5fa42006-11-08 01:18:52 +00005181<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005182 which all take a single operand and a type. They perform various bit
5183 conversions on the operand.</p>
5184
Chris Lattnera8292f32002-05-06 22:08:29 +00005185<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005186<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005187 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005188</h4>
5189
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005190<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005191
5192<h5>Syntax:</h5>
5193<pre>
5194 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5195</pre>
5196
5197<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005198<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5199 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005200
5201<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005202<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5203 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5204 of the same number of integers.
5205 The bit size of the <tt>value</tt> must be larger than
5206 the bit size of the destination type, <tt>ty2</tt>.
5207 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005208
5209<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005210<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5211 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5212 source size must be larger than the destination size, <tt>trunc</tt> cannot
5213 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005214
5215<h5>Example:</h5>
5216<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005217 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
5218 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
5219 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
5220 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005221</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005222
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005223</div>
5224
5225<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005226<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005227 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005228</h4>
5229
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005230<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005231
5232<h5>Syntax:</h5>
5233<pre>
5234 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5235</pre>
5236
5237<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005238<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005239 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005240
5241
5242<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005243<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5244 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5245 of the same number of integers.
5246 The bit size of the <tt>value</tt> must be smaller than
5247 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005248 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005249
5250<h5>Semantics:</h5>
5251<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005252 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005253
Reid Spencer07c9c682007-01-12 15:46:11 +00005254<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005255
5256<h5>Example:</h5>
5257<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005258 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005259 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005260 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005261</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005262
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005263</div>
5264
5265<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005266<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005267 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005268</h4>
5269
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005270<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005271
5272<h5>Syntax:</h5>
5273<pre>
5274 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5275</pre>
5276
5277<h5>Overview:</h5>
5278<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5279
5280<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005281<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5282 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5283 of the same number of integers.
5284 The bit size of the <tt>value</tt> must be smaller than
5285 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005286 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005287
5288<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005289<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5290 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5291 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005292
Reid Spencer36a15422007-01-12 03:35:51 +00005293<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005294
5295<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005296<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005297 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005298 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005299 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005300</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005301
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005302</div>
5303
5304<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005305<h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005306 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005307</h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005308
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005309<div>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005310
5311<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005312<pre>
5313 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5314</pre>
5315
5316<h5>Overview:</h5>
5317<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005318 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005319
5320<h5>Arguments:</h5>
5321<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005322 point</a> value to cast and a <a href="#t_floating">floating point</a> type
5323 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00005324 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005325 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005326
5327<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005328<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00005329 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005330 <a href="#t_floating">floating point</a> type. If the value cannot fit
5331 within the destination type, <tt>ty2</tt>, then the results are
5332 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005333
5334<h5>Example:</h5>
5335<pre>
5336 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
5337 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
5338</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005339
Reid Spencer2e2740d2006-11-09 21:48:10 +00005340</div>
5341
5342<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005343<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005344 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005345</h4>
5346
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005347<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005348
5349<h5>Syntax:</h5>
5350<pre>
5351 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5352</pre>
5353
5354<h5>Overview:</h5>
5355<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005356 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005357
5358<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005359<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005360 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5361 a <a href="#t_floating">floating point</a> type to cast it to. The source
5362 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005363
5364<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005365<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005366 <a href="#t_floating">floating point</a> type to a larger
5367 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5368 used to make a <i>no-op cast</i> because it always changes bits. Use
5369 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005370
5371<h5>Example:</h5>
5372<pre>
Nick Lewycky9feca672011-03-31 18:20:19 +00005373 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
5374 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005375</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005376
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005377</div>
5378
5379<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005380<h4>
Reid Spencer2eadb532007-01-21 00:29:26 +00005381 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005382</h4>
5383
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005384<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005385
5386<h5>Syntax:</h5>
5387<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005388 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005389</pre>
5390
5391<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00005392<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005393 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005394
5395<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005396<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5397 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5398 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5399 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5400 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005401
5402<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005403<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005404 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5405 towards zero) unsigned integer value. If the value cannot fit
5406 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005407
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005408<h5>Example:</h5>
5409<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005410 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005411 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005412 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005413</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005414
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005415</div>
5416
5417<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005418<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005419 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005420</h4>
5421
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005422<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005423
5424<h5>Syntax:</h5>
5425<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005426 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005427</pre>
5428
5429<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005430<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005431 <a href="#t_floating">floating point</a> <tt>value</tt> to
5432 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005433
Chris Lattnera8292f32002-05-06 22:08:29 +00005434<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005435<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5436 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5437 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5438 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5439 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005440
Chris Lattnera8292f32002-05-06 22:08:29 +00005441<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005442<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005443 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5444 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5445 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005446
Chris Lattner70de6632001-07-09 00:26:23 +00005447<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005448<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005449 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005450 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005451 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005452</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005453
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005454</div>
5455
5456<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005457<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005458 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005459</h4>
5460
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005461<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005462
5463<h5>Syntax:</h5>
5464<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005465 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005466</pre>
5467
5468<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005469<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005470 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005471
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005472<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005473<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005474 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5475 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5476 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5477 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005478
5479<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005480<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005481 integer quantity and converts it to the corresponding floating point
5482 value. If the value cannot fit in the floating point value, the results are
5483 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005484
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005485<h5>Example:</h5>
5486<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005487 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005488 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005489</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005490
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005491</div>
5492
5493<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005494<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005495 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005496</h4>
5497
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005498<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005499
5500<h5>Syntax:</h5>
5501<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005502 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005503</pre>
5504
5505<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005506<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5507 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005508
5509<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005510<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005511 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5512 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5513 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5514 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005515
5516<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005517<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5518 quantity and converts it to the corresponding floating point value. If the
5519 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005520
5521<h5>Example:</h5>
5522<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005523 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005524 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005525</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005526
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005527</div>
5528
5529<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005530<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005531 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005532</h4>
5533
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005534<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005535
5536<h5>Syntax:</h5>
5537<pre>
5538 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5539</pre>
5540
5541<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005542<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
5543 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005544
5545<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005546<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5547 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
5548 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005549
5550<h5>Semantics:</h5>
5551<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005552 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5553 truncating or zero extending that value to the size of the integer type. If
5554 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5555 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5556 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5557 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005558
5559<h5>Example:</h5>
5560<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005561 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
5562 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005563</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005564
Reid Spencerb7344ff2006-11-11 21:00:47 +00005565</div>
5566
5567<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005568<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005569 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005570</h4>
5571
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005572<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005573
5574<h5>Syntax:</h5>
5575<pre>
5576 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5577</pre>
5578
5579<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005580<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5581 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005582
5583<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00005584<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005585 value to cast, and a type to cast it to, which must be a
5586 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005587
5588<h5>Semantics:</h5>
5589<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005590 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5591 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5592 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5593 than the size of a pointer then a zero extension is done. If they are the
5594 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005595
5596<h5>Example:</h5>
5597<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005598 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005599 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5600 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005601</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005602
Reid Spencerb7344ff2006-11-11 21:00:47 +00005603</div>
5604
5605<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005606<h4>
Reid Spencer5b950642006-11-11 23:08:07 +00005607 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005608</h4>
5609
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005610<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005611
5612<h5>Syntax:</h5>
5613<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00005614 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005615</pre>
5616
5617<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005618<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005619 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005620
5621<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005622<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5623 non-aggregate first class value, and a type to cast it to, which must also be
5624 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5625 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5626 identical. If the source type is a pointer, the destination type must also be
5627 a pointer. This instruction supports bitwise conversion of vectors to
5628 integers and to vectors of other types (as long as they have the same
5629 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005630
5631<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005632<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005633 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5634 this conversion. The conversion is done as if the <tt>value</tt> had been
5635 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5636 be converted to other pointer types with this instruction. To convert
5637 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5638 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005639
5640<h5>Example:</h5>
5641<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005642 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005643 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher455c5772009-12-05 02:46:03 +00005644 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005645</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005646
Misha Brukman76307852003-11-08 01:05:38 +00005647</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005648
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005649</div>
5650
Reid Spencer97c5fa42006-11-08 01:18:52 +00005651<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005652<h3>
5653 <a name="otherops">Other Operations</a>
5654</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005655
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005656<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005657
5658<p>The instructions in this category are the "miscellaneous" instructions, which
5659 defy better classification.</p>
5660
Reid Spencerc828a0e2006-11-18 21:50:54 +00005661<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005662<h4>
5663 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5664</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005665
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005666<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005667
Reid Spencerc828a0e2006-11-18 21:50:54 +00005668<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005669<pre>
5670 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005671</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005672
Reid Spencerc828a0e2006-11-18 21:50:54 +00005673<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005674<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5675 boolean values based on comparison of its two integer, integer vector, or
5676 pointer operands.</p>
5677
Reid Spencerc828a0e2006-11-18 21:50:54 +00005678<h5>Arguments:</h5>
5679<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005680 the condition code indicating the kind of comparison to perform. It is not a
5681 value, just a keyword. The possible condition code are:</p>
5682
Reid Spencerc828a0e2006-11-18 21:50:54 +00005683<ol>
5684 <li><tt>eq</tt>: equal</li>
5685 <li><tt>ne</tt>: not equal </li>
5686 <li><tt>ugt</tt>: unsigned greater than</li>
5687 <li><tt>uge</tt>: unsigned greater or equal</li>
5688 <li><tt>ult</tt>: unsigned less than</li>
5689 <li><tt>ule</tt>: unsigned less or equal</li>
5690 <li><tt>sgt</tt>: signed greater than</li>
5691 <li><tt>sge</tt>: signed greater or equal</li>
5692 <li><tt>slt</tt>: signed less than</li>
5693 <li><tt>sle</tt>: signed less or equal</li>
5694</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005695
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005696<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005697 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5698 typed. They must also be identical types.</p>
5699
Reid Spencerc828a0e2006-11-18 21:50:54 +00005700<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005701<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5702 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005703 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005704 result, as follows:</p>
5705
Reid Spencerc828a0e2006-11-18 21:50:54 +00005706<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005707 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005708 <tt>false</tt> otherwise. No sign interpretation is necessary or
5709 performed.</li>
5710
Eric Christopher455c5772009-12-05 02:46:03 +00005711 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005712 <tt>false</tt> otherwise. No sign interpretation is necessary or
5713 performed.</li>
5714
Reid Spencerc828a0e2006-11-18 21:50:54 +00005715 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005716 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5717
Reid Spencerc828a0e2006-11-18 21:50:54 +00005718 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005719 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5720 to <tt>op2</tt>.</li>
5721
Reid Spencerc828a0e2006-11-18 21:50:54 +00005722 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005723 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5724
Reid Spencerc828a0e2006-11-18 21:50:54 +00005725 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005726 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5727
Reid Spencerc828a0e2006-11-18 21:50:54 +00005728 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005729 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5730
Reid Spencerc828a0e2006-11-18 21:50:54 +00005731 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005732 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5733 to <tt>op2</tt>.</li>
5734
Reid Spencerc828a0e2006-11-18 21:50:54 +00005735 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005736 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5737
Reid Spencerc828a0e2006-11-18 21:50:54 +00005738 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005739 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005740</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005741
Reid Spencerc828a0e2006-11-18 21:50:54 +00005742<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005743 values are compared as if they were integers.</p>
5744
5745<p>If the operands are integer vectors, then they are compared element by
5746 element. The result is an <tt>i1</tt> vector with the same number of elements
5747 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005748
5749<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005750<pre>
5751 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005752 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5753 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5754 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5755 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5756 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005757</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005758
5759<p>Note that the code generator does not yet support vector types with
5760 the <tt>icmp</tt> instruction.</p>
5761
Reid Spencerc828a0e2006-11-18 21:50:54 +00005762</div>
5763
5764<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005765<h4>
5766 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5767</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005768
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005769<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005770
Reid Spencerc828a0e2006-11-18 21:50:54 +00005771<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005772<pre>
5773 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005774</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005775
Reid Spencerc828a0e2006-11-18 21:50:54 +00005776<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005777<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5778 values based on comparison of its operands.</p>
5779
5780<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005781(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005782
5783<p>If the operands are floating point vectors, then the result type is a vector
5784 of boolean with the same number of elements as the operands being
5785 compared.</p>
5786
Reid Spencerc828a0e2006-11-18 21:50:54 +00005787<h5>Arguments:</h5>
5788<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005789 the condition code indicating the kind of comparison to perform. It is not a
5790 value, just a keyword. The possible condition code are:</p>
5791
Reid Spencerc828a0e2006-11-18 21:50:54 +00005792<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00005793 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005794 <li><tt>oeq</tt>: ordered and equal</li>
5795 <li><tt>ogt</tt>: ordered and greater than </li>
5796 <li><tt>oge</tt>: ordered and greater than or equal</li>
5797 <li><tt>olt</tt>: ordered and less than </li>
5798 <li><tt>ole</tt>: ordered and less than or equal</li>
5799 <li><tt>one</tt>: ordered and not equal</li>
5800 <li><tt>ord</tt>: ordered (no nans)</li>
5801 <li><tt>ueq</tt>: unordered or equal</li>
5802 <li><tt>ugt</tt>: unordered or greater than </li>
5803 <li><tt>uge</tt>: unordered or greater than or equal</li>
5804 <li><tt>ult</tt>: unordered or less than </li>
5805 <li><tt>ule</tt>: unordered or less than or equal</li>
5806 <li><tt>une</tt>: unordered or not equal</li>
5807 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00005808 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005809</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005810
Jeff Cohen222a8a42007-04-29 01:07:00 +00005811<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005812 <i>unordered</i> means that either operand may be a QNAN.</p>
5813
5814<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5815 a <a href="#t_floating">floating point</a> type or
5816 a <a href="#t_vector">vector</a> of floating point type. They must have
5817 identical types.</p>
5818
Reid Spencerc828a0e2006-11-18 21:50:54 +00005819<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00005820<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005821 according to the condition code given as <tt>cond</tt>. If the operands are
5822 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005823 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005824 follows:</p>
5825
Reid Spencerc828a0e2006-11-18 21:50:54 +00005826<ol>
5827 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005828
Eric Christopher455c5772009-12-05 02:46:03 +00005829 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005830 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5831
Reid Spencerf69acf32006-11-19 03:00:14 +00005832 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00005833 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005834
Eric Christopher455c5772009-12-05 02:46:03 +00005835 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005836 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5837
Eric Christopher455c5772009-12-05 02:46:03 +00005838 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005839 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5840
Eric Christopher455c5772009-12-05 02:46:03 +00005841 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005842 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5843
Eric Christopher455c5772009-12-05 02:46:03 +00005844 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005845 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5846
Reid Spencerf69acf32006-11-19 03:00:14 +00005847 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005848
Eric Christopher455c5772009-12-05 02:46:03 +00005849 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005850 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5851
Eric Christopher455c5772009-12-05 02:46:03 +00005852 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005853 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5854
Eric Christopher455c5772009-12-05 02:46:03 +00005855 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005856 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5857
Eric Christopher455c5772009-12-05 02:46:03 +00005858 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005859 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5860
Eric Christopher455c5772009-12-05 02:46:03 +00005861 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005862 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5863
Eric Christopher455c5772009-12-05 02:46:03 +00005864 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005865 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5866
Reid Spencerf69acf32006-11-19 03:00:14 +00005867 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005868
Reid Spencerc828a0e2006-11-18 21:50:54 +00005869 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5870</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005871
5872<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005873<pre>
5874 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00005875 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5876 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5877 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005878</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005879
5880<p>Note that the code generator does not yet support vector types with
5881 the <tt>fcmp</tt> instruction.</p>
5882
Reid Spencerc828a0e2006-11-18 21:50:54 +00005883</div>
5884
Reid Spencer97c5fa42006-11-08 01:18:52 +00005885<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005886<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005887 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005888</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005890<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005891
Reid Spencer97c5fa42006-11-08 01:18:52 +00005892<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005893<pre>
5894 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5895</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005896
Reid Spencer97c5fa42006-11-08 01:18:52 +00005897<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005898<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5899 SSA graph representing the function.</p>
5900
Reid Spencer97c5fa42006-11-08 01:18:52 +00005901<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005902<p>The type of the incoming values is specified with the first type field. After
5903 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5904 one pair for each predecessor basic block of the current block. Only values
5905 of <a href="#t_firstclass">first class</a> type may be used as the value
5906 arguments to the PHI node. Only labels may be used as the label
5907 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005908
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005909<p>There must be no non-phi instructions between the start of a basic block and
5910 the PHI instructions: i.e. PHI instructions must be first in a basic
5911 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005912
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005913<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5914 occur on the edge from the corresponding predecessor block to the current
5915 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5916 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005917
Reid Spencer97c5fa42006-11-08 01:18:52 +00005918<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005919<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005920 specified by the pair corresponding to the predecessor basic block that
5921 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005922
Reid Spencer97c5fa42006-11-08 01:18:52 +00005923<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005924<pre>
5925Loop: ; Infinite loop that counts from 0 on up...
5926 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5927 %nextindvar = add i32 %indvar, 1
5928 br label %Loop
5929</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005930
Reid Spencer97c5fa42006-11-08 01:18:52 +00005931</div>
5932
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005933<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005934<h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005935 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005936</h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005937
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005938<div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005939
5940<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005941<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005942 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5943
Dan Gohmanef9462f2008-10-14 16:51:45 +00005944 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005945</pre>
5946
5947<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005948<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5949 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005950
5951
5952<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005953<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5954 values indicating the condition, and two values of the
5955 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5956 vectors and the condition is a scalar, then entire vectors are selected, not
5957 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005958
5959<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005960<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5961 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005962
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005963<p>If the condition is a vector of i1, then the value arguments must be vectors
5964 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005965
5966<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005967<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005968 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005969</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005970
5971<p>Note that the code generator does not yet support conditions
5972 with vector type.</p>
5973
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005974</div>
5975
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00005976<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005977<h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005978 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005979</h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005980
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005981<div>
Chris Lattnere23c1392005-05-06 05:47:36 +00005982
Chris Lattner2f7c9632001-06-06 20:29:01 +00005983<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005984<pre>
Devang Patel02256232008-10-07 17:48:33 +00005985 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00005986</pre>
5987
Chris Lattner2f7c9632001-06-06 20:29:01 +00005988<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005989<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005990
Chris Lattner2f7c9632001-06-06 20:29:01 +00005991<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005992<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005993
Chris Lattnera8292f32002-05-06 22:08:29 +00005994<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005995 <li>The optional "tail" marker indicates that the callee function does not
5996 access any allocas or varargs in the caller. Note that calls may be
5997 marked "tail" even if they do not occur before
5998 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5999 present, the function call is eligible for tail call optimization,
6000 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00006001 optimized into a jump</a>. The code generator may optimize calls marked
6002 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
6003 sibling call optimization</a> when the caller and callee have
6004 matching signatures, or 2) forced tail call optimization when the
6005 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006006 <ul>
6007 <li>Caller and callee both have the calling
6008 convention <tt>fastcc</tt>.</li>
6009 <li>The call is in tail position (ret immediately follows call and ret
6010 uses value of call or is void).</li>
6011 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00006012 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006013 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
6014 constraints are met.</a></li>
6015 </ul>
6016 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006017
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006018 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
6019 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006020 defaults to using C calling conventions. The calling convention of the
6021 call must match the calling convention of the target function, or else the
6022 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006023
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006024 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
6025 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
6026 '<tt>inreg</tt>' attributes are valid here.</li>
6027
6028 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
6029 type of the return value. Functions that return no value are marked
6030 <tt><a href="#t_void">void</a></tt>.</li>
6031
6032 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
6033 being invoked. The argument types must match the types implied by this
6034 signature. This type can be omitted if the function is not varargs and if
6035 the function type does not return a pointer to a function.</li>
6036
6037 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
6038 be invoked. In most cases, this is a direct function invocation, but
6039 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
6040 to function value.</li>
6041
6042 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00006043 signature argument types and parameter attributes. All arguments must be
6044 of <a href="#t_firstclass">first class</a> type. If the function
6045 signature indicates the function accepts a variable number of arguments,
6046 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006047
6048 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6049 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6050 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00006051</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00006052
Chris Lattner2f7c9632001-06-06 20:29:01 +00006053<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006054<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6055 a specified function, with its incoming arguments bound to the specified
6056 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6057 function, control flow continues with the instruction after the function
6058 call, and the return value of the function is bound to the result
6059 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006060
Chris Lattner2f7c9632001-06-06 20:29:01 +00006061<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006062<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00006063 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006064 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00006065 %X = tail call i32 @foo() <i>; yields i32</i>
6066 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
6067 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00006068
6069 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00006070 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00006071 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
6072 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00006073 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00006074 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00006075</pre>
6076
Dale Johannesen68f971b2009-09-24 18:38:21 +00006077<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00006078standard C99 library as being the C99 library functions, and may perform
6079optimizations or generate code for them under that assumption. This is
6080something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00006081freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00006082
Misha Brukman76307852003-11-08 01:05:38 +00006083</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006084
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006085<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006086<h4>
Chris Lattner33337472006-01-13 23:26:01 +00006087 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006088</h4>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006089
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006090<div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006091
Chris Lattner26ca62e2003-10-18 05:51:36 +00006092<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006093<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006094 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00006095</pre>
6096
Chris Lattner26ca62e2003-10-18 05:51:36 +00006097<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006098<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006099 the "variable argument" area of a function call. It is used to implement the
6100 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006101
Chris Lattner26ca62e2003-10-18 05:51:36 +00006102<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006103<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6104 argument. It returns a value of the specified argument type and increments
6105 the <tt>va_list</tt> to point to the next argument. The actual type
6106 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006107
Chris Lattner26ca62e2003-10-18 05:51:36 +00006108<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006109<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6110 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6111 to the next argument. For more information, see the variable argument
6112 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006113
6114<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006115 take a variable number of arguments, for example, the <tt>vfprintf</tt>
6116 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006117
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006118<p><tt>va_arg</tt> is an LLVM instruction instead of
6119 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6120 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006121
Chris Lattner26ca62e2003-10-18 05:51:36 +00006122<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006123<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6124
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006125<p>Note that the code generator does not yet fully support va_arg on many
6126 targets. Also, it does not currently support va_arg with aggregate types on
6127 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00006128
Misha Brukman76307852003-11-08 01:05:38 +00006129</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006130
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006131<!-- _______________________________________________________________________ -->
6132<h4>
6133 <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6134</h4>
6135
6136<div>
6137
6138<h5>Syntax:</h5>
6139<pre>
Bill Wendling49bfb122011-08-08 08:06:05 +00006140 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6141 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
6142
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006143 &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
Bill Wendlingfae14752011-08-12 20:24:12 +00006144 &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006145</pre>
6146
6147<h5>Overview:</h5>
6148<p>The '<tt>landingpad</tt>' instruction is used by
6149 <a href="ExceptionHandling.html#overview">LLVM's exception handling
6150 system</a> to specify that a basic block is a landing pad &mdash; one where
6151 the exception lands, and corresponds to the code found in the
6152 <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6153 defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6154 re-entry to the function. The <tt>resultval</tt> has the
6155 type <tt>somety</tt>.</p>
6156
6157<h5>Arguments:</h5>
6158<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6159 function associated with the unwinding mechanism. The optional
6160 <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6161
6162<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
Bill Wendlingfae14752011-08-12 20:24:12 +00006163 or <tt>filter</tt> &mdash; and contains the global variable representing the
6164 "type" that may be caught or filtered respectively. Unlike the
6165 <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6166 its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6167 throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006168 one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6169
6170<h5>Semantics:</h5>
6171<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6172 personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6173 therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6174 calling conventions, how the personality function results are represented in
6175 LLVM IR is target specific.</p>
6176
Bill Wendling0524b8d2011-08-03 17:17:06 +00006177<p>The clauses are applied in order from top to bottom. If two
6178 <tt>landingpad</tt> instructions are merged together through inlining, the
Bill Wendlinga503fc02011-08-08 07:58:58 +00006179 clauses from the calling function are appended to the list of clauses.</p>
Bill Wendling0524b8d2011-08-03 17:17:06 +00006180
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006181<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6182
6183<ul>
6184 <li>A landing pad block is a basic block which is the unwind destination of an
6185 '<tt>invoke</tt>' instruction.</li>
6186 <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6187 first non-PHI instruction.</li>
6188 <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6189 pad block.</li>
6190 <li>A basic block that is not a landing pad block may not include a
6191 '<tt>landingpad</tt>' instruction.</li>
6192 <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6193 personality function.</li>
6194</ul>
6195
6196<h5>Example:</h5>
6197<pre>
6198 ;; A landing pad which can catch an integer.
6199 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6200 catch i8** @_ZTIi
6201 ;; A landing pad that is a cleanup.
6202 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
Bill Wendlingfae14752011-08-12 20:24:12 +00006203 cleanup
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006204 ;; A landing pad which can catch an integer and can only throw a double.
6205 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6206 catch i8** @_ZTIi
Bill Wendlingfae14752011-08-12 20:24:12 +00006207 filter [1 x i8**] [@_ZTId]
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006208</pre>
6209
6210</div>
6211
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006212</div>
6213
6214</div>
6215
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006216<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006217<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00006218<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00006219
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006220<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006221
6222<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006223 well known names and semantics and are required to follow certain
6224 restrictions. Overall, these intrinsics represent an extension mechanism for
6225 the LLVM language that does not require changing all of the transformations
6226 in LLVM when adding to the language (or the bitcode reader/writer, the
6227 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006228
John Criswell88190562005-05-16 16:17:45 +00006229<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006230 prefix is reserved in LLVM for intrinsic names; thus, function names may not
6231 begin with this prefix. Intrinsic functions must always be external
6232 functions: you cannot define the body of intrinsic functions. Intrinsic
6233 functions may only be used in call or invoke instructions: it is illegal to
6234 take the address of an intrinsic function. Additionally, because intrinsic
6235 functions are part of the LLVM language, it is required if any are added that
6236 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006237
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006238<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6239 family of functions that perform the same operation but on different data
6240 types. Because LLVM can represent over 8 million different integer types,
6241 overloading is used commonly to allow an intrinsic function to operate on any
6242 integer type. One or more of the argument types or the result type can be
6243 overloaded to accept any integer type. Argument types may also be defined as
6244 exactly matching a previous argument's type or the result type. This allows
6245 an intrinsic function which accepts multiple arguments, but needs all of them
6246 to be of the same type, to only be overloaded with respect to a single
6247 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006248
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006249<p>Overloaded intrinsics will have the names of its overloaded argument types
6250 encoded into its function name, each preceded by a period. Only those types
6251 which are overloaded result in a name suffix. Arguments whose type is matched
6252 against another type do not. For example, the <tt>llvm.ctpop</tt> function
6253 can take an integer of any width and returns an integer of exactly the same
6254 integer width. This leads to a family of functions such as
6255 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6256 %val)</tt>. Only one type, the return type, is overloaded, and only one type
6257 suffix is required. Because the argument's type is matched against the return
6258 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006259
Eric Christopher455c5772009-12-05 02:46:03 +00006260<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006261 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006262
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006263<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006264<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006265 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006266</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006267
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006268<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006269
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006270<p>Variable argument support is defined in LLVM with
6271 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6272 intrinsic functions. These functions are related to the similarly named
6273 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006274
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006275<p>All of these functions operate on arguments that use a target-specific value
6276 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
6277 not define what this type is, so all transformations should be prepared to
6278 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006279
Chris Lattner30b868d2006-05-15 17:26:46 +00006280<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006281 instruction and the variable argument handling intrinsic functions are
6282 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006283
Benjamin Kramer79698be2010-07-13 12:26:09 +00006284<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006285define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00006286 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00006287 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006288 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006289 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006290
6291 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00006292 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00006293
6294 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00006295 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006296 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00006297 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006298 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006299
6300 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006301 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006302 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00006303}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006304
6305declare void @llvm.va_start(i8*)
6306declare void @llvm.va_copy(i8*, i8*)
6307declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00006308</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00006309
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006310<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006311<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006312 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006313</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006314
6315
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006316<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006317
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006318<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006319<pre>
6320 declare void %llvm.va_start(i8* &lt;arglist&gt;)
6321</pre>
6322
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006323<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006324<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6325 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006326
6327<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006328<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006329
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006330<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006331<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006332 macro available in C. In a target-dependent way, it initializes
6333 the <tt>va_list</tt> element to which the argument points, so that the next
6334 call to <tt>va_arg</tt> will produce the first variable argument passed to
6335 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6336 need to know the last argument of the function as the compiler can figure
6337 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006338
Misha Brukman76307852003-11-08 01:05:38 +00006339</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006340
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006341<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006342<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006343 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006344</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006345
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006346<div>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006347
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006348<h5>Syntax:</h5>
6349<pre>
6350 declare void @llvm.va_end(i8* &lt;arglist&gt;)
6351</pre>
6352
6353<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006354<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006355 which has been initialized previously
6356 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6357 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006358
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006359<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006360<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006361
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006362<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006363<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006364 macro available in C. In a target-dependent way, it destroys
6365 the <tt>va_list</tt> element to which the argument points. Calls
6366 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6367 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6368 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006369
Misha Brukman76307852003-11-08 01:05:38 +00006370</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006371
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006372<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006373<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006374 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006375</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006376
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006377<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006378
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006379<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006380<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006381 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006382</pre>
6383
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006384<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006385<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006386 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006387
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006388<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006389<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006390 The second argument is a pointer to a <tt>va_list</tt> element to copy
6391 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006392
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006393<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006394<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006395 macro available in C. In a target-dependent way, it copies the
6396 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6397 element. This intrinsic is necessary because
6398 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6399 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006400
Misha Brukman76307852003-11-08 01:05:38 +00006401</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006402
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006403</div>
6404
Chris Lattnerfee11462004-02-12 17:01:32 +00006405<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006406<h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006407 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006408</h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006409
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006410<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006411
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006412<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00006413Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006414intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6415roots on the stack</a>, as well as garbage collector implementations that
6416require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6417barriers. Front-ends for type-safe garbage collected languages should generate
6418these intrinsics to make use of the LLVM garbage collectors. For more details,
6419see <a href="GarbageCollection.html">Accurate Garbage Collection with
6420LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006421
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006422<p>The garbage collection intrinsics only operate on objects in the generic
6423 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006424
Chris Lattner757528b0b2004-05-23 21:06:01 +00006425<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006426<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006427 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006428</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006429
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006430<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006431
6432<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006433<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006434 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006435</pre>
6436
6437<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00006438<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006439 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006440
6441<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006442<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006443 root pointer. The second pointer (which must be either a constant or a
6444 global value address) contains the meta-data to be associated with the
6445 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006446
6447<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00006448<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006449 location. At compile-time, the code generator generates information to allow
6450 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6451 intrinsic may only be used in a function which <a href="#gc">specifies a GC
6452 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006453
6454</div>
6455
Chris Lattner757528b0b2004-05-23 21:06:01 +00006456<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006457<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006458 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006459</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006460
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006461<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006462
6463<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006464<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006465 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006466</pre>
6467
6468<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006469<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006470 locations, allowing garbage collector implementations that require read
6471 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006472
6473<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006474<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006475 allocated from the garbage collector. The first object is a pointer to the
6476 start of the referenced object, if needed by the language runtime (otherwise
6477 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006478
6479<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006480<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006481 instruction, but may be replaced with substantially more complex code by the
6482 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6483 may only be used in a function which <a href="#gc">specifies a GC
6484 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006485
6486</div>
6487
Chris Lattner757528b0b2004-05-23 21:06:01 +00006488<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006489<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006490 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006491</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006492
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006493<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006494
6495<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006496<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006497 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006498</pre>
6499
6500<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006501<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006502 locations, allowing garbage collector implementations that require write
6503 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006504
6505<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006506<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006507 object to store it to, and the third is the address of the field of Obj to
6508 store to. If the runtime does not require a pointer to the object, Obj may
6509 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006510
6511<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006512<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006513 instruction, but may be replaced with substantially more complex code by the
6514 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6515 may only be used in a function which <a href="#gc">specifies a GC
6516 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006517
6518</div>
6519
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006520</div>
6521
Chris Lattner757528b0b2004-05-23 21:06:01 +00006522<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006523<h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006524 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006525</h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006526
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006527<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006528
6529<p>These intrinsics are provided by LLVM to expose special features that may
6530 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006531
Chris Lattner3649c3a2004-02-14 04:08:35 +00006532<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006533<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006534 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006535</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006536
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006537<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006538
6539<h5>Syntax:</h5>
6540<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006541 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006542</pre>
6543
6544<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006545<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6546 target-specific value indicating the return address of the current function
6547 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006548
6549<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006550<p>The argument to this intrinsic indicates which function to return the address
6551 for. Zero indicates the calling function, one indicates its caller, etc.
6552 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006553
6554<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006555<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6556 indicating the return address of the specified call frame, or zero if it
6557 cannot be identified. The value returned by this intrinsic is likely to be
6558 incorrect or 0 for arguments other than zero, so it should only be used for
6559 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006560
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006561<p>Note that calling this intrinsic does not prevent function inlining or other
6562 aggressive transformations, so the value returned may not be that of the
6563 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006564
Chris Lattner3649c3a2004-02-14 04:08:35 +00006565</div>
6566
Chris Lattner3649c3a2004-02-14 04:08:35 +00006567<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006568<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006569 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006570</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006571
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006572<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006573
6574<h5>Syntax:</h5>
6575<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006576 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006577</pre>
6578
6579<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006580<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6581 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006582
6583<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006584<p>The argument to this intrinsic indicates which function to return the frame
6585 pointer for. Zero indicates the calling function, one indicates its caller,
6586 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006587
6588<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006589<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6590 indicating the frame address of the specified call frame, or zero if it
6591 cannot be identified. The value returned by this intrinsic is likely to be
6592 incorrect or 0 for arguments other than zero, so it should only be used for
6593 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006594
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006595<p>Note that calling this intrinsic does not prevent function inlining or other
6596 aggressive transformations, so the value returned may not be that of the
6597 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006598
Chris Lattner3649c3a2004-02-14 04:08:35 +00006599</div>
6600
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006601<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006602<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006603 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006604</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006605
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006606<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006607
6608<h5>Syntax:</h5>
6609<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006610 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00006611</pre>
6612
6613<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006614<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6615 of the function stack, for use
6616 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6617 useful for implementing language features like scoped automatic variable
6618 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006619
6620<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006621<p>This intrinsic returns a opaque pointer value that can be passed
6622 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6623 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6624 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6625 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6626 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6627 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006628
6629</div>
6630
6631<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006632<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006633 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006634</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006635
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006636<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006637
6638<h5>Syntax:</h5>
6639<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006640 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00006641</pre>
6642
6643<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006644<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6645 the function stack to the state it was in when the
6646 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6647 executed. This is useful for implementing language features like scoped
6648 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006649
6650<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006651<p>See the description
6652 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006653
6654</div>
6655
Chris Lattner2f0f0012006-01-13 02:03:13 +00006656<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006657<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006658 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006659</h4>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006660
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006661<div>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006662
6663<h5>Syntax:</h5>
6664<pre>
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006665 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006666</pre>
6667
6668<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006669<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6670 insert a prefetch instruction if supported; otherwise, it is a noop.
6671 Prefetches have no effect on the behavior of the program but can change its
6672 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006673
6674<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006675<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6676 specifier determining if the fetch should be for a read (0) or write (1),
6677 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006678 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6679 specifies whether the prefetch is performed on the data (1) or instruction (0)
6680 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6681 must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006682
6683<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006684<p>This intrinsic does not modify the behavior of the program. In particular,
6685 prefetches cannot trap and do not produce a value. On targets that support
6686 this intrinsic, the prefetch can provide hints to the processor cache for
6687 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006688
6689</div>
6690
Andrew Lenharthb4427912005-03-28 20:05:49 +00006691<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006692<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006693 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006694</h4>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006695
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006696<div>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006697
6698<h5>Syntax:</h5>
6699<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006700 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00006701</pre>
6702
6703<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006704<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6705 Counter (PC) in a region of code to simulators and other tools. The method
6706 is target specific, but it is expected that the marker will use exported
6707 symbols to transmit the PC of the marker. The marker makes no guarantees
6708 that it will remain with any specific instruction after optimizations. It is
6709 possible that the presence of a marker will inhibit optimizations. The
6710 intended use is to be inserted after optimizations to allow correlations of
6711 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006712
6713<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006714<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006715
6716<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006717<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00006718 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006719
6720</div>
6721
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006722<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006723<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006724 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006725</h4>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006726
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006727<div>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006728
6729<h5>Syntax:</h5>
6730<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00006731 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006732</pre>
6733
6734<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006735<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6736 counter register (or similar low latency, high accuracy clocks) on those
6737 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6738 should map to RPCC. As the backing counters overflow quickly (on the order
6739 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006740
6741<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006742<p>When directly supported, reading the cycle counter should not modify any
6743 memory. Implementations are allowed to either return a application specific
6744 value or a system wide value. On backends without support, this is lowered
6745 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006746
6747</div>
6748
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006749</div>
6750
Chris Lattner3649c3a2004-02-14 04:08:35 +00006751<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006752<h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006753 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006754</h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006755
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006756<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006757
6758<p>LLVM provides intrinsics for a few important standard C library functions.
6759 These intrinsics allow source-language front-ends to pass information about
6760 the alignment of the pointer arguments to the code generator, providing
6761 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006762
Chris Lattnerfee11462004-02-12 17:01:32 +00006763<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006764<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006765 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006766</h4>
Chris Lattnerfee11462004-02-12 17:01:32 +00006767
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006768<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006769
6770<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006771<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00006772 integer bit width and for different address spaces. Not all targets support
6773 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006774
Chris Lattnerfee11462004-02-12 17:01:32 +00006775<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006776 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006777 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006778 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006779 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00006780</pre>
6781
6782<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006783<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6784 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006785
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006786<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006787 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6788 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006789
6790<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006791
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006792<p>The first argument is a pointer to the destination, the second is a pointer
6793 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006794 number of bytes to copy, the fourth argument is the alignment of the
6795 source and destination locations, and the fifth is a boolean indicating a
6796 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006797
Dan Gohmana269a0a2010-03-01 17:41:39 +00006798<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006799 then the caller guarantees that both the source and destination pointers are
6800 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006801
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006802<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6803 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6804 The detailed access behavior is not very cleanly specified and it is unwise
6805 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006806
Chris Lattnerfee11462004-02-12 17:01:32 +00006807<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006808
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006809<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6810 source location to the destination location, which are not allowed to
6811 overlap. It copies "len" bytes of memory over. If the argument is known to
6812 be aligned to some boundary, this can be specified as the fourth argument,
6813 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006814
Chris Lattnerfee11462004-02-12 17:01:32 +00006815</div>
6816
Chris Lattnerf30152e2004-02-12 18:10:10 +00006817<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006818<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006819 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006820</h4>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006821
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006822<div>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006823
6824<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006825<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00006826 width and for different address space. Not all targets support all bit
6827 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006828
Chris Lattnerf30152e2004-02-12 18:10:10 +00006829<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006830 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006831 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006832 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006833 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00006834</pre>
6835
6836<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006837<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6838 source location to the destination location. It is similar to the
6839 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6840 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006841
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006842<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006843 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6844 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006845
6846<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006847
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006848<p>The first argument is a pointer to the destination, the second is a pointer
6849 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006850 number of bytes to copy, the fourth argument is the alignment of the
6851 source and destination locations, and the fifth is a boolean indicating a
6852 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006853
Dan Gohmana269a0a2010-03-01 17:41:39 +00006854<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006855 then the caller guarantees that the source and destination pointers are
6856 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006857
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006858<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6859 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6860 The detailed access behavior is not very cleanly specified and it is unwise
6861 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006862
Chris Lattnerf30152e2004-02-12 18:10:10 +00006863<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006864
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006865<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6866 source location to the destination location, which may overlap. It copies
6867 "len" bytes of memory over. If the argument is known to be aligned to some
6868 boundary, this can be specified as the fourth argument, otherwise it should
6869 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006870
Chris Lattnerf30152e2004-02-12 18:10:10 +00006871</div>
6872
Chris Lattner3649c3a2004-02-14 04:08:35 +00006873<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006874<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006875 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006876</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006877
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006878<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006879
6880<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006881<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00006882 width and for different address spaces. However, not all targets support all
6883 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006884
Chris Lattner3649c3a2004-02-14 04:08:35 +00006885<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006886 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006887 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006888 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006889 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006890</pre>
6891
6892<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006893<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6894 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006895
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006896<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00006897 intrinsic does not return a value and takes extra alignment/volatile
6898 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006899
6900<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006901<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00006902 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006903 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00006904 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006905
Dan Gohmana269a0a2010-03-01 17:41:39 +00006906<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006907 then the caller guarantees that the destination pointer is aligned to that
6908 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006909
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006910<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6911 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6912 The detailed access behavior is not very cleanly specified and it is unwise
6913 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006914
Chris Lattner3649c3a2004-02-14 04:08:35 +00006915<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006916<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6917 at the destination location. If the argument is known to be aligned to some
6918 boundary, this can be specified as the fourth argument, otherwise it should
6919 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006920
Chris Lattner3649c3a2004-02-14 04:08:35 +00006921</div>
6922
Chris Lattner3b4f4372004-06-11 02:28:03 +00006923<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006924<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006925 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006926</h4>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006927
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006928<div>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006929
6930<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006931<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6932 floating point or vector of floating point type. Not all targets support all
6933 types however.</p>
6934
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006935<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006936 declare float @llvm.sqrt.f32(float %Val)
6937 declare double @llvm.sqrt.f64(double %Val)
6938 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6939 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6940 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006941</pre>
6942
6943<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006944<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6945 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6946 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6947 behavior for negative numbers other than -0.0 (which allows for better
6948 optimization, because there is no need to worry about errno being
6949 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006950
6951<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006952<p>The argument and return value are floating point numbers of the same
6953 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006954
6955<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006956<p>This function returns the sqrt of the specified operand if it is a
6957 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006958
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006959</div>
6960
Chris Lattner33b73f92006-09-08 06:34:02 +00006961<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006962<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006963 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006964</h4>
Chris Lattner33b73f92006-09-08 06:34:02 +00006965
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006966<div>
Chris Lattner33b73f92006-09-08 06:34:02 +00006967
6968<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006969<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6970 floating point or vector of floating point type. Not all targets support all
6971 types however.</p>
6972
Chris Lattner33b73f92006-09-08 06:34:02 +00006973<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006974 declare float @llvm.powi.f32(float %Val, i32 %power)
6975 declare double @llvm.powi.f64(double %Val, i32 %power)
6976 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6977 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6978 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00006979</pre>
6980
6981<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006982<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6983 specified (positive or negative) power. The order of evaluation of
6984 multiplications is not defined. When a vector of floating point type is
6985 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006986
6987<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006988<p>The second argument is an integer power, and the first is a value to raise to
6989 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006990
6991<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006992<p>This function returns the first value raised to the second power with an
6993 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006994
Chris Lattner33b73f92006-09-08 06:34:02 +00006995</div>
6996
Dan Gohmanb6324c12007-10-15 20:30:11 +00006997<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006998<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006999 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007000</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007001
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007002<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007003
7004<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007005<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
7006 floating point or vector of floating point type. Not all targets support all
7007 types however.</p>
7008
Dan Gohmanb6324c12007-10-15 20:30:11 +00007009<pre>
7010 declare float @llvm.sin.f32(float %Val)
7011 declare double @llvm.sin.f64(double %Val)
7012 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7013 declare fp128 @llvm.sin.f128(fp128 %Val)
7014 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7015</pre>
7016
7017<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007018<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007019
7020<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007021<p>The argument and return value are floating point numbers of the same
7022 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007023
7024<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007025<p>This function returns the sine of the specified operand, returning the same
7026 values as the libm <tt>sin</tt> functions would, and handles error conditions
7027 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007028
Dan Gohmanb6324c12007-10-15 20:30:11 +00007029</div>
7030
7031<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007032<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007033 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007034</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007035
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007036<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007037
7038<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007039<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
7040 floating point or vector of floating point type. Not all targets support all
7041 types however.</p>
7042
Dan Gohmanb6324c12007-10-15 20:30:11 +00007043<pre>
7044 declare float @llvm.cos.f32(float %Val)
7045 declare double @llvm.cos.f64(double %Val)
7046 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7047 declare fp128 @llvm.cos.f128(fp128 %Val)
7048 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7049</pre>
7050
7051<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007052<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007053
7054<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007055<p>The argument and return value are floating point numbers of the same
7056 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007057
7058<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007059<p>This function returns the cosine of the specified operand, returning the same
7060 values as the libm <tt>cos</tt> functions would, and handles error conditions
7061 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007062
Dan Gohmanb6324c12007-10-15 20:30:11 +00007063</div>
7064
7065<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007066<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007067 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007068</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007069
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007070<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007071
7072<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007073<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7074 floating point or vector of floating point type. Not all targets support all
7075 types however.</p>
7076
Dan Gohmanb6324c12007-10-15 20:30:11 +00007077<pre>
7078 declare float @llvm.pow.f32(float %Val, float %Power)
7079 declare double @llvm.pow.f64(double %Val, double %Power)
7080 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7081 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7082 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7083</pre>
7084
7085<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007086<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7087 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007088
7089<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007090<p>The second argument is a floating point power, and the first is a value to
7091 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007092
7093<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007094<p>This function returns the first value raised to the second power, returning
7095 the same values as the libm <tt>pow</tt> functions would, and handles error
7096 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007097
Dan Gohmanb6324c12007-10-15 20:30:11 +00007098</div>
7099
Dan Gohman911fa902011-05-23 21:13:03 +00007100<!-- _______________________________________________________________________ -->
7101<h4>
7102 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7103</h4>
7104
7105<div>
7106
7107<h5>Syntax:</h5>
7108<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7109 floating point or vector of floating point type. Not all targets support all
7110 types however.</p>
7111
7112<pre>
7113 declare float @llvm.exp.f32(float %Val)
7114 declare double @llvm.exp.f64(double %Val)
7115 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7116 declare fp128 @llvm.exp.f128(fp128 %Val)
7117 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7118</pre>
7119
7120<h5>Overview:</h5>
7121<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7122
7123<h5>Arguments:</h5>
7124<p>The argument and return value are floating point numbers of the same
7125 type.</p>
7126
7127<h5>Semantics:</h5>
7128<p>This function returns the same values as the libm <tt>exp</tt> functions
7129 would, and handles error conditions in the same way.</p>
7130
7131</div>
7132
7133<!-- _______________________________________________________________________ -->
7134<h4>
7135 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7136</h4>
7137
7138<div>
7139
7140<h5>Syntax:</h5>
7141<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7142 floating point or vector of floating point type. Not all targets support all
7143 types however.</p>
7144
7145<pre>
7146 declare float @llvm.log.f32(float %Val)
7147 declare double @llvm.log.f64(double %Val)
7148 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7149 declare fp128 @llvm.log.f128(fp128 %Val)
7150 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7151</pre>
7152
7153<h5>Overview:</h5>
7154<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7155
7156<h5>Arguments:</h5>
7157<p>The argument and return value are floating point numbers of the same
7158 type.</p>
7159
7160<h5>Semantics:</h5>
7161<p>This function returns the same values as the libm <tt>log</tt> functions
7162 would, and handles error conditions in the same way.</p>
7163
Nick Lewyckycd196f62011-10-31 01:32:21 +00007164</div>
7165
7166<!-- _______________________________________________________________________ -->
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007167<h4>
7168 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7169</h4>
7170
7171<div>
7172
7173<h5>Syntax:</h5>
7174<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7175 floating point or vector of floating point type. Not all targets support all
7176 types however.</p>
7177
7178<pre>
7179 declare float @llvm.fma.f32(float %a, float %b, float %c)
7180 declare double @llvm.fma.f64(double %a, double %b, double %c)
7181 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7182 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7183 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7184</pre>
7185
7186<h5>Overview:</h5>
Cameron Zwaricha32fd212011-07-08 22:13:55 +00007187<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007188 operation.</p>
7189
7190<h5>Arguments:</h5>
7191<p>The argument and return value are floating point numbers of the same
7192 type.</p>
7193
7194<h5>Semantics:</h5>
7195<p>This function returns the same values as the libm <tt>fma</tt> functions
7196 would.</p>
7197
Dan Gohman911fa902011-05-23 21:13:03 +00007198</div>
7199
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00007200</div>
7201
Andrew Lenharth1d463522005-05-03 18:01:48 +00007202<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007203<h3>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007204 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007205</h3>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007206
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007207<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007208
7209<p>LLVM provides intrinsics for a few important bit manipulation operations.
7210 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007211
Andrew Lenharth1d463522005-05-03 18:01:48 +00007212<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007213<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007214 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007215</h4>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007216
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007217<div>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007218
7219<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007220<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007221 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7222
Nate Begeman0f223bb2006-01-13 23:26:38 +00007223<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007224 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7225 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7226 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00007227</pre>
7228
7229<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007230<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7231 values with an even number of bytes (positive multiple of 16 bits). These
7232 are useful for performing operations on data that is not in the target's
7233 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007234
7235<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007236<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7237 and low byte of the input i16 swapped. Similarly,
7238 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7239 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7240 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7241 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7242 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7243 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007244
7245</div>
7246
7247<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007248<h4>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00007249 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007250</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007251
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007252<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007253
7254<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007255<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007256 width, or on any vector with integer elements. Not all targets support all
7257 bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007258
Andrew Lenharth1d463522005-05-03 18:01:48 +00007259<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007260 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007261 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007262 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007263 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7264 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007265 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007266</pre>
7267
7268<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007269<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7270 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007271
7272<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007273<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007274 integer type, or a vector with integer elements.
7275 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007276
7277<h5>Semantics:</h5>
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007278<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7279 element of a vector.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007280
Andrew Lenharth1d463522005-05-03 18:01:48 +00007281</div>
7282
7283<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007284<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007285 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007286</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007287
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007288<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007289
7290<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007291<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007292 integer bit width, or any vector whose elements are integers. Not all
7293 targets support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007294
Andrew Lenharth1d463522005-05-03 18:01:48 +00007295<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007296 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
7297 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007298 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007299 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
7300 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007301 declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007302</pre>
7303
7304<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007305<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7306 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007307
7308<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007309<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007310 integer type, or any vector type with integer element type.
7311 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007312
7313<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007314<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007315 zeros in a variable, or within each element of the vector if the operation
7316 is of vector type. If the src == 0 then the result is the size in bits of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007317 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007318
Andrew Lenharth1d463522005-05-03 18:01:48 +00007319</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00007320
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007321<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007322<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007323 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007324</h4>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007325
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007326<div>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007327
7328<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007329<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007330 integer bit width, or any vector of integer elements. Not all targets
7331 support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007332
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007333<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007334 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
7335 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007336 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007337 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
7338 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007339 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007340</pre>
7341
7342<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007343<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7344 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007345
7346<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007347<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007348 integer type, or a vectory with integer element type.. The return type
7349 must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007350
7351<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007352<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007353 zeros in a variable, or within each element of a vector.
7354 If the src == 0 then the result is the size in bits of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007355 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007356
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007357</div>
7358
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007359</div>
7360
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007361<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007362<h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007363 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007364</h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007365
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007366<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007367
7368<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007369
Bill Wendlingf4d70622009-02-08 01:40:31 +00007370<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007371<h4>
7372 <a name="int_sadd_overflow">
7373 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7374 </a>
7375</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007376
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007377<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007378
7379<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007380<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007381 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007382
7383<pre>
7384 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7385 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7386 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7387</pre>
7388
7389<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007390<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007391 a signed addition of the two arguments, and indicate whether an overflow
7392 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007393
7394<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007395<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007396 be of integer types of any bit width, but they must have the same bit
7397 width. The second element of the result structure must be of
7398 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7399 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007400
7401<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007402<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007403 a signed addition of the two variables. They return a structure &mdash; the
7404 first element of which is the signed summation, and the second element of
7405 which is a bit specifying if the signed summation resulted in an
7406 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007407
7408<h5>Examples:</h5>
7409<pre>
7410 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7411 %sum = extractvalue {i32, i1} %res, 0
7412 %obit = extractvalue {i32, i1} %res, 1
7413 br i1 %obit, label %overflow, label %normal
7414</pre>
7415
7416</div>
7417
7418<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007419<h4>
7420 <a name="int_uadd_overflow">
7421 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7422 </a>
7423</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007424
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007425<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007426
7427<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007428<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007429 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007430
7431<pre>
7432 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7433 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7434 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7435</pre>
7436
7437<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007438<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007439 an unsigned addition of the two arguments, and indicate whether a carry
7440 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007441
7442<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007443<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007444 be of integer types of any bit width, but they must have the same bit
7445 width. The second element of the result structure must be of
7446 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7447 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007448
7449<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007450<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007451 an unsigned addition of the two arguments. They return a structure &mdash;
7452 the first element of which is the sum, and the second element of which is a
7453 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007454
7455<h5>Examples:</h5>
7456<pre>
7457 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7458 %sum = extractvalue {i32, i1} %res, 0
7459 %obit = extractvalue {i32, i1} %res, 1
7460 br i1 %obit, label %carry, label %normal
7461</pre>
7462
7463</div>
7464
7465<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007466<h4>
7467 <a name="int_ssub_overflow">
7468 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7469 </a>
7470</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007471
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007472<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007473
7474<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007475<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007476 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007477
7478<pre>
7479 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7480 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7481 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7482</pre>
7483
7484<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007485<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007486 a signed subtraction of the two arguments, and indicate whether an overflow
7487 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007488
7489<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007490<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007491 be of integer types of any bit width, but they must have the same bit
7492 width. The second element of the result structure must be of
7493 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7494 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007495
7496<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007497<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007498 a signed subtraction of the two arguments. They return a structure &mdash;
7499 the first element of which is the subtraction, and the second element of
7500 which is a bit specifying if the signed subtraction resulted in an
7501 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007502
7503<h5>Examples:</h5>
7504<pre>
7505 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7506 %sum = extractvalue {i32, i1} %res, 0
7507 %obit = extractvalue {i32, i1} %res, 1
7508 br i1 %obit, label %overflow, label %normal
7509</pre>
7510
7511</div>
7512
7513<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007514<h4>
7515 <a name="int_usub_overflow">
7516 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7517 </a>
7518</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007519
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007520<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007521
7522<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007523<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007524 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007525
7526<pre>
7527 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7528 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7529 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7530</pre>
7531
7532<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007533<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007534 an unsigned subtraction of the two arguments, and indicate whether an
7535 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007536
7537<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007538<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007539 be of integer types of any bit width, but they must have the same bit
7540 width. The second element of the result structure must be of
7541 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7542 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007543
7544<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007545<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007546 an unsigned subtraction of the two arguments. They return a structure &mdash;
7547 the first element of which is the subtraction, and the second element of
7548 which is a bit specifying if the unsigned subtraction resulted in an
7549 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007550
7551<h5>Examples:</h5>
7552<pre>
7553 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7554 %sum = extractvalue {i32, i1} %res, 0
7555 %obit = extractvalue {i32, i1} %res, 1
7556 br i1 %obit, label %overflow, label %normal
7557</pre>
7558
7559</div>
7560
7561<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007562<h4>
7563 <a name="int_smul_overflow">
7564 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7565 </a>
7566</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007567
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007568<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007569
7570<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007571<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007572 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007573
7574<pre>
7575 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7576 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7577 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7578</pre>
7579
7580<h5>Overview:</h5>
7581
7582<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007583 a signed multiplication of the two arguments, and indicate whether an
7584 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007585
7586<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007587<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007588 be of integer types of any bit width, but they must have the same bit
7589 width. The second element of the result structure must be of
7590 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7591 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007592
7593<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007594<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007595 a signed multiplication of the two arguments. They return a structure &mdash;
7596 the first element of which is the multiplication, and the second element of
7597 which is a bit specifying if the signed multiplication resulted in an
7598 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007599
7600<h5>Examples:</h5>
7601<pre>
7602 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7603 %sum = extractvalue {i32, i1} %res, 0
7604 %obit = extractvalue {i32, i1} %res, 1
7605 br i1 %obit, label %overflow, label %normal
7606</pre>
7607
Reid Spencer5bf54c82007-04-11 23:23:49 +00007608</div>
7609
Bill Wendlingb9a73272009-02-08 23:00:09 +00007610<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007611<h4>
7612 <a name="int_umul_overflow">
7613 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
7614 </a>
7615</h4>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007616
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007617<div>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007618
7619<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007620<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007621 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007622
7623<pre>
7624 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7625 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7626 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7627</pre>
7628
7629<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007630<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007631 a unsigned multiplication of the two arguments, and indicate whether an
7632 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007633
7634<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007635<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007636 be of integer types of any bit width, but they must have the same bit
7637 width. The second element of the result structure must be of
7638 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7639 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007640
7641<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007642<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007643 an unsigned multiplication of the two arguments. They return a structure
7644 &mdash; the first element of which is the multiplication, and the second
7645 element of which is a bit specifying if the unsigned multiplication resulted
7646 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007647
7648<h5>Examples:</h5>
7649<pre>
7650 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7651 %sum = extractvalue {i32, i1} %res, 0
7652 %obit = extractvalue {i32, i1} %res, 1
7653 br i1 %obit, label %overflow, label %normal
7654</pre>
7655
7656</div>
7657
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007658</div>
7659
Chris Lattner941515c2004-01-06 05:31:32 +00007660<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007661<h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007662 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007663</h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007664
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007665<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007666
Chris Lattner022a9fb2010-03-15 04:12:21 +00007667<p>Half precision floating point is a storage-only format. This means that it is
7668 a dense encoding (in memory) but does not support computation in the
7669 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007670
Chris Lattner022a9fb2010-03-15 04:12:21 +00007671<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007672 value as an i16, then convert it to float with <a
7673 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7674 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00007675 double etc). To store the value back to memory, it is first converted to
7676 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007677 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7678 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007679
7680<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007681<h4>
7682 <a name="int_convert_to_fp16">
7683 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7684 </a>
7685</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007686
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007687<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007688
7689<h5>Syntax:</h5>
7690<pre>
7691 declare i16 @llvm.convert.to.fp16(f32 %a)
7692</pre>
7693
7694<h5>Overview:</h5>
7695<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7696 a conversion from single precision floating point format to half precision
7697 floating point format.</p>
7698
7699<h5>Arguments:</h5>
7700<p>The intrinsic function contains single argument - the value to be
7701 converted.</p>
7702
7703<h5>Semantics:</h5>
7704<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7705 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00007706 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007707 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007708
7709<h5>Examples:</h5>
7710<pre>
7711 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7712 store i16 %res, i16* @x, align 2
7713</pre>
7714
7715</div>
7716
7717<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007718<h4>
7719 <a name="int_convert_from_fp16">
7720 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7721 </a>
7722</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007723
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007724<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007725
7726<h5>Syntax:</h5>
7727<pre>
7728 declare f32 @llvm.convert.from.fp16(i16 %a)
7729</pre>
7730
7731<h5>Overview:</h5>
7732<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7733 a conversion from half precision floating point format to single precision
7734 floating point format.</p>
7735
7736<h5>Arguments:</h5>
7737<p>The intrinsic function contains single argument - the value to be
7738 converted.</p>
7739
7740<h5>Semantics:</h5>
7741<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00007742 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007743 precision floating point format. The input half-float value is represented by
7744 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007745
7746<h5>Examples:</h5>
7747<pre>
7748 %a = load i16* @x, align 2
7749 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7750</pre>
7751
7752</div>
7753
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007754</div>
7755
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007756<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007757<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007758 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007759</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007760
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007761<div>
Chris Lattner941515c2004-01-06 05:31:32 +00007762
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007763<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7764 prefix), are described in
7765 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7766 Level Debugging</a> document.</p>
7767
7768</div>
Chris Lattner941515c2004-01-06 05:31:32 +00007769
Jim Laskey2211f492007-03-14 19:31:19 +00007770<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007771<h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007772 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007773</h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007774
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007775<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007776
7777<p>The LLVM exception handling intrinsics (which all start with
7778 <tt>llvm.eh.</tt> prefix), are described in
7779 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7780 Handling</a> document.</p>
7781
Jim Laskey2211f492007-03-14 19:31:19 +00007782</div>
7783
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007784<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007785<h3>
Duncan Sandsa0984362011-09-06 13:37:06 +00007786 <a name="int_trampoline">Trampoline Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007787</h3>
Duncan Sands644f9172007-07-27 12:58:54 +00007788
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007789<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007790
Duncan Sandsa0984362011-09-06 13:37:06 +00007791<p>These intrinsics make it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00007792 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7793 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007794 function pointer lacking the nest parameter - the caller does not need to
7795 provide a value for it. Instead, the value to use is stored in advance in a
7796 "trampoline", a block of memory usually allocated on the stack, which also
7797 contains code to splice the nest value into the argument list. This is used
7798 to implement the GCC nested function address extension.</p>
7799
7800<p>For example, if the function is
7801 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7802 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7803 follows:</p>
7804
Benjamin Kramer79698be2010-07-13 12:26:09 +00007805<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00007806 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7807 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Duncan Sandsa0984362011-09-06 13:37:06 +00007808 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7809 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
Duncan Sands86e01192007-09-11 14:10:23 +00007810 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00007811</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007812
Dan Gohmand6a6f612010-05-28 17:07:41 +00007813<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7814 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007815
Duncan Sands644f9172007-07-27 12:58:54 +00007816<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007817<h4>
7818 <a name="int_it">
7819 '<tt>llvm.init.trampoline</tt>' Intrinsic
7820 </a>
7821</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007822
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007823<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007824
Duncan Sands644f9172007-07-27 12:58:54 +00007825<h5>Syntax:</h5>
7826<pre>
Duncan Sandsa0984362011-09-06 13:37:06 +00007827 declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00007828</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007829
Duncan Sands644f9172007-07-27 12:58:54 +00007830<h5>Overview:</h5>
Duncan Sandsa0984362011-09-06 13:37:06 +00007831<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
7832 turning it into a trampoline.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007833
Duncan Sands644f9172007-07-27 12:58:54 +00007834<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007835<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7836 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7837 sufficiently aligned block of memory; this memory is written to by the
7838 intrinsic. Note that the size and the alignment are target-specific - LLVM
7839 currently provides no portable way of determining them, so a front-end that
7840 generates this intrinsic needs to have some target-specific knowledge.
7841 The <tt>func</tt> argument must hold a function bitcast to
7842 an <tt>i8*</tt>.</p>
7843
Duncan Sands644f9172007-07-27 12:58:54 +00007844<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007845<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsa0984362011-09-06 13:37:06 +00007846 dependent code, turning it into a function. Then <tt>tramp</tt> needs to be
7847 passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
7848 which can be <a href="#int_trampoline">bitcast (to a new function) and
7849 called</a>. The new function's signature is the same as that of
7850 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
7851 removed. At most one such <tt>nest</tt> argument is allowed, and it must be of
7852 pointer type. Calling the new function is equivalent to calling <tt>func</tt>
7853 with the same argument list, but with <tt>nval</tt> used for the missing
7854 <tt>nest</tt> argument. If, after calling <tt>llvm.init.trampoline</tt>, the
7855 memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
7856 to the returned function pointer is undefined.</p>
7857</div>
7858
7859<!-- _______________________________________________________________________ -->
7860<h4>
7861 <a name="int_at">
7862 '<tt>llvm.adjust.trampoline</tt>' Intrinsic
7863 </a>
7864</h4>
7865
7866<div>
7867
7868<h5>Syntax:</h5>
7869<pre>
7870 declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
7871</pre>
7872
7873<h5>Overview:</h5>
7874<p>This performs any required machine-specific adjustment to the address of a
7875 trampoline (passed as <tt>tramp</tt>).</p>
7876
7877<h5>Arguments:</h5>
7878<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
7879 filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
7880 </a>.</p>
7881
7882<h5>Semantics:</h5>
7883<p>On some architectures the address of the code to be executed needs to be
7884 different to the address where the trampoline is actually stored. This
7885 intrinsic returns the executable address corresponding to <tt>tramp</tt>
7886 after performing the required machine specific adjustments.
7887 The pointer returned can then be <a href="#int_trampoline"> bitcast and
7888 executed</a>.
7889</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007890
Duncan Sands644f9172007-07-27 12:58:54 +00007891</div>
7892
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007893</div>
7894
Duncan Sands644f9172007-07-27 12:58:54 +00007895<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007896<h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007897 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007898</h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007899
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007900<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007901
7902<p>This class of intrinsics exists to information about the lifetime of memory
7903 objects and ranges where variables are immutable.</p>
7904
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007905<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007906<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007907 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007908</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007909
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007910<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007911
7912<h5>Syntax:</h5>
7913<pre>
7914 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7915</pre>
7916
7917<h5>Overview:</h5>
7918<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7919 object's lifetime.</p>
7920
7921<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007922<p>The first argument is a constant integer representing the size of the
7923 object, or -1 if it is variable sized. The second argument is a pointer to
7924 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007925
7926<h5>Semantics:</h5>
7927<p>This intrinsic indicates that before this point in the code, the value of the
7928 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007929 never be used and has an undefined value. A load from the pointer that
7930 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007931 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7932
7933</div>
7934
7935<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007936<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007937 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007938</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007939
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007940<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007941
7942<h5>Syntax:</h5>
7943<pre>
7944 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7945</pre>
7946
7947<h5>Overview:</h5>
7948<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7949 object's lifetime.</p>
7950
7951<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007952<p>The first argument is a constant integer representing the size of the
7953 object, or -1 if it is variable sized. The second argument is a pointer to
7954 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007955
7956<h5>Semantics:</h5>
7957<p>This intrinsic indicates that after this point in the code, the value of the
7958 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7959 never be used and has an undefined value. Any stores into the memory object
7960 following this intrinsic may be removed as dead.
7961
7962</div>
7963
7964<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007965<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007966 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007967</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007968
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007969<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007970
7971<h5>Syntax:</h5>
7972<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00007973 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007974</pre>
7975
7976<h5>Overview:</h5>
7977<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7978 a memory object will not change.</p>
7979
7980<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007981<p>The first argument is a constant integer representing the size of the
7982 object, or -1 if it is variable sized. The second argument is a pointer to
7983 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007984
7985<h5>Semantics:</h5>
7986<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7987 the return value, the referenced memory location is constant and
7988 unchanging.</p>
7989
7990</div>
7991
7992<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007993<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007994 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007995</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007996
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007997<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007998
7999<h5>Syntax:</h5>
8000<pre>
8001 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8002</pre>
8003
8004<h5>Overview:</h5>
8005<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
8006 a memory object are mutable.</p>
8007
8008<h5>Arguments:</h5>
8009<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00008010 The second argument is a constant integer representing the size of the
8011 object, or -1 if it is variable sized and the third argument is a pointer
8012 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008013
8014<h5>Semantics:</h5>
8015<p>This intrinsic indicates that the memory is mutable again.</p>
8016
8017</div>
8018
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008019</div>
8020
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00008021<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008022<h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008023 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008024</h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008025
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008026<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008027
8028<p>This class of intrinsics is designed to be generic and has no specific
8029 purpose.</p>
8030
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008031<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008032<h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008033 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008034</h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008035
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008036<div>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008037
8038<h5>Syntax:</h5>
8039<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008040 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008041</pre>
8042
8043<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008044<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008045
8046<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008047<p>The first argument is a pointer to a value, the second is a pointer to a
8048 global string, the third is a pointer to a global string which is the source
8049 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008050
8051<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008052<p>This intrinsic allows annotation of local variables with arbitrary strings.
8053 This can be useful for special purpose optimizations that want to look for
John Criswellf0d536a2011-08-19 16:57:55 +00008054 these annotations. These have no other defined use; they are ignored by code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008055 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008056
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008057</div>
8058
Tanya Lattner293c0372007-09-21 22:59:12 +00008059<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008060<h4>
Tanya Lattner0186a652007-09-21 23:57:59 +00008061 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008062</h4>
Tanya Lattner293c0372007-09-21 22:59:12 +00008063
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008064<div>
Tanya Lattner293c0372007-09-21 22:59:12 +00008065
8066<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008067<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8068 any integer bit width.</p>
8069
Tanya Lattner293c0372007-09-21 22:59:12 +00008070<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008071 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8072 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8073 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8074 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8075 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00008076</pre>
8077
8078<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008079<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008080
8081<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008082<p>The first argument is an integer value (result of some expression), the
8083 second is a pointer to a global string, the third is a pointer to a global
8084 string which is the source file name, and the last argument is the line
8085 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008086
8087<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008088<p>This intrinsic allows annotations to be put on arbitrary expressions with
8089 arbitrary strings. This can be useful for special purpose optimizations that
John Criswellf0d536a2011-08-19 16:57:55 +00008090 want to look for these annotations. These have no other defined use; they
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008091 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008092
Tanya Lattner293c0372007-09-21 22:59:12 +00008093</div>
Jim Laskey2211f492007-03-14 19:31:19 +00008094
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008095<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008096<h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008097 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008098</h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008099
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008100<div>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008101
8102<h5>Syntax:</h5>
8103<pre>
8104 declare void @llvm.trap()
8105</pre>
8106
8107<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008108<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008109
8110<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008111<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008112
8113<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008114<p>This intrinsics is lowered to the target dependent trap instruction. If the
8115 target does not have a trap instruction, this intrinsic will be lowered to
8116 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008117
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008118</div>
8119
Bill Wendling14313312008-11-19 05:56:17 +00008120<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008121<h4>
Misha Brukman50de2b22008-11-22 23:55:29 +00008122 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008123</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008124
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008125<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008126
Bill Wendling14313312008-11-19 05:56:17 +00008127<h5>Syntax:</h5>
8128<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008129 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00008130</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008131
Bill Wendling14313312008-11-19 05:56:17 +00008132<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008133<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8134 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8135 ensure that it is placed on the stack before local variables.</p>
8136
Bill Wendling14313312008-11-19 05:56:17 +00008137<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008138<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8139 arguments. The first argument is the value loaded from the stack
8140 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8141 that has enough space to hold the value of the guard.</p>
8142
Bill Wendling14313312008-11-19 05:56:17 +00008143<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008144<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8145 the <tt>AllocaInst</tt> stack slot to be before local variables on the
8146 stack. This is to ensure that if a local variable on the stack is
8147 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00008148 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008149 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8150 function.</p>
8151
Bill Wendling14313312008-11-19 05:56:17 +00008152</div>
8153
Eric Christopher73484322009-11-30 08:03:53 +00008154<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008155<h4>
Eric Christopher73484322009-11-30 08:03:53 +00008156 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008157</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008158
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008159<div>
Eric Christopher73484322009-11-30 08:03:53 +00008160
8161<h5>Syntax:</h5>
8162<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008163 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
8164 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00008165</pre>
8166
8167<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008168<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8169 the optimizers to determine at compile time whether a) an operation (like
8170 memcpy) will overflow a buffer that corresponds to an object, or b) that a
8171 runtime check for overflow isn't necessary. An object in this context means
8172 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008173
8174<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008175<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00008176 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00008177 is a boolean 0 or 1. This argument determines whether you want the
8178 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00008179 1, variables are not allowed.</p>
8180
Eric Christopher73484322009-11-30 08:03:53 +00008181<h5>Semantics:</h5>
8182<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00008183 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
8184 depending on the <tt>type</tt> argument, if the size cannot be determined at
8185 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008186
8187</div>
8188
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008189</div>
8190
8191</div>
8192
Chris Lattner2f7c9632001-06-06 20:29:01 +00008193<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00008194<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00008195<address>
8196 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008197 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008198 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008199 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008200
8201 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumica46f5a2011-04-09 02:13:37 +00008202 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00008203 Last modified: $Date$
8204</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00008205
Misha Brukman76307852003-11-08 01:05:38 +00008206</body>
8207</html>