blob: 967d67a84bc0294307e9afbc02880dfb6b9d9f37 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000045#include "llvm/CodeGen/CostTable.h"
46#include "llvm/CodeGen/TargetLowering.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000047#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000048#include "llvm/Support/Debug.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Tobias Grosserd7eb6192017-08-24 09:46:25 +000069llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
70 TargetTransformInfo::CacheLevel Level) const {
71 switch (Level) {
72 case TargetTransformInfo::CacheLevel::L1D:
Craig Topperd5b5bbe2017-11-22 18:23:40 +000073 // - Penryn
Tobias Grosserd7eb6192017-08-24 09:46:25 +000074 // - Nehalem
75 // - Westmere
76 // - Sandy Bridge
77 // - Ivy Bridge
78 // - Haswell
79 // - Broadwell
80 // - Skylake
81 // - Kabylake
82 return 32 * 1024; // 32 KByte
83 case TargetTransformInfo::CacheLevel::L2D:
Craig Topperd5b5bbe2017-11-22 18:23:40 +000084 // - Penryn
Tobias Grosserd7eb6192017-08-24 09:46:25 +000085 // - Nehalem
86 // - Westmere
87 // - Sandy Bridge
88 // - Ivy Bridge
89 // - Haswell
90 // - Broadwell
91 // - Skylake
92 // - Kabylake
93 return 256 * 1024; // 256 KByte
94 }
95
96 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
97}
98
99llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
100 TargetTransformInfo::CacheLevel Level) const {
Craig Topperd5b5bbe2017-11-22 18:23:40 +0000101 // - Penryn
Tobias Grosserd7eb6192017-08-24 09:46:25 +0000102 // - Nehalem
103 // - Westmere
104 // - Sandy Bridge
105 // - Ivy Bridge
106 // - Haswell
107 // - Broadwell
108 // - Skylake
109 // - Kabylake
110 switch (Level) {
111 case TargetTransformInfo::CacheLevel::L1D:
112 LLVM_FALLTHROUGH;
113 case TargetTransformInfo::CacheLevel::L2D:
114 return 8;
115 }
116
117 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
118}
119
Chandler Carruth705b1852015-01-31 03:43:40 +0000120unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000121 if (Vector && !ST->hasSSE1())
122 return 0;
123
Adam Nemet2820a5b2014-07-09 18:22:33 +0000124 if (ST->is64Bit()) {
125 if (Vector && ST->hasAVX512())
126 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +0000127 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +0000128 }
Chandler Carruth664e3542013-01-07 01:37:14 +0000129 return 8;
130}
131
Keno Fischer1ec5dd82017-04-05 20:51:38 +0000132unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000133 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +0000134 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +0000135 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +0000136 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +0000137 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +0000138 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +0000139 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +0000140 return 0;
141 }
142
143 if (ST->is64Bit())
144 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +0000145
Hans Wennborg083ca9b2015-10-06 23:24:35 +0000146 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +0000147}
148
Keno Fischer1ec5dd82017-04-05 20:51:38 +0000149unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
150 return getRegisterBitWidth(true);
151}
152
Wei Mi062c7442015-05-06 17:12:25 +0000153unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
154 // If the loop will not be vectorized, don't interleave the loop.
155 // Let regular unroll to unroll the loop, which saves the overflow
156 // check and memory check cost.
157 if (VF == 1)
158 return 1;
159
Nadav Rotemb696c362013-01-09 01:15:42 +0000160 if (ST->isAtom())
161 return 1;
162
163 // Sandybridge and Haswell have multiple execution ports and pipelined
164 // vector units.
165 if (ST->hasAVX())
166 return 4;
167
168 return 2;
169}
170
Chandler Carruth93205eb2015-08-05 18:08:10 +0000171int X86TTIImpl::getArithmeticInstrCost(
Simon Pilgrim3e5b5252017-01-20 15:15:59 +0000172 unsigned Opcode, Type *Ty,
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000173 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
174 TTI::OperandValueProperties Opd1PropInfo,
175 TTI::OperandValueProperties Opd2PropInfo,
176 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000177 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000178 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000179
180 int ISD = TLI->InstructionOpcodeToISD(Opcode);
181 assert(ISD && "Invalid opcode");
182
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000183 static const CostTblEntry SLMCostTable[] = {
184 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
185 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
186 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
187 { ISD::FMUL, MVT::f64, 2 }, // mulsd
188 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
189 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
190 { ISD::FDIV, MVT::f32, 17 }, // divss
191 { ISD::FDIV, MVT::v4f32, 39 }, // divps
192 { ISD::FDIV, MVT::f64, 32 }, // divsd
193 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
194 { ISD::FADD, MVT::v2f64, 2 }, // addpd
195 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000196 // v2i64/v4i64 mul is custom lowered as a series of long:
197 // multiplies(3), shifts(3) and adds(2)
Simon Pilgrim7b89ab52017-07-31 17:09:27 +0000198 // slm muldq version throughput is 2 and addq throughput 4
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000199 // thus: 3X2 (muldq throughput) + 3X1 (shift throuput) +
Simon Pilgrim7b89ab52017-07-31 17:09:27 +0000200 // 3X4 (addq throughput) = 17
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000201 { ISD::MUL, MVT::v2i64, 17 },
202 // slm addq\subq throughput is 4
203 { ISD::ADD, MVT::v2i64, 4 },
204 { ISD::SUB, MVT::v2i64, 4 },
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000205 };
206
207 if (ST->isSLM()) {
208 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
209 // Check if the operands can be shrinked into a smaller datatype.
210 bool Op1Signed = false;
211 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
212 bool Op2Signed = false;
213 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
214
215 bool signedMode = Op1Signed | Op2Signed;
216 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
217
218 if (OpMinSize <= 7)
219 return LT.first * 3; // pmullw/sext
220 if (!signedMode && OpMinSize <= 8)
221 return LT.first * 3; // pmullw/zext
222 if (OpMinSize <= 15)
223 return LT.first * 5; // pmullw/pmulhw/pshuf
224 if (!signedMode && OpMinSize <= 16)
225 return LT.first * 5; // pmullw/pmulhw/pshuf
226 }
227 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
228 LT.second)) {
229 return LT.first * Entry->Cost;
230 }
231 }
232
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000233 if (ISD == ISD::SDIV &&
234 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
235 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
236 // On X86, vector signed division by constants power-of-two are
237 // normally expanded to the sequence SRA + SRL + ADD + SRA.
238 // The OperandValue properties many not be same as that of previous
239 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000240 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
241 Op2Info, TargetTransformInfo::OP_None,
242 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000243 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
244 TargetTransformInfo::OP_None,
245 TargetTransformInfo::OP_None);
246 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
247 TargetTransformInfo::OP_None,
248 TargetTransformInfo::OP_None);
249
250 return Cost;
251 }
252
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000253 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000254 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
255 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
256 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
257
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000258 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
259 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
260 };
261
262 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
263 ST->hasBWI()) {
264 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
265 LT.second))
266 return LT.first * Entry->Cost;
267 }
268
269 static const CostTblEntry AVX512UniformConstCostTable[] = {
Simon Pilgrimd419b732017-01-14 19:24:23 +0000270 { ISD::SRA, MVT::v2i64, 1 },
271 { ISD::SRA, MVT::v4i64, 1 },
272 { ISD::SRA, MVT::v8i64, 1 },
273
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000274 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
275 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
276 };
277
278 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
279 ST->hasAVX512()) {
280 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
281 LT.second))
282 return LT.first * Entry->Cost;
283 }
284
Craig Topper4b275762015-10-28 04:02:12 +0000285 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000286 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
287 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
288 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
289
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000290 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
291
Benjamin Kramer7c372272014-04-26 14:53:05 +0000292 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
293 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
294 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
295 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
296 };
297
298 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
299 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000300 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
301 LT.second))
302 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000303 }
304
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000305 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000306 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
307 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
308 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000309
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000310 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
311 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
312 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000313
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000314 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
315 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
316 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
317 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
318 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
319 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
320 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
321 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000322 };
323
324 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
325 ST->hasSSE2()) {
326 // pmuldq sequence.
327 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000328 return LT.first * 32;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000329 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
330 return LT.first * 15;
331
Simon Pilgrim5bef9c62017-05-14 17:59:46 +0000332 // XOP has faster vXi8 shifts.
333 if ((ISD != ISD::SHL && ISD != ISD::SRL && ISD != ISD::SRA) ||
334 !ST->hasXOP())
335 if (const auto *Entry =
336 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
337 return LT.first * Entry->Cost;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000338 }
339
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000340 static const CostTblEntry AVX2UniformCostTable[] = {
341 // Uniform splats are cheaper for the following instructions.
342 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
343 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
344 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
345 };
346
347 if (ST->hasAVX2() &&
348 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
349 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
350 if (const auto *Entry =
351 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
352 return LT.first * Entry->Cost;
353 }
354
355 static const CostTblEntry SSE2UniformCostTable[] = {
356 // Uniform splats are cheaper for the following instructions.
357 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
358 { ISD::SHL, MVT::v4i32, 1 }, // pslld
359 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
360
361 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
362 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
363 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
364
365 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
366 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
367 };
368
369 if (ST->hasSSE2() &&
370 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
371 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
372 if (const auto *Entry =
373 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
374 return LT.first * Entry->Cost;
375 }
376
Simon Pilgrim820e1322016-10-27 15:27:00 +0000377 static const CostTblEntry AVX512DQCostTable[] = {
378 { ISD::MUL, MVT::v2i64, 1 },
379 { ISD::MUL, MVT::v4i64, 1 },
380 { ISD::MUL, MVT::v8i64, 1 }
381 };
382
383 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000384 if (ST->hasDQI())
385 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000386 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000387
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000388 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim6ed996c2017-01-15 20:44:00 +0000389 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
390 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
391 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
392
393 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
394 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
395 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
396
Simon Pilgrima4109d62017-01-07 17:54:10 +0000397 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
398 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
399 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
400
Simon Pilgrim5a81fef2017-01-11 10:36:51 +0000401 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
402 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
403 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
404
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000405 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
406 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
407 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
408
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000409 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
410 { ISD::SDIV, MVT::v64i8, 64*20 },
411 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000412 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000413 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000414 };
415
416 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000417 if (ST->hasBWI())
418 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000419 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000420
Craig Topper4b275762015-10-28 04:02:12 +0000421 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000422 { ISD::SHL, MVT::v16i32, 1 },
423 { ISD::SRL, MVT::v16i32, 1 },
424 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000425
Simon Pilgrimd8333372017-01-06 11:12:53 +0000426 { ISD::SHL, MVT::v8i64, 1 },
427 { ISD::SRL, MVT::v8i64, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000428
429 { ISD::SRA, MVT::v2i64, 1 },
430 { ISD::SRA, MVT::v4i64, 1 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000431 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000432
Simon Pilgrimd8333372017-01-06 11:12:53 +0000433 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
434 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
435 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
436 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
437
438 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
439 { ISD::SDIV, MVT::v16i32, 16*20 },
440 { ISD::SDIV, MVT::v8i64, 8*20 },
441 { ISD::UDIV, MVT::v16i32, 16*20 },
442 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000443 };
444
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000445 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000446 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
447 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000448
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000449 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000450 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
451 // customize them to detect the cases where shift amount is a scalar one.
452 { ISD::SHL, MVT::v4i32, 1 },
453 { ISD::SRL, MVT::v4i32, 1 },
454 { ISD::SRA, MVT::v4i32, 1 },
455 { ISD::SHL, MVT::v8i32, 1 },
456 { ISD::SRL, MVT::v8i32, 1 },
457 { ISD::SRA, MVT::v8i32, 1 },
458 { ISD::SHL, MVT::v2i64, 1 },
459 { ISD::SRL, MVT::v2i64, 1 },
460 { ISD::SHL, MVT::v4i64, 1 },
461 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000462 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000463
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000464 // Look for AVX2 lowering tricks.
465 if (ST->hasAVX2()) {
466 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
467 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
468 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
469 // On AVX2, a packed v16i16 shift left by a constant build_vector
470 // is lowered into a vector multiply (vpmullw).
471 return LT.first;
472
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000473 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000474 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000475 }
476
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000477 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000478 // 128bit shifts take 1cy, but right shifts require negation beforehand.
479 { ISD::SHL, MVT::v16i8, 1 },
480 { ISD::SRL, MVT::v16i8, 2 },
481 { ISD::SRA, MVT::v16i8, 2 },
482 { ISD::SHL, MVT::v8i16, 1 },
483 { ISD::SRL, MVT::v8i16, 2 },
484 { ISD::SRA, MVT::v8i16, 2 },
485 { ISD::SHL, MVT::v4i32, 1 },
486 { ISD::SRL, MVT::v4i32, 2 },
487 { ISD::SRA, MVT::v4i32, 2 },
488 { ISD::SHL, MVT::v2i64, 1 },
489 { ISD::SRL, MVT::v2i64, 2 },
490 { ISD::SRA, MVT::v2i64, 2 },
491 // 256bit shifts require splitting if AVX2 didn't catch them above.
Simon Pilgrim4599eaa2017-05-14 13:38:53 +0000492 { ISD::SHL, MVT::v32i8, 2+2 },
493 { ISD::SRL, MVT::v32i8, 4+2 },
494 { ISD::SRA, MVT::v32i8, 4+2 },
495 { ISD::SHL, MVT::v16i16, 2+2 },
496 { ISD::SRL, MVT::v16i16, 4+2 },
497 { ISD::SRA, MVT::v16i16, 4+2 },
498 { ISD::SHL, MVT::v8i32, 2+2 },
499 { ISD::SRL, MVT::v8i32, 4+2 },
500 { ISD::SRA, MVT::v8i32, 4+2 },
501 { ISD::SHL, MVT::v4i64, 2+2 },
502 { ISD::SRL, MVT::v4i64, 4+2 },
503 { ISD::SRA, MVT::v4i64, 4+2 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000504 };
505
506 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000507 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000508 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000509 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000510
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000511 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000512 // Uniform splats are cheaper for the following instructions.
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000513 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split.
514 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split.
515 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000516
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000517 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split.
518 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split.
519 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000520
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000521 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split.
522 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split.
523 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle.
524 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000525 };
526
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000527 if (ST->hasSSE2() &&
528 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
529 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Simon Pilgrimf96b4ab2017-05-14 20:25:42 +0000530
531 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
532 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
533 return LT.first * 4; // 2*psrad + shuffle.
534
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000535 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000536 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000537 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000538 }
539
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000540 if (ISD == ISD::SHL &&
541 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000542 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000543 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000544 // into vector multiply.
545 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
546 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000547 ISD = ISD::MUL;
548 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000549
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000550 static const CostTblEntry AVX2CostTable[] = {
551 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
552 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
553
554 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
555 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
556
557 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
558 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
559 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
560 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
561
562 { ISD::SUB, MVT::v32i8, 1 }, // psubb
563 { ISD::ADD, MVT::v32i8, 1 }, // paddb
564 { ISD::SUB, MVT::v16i16, 1 }, // psubw
565 { ISD::ADD, MVT::v16i16, 1 }, // paddw
566 { ISD::SUB, MVT::v8i32, 1 }, // psubd
567 { ISD::ADD, MVT::v8i32, 1 }, // paddd
568 { ISD::SUB, MVT::v4i64, 1 }, // psubq
569 { ISD::ADD, MVT::v4i64, 1 }, // paddq
570
571 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
572 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
573 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
574 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
575 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
576
577 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
578 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
579 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
580 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
581 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
582 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
583 };
584
585 // Look for AVX2 lowering tricks for custom cases.
586 if (ST->hasAVX2())
587 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
588 return LT.first * Entry->Cost;
589
Simon Pilgrim100eae12017-01-07 17:03:51 +0000590 static const CostTblEntry AVX1CostTable[] = {
591 // We don't have to scalarize unsupported ops. We can issue two half-sized
592 // operations and we only need to extract the upper YMM half.
593 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000594 { ISD::MUL, MVT::v16i16, 4 },
595 { ISD::MUL, MVT::v8i32, 4 },
596 { ISD::SUB, MVT::v32i8, 4 },
597 { ISD::ADD, MVT::v32i8, 4 },
598 { ISD::SUB, MVT::v16i16, 4 },
599 { ISD::ADD, MVT::v16i16, 4 },
600 { ISD::SUB, MVT::v8i32, 4 },
601 { ISD::ADD, MVT::v8i32, 4 },
602 { ISD::SUB, MVT::v4i64, 4 },
603 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000604
605 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
606 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
607 // Because we believe v4i64 to be a legal type, we must also include the
608 // extract+insert in the cost table. Therefore, the cost here is 18
609 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000610 { ISD::MUL, MVT::v4i64, 18 },
611
612 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
613
614 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
615 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
616 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
617 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
618 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
619 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
620
621 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
622 { ISD::SDIV, MVT::v32i8, 32*20 },
623 { ISD::SDIV, MVT::v16i16, 16*20 },
624 { ISD::SDIV, MVT::v8i32, 8*20 },
625 { ISD::SDIV, MVT::v4i64, 4*20 },
626 { ISD::UDIV, MVT::v32i8, 32*20 },
627 { ISD::UDIV, MVT::v16i16, 16*20 },
628 { ISD::UDIV, MVT::v8i32, 8*20 },
629 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000630 };
631
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000632 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000633 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
634 return LT.first * Entry->Cost;
635
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000636 static const CostTblEntry SSE42CostTable[] = {
637 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
638 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
639 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
640 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
641 };
642
643 if (ST->hasSSE42())
644 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
645 return LT.first * Entry->Cost;
646
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000647 static const CostTblEntry SSE41CostTable[] = {
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000648 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
649 { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split.
650 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
651 { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
652 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
653 { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000654
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000655 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
656 { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split.
657 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
658 { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
659 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
660 { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split.
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000661
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000662 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
663 { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split.
664 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
665 { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
666 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
667 { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000668
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000669 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000670 };
671
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000672 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000673 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
674 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000675
Craig Topper4b275762015-10-28 04:02:12 +0000676 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000677 // We don't correctly identify costs of casts because they are marked as
678 // custom.
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000679 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
680 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
681 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
682 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
683 { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000684
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000685 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
686 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
687 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
688 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
689 { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000690
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000691 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
692 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
693 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
694 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
695 { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000696
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000697 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
698 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
699 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
700 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000701
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000702 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
703 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
704 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
705 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
Alexey Bataevd07c7312016-10-31 12:10:53 +0000706
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000707 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000708 // in the process we will often end up having to spilling regular
709 // registers. The overhead of division is going to dominate most kernels
710 // anyways so try hard to prevent vectorization of division - it is
711 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
712 // to hide "20 cycles" for each lane.
713 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000714 { ISD::SDIV, MVT::v8i16, 8*20 },
715 { ISD::SDIV, MVT::v4i32, 4*20 },
716 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000717 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000718 { ISD::UDIV, MVT::v8i16, 8*20 },
719 { ISD::UDIV, MVT::v4i32, 4*20 },
720 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000721 };
722
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000723 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000724 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
725 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000726
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000727 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000728 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
729 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
730 };
731
732 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000733 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000734 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000735
Chandler Carruth664e3542013-01-07 01:37:14 +0000736 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000737 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000738}
739
Chandler Carruth93205eb2015-08-05 18:08:10 +0000740int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
741 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000742 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
743 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
744 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000745
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000746 // For Broadcasts we are splatting the first element from the first input
747 // register, so only need to reference that input and all the output
748 // registers are the same.
749 if (Kind == TTI::SK_Broadcast)
750 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000751
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000752 // We are going to permute multiple sources and the result will be in multiple
753 // destinations. Providing an accurate cost only for splits where the element
754 // type remains the same.
755 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
756 MVT LegalVT = LT.second;
Alexey Bataev771ec9f2018-01-09 19:08:22 +0000757 if (LegalVT.isVector() &&
758 LegalVT.getVectorElementType().getSizeInBits() ==
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000759 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
760 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000761
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000762 unsigned VecTySize = DL.getTypeStoreSize(Tp);
763 unsigned LegalVTSize = LegalVT.getStoreSize();
764 // Number of source vectors after legalization:
765 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
766 // Number of destination vectors after legalization:
767 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000768
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000769 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
770 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000771
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000772 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
773 return NumOfShuffles *
774 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
775 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000776
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000777 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
778 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000779
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000780 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
781 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000782 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000783 int NumOfDests = LT.first;
784 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000785 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000786 }
787
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000788 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
789 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
790 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
791
792 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
793 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
794
795 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
796 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
797 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
798 };
799
800 if (ST->hasVBMI())
801 if (const auto *Entry =
802 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
803 return LT.first * Entry->Cost;
804
805 static const CostTblEntry AVX512BWShuffleTbl[] = {
806 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
807 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
808
809 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
810 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000811 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000812
813 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
814 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
815 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
816 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
817 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
818
819 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
820 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
821 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
822 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
823 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
824 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
825 };
826
827 if (ST->hasBWI())
828 if (const auto *Entry =
829 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
830 return LT.first * Entry->Cost;
831
832 static const CostTblEntry AVX512ShuffleTbl[] = {
833 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
834 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
835 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
836 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
837
838 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
839 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
840 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
841 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
842
843 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
844 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
845 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
846 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
847 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
848 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
849 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
850 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
851 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
852 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
853 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
854 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
855 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
856
857 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
858 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
859 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
860 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
861 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
862 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
863 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
864 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
865 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
866 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
867 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
868 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
869 };
870
871 if (ST->hasAVX512())
872 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
873 return LT.first * Entry->Cost;
874
875 static const CostTblEntry AVX2ShuffleTbl[] = {
876 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
877 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
878 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
879 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
880 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
881 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
882
883 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
884 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
885 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
886 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
887 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
888 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
889
890 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000891 { TTI::SK_Alternate, MVT::v32i8, 1 }, // vpblendvb
892
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000893 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
894 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000895 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
896 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
Simon Pilgrimac2e50a2017-08-10 18:29:34 +0000897 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vperm2i128 + 2*vpshufb
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000898 // + vpblendvb
Simon Pilgrimac2e50a2017-08-10 18:29:34 +0000899 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 }, // vperm2i128 + 2*vpshufb
900 // + vpblendvb
901
902 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 3 }, // 2*vpermpd + vblendpd
903 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 3 }, // 2*vpermps + vblendps
904 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 3 }, // 2*vpermq + vpblendd
905 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 3 }, // 2*vpermd + vpblendd
906 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 7 }, // 2*vperm2i128 + 4*vpshufb
907 // + vpblendvb
908 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 7 }, // 2*vperm2i128 + 4*vpshufb
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000909 // + vpblendvb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000910 };
911
912 if (ST->hasAVX2())
913 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
914 return LT.first * Entry->Cost;
915
Simon Pilgrimc63f93a2017-08-16 13:50:20 +0000916 static const CostTblEntry XOPShuffleTbl[] = {
917 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 2 }, // vperm2f128 + vpermil2pd
918 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 2 }, // vperm2f128 + vpermil2ps
919 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 2 }, // vperm2f128 + vpermil2pd
920 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 2 }, // vperm2f128 + vpermil2ps
921 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vextractf128 + 2*vpperm
922 // + vinsertf128
923 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 }, // vextractf128 + 2*vpperm
924 // + vinsertf128
925
926 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 9 }, // 2*vextractf128 + 6*vpperm
927 // + vinsertf128
928 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpperm
929 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 9 }, // 2*vextractf128 + 6*vpperm
930 // + vinsertf128
931 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 }, // vpperm
932 };
933
934 if (ST->hasXOP())
935 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
936 return LT.first * Entry->Cost;
937
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000938 static const CostTblEntry AVX1ShuffleTbl[] = {
939 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
940 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
941 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
942 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
943 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
944 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
945
946 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
947 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
948 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
949 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
950 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
951 // + vinsertf128
952 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
953 // + vinsertf128
954
955 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
956 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
957 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
958 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
959 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000960 { TTI::SK_Alternate, MVT::v32i8, 3 }, // vpand + vpandn + vpor
961
962 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 3 }, // 2*vperm2f128 + vshufpd
963 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 3 }, // 2*vperm2f128 + vshufpd
964 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 4 }, // 2*vperm2f128 + 2*vshufps
965 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 4 }, // 2*vperm2f128 + 2*vshufps
966 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 8 }, // vextractf128 + 4*pshufb
967 // + 2*por + vinsertf128
968 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 8 }, // vextractf128 + 4*pshufb
969 // + 2*por + vinsertf128
Simon Pilgrim73545312017-08-10 19:02:51 +0000970
971 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 4 }, // 2*vperm2f128 + 2*vshufpd
972 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 4 }, // 2*vperm2f128 + 2*vshufps
973 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 4 }, // 2*vperm2f128 + 2*vshufpd
974 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 4 }, // 2*vperm2f128 + 2*vshufps
975 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 15 }, // 2*vextractf128 + 8*pshufb
976 // + 4*por + vinsertf128
977 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 15 }, // 2*vextractf128 + 8*pshufb
978 // + 4*por + vinsertf128
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000979 };
980
981 if (ST->hasAVX())
982 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
983 return LT.first * Entry->Cost;
984
985 static const CostTblEntry SSE41ShuffleTbl[] = {
986 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
987 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
988 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
989 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
990 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
991 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
992 };
993
994 if (ST->hasSSE41())
995 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
996 return LT.first * Entry->Cost;
997
998 static const CostTblEntry SSSE3ShuffleTbl[] = {
999 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
1000 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
1001
1002 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
1003 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
1004
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001005 { TTI::SK_Alternate, MVT::v8i16, 3 }, // 2*pshufb + por
1006 { TTI::SK_Alternate, MVT::v16i8, 3 }, // 2*pshufb + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +00001007
1008 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // pshufb
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001009 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
1010
1011 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 3 }, // 2*pshufb + por
1012 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 }, // 2*pshufb + por
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001013 };
1014
1015 if (ST->hasSSSE3())
1016 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1017 return LT.first * Entry->Cost;
1018
1019 static const CostTblEntry SSE2ShuffleTbl[] = {
1020 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
1021 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
1022 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001023 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001024 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
1025
1026 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
1027 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
1028 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001029 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001030 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
1031 // + 2*pshufd + 2*unpck + packus
1032
1033 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
1034 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
1035 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
1036 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +00001037 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pand + pandn + por
1038
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001039 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // shufpd
1040 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // pshufd
1041 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // pshufd
1042 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 5 }, // 2*pshuflw + 2*pshufhw
1043 // + pshufd/unpck
1044 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1045 // + 2*pshufd + 2*unpck + 2*packus
1046
1047 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
1048 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
1049 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
Simon Pilgrimb59c2d92017-08-10 19:32:35 +00001050 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
1051 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001052 };
1053
1054 if (ST->hasSSE2())
1055 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1056 return LT.first * Entry->Cost;
1057
1058 static const CostTblEntry SSE1ShuffleTbl[] = {
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001059 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
1060 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
1061 { TTI::SK_Alternate, MVT::v4f32, 2 }, // 2*shufps
1062 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1063 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001064 };
1065
1066 if (ST->hasSSE1())
1067 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1068 return LT.first * Entry->Cost;
1069
Chandler Carruth705b1852015-01-31 03:43:40 +00001070 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +00001071}
1072
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001073int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1074 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001075 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1076 assert(ISD && "Invalid opcode");
1077
Cong Hou59898d82015-12-11 00:31:39 +00001078 // FIXME: Need a better design of the cost table to handle non-simple types of
1079 // potential massive combinations (elem_num x src_type x dst_type).
1080
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001081 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001082 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1083 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001084 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1085 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001086 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1087 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1088
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001089 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001090 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001091 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001092 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001093 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001094 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001095
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001096 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001097 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001098 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001099 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001100 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001101 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
1102
1103 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
1104 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
1105 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
1106 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1107 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
1108 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001109 };
1110
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001111 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1112 // 256-bit wide vectors.
1113
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001114 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001115 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
1116 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
1117 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001118
1119 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
1120 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
1121 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
1122 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001123
1124 // v16i1 -> v16i32 - load + broadcast
1125 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
1126 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001127 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1128 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1129 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1130 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001131 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1132 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001133 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1134 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001135
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001136 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001137 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001138 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001139 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001140 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001141 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1142 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001143 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001144 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1145 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001146
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001147 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001148 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001149 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001150 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1151 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1152 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1153 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001154 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001155 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1156 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1157 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1158 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001159 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001160 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001161 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1162 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1163 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1164 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1165 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001166 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001167 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1168 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1169 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1170
1171 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1172 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1173 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
Zvi Rackover25799d92017-09-07 07:40:34 +00001174 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 2 },
1175 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001176 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Zvi Rackover25799d92017-09-07 07:40:34 +00001177 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 2 },
1178 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001179 };
1180
Craig Topper4b275762015-10-28 04:02:12 +00001181 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001182 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1183 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001184 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1185 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001186 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1187 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001188 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1189 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1190 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1191 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001192 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1193 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001194 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1195 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001196 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1197 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1198
1199 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1200 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1201 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1202 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1203 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1204 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001205
1206 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1207 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001208
1209 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001210 };
1211
Craig Topper4b275762015-10-28 04:02:12 +00001212 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001213 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1214 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001215 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1216 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001217 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1218 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001219 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1220 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1221 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1222 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001223 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1224 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001225 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1226 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001227 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1228 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1229
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001230 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1231 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1232 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001233 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1234 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1235 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001236 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001237
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001238 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001239 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001240 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1241 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001242 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001243 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1244 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001245 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001246 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1247 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001248 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001249 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001250
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001251 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001252 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001253 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1254 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001255 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001256 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1257 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001258 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001259 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001260 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001261 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001262 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001263 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001264 // The generic code to compute the scalar overhead is currently broken.
1265 // Workaround this limitation by estimating the scalarization overhead
1266 // here. We have roughly 10 instructions per scalar element.
1267 // Multiply that by the vector width.
1268 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001269 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1270 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1271 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1272 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001273
Renato Goline1fb0592013-01-20 20:57:20 +00001274 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001275 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001276 // This node is expanded into scalarized operations but BasicTTI is overly
1277 // optimistic estimating its cost. It computes 3 per element (one
1278 // vector-extract, one scalar conversion and one vector-insert). The
1279 // problem is that the inserts form a read-modify-write chain so latency
1280 // should be factored in too. Inflating the cost per element by 1.
1281 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001282 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001283
1284 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1285 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001286 };
1287
Cong Hou59898d82015-12-11 00:31:39 +00001288 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001289 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1290 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001291 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1292 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1293 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1294 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001295
Cong Hou59898d82015-12-11 00:31:39 +00001296 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1297 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001298 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1299 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1300 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1301 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1302 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1303 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1304 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1305 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1306 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1307 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1308 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1309 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1310 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1311 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1312 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1313 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001314
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001315 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1316 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1317 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001318 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001319 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001320 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001321 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1322
Cong Hou59898d82015-12-11 00:31:39 +00001323 };
1324
1325 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001326 // These are somewhat magic numbers justified by looking at the output of
1327 // Intel's IACA, running some kernels and making sure when we take
1328 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001329 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001330 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1331 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1332 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001333 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001334 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1335 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1336 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001337
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001338 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1339 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1340 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1341 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1342 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1343 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1344 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1345 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001346
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001347 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1348
Cong Hou59898d82015-12-11 00:31:39 +00001349 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1350 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001351 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1352 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1353 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1354 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1355 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1356 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1357 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1358 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1359 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1360 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1361 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1362 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1363 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1364 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1365 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1366 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1367 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1368 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1369 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001370 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001371 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1372 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001373
Cong Hou59898d82015-12-11 00:31:39 +00001374 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001375 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1376 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1377 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1378 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1379 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1380 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1381 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1382 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001383 };
1384
Chandler Carruth93205eb2015-08-05 18:08:10 +00001385 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1386 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001387
1388 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001389 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001390 LTDest.second, LTSrc.second))
1391 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001392 }
1393
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001394 EVT SrcTy = TLI->getValueType(DL, Src);
1395 EVT DstTy = TLI->getValueType(DL, Dst);
1396
1397 // The function getSimpleVT only handles simple value types.
1398 if (!SrcTy.isSimple() || !DstTy.isSimple())
1399 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1400
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001401 if (ST->hasDQI())
1402 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1403 DstTy.getSimpleVT(),
1404 SrcTy.getSimpleVT()))
1405 return Entry->Cost;
1406
1407 if (ST->hasAVX512())
1408 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1409 DstTy.getSimpleVT(),
1410 SrcTy.getSimpleVT()))
1411 return Entry->Cost;
1412
Tim Northoverf0e21612014-02-06 18:18:36 +00001413 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001414 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1415 DstTy.getSimpleVT(),
1416 SrcTy.getSimpleVT()))
1417 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001418 }
1419
Chandler Carruth664e3542013-01-07 01:37:14 +00001420 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001421 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1422 DstTy.getSimpleVT(),
1423 SrcTy.getSimpleVT()))
1424 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001425 }
1426
Cong Hou59898d82015-12-11 00:31:39 +00001427 if (ST->hasSSE41()) {
1428 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1429 DstTy.getSimpleVT(),
1430 SrcTy.getSimpleVT()))
1431 return Entry->Cost;
1432 }
1433
1434 if (ST->hasSSE2()) {
1435 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1436 DstTy.getSimpleVT(),
1437 SrcTy.getSimpleVT()))
1438 return Entry->Cost;
1439 }
1440
Alexey Bataeve25a6fd2017-11-07 14:23:44 +00001441 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
Chandler Carruth664e3542013-01-07 01:37:14 +00001442}
1443
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001444int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1445 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001446 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001447 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001448
1449 MVT MTy = LT.second;
1450
1451 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1452 assert(ISD && "Invalid opcode");
1453
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001454 static const CostTblEntry SSE2CostTbl[] = {
1455 { ISD::SETCC, MVT::v2i64, 8 },
1456 { ISD::SETCC, MVT::v4i32, 1 },
1457 { ISD::SETCC, MVT::v8i16, 1 },
1458 { ISD::SETCC, MVT::v16i8, 1 },
1459 };
1460
Craig Topper4b275762015-10-28 04:02:12 +00001461 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001462 { ISD::SETCC, MVT::v2f64, 1 },
1463 { ISD::SETCC, MVT::v4f32, 1 },
1464 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001465 };
1466
Craig Topper4b275762015-10-28 04:02:12 +00001467 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001468 { ISD::SETCC, MVT::v4f64, 1 },
1469 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001470 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001471 { ISD::SETCC, MVT::v4i64, 4 },
1472 { ISD::SETCC, MVT::v8i32, 4 },
1473 { ISD::SETCC, MVT::v16i16, 4 },
1474 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001475 };
1476
Craig Topper4b275762015-10-28 04:02:12 +00001477 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001478 { ISD::SETCC, MVT::v4i64, 1 },
1479 { ISD::SETCC, MVT::v8i32, 1 },
1480 { ISD::SETCC, MVT::v16i16, 1 },
1481 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001482 };
1483
Craig Topper4b275762015-10-28 04:02:12 +00001484 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001485 { ISD::SETCC, MVT::v8i64, 1 },
1486 { ISD::SETCC, MVT::v16i32, 1 },
1487 { ISD::SETCC, MVT::v8f64, 1 },
1488 { ISD::SETCC, MVT::v16f32, 1 },
1489 };
1490
Craig Topperee0c8592015-10-27 04:14:24 +00001491 if (ST->hasAVX512())
1492 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1493 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001494
Craig Topperee0c8592015-10-27 04:14:24 +00001495 if (ST->hasAVX2())
1496 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1497 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001498
Craig Topperee0c8592015-10-27 04:14:24 +00001499 if (ST->hasAVX())
1500 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1501 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001502
Craig Topperee0c8592015-10-27 04:14:24 +00001503 if (ST->hasSSE42())
1504 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1505 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001506
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001507 if (ST->hasSSE2())
1508 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1509 return LT.first * Entry->Cost;
1510
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001511 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
Chandler Carruth664e3542013-01-07 01:37:14 +00001512}
1513
Anna Thomasb2a212c2017-06-06 16:45:25 +00001514unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1515
Simon Pilgrim14000b32016-05-24 08:17:50 +00001516int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001517 ArrayRef<Type *> Tys, FastMathFlags FMF,
1518 unsigned ScalarizationCostPassed) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001519 // Costs should match the codegen from:
1520 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1521 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001522 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001523 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001524 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001525 static const CostTblEntry AVX512CDCostTbl[] = {
1526 { ISD::CTLZ, MVT::v8i64, 1 },
1527 { ISD::CTLZ, MVT::v16i32, 1 },
1528 { ISD::CTLZ, MVT::v32i16, 8 },
1529 { ISD::CTLZ, MVT::v64i8, 20 },
1530 { ISD::CTLZ, MVT::v4i64, 1 },
1531 { ISD::CTLZ, MVT::v8i32, 1 },
1532 { ISD::CTLZ, MVT::v16i16, 4 },
1533 { ISD::CTLZ, MVT::v32i8, 10 },
1534 { ISD::CTLZ, MVT::v2i64, 1 },
1535 { ISD::CTLZ, MVT::v4i32, 1 },
1536 { ISD::CTLZ, MVT::v8i16, 4 },
1537 { ISD::CTLZ, MVT::v16i8, 4 },
1538 };
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001539 static const CostTblEntry AVX512BWCostTbl[] = {
1540 { ISD::BITREVERSE, MVT::v8i64, 5 },
1541 { ISD::BITREVERSE, MVT::v16i32, 5 },
1542 { ISD::BITREVERSE, MVT::v32i16, 5 },
1543 { ISD::BITREVERSE, MVT::v64i8, 5 },
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001544 { ISD::CTLZ, MVT::v8i64, 23 },
1545 { ISD::CTLZ, MVT::v16i32, 22 },
1546 { ISD::CTLZ, MVT::v32i16, 18 },
1547 { ISD::CTLZ, MVT::v64i8, 17 },
Simon Pilgrim6bba6062017-05-18 10:42:34 +00001548 { ISD::CTPOP, MVT::v8i64, 7 },
1549 { ISD::CTPOP, MVT::v16i32, 11 },
1550 { ISD::CTPOP, MVT::v32i16, 9 },
1551 { ISD::CTPOP, MVT::v64i8, 6 },
Simon Pilgrimd0365962017-05-17 20:22:54 +00001552 { ISD::CTTZ, MVT::v8i64, 10 },
1553 { ISD::CTTZ, MVT::v16i32, 14 },
1554 { ISD::CTTZ, MVT::v32i16, 12 },
1555 { ISD::CTTZ, MVT::v64i8, 9 },
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001556 };
1557 static const CostTblEntry AVX512CostTbl[] = {
1558 { ISD::BITREVERSE, MVT::v8i64, 36 },
1559 { ISD::BITREVERSE, MVT::v16i32, 24 },
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001560 { ISD::CTLZ, MVT::v8i64, 29 },
1561 { ISD::CTLZ, MVT::v16i32, 35 },
Simon Pilgrim6bba6062017-05-18 10:42:34 +00001562 { ISD::CTPOP, MVT::v8i64, 16 },
1563 { ISD::CTPOP, MVT::v16i32, 24 },
Simon Pilgrimd0365962017-05-17 20:22:54 +00001564 { ISD::CTTZ, MVT::v8i64, 20 },
1565 { ISD::CTTZ, MVT::v16i32, 28 },
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001566 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001567 static const CostTblEntry XOPCostTbl[] = {
1568 { ISD::BITREVERSE, MVT::v4i64, 4 },
1569 { ISD::BITREVERSE, MVT::v8i32, 4 },
1570 { ISD::BITREVERSE, MVT::v16i16, 4 },
1571 { ISD::BITREVERSE, MVT::v32i8, 4 },
1572 { ISD::BITREVERSE, MVT::v2i64, 1 },
1573 { ISD::BITREVERSE, MVT::v4i32, 1 },
1574 { ISD::BITREVERSE, MVT::v8i16, 1 },
1575 { ISD::BITREVERSE, MVT::v16i8, 1 },
1576 { ISD::BITREVERSE, MVT::i64, 3 },
1577 { ISD::BITREVERSE, MVT::i32, 3 },
1578 { ISD::BITREVERSE, MVT::i16, 3 },
1579 { ISD::BITREVERSE, MVT::i8, 3 }
1580 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001581 static const CostTblEntry AVX2CostTbl[] = {
1582 { ISD::BITREVERSE, MVT::v4i64, 5 },
1583 { ISD::BITREVERSE, MVT::v8i32, 5 },
1584 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001585 { ISD::BITREVERSE, MVT::v32i8, 5 },
1586 { ISD::BSWAP, MVT::v4i64, 1 },
1587 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001588 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001589 { ISD::CTLZ, MVT::v4i64, 23 },
1590 { ISD::CTLZ, MVT::v8i32, 18 },
1591 { ISD::CTLZ, MVT::v16i16, 14 },
1592 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001593 { ISD::CTPOP, MVT::v4i64, 7 },
1594 { ISD::CTPOP, MVT::v8i32, 11 },
1595 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001596 { ISD::CTPOP, MVT::v32i8, 6 },
1597 { ISD::CTTZ, MVT::v4i64, 10 },
1598 { ISD::CTTZ, MVT::v8i32, 14 },
1599 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001600 { ISD::CTTZ, MVT::v32i8, 9 },
1601 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1602 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1603 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1604 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1605 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1606 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001607 };
1608 static const CostTblEntry AVX1CostTbl[] = {
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001609 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
1610 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
1611 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1612 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
Simon Pilgrim356e8232016-06-20 23:08:21 +00001613 { ISD::BSWAP, MVT::v4i64, 4 },
1614 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001615 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001616 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
1617 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
1618 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
1619 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
1620 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
1621 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
1622 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
1623 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
1624 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
1625 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
1626 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
1627 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
Alexey Bataevd07c7312016-10-31 12:10:53 +00001628 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1629 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1630 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1631 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1632 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1633 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1634 };
1635 static const CostTblEntry SSE42CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001636 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1637 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001638 };
1639 static const CostTblEntry SSSE3CostTbl[] = {
1640 { ISD::BITREVERSE, MVT::v2i64, 5 },
1641 { ISD::BITREVERSE, MVT::v4i32, 5 },
1642 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001643 { ISD::BITREVERSE, MVT::v16i8, 5 },
1644 { ISD::BSWAP, MVT::v2i64, 1 },
1645 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001646 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001647 { ISD::CTLZ, MVT::v2i64, 23 },
1648 { ISD::CTLZ, MVT::v4i32, 18 },
1649 { ISD::CTLZ, MVT::v8i16, 14 },
1650 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001651 { ISD::CTPOP, MVT::v2i64, 7 },
1652 { ISD::CTPOP, MVT::v4i32, 11 },
1653 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001654 { ISD::CTPOP, MVT::v16i8, 6 },
1655 { ISD::CTTZ, MVT::v2i64, 10 },
1656 { ISD::CTTZ, MVT::v4i32, 14 },
1657 { ISD::CTTZ, MVT::v8i16, 12 },
1658 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001659 };
1660 static const CostTblEntry SSE2CostTbl[] = {
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001661 { ISD::BITREVERSE, MVT::v2i64, 29 },
1662 { ISD::BITREVERSE, MVT::v4i32, 27 },
1663 { ISD::BITREVERSE, MVT::v8i16, 27 },
1664 { ISD::BITREVERSE, MVT::v16i8, 20 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001665 { ISD::BSWAP, MVT::v2i64, 7 },
1666 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001667 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001668 { ISD::CTLZ, MVT::v2i64, 25 },
1669 { ISD::CTLZ, MVT::v4i32, 26 },
1670 { ISD::CTLZ, MVT::v8i16, 20 },
1671 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001672 { ISD::CTPOP, MVT::v2i64, 12 },
1673 { ISD::CTPOP, MVT::v4i32, 15 },
1674 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001675 { ISD::CTPOP, MVT::v16i8, 10 },
1676 { ISD::CTTZ, MVT::v2i64, 14 },
1677 { ISD::CTTZ, MVT::v4i32, 18 },
1678 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001679 { ISD::CTTZ, MVT::v16i8, 13 },
1680 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1681 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1682 };
1683 static const CostTblEntry SSE1CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001684 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1685 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001686 };
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001687 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1688 { ISD::BITREVERSE, MVT::i64, 14 }
1689 };
1690 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1691 { ISD::BITREVERSE, MVT::i32, 14 },
1692 { ISD::BITREVERSE, MVT::i16, 14 },
1693 { ISD::BITREVERSE, MVT::i8, 11 }
1694 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001695
1696 unsigned ISD = ISD::DELETED_NODE;
1697 switch (IID) {
1698 default:
1699 break;
1700 case Intrinsic::bitreverse:
1701 ISD = ISD::BITREVERSE;
1702 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001703 case Intrinsic::bswap:
1704 ISD = ISD::BSWAP;
1705 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001706 case Intrinsic::ctlz:
1707 ISD = ISD::CTLZ;
1708 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001709 case Intrinsic::ctpop:
1710 ISD = ISD::CTPOP;
1711 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001712 case Intrinsic::cttz:
1713 ISD = ISD::CTTZ;
1714 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001715 case Intrinsic::sqrt:
1716 ISD = ISD::FSQRT;
1717 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001718 }
1719
1720 // Legalize the type.
1721 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1722 MVT MTy = LT.second;
1723
1724 // Attempt to lookup cost.
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001725 if (ST->hasCDI())
1726 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
1727 return LT.first * Entry->Cost;
1728
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001729 if (ST->hasBWI())
1730 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1731 return LT.first * Entry->Cost;
1732
1733 if (ST->hasAVX512())
1734 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1735 return LT.first * Entry->Cost;
1736
Simon Pilgrim14000b32016-05-24 08:17:50 +00001737 if (ST->hasXOP())
1738 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1739 return LT.first * Entry->Cost;
1740
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001741 if (ST->hasAVX2())
1742 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1743 return LT.first * Entry->Cost;
1744
1745 if (ST->hasAVX())
1746 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1747 return LT.first * Entry->Cost;
1748
Alexey Bataevd07c7312016-10-31 12:10:53 +00001749 if (ST->hasSSE42())
1750 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1751 return LT.first * Entry->Cost;
1752
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001753 if (ST->hasSSSE3())
1754 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1755 return LT.first * Entry->Cost;
1756
Simon Pilgrim356e8232016-06-20 23:08:21 +00001757 if (ST->hasSSE2())
1758 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1759 return LT.first * Entry->Cost;
1760
Alexey Bataevd07c7312016-10-31 12:10:53 +00001761 if (ST->hasSSE1())
1762 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1763 return LT.first * Entry->Cost;
1764
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001765 if (ST->is64Bit())
1766 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
1767 return LT.first * Entry->Cost;
1768
1769 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
1770 return LT.first * Entry->Cost;
1771
Jonas Paulssona48ea232017-03-14 06:35:36 +00001772 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001773}
1774
1775int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001776 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
1777 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001778}
1779
Chandler Carruth93205eb2015-08-05 18:08:10 +00001780int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001781 assert(Val->isVectorTy() && "This must be a vector type");
1782
Sanjay Patelaedc3472016-05-25 17:27:54 +00001783 Type *ScalarType = Val->getScalarType();
1784
Chandler Carruth664e3542013-01-07 01:37:14 +00001785 if (Index != -1U) {
1786 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001787 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001788
1789 // This type is legalized to a scalar type.
1790 if (!LT.second.isVector())
1791 return 0;
1792
1793 // The type may be split. Normalize the index to the new type.
1794 unsigned Width = LT.second.getVectorNumElements();
1795 Index = Index % Width;
1796
1797 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001798 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001799 return 0;
1800 }
1801
Sanjay Patelaedc3472016-05-25 17:27:54 +00001802 // Add to the base cost if we know that the extracted element of a vector is
1803 // destined to be moved to and used in the integer register file.
1804 int RegisterFileMoveCost = 0;
1805 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1806 RegisterFileMoveCost = 1;
1807
1808 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001809}
1810
Chandler Carruth93205eb2015-08-05 18:08:10 +00001811int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001812 unsigned AddressSpace, const Instruction *I) {
Alp Tokerf907b892013-12-05 05:44:44 +00001813 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001814 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1815 unsigned NumElem = VTy->getVectorNumElements();
1816
1817 // Handle a few common cases:
1818 // <3 x float>
1819 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1820 // Cost = 64 bit store + extract + 32 bit store.
1821 return 3;
1822
1823 // <3 x double>
1824 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1825 // Cost = 128 bit store + unpack + 64 bit store.
1826 return 3;
1827
Alp Tokerf907b892013-12-05 05:44:44 +00001828 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001829 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001830 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1831 AddressSpace);
1832 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1833 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001834 return NumElem * Cost + SplitCost;
1835 }
1836 }
1837
Chandler Carruth664e3542013-01-07 01:37:14 +00001838 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001839 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001840 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1841 "Invalid Opcode");
1842
1843 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001844 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001845
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001846 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1847 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1848 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1849 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001850
1851 return Cost;
1852}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001853
Chandler Carruth93205eb2015-08-05 18:08:10 +00001854int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1855 unsigned Alignment,
1856 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001857 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1858 if (!SrcVTy)
1859 // To calculate scalar take the regular cost, without mask
1860 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1861
1862 unsigned NumElem = SrcVTy->getVectorNumElements();
1863 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001864 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001865 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1866 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001867 !isPowerOf2_32(NumElem)) {
1868 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001869 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1870 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001871 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001872 int BranchCost = getCFInstrCost(Instruction::Br);
1873 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001874
Chandler Carruth93205eb2015-08-05 18:08:10 +00001875 int ValueSplitCost = getScalarizationOverhead(
1876 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1877 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001878 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1879 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001880 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1881 }
1882
1883 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001884 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001885 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001886 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001887 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001888 LT.second.getVectorNumElements() == NumElem)
1889 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001890 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1891 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001892
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001893 else if (LT.second.getVectorNumElements() > NumElem) {
1894 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1895 LT.second.getVectorNumElements());
1896 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001897 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001898 }
1899 if (!ST->hasAVX512())
1900 return Cost + LT.first*4; // Each maskmov costs 4
1901
1902 // AVX-512 masked load/store is cheapper
1903 return Cost+LT.first;
1904}
1905
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001906int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1907 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001908 // Address computations in vectorized code with non-consecutive addresses will
1909 // likely result in more instructions compared to scalar code where the
1910 // computation can more often be merged into the index mode. The resulting
1911 // extra micro-ops can significantly decrease throughput.
1912 unsigned NumVectorInstToHideOverhead = 10;
1913
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001914 // Cost modeling of Strided Access Computation is hidden by the indexing
1915 // modes of X86 regardless of the stride value. We dont believe that there
1916 // is a difference between constant strided access in gerenal and constant
1917 // strided value which is less than or equal to 64.
1918 // Even in the case of (loop invariant) stride whose value is not known at
1919 // compile time, the address computation will not incur more than one extra
1920 // ADD instruction.
1921 if (Ty->isVectorTy() && SE) {
1922 if (!BaseT::isStridedAccess(Ptr))
1923 return NumVectorInstToHideOverhead;
1924 if (!BaseT::getConstantStrideStep(SE, Ptr))
1925 return 1;
1926 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001927
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001928 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001929}
Yi Jiang5c343de2013-09-19 17:48:48 +00001930
Alexey Bataev3e9b3eb2017-07-31 14:19:32 +00001931int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
1932 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001933
Chandler Carruth93205eb2015-08-05 18:08:10 +00001934 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001935
Yi Jiang5c343de2013-09-19 17:48:48 +00001936 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001937
Yi Jiang5c343de2013-09-19 17:48:48 +00001938 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1939 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001940
1941 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1942 // and make it as the cost.
1943
Craig Topper4b275762015-10-28 04:02:12 +00001944 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001945 { ISD::FADD, MVT::v2f64, 2 },
1946 { ISD::FADD, MVT::v4f32, 4 },
1947 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1948 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1949 { ISD::ADD, MVT::v8i16, 5 },
1950 };
Michael Liao5bf95782014-12-04 05:20:33 +00001951
Craig Topper4b275762015-10-28 04:02:12 +00001952 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001953 { ISD::FADD, MVT::v4f32, 4 },
1954 { ISD::FADD, MVT::v4f64, 5 },
1955 { ISD::FADD, MVT::v8f32, 7 },
1956 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1957 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1958 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1959 { ISD::ADD, MVT::v8i16, 5 },
1960 { ISD::ADD, MVT::v8i32, 5 },
1961 };
1962
Craig Topper4b275762015-10-28 04:02:12 +00001963 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001964 { ISD::FADD, MVT::v2f64, 2 },
1965 { ISD::FADD, MVT::v4f32, 4 },
1966 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1967 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1968 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1969 };
Michael Liao5bf95782014-12-04 05:20:33 +00001970
Craig Topper4b275762015-10-28 04:02:12 +00001971 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001972 { ISD::FADD, MVT::v4f32, 3 },
1973 { ISD::FADD, MVT::v4f64, 3 },
1974 { ISD::FADD, MVT::v8f32, 4 },
1975 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1976 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1977 { ISD::ADD, MVT::v4i64, 3 },
1978 { ISD::ADD, MVT::v8i16, 4 },
1979 { ISD::ADD, MVT::v8i32, 5 },
1980 };
Michael Liao5bf95782014-12-04 05:20:33 +00001981
Yi Jiang5c343de2013-09-19 17:48:48 +00001982 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001983 if (ST->hasAVX())
1984 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1985 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001986
Craig Topperee0c8592015-10-27 04:14:24 +00001987 if (ST->hasSSE42())
1988 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1989 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001990 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001991 if (ST->hasAVX())
1992 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1993 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001994
Craig Topperee0c8592015-10-27 04:14:24 +00001995 if (ST->hasSSE42())
1996 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1997 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001998 }
1999
Alexey Bataev3e9b3eb2017-07-31 14:19:32 +00002000 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00002001}
2002
Alexey Bataev6dd29fc2017-09-08 13:49:36 +00002003int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2004 bool IsPairwise, bool IsUnsigned) {
2005 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2006
2007 MVT MTy = LT.second;
2008
2009 int ISD;
2010 if (ValTy->isIntOrIntVectorTy()) {
2011 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2012 } else {
2013 assert(ValTy->isFPOrFPVectorTy() &&
2014 "Expected float point or integer vector type.");
2015 ISD = ISD::FMINNUM;
2016 }
2017
2018 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2019 // and make it as the cost.
2020
2021 static const CostTblEntry SSE42CostTblPairWise[] = {
2022 {ISD::FMINNUM, MVT::v2f64, 3},
2023 {ISD::FMINNUM, MVT::v4f32, 2},
2024 {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2025 {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2026 {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2027 {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2028 {ISD::SMIN, MVT::v8i16, 2},
2029 {ISD::UMIN, MVT::v8i16, 2},
2030 };
2031
2032 static const CostTblEntry AVX1CostTblPairWise[] = {
2033 {ISD::FMINNUM, MVT::v4f32, 1},
2034 {ISD::FMINNUM, MVT::v4f64, 1},
2035 {ISD::FMINNUM, MVT::v8f32, 2},
2036 {ISD::SMIN, MVT::v2i64, 3},
2037 {ISD::UMIN, MVT::v2i64, 3},
2038 {ISD::SMIN, MVT::v4i32, 1},
2039 {ISD::UMIN, MVT::v4i32, 1},
2040 {ISD::SMIN, MVT::v8i16, 1},
2041 {ISD::UMIN, MVT::v8i16, 1},
2042 {ISD::SMIN, MVT::v8i32, 3},
2043 {ISD::UMIN, MVT::v8i32, 3},
2044 };
2045
2046 static const CostTblEntry AVX2CostTblPairWise[] = {
2047 {ISD::SMIN, MVT::v4i64, 2},
2048 {ISD::UMIN, MVT::v4i64, 2},
2049 {ISD::SMIN, MVT::v8i32, 1},
2050 {ISD::UMIN, MVT::v8i32, 1},
2051 {ISD::SMIN, MVT::v16i16, 1},
2052 {ISD::UMIN, MVT::v16i16, 1},
2053 {ISD::SMIN, MVT::v32i8, 2},
2054 {ISD::UMIN, MVT::v32i8, 2},
2055 };
2056
2057 static const CostTblEntry AVX512CostTblPairWise[] = {
2058 {ISD::FMINNUM, MVT::v8f64, 1},
2059 {ISD::FMINNUM, MVT::v16f32, 2},
2060 {ISD::SMIN, MVT::v8i64, 2},
2061 {ISD::UMIN, MVT::v8i64, 2},
2062 {ISD::SMIN, MVT::v16i32, 1},
2063 {ISD::UMIN, MVT::v16i32, 1},
2064 };
2065
2066 static const CostTblEntry SSE42CostTblNoPairWise[] = {
2067 {ISD::FMINNUM, MVT::v2f64, 3},
2068 {ISD::FMINNUM, MVT::v4f32, 3},
2069 {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2070 {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
2071 {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2072 {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2073 {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2074 {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2075 };
2076
2077 static const CostTblEntry AVX1CostTblNoPairWise[] = {
2078 {ISD::FMINNUM, MVT::v4f32, 1},
2079 {ISD::FMINNUM, MVT::v4f64, 1},
2080 {ISD::FMINNUM, MVT::v8f32, 1},
2081 {ISD::SMIN, MVT::v2i64, 3},
2082 {ISD::UMIN, MVT::v2i64, 3},
2083 {ISD::SMIN, MVT::v4i32, 1},
2084 {ISD::UMIN, MVT::v4i32, 1},
2085 {ISD::SMIN, MVT::v8i16, 1},
2086 {ISD::UMIN, MVT::v8i16, 1},
2087 {ISD::SMIN, MVT::v8i32, 2},
2088 {ISD::UMIN, MVT::v8i32, 2},
2089 };
2090
2091 static const CostTblEntry AVX2CostTblNoPairWise[] = {
2092 {ISD::SMIN, MVT::v4i64, 1},
2093 {ISD::UMIN, MVT::v4i64, 1},
2094 {ISD::SMIN, MVT::v8i32, 1},
2095 {ISD::UMIN, MVT::v8i32, 1},
2096 {ISD::SMIN, MVT::v16i16, 1},
2097 {ISD::UMIN, MVT::v16i16, 1},
2098 {ISD::SMIN, MVT::v32i8, 1},
2099 {ISD::UMIN, MVT::v32i8, 1},
2100 };
2101
2102 static const CostTblEntry AVX512CostTblNoPairWise[] = {
2103 {ISD::FMINNUM, MVT::v8f64, 1},
2104 {ISD::FMINNUM, MVT::v16f32, 2},
2105 {ISD::SMIN, MVT::v8i64, 1},
2106 {ISD::UMIN, MVT::v8i64, 1},
2107 {ISD::SMIN, MVT::v16i32, 1},
2108 {ISD::UMIN, MVT::v16i32, 1},
2109 };
2110
2111 if (IsPairwise) {
2112 if (ST->hasAVX512())
2113 if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
2114 return LT.first * Entry->Cost;
2115
2116 if (ST->hasAVX2())
2117 if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
2118 return LT.first * Entry->Cost;
2119
2120 if (ST->hasAVX())
2121 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2122 return LT.first * Entry->Cost;
2123
2124 if (ST->hasSSE42())
2125 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2126 return LT.first * Entry->Cost;
2127 } else {
2128 if (ST->hasAVX512())
2129 if (const auto *Entry =
2130 CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
2131 return LT.first * Entry->Cost;
2132
2133 if (ST->hasAVX2())
2134 if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
2135 return LT.first * Entry->Cost;
2136
2137 if (ST->hasAVX())
2138 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2139 return LT.first * Entry->Cost;
2140
2141 if (ST->hasSSE42())
2142 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2143 return LT.first * Entry->Cost;
2144 }
2145
2146 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
2147}
2148
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002149/// \brief Calculate the cost of materializing a 64-bit value. This helper
2150/// method might only calculate a fraction of a larger immediate. Therefore it
2151/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00002152int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002153 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002154 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002155
2156 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00002157 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002158
Chandler Carruth705b1852015-01-31 03:43:40 +00002159 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002160}
2161
Chandler Carruth93205eb2015-08-05 18:08:10 +00002162int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002163 assert(Ty->isIntegerTy());
2164
2165 unsigned BitSize = Ty->getPrimitiveSizeInBits();
2166 if (BitSize == 0)
2167 return ~0U;
2168
Juergen Ributzka43176172014-05-19 21:00:53 +00002169 // Never hoist constants larger than 128bit, because this might lead to
2170 // incorrect code generation or assertions in codegen.
2171 // Fixme: Create a cost model for types larger than i128 once the codegen
2172 // issues have been fixed.
2173 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00002174 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00002175
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002176 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002177 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002178
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002179 // Sign-extend all constants to a multiple of 64-bit.
2180 APInt ImmVal = Imm;
2181 if (BitSize & 0x3f)
2182 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
2183
2184 // Split the constant into 64-bit chunks and calculate the cost for each
2185 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00002186 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002187 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
2188 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
2189 int64_t Val = Tmp.getSExtValue();
2190 Cost += getIntImmCost(Val);
2191 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00002192 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00002193 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002194}
2195
Chandler Carruth93205eb2015-08-05 18:08:10 +00002196int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
2197 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002198 assert(Ty->isIntegerTy());
2199
2200 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00002201 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2202 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002203 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002204 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002205
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002206 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002207 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00002208 default:
2209 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002210 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00002211 // Always hoist the base address of a GetElementPtr. This prevents the
2212 // creation of new constants for every base constant that gets constant
2213 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00002214 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002215 return 2 * TTI::TCC_Basic;
2216 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002217 case Instruction::Store:
2218 ImmIdx = 0;
2219 break;
Craig Topper074e8452015-12-20 18:41:54 +00002220 case Instruction::ICmp:
2221 // This is an imperfect hack to prevent constant hoisting of
2222 // compares that might be trying to check if a 64-bit value fits in
2223 // 32-bits. The backend can optimize these cases using a right shift by 32.
2224 // Ideally we would check the compare predicate here. There also other
2225 // similar immediates the backend can use shifts for.
2226 if (Idx == 1 && Imm.getBitWidth() == 64) {
2227 uint64_t ImmVal = Imm.getZExtValue();
2228 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
2229 return TTI::TCC_Free;
2230 }
2231 ImmIdx = 1;
2232 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00002233 case Instruction::And:
2234 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2235 // by using a 32-bit operation with implicit zero extension. Detect such
2236 // immediates here as the normal path expects bit 31 to be sign extended.
2237 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
2238 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00002239 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002240 case Instruction::Add:
2241 case Instruction::Sub:
2242 case Instruction::Mul:
2243 case Instruction::UDiv:
2244 case Instruction::SDiv:
2245 case Instruction::URem:
2246 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002247 case Instruction::Or:
2248 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002249 ImmIdx = 1;
2250 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00002251 // Always return TCC_Free for the shift value of a shift instruction.
2252 case Instruction::Shl:
2253 case Instruction::LShr:
2254 case Instruction::AShr:
2255 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00002256 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00002257 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002258 case Instruction::Trunc:
2259 case Instruction::ZExt:
2260 case Instruction::SExt:
2261 case Instruction::IntToPtr:
2262 case Instruction::PtrToInt:
2263 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002264 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002265 case Instruction::Call:
2266 case Instruction::Select:
2267 case Instruction::Ret:
2268 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002269 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002270 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002271
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002272 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00002273 int NumConstants = (BitSize + 63) / 64;
2274 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00002275 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00002276 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00002277 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002278 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002279
Chandler Carruth705b1852015-01-31 03:43:40 +00002280 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002281}
2282
Chandler Carruth93205eb2015-08-05 18:08:10 +00002283int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
2284 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002285 assert(Ty->isIntegerTy());
2286
2287 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00002288 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2289 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002290 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002291 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002292
2293 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00002294 default:
2295 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002296 case Intrinsic::sadd_with_overflow:
2297 case Intrinsic::uadd_with_overflow:
2298 case Intrinsic::ssub_with_overflow:
2299 case Intrinsic::usub_with_overflow:
2300 case Intrinsic::smul_with_overflow:
2301 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002302 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00002303 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002304 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002305 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002306 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00002307 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002308 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002309 case Intrinsic::experimental_patchpoint_void:
2310 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002311 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00002312 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002313 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002314 }
Chandler Carruth705b1852015-01-31 03:43:40 +00002315 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002316}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002317
Elena Demikhovskyf58f8382017-08-20 12:34:29 +00002318unsigned X86TTIImpl::getUserCost(const User *U,
2319 ArrayRef<const Value *> Operands) {
2320 if (isa<StoreInst>(U)) {
2321 Value *Ptr = U->getOperand(1);
2322 // Store instruction with index and scale costs 2 Uops.
2323 // Check the preceding GEP to identify non-const indices.
2324 if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
2325 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
2326 return TTI::TCC_Basic * 2;
2327 }
2328 return TTI::TCC_Basic;
2329 }
2330 return BaseT::getUserCost(U, Operands);
2331}
2332
Elena Demikhovsky54946982015-12-28 20:10:59 +00002333// Return an average cost of Gather / Scatter instruction, maybe improved later
2334int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
2335 unsigned Alignment, unsigned AddressSpace) {
2336
2337 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
2338 unsigned VF = SrcVTy->getVectorNumElements();
2339
2340 // Try to reduce index size from 64 bit (default for GEP)
2341 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
2342 // operation will use 16 x 64 indices which do not fit in a zmm and needs
2343 // to split. Also check that the base pointer is the same for all lanes,
2344 // and that there's at most one variable index.
2345 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
2346 unsigned IndexSize = DL.getPointerSizeInBits();
2347 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2348 if (IndexSize < 64 || !GEP)
2349 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00002350
Elena Demikhovsky54946982015-12-28 20:10:59 +00002351 unsigned NumOfVarIndices = 0;
2352 Value *Ptrs = GEP->getPointerOperand();
2353 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
2354 return IndexSize;
2355 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
2356 if (isa<Constant>(GEP->getOperand(i)))
2357 continue;
2358 Type *IndxTy = GEP->getOperand(i)->getType();
2359 if (IndxTy->isVectorTy())
2360 IndxTy = IndxTy->getVectorElementType();
2361 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2362 !isa<SExtInst>(GEP->getOperand(i))) ||
2363 ++NumOfVarIndices > 1)
2364 return IndexSize; // 64
2365 }
2366 return (unsigned)32;
2367 };
2368
2369
2370 // Trying to reduce IndexSize to 32 bits for vector 16.
2371 // By default the IndexSize is equal to pointer size.
Mohammed Agabaria115f68e2017-11-20 08:18:12 +00002372 unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
2373 ? getIndexSizeInBits(Ptr, DL)
2374 : DL.getPointerSizeInBits();
Elena Demikhovsky54946982015-12-28 20:10:59 +00002375
Mehdi Amini867e9142016-04-14 04:36:40 +00002376 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002377 IndexSize), VF);
2378 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
2379 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2380 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2381 if (SplitFactor > 1) {
2382 // Handle splitting of vector of pointers
2383 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2384 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2385 AddressSpace);
2386 }
2387
2388 // The gather / scatter cost is given by Intel architects. It is a rough
2389 // number since we are looking at one instruction in a time.
Mohammed Agabaria115f68e2017-11-20 08:18:12 +00002390 const int GSOverhead = (Opcode == Instruction::Load)
2391 ? ST->getGatherOverhead()
2392 : ST->getScatterOverhead();
Elena Demikhovsky54946982015-12-28 20:10:59 +00002393 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2394 Alignment, AddressSpace);
2395}
2396
2397/// Return the cost of full scalarization of gather / scatter operation.
2398///
2399/// Opcode - Load or Store instruction.
2400/// SrcVTy - The type of the data vector that should be gathered or scattered.
2401/// VariableMask - The mask is non-constant at compile time.
2402/// Alignment - Alignment for one element.
2403/// AddressSpace - pointer[s] address space.
2404///
2405int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2406 bool VariableMask, unsigned Alignment,
2407 unsigned AddressSpace) {
2408 unsigned VF = SrcVTy->getVectorNumElements();
2409
2410 int MaskUnpackCost = 0;
2411 if (VariableMask) {
2412 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002413 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002414 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2415 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002416 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002417 nullptr);
2418 int BranchCost = getCFInstrCost(Instruction::Br);
2419 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2420 }
2421
2422 // The cost of the scalar loads/stores.
2423 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2424 Alignment, AddressSpace);
2425
2426 int InsertExtractCost = 0;
2427 if (Opcode == Instruction::Load)
2428 for (unsigned i = 0; i < VF; ++i)
2429 // Add the cost of inserting each scalar load into the vector
2430 InsertExtractCost +=
2431 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2432 else
2433 for (unsigned i = 0; i < VF; ++i)
2434 // Add the cost of extracting each element out of the data vector
2435 InsertExtractCost +=
2436 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2437
2438 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2439}
2440
2441/// Calculate the cost of Gather / Scatter operation
2442int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2443 Value *Ptr, bool VariableMask,
2444 unsigned Alignment) {
2445 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2446 unsigned VF = SrcVTy->getVectorNumElements();
2447 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2448 if (!PtrTy && Ptr->getType()->isVectorTy())
2449 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2450 assert(PtrTy && "Unexpected type for Ptr argument");
2451 unsigned AddressSpace = PtrTy->getAddressSpace();
2452
2453 bool Scalarize = false;
2454 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2455 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2456 Scalarize = true;
2457 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2458 // Vector-4 of gather/scatter instruction does not exist on KNL.
2459 // We can extend it to 8 elements, but zeroing upper bits of
2460 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002461 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2462 // is better in the VariableMask case.
Mohammed Agabaria115f68e2017-11-20 08:18:12 +00002463 if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
Elena Demikhovsky54946982015-12-28 20:10:59 +00002464 Scalarize = true;
2465
2466 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002467 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2468 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002469
2470 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2471}
2472
Evgeny Stupachenkoc6752902017-08-07 19:56:34 +00002473bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
2474 TargetTransformInfo::LSRCost &C2) {
2475 // X86 specific here are "instruction number 1st priority".
2476 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
2477 C1.NumIVMuls, C1.NumBaseAdds,
2478 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
2479 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
2480 C2.NumIVMuls, C2.NumBaseAdds,
2481 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
2482}
2483
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002484bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
Craig Topper46a5d582017-11-16 06:02:05 +00002485 // The backend can't handle a single element vector.
2486 if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
2487 return false;
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002488 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002489 int DataWidth = isa<PointerType>(ScalarTy) ?
2490 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002491
Igor Bregerf44b79d2016-08-02 09:15:28 +00002492 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2493 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002494}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002495
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002496bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2497 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002498}
2499
Elena Demikhovsky09285852015-10-25 15:37:55 +00002500bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2501 // This function is called now in two cases: from the Loop Vectorizer
2502 // and from the Scalarizer.
2503 // When the Loop Vectorizer asks about legality of the feature,
2504 // the vectorization factor is not calculated yet. The Loop Vectorizer
2505 // sends a scalar type and the decision is based on the width of the
2506 // scalar element.
2507 // Later on, the cost model will estimate usage this intrinsic based on
2508 // the vector type.
2509 // The Scalarizer asks again about legality. It sends a vector type.
2510 // In this case we can reject non-power-of-2 vectors.
Craig Topper46a5d582017-11-16 06:02:05 +00002511 // We also reject single element vectors as the type legalizer can't
2512 // scalarize it.
2513 if (isa<VectorType>(DataTy)) {
2514 unsigned NumElts = DataTy->getVectorNumElements();
2515 if (NumElts == 1 || !isPowerOf2_32(NumElts))
2516 return false;
2517 }
Elena Demikhovsky09285852015-10-25 15:37:55 +00002518 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002519 int DataWidth = isa<PointerType>(ScalarTy) ?
2520 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002521
Craig Topperea37e202017-11-25 18:09:37 +00002522 // Some CPUs have better gather performance than others.
2523 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
2524 // enable gather with a -march.
2525 return (DataWidth == 32 || DataWidth == 64) &&
2526 (ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2()));
Elena Demikhovsky09285852015-10-25 15:37:55 +00002527}
2528
2529bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
Mohammed Agabaria115f68e2017-11-20 08:18:12 +00002530 // AVX2 doesn't support scatter
2531 if (!ST->hasAVX512())
2532 return false;
Elena Demikhovsky09285852015-10-25 15:37:55 +00002533 return isLegalMaskedGather(DataType);
2534}
2535
Sanjay Patel6fd43912017-09-09 13:38:18 +00002536bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
2537 EVT VT = TLI->getValueType(DL, DataType);
2538 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
2539}
2540
Sanjay Patel0de1a4b2017-11-27 21:15:43 +00002541bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
2542 return false;
2543}
2544
Eric Christopherd566fb12015-07-29 22:09:48 +00002545bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2546 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002547 const TargetMachine &TM = getTLI()->getTargetMachine();
2548
2549 // Work this as a subsetting of subtarget features.
2550 const FeatureBitset &CallerBits =
2551 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2552 const FeatureBitset &CalleeBits =
2553 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2554
2555 // FIXME: This is likely too limiting as it will include subtarget features
2556 // that we might not care about for inlining, but it is conservatively
2557 // correct.
2558 return (CallerBits & CalleeBits) == CalleeBits;
2559}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002560
Clement Courbetb2c3eb82017-10-30 14:19:33 +00002561const X86TTIImpl::TTI::MemCmpExpansionOptions *
2562X86TTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const {
2563 // Only enable vector loads for equality comparison.
2564 // Right now the vector version is not as fast, see #33329.
2565 static const auto ThreeWayOptions = [this]() {
2566 TTI::MemCmpExpansionOptions Options;
2567 if (ST->is64Bit()) {
2568 Options.LoadSizes.push_back(8);
2569 }
2570 Options.LoadSizes.push_back(4);
2571 Options.LoadSizes.push_back(2);
2572 Options.LoadSizes.push_back(1);
2573 return Options;
2574 }();
2575 static const auto EqZeroOptions = [this]() {
2576 TTI::MemCmpExpansionOptions Options;
2577 // TODO: enable AVX512 when the DAG is ready.
2578 // if (ST->hasAVX512()) Options.LoadSizes.push_back(64);
2579 if (ST->hasAVX2()) Options.LoadSizes.push_back(32);
2580 if (ST->hasSSE2()) Options.LoadSizes.push_back(16);
2581 if (ST->is64Bit()) {
2582 Options.LoadSizes.push_back(8);
2583 }
2584 Options.LoadSizes.push_back(4);
2585 Options.LoadSizes.push_back(2);
2586 Options.LoadSizes.push_back(1);
2587 return Options;
2588 }();
2589 return IsZeroCmp ? &EqZeroOptions : &ThreeWayOptions;
Sanjay Patel06566292017-06-20 15:58:30 +00002590}
2591
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002592bool X86TTIImpl::enableInterleavedAccessVectorization() {
2593 // TODO: We expect this to be beneficial regardless of arch,
2594 // but there are currently some unexplained performance artifacts on Atom.
2595 // As a temporary solution, disable on Atom.
Mohammed Agabaria20caee92017-01-25 09:14:48 +00002596 return !(ST->isAtom());
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002597}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002598
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002599// Get estimation for interleaved load/store operations for AVX2.
2600// \p Factor is the interleaved-access factor (stride) - number of
2601// (interleaved) elements in the group.
2602// \p Indices contains the indices for a strided load: when the
2603// interleaved load has gaps they indicate which elements are used.
2604// If Indices is empty (or if the number of indices is equal to the size
2605// of the interleaved-access as given in \p Factor) the access has no gaps.
2606//
2607// As opposed to AVX-512, AVX2 does not have generic shuffles that allow
2608// computing the cost using a generic formula as a function of generic
2609// shuffles. We therefore use a lookup table instead, filled according to
2610// the instruction sequences that codegen currently generates.
2611int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
2612 unsigned Factor,
2613 ArrayRef<unsigned> Indices,
2614 unsigned Alignment,
2615 unsigned AddressSpace) {
2616
2617 // We currently Support only fully-interleaved groups, with no gaps.
2618 // TODO: Support also strided loads (interleaved-groups with gaps).
2619 if (Indices.size() && Indices.size() != Factor)
2620 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2621 Alignment, AddressSpace);
2622
2623 // VecTy for interleave memop is <VF*Factor x Elt>.
2624 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2625 // VecTy = <12 x i32>.
2626 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2627
2628 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
2629 // the VF=2, while v2i128 is an unsupported MVT vector type
2630 // (see MachineValueType.h::getVectorVT()).
2631 if (!LegalVT.isVector())
2632 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2633 Alignment, AddressSpace);
2634
2635 unsigned VF = VecTy->getVectorNumElements() / Factor;
2636 Type *ScalarTy = VecTy->getVectorElementType();
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002637
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002638 // Calculate the number of memory operations (NumOfMemOps), required
2639 // for load/store the VecTy.
2640 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2641 unsigned LegalVTSize = LegalVT.getStoreSize();
2642 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2643
2644 // Get the cost of one memory operation.
2645 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2646 LegalVT.getVectorNumElements());
2647 unsigned MemOpCost =
2648 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002649
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002650 VectorType *VT = VectorType::get(ScalarTy, VF);
2651 EVT ETy = TLI->getValueType(DL, VT);
2652 if (!ETy.isSimple())
2653 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2654 Alignment, AddressSpace);
2655
2656 // TODO: Complete for other data-types and strides.
2657 // Each combination of Stride, ElementTy and VF results in a different
2658 // sequence; The cost tables are therefore accessed with:
2659 // Factor (stride) and VectorType=VFxElemType.
2660 // The Cost accounts only for the shuffle sequence;
2661 // The cost of the loads/stores is accounted for separately.
2662 //
2663 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
Mohammed Agabaria6e6d5322017-11-16 09:38:32 +00002664 { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
2665 { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
2666
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002667 { 3, MVT::v2i8, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8
2668 { 3, MVT::v4i8, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8
2669 { 3, MVT::v8i8, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8
Michael Zuckerman49293262017-10-18 11:41:55 +00002670 { 3, MVT::v16i8, 11}, //(load 48i8 and) deinterleave into 3 x 16i8
2671 { 3, MVT::v32i8, 13}, //(load 96i8 and) deinterleave into 3 x 32i8
Mohammed Agabaria66917582017-11-06 10:56:20 +00002672 { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002673
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002674 { 4, MVT::v2i8, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8
2675 { 4, MVT::v4i8, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8
2676 { 4, MVT::v8i8, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8
2677 { 4, MVT::v16i8, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8
Mohammed Agabaria66917582017-11-06 10:56:20 +00002678 { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
2679
2680 { 8, MVT::v8f32, 40 } //(load 64f32 and)deinterleave into 8 x 8f32
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002681 };
2682
2683 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
Mohammed Agabaria6e6d5322017-11-16 09:38:32 +00002684 { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
2685 { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
2686
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002687 { 3, MVT::v2i8, 7 }, //interleave 3 x 2i8 into 6i8 (and store)
2688 { 3, MVT::v4i8, 8 }, //interleave 3 x 4i8 into 12i8 (and store)
2689 { 3, MVT::v8i8, 11 }, //interleave 3 x 8i8 into 24i8 (and store)
Michael Zuckerman49293262017-10-18 11:41:55 +00002690 { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
2691 { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002692
2693 { 4, MVT::v2i8, 12 }, //interleave 4 x 2i8 into 8i8 (and store)
2694 { 4, MVT::v4i8, 9 }, //interleave 4 x 4i8 into 16i8 (and store)
Michael Zuckerman49293262017-10-18 11:41:55 +00002695 { 4, MVT::v8i8, 10 }, //interleave 4 x 8i8 into 32i8 (and store)
2696 { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
2697 { 4, MVT::v32i8, 12 } //interleave 4 x 32i8 into 128i8 (and store)
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002698 };
2699
2700 if (Opcode == Instruction::Load) {
2701 if (const auto *Entry =
2702 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
2703 return NumOfMemOps * MemOpCost + Entry->Cost;
2704 } else {
2705 assert(Opcode == Instruction::Store &&
2706 "Expected Store Instruction at this point");
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002707 if (const auto *Entry =
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002708 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
2709 return NumOfMemOps * MemOpCost + Entry->Cost;
2710 }
2711
2712 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2713 Alignment, AddressSpace);
2714}
2715
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002716// Get estimation for interleaved load/store operations and strided load.
2717// \p Indices contains indices for strided load.
2718// \p Factor - the factor of interleaving.
2719// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2720int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2721 unsigned Factor,
2722 ArrayRef<unsigned> Indices,
2723 unsigned Alignment,
2724 unsigned AddressSpace) {
2725
2726 // VecTy for interleave memop is <VF*Factor x Elt>.
2727 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2728 // VecTy = <12 x i32>.
2729
2730 // Calculate the number of memory operations (NumOfMemOps), required
2731 // for load/store the VecTy.
2732 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2733 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2734 unsigned LegalVTSize = LegalVT.getStoreSize();
2735 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2736
2737 // Get the cost of one memory operation.
2738 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2739 LegalVT.getVectorNumElements());
2740 unsigned MemOpCost =
2741 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2742
Michael Zuckerman49293262017-10-18 11:41:55 +00002743 unsigned VF = VecTy->getVectorNumElements() / Factor;
2744 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
2745
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002746 if (Opcode == Instruction::Load) {
Michael Zuckerman49293262017-10-18 11:41:55 +00002747 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
2748 // contain the cost of the optimized shuffle sequence that the
2749 // X86InterleavedAccess pass will generate.
2750 // The cost of loads and stores are computed separately from the table.
2751
2752 // X86InterleavedAccess support only the following interleaved-access group.
2753 static const CostTblEntry AVX512InterleavedLoadTbl[] = {
2754 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
2755 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
2756 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
2757 };
2758
2759 if (const auto *Entry =
2760 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
2761 return NumOfMemOps * MemOpCost + Entry->Cost;
2762 //If an entry does not exist, fallback to the default implementation.
2763
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002764 // Kind of shuffle depends on number of loaded values.
2765 // If we load the entire data in one register, we can use a 1-src shuffle.
2766 // Otherwise, we'll merge 2 sources in each operation.
2767 TTI::ShuffleKind ShuffleKind =
2768 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2769
2770 unsigned ShuffleCost =
2771 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2772
2773 unsigned NumOfLoadsInInterleaveGrp =
2774 Indices.size() ? Indices.size() : Factor;
2775 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2776 VecTy->getVectorNumElements() / Factor);
2777 unsigned NumOfResults =
2778 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2779 NumOfLoadsInInterleaveGrp;
2780
2781 // About a half of the loads may be folded in shuffles when we have only
2782 // one result. If we have more than one result, we do not fold loads at all.
2783 unsigned NumOfUnfoldedLoads =
2784 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2785
2786 // Get a number of shuffle operations per result.
2787 unsigned NumOfShufflesPerResult =
2788 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2789
2790 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2791 // When we have more than one destination, we need additional instructions
2792 // to keep sources.
2793 unsigned NumOfMoves = 0;
2794 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2795 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2796
2797 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2798 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2799
2800 return Cost;
2801 }
2802
2803 // Store.
2804 assert(Opcode == Instruction::Store &&
2805 "Expected Store Instruction at this point");
Michael Zuckerman49293262017-10-18 11:41:55 +00002806 // X86InterleavedAccess support only the following interleaved-access group.
2807 static const CostTblEntry AVX512InterleavedStoreTbl[] = {
2808 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
2809 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
2810 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
2811
2812 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
2813 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
2814 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
2815 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
2816 };
2817
2818 if (const auto *Entry =
2819 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
2820 return NumOfMemOps * MemOpCost + Entry->Cost;
2821 //If an entry does not exist, fallback to the default implementation.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002822
2823 // There is no strided stores meanwhile. And store can't be folded in
2824 // shuffle.
2825 unsigned NumOfSources = Factor; // The number of values to be merged.
2826 unsigned ShuffleCost =
2827 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2828 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2829
2830 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2831 // We need additional instructions to keep sources.
2832 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2833 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2834 NumOfMoves;
2835 return Cost;
2836}
2837
2838int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2839 unsigned Factor,
2840 ArrayRef<unsigned> Indices,
2841 unsigned Alignment,
2842 unsigned AddressSpace) {
Craig Topper8b0f1852017-12-06 18:40:46 +00002843 auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002844 Type *EltTy = VecTy->getVectorElementType();
2845 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2846 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2847 return true;
Craig Topper8b0f1852017-12-06 18:40:46 +00002848 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
2849 return HasBW;
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002850 return false;
2851 };
Craig Topper8b0f1852017-12-06 18:40:46 +00002852 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002853 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2854 Alignment, AddressSpace);
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002855 if (ST->hasAVX2())
2856 return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
2857 Alignment, AddressSpace);
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002858
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002859 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2860 Alignment, AddressSpace);
2861}