blob: 91692ad41edcf57cd4202467d79a213c9c956187 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Stephen Hines36b56882014-04-23 16:57:46 -07007 :depth: 4
Sean Silvaf722b002012-12-07 10:36:55 +00008
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Bill Wendling3be4b1d2013-12-01 03:07:11 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvaf722b002012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liao2faa0f32013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000156
Michael Liao2faa0f32013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvaf722b002012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvaf722b002012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvaf722b002012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Stephen Hines36b56882014-04-23 16:57:46 -0700268other than ``external`` or ``extern_weak``.
Sean Silvaf722b002012-12-07 10:36:55 +0000269
Sean Silvaf722b002012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Stephen Hines36b56882014-04-23 16:57:46 -0700305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Stephen Hines36b56882014-04-23 16:57:46 -0700341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvaf722b002012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Bendersky1de14102013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvaf722b002012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Eli Bendersky1de14102013-06-07 19:40:08 +0000443.. _namedtypes:
444
Stephen Hines36b56882014-04-23 16:57:46 -0700445DLL Storage Classes
446-------------------
Sean Silvaf722b002012-12-07 10:36:55 +0000447
Stephen Hines36b56882014-04-23 16:57:46 -0700448All Global Variables, Functions and Aliases can have one of the following
449DLL storage class:
450
451``dllimport``
452 "``dllimport``" causes the compiler to reference a function or variable via
453 a global pointer to a pointer that is set up by the DLL exporting the
454 symbol. On Microsoft Windows targets, the pointer name is formed by
455 combining ``__imp_`` and the function or variable name.
456``dllexport``
457 "``dllexport``" causes the compiler to provide a global pointer to a pointer
458 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
459 Microsoft Windows targets, the pointer name is formed by combining
460 ``__imp_`` and the function or variable name. Since this storage class
461 exists for defining a dll interface, the compiler, assembler and linker know
462 it is externally referenced and must refrain from deleting the symbol.
463
464Structure Types
465---------------
466
467LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
468types <t_struct>`. Literal types are uniqued structurally, but identified types
469are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
470to forward declare a type which is not yet available.
471
472An example of a identified structure specification is:
Sean Silvaf722b002012-12-07 10:36:55 +0000473
474.. code-block:: llvm
475
476 %mytype = type { %mytype*, i32 }
477
Stephen Hines36b56882014-04-23 16:57:46 -0700478Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
479literal types are uniqued in recent versions of LLVM.
Sean Silvaf722b002012-12-07 10:36:55 +0000480
481.. _globalvars:
482
483Global Variables
484----------------
485
486Global variables define regions of memory allocated at compilation time
Rafael Espindola1313a222013-10-29 13:44:11 +0000487instead of run-time.
488
489Global variables definitions must be initialized, may have an explicit section
490to be placed in, and may have an optional explicit alignment specified.
491
492Global variables in other translation units can also be declared, in which
493case they don't have an initializer.
Sean Silvaf722b002012-12-07 10:36:55 +0000494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507The models correspond to the ELF TLS models; see `ELF Handling For
508Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
509more information on under which circumstances the different models may
510be used. The target may choose a different TLS model if the specified
511model is not supported, or if a better choice of model can be made.
512
Michael Gottesmanf5735882013-01-31 05:48:48 +0000513A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000514the contents of the variable will **never** be modified (enabling better
515optimization, allowing the global data to be placed in the read-only
516section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000517initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000518variable.
519
520LLVM explicitly allows *declarations* of global variables to be marked
521constant, even if the final definition of the global is not. This
522capability can be used to enable slightly better optimization of the
523program, but requires the language definition to guarantee that
524optimizations based on the 'constantness' are valid for the translation
525units that do not include the definition.
526
527As SSA values, global variables define pointer values that are in scope
528(i.e. they dominate) all basic blocks in the program. Global variables
529always define a pointer to their "content" type because they describe a
530region of memory, and all memory objects in LLVM are accessed through
531pointers.
532
533Global variables can be marked with ``unnamed_addr`` which indicates
534that the address is not significant, only the content. Constants marked
535like this can be merged with other constants if they have the same
536initializer. Note that a constant with significant address *can* be
537merged with a ``unnamed_addr`` constant, the result being a constant
538whose address is significant.
539
540A global variable may be declared to reside in a target-specific
541numbered address space. For targets that support them, address spaces
542may affect how optimizations are performed and/or what target
543instructions are used to access the variable. The default address space
544is zero. The address space qualifier must precede any other attributes.
545
546LLVM allows an explicit section to be specified for globals. If the
547target supports it, it will emit globals to the section specified.
548
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000549By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000550variables defined within the module are not modified from their
551initial values before the start of the global initializer. This is
552true even for variables potentially accessible from outside the
553module, including those with external linkage or appearing in
Stephen Hines36b56882014-04-23 16:57:46 -0700554``@llvm.used`` or dllexported variables. This assumption may be suppressed
555by marking the variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000556
Sean Silvaf722b002012-12-07 10:36:55 +0000557An explicit alignment may be specified for a global, which must be a
558power of 2. If not present, or if the alignment is set to zero, the
559alignment of the global is set by the target to whatever it feels
560convenient. If an explicit alignment is specified, the global is forced
561to have exactly that alignment. Targets and optimizers are not allowed
562to over-align the global if the global has an assigned section. In this
563case, the extra alignment could be observable: for example, code could
564assume that the globals are densely packed in their section and try to
565iterate over them as an array, alignment padding would break this
566iteration.
567
Stephen Hines36b56882014-04-23 16:57:46 -0700568Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
569
570Syntax::
571
572 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
573 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
574 <global | constant> <Type>
575 [, section "name"] [, align <Alignment>]
576
Sean Silvaf722b002012-12-07 10:36:55 +0000577For example, the following defines a global in a numbered address space
578with an initializer, section, and alignment:
579
580.. code-block:: llvm
581
582 @G = addrspace(5) constant float 1.0, section "foo", align 4
583
Rafael Espindola1313a222013-10-29 13:44:11 +0000584The following example just declares a global variable
585
586.. code-block:: llvm
587
588 @G = external global i32
589
Sean Silvaf722b002012-12-07 10:36:55 +0000590The following example defines a thread-local global with the
591``initialexec`` TLS model:
592
593.. code-block:: llvm
594
595 @G = thread_local(initialexec) global i32 0, align 4
596
597.. _functionstructure:
598
599Functions
600---------
601
602LLVM function definitions consist of the "``define``" keyword, an
603optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Stephen Hines36b56882014-04-23 16:57:46 -0700604style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
605an optional :ref:`calling convention <callingconv>`,
Sean Silvaf722b002012-12-07 10:36:55 +0000606an optional ``unnamed_addr`` attribute, a return type, an optional
607:ref:`parameter attribute <paramattrs>` for the return type, a function
608name, a (possibly empty) argument list (each with optional :ref:`parameter
609attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
610an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000611collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
612curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000613
614LLVM function declarations consist of the "``declare``" keyword, an
615optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Stephen Hines36b56882014-04-23 16:57:46 -0700616style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
617an optional :ref:`calling convention <callingconv>`,
Sean Silvaf722b002012-12-07 10:36:55 +0000618an optional ``unnamed_addr`` attribute, a return type, an optional
619:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000620name, a possibly empty list of arguments, an optional alignment, an optional
621:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000622
Bill Wendlingcba7d7d2013-10-27 05:09:12 +0000623A function definition contains a list of basic blocks, forming the CFG (Control
624Flow Graph) for the function. Each basic block may optionally start with a label
625(giving the basic block a symbol table entry), contains a list of instructions,
626and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
627function return). If an explicit label is not provided, a block is assigned an
628implicit numbered label, using the next value from the same counter as used for
629unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
630entry block does not have an explicit label, it will be assigned label "%0",
631then the first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000632
633The first basic block in a function is special in two ways: it is
634immediately executed on entrance to the function, and it is not allowed
635to have predecessor basic blocks (i.e. there can not be any branches to
636the entry block of a function). Because the block can have no
637predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
638
639LLVM allows an explicit section to be specified for functions. If the
640target supports it, it will emit functions to the section specified.
641
642An explicit alignment may be specified for a function. If not present,
643or if the alignment is set to zero, the alignment of the function is set
644by the target to whatever it feels convenient. If an explicit alignment
645is specified, the function is forced to have at least that much
646alignment. All alignments must be a power of 2.
647
648If the ``unnamed_addr`` attribute is given, the address is know to not
649be significant and two identical functions can be merged.
650
651Syntax::
652
Stephen Hines36b56882014-04-23 16:57:46 -0700653 define [linkage] [visibility] [DLLStorageClass]
Sean Silvaf722b002012-12-07 10:36:55 +0000654 [cconv] [ret attrs]
655 <ResultType> @<FunctionName> ([argument list])
Stephen Hines36b56882014-04-23 16:57:46 -0700656 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000657 [gc] [prefix Constant] { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000658
Eli Bendersky1de14102013-06-07 19:40:08 +0000659.. _langref_aliases:
660
Sean Silvaf722b002012-12-07 10:36:55 +0000661Aliases
662-------
663
664Aliases act as "second name" for the aliasee value (which can be either
665function, global variable, another alias or bitcast of global value).
Stephen Hines36b56882014-04-23 16:57:46 -0700666Aliases may have an optional :ref:`linkage type <linkage>`, an optional
667:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
668<dllstorageclass>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000669
670Syntax::
671
Stephen Hines36b56882014-04-23 16:57:46 -0700672 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvaf722b002012-12-07 10:36:55 +0000673
Stephen Hines36b56882014-04-23 16:57:46 -0700674The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola19794da2013-11-01 17:09:14 +0000675``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Stephen Hines36b56882014-04-23 16:57:46 -0700676might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola19794da2013-11-01 17:09:14 +0000677alias.
Rafael Espindola2def1792013-10-06 15:10:43 +0000678
Stephen Hines36b56882014-04-23 16:57:46 -0700679Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
680the aliasee.
681
682The aliasee must be a definition.
683
684Aliases are not allowed to point to aliases with linkages that can be
685overridden. Since they are only a second name, the possibility of the
686intermediate alias being overridden cannot be represented in an object file.
687
Sean Silvaf722b002012-12-07 10:36:55 +0000688.. _namedmetadatastructure:
689
690Named Metadata
691--------------
692
693Named metadata is a collection of metadata. :ref:`Metadata
694nodes <metadata>` (but not metadata strings) are the only valid
695operands for a named metadata.
696
697Syntax::
698
699 ; Some unnamed metadata nodes, which are referenced by the named metadata.
700 !0 = metadata !{metadata !"zero"}
701 !1 = metadata !{metadata !"one"}
702 !2 = metadata !{metadata !"two"}
703 ; A named metadata.
704 !name = !{!0, !1, !2}
705
706.. _paramattrs:
707
708Parameter Attributes
709--------------------
710
711The return type and each parameter of a function type may have a set of
712*parameter attributes* associated with them. Parameter attributes are
713used to communicate additional information about the result or
714parameters of a function. Parameter attributes are considered to be part
715of the function, not of the function type, so functions with different
716parameter attributes can have the same function type.
717
718Parameter attributes are simple keywords that follow the type specified.
719If multiple parameter attributes are needed, they are space separated.
720For example:
721
722.. code-block:: llvm
723
724 declare i32 @printf(i8* noalias nocapture, ...)
725 declare i32 @atoi(i8 zeroext)
726 declare signext i8 @returns_signed_char()
727
728Note that any attributes for the function result (``nounwind``,
729``readonly``) come immediately after the argument list.
730
731Currently, only the following parameter attributes are defined:
732
733``zeroext``
734 This indicates to the code generator that the parameter or return
735 value should be zero-extended to the extent required by the target's
736 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
737 the caller (for a parameter) or the callee (for a return value).
738``signext``
739 This indicates to the code generator that the parameter or return
740 value should be sign-extended to the extent required by the target's
741 ABI (which is usually 32-bits) by the caller (for a parameter) or
742 the callee (for a return value).
743``inreg``
744 This indicates that this parameter or return value should be treated
745 in a special target-dependent fashion during while emitting code for
746 a function call or return (usually, by putting it in a register as
747 opposed to memory, though some targets use it to distinguish between
748 two different kinds of registers). Use of this attribute is
749 target-specific.
750``byval``
751 This indicates that the pointer parameter should really be passed by
752 value to the function. The attribute implies that a hidden copy of
753 the pointee is made between the caller and the callee, so the callee
754 is unable to modify the value in the caller. This attribute is only
755 valid on LLVM pointer arguments. It is generally used to pass
756 structs and arrays by value, but is also valid on pointers to
757 scalars. The copy is considered to belong to the caller not the
758 callee (for example, ``readonly`` functions should not write to
759 ``byval`` parameters). This is not a valid attribute for return
760 values.
761
762 The byval attribute also supports specifying an alignment with the
763 align attribute. It indicates the alignment of the stack slot to
764 form and the known alignment of the pointer specified to the call
765 site. If the alignment is not specified, then the code generator
766 makes a target-specific assumption.
767
Stephen Hines36b56882014-04-23 16:57:46 -0700768.. _attr_inalloca:
769
770``inalloca``
771
772 The ``inalloca`` argument attribute allows the caller to take the
773 address of outgoing stack arguments. An ``inalloca`` argument must
774 be a pointer to stack memory produced by an ``alloca`` instruction.
775 The alloca, or argument allocation, must also be tagged with the
776 inalloca keyword. Only the past argument may have the ``inalloca``
777 attribute, and that argument is guaranteed to be passed in memory.
778
779 An argument allocation may be used by a call at most once because
780 the call may deallocate it. The ``inalloca`` attribute cannot be
781 used in conjunction with other attributes that affect argument
782 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
783 ``inalloca`` attribute also disables LLVM's implicit lowering of
784 large aggregate return values, which means that frontend authors
785 must lower them with ``sret`` pointers.
786
787 When the call site is reached, the argument allocation must have
788 been the most recent stack allocation that is still live, or the
789 results are undefined. It is possible to allocate additional stack
790 space after an argument allocation and before its call site, but it
791 must be cleared off with :ref:`llvm.stackrestore
792 <int_stackrestore>`.
793
794 See :doc:`InAlloca` for more information on how to use this
795 attribute.
796
Sean Silvaf722b002012-12-07 10:36:55 +0000797``sret``
798 This indicates that the pointer parameter specifies the address of a
799 structure that is the return value of the function in the source
800 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000801 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000802 not to trap and to be properly aligned. This may only be applied to
803 the first parameter. This is not a valid attribute for return
804 values.
805``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000806 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000807 the argument or return value do not alias pointer values which are
808 not *based* on it, ignoring certain "irrelevant" dependencies. For a
809 call to the parent function, dependencies between memory references
810 from before or after the call and from those during the call are
811 "irrelevant" to the ``noalias`` keyword for the arguments and return
812 value used in that call. The caller shares the responsibility with
813 the callee for ensuring that these requirements are met. For further
814 details, please see the discussion of the NoAlias response in `alias
815 analysis <AliasAnalysis.html#MustMayNo>`_.
816
817 Note that this definition of ``noalias`` is intentionally similar
818 to the definition of ``restrict`` in C99 for function arguments,
819 though it is slightly weaker.
820
821 For function return values, C99's ``restrict`` is not meaningful,
822 while LLVM's ``noalias`` is.
823``nocapture``
824 This indicates that the callee does not make any copies of the
825 pointer that outlive the callee itself. This is not a valid
826 attribute for return values.
827
828.. _nest:
829
830``nest``
831 This indicates that the pointer parameter can be excised using the
832 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000833 attribute for return values and can only be applied to one parameter.
834
835``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000836 This indicates that the function always returns the argument as its return
837 value. This is an optimization hint to the code generator when generating
838 the caller, allowing tail call optimization and omission of register saves
839 and restores in some cases; it is not checked or enforced when generating
840 the callee. The parameter and the function return type must be valid
841 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
842 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000843
844.. _gc:
845
846Garbage Collector Names
847-----------------------
848
849Each function may specify a garbage collector name, which is simply a
850string:
851
852.. code-block:: llvm
853
854 define void @f() gc "name" { ... }
855
856The compiler declares the supported values of *name*. Specifying a
857collector which will cause the compiler to alter its output in order to
858support the named garbage collection algorithm.
859
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000860.. _prefixdata:
861
862Prefix Data
863-----------
864
865Prefix data is data associated with a function which the code generator
866will emit immediately before the function body. The purpose of this feature
867is to allow frontends to associate language-specific runtime metadata with
868specific functions and make it available through the function pointer while
869still allowing the function pointer to be called. To access the data for a
870given function, a program may bitcast the function pointer to a pointer to
871the constant's type. This implies that the IR symbol points to the start
872of the prefix data.
873
874To maintain the semantics of ordinary function calls, the prefix data must
875have a particular format. Specifically, it must begin with a sequence of
876bytes which decode to a sequence of machine instructions, valid for the
877module's target, which transfer control to the point immediately succeeding
878the prefix data, without performing any other visible action. This allows
879the inliner and other passes to reason about the semantics of the function
880definition without needing to reason about the prefix data. Obviously this
881makes the format of the prefix data highly target dependent.
882
Peter Collingbournea4ae4052013-09-23 20:14:21 +0000883Prefix data is laid out as if it were an initializer for a global variable
884of the prefix data's type. No padding is automatically placed between the
885prefix data and the function body. If padding is required, it must be part
886of the prefix data.
887
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000888A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
889which encodes the ``nop`` instruction:
890
891.. code-block:: llvm
892
893 define void @f() prefix i8 144 { ... }
894
895Generally prefix data can be formed by encoding a relative branch instruction
896which skips the metadata, as in this example of valid prefix data for the
897x86_64 architecture, where the first two bytes encode ``jmp .+10``:
898
899.. code-block:: llvm
900
901 %0 = type <{ i8, i8, i8* }>
902
903 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
904
905A function may have prefix data but no body. This has similar semantics
906to the ``available_externally`` linkage in that the data may be used by the
907optimizers but will not be emitted in the object file.
908
Bill Wendling95ce4c22013-02-06 06:52:58 +0000909.. _attrgrp:
910
911Attribute Groups
912----------------
913
914Attribute groups are groups of attributes that are referenced by objects within
915the IR. They are important for keeping ``.ll`` files readable, because a lot of
916functions will use the same set of attributes. In the degenerative case of a
917``.ll`` file that corresponds to a single ``.c`` file, the single attribute
918group will capture the important command line flags used to build that file.
919
920An attribute group is a module-level object. To use an attribute group, an
921object references the attribute group's ID (e.g. ``#37``). An object may refer
922to more than one attribute group. In that situation, the attributes from the
923different groups are merged.
924
925Here is an example of attribute groups for a function that should always be
926inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
927
928.. code-block:: llvm
929
930 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000931 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000932
933 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000934 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000935
936 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
937 define void @f() #0 #1 { ... }
938
Sean Silvaf722b002012-12-07 10:36:55 +0000939.. _fnattrs:
940
941Function Attributes
942-------------------
943
944Function attributes are set to communicate additional information about
945a function. Function attributes are considered to be part of the
946function, not of the function type, so functions with different function
947attributes can have the same function type.
948
949Function attributes are simple keywords that follow the type specified.
950If multiple attributes are needed, they are space separated. For
951example:
952
953.. code-block:: llvm
954
955 define void @f() noinline { ... }
956 define void @f() alwaysinline { ... }
957 define void @f() alwaysinline optsize { ... }
958 define void @f() optsize { ... }
959
Sean Silvaf722b002012-12-07 10:36:55 +0000960``alignstack(<n>)``
961 This attribute indicates that, when emitting the prologue and
962 epilogue, the backend should forcibly align the stack pointer.
963 Specify the desired alignment, which must be a power of two, in
964 parentheses.
965``alwaysinline``
966 This attribute indicates that the inliner should attempt to inline
967 this function into callers whenever possible, ignoring any active
968 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000969``builtin``
970 This indicates that the callee function at a call site should be
971 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000972 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000973 direct calls to functions which are declared with the ``nobuiltin``
974 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000975``cold``
976 This attribute indicates that this function is rarely called. When
977 computing edge weights, basic blocks post-dominated by a cold
978 function call are also considered to be cold; and, thus, given low
979 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000980``inlinehint``
981 This attribute indicates that the source code contained a hint that
982 inlining this function is desirable (such as the "inline" keyword in
983 C/C++). It is just a hint; it imposes no requirements on the
984 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000985``minsize``
986 This attribute suggests that optimization passes and code generator
987 passes make choices that keep the code size of this function as small
Andrew Trickcf940ce2013-10-31 17:18:07 +0000988 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000989 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000990``naked``
991 This attribute disables prologue / epilogue emission for the
992 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000993``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000994 This indicates that the callee function at a call site is not recognized as
995 a built-in function. LLVM will retain the original call and not replace it
996 with equivalent code based on the semantics of the built-in function, unless
997 the call site uses the ``builtin`` attribute. This is valid at call sites
998 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000999``noduplicate``
1000 This attribute indicates that calls to the function cannot be
1001 duplicated. A call to a ``noduplicate`` function may be moved
1002 within its parent function, but may not be duplicated within
1003 its parent function.
1004
1005 A function containing a ``noduplicate`` call may still
1006 be an inlining candidate, provided that the call is not
1007 duplicated by inlining. That implies that the function has
1008 internal linkage and only has one call site, so the original
1009 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +00001010``noimplicitfloat``
1011 This attributes disables implicit floating point instructions.
1012``noinline``
1013 This attribute indicates that the inliner should never inline this
1014 function in any situation. This attribute may not be used together
1015 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +00001016``nonlazybind``
1017 This attribute suppresses lazy symbol binding for the function. This
1018 may make calls to the function faster, at the cost of extra program
1019 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +00001020``noredzone``
1021 This attribute indicates that the code generator should not use a
1022 red zone, even if the target-specific ABI normally permits it.
1023``noreturn``
1024 This function attribute indicates that the function never returns
1025 normally. This produces undefined behavior at runtime if the
1026 function ever does dynamically return.
1027``nounwind``
1028 This function attribute indicates that the function never returns
1029 with an unwind or exceptional control flow. If the function does
1030 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +00001031``optnone``
1032 This function attribute indicates that the function is not optimized
Andrew Trickcf940ce2013-10-31 17:18:07 +00001033 by any optimization or code generator passes with the
Andrea Di Biagio5768bb82013-08-23 11:53:55 +00001034 exception of interprocedural optimization passes.
1035 This attribute cannot be used together with the ``alwaysinline``
1036 attribute; this attribute is also incompatible
1037 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickcf940ce2013-10-31 17:18:07 +00001038
Paul Robinsonfe45fd02013-11-18 21:44:03 +00001039 This attribute requires the ``noinline`` attribute to be specified on
1040 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +00001041 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsonfe45fd02013-11-18 21:44:03 +00001042 candidates for inlining into the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +00001043``optsize``
1044 This attribute suggests that optimization passes and code generator
1045 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +00001046 and otherwise do optimizations specifically to reduce code size as
1047 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +00001048``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +00001049 On a function, this attribute indicates that the function computes its
1050 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +00001051 without dereferencing any pointer arguments or otherwise accessing
1052 any mutable state (e.g. memory, control registers, etc) visible to
1053 caller functions. It does not write through any pointer arguments
1054 (including ``byval`` arguments) and never changes any state visible
1055 to callers. This means that it cannot unwind exceptions by calling
1056 the ``C++`` exception throwing methods.
Andrew Trickcf940ce2013-10-31 17:18:07 +00001057
Nick Lewyckydc897372013-07-06 00:29:58 +00001058 On an argument, this attribute indicates that the function does not
1059 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +00001060 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +00001061``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +00001062 On a function, this attribute indicates that the function does not write
1063 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +00001064 modify any state (e.g. memory, control registers, etc) visible to
1065 caller functions. It may dereference pointer arguments and read
1066 state that may be set in the caller. A readonly function always
1067 returns the same value (or unwinds an exception identically) when
1068 called with the same set of arguments and global state. It cannot
1069 unwind an exception by calling the ``C++`` exception throwing
1070 methods.
Andrew Trickcf940ce2013-10-31 17:18:07 +00001071
Nick Lewyckydc897372013-07-06 00:29:58 +00001072 On an argument, this attribute indicates that the function does not write
1073 through this pointer argument, even though it may write to the memory that
1074 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +00001075``returns_twice``
1076 This attribute indicates that this function can return twice. The C
1077 ``setjmp`` is an example of such a function. The compiler disables
1078 some optimizations (like tail calls) in the caller of these
1079 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +00001080``sanitize_address``
1081 This attribute indicates that AddressSanitizer checks
1082 (dynamic address safety analysis) are enabled for this function.
1083``sanitize_memory``
1084 This attribute indicates that MemorySanitizer checks (dynamic detection
1085 of accesses to uninitialized memory) are enabled for this function.
1086``sanitize_thread``
1087 This attribute indicates that ThreadSanitizer checks
1088 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +00001089``ssp``
1090 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00001091 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +00001092 placed on the stack before the local variables that's checked upon
1093 return from the function to see if it has been overwritten. A
1094 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001095 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001096
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001097 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1098 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1099 - Calls to alloca() with variable sizes or constant sizes greater than
1100 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +00001101
Stephen Hines36b56882014-04-23 16:57:46 -07001102 Variables that are identified as requiring a protector will be arranged
1103 on the stack such that they are adjacent to the stack protector guard.
1104
Sean Silvaf722b002012-12-07 10:36:55 +00001105 If a function that has an ``ssp`` attribute is inlined into a
1106 function that doesn't have an ``ssp`` attribute, then the resulting
1107 function will have an ``ssp`` attribute.
1108``sspreq``
1109 This attribute indicates that the function should *always* emit a
1110 stack smashing protector. This overrides the ``ssp`` function
1111 attribute.
1112
Stephen Hines36b56882014-04-23 16:57:46 -07001113 Variables that are identified as requiring a protector will be arranged
1114 on the stack such that they are adjacent to the stack protector guard.
1115 The specific layout rules are:
1116
1117 #. Large arrays and structures containing large arrays
1118 (``>= ssp-buffer-size``) are closest to the stack protector.
1119 #. Small arrays and structures containing small arrays
1120 (``< ssp-buffer-size``) are 2nd closest to the protector.
1121 #. Variables that have had their address taken are 3rd closest to the
1122 protector.
1123
Sean Silvaf722b002012-12-07 10:36:55 +00001124 If a function that has an ``sspreq`` attribute is inlined into a
1125 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001126 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1127 an ``sspreq`` attribute.
1128``sspstrong``
1129 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001130 protector. This attribute causes a strong heuristic to be used when
1131 determining if a function needs stack protectors. The strong heuristic
1132 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001133
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001134 - Arrays of any size and type
1135 - Aggregates containing an array of any size and type.
1136 - Calls to alloca().
1137 - Local variables that have had their address taken.
1138
Stephen Hines36b56882014-04-23 16:57:46 -07001139 Variables that are identified as requiring a protector will be arranged
1140 on the stack such that they are adjacent to the stack protector guard.
1141 The specific layout rules are:
1142
1143 #. Large arrays and structures containing large arrays
1144 (``>= ssp-buffer-size``) are closest to the stack protector.
1145 #. Small arrays and structures containing small arrays
1146 (``< ssp-buffer-size``) are 2nd closest to the protector.
1147 #. Variables that have had their address taken are 3rd closest to the
1148 protector.
1149
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001150 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001151
1152 If a function that has an ``sspstrong`` attribute is inlined into a
1153 function that doesn't have an ``sspstrong`` attribute, then the
1154 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00001155``uwtable``
1156 This attribute indicates that the ABI being targeted requires that
1157 an unwind table entry be produce for this function even if we can
1158 show that no exceptions passes by it. This is normally the case for
1159 the ELF x86-64 abi, but it can be disabled for some compilation
1160 units.
Sean Silvaf722b002012-12-07 10:36:55 +00001161
1162.. _moduleasm:
1163
1164Module-Level Inline Assembly
1165----------------------------
1166
1167Modules may contain "module-level inline asm" blocks, which corresponds
1168to the GCC "file scope inline asm" blocks. These blocks are internally
1169concatenated by LLVM and treated as a single unit, but may be separated
1170in the ``.ll`` file if desired. The syntax is very simple:
1171
1172.. code-block:: llvm
1173
1174 module asm "inline asm code goes here"
1175 module asm "more can go here"
1176
1177The strings can contain any character by escaping non-printable
1178characters. The escape sequence used is simply "\\xx" where "xx" is the
1179two digit hex code for the number.
1180
1181The inline asm code is simply printed to the machine code .s file when
1182assembly code is generated.
1183
Eli Bendersky1de14102013-06-07 19:40:08 +00001184.. _langref_datalayout:
1185
Sean Silvaf722b002012-12-07 10:36:55 +00001186Data Layout
1187-----------
1188
1189A module may specify a target specific data layout string that specifies
1190how data is to be laid out in memory. The syntax for the data layout is
1191simply:
1192
1193.. code-block:: llvm
1194
1195 target datalayout = "layout specification"
1196
1197The *layout specification* consists of a list of specifications
1198separated by the minus sign character ('-'). Each specification starts
1199with a letter and may include other information after the letter to
1200define some aspect of the data layout. The specifications accepted are
1201as follows:
1202
1203``E``
1204 Specifies that the target lays out data in big-endian form. That is,
1205 the bits with the most significance have the lowest address
1206 location.
1207``e``
1208 Specifies that the target lays out data in little-endian form. That
1209 is, the bits with the least significance have the lowest address
1210 location.
1211``S<size>``
1212 Specifies the natural alignment of the stack in bits. Alignment
1213 promotion of stack variables is limited to the natural stack
1214 alignment to avoid dynamic stack realignment. The stack alignment
1215 must be a multiple of 8-bits. If omitted, the natural stack
1216 alignment defaults to "unspecified", which does not prevent any
1217 alignment promotions.
1218``p[n]:<size>:<abi>:<pref>``
1219 This specifies the *size* of a pointer and its ``<abi>`` and
1220 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Stephen Hines36b56882014-04-23 16:57:46 -07001221 bits. The address space, ``n`` is optional, and if not specified,
1222 denotes the default address space 0. The value of ``n`` must be
1223 in the range [1,2^23).
Sean Silvaf722b002012-12-07 10:36:55 +00001224``i<size>:<abi>:<pref>``
1225 This specifies the alignment for an integer type of a given bit
1226 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1227``v<size>:<abi>:<pref>``
1228 This specifies the alignment for a vector type of a given bit
1229 ``<size>``.
1230``f<size>:<abi>:<pref>``
1231 This specifies the alignment for a floating point type of a given bit
1232 ``<size>``. Only values of ``<size>`` that are supported by the target
1233 will work. 32 (float) and 64 (double) are supported on all targets; 80
1234 or 128 (different flavors of long double) are also supported on some
1235 targets.
Stephen Hines36b56882014-04-23 16:57:46 -07001236``a:<abi>:<pref>``
1237 This specifies the alignment for an object of aggregate type.
1238``m:<mangling>``
1239 If present, specifies that llvm names are mangled in the output. The
1240 options are
1241
1242 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1243 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1244 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1245 symbols get a ``_`` prefix.
1246 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1247 functions also get a suffix based on the frame size.
Sean Silvaf722b002012-12-07 10:36:55 +00001248``n<size1>:<size2>:<size3>...``
1249 This specifies a set of native integer widths for the target CPU in
1250 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1251 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1252 this set are considered to support most general arithmetic operations
1253 efficiently.
1254
Stephen Hines36b56882014-04-23 16:57:46 -07001255On every specification that takes a ``<abi>:<pref>``, specifying the
1256``<pref>`` alignment is optional. If omitted, the preceding ``:``
1257should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1258
Sean Silvaf722b002012-12-07 10:36:55 +00001259When constructing the data layout for a given target, LLVM starts with a
1260default set of specifications which are then (possibly) overridden by
1261the specifications in the ``datalayout`` keyword. The default
1262specifications are given in this list:
1263
1264- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001265- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1266- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1267 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001268- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001269- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1270- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1271- ``i16:16:16`` - i16 is 16-bit aligned
1272- ``i32:32:32`` - i32 is 32-bit aligned
1273- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1274 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001275- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001276- ``f32:32:32`` - float is 32-bit aligned
1277- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001278- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001279- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1280- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Stephen Hines36b56882014-04-23 16:57:46 -07001281- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001282
1283When LLVM is determining the alignment for a given type, it uses the
1284following rules:
1285
1286#. If the type sought is an exact match for one of the specifications,
1287 that specification is used.
1288#. If no match is found, and the type sought is an integer type, then
1289 the smallest integer type that is larger than the bitwidth of the
1290 sought type is used. If none of the specifications are larger than
1291 the bitwidth then the largest integer type is used. For example,
1292 given the default specifications above, the i7 type will use the
1293 alignment of i8 (next largest) while both i65 and i256 will use the
1294 alignment of i64 (largest specified).
1295#. If no match is found, and the type sought is a vector type, then the
1296 largest vector type that is smaller than the sought vector type will
1297 be used as a fall back. This happens because <128 x double> can be
1298 implemented in terms of 64 <2 x double>, for example.
1299
1300The function of the data layout string may not be what you expect.
1301Notably, this is not a specification from the frontend of what alignment
1302the code generator should use.
1303
1304Instead, if specified, the target data layout is required to match what
1305the ultimate *code generator* expects. This string is used by the
1306mid-level optimizers to improve code, and this only works if it matches
1307what the ultimate code generator uses. If you would like to generate IR
1308that does not embed this target-specific detail into the IR, then you
1309don't have to specify the string. This will disable some optimizations
1310that require precise layout information, but this also prevents those
1311optimizations from introducing target specificity into the IR.
1312
Bill Wendling4216b992013-10-18 23:41:25 +00001313.. _langref_triple:
1314
1315Target Triple
1316-------------
1317
1318A module may specify a target triple string that describes the target
1319host. The syntax for the target triple is simply:
1320
1321.. code-block:: llvm
1322
1323 target triple = "x86_64-apple-macosx10.7.0"
1324
1325The *target triple* string consists of a series of identifiers delimited
1326by the minus sign character ('-'). The canonical forms are:
1327
1328::
1329
1330 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1331 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1332
1333This information is passed along to the backend so that it generates
1334code for the proper architecture. It's possible to override this on the
1335command line with the ``-mtriple`` command line option.
1336
Sean Silvaf722b002012-12-07 10:36:55 +00001337.. _pointeraliasing:
1338
1339Pointer Aliasing Rules
1340----------------------
1341
1342Any memory access must be done through a pointer value associated with
1343an address range of the memory access, otherwise the behavior is
1344undefined. Pointer values are associated with address ranges according
1345to the following rules:
1346
1347- A pointer value is associated with the addresses associated with any
1348 value it is *based* on.
1349- An address of a global variable is associated with the address range
1350 of the variable's storage.
1351- The result value of an allocation instruction is associated with the
1352 address range of the allocated storage.
1353- A null pointer in the default address-space is associated with no
1354 address.
1355- An integer constant other than zero or a pointer value returned from
1356 a function not defined within LLVM may be associated with address
1357 ranges allocated through mechanisms other than those provided by
1358 LLVM. Such ranges shall not overlap with any ranges of addresses
1359 allocated by mechanisms provided by LLVM.
1360
1361A pointer value is *based* on another pointer value according to the
1362following rules:
1363
1364- A pointer value formed from a ``getelementptr`` operation is *based*
1365 on the first operand of the ``getelementptr``.
1366- The result value of a ``bitcast`` is *based* on the operand of the
1367 ``bitcast``.
1368- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1369 values that contribute (directly or indirectly) to the computation of
1370 the pointer's value.
1371- The "*based* on" relationship is transitive.
1372
1373Note that this definition of *"based"* is intentionally similar to the
1374definition of *"based"* in C99, though it is slightly weaker.
1375
1376LLVM IR does not associate types with memory. The result type of a
1377``load`` merely indicates the size and alignment of the memory from
1378which to load, as well as the interpretation of the value. The first
1379operand type of a ``store`` similarly only indicates the size and
1380alignment of the store.
1381
1382Consequently, type-based alias analysis, aka TBAA, aka
1383``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1384:ref:`Metadata <metadata>` may be used to encode additional information
1385which specialized optimization passes may use to implement type-based
1386alias analysis.
1387
1388.. _volatile:
1389
1390Volatile Memory Accesses
1391------------------------
1392
1393Certain memory accesses, such as :ref:`load <i_load>`'s,
1394:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1395marked ``volatile``. The optimizers must not change the number of
1396volatile operations or change their order of execution relative to other
1397volatile operations. The optimizers *may* change the order of volatile
1398operations relative to non-volatile operations. This is not Java's
1399"volatile" and has no cross-thread synchronization behavior.
1400
Andrew Trick9a6dd022013-01-30 21:19:35 +00001401IR-level volatile loads and stores cannot safely be optimized into
1402llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1403flagged volatile. Likewise, the backend should never split or merge
1404target-legal volatile load/store instructions.
1405
Andrew Trick946317d2013-01-31 00:49:39 +00001406.. admonition:: Rationale
1407
1408 Platforms may rely on volatile loads and stores of natively supported
1409 data width to be executed as single instruction. For example, in C
1410 this holds for an l-value of volatile primitive type with native
1411 hardware support, but not necessarily for aggregate types. The
1412 frontend upholds these expectations, which are intentionally
1413 unspecified in the IR. The rules above ensure that IR transformation
1414 do not violate the frontend's contract with the language.
1415
Sean Silvaf722b002012-12-07 10:36:55 +00001416.. _memmodel:
1417
1418Memory Model for Concurrent Operations
1419--------------------------------------
1420
1421The LLVM IR does not define any way to start parallel threads of
1422execution or to register signal handlers. Nonetheless, there are
1423platform-specific ways to create them, and we define LLVM IR's behavior
1424in their presence. This model is inspired by the C++0x memory model.
1425
1426For a more informal introduction to this model, see the :doc:`Atomics`.
1427
1428We define a *happens-before* partial order as the least partial order
1429that
1430
1431- Is a superset of single-thread program order, and
1432- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1433 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1434 techniques, like pthread locks, thread creation, thread joining,
1435 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1436 Constraints <ordering>`).
1437
1438Note that program order does not introduce *happens-before* edges
1439between a thread and signals executing inside that thread.
1440
1441Every (defined) read operation (load instructions, memcpy, atomic
1442loads/read-modify-writes, etc.) R reads a series of bytes written by
1443(defined) write operations (store instructions, atomic
1444stores/read-modify-writes, memcpy, etc.). For the purposes of this
1445section, initialized globals are considered to have a write of the
1446initializer which is atomic and happens before any other read or write
1447of the memory in question. For each byte of a read R, R\ :sub:`byte`
1448may see any write to the same byte, except:
1449
1450- If write\ :sub:`1` happens before write\ :sub:`2`, and
1451 write\ :sub:`2` happens before R\ :sub:`byte`, then
1452 R\ :sub:`byte` does not see write\ :sub:`1`.
1453- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1454 R\ :sub:`byte` does not see write\ :sub:`3`.
1455
1456Given that definition, R\ :sub:`byte` is defined as follows:
1457
1458- If R is volatile, the result is target-dependent. (Volatile is
1459 supposed to give guarantees which can support ``sig_atomic_t`` in
1460 C/C++, and may be used for accesses to addresses which do not behave
1461 like normal memory. It does not generally provide cross-thread
1462 synchronization.)
1463- Otherwise, if there is no write to the same byte that happens before
1464 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1465- Otherwise, if R\ :sub:`byte` may see exactly one write,
1466 R\ :sub:`byte` returns the value written by that write.
1467- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1468 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1469 Memory Ordering Constraints <ordering>` section for additional
1470 constraints on how the choice is made.
1471- Otherwise R\ :sub:`byte` returns ``undef``.
1472
1473R returns the value composed of the series of bytes it read. This
1474implies that some bytes within the value may be ``undef`` **without**
1475the entire value being ``undef``. Note that this only defines the
1476semantics of the operation; it doesn't mean that targets will emit more
1477than one instruction to read the series of bytes.
1478
1479Note that in cases where none of the atomic intrinsics are used, this
1480model places only one restriction on IR transformations on top of what
1481is required for single-threaded execution: introducing a store to a byte
1482which might not otherwise be stored is not allowed in general.
1483(Specifically, in the case where another thread might write to and read
1484from an address, introducing a store can change a load that may see
1485exactly one write into a load that may see multiple writes.)
1486
1487.. _ordering:
1488
1489Atomic Memory Ordering Constraints
1490----------------------------------
1491
1492Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1493:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1494:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Stephen Hines36b56882014-04-23 16:57:46 -07001495ordering parameters that determine which other atomic instructions on
Sean Silvaf722b002012-12-07 10:36:55 +00001496the same address they *synchronize with*. These semantics are borrowed
1497from Java and C++0x, but are somewhat more colloquial. If these
1498descriptions aren't precise enough, check those specs (see spec
1499references in the :doc:`atomics guide <Atomics>`).
1500:ref:`fence <i_fence>` instructions treat these orderings somewhat
1501differently since they don't take an address. See that instruction's
1502documentation for details.
1503
1504For a simpler introduction to the ordering constraints, see the
1505:doc:`Atomics`.
1506
1507``unordered``
1508 The set of values that can be read is governed by the happens-before
1509 partial order. A value cannot be read unless some operation wrote
1510 it. This is intended to provide a guarantee strong enough to model
1511 Java's non-volatile shared variables. This ordering cannot be
1512 specified for read-modify-write operations; it is not strong enough
1513 to make them atomic in any interesting way.
1514``monotonic``
1515 In addition to the guarantees of ``unordered``, there is a single
1516 total order for modifications by ``monotonic`` operations on each
1517 address. All modification orders must be compatible with the
1518 happens-before order. There is no guarantee that the modification
1519 orders can be combined to a global total order for the whole program
1520 (and this often will not be possible). The read in an atomic
1521 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1522 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1523 order immediately before the value it writes. If one atomic read
1524 happens before another atomic read of the same address, the later
1525 read must see the same value or a later value in the address's
1526 modification order. This disallows reordering of ``monotonic`` (or
1527 stronger) operations on the same address. If an address is written
1528 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1529 read that address repeatedly, the other threads must eventually see
1530 the write. This corresponds to the C++0x/C1x
1531 ``memory_order_relaxed``.
1532``acquire``
1533 In addition to the guarantees of ``monotonic``, a
1534 *synchronizes-with* edge may be formed with a ``release`` operation.
1535 This is intended to model C++'s ``memory_order_acquire``.
1536``release``
1537 In addition to the guarantees of ``monotonic``, if this operation
1538 writes a value which is subsequently read by an ``acquire``
1539 operation, it *synchronizes-with* that operation. (This isn't a
1540 complete description; see the C++0x definition of a release
1541 sequence.) This corresponds to the C++0x/C1x
1542 ``memory_order_release``.
1543``acq_rel`` (acquire+release)
1544 Acts as both an ``acquire`` and ``release`` operation on its
1545 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1546``seq_cst`` (sequentially consistent)
1547 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1548 operation which only reads, ``release`` for an operation which only
1549 writes), there is a global total order on all
1550 sequentially-consistent operations on all addresses, which is
1551 consistent with the *happens-before* partial order and with the
1552 modification orders of all the affected addresses. Each
1553 sequentially-consistent read sees the last preceding write to the
1554 same address in this global order. This corresponds to the C++0x/C1x
1555 ``memory_order_seq_cst`` and Java volatile.
1556
1557.. _singlethread:
1558
1559If an atomic operation is marked ``singlethread``, it only *synchronizes
1560with* or participates in modification and seq\_cst total orderings with
1561other operations running in the same thread (for example, in signal
1562handlers).
1563
1564.. _fastmath:
1565
1566Fast-Math Flags
1567---------------
1568
1569LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1570:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1571:ref:`frem <i_frem>`) have the following flags that can set to enable
1572otherwise unsafe floating point operations
1573
1574``nnan``
1575 No NaNs - Allow optimizations to assume the arguments and result are not
1576 NaN. Such optimizations are required to retain defined behavior over
1577 NaNs, but the value of the result is undefined.
1578
1579``ninf``
1580 No Infs - Allow optimizations to assume the arguments and result are not
1581 +/-Inf. Such optimizations are required to retain defined behavior over
1582 +/-Inf, but the value of the result is undefined.
1583
1584``nsz``
1585 No Signed Zeros - Allow optimizations to treat the sign of a zero
1586 argument or result as insignificant.
1587
1588``arcp``
1589 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1590 argument rather than perform division.
1591
1592``fast``
1593 Fast - Allow algebraically equivalent transformations that may
1594 dramatically change results in floating point (e.g. reassociate). This
1595 flag implies all the others.
1596
1597.. _typesystem:
1598
1599Type System
1600===========
1601
1602The LLVM type system is one of the most important features of the
1603intermediate representation. Being typed enables a number of
1604optimizations to be performed on the intermediate representation
1605directly, without having to do extra analyses on the side before the
1606transformation. A strong type system makes it easier to read the
1607generated code and enables novel analyses and transformations that are
1608not feasible to perform on normal three address code representations.
1609
Stephen Hines36b56882014-04-23 16:57:46 -07001610.. _t_void:
Eli Bendersky88fe6822013-06-07 20:24:43 +00001611
Stephen Hines36b56882014-04-23 16:57:46 -07001612Void Type
1613---------
Sean Silvaf722b002012-12-07 10:36:55 +00001614
Stephen Hines36b56882014-04-23 16:57:46 -07001615:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001616
1617
Stephen Hines36b56882014-04-23 16:57:46 -07001618The void type does not represent any value and has no size.
Sean Silvaf722b002012-12-07 10:36:55 +00001619
Stephen Hines36b56882014-04-23 16:57:46 -07001620:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001621
1622
Stephen Hines36b56882014-04-23 16:57:46 -07001623::
Sean Silvaf722b002012-12-07 10:36:55 +00001624
Stephen Hines36b56882014-04-23 16:57:46 -07001625 void
Sean Silvaf722b002012-12-07 10:36:55 +00001626
Sean Silvaf722b002012-12-07 10:36:55 +00001627
Stephen Hines36b56882014-04-23 16:57:46 -07001628.. _t_function:
Sean Silvaf722b002012-12-07 10:36:55 +00001629
Stephen Hines36b56882014-04-23 16:57:46 -07001630Function Type
1631-------------
1632
1633:Overview:
1634
1635
1636The function type can be thought of as a function signature. It consists of a
1637return type and a list of formal parameter types. The return type of a function
1638type is a void type or first class type --- except for :ref:`label <t_label>`
1639and :ref:`metadata <t_metadata>` types.
1640
1641:Syntax:
1642
1643::
1644
1645 <returntype> (<parameter list>)
1646
1647...where '``<parameter list>``' is a comma-separated list of type
1648specifiers. Optionally, the parameter list may include a type ``...``, which
1649indicates that the function takes a variable number of arguments. Variable
1650argument functions can access their arguments with the :ref:`variable argument
1651handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1652except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
1653
1654:Examples:
1655
1656+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1657| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1658+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1659| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1660+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1661| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1664+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1665
1666.. _t_firstclass:
1667
1668First Class Types
1669-----------------
Sean Silvaf722b002012-12-07 10:36:55 +00001670
1671The :ref:`first class <t_firstclass>` types are perhaps the most important.
1672Values of these types are the only ones which can be produced by
1673instructions.
1674
Stephen Hines36b56882014-04-23 16:57:46 -07001675.. _t_single_value:
Sean Silvaf722b002012-12-07 10:36:55 +00001676
Stephen Hines36b56882014-04-23 16:57:46 -07001677Single Value Types
1678^^^^^^^^^^^^^^^^^^
Sean Silvaf722b002012-12-07 10:36:55 +00001679
Stephen Hines36b56882014-04-23 16:57:46 -07001680These are the types that are valid in registers from CodeGen's perspective.
Sean Silvaf722b002012-12-07 10:36:55 +00001681
1682.. _t_integer:
1683
1684Integer Type
Stephen Hines36b56882014-04-23 16:57:46 -07001685""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00001686
Stephen Hines36b56882014-04-23 16:57:46 -07001687:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001688
1689The integer type is a very simple type that simply specifies an
1690arbitrary bit width for the integer type desired. Any bit width from 1
1691bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1692
Stephen Hines36b56882014-04-23 16:57:46 -07001693:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001694
1695::
1696
1697 iN
1698
1699The number of bits the integer will occupy is specified by the ``N``
1700value.
1701
1702Examples:
Stephen Hines36b56882014-04-23 16:57:46 -07001703*********
Sean Silvaf722b002012-12-07 10:36:55 +00001704
1705+----------------+------------------------------------------------+
1706| ``i1`` | a single-bit integer. |
1707+----------------+------------------------------------------------+
1708| ``i32`` | a 32-bit integer. |
1709+----------------+------------------------------------------------+
1710| ``i1942652`` | a really big integer of over 1 million bits. |
1711+----------------+------------------------------------------------+
1712
1713.. _t_floating:
1714
1715Floating Point Types
Stephen Hines36b56882014-04-23 16:57:46 -07001716""""""""""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00001717
1718.. list-table::
1719 :header-rows: 1
1720
1721 * - Type
1722 - Description
1723
1724 * - ``half``
1725 - 16-bit floating point value
1726
1727 * - ``float``
1728 - 32-bit floating point value
1729
1730 * - ``double``
1731 - 64-bit floating point value
1732
1733 * - ``fp128``
1734 - 128-bit floating point value (112-bit mantissa)
1735
1736 * - ``x86_fp80``
1737 - 80-bit floating point value (X87)
1738
1739 * - ``ppc_fp128``
1740 - 128-bit floating point value (two 64-bits)
1741
Stephen Hines36b56882014-04-23 16:57:46 -07001742X86_mmx Type
1743""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00001744
Stephen Hines36b56882014-04-23 16:57:46 -07001745:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001746
Stephen Hines36b56882014-04-23 16:57:46 -07001747The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvaf722b002012-12-07 10:36:55 +00001748machine. The operations allowed on it are quite limited: parameters and
1749return values, load and store, and bitcast. User-specified MMX
1750instructions are represented as intrinsic or asm calls with arguments
1751and/or results of this type. There are no arrays, vectors or constants
1752of this type.
1753
Stephen Hines36b56882014-04-23 16:57:46 -07001754:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001755
1756::
1757
Stephen Hines36b56882014-04-23 16:57:46 -07001758 x86_mmx
Sean Silvaf722b002012-12-07 10:36:55 +00001759
Sean Silvaf722b002012-12-07 10:36:55 +00001760
Stephen Hines36b56882014-04-23 16:57:46 -07001761.. _t_pointer:
Sean Silvaf722b002012-12-07 10:36:55 +00001762
Stephen Hines36b56882014-04-23 16:57:46 -07001763Pointer Type
1764""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00001765
Stephen Hines36b56882014-04-23 16:57:46 -07001766:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001767
Stephen Hines36b56882014-04-23 16:57:46 -07001768The pointer type is used to specify memory locations. Pointers are
1769commonly used to reference objects in memory.
1770
1771Pointer types may have an optional address space attribute defining the
1772numbered address space where the pointed-to object resides. The default
1773address space is number zero. The semantics of non-zero address spaces
1774are target-specific.
1775
1776Note that LLVM does not permit pointers to void (``void*``) nor does it
1777permit pointers to labels (``label*``). Use ``i8*`` instead.
1778
1779:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001780
1781::
1782
Stephen Hines36b56882014-04-23 16:57:46 -07001783 <type> *
1784
1785:Examples:
1786
1787+-------------------------+--------------------------------------------------------------------------------------------------------------+
1788| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1789+-------------------------+--------------------------------------------------------------------------------------------------------------+
1790| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1791+-------------------------+--------------------------------------------------------------------------------------------------------------+
1792| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1793+-------------------------+--------------------------------------------------------------------------------------------------------------+
1794
1795.. _t_vector:
1796
1797Vector Type
1798"""""""""""
1799
1800:Overview:
1801
1802A vector type is a simple derived type that represents a vector of
1803elements. Vector types are used when multiple primitive data are
1804operated in parallel using a single instruction (SIMD). A vector type
1805requires a size (number of elements) and an underlying primitive data
1806type. Vector types are considered :ref:`first class <t_firstclass>`.
1807
1808:Syntax:
1809
1810::
1811
1812 < <# elements> x <elementtype> >
1813
1814The number of elements is a constant integer value larger than 0;
1815elementtype may be any integer or floating point type, or a pointer to
1816these types. Vectors of size zero are not allowed.
1817
1818:Examples:
1819
1820+-------------------+--------------------------------------------------+
1821| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1822+-------------------+--------------------------------------------------+
1823| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1824+-------------------+--------------------------------------------------+
1825| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1826+-------------------+--------------------------------------------------+
1827| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1828+-------------------+--------------------------------------------------+
Sean Silvaf722b002012-12-07 10:36:55 +00001829
1830.. _t_label:
1831
1832Label Type
1833^^^^^^^^^^
1834
Stephen Hines36b56882014-04-23 16:57:46 -07001835:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001836
1837The label type represents code labels.
1838
Stephen Hines36b56882014-04-23 16:57:46 -07001839:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001840
1841::
1842
1843 label
1844
1845.. _t_metadata:
1846
1847Metadata Type
1848^^^^^^^^^^^^^
1849
Stephen Hines36b56882014-04-23 16:57:46 -07001850:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001851
1852The metadata type represents embedded metadata. No derived types may be
1853created from metadata except for :ref:`function <t_function>` arguments.
1854
Stephen Hines36b56882014-04-23 16:57:46 -07001855:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001856
1857::
1858
1859 metadata
1860
Sean Silvaf722b002012-12-07 10:36:55 +00001861.. _t_aggregate:
1862
1863Aggregate Types
1864^^^^^^^^^^^^^^^
1865
1866Aggregate Types are a subset of derived types that can contain multiple
1867member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1868aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1869aggregate types.
1870
1871.. _t_array:
1872
1873Array Type
Stephen Hines36b56882014-04-23 16:57:46 -07001874""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00001875
Stephen Hines36b56882014-04-23 16:57:46 -07001876:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001877
1878The array type is a very simple derived type that arranges elements
1879sequentially in memory. The array type requires a size (number of
1880elements) and an underlying data type.
1881
Stephen Hines36b56882014-04-23 16:57:46 -07001882:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001883
1884::
1885
1886 [<# elements> x <elementtype>]
1887
1888The number of elements is a constant integer value; ``elementtype`` may
1889be any type with a size.
1890
Stephen Hines36b56882014-04-23 16:57:46 -07001891:Examples:
Sean Silvaf722b002012-12-07 10:36:55 +00001892
1893+------------------+--------------------------------------+
1894| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1895+------------------+--------------------------------------+
1896| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1897+------------------+--------------------------------------+
1898| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1899+------------------+--------------------------------------+
1900
1901Here are some examples of multidimensional arrays:
1902
1903+-----------------------------+----------------------------------------------------------+
1904| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1905+-----------------------------+----------------------------------------------------------+
1906| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1907+-----------------------------+----------------------------------------------------------+
1908| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1909+-----------------------------+----------------------------------------------------------+
1910
1911There is no restriction on indexing beyond the end of the array implied
1912by a static type (though there are restrictions on indexing beyond the
1913bounds of an allocated object in some cases). This means that
1914single-dimension 'variable sized array' addressing can be implemented in
1915LLVM with a zero length array type. An implementation of 'pascal style
1916arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1917example.
1918
Sean Silvaf722b002012-12-07 10:36:55 +00001919.. _t_struct:
1920
1921Structure Type
Stephen Hines36b56882014-04-23 16:57:46 -07001922""""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00001923
Stephen Hines36b56882014-04-23 16:57:46 -07001924:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001925
1926The structure type is used to represent a collection of data members
1927together in memory. The elements of a structure may be any type that has
1928a size.
1929
1930Structures in memory are accessed using '``load``' and '``store``' by
1931getting a pointer to a field with the '``getelementptr``' instruction.
1932Structures in registers are accessed using the '``extractvalue``' and
1933'``insertvalue``' instructions.
1934
1935Structures may optionally be "packed" structures, which indicate that
1936the alignment of the struct is one byte, and that there is no padding
1937between the elements. In non-packed structs, padding between field types
1938is inserted as defined by the DataLayout string in the module, which is
1939required to match what the underlying code generator expects.
1940
1941Structures can either be "literal" or "identified". A literal structure
1942is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1943identified types are always defined at the top level with a name.
1944Literal types are uniqued by their contents and can never be recursive
1945or opaque since there is no way to write one. Identified types can be
1946recursive, can be opaqued, and are never uniqued.
1947
Stephen Hines36b56882014-04-23 16:57:46 -07001948:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001949
1950::
1951
1952 %T1 = type { <type list> } ; Identified normal struct type
1953 %T2 = type <{ <type list> }> ; Identified packed struct type
1954
Stephen Hines36b56882014-04-23 16:57:46 -07001955:Examples:
Sean Silvaf722b002012-12-07 10:36:55 +00001956
1957+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1958| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1959+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001960| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001961+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1962| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1963+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1964
1965.. _t_opaque:
1966
1967Opaque Structure Types
Stephen Hines36b56882014-04-23 16:57:46 -07001968""""""""""""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00001969
Stephen Hines36b56882014-04-23 16:57:46 -07001970:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00001971
1972Opaque structure types are used to represent named structure types that
1973do not have a body specified. This corresponds (for example) to the C
1974notion of a forward declared structure.
1975
Stephen Hines36b56882014-04-23 16:57:46 -07001976:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00001977
1978::
1979
1980 %X = type opaque
1981 %52 = type opaque
1982
Stephen Hines36b56882014-04-23 16:57:46 -07001983:Examples:
Sean Silvaf722b002012-12-07 10:36:55 +00001984
1985+--------------+-------------------+
1986| ``opaque`` | An opaque type. |
1987+--------------+-------------------+
1988
Sean Silvaf722b002012-12-07 10:36:55 +00001989Constants
1990=========
1991
1992LLVM has several different basic types of constants. This section
1993describes them all and their syntax.
1994
1995Simple Constants
1996----------------
1997
1998**Boolean constants**
1999 The two strings '``true``' and '``false``' are both valid constants
2000 of the ``i1`` type.
2001**Integer constants**
2002 Standard integers (such as '4') are constants of the
2003 :ref:`integer <t_integer>` type. Negative numbers may be used with
2004 integer types.
2005**Floating point constants**
2006 Floating point constants use standard decimal notation (e.g.
2007 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2008 hexadecimal notation (see below). The assembler requires the exact
2009 decimal value of a floating-point constant. For example, the
2010 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2011 decimal in binary. Floating point constants must have a :ref:`floating
2012 point <t_floating>` type.
2013**Null pointer constants**
2014 The identifier '``null``' is recognized as a null pointer constant
2015 and must be of :ref:`pointer type <t_pointer>`.
2016
2017The one non-intuitive notation for constants is the hexadecimal form of
2018floating point constants. For example, the form
2019'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2020than) '``double 4.5e+15``'. The only time hexadecimal floating point
2021constants are required (and the only time that they are generated by the
2022disassembler) is when a floating point constant must be emitted but it
2023cannot be represented as a decimal floating point number in a reasonable
2024number of digits. For example, NaN's, infinities, and other special
2025values are represented in their IEEE hexadecimal format so that assembly
2026and disassembly do not cause any bits to change in the constants.
2027
2028When using the hexadecimal form, constants of types half, float, and
2029double are represented using the 16-digit form shown above (which
2030matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00002031must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00002032precision, respectively. Hexadecimal format is always used for long
2033double, and there are three forms of long double. The 80-bit format used
2034by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2035128-bit format used by PowerPC (two adjacent doubles) is represented by
2036``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00002037represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2038will only work if they match the long double format on your target.
2039The IEEE 16-bit format (half precision) is represented by ``0xH``
2040followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2041(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00002042
Stephen Hines36b56882014-04-23 16:57:46 -07002043There are no constants of type x86_mmx.
Sean Silvaf722b002012-12-07 10:36:55 +00002044
Eli Bendersky88fe6822013-06-07 20:24:43 +00002045.. _complexconstants:
2046
Sean Silvaf722b002012-12-07 10:36:55 +00002047Complex Constants
2048-----------------
2049
2050Complex constants are a (potentially recursive) combination of simple
2051constants and smaller complex constants.
2052
2053**Structure constants**
2054 Structure constants are represented with notation similar to
2055 structure type definitions (a comma separated list of elements,
2056 surrounded by braces (``{}``)). For example:
2057 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2058 "``@G = external global i32``". Structure constants must have
2059 :ref:`structure type <t_struct>`, and the number and types of elements
2060 must match those specified by the type.
2061**Array constants**
2062 Array constants are represented with notation similar to array type
2063 definitions (a comma separated list of elements, surrounded by
2064 square brackets (``[]``)). For example:
2065 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2066 :ref:`array type <t_array>`, and the number and types of elements must
2067 match those specified by the type.
2068**Vector constants**
2069 Vector constants are represented with notation similar to vector
2070 type definitions (a comma separated list of elements, surrounded by
2071 less-than/greater-than's (``<>``)). For example:
2072 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2073 must have :ref:`vector type <t_vector>`, and the number and types of
2074 elements must match those specified by the type.
2075**Zero initialization**
2076 The string '``zeroinitializer``' can be used to zero initialize a
2077 value to zero of *any* type, including scalar and
2078 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2079 having to print large zero initializers (e.g. for large arrays) and
2080 is always exactly equivalent to using explicit zero initializers.
2081**Metadata node**
2082 A metadata node is a structure-like constant with :ref:`metadata
2083 type <t_metadata>`. For example:
2084 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2085 constants that are meant to be interpreted as part of the
2086 instruction stream, metadata is a place to attach additional
2087 information such as debug info.
2088
2089Global Variable and Function Addresses
2090--------------------------------------
2091
2092The addresses of :ref:`global variables <globalvars>` and
2093:ref:`functions <functionstructure>` are always implicitly valid
2094(link-time) constants. These constants are explicitly referenced when
2095the :ref:`identifier for the global <identifiers>` is used and always have
2096:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2097file:
2098
2099.. code-block:: llvm
2100
2101 @X = global i32 17
2102 @Y = global i32 42
2103 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2104
2105.. _undefvalues:
2106
2107Undefined Values
2108----------------
2109
2110The string '``undef``' can be used anywhere a constant is expected, and
2111indicates that the user of the value may receive an unspecified
2112bit-pattern. Undefined values may be of any type (other than '``label``'
2113or '``void``') and be used anywhere a constant is permitted.
2114
2115Undefined values are useful because they indicate to the compiler that
2116the program is well defined no matter what value is used. This gives the
2117compiler more freedom to optimize. Here are some examples of
2118(potentially surprising) transformations that are valid (in pseudo IR):
2119
2120.. code-block:: llvm
2121
2122 %A = add %X, undef
2123 %B = sub %X, undef
2124 %C = xor %X, undef
2125 Safe:
2126 %A = undef
2127 %B = undef
2128 %C = undef
2129
2130This is safe because all of the output bits are affected by the undef
2131bits. Any output bit can have a zero or one depending on the input bits.
2132
2133.. code-block:: llvm
2134
2135 %A = or %X, undef
2136 %B = and %X, undef
2137 Safe:
2138 %A = -1
2139 %B = 0
2140 Unsafe:
2141 %A = undef
2142 %B = undef
2143
2144These logical operations have bits that are not always affected by the
2145input. For example, if ``%X`` has a zero bit, then the output of the
2146'``and``' operation will always be a zero for that bit, no matter what
2147the corresponding bit from the '``undef``' is. As such, it is unsafe to
2148optimize or assume that the result of the '``and``' is '``undef``'.
2149However, it is safe to assume that all bits of the '``undef``' could be
21500, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2151all the bits of the '``undef``' operand to the '``or``' could be set,
2152allowing the '``or``' to be folded to -1.
2153
2154.. code-block:: llvm
2155
2156 %A = select undef, %X, %Y
2157 %B = select undef, 42, %Y
2158 %C = select %X, %Y, undef
2159 Safe:
2160 %A = %X (or %Y)
2161 %B = 42 (or %Y)
2162 %C = %Y
2163 Unsafe:
2164 %A = undef
2165 %B = undef
2166 %C = undef
2167
2168This set of examples shows that undefined '``select``' (and conditional
2169branch) conditions can go *either way*, but they have to come from one
2170of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2171both known to have a clear low bit, then ``%A`` would have to have a
2172cleared low bit. However, in the ``%C`` example, the optimizer is
2173allowed to assume that the '``undef``' operand could be the same as
2174``%Y``, allowing the whole '``select``' to be eliminated.
2175
2176.. code-block:: llvm
2177
2178 %A = xor undef, undef
2179
2180 %B = undef
2181 %C = xor %B, %B
2182
2183 %D = undef
2184 %E = icmp lt %D, 4
2185 %F = icmp gte %D, 4
2186
2187 Safe:
2188 %A = undef
2189 %B = undef
2190 %C = undef
2191 %D = undef
2192 %E = undef
2193 %F = undef
2194
2195This example points out that two '``undef``' operands are not
2196necessarily the same. This can be surprising to people (and also matches
2197C semantics) where they assume that "``X^X``" is always zero, even if
2198``X`` is undefined. This isn't true for a number of reasons, but the
2199short answer is that an '``undef``' "variable" can arbitrarily change
2200its value over its "live range". This is true because the variable
2201doesn't actually *have a live range*. Instead, the value is logically
2202read from arbitrary registers that happen to be around when needed, so
2203the value is not necessarily consistent over time. In fact, ``%A`` and
2204``%C`` need to have the same semantics or the core LLVM "replace all
2205uses with" concept would not hold.
2206
2207.. code-block:: llvm
2208
2209 %A = fdiv undef, %X
2210 %B = fdiv %X, undef
2211 Safe:
2212 %A = undef
2213 b: unreachable
2214
2215These examples show the crucial difference between an *undefined value*
2216and *undefined behavior*. An undefined value (like '``undef``') is
2217allowed to have an arbitrary bit-pattern. This means that the ``%A``
2218operation can be constant folded to '``undef``', because the '``undef``'
2219could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2220However, in the second example, we can make a more aggressive
2221assumption: because the ``undef`` is allowed to be an arbitrary value,
2222we are allowed to assume that it could be zero. Since a divide by zero
2223has *undefined behavior*, we are allowed to assume that the operation
2224does not execute at all. This allows us to delete the divide and all
2225code after it. Because the undefined operation "can't happen", the
2226optimizer can assume that it occurs in dead code.
2227
2228.. code-block:: llvm
2229
2230 a: store undef -> %X
2231 b: store %X -> undef
2232 Safe:
2233 a: <deleted>
2234 b: unreachable
2235
2236These examples reiterate the ``fdiv`` example: a store *of* an undefined
2237value can be assumed to not have any effect; we can assume that the
2238value is overwritten with bits that happen to match what was already
2239there. However, a store *to* an undefined location could clobber
2240arbitrary memory, therefore, it has undefined behavior.
2241
2242.. _poisonvalues:
2243
2244Poison Values
2245-------------
2246
2247Poison values are similar to :ref:`undef values <undefvalues>`, however
2248they also represent the fact that an instruction or constant expression
2249which cannot evoke side effects has nevertheless detected a condition
2250which results in undefined behavior.
2251
2252There is currently no way of representing a poison value in the IR; they
2253only exist when produced by operations such as :ref:`add <i_add>` with
2254the ``nsw`` flag.
2255
2256Poison value behavior is defined in terms of value *dependence*:
2257
2258- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2259- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2260 their dynamic predecessor basic block.
2261- Function arguments depend on the corresponding actual argument values
2262 in the dynamic callers of their functions.
2263- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2264 instructions that dynamically transfer control back to them.
2265- :ref:`Invoke <i_invoke>` instructions depend on the
2266 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2267 call instructions that dynamically transfer control back to them.
2268- Non-volatile loads and stores depend on the most recent stores to all
2269 of the referenced memory addresses, following the order in the IR
2270 (including loads and stores implied by intrinsics such as
2271 :ref:`@llvm.memcpy <int_memcpy>`.)
2272- An instruction with externally visible side effects depends on the
2273 most recent preceding instruction with externally visible side
2274 effects, following the order in the IR. (This includes :ref:`volatile
2275 operations <volatile>`.)
2276- An instruction *control-depends* on a :ref:`terminator
2277 instruction <terminators>` if the terminator instruction has
2278 multiple successors and the instruction is always executed when
2279 control transfers to one of the successors, and may not be executed
2280 when control is transferred to another.
2281- Additionally, an instruction also *control-depends* on a terminator
2282 instruction if the set of instructions it otherwise depends on would
2283 be different if the terminator had transferred control to a different
2284 successor.
2285- Dependence is transitive.
2286
2287Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2288with the additional affect that any instruction which has a *dependence*
2289on a poison value has undefined behavior.
2290
2291Here are some examples:
2292
2293.. code-block:: llvm
2294
2295 entry:
2296 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2297 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2298 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2299 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2300
2301 store i32 %poison, i32* @g ; Poison value stored to memory.
2302 %poison2 = load i32* @g ; Poison value loaded back from memory.
2303
2304 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2305
2306 %narrowaddr = bitcast i32* @g to i16*
2307 %wideaddr = bitcast i32* @g to i64*
2308 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2309 %poison4 = load i64* %wideaddr ; Returns a poison value.
2310
2311 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2312 br i1 %cmp, label %true, label %end ; Branch to either destination.
2313
2314 true:
2315 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2316 ; it has undefined behavior.
2317 br label %end
2318
2319 end:
2320 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2321 ; Both edges into this PHI are
2322 ; control-dependent on %cmp, so this
2323 ; always results in a poison value.
2324
2325 store volatile i32 0, i32* @g ; This would depend on the store in %true
2326 ; if %cmp is true, or the store in %entry
2327 ; otherwise, so this is undefined behavior.
2328
2329 br i1 %cmp, label %second_true, label %second_end
2330 ; The same branch again, but this time the
2331 ; true block doesn't have side effects.
2332
2333 second_true:
2334 ; No side effects!
2335 ret void
2336
2337 second_end:
2338 store volatile i32 0, i32* @g ; This time, the instruction always depends
2339 ; on the store in %end. Also, it is
2340 ; control-equivalent to %end, so this is
2341 ; well-defined (ignoring earlier undefined
2342 ; behavior in this example).
2343
2344.. _blockaddress:
2345
2346Addresses of Basic Blocks
2347-------------------------
2348
2349``blockaddress(@function, %block)``
2350
2351The '``blockaddress``' constant computes the address of the specified
2352basic block in the specified function, and always has an ``i8*`` type.
2353Taking the address of the entry block is illegal.
2354
2355This value only has defined behavior when used as an operand to the
2356':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2357against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002358undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002359no label is equal to the null pointer. This may be passed around as an
2360opaque pointer sized value as long as the bits are not inspected. This
2361allows ``ptrtoint`` and arithmetic to be performed on these values so
2362long as the original value is reconstituted before the ``indirectbr``
2363instruction.
2364
2365Finally, some targets may provide defined semantics when using the value
2366as the operand to an inline assembly, but that is target specific.
2367
Eli Bendersky88fe6822013-06-07 20:24:43 +00002368.. _constantexprs:
2369
Sean Silvaf722b002012-12-07 10:36:55 +00002370Constant Expressions
2371--------------------
2372
2373Constant expressions are used to allow expressions involving other
2374constants to be used as constants. Constant expressions may be of any
2375:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2376that does not have side effects (e.g. load and call are not supported).
2377The following is the syntax for constant expressions:
2378
2379``trunc (CST to TYPE)``
2380 Truncate a constant to another type. The bit size of CST must be
2381 larger than the bit size of TYPE. Both types must be integers.
2382``zext (CST to TYPE)``
2383 Zero extend a constant to another type. The bit size of CST must be
2384 smaller than the bit size of TYPE. Both types must be integers.
2385``sext (CST to TYPE)``
2386 Sign extend a constant to another type. The bit size of CST must be
2387 smaller than the bit size of TYPE. Both types must be integers.
2388``fptrunc (CST to TYPE)``
2389 Truncate a floating point constant to another floating point type.
2390 The size of CST must be larger than the size of TYPE. Both types
2391 must be floating point.
2392``fpext (CST to TYPE)``
2393 Floating point extend a constant to another type. The size of CST
2394 must be smaller or equal to the size of TYPE. Both types must be
2395 floating point.
2396``fptoui (CST to TYPE)``
2397 Convert a floating point constant to the corresponding unsigned
2398 integer constant. TYPE must be a scalar or vector integer type. CST
2399 must be of scalar or vector floating point type. Both CST and TYPE
2400 must be scalars, or vectors of the same number of elements. If the
2401 value won't fit in the integer type, the results are undefined.
2402``fptosi (CST to TYPE)``
2403 Convert a floating point constant to the corresponding signed
2404 integer constant. TYPE must be a scalar or vector integer type. CST
2405 must be of scalar or vector floating point type. Both CST and TYPE
2406 must be scalars, or vectors of the same number of elements. If the
2407 value won't fit in the integer type, the results are undefined.
2408``uitofp (CST to TYPE)``
2409 Convert an unsigned integer constant to the corresponding floating
2410 point constant. TYPE must be a scalar or vector floating point type.
2411 CST must be of scalar or vector integer type. Both CST and TYPE must
2412 be scalars, or vectors of the same number of elements. If the value
2413 won't fit in the floating point type, the results are undefined.
2414``sitofp (CST to TYPE)``
2415 Convert a signed integer constant to the corresponding floating
2416 point constant. TYPE must be a scalar or vector floating point type.
2417 CST must be of scalar or vector integer type. Both CST and TYPE must
2418 be scalars, or vectors of the same number of elements. If the value
2419 won't fit in the floating point type, the results are undefined.
2420``ptrtoint (CST to TYPE)``
2421 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002422 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002423 pointer type. The ``CST`` value is zero extended, truncated, or
2424 unchanged to make it fit in ``TYPE``.
2425``inttoptr (CST to TYPE)``
2426 Convert an integer constant to a pointer constant. TYPE must be a
2427 pointer type. CST must be of integer type. The CST value is zero
2428 extended, truncated, or unchanged to make it fit in a pointer size.
2429 This one is *really* dangerous!
2430``bitcast (CST to TYPE)``
2431 Convert a constant, CST, to another TYPE. The constraints of the
2432 operands are the same as those for the :ref:`bitcast
2433 instruction <i_bitcast>`.
Matt Arsenault59d3ae62013-11-15 01:34:59 +00002434``addrspacecast (CST to TYPE)``
2435 Convert a constant pointer or constant vector of pointer, CST, to another
2436 TYPE in a different address space. The constraints of the operands are the
2437 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvaf722b002012-12-07 10:36:55 +00002438``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2439 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2440 constants. As with the :ref:`getelementptr <i_getelementptr>`
2441 instruction, the index list may have zero or more indexes, which are
2442 required to make sense for the type of "CSTPTR".
2443``select (COND, VAL1, VAL2)``
2444 Perform the :ref:`select operation <i_select>` on constants.
2445``icmp COND (VAL1, VAL2)``
2446 Performs the :ref:`icmp operation <i_icmp>` on constants.
2447``fcmp COND (VAL1, VAL2)``
2448 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2449``extractelement (VAL, IDX)``
2450 Perform the :ref:`extractelement operation <i_extractelement>` on
2451 constants.
2452``insertelement (VAL, ELT, IDX)``
2453 Perform the :ref:`insertelement operation <i_insertelement>` on
2454 constants.
2455``shufflevector (VEC1, VEC2, IDXMASK)``
2456 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2457 constants.
2458``extractvalue (VAL, IDX0, IDX1, ...)``
2459 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2460 constants. The index list is interpreted in a similar manner as
2461 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2462 least one index value must be specified.
2463``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2464 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2465 The index list is interpreted in a similar manner as indices in a
2466 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2467 value must be specified.
2468``OPCODE (LHS, RHS)``
2469 Perform the specified operation of the LHS and RHS constants. OPCODE
2470 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2471 binary <bitwiseops>` operations. The constraints on operands are
2472 the same as those for the corresponding instruction (e.g. no bitwise
2473 operations on floating point values are allowed).
2474
2475Other Values
2476============
2477
Eli Bendersky88fe6822013-06-07 20:24:43 +00002478.. _inlineasmexprs:
2479
Sean Silvaf722b002012-12-07 10:36:55 +00002480Inline Assembler Expressions
2481----------------------------
2482
2483LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2484Inline Assembly <moduleasm>`) through the use of a special value. This
2485value represents the inline assembler as a string (containing the
2486instructions to emit), a list of operand constraints (stored as a
2487string), a flag that indicates whether or not the inline asm expression
2488has side effects, and a flag indicating whether the function containing
2489the asm needs to align its stack conservatively. An example inline
2490assembler expression is:
2491
2492.. code-block:: llvm
2493
2494 i32 (i32) asm "bswap $0", "=r,r"
2495
2496Inline assembler expressions may **only** be used as the callee operand
2497of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2498Thus, typically we have:
2499
2500.. code-block:: llvm
2501
2502 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2503
2504Inline asms with side effects not visible in the constraint list must be
2505marked as having side effects. This is done through the use of the
2506'``sideeffect``' keyword, like so:
2507
2508.. code-block:: llvm
2509
2510 call void asm sideeffect "eieio", ""()
2511
2512In some cases inline asms will contain code that will not work unless
2513the stack is aligned in some way, such as calls or SSE instructions on
2514x86, yet will not contain code that does that alignment within the asm.
2515The compiler should make conservative assumptions about what the asm
2516might contain and should generate its usual stack alignment code in the
2517prologue if the '``alignstack``' keyword is present:
2518
2519.. code-block:: llvm
2520
2521 call void asm alignstack "eieio", ""()
2522
2523Inline asms also support using non-standard assembly dialects. The
2524assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2525the inline asm is using the Intel dialect. Currently, ATT and Intel are
2526the only supported dialects. An example is:
2527
2528.. code-block:: llvm
2529
2530 call void asm inteldialect "eieio", ""()
2531
2532If multiple keywords appear the '``sideeffect``' keyword must come
2533first, the '``alignstack``' keyword second and the '``inteldialect``'
2534keyword last.
2535
2536Inline Asm Metadata
2537^^^^^^^^^^^^^^^^^^^
2538
2539The call instructions that wrap inline asm nodes may have a
2540"``!srcloc``" MDNode attached to it that contains a list of constant
2541integers. If present, the code generator will use the integer as the
2542location cookie value when report errors through the ``LLVMContext``
2543error reporting mechanisms. This allows a front-end to correlate backend
2544errors that occur with inline asm back to the source code that produced
2545it. For example:
2546
2547.. code-block:: llvm
2548
2549 call void asm sideeffect "something bad", ""(), !srcloc !42
2550 ...
2551 !42 = !{ i32 1234567 }
2552
2553It is up to the front-end to make sense of the magic numbers it places
2554in the IR. If the MDNode contains multiple constants, the code generator
2555will use the one that corresponds to the line of the asm that the error
2556occurs on.
2557
2558.. _metadata:
2559
2560Metadata Nodes and Metadata Strings
2561-----------------------------------
2562
2563LLVM IR allows metadata to be attached to instructions in the program
2564that can convey extra information about the code to the optimizers and
2565code generator. One example application of metadata is source-level
2566debug information. There are two metadata primitives: strings and nodes.
2567All metadata has the ``metadata`` type and is identified in syntax by a
2568preceding exclamation point ('``!``').
2569
2570A metadata string is a string surrounded by double quotes. It can
2571contain any character by escaping non-printable characters with
2572"``\xx``" where "``xx``" is the two digit hex code. For example:
2573"``!"test\00"``".
2574
2575Metadata nodes are represented with notation similar to structure
2576constants (a comma separated list of elements, surrounded by braces and
2577preceded by an exclamation point). Metadata nodes can have any values as
2578their operand. For example:
2579
2580.. code-block:: llvm
2581
2582 !{ metadata !"test\00", i32 10}
2583
2584A :ref:`named metadata <namedmetadatastructure>` is a collection of
2585metadata nodes, which can be looked up in the module symbol table. For
2586example:
2587
2588.. code-block:: llvm
2589
2590 !foo = metadata !{!4, !3}
2591
2592Metadata can be used as function arguments. Here ``llvm.dbg.value``
2593function is using two metadata arguments:
2594
2595.. code-block:: llvm
2596
2597 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2598
2599Metadata can be attached with an instruction. Here metadata ``!21`` is
2600attached to the ``add`` instruction using the ``!dbg`` identifier:
2601
2602.. code-block:: llvm
2603
2604 %indvar.next = add i64 %indvar, 1, !dbg !21
2605
2606More information about specific metadata nodes recognized by the
2607optimizers and code generator is found below.
2608
2609'``tbaa``' Metadata
2610^^^^^^^^^^^^^^^^^^^
2611
2612In LLVM IR, memory does not have types, so LLVM's own type system is not
2613suitable for doing TBAA. Instead, metadata is added to the IR to
2614describe a type system of a higher level language. This can be used to
2615implement typical C/C++ TBAA, but it can also be used to implement
2616custom alias analysis behavior for other languages.
2617
2618The current metadata format is very simple. TBAA metadata nodes have up
2619to three fields, e.g.:
2620
2621.. code-block:: llvm
2622
2623 !0 = metadata !{ metadata !"an example type tree" }
2624 !1 = metadata !{ metadata !"int", metadata !0 }
2625 !2 = metadata !{ metadata !"float", metadata !0 }
2626 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2627
2628The first field is an identity field. It can be any value, usually a
2629metadata string, which uniquely identifies the type. The most important
2630name in the tree is the name of the root node. Two trees with different
2631root node names are entirely disjoint, even if they have leaves with
2632common names.
2633
2634The second field identifies the type's parent node in the tree, or is
2635null or omitted for a root node. A type is considered to alias all of
2636its descendants and all of its ancestors in the tree. Also, a type is
2637considered to alias all types in other trees, so that bitcode produced
2638from multiple front-ends is handled conservatively.
2639
2640If the third field is present, it's an integer which if equal to 1
2641indicates that the type is "constant" (meaning
2642``pointsToConstantMemory`` should return true; see `other useful
2643AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2644
2645'``tbaa.struct``' Metadata
2646^^^^^^^^^^^^^^^^^^^^^^^^^^
2647
2648The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2649aggregate assignment operations in C and similar languages, however it
2650is defined to copy a contiguous region of memory, which is more than
2651strictly necessary for aggregate types which contain holes due to
2652padding. Also, it doesn't contain any TBAA information about the fields
2653of the aggregate.
2654
2655``!tbaa.struct`` metadata can describe which memory subregions in a
2656memcpy are padding and what the TBAA tags of the struct are.
2657
2658The current metadata format is very simple. ``!tbaa.struct`` metadata
2659nodes are a list of operands which are in conceptual groups of three.
2660For each group of three, the first operand gives the byte offset of a
2661field in bytes, the second gives its size in bytes, and the third gives
2662its tbaa tag. e.g.:
2663
2664.. code-block:: llvm
2665
2666 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2667
2668This describes a struct with two fields. The first is at offset 0 bytes
2669with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2670and has size 4 bytes and has tbaa tag !2.
2671
2672Note that the fields need not be contiguous. In this example, there is a
26734 byte gap between the two fields. This gap represents padding which
2674does not carry useful data and need not be preserved.
2675
2676'``fpmath``' Metadata
2677^^^^^^^^^^^^^^^^^^^^^
2678
2679``fpmath`` metadata may be attached to any instruction of floating point
2680type. It can be used to express the maximum acceptable error in the
2681result of that instruction, in ULPs, thus potentially allowing the
2682compiler to use a more efficient but less accurate method of computing
2683it. ULP is defined as follows:
2684
2685 If ``x`` is a real number that lies between two finite consecutive
2686 floating-point numbers ``a`` and ``b``, without being equal to one
2687 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2688 distance between the two non-equal finite floating-point numbers
2689 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2690
2691The metadata node shall consist of a single positive floating point
2692number representing the maximum relative error, for example:
2693
2694.. code-block:: llvm
2695
2696 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2697
2698'``range``' Metadata
2699^^^^^^^^^^^^^^^^^^^^
2700
2701``range`` metadata may be attached only to loads of integer types. It
2702expresses the possible ranges the loaded value is in. The ranges are
2703represented with a flattened list of integers. The loaded value is known
2704to be in the union of the ranges defined by each consecutive pair. Each
2705pair has the following properties:
2706
2707- The type must match the type loaded by the instruction.
2708- The pair ``a,b`` represents the range ``[a,b)``.
2709- Both ``a`` and ``b`` are constants.
2710- The range is allowed to wrap.
2711- The range should not represent the full or empty set. That is,
2712 ``a!=b``.
2713
2714In addition, the pairs must be in signed order of the lower bound and
2715they must be non-contiguous.
2716
2717Examples:
2718
2719.. code-block:: llvm
2720
2721 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2722 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2723 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2724 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2725 ...
2726 !0 = metadata !{ i8 0, i8 2 }
2727 !1 = metadata !{ i8 255, i8 2 }
2728 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2729 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2730
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002731'``llvm.loop``'
2732^^^^^^^^^^^^^^^
2733
2734It is sometimes useful to attach information to loop constructs. Currently,
2735loop metadata is implemented as metadata attached to the branch instruction
2736in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002737guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002738specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002739
2740The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002741itself to avoid merging it with any other identifier metadata, e.g.,
2742during module linkage or function inlining. That is, each loop should refer
2743to their own identification metadata even if they reside in separate functions.
2744The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002745constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002746
2747.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002748
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002749 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002750 !1 = metadata !{ metadata !1 }
2751
Paul Redmondee21b6f2013-05-28 20:00:34 +00002752The loop identifier metadata can be used to specify additional per-loop
2753metadata. Any operands after the first operand can be treated as user-defined
2754metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2755by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002756
Paul Redmondee21b6f2013-05-28 20:00:34 +00002757.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002758
Paul Redmondee21b6f2013-05-28 20:00:34 +00002759 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2760 ...
2761 !0 = metadata !{ metadata !0, metadata !1 }
2762 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002763
2764'``llvm.mem``'
2765^^^^^^^^^^^^^^^
2766
2767Metadata types used to annotate memory accesses with information helpful
2768for optimizations are prefixed with ``llvm.mem``.
2769
2770'``llvm.mem.parallel_loop_access``' Metadata
2771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2772
2773For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002774the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002775also all of the memory accessing instructions in the loop body need to be
2776marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2777is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002778the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002779converted to sequential loops due to optimization passes that are unaware of
2780the parallel semantics and that insert new memory instructions to the loop
2781body.
2782
2783Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002784both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002785metadata types that refer to the same loop identifier metadata.
2786
2787.. code-block:: llvm
2788
2789 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002790 ...
Stephen Hines36b56882014-04-23 16:57:46 -07002791 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmondee21b6f2013-05-28 20:00:34 +00002792 ...
Stephen Hines36b56882014-04-23 16:57:46 -07002793 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmondee21b6f2013-05-28 20:00:34 +00002794 ...
2795 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002796
2797 for.end:
2798 ...
2799 !0 = metadata !{ metadata !0 }
2800
2801It is also possible to have nested parallel loops. In that case the
2802memory accesses refer to a list of loop identifier metadata nodes instead of
2803the loop identifier metadata node directly:
2804
2805.. code-block:: llvm
2806
2807 outer.for.body:
Stephen Hines36b56882014-04-23 16:57:46 -07002808 ...
2809 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2810 ...
2811 br label %inner.for.body
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002812
2813 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002814 ...
Stephen Hines36b56882014-04-23 16:57:46 -07002815 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmondee21b6f2013-05-28 20:00:34 +00002816 ...
Stephen Hines36b56882014-04-23 16:57:46 -07002817 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmondee21b6f2013-05-28 20:00:34 +00002818 ...
2819 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002820
2821 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002822 ...
Stephen Hines36b56882014-04-23 16:57:46 -07002823 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmondee21b6f2013-05-28 20:00:34 +00002824 ...
2825 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002826
2827 outer.for.end: ; preds = %for.body
2828 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002829 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2830 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2831 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002832
Paul Redmondee21b6f2013-05-28 20:00:34 +00002833'``llvm.vectorizer``'
2834^^^^^^^^^^^^^^^^^^^^^
2835
2836Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2837vectorization parameters such as vectorization factor and unroll factor.
2838
2839``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2840loop identification metadata.
2841
2842'``llvm.vectorizer.unroll``' Metadata
2843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2844
2845This metadata instructs the loop vectorizer to unroll the specified
2846loop exactly ``N`` times.
2847
2848The first operand is the string ``llvm.vectorizer.unroll`` and the second
2849operand is an integer specifying the unroll factor. For example:
2850
2851.. code-block:: llvm
2852
2853 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2854
2855Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2856loop.
2857
2858If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2859determined automatically.
2860
2861'``llvm.vectorizer.width``' Metadata
2862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2863
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002864This metadata sets the target width of the vectorizer to ``N``. Without
2865this metadata, the vectorizer will choose a width automatically.
2866Regardless of this metadata, the vectorizer will only vectorize loops if
2867it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002868
2869The first operand is the string ``llvm.vectorizer.width`` and the second
2870operand is an integer specifying the width. For example:
2871
2872.. code-block:: llvm
2873
2874 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2875
2876Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2877loop.
2878
2879If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2880automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002881
Sean Silvaf722b002012-12-07 10:36:55 +00002882Module Flags Metadata
2883=====================
2884
2885Information about the module as a whole is difficult to convey to LLVM's
2886subsystems. The LLVM IR isn't sufficient to transmit this information.
2887The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002888this. These flags are in the form of key / value pairs --- much like a
2889dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002890look it up.
2891
2892The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2893Each triplet has the following form:
2894
2895- The first element is a *behavior* flag, which specifies the behavior
2896 when two (or more) modules are merged together, and it encounters two
2897 (or more) metadata with the same ID. The supported behaviors are
2898 described below.
2899- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002900 metadata. Each module may only have one flag entry for each unique ID (not
2901 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002902- The third element is the value of the flag.
2903
2904When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002905``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2906each unique metadata ID string, there will be exactly one entry in the merged
2907modules ``llvm.module.flags`` metadata table, and the value for that entry will
2908be determined by the merge behavior flag, as described below. The only exception
2909is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002910
2911The following behaviors are supported:
2912
2913.. list-table::
2914 :header-rows: 1
2915 :widths: 10 90
2916
2917 * - Value
2918 - Behavior
2919
2920 * - 1
2921 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002922 Emits an error if two values disagree, otherwise the resulting value
2923 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002924
2925 * - 2
2926 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002927 Emits a warning if two values disagree. The result value will be the
2928 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002929
2930 * - 3
2931 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002932 Adds a requirement that another module flag be present and have a
2933 specified value after linking is performed. The value must be a
2934 metadata pair, where the first element of the pair is the ID of the
2935 module flag to be restricted, and the second element of the pair is
2936 the value the module flag should be restricted to. This behavior can
2937 be used to restrict the allowable results (via triggering of an
2938 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002939
2940 * - 4
2941 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002942 Uses the specified value, regardless of the behavior or value of the
2943 other module. If both modules specify **Override**, but the values
2944 differ, an error will be emitted.
2945
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002946 * - 5
2947 - **Append**
2948 Appends the two values, which are required to be metadata nodes.
2949
2950 * - 6
2951 - **AppendUnique**
2952 Appends the two values, which are required to be metadata
2953 nodes. However, duplicate entries in the second list are dropped
2954 during the append operation.
2955
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002956It is an error for a particular unique flag ID to have multiple behaviors,
2957except in the case of **Require** (which adds restrictions on another metadata
2958value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002959
2960An example of module flags:
2961
2962.. code-block:: llvm
2963
2964 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2965 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2966 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2967 !3 = metadata !{ i32 3, metadata !"qux",
2968 metadata !{
2969 metadata !"foo", i32 1
2970 }
2971 }
2972 !llvm.module.flags = !{ !0, !1, !2, !3 }
2973
2974- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2975 if two or more ``!"foo"`` flags are seen is to emit an error if their
2976 values are not equal.
2977
2978- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2979 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002980 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002981
2982- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2983 behavior if two or more ``!"qux"`` flags are seen is to emit a
2984 warning if their values are not equal.
2985
2986- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2987
2988 ::
2989
2990 metadata !{ metadata !"foo", i32 1 }
2991
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002992 The behavior is to emit an error if the ``llvm.module.flags`` does not
2993 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2994 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002995
2996Objective-C Garbage Collection Module Flags Metadata
2997----------------------------------------------------
2998
2999On the Mach-O platform, Objective-C stores metadata about garbage
3000collection in a special section called "image info". The metadata
3001consists of a version number and a bitmask specifying what types of
3002garbage collection are supported (if any) by the file. If two or more
3003modules are linked together their garbage collection metadata needs to
3004be merged rather than appended together.
3005
3006The Objective-C garbage collection module flags metadata consists of the
3007following key-value pairs:
3008
3009.. list-table::
3010 :header-rows: 1
3011 :widths: 30 70
3012
3013 * - Key
3014 - Value
3015
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003016 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00003017 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00003018
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003019 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00003020 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00003021 always 0.
3022
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003023 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00003024 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00003025 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3026 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3027 Objective-C ABI version 2.
3028
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003029 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00003030 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00003031 not. Valid values are 0, for no garbage collection, and 2, for garbage
3032 collection supported.
3033
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003034 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00003035 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00003036 If present, its value must be 6. This flag requires that the
3037 ``Objective-C Garbage Collection`` flag have the value 2.
3038
3039Some important flag interactions:
3040
3041- If a module with ``Objective-C Garbage Collection`` set to 0 is
3042 merged with a module with ``Objective-C Garbage Collection`` set to
3043 2, then the resulting module has the
3044 ``Objective-C Garbage Collection`` flag set to 0.
3045- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3046 merged with a module with ``Objective-C GC Only`` set to 6.
3047
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003048Automatic Linker Flags Module Flags Metadata
3049--------------------------------------------
3050
3051Some targets support embedding flags to the linker inside individual object
3052files. Typically this is used in conjunction with language extensions which
3053allow source files to explicitly declare the libraries they depend on, and have
3054these automatically be transmitted to the linker via object files.
3055
3056These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003057using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003058to be ``AppendUnique``, and the value for the key is expected to be a metadata
3059node which should be a list of other metadata nodes, each of which should be a
3060list of metadata strings defining linker options.
3061
3062For example, the following metadata section specifies two separate sets of
3063linker options, presumably to link against ``libz`` and the ``Cocoa``
3064framework::
3065
Michael Liao2faa0f32013-03-06 18:24:34 +00003066 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003067 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00003068 metadata !{ metadata !"-lz" },
3069 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003070 !llvm.module.flags = !{ !0 }
3071
3072The metadata encoding as lists of lists of options, as opposed to a collapsed
3073list of options, is chosen so that the IR encoding can use multiple option
3074strings to specify e.g., a single library, while still having that specifier be
3075preserved as an atomic element that can be recognized by a target specific
3076assembly writer or object file emitter.
3077
3078Each individual option is required to be either a valid option for the target's
3079linker, or an option that is reserved by the target specific assembly writer or
3080object file emitter. No other aspect of these options is defined by the IR.
3081
Eli Bendersky88fe6822013-06-07 20:24:43 +00003082.. _intrinsicglobalvariables:
3083
Sean Silvaf722b002012-12-07 10:36:55 +00003084Intrinsic Global Variables
3085==========================
3086
3087LLVM has a number of "magic" global variables that contain data that
3088affect code generation or other IR semantics. These are documented here.
3089All globals of this sort should have a section specified as
3090"``llvm.metadata``". This section and all globals that start with
3091"``llvm.``" are reserved for use by LLVM.
3092
Eli Bendersky88fe6822013-06-07 20:24:43 +00003093.. _gv_llvmused:
3094
Sean Silvaf722b002012-12-07 10:36:55 +00003095The '``llvm.used``' Global Variable
3096-----------------------------------
3097
Rafael Espindolacde25b42013-04-22 14:58:02 +00003098The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00003099:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003100pointers to named global variables, functions and aliases which may optionally
3101have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00003102use of it is:
3103
3104.. code-block:: llvm
3105
3106 @X = global i8 4
3107 @Y = global i32 123
3108
3109 @llvm.used = appending global [2 x i8*] [
3110 i8* @X,
3111 i8* bitcast (i32* @Y to i8*)
3112 ], section "llvm.metadata"
3113
Rafael Espindolacde25b42013-04-22 14:58:02 +00003114If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3115and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003116symbol that it cannot see (which is why they have to be named). For example, if
3117a variable has internal linkage and no references other than that from the
3118``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3119references from inline asms and other things the compiler cannot "see", and
3120corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00003121
3122On some targets, the code generator must emit a directive to the
3123assembler or object file to prevent the assembler and linker from
3124molesting the symbol.
3125
Eli Bendersky88fe6822013-06-07 20:24:43 +00003126.. _gv_llvmcompilerused:
3127
Sean Silvaf722b002012-12-07 10:36:55 +00003128The '``llvm.compiler.used``' Global Variable
3129--------------------------------------------
3130
3131The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3132directive, except that it only prevents the compiler from touching the
3133symbol. On targets that support it, this allows an intelligent linker to
3134optimize references to the symbol without being impeded as it would be
3135by ``@llvm.used``.
3136
3137This is a rare construct that should only be used in rare circumstances,
3138and should not be exposed to source languages.
3139
Eli Bendersky88fe6822013-06-07 20:24:43 +00003140.. _gv_llvmglobalctors:
3141
Sean Silvaf722b002012-12-07 10:36:55 +00003142The '``llvm.global_ctors``' Global Variable
3143-------------------------------------------
3144
3145.. code-block:: llvm
3146
3147 %0 = type { i32, void ()* }
3148 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3149
3150The ``@llvm.global_ctors`` array contains a list of constructor
3151functions and associated priorities. The functions referenced by this
3152array will be called in ascending order of priority (i.e. lowest first)
3153when the module is loaded. The order of functions with the same priority
3154is not defined.
3155
Eli Bendersky88fe6822013-06-07 20:24:43 +00003156.. _llvmglobaldtors:
3157
Sean Silvaf722b002012-12-07 10:36:55 +00003158The '``llvm.global_dtors``' Global Variable
3159-------------------------------------------
3160
3161.. code-block:: llvm
3162
3163 %0 = type { i32, void ()* }
3164 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3165
3166The ``@llvm.global_dtors`` array contains a list of destructor functions
3167and associated priorities. The functions referenced by this array will
3168be called in descending order of priority (i.e. highest first) when the
3169module is loaded. The order of functions with the same priority is not
3170defined.
3171
3172Instruction Reference
3173=====================
3174
3175The LLVM instruction set consists of several different classifications
3176of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3177instructions <binaryops>`, :ref:`bitwise binary
3178instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3179:ref:`other instructions <otherops>`.
3180
3181.. _terminators:
3182
3183Terminator Instructions
3184-----------------------
3185
3186As mentioned :ref:`previously <functionstructure>`, every basic block in a
3187program ends with a "Terminator" instruction, which indicates which
3188block should be executed after the current block is finished. These
3189terminator instructions typically yield a '``void``' value: they produce
3190control flow, not values (the one exception being the
3191':ref:`invoke <i_invoke>`' instruction).
3192
3193The terminator instructions are: ':ref:`ret <i_ret>`',
3194':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3195':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3196':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3197
3198.. _i_ret:
3199
3200'``ret``' Instruction
3201^^^^^^^^^^^^^^^^^^^^^
3202
3203Syntax:
3204"""""""
3205
3206::
3207
3208 ret <type> <value> ; Return a value from a non-void function
3209 ret void ; Return from void function
3210
3211Overview:
3212"""""""""
3213
3214The '``ret``' instruction is used to return control flow (and optionally
3215a value) from a function back to the caller.
3216
3217There are two forms of the '``ret``' instruction: one that returns a
3218value and then causes control flow, and one that just causes control
3219flow to occur.
3220
3221Arguments:
3222""""""""""
3223
3224The '``ret``' instruction optionally accepts a single argument, the
3225return value. The type of the return value must be a ':ref:`first
3226class <t_firstclass>`' type.
3227
3228A function is not :ref:`well formed <wellformed>` if it it has a non-void
3229return type and contains a '``ret``' instruction with no return value or
3230a return value with a type that does not match its type, or if it has a
3231void return type and contains a '``ret``' instruction with a return
3232value.
3233
3234Semantics:
3235""""""""""
3236
3237When the '``ret``' instruction is executed, control flow returns back to
3238the calling function's context. If the caller is a
3239":ref:`call <i_call>`" instruction, execution continues at the
3240instruction after the call. If the caller was an
3241":ref:`invoke <i_invoke>`" instruction, execution continues at the
3242beginning of the "normal" destination block. If the instruction returns
3243a value, that value shall set the call or invoke instruction's return
3244value.
3245
3246Example:
3247""""""""
3248
3249.. code-block:: llvm
3250
3251 ret i32 5 ; Return an integer value of 5
3252 ret void ; Return from a void function
3253 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3254
3255.. _i_br:
3256
3257'``br``' Instruction
3258^^^^^^^^^^^^^^^^^^^^
3259
3260Syntax:
3261"""""""
3262
3263::
3264
3265 br i1 <cond>, label <iftrue>, label <iffalse>
3266 br label <dest> ; Unconditional branch
3267
3268Overview:
3269"""""""""
3270
3271The '``br``' instruction is used to cause control flow to transfer to a
3272different basic block in the current function. There are two forms of
3273this instruction, corresponding to a conditional branch and an
3274unconditional branch.
3275
3276Arguments:
3277""""""""""
3278
3279The conditional branch form of the '``br``' instruction takes a single
3280'``i1``' value and two '``label``' values. The unconditional form of the
3281'``br``' instruction takes a single '``label``' value as a target.
3282
3283Semantics:
3284""""""""""
3285
3286Upon execution of a conditional '``br``' instruction, the '``i1``'
3287argument is evaluated. If the value is ``true``, control flows to the
3288'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3289to the '``iffalse``' ``label`` argument.
3290
3291Example:
3292""""""""
3293
3294.. code-block:: llvm
3295
3296 Test:
3297 %cond = icmp eq i32 %a, %b
3298 br i1 %cond, label %IfEqual, label %IfUnequal
3299 IfEqual:
3300 ret i32 1
3301 IfUnequal:
3302 ret i32 0
3303
3304.. _i_switch:
3305
3306'``switch``' Instruction
3307^^^^^^^^^^^^^^^^^^^^^^^^
3308
3309Syntax:
3310"""""""
3311
3312::
3313
3314 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3315
3316Overview:
3317"""""""""
3318
3319The '``switch``' instruction is used to transfer control flow to one of
3320several different places. It is a generalization of the '``br``'
3321instruction, allowing a branch to occur to one of many possible
3322destinations.
3323
3324Arguments:
3325""""""""""
3326
3327The '``switch``' instruction uses three parameters: an integer
3328comparison value '``value``', a default '``label``' destination, and an
3329array of pairs of comparison value constants and '``label``'s. The table
3330is not allowed to contain duplicate constant entries.
3331
3332Semantics:
3333""""""""""
3334
3335The ``switch`` instruction specifies a table of values and destinations.
3336When the '``switch``' instruction is executed, this table is searched
3337for the given value. If the value is found, control flow is transferred
3338to the corresponding destination; otherwise, control flow is transferred
3339to the default destination.
3340
3341Implementation:
3342"""""""""""""""
3343
3344Depending on properties of the target machine and the particular
3345``switch`` instruction, this instruction may be code generated in
3346different ways. For example, it could be generated as a series of
3347chained conditional branches or with a lookup table.
3348
3349Example:
3350""""""""
3351
3352.. code-block:: llvm
3353
3354 ; Emulate a conditional br instruction
3355 %Val = zext i1 %value to i32
3356 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3357
3358 ; Emulate an unconditional br instruction
3359 switch i32 0, label %dest [ ]
3360
3361 ; Implement a jump table:
3362 switch i32 %val, label %otherwise [ i32 0, label %onzero
3363 i32 1, label %onone
3364 i32 2, label %ontwo ]
3365
3366.. _i_indirectbr:
3367
3368'``indirectbr``' Instruction
3369^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3370
3371Syntax:
3372"""""""
3373
3374::
3375
3376 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3377
3378Overview:
3379"""""""""
3380
3381The '``indirectbr``' instruction implements an indirect branch to a
3382label within the current function, whose address is specified by
3383"``address``". Address must be derived from a
3384:ref:`blockaddress <blockaddress>` constant.
3385
3386Arguments:
3387""""""""""
3388
3389The '``address``' argument is the address of the label to jump to. The
3390rest of the arguments indicate the full set of possible destinations
3391that the address may point to. Blocks are allowed to occur multiple
3392times in the destination list, though this isn't particularly useful.
3393
3394This destination list is required so that dataflow analysis has an
3395accurate understanding of the CFG.
3396
3397Semantics:
3398""""""""""
3399
3400Control transfers to the block specified in the address argument. All
3401possible destination blocks must be listed in the label list, otherwise
3402this instruction has undefined behavior. This implies that jumps to
3403labels defined in other functions have undefined behavior as well.
3404
3405Implementation:
3406"""""""""""""""
3407
3408This is typically implemented with a jump through a register.
3409
3410Example:
3411""""""""
3412
3413.. code-block:: llvm
3414
3415 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3416
3417.. _i_invoke:
3418
3419'``invoke``' Instruction
3420^^^^^^^^^^^^^^^^^^^^^^^^
3421
3422Syntax:
3423"""""""
3424
3425::
3426
3427 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3428 to label <normal label> unwind label <exception label>
3429
3430Overview:
3431"""""""""
3432
3433The '``invoke``' instruction causes control to transfer to a specified
3434function, with the possibility of control flow transfer to either the
3435'``normal``' label or the '``exception``' label. If the callee function
3436returns with the "``ret``" instruction, control flow will return to the
3437"normal" label. If the callee (or any indirect callees) returns via the
3438":ref:`resume <i_resume>`" instruction or other exception handling
3439mechanism, control is interrupted and continued at the dynamically
3440nearest "exception" label.
3441
3442The '``exception``' label is a `landing
3443pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3444'``exception``' label is required to have the
3445":ref:`landingpad <i_landingpad>`" instruction, which contains the
3446information about the behavior of the program after unwinding happens,
3447as its first non-PHI instruction. The restrictions on the
3448"``landingpad``" instruction's tightly couples it to the "``invoke``"
3449instruction, so that the important information contained within the
3450"``landingpad``" instruction can't be lost through normal code motion.
3451
3452Arguments:
3453""""""""""
3454
3455This instruction requires several arguments:
3456
3457#. The optional "cconv" marker indicates which :ref:`calling
3458 convention <callingconv>` the call should use. If none is
3459 specified, the call defaults to using C calling conventions.
3460#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3461 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3462 are valid here.
3463#. '``ptr to function ty``': shall be the signature of the pointer to
3464 function value being invoked. In most cases, this is a direct
3465 function invocation, but indirect ``invoke``'s are just as possible,
3466 branching off an arbitrary pointer to function value.
3467#. '``function ptr val``': An LLVM value containing a pointer to a
3468 function to be invoked.
3469#. '``function args``': argument list whose types match the function
3470 signature argument types and parameter attributes. All arguments must
3471 be of :ref:`first class <t_firstclass>` type. If the function signature
3472 indicates the function accepts a variable number of arguments, the
3473 extra arguments can be specified.
3474#. '``normal label``': the label reached when the called function
3475 executes a '``ret``' instruction.
3476#. '``exception label``': the label reached when a callee returns via
3477 the :ref:`resume <i_resume>` instruction or other exception handling
3478 mechanism.
3479#. The optional :ref:`function attributes <fnattrs>` list. Only
3480 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3481 attributes are valid here.
3482
3483Semantics:
3484""""""""""
3485
3486This instruction is designed to operate as a standard '``call``'
3487instruction in most regards. The primary difference is that it
3488establishes an association with a label, which is used by the runtime
3489library to unwind the stack.
3490
3491This instruction is used in languages with destructors to ensure that
3492proper cleanup is performed in the case of either a ``longjmp`` or a
3493thrown exception. Additionally, this is important for implementation of
3494'``catch``' clauses in high-level languages that support them.
3495
3496For the purposes of the SSA form, the definition of the value returned
3497by the '``invoke``' instruction is deemed to occur on the edge from the
3498current block to the "normal" label. If the callee unwinds then no
3499return value is available.
3500
3501Example:
3502""""""""
3503
3504.. code-block:: llvm
3505
3506 %retval = invoke i32 @Test(i32 15) to label %Continue
3507 unwind label %TestCleanup ; {i32}:retval set
3508 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3509 unwind label %TestCleanup ; {i32}:retval set
3510
3511.. _i_resume:
3512
3513'``resume``' Instruction
3514^^^^^^^^^^^^^^^^^^^^^^^^
3515
3516Syntax:
3517"""""""
3518
3519::
3520
3521 resume <type> <value>
3522
3523Overview:
3524"""""""""
3525
3526The '``resume``' instruction is a terminator instruction that has no
3527successors.
3528
3529Arguments:
3530""""""""""
3531
3532The '``resume``' instruction requires one argument, which must have the
3533same type as the result of any '``landingpad``' instruction in the same
3534function.
3535
3536Semantics:
3537""""""""""
3538
3539The '``resume``' instruction resumes propagation of an existing
3540(in-flight) exception whose unwinding was interrupted with a
3541:ref:`landingpad <i_landingpad>` instruction.
3542
3543Example:
3544""""""""
3545
3546.. code-block:: llvm
3547
3548 resume { i8*, i32 } %exn
3549
3550.. _i_unreachable:
3551
3552'``unreachable``' Instruction
3553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3554
3555Syntax:
3556"""""""
3557
3558::
3559
3560 unreachable
3561
3562Overview:
3563"""""""""
3564
3565The '``unreachable``' instruction has no defined semantics. This
3566instruction is used to inform the optimizer that a particular portion of
3567the code is not reachable. This can be used to indicate that the code
3568after a no-return function cannot be reached, and other facts.
3569
3570Semantics:
3571""""""""""
3572
3573The '``unreachable``' instruction has no defined semantics.
3574
3575.. _binaryops:
3576
3577Binary Operations
3578-----------------
3579
3580Binary operators are used to do most of the computation in a program.
3581They require two operands of the same type, execute an operation on
3582them, and produce a single value. The operands might represent multiple
3583data, as is the case with the :ref:`vector <t_vector>` data type. The
3584result value has the same type as its operands.
3585
3586There are several different binary operators:
3587
3588.. _i_add:
3589
3590'``add``' Instruction
3591^^^^^^^^^^^^^^^^^^^^^
3592
3593Syntax:
3594"""""""
3595
3596::
3597
3598 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3599 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3600 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3601 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3602
3603Overview:
3604"""""""""
3605
3606The '``add``' instruction returns the sum of its two operands.
3607
3608Arguments:
3609""""""""""
3610
3611The two arguments to the '``add``' instruction must be
3612:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3613arguments must have identical types.
3614
3615Semantics:
3616""""""""""
3617
3618The value produced is the integer sum of the two operands.
3619
3620If the sum has unsigned overflow, the result returned is the
3621mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3622the result.
3623
3624Because LLVM integers use a two's complement representation, this
3625instruction is appropriate for both signed and unsigned integers.
3626
3627``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3628respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3629result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3630unsigned and/or signed overflow, respectively, occurs.
3631
3632Example:
3633""""""""
3634
3635.. code-block:: llvm
3636
3637 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3638
3639.. _i_fadd:
3640
3641'``fadd``' Instruction
3642^^^^^^^^^^^^^^^^^^^^^^
3643
3644Syntax:
3645"""""""
3646
3647::
3648
3649 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3650
3651Overview:
3652"""""""""
3653
3654The '``fadd``' instruction returns the sum of its two operands.
3655
3656Arguments:
3657""""""""""
3658
3659The two arguments to the '``fadd``' instruction must be :ref:`floating
3660point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3661Both arguments must have identical types.
3662
3663Semantics:
3664""""""""""
3665
3666The value produced is the floating point sum of the two operands. This
3667instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3668which are optimization hints to enable otherwise unsafe floating point
3669optimizations:
3670
3671Example:
3672""""""""
3673
3674.. code-block:: llvm
3675
3676 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3677
3678'``sub``' Instruction
3679^^^^^^^^^^^^^^^^^^^^^
3680
3681Syntax:
3682"""""""
3683
3684::
3685
3686 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3687 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3688 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3689 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3690
3691Overview:
3692"""""""""
3693
3694The '``sub``' instruction returns the difference of its two operands.
3695
3696Note that the '``sub``' instruction is used to represent the '``neg``'
3697instruction present in most other intermediate representations.
3698
3699Arguments:
3700""""""""""
3701
3702The two arguments to the '``sub``' instruction must be
3703:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3704arguments must have identical types.
3705
3706Semantics:
3707""""""""""
3708
3709The value produced is the integer difference of the two operands.
3710
3711If the difference has unsigned overflow, the result returned is the
3712mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3713the result.
3714
3715Because LLVM integers use a two's complement representation, this
3716instruction is appropriate for both signed and unsigned integers.
3717
3718``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3719respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3720result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3721unsigned and/or signed overflow, respectively, occurs.
3722
3723Example:
3724""""""""
3725
3726.. code-block:: llvm
3727
3728 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3729 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3730
3731.. _i_fsub:
3732
3733'``fsub``' Instruction
3734^^^^^^^^^^^^^^^^^^^^^^
3735
3736Syntax:
3737"""""""
3738
3739::
3740
3741 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3742
3743Overview:
3744"""""""""
3745
3746The '``fsub``' instruction returns the difference of its two operands.
3747
3748Note that the '``fsub``' instruction is used to represent the '``fneg``'
3749instruction present in most other intermediate representations.
3750
3751Arguments:
3752""""""""""
3753
3754The two arguments to the '``fsub``' instruction must be :ref:`floating
3755point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3756Both arguments must have identical types.
3757
3758Semantics:
3759""""""""""
3760
3761The value produced is the floating point difference of the two operands.
3762This instruction can also take any number of :ref:`fast-math
3763flags <fastmath>`, which are optimization hints to enable otherwise
3764unsafe floating point optimizations:
3765
3766Example:
3767""""""""
3768
3769.. code-block:: llvm
3770
3771 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3772 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3773
3774'``mul``' Instruction
3775^^^^^^^^^^^^^^^^^^^^^
3776
3777Syntax:
3778"""""""
3779
3780::
3781
3782 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3783 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3784 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3785 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3786
3787Overview:
3788"""""""""
3789
3790The '``mul``' instruction returns the product of its two operands.
3791
3792Arguments:
3793""""""""""
3794
3795The two arguments to the '``mul``' instruction must be
3796:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3797arguments must have identical types.
3798
3799Semantics:
3800""""""""""
3801
3802The value produced is the integer product of the two operands.
3803
3804If the result of the multiplication has unsigned overflow, the result
3805returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3806bit width of the result.
3807
3808Because LLVM integers use a two's complement representation, and the
3809result is the same width as the operands, this instruction returns the
3810correct result for both signed and unsigned integers. If a full product
3811(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3812sign-extended or zero-extended as appropriate to the width of the full
3813product.
3814
3815``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3816respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3817result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3818unsigned and/or signed overflow, respectively, occurs.
3819
3820Example:
3821""""""""
3822
3823.. code-block:: llvm
3824
3825 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3826
3827.. _i_fmul:
3828
3829'``fmul``' Instruction
3830^^^^^^^^^^^^^^^^^^^^^^
3831
3832Syntax:
3833"""""""
3834
3835::
3836
3837 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3838
3839Overview:
3840"""""""""
3841
3842The '``fmul``' instruction returns the product of its two operands.
3843
3844Arguments:
3845""""""""""
3846
3847The two arguments to the '``fmul``' instruction must be :ref:`floating
3848point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3849Both arguments must have identical types.
3850
3851Semantics:
3852""""""""""
3853
3854The value produced is the floating point product of the two operands.
3855This instruction can also take any number of :ref:`fast-math
3856flags <fastmath>`, which are optimization hints to enable otherwise
3857unsafe floating point optimizations:
3858
3859Example:
3860""""""""
3861
3862.. code-block:: llvm
3863
3864 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3865
3866'``udiv``' Instruction
3867^^^^^^^^^^^^^^^^^^^^^^
3868
3869Syntax:
3870"""""""
3871
3872::
3873
3874 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3875 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3876
3877Overview:
3878"""""""""
3879
3880The '``udiv``' instruction returns the quotient of its two operands.
3881
3882Arguments:
3883""""""""""
3884
3885The two arguments to the '``udiv``' instruction must be
3886:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3887arguments must have identical types.
3888
3889Semantics:
3890""""""""""
3891
3892The value produced is the unsigned integer quotient of the two operands.
3893
3894Note that unsigned integer division and signed integer division are
3895distinct operations; for signed integer division, use '``sdiv``'.
3896
3897Division by zero leads to undefined behavior.
3898
3899If the ``exact`` keyword is present, the result value of the ``udiv`` is
3900a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3901such, "((a udiv exact b) mul b) == a").
3902
3903Example:
3904""""""""
3905
3906.. code-block:: llvm
3907
3908 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3909
3910'``sdiv``' Instruction
3911^^^^^^^^^^^^^^^^^^^^^^
3912
3913Syntax:
3914"""""""
3915
3916::
3917
3918 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3919 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3920
3921Overview:
3922"""""""""
3923
3924The '``sdiv``' instruction returns the quotient of its two operands.
3925
3926Arguments:
3927""""""""""
3928
3929The two arguments to the '``sdiv``' instruction must be
3930:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3931arguments must have identical types.
3932
3933Semantics:
3934""""""""""
3935
3936The value produced is the signed integer quotient of the two operands
3937rounded towards zero.
3938
3939Note that signed integer division and unsigned integer division are
3940distinct operations; for unsigned integer division, use '``udiv``'.
3941
3942Division by zero leads to undefined behavior. Overflow also leads to
3943undefined behavior; this is a rare case, but can occur, for example, by
3944doing a 32-bit division of -2147483648 by -1.
3945
3946If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3947a :ref:`poison value <poisonvalues>` if the result would be rounded.
3948
3949Example:
3950""""""""
3951
3952.. code-block:: llvm
3953
3954 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3955
3956.. _i_fdiv:
3957
3958'``fdiv``' Instruction
3959^^^^^^^^^^^^^^^^^^^^^^
3960
3961Syntax:
3962"""""""
3963
3964::
3965
3966 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3967
3968Overview:
3969"""""""""
3970
3971The '``fdiv``' instruction returns the quotient of its two operands.
3972
3973Arguments:
3974""""""""""
3975
3976The two arguments to the '``fdiv``' instruction must be :ref:`floating
3977point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3978Both arguments must have identical types.
3979
3980Semantics:
3981""""""""""
3982
3983The value produced is the floating point quotient of the two operands.
3984This instruction can also take any number of :ref:`fast-math
3985flags <fastmath>`, which are optimization hints to enable otherwise
3986unsafe floating point optimizations:
3987
3988Example:
3989""""""""
3990
3991.. code-block:: llvm
3992
3993 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3994
3995'``urem``' Instruction
3996^^^^^^^^^^^^^^^^^^^^^^
3997
3998Syntax:
3999"""""""
4000
4001::
4002
4003 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4004
4005Overview:
4006"""""""""
4007
4008The '``urem``' instruction returns the remainder from the unsigned
4009division of its two arguments.
4010
4011Arguments:
4012""""""""""
4013
4014The two arguments to the '``urem``' instruction must be
4015:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4016arguments must have identical types.
4017
4018Semantics:
4019""""""""""
4020
4021This instruction returns the unsigned integer *remainder* of a division.
4022This instruction always performs an unsigned division to get the
4023remainder.
4024
4025Note that unsigned integer remainder and signed integer remainder are
4026distinct operations; for signed integer remainder, use '``srem``'.
4027
4028Taking the remainder of a division by zero leads to undefined behavior.
4029
4030Example:
4031""""""""
4032
4033.. code-block:: llvm
4034
4035 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4036
4037'``srem``' Instruction
4038^^^^^^^^^^^^^^^^^^^^^^
4039
4040Syntax:
4041"""""""
4042
4043::
4044
4045 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4046
4047Overview:
4048"""""""""
4049
4050The '``srem``' instruction returns the remainder from the signed
4051division of its two operands. This instruction can also take
4052:ref:`vector <t_vector>` versions of the values in which case the elements
4053must be integers.
4054
4055Arguments:
4056""""""""""
4057
4058The two arguments to the '``srem``' instruction must be
4059:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4060arguments must have identical types.
4061
4062Semantics:
4063""""""""""
4064
4065This instruction returns the *remainder* of a division (where the result
4066is either zero or has the same sign as the dividend, ``op1``), not the
4067*modulo* operator (where the result is either zero or has the same sign
4068as the divisor, ``op2``) of a value. For more information about the
4069difference, see `The Math
4070Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4071table of how this is implemented in various languages, please see
4072`Wikipedia: modulo
4073operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4074
4075Note that signed integer remainder and unsigned integer remainder are
4076distinct operations; for unsigned integer remainder, use '``urem``'.
4077
4078Taking the remainder of a division by zero leads to undefined behavior.
4079Overflow also leads to undefined behavior; this is a rare case, but can
4080occur, for example, by taking the remainder of a 32-bit division of
4081-2147483648 by -1. (The remainder doesn't actually overflow, but this
4082rule lets srem be implemented using instructions that return both the
4083result of the division and the remainder.)
4084
4085Example:
4086""""""""
4087
4088.. code-block:: llvm
4089
4090 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4091
4092.. _i_frem:
4093
4094'``frem``' Instruction
4095^^^^^^^^^^^^^^^^^^^^^^
4096
4097Syntax:
4098"""""""
4099
4100::
4101
4102 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4103
4104Overview:
4105"""""""""
4106
4107The '``frem``' instruction returns the remainder from the division of
4108its two operands.
4109
4110Arguments:
4111""""""""""
4112
4113The two arguments to the '``frem``' instruction must be :ref:`floating
4114point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4115Both arguments must have identical types.
4116
4117Semantics:
4118""""""""""
4119
4120This instruction returns the *remainder* of a division. The remainder
4121has the same sign as the dividend. This instruction can also take any
4122number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4123to enable otherwise unsafe floating point optimizations:
4124
4125Example:
4126""""""""
4127
4128.. code-block:: llvm
4129
4130 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4131
4132.. _bitwiseops:
4133
4134Bitwise Binary Operations
4135-------------------------
4136
4137Bitwise binary operators are used to do various forms of bit-twiddling
4138in a program. They are generally very efficient instructions and can
4139commonly be strength reduced from other instructions. They require two
4140operands of the same type, execute an operation on them, and produce a
4141single value. The resulting value is the same type as its operands.
4142
4143'``shl``' Instruction
4144^^^^^^^^^^^^^^^^^^^^^
4145
4146Syntax:
4147"""""""
4148
4149::
4150
4151 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4152 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4153 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4154 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4155
4156Overview:
4157"""""""""
4158
4159The '``shl``' instruction returns the first operand shifted to the left
4160a specified number of bits.
4161
4162Arguments:
4163""""""""""
4164
4165Both arguments to the '``shl``' instruction must be the same
4166:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4167'``op2``' is treated as an unsigned value.
4168
4169Semantics:
4170""""""""""
4171
4172The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4173where ``n`` is the width of the result. If ``op2`` is (statically or
4174dynamically) negative or equal to or larger than the number of bits in
4175``op1``, the result is undefined. If the arguments are vectors, each
4176vector element of ``op1`` is shifted by the corresponding shift amount
4177in ``op2``.
4178
4179If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4180value <poisonvalues>` if it shifts out any non-zero bits. If the
4181``nsw`` keyword is present, then the shift produces a :ref:`poison
4182value <poisonvalues>` if it shifts out any bits that disagree with the
4183resultant sign bit. As such, NUW/NSW have the same semantics as they
4184would if the shift were expressed as a mul instruction with the same
4185nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4186
4187Example:
4188""""""""
4189
4190.. code-block:: llvm
4191
4192 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4193 <result> = shl i32 4, 2 ; yields {i32}: 16
4194 <result> = shl i32 1, 10 ; yields {i32}: 1024
4195 <result> = shl i32 1, 32 ; undefined
4196 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4197
4198'``lshr``' Instruction
4199^^^^^^^^^^^^^^^^^^^^^^
4200
4201Syntax:
4202"""""""
4203
4204::
4205
4206 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4207 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4208
4209Overview:
4210"""""""""
4211
4212The '``lshr``' instruction (logical shift right) returns the first
4213operand shifted to the right a specified number of bits with zero fill.
4214
4215Arguments:
4216""""""""""
4217
4218Both arguments to the '``lshr``' instruction must be the same
4219:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4220'``op2``' is treated as an unsigned value.
4221
4222Semantics:
4223""""""""""
4224
4225This instruction always performs a logical shift right operation. The
4226most significant bits of the result will be filled with zero bits after
4227the shift. If ``op2`` is (statically or dynamically) equal to or larger
4228than the number of bits in ``op1``, the result is undefined. If the
4229arguments are vectors, each vector element of ``op1`` is shifted by the
4230corresponding shift amount in ``op2``.
4231
4232If the ``exact`` keyword is present, the result value of the ``lshr`` is
4233a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4234non-zero.
4235
4236Example:
4237""""""""
4238
4239.. code-block:: llvm
4240
4241 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4242 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4243 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004244 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004245 <result> = lshr i32 1, 32 ; undefined
4246 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4247
4248'``ashr``' Instruction
4249^^^^^^^^^^^^^^^^^^^^^^
4250
4251Syntax:
4252"""""""
4253
4254::
4255
4256 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4257 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4258
4259Overview:
4260"""""""""
4261
4262The '``ashr``' instruction (arithmetic shift right) returns the first
4263operand shifted to the right a specified number of bits with sign
4264extension.
4265
4266Arguments:
4267""""""""""
4268
4269Both arguments to the '``ashr``' instruction must be the same
4270:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4271'``op2``' is treated as an unsigned value.
4272
4273Semantics:
4274""""""""""
4275
4276This instruction always performs an arithmetic shift right operation,
4277The most significant bits of the result will be filled with the sign bit
4278of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4279than the number of bits in ``op1``, the result is undefined. If the
4280arguments are vectors, each vector element of ``op1`` is shifted by the
4281corresponding shift amount in ``op2``.
4282
4283If the ``exact`` keyword is present, the result value of the ``ashr`` is
4284a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4285non-zero.
4286
4287Example:
4288""""""""
4289
4290.. code-block:: llvm
4291
4292 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4293 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4294 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4295 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4296 <result> = ashr i32 1, 32 ; undefined
4297 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4298
4299'``and``' Instruction
4300^^^^^^^^^^^^^^^^^^^^^
4301
4302Syntax:
4303"""""""
4304
4305::
4306
4307 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4308
4309Overview:
4310"""""""""
4311
4312The '``and``' instruction returns the bitwise logical and of its two
4313operands.
4314
4315Arguments:
4316""""""""""
4317
4318The two arguments to the '``and``' instruction must be
4319:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4320arguments must have identical types.
4321
4322Semantics:
4323""""""""""
4324
4325The truth table used for the '``and``' instruction is:
4326
4327+-----+-----+-----+
4328| In0 | In1 | Out |
4329+-----+-----+-----+
4330| 0 | 0 | 0 |
4331+-----+-----+-----+
4332| 0 | 1 | 0 |
4333+-----+-----+-----+
4334| 1 | 0 | 0 |
4335+-----+-----+-----+
4336| 1 | 1 | 1 |
4337+-----+-----+-----+
4338
4339Example:
4340""""""""
4341
4342.. code-block:: llvm
4343
4344 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4345 <result> = and i32 15, 40 ; yields {i32}:result = 8
4346 <result> = and i32 4, 8 ; yields {i32}:result = 0
4347
4348'``or``' Instruction
4349^^^^^^^^^^^^^^^^^^^^
4350
4351Syntax:
4352"""""""
4353
4354::
4355
4356 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4357
4358Overview:
4359"""""""""
4360
4361The '``or``' instruction returns the bitwise logical inclusive or of its
4362two operands.
4363
4364Arguments:
4365""""""""""
4366
4367The two arguments to the '``or``' instruction must be
4368:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4369arguments must have identical types.
4370
4371Semantics:
4372""""""""""
4373
4374The truth table used for the '``or``' instruction is:
4375
4376+-----+-----+-----+
4377| In0 | In1 | Out |
4378+-----+-----+-----+
4379| 0 | 0 | 0 |
4380+-----+-----+-----+
4381| 0 | 1 | 1 |
4382+-----+-----+-----+
4383| 1 | 0 | 1 |
4384+-----+-----+-----+
4385| 1 | 1 | 1 |
4386+-----+-----+-----+
4387
4388Example:
4389""""""""
4390
4391::
4392
4393 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4394 <result> = or i32 15, 40 ; yields {i32}:result = 47
4395 <result> = or i32 4, 8 ; yields {i32}:result = 12
4396
4397'``xor``' Instruction
4398^^^^^^^^^^^^^^^^^^^^^
4399
4400Syntax:
4401"""""""
4402
4403::
4404
4405 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4406
4407Overview:
4408"""""""""
4409
4410The '``xor``' instruction returns the bitwise logical exclusive or of
4411its two operands. The ``xor`` is used to implement the "one's
4412complement" operation, which is the "~" operator in C.
4413
4414Arguments:
4415""""""""""
4416
4417The two arguments to the '``xor``' instruction must be
4418:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4419arguments must have identical types.
4420
4421Semantics:
4422""""""""""
4423
4424The truth table used for the '``xor``' instruction is:
4425
4426+-----+-----+-----+
4427| In0 | In1 | Out |
4428+-----+-----+-----+
4429| 0 | 0 | 0 |
4430+-----+-----+-----+
4431| 0 | 1 | 1 |
4432+-----+-----+-----+
4433| 1 | 0 | 1 |
4434+-----+-----+-----+
4435| 1 | 1 | 0 |
4436+-----+-----+-----+
4437
4438Example:
4439""""""""
4440
4441.. code-block:: llvm
4442
4443 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4444 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4445 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4446 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4447
4448Vector Operations
4449-----------------
4450
4451LLVM supports several instructions to represent vector operations in a
4452target-independent manner. These instructions cover the element-access
4453and vector-specific operations needed to process vectors effectively.
4454While LLVM does directly support these vector operations, many
4455sophisticated algorithms will want to use target-specific intrinsics to
4456take full advantage of a specific target.
4457
4458.. _i_extractelement:
4459
4460'``extractelement``' Instruction
4461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4462
4463Syntax:
4464"""""""
4465
4466::
4467
4468 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4469
4470Overview:
4471"""""""""
4472
4473The '``extractelement``' instruction extracts a single scalar element
4474from a vector at a specified index.
4475
4476Arguments:
4477""""""""""
4478
4479The first operand of an '``extractelement``' instruction is a value of
4480:ref:`vector <t_vector>` type. The second operand is an index indicating
4481the position from which to extract the element. The index may be a
4482variable.
4483
4484Semantics:
4485""""""""""
4486
4487The result is a scalar of the same type as the element type of ``val``.
4488Its value is the value at position ``idx`` of ``val``. If ``idx``
4489exceeds the length of ``val``, the results are undefined.
4490
4491Example:
4492""""""""
4493
4494.. code-block:: llvm
4495
4496 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4497
4498.. _i_insertelement:
4499
4500'``insertelement``' Instruction
4501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4502
4503Syntax:
4504"""""""
4505
4506::
4507
4508 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4509
4510Overview:
4511"""""""""
4512
4513The '``insertelement``' instruction inserts a scalar element into a
4514vector at a specified index.
4515
4516Arguments:
4517""""""""""
4518
4519The first operand of an '``insertelement``' instruction is a value of
4520:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4521type must equal the element type of the first operand. The third operand
4522is an index indicating the position at which to insert the value. The
4523index may be a variable.
4524
4525Semantics:
4526""""""""""
4527
4528The result is a vector of the same type as ``val``. Its element values
4529are those of ``val`` except at position ``idx``, where it gets the value
4530``elt``. If ``idx`` exceeds the length of ``val``, the results are
4531undefined.
4532
4533Example:
4534""""""""
4535
4536.. code-block:: llvm
4537
4538 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4539
4540.. _i_shufflevector:
4541
4542'``shufflevector``' Instruction
4543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4544
4545Syntax:
4546"""""""
4547
4548::
4549
4550 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4551
4552Overview:
4553"""""""""
4554
4555The '``shufflevector``' instruction constructs a permutation of elements
4556from two input vectors, returning a vector with the same element type as
4557the input and length that is the same as the shuffle mask.
4558
4559Arguments:
4560""""""""""
4561
4562The first two operands of a '``shufflevector``' instruction are vectors
4563with the same type. The third argument is a shuffle mask whose element
4564type is always 'i32'. The result of the instruction is a vector whose
4565length is the same as the shuffle mask and whose element type is the
4566same as the element type of the first two operands.
4567
4568The shuffle mask operand is required to be a constant vector with either
4569constant integer or undef values.
4570
4571Semantics:
4572""""""""""
4573
4574The elements of the two input vectors are numbered from left to right
4575across both of the vectors. The shuffle mask operand specifies, for each
4576element of the result vector, which element of the two input vectors the
4577result element gets. The element selector may be undef (meaning "don't
4578care") and the second operand may be undef if performing a shuffle from
4579only one vector.
4580
4581Example:
4582""""""""
4583
4584.. code-block:: llvm
4585
4586 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4587 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4588 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4589 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4590 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4591 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4592 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4593 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4594
4595Aggregate Operations
4596--------------------
4597
4598LLVM supports several instructions for working with
4599:ref:`aggregate <t_aggregate>` values.
4600
4601.. _i_extractvalue:
4602
4603'``extractvalue``' Instruction
4604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4605
4606Syntax:
4607"""""""
4608
4609::
4610
4611 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4612
4613Overview:
4614"""""""""
4615
4616The '``extractvalue``' instruction extracts the value of a member field
4617from an :ref:`aggregate <t_aggregate>` value.
4618
4619Arguments:
4620""""""""""
4621
4622The first operand of an '``extractvalue``' instruction is a value of
4623:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4624constant indices to specify which value to extract in a similar manner
4625as indices in a '``getelementptr``' instruction.
4626
4627The major differences to ``getelementptr`` indexing are:
4628
4629- Since the value being indexed is not a pointer, the first index is
4630 omitted and assumed to be zero.
4631- At least one index must be specified.
4632- Not only struct indices but also array indices must be in bounds.
4633
4634Semantics:
4635""""""""""
4636
4637The result is the value at the position in the aggregate specified by
4638the index operands.
4639
4640Example:
4641""""""""
4642
4643.. code-block:: llvm
4644
4645 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4646
4647.. _i_insertvalue:
4648
4649'``insertvalue``' Instruction
4650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4651
4652Syntax:
4653"""""""
4654
4655::
4656
4657 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4658
4659Overview:
4660"""""""""
4661
4662The '``insertvalue``' instruction inserts a value into a member field in
4663an :ref:`aggregate <t_aggregate>` value.
4664
4665Arguments:
4666""""""""""
4667
4668The first operand of an '``insertvalue``' instruction is a value of
4669:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4670a first-class value to insert. The following operands are constant
4671indices indicating the position at which to insert the value in a
4672similar manner as indices in a '``extractvalue``' instruction. The value
4673to insert must have the same type as the value identified by the
4674indices.
4675
4676Semantics:
4677""""""""""
4678
4679The result is an aggregate of the same type as ``val``. Its value is
4680that of ``val`` except that the value at the position specified by the
4681indices is that of ``elt``.
4682
4683Example:
4684""""""""
4685
4686.. code-block:: llvm
4687
4688 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4689 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4690 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4691
4692.. _memoryops:
4693
4694Memory Access and Addressing Operations
4695---------------------------------------
4696
4697A key design point of an SSA-based representation is how it represents
4698memory. In LLVM, no memory locations are in SSA form, which makes things
4699very simple. This section describes how to read, write, and allocate
4700memory in LLVM.
4701
4702.. _i_alloca:
4703
4704'``alloca``' Instruction
4705^^^^^^^^^^^^^^^^^^^^^^^^
4706
4707Syntax:
4708"""""""
4709
4710::
4711
Stephen Hines36b56882014-04-23 16:57:46 -07004712 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvaf722b002012-12-07 10:36:55 +00004713
4714Overview:
4715"""""""""
4716
4717The '``alloca``' instruction allocates memory on the stack frame of the
4718currently executing function, to be automatically released when this
4719function returns to its caller. The object is always allocated in the
4720generic address space (address space zero).
4721
4722Arguments:
4723""""""""""
4724
4725The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4726bytes of memory on the runtime stack, returning a pointer of the
4727appropriate type to the program. If "NumElements" is specified, it is
4728the number of elements allocated, otherwise "NumElements" is defaulted
4729to be one. If a constant alignment is specified, the value result of the
4730allocation is guaranteed to be aligned to at least that boundary. If not
4731specified, or if zero, the target can choose to align the allocation on
4732any convenient boundary compatible with the type.
4733
4734'``type``' may be any sized type.
4735
4736Semantics:
4737""""""""""
4738
4739Memory is allocated; a pointer is returned. The operation is undefined
4740if there is insufficient stack space for the allocation. '``alloca``'d
4741memory is automatically released when the function returns. The
4742'``alloca``' instruction is commonly used to represent automatic
4743variables that must have an address available. When the function returns
4744(either with the ``ret`` or ``resume`` instructions), the memory is
4745reclaimed. Allocating zero bytes is legal, but the result is undefined.
4746The order in which memory is allocated (ie., which way the stack grows)
4747is not specified.
4748
4749Example:
4750""""""""
4751
4752.. code-block:: llvm
4753
4754 %ptr = alloca i32 ; yields {i32*}:ptr
4755 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4756 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4757 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4758
4759.. _i_load:
4760
4761'``load``' Instruction
4762^^^^^^^^^^^^^^^^^^^^^^
4763
4764Syntax:
4765"""""""
4766
4767::
4768
4769 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4770 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4771 !<index> = !{ i32 1 }
4772
4773Overview:
4774"""""""""
4775
4776The '``load``' instruction is used to read from memory.
4777
4778Arguments:
4779""""""""""
4780
Eli Bendersky8c493382013-04-17 20:17:08 +00004781The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004782from which to load. The pointer must point to a :ref:`first
4783class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4784then the optimizer is not allowed to modify the number or order of
4785execution of this ``load`` with other :ref:`volatile
4786operations <volatile>`.
4787
4788If the ``load`` is marked as ``atomic``, it takes an extra
4789:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4790``release`` and ``acq_rel`` orderings are not valid on ``load``
4791instructions. Atomic loads produce :ref:`defined <memmodel>` results
4792when they may see multiple atomic stores. The type of the pointee must
4793be an integer type whose bit width is a power of two greater than or
4794equal to eight and less than or equal to a target-specific size limit.
4795``align`` must be explicitly specified on atomic loads, and the load has
4796undefined behavior if the alignment is not set to a value which is at
4797least the size in bytes of the pointee. ``!nontemporal`` does not have
4798any defined semantics for atomic loads.
4799
4800The optional constant ``align`` argument specifies the alignment of the
4801operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004802or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004803alignment for the target. It is the responsibility of the code emitter
4804to ensure that the alignment information is correct. Overestimating the
4805alignment results in undefined behavior. Underestimating the alignment
4806may produce less efficient code. An alignment of 1 is always safe.
4807
4808The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004809metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004810``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004811metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004812that this load is not expected to be reused in the cache. The code
4813generator may select special instructions to save cache bandwidth, such
4814as the ``MOVNT`` instruction on x86.
4815
4816The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004817metadata name ``<index>`` corresponding to a metadata node with no
4818entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004819instruction tells the optimizer and code generator that this load
4820address points to memory which does not change value during program
4821execution. The optimizer may then move this load around, for example, by
4822hoisting it out of loops using loop invariant code motion.
4823
4824Semantics:
4825""""""""""
4826
4827The location of memory pointed to is loaded. If the value being loaded
4828is of scalar type then the number of bytes read does not exceed the
4829minimum number of bytes needed to hold all bits of the type. For
4830example, loading an ``i24`` reads at most three bytes. When loading a
4831value of a type like ``i20`` with a size that is not an integral number
4832of bytes, the result is undefined if the value was not originally
4833written using a store of the same type.
4834
4835Examples:
4836"""""""""
4837
4838.. code-block:: llvm
4839
4840 %ptr = alloca i32 ; yields {i32*}:ptr
4841 store i32 3, i32* %ptr ; yields {void}
4842 %val = load i32* %ptr ; yields {i32}:val = i32 3
4843
4844.. _i_store:
4845
4846'``store``' Instruction
4847^^^^^^^^^^^^^^^^^^^^^^^
4848
4849Syntax:
4850"""""""
4851
4852::
4853
4854 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4855 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4856
4857Overview:
4858"""""""""
4859
4860The '``store``' instruction is used to write to memory.
4861
4862Arguments:
4863""""""""""
4864
Eli Bendersky8952d902013-04-17 17:17:20 +00004865There are two arguments to the ``store`` instruction: a value to store
4866and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004867operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004868the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004869then the optimizer is not allowed to modify the number or order of
4870execution of this ``store`` with other :ref:`volatile
4871operations <volatile>`.
4872
4873If the ``store`` is marked as ``atomic``, it takes an extra
4874:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4875``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4876instructions. Atomic loads produce :ref:`defined <memmodel>` results
4877when they may see multiple atomic stores. The type of the pointee must
4878be an integer type whose bit width is a power of two greater than or
4879equal to eight and less than or equal to a target-specific size limit.
4880``align`` must be explicitly specified on atomic stores, and the store
4881has undefined behavior if the alignment is not set to a value which is
4882at least the size in bytes of the pointee. ``!nontemporal`` does not
4883have any defined semantics for atomic stores.
4884
Eli Bendersky8952d902013-04-17 17:17:20 +00004885The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004886operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004887or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004888alignment for the target. It is the responsibility of the code emitter
4889to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004890alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004891alignment may produce less efficient code. An alignment of 1 is always
4892safe.
4893
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004894The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004895name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004896value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004897tells the optimizer and code generator that this load is not expected to
4898be reused in the cache. The code generator may select special
4899instructions to save cache bandwidth, such as the MOVNT instruction on
4900x86.
4901
4902Semantics:
4903""""""""""
4904
Eli Bendersky8952d902013-04-17 17:17:20 +00004905The contents of memory are updated to contain ``<value>`` at the
4906location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004907of scalar type then the number of bytes written does not exceed the
4908minimum number of bytes needed to hold all bits of the type. For
4909example, storing an ``i24`` writes at most three bytes. When writing a
4910value of a type like ``i20`` with a size that is not an integral number
4911of bytes, it is unspecified what happens to the extra bits that do not
4912belong to the type, but they will typically be overwritten.
4913
4914Example:
4915""""""""
4916
4917.. code-block:: llvm
4918
4919 %ptr = alloca i32 ; yields {i32*}:ptr
4920 store i32 3, i32* %ptr ; yields {void}
4921 %val = load i32* %ptr ; yields {i32}:val = i32 3
4922
4923.. _i_fence:
4924
4925'``fence``' Instruction
4926^^^^^^^^^^^^^^^^^^^^^^^
4927
4928Syntax:
4929"""""""
4930
4931::
4932
4933 fence [singlethread] <ordering> ; yields {void}
4934
4935Overview:
4936"""""""""
4937
4938The '``fence``' instruction is used to introduce happens-before edges
4939between operations.
4940
4941Arguments:
4942""""""""""
4943
4944'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4945defines what *synchronizes-with* edges they add. They can only be given
4946``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4947
4948Semantics:
4949""""""""""
4950
4951A fence A which has (at least) ``release`` ordering semantics
4952*synchronizes with* a fence B with (at least) ``acquire`` ordering
4953semantics if and only if there exist atomic operations X and Y, both
4954operating on some atomic object M, such that A is sequenced before X, X
4955modifies M (either directly or through some side effect of a sequence
4956headed by X), Y is sequenced before B, and Y observes M. This provides a
4957*happens-before* dependency between A and B. Rather than an explicit
4958``fence``, one (but not both) of the atomic operations X or Y might
4959provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4960still *synchronize-with* the explicit ``fence`` and establish the
4961*happens-before* edge.
4962
4963A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4964``acquire`` and ``release`` semantics specified above, participates in
4965the global program order of other ``seq_cst`` operations and/or fences.
4966
4967The optional ":ref:`singlethread <singlethread>`" argument specifies
4968that the fence only synchronizes with other fences in the same thread.
4969(This is useful for interacting with signal handlers.)
4970
4971Example:
4972""""""""
4973
4974.. code-block:: llvm
4975
4976 fence acquire ; yields {void}
4977 fence singlethread seq_cst ; yields {void}
4978
4979.. _i_cmpxchg:
4980
4981'``cmpxchg``' Instruction
4982^^^^^^^^^^^^^^^^^^^^^^^^^
4983
4984Syntax:
4985"""""""
4986
4987::
4988
Stephen Hines36b56882014-04-23 16:57:46 -07004989 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvaf722b002012-12-07 10:36:55 +00004990
4991Overview:
4992"""""""""
4993
4994The '``cmpxchg``' instruction is used to atomically modify memory. It
4995loads a value in memory and compares it to a given value. If they are
4996equal, it stores a new value into the memory.
4997
4998Arguments:
4999""""""""""
5000
5001There are three arguments to the '``cmpxchg``' instruction: an address
5002to operate on, a value to compare to the value currently be at that
5003address, and a new value to place at that address if the compared values
5004are equal. The type of '<cmp>' must be an integer type whose bit width
5005is a power of two greater than or equal to eight and less than or equal
5006to a target-specific size limit. '<cmp>' and '<new>' must have the same
5007type, and the type of '<pointer>' must be a pointer to that type. If the
5008``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5009to modify the number or order of execution of this ``cmpxchg`` with
5010other :ref:`volatile operations <volatile>`.
5011
Stephen Hines36b56882014-04-23 16:57:46 -07005012The success and failure :ref:`ordering <ordering>` arguments specify how this
5013``cmpxchg`` synchronizes with other atomic operations. The both ordering
5014parameters must be at least ``monotonic``, the ordering constraint on failure
5015must be no stronger than that on success, and the failure ordering cannot be
5016either ``release`` or ``acq_rel``.
Sean Silvaf722b002012-12-07 10:36:55 +00005017
5018The optional "``singlethread``" argument declares that the ``cmpxchg``
5019is only atomic with respect to code (usually signal handlers) running in
5020the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5021respect to all other code in the system.
5022
5023The pointer passed into cmpxchg must have alignment greater than or
5024equal to the size in memory of the operand.
5025
5026Semantics:
5027""""""""""
5028
5029The contents of memory at the location specified by the '``<pointer>``'
5030operand is read and compared to '``<cmp>``'; if the read value is the
5031equal, '``<new>``' is written. The original value at the location is
5032returned.
5033
Stephen Hines36b56882014-04-23 16:57:46 -07005034A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5035identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5036load with an ordering parameter determined the second ordering parameter.
Sean Silvaf722b002012-12-07 10:36:55 +00005037
5038Example:
5039""""""""
5040
5041.. code-block:: llvm
5042
5043 entry:
5044 %orig = atomic load i32* %ptr unordered ; yields {i32}
5045 br label %loop
5046
5047 loop:
5048 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5049 %squared = mul i32 %cmp, %cmp
Stephen Hines36b56882014-04-23 16:57:46 -07005050 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvaf722b002012-12-07 10:36:55 +00005051 %success = icmp eq i32 %cmp, %old
5052 br i1 %success, label %done, label %loop
5053
5054 done:
5055 ...
5056
5057.. _i_atomicrmw:
5058
5059'``atomicrmw``' Instruction
5060^^^^^^^^^^^^^^^^^^^^^^^^^^^
5061
5062Syntax:
5063"""""""
5064
5065::
5066
5067 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5068
5069Overview:
5070"""""""""
5071
5072The '``atomicrmw``' instruction is used to atomically modify memory.
5073
5074Arguments:
5075""""""""""
5076
5077There are three arguments to the '``atomicrmw``' instruction: an
5078operation to apply, an address whose value to modify, an argument to the
5079operation. The operation must be one of the following keywords:
5080
5081- xchg
5082- add
5083- sub
5084- and
5085- nand
5086- or
5087- xor
5088- max
5089- min
5090- umax
5091- umin
5092
5093The type of '<value>' must be an integer type whose bit width is a power
5094of two greater than or equal to eight and less than or equal to a
5095target-specific size limit. The type of the '``<pointer>``' operand must
5096be a pointer to that type. If the ``atomicrmw`` is marked as
5097``volatile``, then the optimizer is not allowed to modify the number or
5098order of execution of this ``atomicrmw`` with other :ref:`volatile
5099operations <volatile>`.
5100
5101Semantics:
5102""""""""""
5103
5104The contents of memory at the location specified by the '``<pointer>``'
5105operand are atomically read, modified, and written back. The original
5106value at the location is returned. The modification is specified by the
5107operation argument:
5108
5109- xchg: ``*ptr = val``
5110- add: ``*ptr = *ptr + val``
5111- sub: ``*ptr = *ptr - val``
5112- and: ``*ptr = *ptr & val``
5113- nand: ``*ptr = ~(*ptr & val)``
5114- or: ``*ptr = *ptr | val``
5115- xor: ``*ptr = *ptr ^ val``
5116- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5117- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5118- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5119 comparison)
5120- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5121 comparison)
5122
5123Example:
5124""""""""
5125
5126.. code-block:: llvm
5127
5128 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5129
5130.. _i_getelementptr:
5131
5132'``getelementptr``' Instruction
5133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5134
5135Syntax:
5136"""""""
5137
5138::
5139
5140 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5141 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5142 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5143
5144Overview:
5145"""""""""
5146
5147The '``getelementptr``' instruction is used to get the address of a
5148subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5149address calculation only and does not access memory.
5150
5151Arguments:
5152""""""""""
5153
5154The first argument is always a pointer or a vector of pointers, and
5155forms the basis of the calculation. The remaining arguments are indices
5156that indicate which of the elements of the aggregate object are indexed.
5157The interpretation of each index is dependent on the type being indexed
5158into. The first index always indexes the pointer value given as the
5159first argument, the second index indexes a value of the type pointed to
5160(not necessarily the value directly pointed to, since the first index
5161can be non-zero), etc. The first type indexed into must be a pointer
5162value, subsequent types can be arrays, vectors, and structs. Note that
5163subsequent types being indexed into can never be pointers, since that
5164would require loading the pointer before continuing calculation.
5165
5166The type of each index argument depends on the type it is indexing into.
5167When indexing into a (optionally packed) structure, only ``i32`` integer
5168**constants** are allowed (when using a vector of indices they must all
5169be the **same** ``i32`` integer constant). When indexing into an array,
5170pointer or vector, integers of any width are allowed, and they are not
5171required to be constant. These integers are treated as signed values
5172where relevant.
5173
5174For example, let's consider a C code fragment and how it gets compiled
5175to LLVM:
5176
5177.. code-block:: c
5178
5179 struct RT {
5180 char A;
5181 int B[10][20];
5182 char C;
5183 };
5184 struct ST {
5185 int X;
5186 double Y;
5187 struct RT Z;
5188 };
5189
5190 int *foo(struct ST *s) {
5191 return &s[1].Z.B[5][13];
5192 }
5193
5194The LLVM code generated by Clang is:
5195
5196.. code-block:: llvm
5197
5198 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5199 %struct.ST = type { i32, double, %struct.RT }
5200
5201 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5202 entry:
5203 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5204 ret i32* %arrayidx
5205 }
5206
5207Semantics:
5208""""""""""
5209
5210In the example above, the first index is indexing into the
5211'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5212= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5213indexes into the third element of the structure, yielding a
5214'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5215structure. The third index indexes into the second element of the
5216structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5217dimensions of the array are subscripted into, yielding an '``i32``'
5218type. The '``getelementptr``' instruction returns a pointer to this
5219element, thus computing a value of '``i32*``' type.
5220
5221Note that it is perfectly legal to index partially through a structure,
5222returning a pointer to an inner element. Because of this, the LLVM code
5223for the given testcase is equivalent to:
5224
5225.. code-block:: llvm
5226
5227 define i32* @foo(%struct.ST* %s) {
5228 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5229 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5230 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5231 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5232 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5233 ret i32* %t5
5234 }
5235
5236If the ``inbounds`` keyword is present, the result value of the
5237``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5238pointer is not an *in bounds* address of an allocated object, or if any
5239of the addresses that would be formed by successive addition of the
5240offsets implied by the indices to the base address with infinitely
5241precise signed arithmetic are not an *in bounds* address of that
5242allocated object. The *in bounds* addresses for an allocated object are
5243all the addresses that point into the object, plus the address one byte
5244past the end. In cases where the base is a vector of pointers the
5245``inbounds`` keyword applies to each of the computations element-wise.
5246
5247If the ``inbounds`` keyword is not present, the offsets are added to the
5248base address with silently-wrapping two's complement arithmetic. If the
5249offsets have a different width from the pointer, they are sign-extended
5250or truncated to the width of the pointer. The result value of the
5251``getelementptr`` may be outside the object pointed to by the base
5252pointer. The result value may not necessarily be used to access memory
5253though, even if it happens to point into allocated storage. See the
5254:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5255information.
5256
5257The getelementptr instruction is often confusing. For some more insight
5258into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5259
5260Example:
5261""""""""
5262
5263.. code-block:: llvm
5264
5265 ; yields [12 x i8]*:aptr
5266 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5267 ; yields i8*:vptr
5268 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5269 ; yields i8*:eptr
5270 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5271 ; yields i32*:iptr
5272 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5273
5274In cases where the pointer argument is a vector of pointers, each index
5275must be a vector with the same number of elements. For example:
5276
5277.. code-block:: llvm
5278
5279 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5280
5281Conversion Operations
5282---------------------
5283
5284The instructions in this category are the conversion instructions
5285(casting) which all take a single operand and a type. They perform
5286various bit conversions on the operand.
5287
5288'``trunc .. to``' Instruction
5289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5290
5291Syntax:
5292"""""""
5293
5294::
5295
5296 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5297
5298Overview:
5299"""""""""
5300
5301The '``trunc``' instruction truncates its operand to the type ``ty2``.
5302
5303Arguments:
5304""""""""""
5305
5306The '``trunc``' instruction takes a value to trunc, and a type to trunc
5307it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5308of the same number of integers. The bit size of the ``value`` must be
5309larger than the bit size of the destination type, ``ty2``. Equal sized
5310types are not allowed.
5311
5312Semantics:
5313""""""""""
5314
5315The '``trunc``' instruction truncates the high order bits in ``value``
5316and converts the remaining bits to ``ty2``. Since the source size must
5317be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5318It will always truncate bits.
5319
5320Example:
5321""""""""
5322
5323.. code-block:: llvm
5324
5325 %X = trunc i32 257 to i8 ; yields i8:1
5326 %Y = trunc i32 123 to i1 ; yields i1:true
5327 %Z = trunc i32 122 to i1 ; yields i1:false
5328 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5329
5330'``zext .. to``' Instruction
5331^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5332
5333Syntax:
5334"""""""
5335
5336::
5337
5338 <result> = zext <ty> <value> to <ty2> ; yields ty2
5339
5340Overview:
5341"""""""""
5342
5343The '``zext``' instruction zero extends its operand to type ``ty2``.
5344
5345Arguments:
5346""""""""""
5347
5348The '``zext``' instruction takes a value to cast, and a type to cast it
5349to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5350the same number of integers. The bit size of the ``value`` must be
5351smaller than the bit size of the destination type, ``ty2``.
5352
5353Semantics:
5354""""""""""
5355
5356The ``zext`` fills the high order bits of the ``value`` with zero bits
5357until it reaches the size of the destination type, ``ty2``.
5358
5359When zero extending from i1, the result will always be either 0 or 1.
5360
5361Example:
5362""""""""
5363
5364.. code-block:: llvm
5365
5366 %X = zext i32 257 to i64 ; yields i64:257
5367 %Y = zext i1 true to i32 ; yields i32:1
5368 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5369
5370'``sext .. to``' Instruction
5371^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5372
5373Syntax:
5374"""""""
5375
5376::
5377
5378 <result> = sext <ty> <value> to <ty2> ; yields ty2
5379
5380Overview:
5381"""""""""
5382
5383The '``sext``' sign extends ``value`` to the type ``ty2``.
5384
5385Arguments:
5386""""""""""
5387
5388The '``sext``' instruction takes a value to cast, and a type to cast it
5389to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5390the same number of integers. The bit size of the ``value`` must be
5391smaller than the bit size of the destination type, ``ty2``.
5392
5393Semantics:
5394""""""""""
5395
5396The '``sext``' instruction performs a sign extension by copying the sign
5397bit (highest order bit) of the ``value`` until it reaches the bit size
5398of the type ``ty2``.
5399
5400When sign extending from i1, the extension always results in -1 or 0.
5401
5402Example:
5403""""""""
5404
5405.. code-block:: llvm
5406
5407 %X = sext i8 -1 to i16 ; yields i16 :65535
5408 %Y = sext i1 true to i32 ; yields i32:-1
5409 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5410
5411'``fptrunc .. to``' Instruction
5412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5413
5414Syntax:
5415"""""""
5416
5417::
5418
5419 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5420
5421Overview:
5422"""""""""
5423
5424The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5425
5426Arguments:
5427""""""""""
5428
5429The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5430value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5431The size of ``value`` must be larger than the size of ``ty2``. This
5432implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5433
5434Semantics:
5435""""""""""
5436
5437The '``fptrunc``' instruction truncates a ``value`` from a larger
5438:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5439point <t_floating>` type. If the value cannot fit within the
5440destination type, ``ty2``, then the results are undefined.
5441
5442Example:
5443""""""""
5444
5445.. code-block:: llvm
5446
5447 %X = fptrunc double 123.0 to float ; yields float:123.0
5448 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5449
5450'``fpext .. to``' Instruction
5451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5452
5453Syntax:
5454"""""""
5455
5456::
5457
5458 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5459
5460Overview:
5461"""""""""
5462
5463The '``fpext``' extends a floating point ``value`` to a larger floating
5464point value.
5465
5466Arguments:
5467""""""""""
5468
5469The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5470``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5471to. The source type must be smaller than the destination type.
5472
5473Semantics:
5474""""""""""
5475
5476The '``fpext``' instruction extends the ``value`` from a smaller
5477:ref:`floating point <t_floating>` type to a larger :ref:`floating
5478point <t_floating>` type. The ``fpext`` cannot be used to make a
5479*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5480*no-op cast* for a floating point cast.
5481
5482Example:
5483""""""""
5484
5485.. code-block:: llvm
5486
5487 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5488 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5489
5490'``fptoui .. to``' Instruction
5491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5492
5493Syntax:
5494"""""""
5495
5496::
5497
5498 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5499
5500Overview:
5501"""""""""
5502
5503The '``fptoui``' converts a floating point ``value`` to its unsigned
5504integer equivalent of type ``ty2``.
5505
5506Arguments:
5507""""""""""
5508
5509The '``fptoui``' instruction takes a value to cast, which must be a
5510scalar or vector :ref:`floating point <t_floating>` value, and a type to
5511cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5512``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5513type with the same number of elements as ``ty``
5514
5515Semantics:
5516""""""""""
5517
5518The '``fptoui``' instruction converts its :ref:`floating
5519point <t_floating>` operand into the nearest (rounding towards zero)
5520unsigned integer value. If the value cannot fit in ``ty2``, the results
5521are undefined.
5522
5523Example:
5524""""""""
5525
5526.. code-block:: llvm
5527
5528 %X = fptoui double 123.0 to i32 ; yields i32:123
5529 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5530 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5531
5532'``fptosi .. to``' Instruction
5533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5534
5535Syntax:
5536"""""""
5537
5538::
5539
5540 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5541
5542Overview:
5543"""""""""
5544
5545The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5546``value`` to type ``ty2``.
5547
5548Arguments:
5549""""""""""
5550
5551The '``fptosi``' instruction takes a value to cast, which must be a
5552scalar or vector :ref:`floating point <t_floating>` value, and a type to
5553cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5554``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5555type with the same number of elements as ``ty``
5556
5557Semantics:
5558""""""""""
5559
5560The '``fptosi``' instruction converts its :ref:`floating
5561point <t_floating>` operand into the nearest (rounding towards zero)
5562signed integer value. If the value cannot fit in ``ty2``, the results
5563are undefined.
5564
5565Example:
5566""""""""
5567
5568.. code-block:: llvm
5569
5570 %X = fptosi double -123.0 to i32 ; yields i32:-123
5571 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5572 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5573
5574'``uitofp .. to``' Instruction
5575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5576
5577Syntax:
5578"""""""
5579
5580::
5581
5582 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5583
5584Overview:
5585"""""""""
5586
5587The '``uitofp``' instruction regards ``value`` as an unsigned integer
5588and converts that value to the ``ty2`` type.
5589
5590Arguments:
5591""""""""""
5592
5593The '``uitofp``' instruction takes a value to cast, which must be a
5594scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5595``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5596``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5597type with the same number of elements as ``ty``
5598
5599Semantics:
5600""""""""""
5601
5602The '``uitofp``' instruction interprets its operand as an unsigned
5603integer quantity and converts it to the corresponding floating point
5604value. If the value cannot fit in the floating point value, the results
5605are undefined.
5606
5607Example:
5608""""""""
5609
5610.. code-block:: llvm
5611
5612 %X = uitofp i32 257 to float ; yields float:257.0
5613 %Y = uitofp i8 -1 to double ; yields double:255.0
5614
5615'``sitofp .. to``' Instruction
5616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5617
5618Syntax:
5619"""""""
5620
5621::
5622
5623 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5624
5625Overview:
5626"""""""""
5627
5628The '``sitofp``' instruction regards ``value`` as a signed integer and
5629converts that value to the ``ty2`` type.
5630
5631Arguments:
5632""""""""""
5633
5634The '``sitofp``' instruction takes a value to cast, which must be a
5635scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5636``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5637``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5638type with the same number of elements as ``ty``
5639
5640Semantics:
5641""""""""""
5642
5643The '``sitofp``' instruction interprets its operand as a signed integer
5644quantity and converts it to the corresponding floating point value. If
5645the value cannot fit in the floating point value, the results are
5646undefined.
5647
5648Example:
5649""""""""
5650
5651.. code-block:: llvm
5652
5653 %X = sitofp i32 257 to float ; yields float:257.0
5654 %Y = sitofp i8 -1 to double ; yields double:-1.0
5655
5656.. _i_ptrtoint:
5657
5658'``ptrtoint .. to``' Instruction
5659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5660
5661Syntax:
5662"""""""
5663
5664::
5665
5666 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5667
5668Overview:
5669"""""""""
5670
5671The '``ptrtoint``' instruction converts the pointer or a vector of
5672pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5673
5674Arguments:
5675""""""""""
5676
5677The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5678a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5679type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5680a vector of integers type.
5681
5682Semantics:
5683""""""""""
5684
5685The '``ptrtoint``' instruction converts ``value`` to integer type
5686``ty2`` by interpreting the pointer value as an integer and either
5687truncating or zero extending that value to the size of the integer type.
5688If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5689``value`` is larger than ``ty2`` then a truncation is done. If they are
5690the same size, then nothing is done (*no-op cast*) other than a type
5691change.
5692
5693Example:
5694""""""""
5695
5696.. code-block:: llvm
5697
5698 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5699 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5700 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5701
5702.. _i_inttoptr:
5703
5704'``inttoptr .. to``' Instruction
5705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5706
5707Syntax:
5708"""""""
5709
5710::
5711
5712 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5713
5714Overview:
5715"""""""""
5716
5717The '``inttoptr``' instruction converts an integer ``value`` to a
5718pointer type, ``ty2``.
5719
5720Arguments:
5721""""""""""
5722
5723The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5724cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5725type.
5726
5727Semantics:
5728""""""""""
5729
5730The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5731applying either a zero extension or a truncation depending on the size
5732of the integer ``value``. If ``value`` is larger than the size of a
5733pointer then a truncation is done. If ``value`` is smaller than the size
5734of a pointer then a zero extension is done. If they are the same size,
5735nothing is done (*no-op cast*).
5736
5737Example:
5738""""""""
5739
5740.. code-block:: llvm
5741
5742 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5743 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5744 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5745 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5746
5747.. _i_bitcast:
5748
5749'``bitcast .. to``' Instruction
5750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5751
5752Syntax:
5753"""""""
5754
5755::
5756
5757 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5758
5759Overview:
5760"""""""""
5761
5762The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5763changing any bits.
5764
5765Arguments:
5766""""""""""
5767
5768The '``bitcast``' instruction takes a value to cast, which must be a
5769non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005770also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5771bit sizes of ``value`` and the destination type, ``ty2``, must be
5772identical. If the source type is a pointer, the destination type must
5773also be a pointer of the same size. This instruction supports bitwise
5774conversion of vectors to integers and to vectors of other types (as
5775long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005776
5777Semantics:
5778""""""""""
5779
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005780The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5781is always a *no-op cast* because no bits change with this
5782conversion. The conversion is done as if the ``value`` had been stored
5783to memory and read back as type ``ty2``. Pointer (or vector of
5784pointers) types may only be converted to other pointer (or vector of
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005785pointers) types with the same address space through this instruction.
5786To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5787or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005788
5789Example:
5790""""""""
5791
5792.. code-block:: llvm
5793
5794 %X = bitcast i8 255 to i8 ; yields i8 :-1
5795 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5796 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5797 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5798
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005799.. _i_addrspacecast:
5800
5801'``addrspacecast .. to``' Instruction
5802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5803
5804Syntax:
5805"""""""
5806
5807::
5808
5809 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5810
5811Overview:
5812"""""""""
5813
5814The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5815address space ``n`` to type ``pty2`` in address space ``m``.
5816
5817Arguments:
5818""""""""""
5819
5820The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5821to cast and a pointer type to cast it to, which must have a different
5822address space.
5823
5824Semantics:
5825""""""""""
5826
5827The '``addrspacecast``' instruction converts the pointer value
5828``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault01ad8c32013-11-15 05:44:56 +00005829value modification, depending on the target and the address space
5830pair. Pointer conversions within the same address space must be
5831performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005832conversion is legal then both result and operand refer to the same memory
5833location.
5834
5835Example:
5836""""""""
5837
5838.. code-block:: llvm
5839
Matt Arsenaultef1b87a2013-11-15 22:43:50 +00005840 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5841 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5842 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenault59d3ae62013-11-15 01:34:59 +00005843
Sean Silvaf722b002012-12-07 10:36:55 +00005844.. _otherops:
5845
5846Other Operations
5847----------------
5848
5849The instructions in this category are the "miscellaneous" instructions,
5850which defy better classification.
5851
5852.. _i_icmp:
5853
5854'``icmp``' Instruction
5855^^^^^^^^^^^^^^^^^^^^^^
5856
5857Syntax:
5858"""""""
5859
5860::
5861
5862 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5863
5864Overview:
5865"""""""""
5866
5867The '``icmp``' instruction returns a boolean value or a vector of
5868boolean values based on comparison of its two integer, integer vector,
5869pointer, or pointer vector operands.
5870
5871Arguments:
5872""""""""""
5873
5874The '``icmp``' instruction takes three operands. The first operand is
5875the condition code indicating the kind of comparison to perform. It is
5876not a value, just a keyword. The possible condition code are:
5877
5878#. ``eq``: equal
5879#. ``ne``: not equal
5880#. ``ugt``: unsigned greater than
5881#. ``uge``: unsigned greater or equal
5882#. ``ult``: unsigned less than
5883#. ``ule``: unsigned less or equal
5884#. ``sgt``: signed greater than
5885#. ``sge``: signed greater or equal
5886#. ``slt``: signed less than
5887#. ``sle``: signed less or equal
5888
5889The remaining two arguments must be :ref:`integer <t_integer>` or
5890:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5891must also be identical types.
5892
5893Semantics:
5894""""""""""
5895
5896The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5897code given as ``cond``. The comparison performed always yields either an
5898:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5899
5900#. ``eq``: yields ``true`` if the operands are equal, ``false``
5901 otherwise. No sign interpretation is necessary or performed.
5902#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5903 otherwise. No sign interpretation is necessary or performed.
5904#. ``ugt``: interprets the operands as unsigned values and yields
5905 ``true`` if ``op1`` is greater than ``op2``.
5906#. ``uge``: interprets the operands as unsigned values and yields
5907 ``true`` if ``op1`` is greater than or equal to ``op2``.
5908#. ``ult``: interprets the operands as unsigned values and yields
5909 ``true`` if ``op1`` is less than ``op2``.
5910#. ``ule``: interprets the operands as unsigned values and yields
5911 ``true`` if ``op1`` is less than or equal to ``op2``.
5912#. ``sgt``: interprets the operands as signed values and yields ``true``
5913 if ``op1`` is greater than ``op2``.
5914#. ``sge``: interprets the operands as signed values and yields ``true``
5915 if ``op1`` is greater than or equal to ``op2``.
5916#. ``slt``: interprets the operands as signed values and yields ``true``
5917 if ``op1`` is less than ``op2``.
5918#. ``sle``: interprets the operands as signed values and yields ``true``
5919 if ``op1`` is less than or equal to ``op2``.
5920
5921If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5922are compared as if they were integers.
5923
5924If the operands are integer vectors, then they are compared element by
5925element. The result is an ``i1`` vector with the same number of elements
5926as the values being compared. Otherwise, the result is an ``i1``.
5927
5928Example:
5929""""""""
5930
5931.. code-block:: llvm
5932
5933 <result> = icmp eq i32 4, 5 ; yields: result=false
5934 <result> = icmp ne float* %X, %X ; yields: result=false
5935 <result> = icmp ult i16 4, 5 ; yields: result=true
5936 <result> = icmp sgt i16 4, 5 ; yields: result=false
5937 <result> = icmp ule i16 -4, 5 ; yields: result=false
5938 <result> = icmp sge i16 4, 5 ; yields: result=false
5939
5940Note that the code generator does not yet support vector types with the
5941``icmp`` instruction.
5942
5943.. _i_fcmp:
5944
5945'``fcmp``' Instruction
5946^^^^^^^^^^^^^^^^^^^^^^
5947
5948Syntax:
5949"""""""
5950
5951::
5952
5953 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5954
5955Overview:
5956"""""""""
5957
5958The '``fcmp``' instruction returns a boolean value or vector of boolean
5959values based on comparison of its operands.
5960
5961If the operands are floating point scalars, then the result type is a
5962boolean (:ref:`i1 <t_integer>`).
5963
5964If the operands are floating point vectors, then the result type is a
5965vector of boolean with the same number of elements as the operands being
5966compared.
5967
5968Arguments:
5969""""""""""
5970
5971The '``fcmp``' instruction takes three operands. The first operand is
5972the condition code indicating the kind of comparison to perform. It is
5973not a value, just a keyword. The possible condition code are:
5974
5975#. ``false``: no comparison, always returns false
5976#. ``oeq``: ordered and equal
5977#. ``ogt``: ordered and greater than
5978#. ``oge``: ordered and greater than or equal
5979#. ``olt``: ordered and less than
5980#. ``ole``: ordered and less than or equal
5981#. ``one``: ordered and not equal
5982#. ``ord``: ordered (no nans)
5983#. ``ueq``: unordered or equal
5984#. ``ugt``: unordered or greater than
5985#. ``uge``: unordered or greater than or equal
5986#. ``ult``: unordered or less than
5987#. ``ule``: unordered or less than or equal
5988#. ``une``: unordered or not equal
5989#. ``uno``: unordered (either nans)
5990#. ``true``: no comparison, always returns true
5991
5992*Ordered* means that neither operand is a QNAN while *unordered* means
5993that either operand may be a QNAN.
5994
5995Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5996point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5997type. They must have identical types.
5998
5999Semantics:
6000""""""""""
6001
6002The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6003condition code given as ``cond``. If the operands are vectors, then the
6004vectors are compared element by element. Each comparison performed
6005always yields an :ref:`i1 <t_integer>` result, as follows:
6006
6007#. ``false``: always yields ``false``, regardless of operands.
6008#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6009 is equal to ``op2``.
6010#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6011 is greater than ``op2``.
6012#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6013 is greater than or equal to ``op2``.
6014#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6015 is less than ``op2``.
6016#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6017 is less than or equal to ``op2``.
6018#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6019 is not equal to ``op2``.
6020#. ``ord``: yields ``true`` if both operands are not a QNAN.
6021#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6022 equal to ``op2``.
6023#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6024 greater than ``op2``.
6025#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6026 greater than or equal to ``op2``.
6027#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6028 less than ``op2``.
6029#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6030 less than or equal to ``op2``.
6031#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6032 not equal to ``op2``.
6033#. ``uno``: yields ``true`` if either operand is a QNAN.
6034#. ``true``: always yields ``true``, regardless of operands.
6035
6036Example:
6037""""""""
6038
6039.. code-block:: llvm
6040
6041 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6042 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6043 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6044 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6045
6046Note that the code generator does not yet support vector types with the
6047``fcmp`` instruction.
6048
6049.. _i_phi:
6050
6051'``phi``' Instruction
6052^^^^^^^^^^^^^^^^^^^^^
6053
6054Syntax:
6055"""""""
6056
6057::
6058
6059 <result> = phi <ty> [ <val0>, <label0>], ...
6060
6061Overview:
6062"""""""""
6063
6064The '``phi``' instruction is used to implement the φ node in the SSA
6065graph representing the function.
6066
6067Arguments:
6068""""""""""
6069
6070The type of the incoming values is specified with the first type field.
6071After this, the '``phi``' instruction takes a list of pairs as
6072arguments, with one pair for each predecessor basic block of the current
6073block. Only values of :ref:`first class <t_firstclass>` type may be used as
6074the value arguments to the PHI node. Only labels may be used as the
6075label arguments.
6076
6077There must be no non-phi instructions between the start of a basic block
6078and the PHI instructions: i.e. PHI instructions must be first in a basic
6079block.
6080
6081For the purposes of the SSA form, the use of each incoming value is
6082deemed to occur on the edge from the corresponding predecessor block to
6083the current block (but after any definition of an '``invoke``'
6084instruction's return value on the same edge).
6085
6086Semantics:
6087""""""""""
6088
6089At runtime, the '``phi``' instruction logically takes on the value
6090specified by the pair corresponding to the predecessor basic block that
6091executed just prior to the current block.
6092
6093Example:
6094""""""""
6095
6096.. code-block:: llvm
6097
6098 Loop: ; Infinite loop that counts from 0 on up...
6099 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6100 %nextindvar = add i32 %indvar, 1
6101 br label %Loop
6102
6103.. _i_select:
6104
6105'``select``' Instruction
6106^^^^^^^^^^^^^^^^^^^^^^^^
6107
6108Syntax:
6109"""""""
6110
6111::
6112
6113 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6114
6115 selty is either i1 or {<N x i1>}
6116
6117Overview:
6118"""""""""
6119
6120The '``select``' instruction is used to choose one value based on a
Stephen Hines36b56882014-04-23 16:57:46 -07006121condition, without IR-level branching.
Sean Silvaf722b002012-12-07 10:36:55 +00006122
6123Arguments:
6124""""""""""
6125
6126The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6127values indicating the condition, and two values of the same :ref:`first
6128class <t_firstclass>` type. If the val1/val2 are vectors and the
6129condition is a scalar, then entire vectors are selected, not individual
6130elements.
6131
6132Semantics:
6133""""""""""
6134
6135If the condition is an i1 and it evaluates to 1, the instruction returns
6136the first value argument; otherwise, it returns the second value
6137argument.
6138
6139If the condition is a vector of i1, then the value arguments must be
6140vectors of the same size, and the selection is done element by element.
6141
6142Example:
6143""""""""
6144
6145.. code-block:: llvm
6146
6147 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6148
6149.. _i_call:
6150
6151'``call``' Instruction
6152^^^^^^^^^^^^^^^^^^^^^^
6153
6154Syntax:
6155"""""""
6156
6157::
6158
6159 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6160
6161Overview:
6162"""""""""
6163
6164The '``call``' instruction represents a simple function call.
6165
6166Arguments:
6167""""""""""
6168
6169This instruction requires several arguments:
6170
6171#. The optional "tail" marker indicates that the callee function does
6172 not access any allocas or varargs in the caller. Note that calls may
6173 be marked "tail" even if they do not occur before a
6174 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6175 function call is eligible for tail call optimization, but `might not
6176 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6177 The code generator may optimize calls marked "tail" with either 1)
6178 automatic `sibling call
6179 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6180 callee have matching signatures, or 2) forced tail call optimization
6181 when the following extra requirements are met:
6182
6183 - Caller and callee both have the calling convention ``fastcc``.
6184 - The call is in tail position (ret immediately follows call and ret
6185 uses value of call or is void).
6186 - Option ``-tailcallopt`` is enabled, or
6187 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6188 - `Platform specific constraints are
6189 met. <CodeGenerator.html#tailcallopt>`_
6190
6191#. The optional "cconv" marker indicates which :ref:`calling
6192 convention <callingconv>` the call should use. If none is
6193 specified, the call defaults to using C calling conventions. The
6194 calling convention of the call must match the calling convention of
6195 the target function, or else the behavior is undefined.
6196#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6197 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6198 are valid here.
6199#. '``ty``': the type of the call instruction itself which is also the
6200 type of the return value. Functions that return no value are marked
6201 ``void``.
6202#. '``fnty``': shall be the signature of the pointer to function value
6203 being invoked. The argument types must match the types implied by
6204 this signature. This type can be omitted if the function is not
6205 varargs and if the function type does not return a pointer to a
6206 function.
6207#. '``fnptrval``': An LLVM value containing a pointer to a function to
6208 be invoked. In most cases, this is a direct function invocation, but
6209 indirect ``call``'s are just as possible, calling an arbitrary pointer
6210 to function value.
6211#. '``function args``': argument list whose types match the function
6212 signature argument types and parameter attributes. All arguments must
6213 be of :ref:`first class <t_firstclass>` type. If the function signature
6214 indicates the function accepts a variable number of arguments, the
6215 extra arguments can be specified.
6216#. The optional :ref:`function attributes <fnattrs>` list. Only
6217 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6218 attributes are valid here.
6219
6220Semantics:
6221""""""""""
6222
6223The '``call``' instruction is used to cause control flow to transfer to
6224a specified function, with its incoming arguments bound to the specified
6225values. Upon a '``ret``' instruction in the called function, control
6226flow continues with the instruction after the function call, and the
6227return value of the function is bound to the result argument.
6228
6229Example:
6230""""""""
6231
6232.. code-block:: llvm
6233
6234 %retval = call i32 @test(i32 %argc)
6235 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6236 %X = tail call i32 @foo() ; yields i32
6237 %Y = tail call fastcc i32 @foo() ; yields i32
6238 call void %foo(i8 97 signext)
6239
6240 %struct.A = type { i32, i8 }
6241 %r = call %struct.A @foo() ; yields { 32, i8 }
6242 %gr = extractvalue %struct.A %r, 0 ; yields i32
6243 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6244 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6245 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6246
6247llvm treats calls to some functions with names and arguments that match
6248the standard C99 library as being the C99 library functions, and may
6249perform optimizations or generate code for them under that assumption.
6250This is something we'd like to change in the future to provide better
6251support for freestanding environments and non-C-based languages.
6252
6253.. _i_va_arg:
6254
6255'``va_arg``' Instruction
6256^^^^^^^^^^^^^^^^^^^^^^^^
6257
6258Syntax:
6259"""""""
6260
6261::
6262
6263 <resultval> = va_arg <va_list*> <arglist>, <argty>
6264
6265Overview:
6266"""""""""
6267
6268The '``va_arg``' instruction is used to access arguments passed through
6269the "variable argument" area of a function call. It is used to implement
6270the ``va_arg`` macro in C.
6271
6272Arguments:
6273""""""""""
6274
6275This instruction takes a ``va_list*`` value and the type of the
6276argument. It returns a value of the specified argument type and
6277increments the ``va_list`` to point to the next argument. The actual
6278type of ``va_list`` is target specific.
6279
6280Semantics:
6281""""""""""
6282
6283The '``va_arg``' instruction loads an argument of the specified type
6284from the specified ``va_list`` and causes the ``va_list`` to point to
6285the next argument. For more information, see the variable argument
6286handling :ref:`Intrinsic Functions <int_varargs>`.
6287
6288It is legal for this instruction to be called in a function which does
6289not take a variable number of arguments, for example, the ``vfprintf``
6290function.
6291
6292``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6293function <intrinsics>` because it takes a type as an argument.
6294
6295Example:
6296""""""""
6297
6298See the :ref:`variable argument processing <int_varargs>` section.
6299
6300Note that the code generator does not yet fully support va\_arg on many
6301targets. Also, it does not currently support va\_arg with aggregate
6302types on any target.
6303
6304.. _i_landingpad:
6305
6306'``landingpad``' Instruction
6307^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6308
6309Syntax:
6310"""""""
6311
6312::
6313
6314 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6315 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6316
6317 <clause> := catch <type> <value>
6318 <clause> := filter <array constant type> <array constant>
6319
6320Overview:
6321"""""""""
6322
6323The '``landingpad``' instruction is used by `LLVM's exception handling
6324system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006325is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006326code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6327defines values supplied by the personality function (``pers_fn``) upon
6328re-entry to the function. The ``resultval`` has the type ``resultty``.
6329
6330Arguments:
6331""""""""""
6332
6333This instruction takes a ``pers_fn`` value. This is the personality
6334function associated with the unwinding mechanism. The optional
6335``cleanup`` flag indicates that the landing pad block is a cleanup.
6336
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006337A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006338contains the global variable representing the "type" that may be caught
6339or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6340clause takes an array constant as its argument. Use
6341"``[0 x i8**] undef``" for a filter which cannot throw. The
6342'``landingpad``' instruction must contain *at least* one ``clause`` or
6343the ``cleanup`` flag.
6344
6345Semantics:
6346""""""""""
6347
6348The '``landingpad``' instruction defines the values which are set by the
6349personality function (``pers_fn``) upon re-entry to the function, and
6350therefore the "result type" of the ``landingpad`` instruction. As with
6351calling conventions, how the personality function results are
6352represented in LLVM IR is target specific.
6353
6354The clauses are applied in order from top to bottom. If two
6355``landingpad`` instructions are merged together through inlining, the
6356clauses from the calling function are appended to the list of clauses.
6357When the call stack is being unwound due to an exception being thrown,
6358the exception is compared against each ``clause`` in turn. If it doesn't
6359match any of the clauses, and the ``cleanup`` flag is not set, then
6360unwinding continues further up the call stack.
6361
6362The ``landingpad`` instruction has several restrictions:
6363
6364- A landing pad block is a basic block which is the unwind destination
6365 of an '``invoke``' instruction.
6366- A landing pad block must have a '``landingpad``' instruction as its
6367 first non-PHI instruction.
6368- There can be only one '``landingpad``' instruction within the landing
6369 pad block.
6370- A basic block that is not a landing pad block may not include a
6371 '``landingpad``' instruction.
6372- All '``landingpad``' instructions in a function must have the same
6373 personality function.
6374
6375Example:
6376""""""""
6377
6378.. code-block:: llvm
6379
6380 ;; A landing pad which can catch an integer.
6381 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6382 catch i8** @_ZTIi
6383 ;; A landing pad that is a cleanup.
6384 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6385 cleanup
6386 ;; A landing pad which can catch an integer and can only throw a double.
6387 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6388 catch i8** @_ZTIi
6389 filter [1 x i8**] [@_ZTId]
6390
6391.. _intrinsics:
6392
6393Intrinsic Functions
6394===================
6395
6396LLVM supports the notion of an "intrinsic function". These functions
6397have well known names and semantics and are required to follow certain
6398restrictions. Overall, these intrinsics represent an extension mechanism
6399for the LLVM language that does not require changing all of the
6400transformations in LLVM when adding to the language (or the bitcode
6401reader/writer, the parser, etc...).
6402
6403Intrinsic function names must all start with an "``llvm.``" prefix. This
6404prefix is reserved in LLVM for intrinsic names; thus, function names may
6405not begin with this prefix. Intrinsic functions must always be external
6406functions: you cannot define the body of intrinsic functions. Intrinsic
6407functions may only be used in call or invoke instructions: it is illegal
6408to take the address of an intrinsic function. Additionally, because
6409intrinsic functions are part of the LLVM language, it is required if any
6410are added that they be documented here.
6411
6412Some intrinsic functions can be overloaded, i.e., the intrinsic
6413represents a family of functions that perform the same operation but on
6414different data types. Because LLVM can represent over 8 million
6415different integer types, overloading is used commonly to allow an
6416intrinsic function to operate on any integer type. One or more of the
6417argument types or the result type can be overloaded to accept any
6418integer type. Argument types may also be defined as exactly matching a
6419previous argument's type or the result type. This allows an intrinsic
6420function which accepts multiple arguments, but needs all of them to be
6421of the same type, to only be overloaded with respect to a single
6422argument or the result.
6423
6424Overloaded intrinsics will have the names of its overloaded argument
6425types encoded into its function name, each preceded by a period. Only
6426those types which are overloaded result in a name suffix. Arguments
6427whose type is matched against another type do not. For example, the
6428``llvm.ctpop`` function can take an integer of any width and returns an
6429integer of exactly the same integer width. This leads to a family of
6430functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6431``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6432overloaded, and only one type suffix is required. Because the argument's
6433type is matched against the return type, it does not require its own
6434name suffix.
6435
6436To learn how to add an intrinsic function, please see the `Extending
6437LLVM Guide <ExtendingLLVM.html>`_.
6438
6439.. _int_varargs:
6440
6441Variable Argument Handling Intrinsics
6442-------------------------------------
6443
6444Variable argument support is defined in LLVM with the
6445:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6446functions. These functions are related to the similarly named macros
6447defined in the ``<stdarg.h>`` header file.
6448
6449All of these functions operate on arguments that use a target-specific
6450value type "``va_list``". The LLVM assembly language reference manual
6451does not define what this type is, so all transformations should be
6452prepared to handle these functions regardless of the type used.
6453
6454This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6455variable argument handling intrinsic functions are used.
6456
6457.. code-block:: llvm
6458
6459 define i32 @test(i32 %X, ...) {
6460 ; Initialize variable argument processing
6461 %ap = alloca i8*
6462 %ap2 = bitcast i8** %ap to i8*
6463 call void @llvm.va_start(i8* %ap2)
6464
6465 ; Read a single integer argument
6466 %tmp = va_arg i8** %ap, i32
6467
6468 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6469 %aq = alloca i8*
6470 %aq2 = bitcast i8** %aq to i8*
6471 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6472 call void @llvm.va_end(i8* %aq2)
6473
6474 ; Stop processing of arguments.
6475 call void @llvm.va_end(i8* %ap2)
6476 ret i32 %tmp
6477 }
6478
6479 declare void @llvm.va_start(i8*)
6480 declare void @llvm.va_copy(i8*, i8*)
6481 declare void @llvm.va_end(i8*)
6482
6483.. _int_va_start:
6484
6485'``llvm.va_start``' Intrinsic
6486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6487
6488Syntax:
6489"""""""
6490
6491::
6492
Nick Lewyckyf7e61562013-09-11 22:04:52 +00006493 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +00006494
6495Overview:
6496"""""""""
6497
6498The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6499subsequent use by ``va_arg``.
6500
6501Arguments:
6502""""""""""
6503
6504The argument is a pointer to a ``va_list`` element to initialize.
6505
6506Semantics:
6507""""""""""
6508
6509The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6510available in C. In a target-dependent way, it initializes the
6511``va_list`` element to which the argument points, so that the next call
6512to ``va_arg`` will produce the first variable argument passed to the
6513function. Unlike the C ``va_start`` macro, this intrinsic does not need
6514to know the last argument of the function as the compiler can figure
6515that out.
6516
6517'``llvm.va_end``' Intrinsic
6518^^^^^^^^^^^^^^^^^^^^^^^^^^^
6519
6520Syntax:
6521"""""""
6522
6523::
6524
6525 declare void @llvm.va_end(i8* <arglist>)
6526
6527Overview:
6528"""""""""
6529
6530The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6531initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6532
6533Arguments:
6534""""""""""
6535
6536The argument is a pointer to a ``va_list`` to destroy.
6537
6538Semantics:
6539""""""""""
6540
6541The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6542available in C. In a target-dependent way, it destroys the ``va_list``
6543element to which the argument points. Calls to
6544:ref:`llvm.va_start <int_va_start>` and
6545:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6546``llvm.va_end``.
6547
6548.. _int_va_copy:
6549
6550'``llvm.va_copy``' Intrinsic
6551^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6552
6553Syntax:
6554"""""""
6555
6556::
6557
6558 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6559
6560Overview:
6561"""""""""
6562
6563The '``llvm.va_copy``' intrinsic copies the current argument position
6564from the source argument list to the destination argument list.
6565
6566Arguments:
6567""""""""""
6568
6569The first argument is a pointer to a ``va_list`` element to initialize.
6570The second argument is a pointer to a ``va_list`` element to copy from.
6571
6572Semantics:
6573""""""""""
6574
6575The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6576available in C. In a target-dependent way, it copies the source
6577``va_list`` element into the destination ``va_list`` element. This
6578intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6579arbitrarily complex and require, for example, memory allocation.
6580
6581Accurate Garbage Collection Intrinsics
6582--------------------------------------
6583
6584LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6585(GC) requires the implementation and generation of these intrinsics.
6586These intrinsics allow identification of :ref:`GC roots on the
6587stack <int_gcroot>`, as well as garbage collector implementations that
6588require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6589Front-ends for type-safe garbage collected languages should generate
6590these intrinsics to make use of the LLVM garbage collectors. For more
6591details, see `Accurate Garbage Collection with
6592LLVM <GarbageCollection.html>`_.
6593
6594The garbage collection intrinsics only operate on objects in the generic
6595address space (address space zero).
6596
6597.. _int_gcroot:
6598
6599'``llvm.gcroot``' Intrinsic
6600^^^^^^^^^^^^^^^^^^^^^^^^^^^
6601
6602Syntax:
6603"""""""
6604
6605::
6606
6607 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6608
6609Overview:
6610"""""""""
6611
6612The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6613the code generator, and allows some metadata to be associated with it.
6614
6615Arguments:
6616""""""""""
6617
6618The first argument specifies the address of a stack object that contains
6619the root pointer. The second pointer (which must be either a constant or
6620a global value address) contains the meta-data to be associated with the
6621root.
6622
6623Semantics:
6624""""""""""
6625
6626At runtime, a call to this intrinsic stores a null pointer into the
6627"ptrloc" location. At compile-time, the code generator generates
6628information to allow the runtime to find the pointer at GC safe points.
6629The '``llvm.gcroot``' intrinsic may only be used in a function which
6630:ref:`specifies a GC algorithm <gc>`.
6631
6632.. _int_gcread:
6633
6634'``llvm.gcread``' Intrinsic
6635^^^^^^^^^^^^^^^^^^^^^^^^^^^
6636
6637Syntax:
6638"""""""
6639
6640::
6641
6642 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6643
6644Overview:
6645"""""""""
6646
6647The '``llvm.gcread``' intrinsic identifies reads of references from heap
6648locations, allowing garbage collector implementations that require read
6649barriers.
6650
6651Arguments:
6652""""""""""
6653
6654The second argument is the address to read from, which should be an
6655address allocated from the garbage collector. The first object is a
6656pointer to the start of the referenced object, if needed by the language
6657runtime (otherwise null).
6658
6659Semantics:
6660""""""""""
6661
6662The '``llvm.gcread``' intrinsic has the same semantics as a load
6663instruction, but may be replaced with substantially more complex code by
6664the garbage collector runtime, as needed. The '``llvm.gcread``'
6665intrinsic may only be used in a function which :ref:`specifies a GC
6666algorithm <gc>`.
6667
6668.. _int_gcwrite:
6669
6670'``llvm.gcwrite``' Intrinsic
6671^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6672
6673Syntax:
6674"""""""
6675
6676::
6677
6678 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6679
6680Overview:
6681"""""""""
6682
6683The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6684locations, allowing garbage collector implementations that require write
6685barriers (such as generational or reference counting collectors).
6686
6687Arguments:
6688""""""""""
6689
6690The first argument is the reference to store, the second is the start of
6691the object to store it to, and the third is the address of the field of
6692Obj to store to. If the runtime does not require a pointer to the
6693object, Obj may be null.
6694
6695Semantics:
6696""""""""""
6697
6698The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6699instruction, but may be replaced with substantially more complex code by
6700the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6701intrinsic may only be used in a function which :ref:`specifies a GC
6702algorithm <gc>`.
6703
6704Code Generator Intrinsics
6705-------------------------
6706
6707These intrinsics are provided by LLVM to expose special features that
6708may only be implemented with code generator support.
6709
6710'``llvm.returnaddress``' Intrinsic
6711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6712
6713Syntax:
6714"""""""
6715
6716::
6717
6718 declare i8 *@llvm.returnaddress(i32 <level>)
6719
6720Overview:
6721"""""""""
6722
6723The '``llvm.returnaddress``' intrinsic attempts to compute a
6724target-specific value indicating the return address of the current
6725function or one of its callers.
6726
6727Arguments:
6728""""""""""
6729
6730The argument to this intrinsic indicates which function to return the
6731address for. Zero indicates the calling function, one indicates its
6732caller, etc. The argument is **required** to be a constant integer
6733value.
6734
6735Semantics:
6736""""""""""
6737
6738The '``llvm.returnaddress``' intrinsic either returns a pointer
6739indicating the return address of the specified call frame, or zero if it
6740cannot be identified. The value returned by this intrinsic is likely to
6741be incorrect or 0 for arguments other than zero, so it should only be
6742used for debugging purposes.
6743
6744Note that calling this intrinsic does not prevent function inlining or
6745other aggressive transformations, so the value returned may not be that
6746of the obvious source-language caller.
6747
6748'``llvm.frameaddress``' Intrinsic
6749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6750
6751Syntax:
6752"""""""
6753
6754::
6755
6756 declare i8* @llvm.frameaddress(i32 <level>)
6757
6758Overview:
6759"""""""""
6760
6761The '``llvm.frameaddress``' intrinsic attempts to return the
6762target-specific frame pointer value for the specified stack frame.
6763
6764Arguments:
6765""""""""""
6766
6767The argument to this intrinsic indicates which function to return the
6768frame pointer for. Zero indicates the calling function, one indicates
6769its caller, etc. The argument is **required** to be a constant integer
6770value.
6771
6772Semantics:
6773""""""""""
6774
6775The '``llvm.frameaddress``' intrinsic either returns a pointer
6776indicating the frame address of the specified call frame, or zero if it
6777cannot be identified. The value returned by this intrinsic is likely to
6778be incorrect or 0 for arguments other than zero, so it should only be
6779used for debugging purposes.
6780
6781Note that calling this intrinsic does not prevent function inlining or
6782other aggressive transformations, so the value returned may not be that
6783of the obvious source-language caller.
6784
6785.. _int_stacksave:
6786
6787'``llvm.stacksave``' Intrinsic
6788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6789
6790Syntax:
6791"""""""
6792
6793::
6794
6795 declare i8* @llvm.stacksave()
6796
6797Overview:
6798"""""""""
6799
6800The '``llvm.stacksave``' intrinsic is used to remember the current state
6801of the function stack, for use with
6802:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6803implementing language features like scoped automatic variable sized
6804arrays in C99.
6805
6806Semantics:
6807""""""""""
6808
6809This intrinsic returns a opaque pointer value that can be passed to
6810:ref:`llvm.stackrestore <int_stackrestore>`. When an
6811``llvm.stackrestore`` intrinsic is executed with a value saved from
6812``llvm.stacksave``, it effectively restores the state of the stack to
6813the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6814practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6815were allocated after the ``llvm.stacksave`` was executed.
6816
6817.. _int_stackrestore:
6818
6819'``llvm.stackrestore``' Intrinsic
6820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6821
6822Syntax:
6823"""""""
6824
6825::
6826
6827 declare void @llvm.stackrestore(i8* %ptr)
6828
6829Overview:
6830"""""""""
6831
6832The '``llvm.stackrestore``' intrinsic is used to restore the state of
6833the function stack to the state it was in when the corresponding
6834:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6835useful for implementing language features like scoped automatic variable
6836sized arrays in C99.
6837
6838Semantics:
6839""""""""""
6840
6841See the description for :ref:`llvm.stacksave <int_stacksave>`.
6842
6843'``llvm.prefetch``' Intrinsic
6844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6845
6846Syntax:
6847"""""""
6848
6849::
6850
6851 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6852
6853Overview:
6854"""""""""
6855
6856The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6857insert a prefetch instruction if supported; otherwise, it is a noop.
6858Prefetches have no effect on the behavior of the program but can change
6859its performance characteristics.
6860
6861Arguments:
6862""""""""""
6863
6864``address`` is the address to be prefetched, ``rw`` is the specifier
6865determining if the fetch should be for a read (0) or write (1), and
6866``locality`` is a temporal locality specifier ranging from (0) - no
6867locality, to (3) - extremely local keep in cache. The ``cache type``
6868specifies whether the prefetch is performed on the data (1) or
6869instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6870arguments must be constant integers.
6871
6872Semantics:
6873""""""""""
6874
6875This intrinsic does not modify the behavior of the program. In
6876particular, prefetches cannot trap and do not produce a value. On
6877targets that support this intrinsic, the prefetch can provide hints to
6878the processor cache for better performance.
6879
6880'``llvm.pcmarker``' Intrinsic
6881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6882
6883Syntax:
6884"""""""
6885
6886::
6887
6888 declare void @llvm.pcmarker(i32 <id>)
6889
6890Overview:
6891"""""""""
6892
6893The '``llvm.pcmarker``' intrinsic is a method to export a Program
6894Counter (PC) in a region of code to simulators and other tools. The
6895method is target specific, but it is expected that the marker will use
6896exported symbols to transmit the PC of the marker. The marker makes no
6897guarantees that it will remain with any specific instruction after
6898optimizations. It is possible that the presence of a marker will inhibit
6899optimizations. The intended use is to be inserted after optimizations to
6900allow correlations of simulation runs.
6901
6902Arguments:
6903""""""""""
6904
6905``id`` is a numerical id identifying the marker.
6906
6907Semantics:
6908""""""""""
6909
6910This intrinsic does not modify the behavior of the program. Backends
6911that do not support this intrinsic may ignore it.
6912
6913'``llvm.readcyclecounter``' Intrinsic
6914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6915
6916Syntax:
6917"""""""
6918
6919::
6920
6921 declare i64 @llvm.readcyclecounter()
6922
6923Overview:
6924"""""""""
6925
6926The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6927counter register (or similar low latency, high accuracy clocks) on those
6928targets that support it. On X86, it should map to RDTSC. On Alpha, it
6929should map to RPCC. As the backing counters overflow quickly (on the
6930order of 9 seconds on alpha), this should only be used for small
6931timings.
6932
6933Semantics:
6934""""""""""
6935
6936When directly supported, reading the cycle counter should not modify any
6937memory. Implementations are allowed to either return a application
6938specific value or a system wide value. On backends without support, this
6939is lowered to a constant 0.
6940
Tim Northover5a02fc42013-05-23 19:11:20 +00006941Note that runtime support may be conditional on the privilege-level code is
6942running at and the host platform.
6943
Stephen Hines36b56882014-04-23 16:57:46 -07006944'``llvm.clear_cache``' Intrinsic
6945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6946
6947Syntax:
6948"""""""
6949
6950::
6951
6952 declare void @llvm.clear_cache(i8*, i8*)
6953
6954Overview:
6955"""""""""
6956
6957The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
6958in the specified range to the execution unit of the processor. On
6959targets with non-unified instruction and data cache, the implementation
6960flushes the instruction cache.
6961
6962Semantics:
6963""""""""""
6964
6965On platforms with coherent instruction and data caches (e.g. x86), this
6966intrinsic is a nop. On platforms with non-coherent instruction and data
6967cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropiate
6968instructions or a system call, if cache flushing requires special
6969privileges.
6970
6971The default behavior is to emit a call to ``__clear_cache'' from the run
6972time library.
6973
6974This instrinsic does *not* empty the instruction pipeline. Modifications
6975of the current function are outside the scope of the intrinsic.
6976
Sean Silvaf722b002012-12-07 10:36:55 +00006977Standard C Library Intrinsics
6978-----------------------------
6979
6980LLVM provides intrinsics for a few important standard C library
6981functions. These intrinsics allow source-language front-ends to pass
6982information about the alignment of the pointer arguments to the code
6983generator, providing opportunity for more efficient code generation.
6984
6985.. _int_memcpy:
6986
6987'``llvm.memcpy``' Intrinsic
6988^^^^^^^^^^^^^^^^^^^^^^^^^^^
6989
6990Syntax:
6991"""""""
6992
6993This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6994integer bit width and for different address spaces. Not all targets
6995support all bit widths however.
6996
6997::
6998
6999 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7000 i32 <len>, i32 <align>, i1 <isvolatile>)
7001 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7002 i64 <len>, i32 <align>, i1 <isvolatile>)
7003
7004Overview:
7005"""""""""
7006
7007The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7008source location to the destination location.
7009
7010Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7011intrinsics do not return a value, takes extra alignment/isvolatile
7012arguments and the pointers can be in specified address spaces.
7013
7014Arguments:
7015""""""""""
7016
7017The first argument is a pointer to the destination, the second is a
7018pointer to the source. The third argument is an integer argument
7019specifying the number of bytes to copy, the fourth argument is the
7020alignment of the source and destination locations, and the fifth is a
7021boolean indicating a volatile access.
7022
7023If the call to this intrinsic has an alignment value that is not 0 or 1,
7024then the caller guarantees that both the source and destination pointers
7025are aligned to that boundary.
7026
7027If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7028a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7029very cleanly specified and it is unwise to depend on it.
7030
7031Semantics:
7032""""""""""
7033
7034The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7035source location to the destination location, which are not allowed to
7036overlap. It copies "len" bytes of memory over. If the argument is known
7037to be aligned to some boundary, this can be specified as the fourth
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007038argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007039
7040'``llvm.memmove``' Intrinsic
7041^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7042
7043Syntax:
7044"""""""
7045
7046This is an overloaded intrinsic. You can use llvm.memmove on any integer
7047bit width and for different address space. Not all targets support all
7048bit widths however.
7049
7050::
7051
7052 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7053 i32 <len>, i32 <align>, i1 <isvolatile>)
7054 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7055 i64 <len>, i32 <align>, i1 <isvolatile>)
7056
7057Overview:
7058"""""""""
7059
7060The '``llvm.memmove.*``' intrinsics move a block of memory from the
7061source location to the destination location. It is similar to the
7062'``llvm.memcpy``' intrinsic but allows the two memory locations to
7063overlap.
7064
7065Note that, unlike the standard libc function, the ``llvm.memmove.*``
7066intrinsics do not return a value, takes extra alignment/isvolatile
7067arguments and the pointers can be in specified address spaces.
7068
7069Arguments:
7070""""""""""
7071
7072The first argument is a pointer to the destination, the second is a
7073pointer to the source. The third argument is an integer argument
7074specifying the number of bytes to copy, the fourth argument is the
7075alignment of the source and destination locations, and the fifth is a
7076boolean indicating a volatile access.
7077
7078If the call to this intrinsic has an alignment value that is not 0 or 1,
7079then the caller guarantees that the source and destination pointers are
7080aligned to that boundary.
7081
7082If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7083is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7084not very cleanly specified and it is unwise to depend on it.
7085
7086Semantics:
7087""""""""""
7088
7089The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7090source location to the destination location, which may overlap. It
7091copies "len" bytes of memory over. If the argument is known to be
7092aligned to some boundary, this can be specified as the fourth argument,
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007093otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007094
7095'``llvm.memset.*``' Intrinsics
7096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7097
7098Syntax:
7099"""""""
7100
7101This is an overloaded intrinsic. You can use llvm.memset on any integer
7102bit width and for different address spaces. However, not all targets
7103support all bit widths.
7104
7105::
7106
7107 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7108 i32 <len>, i32 <align>, i1 <isvolatile>)
7109 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7110 i64 <len>, i32 <align>, i1 <isvolatile>)
7111
7112Overview:
7113"""""""""
7114
7115The '``llvm.memset.*``' intrinsics fill a block of memory with a
7116particular byte value.
7117
7118Note that, unlike the standard libc function, the ``llvm.memset``
7119intrinsic does not return a value and takes extra alignment/volatile
7120arguments. Also, the destination can be in an arbitrary address space.
7121
7122Arguments:
7123""""""""""
7124
7125The first argument is a pointer to the destination to fill, the second
7126is the byte value with which to fill it, the third argument is an
7127integer argument specifying the number of bytes to fill, and the fourth
7128argument is the known alignment of the destination location.
7129
7130If the call to this intrinsic has an alignment value that is not 0 or 1,
7131then the caller guarantees that the destination pointer is aligned to
7132that boundary.
7133
7134If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7135a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7136very cleanly specified and it is unwise to depend on it.
7137
7138Semantics:
7139""""""""""
7140
7141The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7142at the destination location. If the argument is known to be aligned to
7143some boundary, this can be specified as the fourth argument, otherwise
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007144it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007145
7146'``llvm.sqrt.*``' Intrinsic
7147^^^^^^^^^^^^^^^^^^^^^^^^^^^
7148
7149Syntax:
7150"""""""
7151
7152This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7153floating point or vector of floating point type. Not all targets support
7154all types however.
7155
7156::
7157
7158 declare float @llvm.sqrt.f32(float %Val)
7159 declare double @llvm.sqrt.f64(double %Val)
7160 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7161 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7162 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7163
7164Overview:
7165"""""""""
7166
7167The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7168returning the same value as the libm '``sqrt``' functions would. Unlike
7169``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7170negative numbers other than -0.0 (which allows for better optimization,
7171because there is no need to worry about errno being set).
7172``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7173
7174Arguments:
7175""""""""""
7176
7177The argument and return value are floating point numbers of the same
7178type.
7179
7180Semantics:
7181""""""""""
7182
7183This function returns the sqrt of the specified operand if it is a
7184nonnegative floating point number.
7185
7186'``llvm.powi.*``' Intrinsic
7187^^^^^^^^^^^^^^^^^^^^^^^^^^^
7188
7189Syntax:
7190"""""""
7191
7192This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7193floating point or vector of floating point type. Not all targets support
7194all types however.
7195
7196::
7197
7198 declare float @llvm.powi.f32(float %Val, i32 %power)
7199 declare double @llvm.powi.f64(double %Val, i32 %power)
7200 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7201 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7202 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7203
7204Overview:
7205"""""""""
7206
7207The '``llvm.powi.*``' intrinsics return the first operand raised to the
7208specified (positive or negative) power. The order of evaluation of
7209multiplications is not defined. When a vector of floating point type is
7210used, the second argument remains a scalar integer value.
7211
7212Arguments:
7213""""""""""
7214
7215The second argument is an integer power, and the first is a value to
7216raise to that power.
7217
7218Semantics:
7219""""""""""
7220
7221This function returns the first value raised to the second power with an
7222unspecified sequence of rounding operations.
7223
7224'``llvm.sin.*``' Intrinsic
7225^^^^^^^^^^^^^^^^^^^^^^^^^^
7226
7227Syntax:
7228"""""""
7229
7230This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7231floating point or vector of floating point type. Not all targets support
7232all types however.
7233
7234::
7235
7236 declare float @llvm.sin.f32(float %Val)
7237 declare double @llvm.sin.f64(double %Val)
7238 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7239 declare fp128 @llvm.sin.f128(fp128 %Val)
7240 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7241
7242Overview:
7243"""""""""
7244
7245The '``llvm.sin.*``' intrinsics return the sine of the operand.
7246
7247Arguments:
7248""""""""""
7249
7250The argument and return value are floating point numbers of the same
7251type.
7252
7253Semantics:
7254""""""""""
7255
7256This function returns the sine of the specified operand, returning the
7257same values as the libm ``sin`` functions would, and handles error
7258conditions in the same way.
7259
7260'``llvm.cos.*``' Intrinsic
7261^^^^^^^^^^^^^^^^^^^^^^^^^^
7262
7263Syntax:
7264"""""""
7265
7266This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7267floating point or vector of floating point type. Not all targets support
7268all types however.
7269
7270::
7271
7272 declare float @llvm.cos.f32(float %Val)
7273 declare double @llvm.cos.f64(double %Val)
7274 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7275 declare fp128 @llvm.cos.f128(fp128 %Val)
7276 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7277
7278Overview:
7279"""""""""
7280
7281The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7282
7283Arguments:
7284""""""""""
7285
7286The argument and return value are floating point numbers of the same
7287type.
7288
7289Semantics:
7290""""""""""
7291
7292This function returns the cosine of the specified operand, returning the
7293same values as the libm ``cos`` functions would, and handles error
7294conditions in the same way.
7295
7296'``llvm.pow.*``' Intrinsic
7297^^^^^^^^^^^^^^^^^^^^^^^^^^
7298
7299Syntax:
7300"""""""
7301
7302This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7303floating point or vector of floating point type. Not all targets support
7304all types however.
7305
7306::
7307
7308 declare float @llvm.pow.f32(float %Val, float %Power)
7309 declare double @llvm.pow.f64(double %Val, double %Power)
7310 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7311 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7312 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7313
7314Overview:
7315"""""""""
7316
7317The '``llvm.pow.*``' intrinsics return the first operand raised to the
7318specified (positive or negative) power.
7319
7320Arguments:
7321""""""""""
7322
7323The second argument is a floating point power, and the first is a value
7324to raise to that power.
7325
7326Semantics:
7327""""""""""
7328
7329This function returns the first value raised to the second power,
7330returning the same values as the libm ``pow`` functions would, and
7331handles error conditions in the same way.
7332
7333'``llvm.exp.*``' Intrinsic
7334^^^^^^^^^^^^^^^^^^^^^^^^^^
7335
7336Syntax:
7337"""""""
7338
7339This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7340floating point or vector of floating point type. Not all targets support
7341all types however.
7342
7343::
7344
7345 declare float @llvm.exp.f32(float %Val)
7346 declare double @llvm.exp.f64(double %Val)
7347 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7348 declare fp128 @llvm.exp.f128(fp128 %Val)
7349 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7350
7351Overview:
7352"""""""""
7353
7354The '``llvm.exp.*``' intrinsics perform the exp function.
7355
7356Arguments:
7357""""""""""
7358
7359The argument and return value are floating point numbers of the same
7360type.
7361
7362Semantics:
7363""""""""""
7364
7365This function returns the same values as the libm ``exp`` functions
7366would, and handles error conditions in the same way.
7367
7368'``llvm.exp2.*``' Intrinsic
7369^^^^^^^^^^^^^^^^^^^^^^^^^^^
7370
7371Syntax:
7372"""""""
7373
7374This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7375floating point or vector of floating point type. Not all targets support
7376all types however.
7377
7378::
7379
7380 declare float @llvm.exp2.f32(float %Val)
7381 declare double @llvm.exp2.f64(double %Val)
7382 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7383 declare fp128 @llvm.exp2.f128(fp128 %Val)
7384 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7385
7386Overview:
7387"""""""""
7388
7389The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7390
7391Arguments:
7392""""""""""
7393
7394The argument and return value are floating point numbers of the same
7395type.
7396
7397Semantics:
7398""""""""""
7399
7400This function returns the same values as the libm ``exp2`` functions
7401would, and handles error conditions in the same way.
7402
7403'``llvm.log.*``' Intrinsic
7404^^^^^^^^^^^^^^^^^^^^^^^^^^
7405
7406Syntax:
7407"""""""
7408
7409This is an overloaded intrinsic. You can use ``llvm.log`` on any
7410floating point or vector of floating point type. Not all targets support
7411all types however.
7412
7413::
7414
7415 declare float @llvm.log.f32(float %Val)
7416 declare double @llvm.log.f64(double %Val)
7417 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7418 declare fp128 @llvm.log.f128(fp128 %Val)
7419 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7420
7421Overview:
7422"""""""""
7423
7424The '``llvm.log.*``' intrinsics perform the log function.
7425
7426Arguments:
7427""""""""""
7428
7429The argument and return value are floating point numbers of the same
7430type.
7431
7432Semantics:
7433""""""""""
7434
7435This function returns the same values as the libm ``log`` functions
7436would, and handles error conditions in the same way.
7437
7438'``llvm.log10.*``' Intrinsic
7439^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7440
7441Syntax:
7442"""""""
7443
7444This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7445floating point or vector of floating point type. Not all targets support
7446all types however.
7447
7448::
7449
7450 declare float @llvm.log10.f32(float %Val)
7451 declare double @llvm.log10.f64(double %Val)
7452 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7453 declare fp128 @llvm.log10.f128(fp128 %Val)
7454 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7455
7456Overview:
7457"""""""""
7458
7459The '``llvm.log10.*``' intrinsics perform the log10 function.
7460
7461Arguments:
7462""""""""""
7463
7464The argument and return value are floating point numbers of the same
7465type.
7466
7467Semantics:
7468""""""""""
7469
7470This function returns the same values as the libm ``log10`` functions
7471would, and handles error conditions in the same way.
7472
7473'``llvm.log2.*``' Intrinsic
7474^^^^^^^^^^^^^^^^^^^^^^^^^^^
7475
7476Syntax:
7477"""""""
7478
7479This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7480floating point or vector of floating point type. Not all targets support
7481all types however.
7482
7483::
7484
7485 declare float @llvm.log2.f32(float %Val)
7486 declare double @llvm.log2.f64(double %Val)
7487 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7488 declare fp128 @llvm.log2.f128(fp128 %Val)
7489 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7490
7491Overview:
7492"""""""""
7493
7494The '``llvm.log2.*``' intrinsics perform the log2 function.
7495
7496Arguments:
7497""""""""""
7498
7499The argument and return value are floating point numbers of the same
7500type.
7501
7502Semantics:
7503""""""""""
7504
7505This function returns the same values as the libm ``log2`` functions
7506would, and handles error conditions in the same way.
7507
7508'``llvm.fma.*``' Intrinsic
7509^^^^^^^^^^^^^^^^^^^^^^^^^^
7510
7511Syntax:
7512"""""""
7513
7514This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7515floating point or vector of floating point type. Not all targets support
7516all types however.
7517
7518::
7519
7520 declare float @llvm.fma.f32(float %a, float %b, float %c)
7521 declare double @llvm.fma.f64(double %a, double %b, double %c)
7522 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7523 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7524 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7525
7526Overview:
7527"""""""""
7528
7529The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7530operation.
7531
7532Arguments:
7533""""""""""
7534
7535The argument and return value are floating point numbers of the same
7536type.
7537
7538Semantics:
7539""""""""""
7540
7541This function returns the same values as the libm ``fma`` functions
Stephen Hines36b56882014-04-23 16:57:46 -07007542would, and does not set errno.
Sean Silvaf722b002012-12-07 10:36:55 +00007543
7544'``llvm.fabs.*``' Intrinsic
7545^^^^^^^^^^^^^^^^^^^^^^^^^^^
7546
7547Syntax:
7548"""""""
7549
7550This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7551floating point or vector of floating point type. Not all targets support
7552all types however.
7553
7554::
7555
7556 declare float @llvm.fabs.f32(float %Val)
7557 declare double @llvm.fabs.f64(double %Val)
7558 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7559 declare fp128 @llvm.fabs.f128(fp128 %Val)
7560 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7561
7562Overview:
7563"""""""""
7564
7565The '``llvm.fabs.*``' intrinsics return the absolute value of the
7566operand.
7567
7568Arguments:
7569""""""""""
7570
7571The argument and return value are floating point numbers of the same
7572type.
7573
7574Semantics:
7575""""""""""
7576
7577This function returns the same values as the libm ``fabs`` functions
7578would, and handles error conditions in the same way.
7579
Hal Finkel66d1fa62013-08-19 23:35:46 +00007580'``llvm.copysign.*``' Intrinsic
7581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7582
7583Syntax:
7584"""""""
7585
7586This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7587floating point or vector of floating point type. Not all targets support
7588all types however.
7589
7590::
7591
7592 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7593 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7594 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7595 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7596 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7597
7598Overview:
7599"""""""""
7600
7601The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7602first operand and the sign of the second operand.
7603
7604Arguments:
7605""""""""""
7606
7607The arguments and return value are floating point numbers of the same
7608type.
7609
7610Semantics:
7611""""""""""
7612
7613This function returns the same values as the libm ``copysign``
7614functions would, and handles error conditions in the same way.
7615
Sean Silvaf722b002012-12-07 10:36:55 +00007616'``llvm.floor.*``' Intrinsic
7617^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7618
7619Syntax:
7620"""""""
7621
7622This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7623floating point or vector of floating point type. Not all targets support
7624all types however.
7625
7626::
7627
7628 declare float @llvm.floor.f32(float %Val)
7629 declare double @llvm.floor.f64(double %Val)
7630 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7631 declare fp128 @llvm.floor.f128(fp128 %Val)
7632 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7633
7634Overview:
7635"""""""""
7636
7637The '``llvm.floor.*``' intrinsics return the floor of the operand.
7638
7639Arguments:
7640""""""""""
7641
7642The argument and return value are floating point numbers of the same
7643type.
7644
7645Semantics:
7646""""""""""
7647
7648This function returns the same values as the libm ``floor`` functions
7649would, and handles error conditions in the same way.
7650
7651'``llvm.ceil.*``' Intrinsic
7652^^^^^^^^^^^^^^^^^^^^^^^^^^^
7653
7654Syntax:
7655"""""""
7656
7657This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7658floating point or vector of floating point type. Not all targets support
7659all types however.
7660
7661::
7662
7663 declare float @llvm.ceil.f32(float %Val)
7664 declare double @llvm.ceil.f64(double %Val)
7665 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7666 declare fp128 @llvm.ceil.f128(fp128 %Val)
7667 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7668
7669Overview:
7670"""""""""
7671
7672The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7673
7674Arguments:
7675""""""""""
7676
7677The argument and return value are floating point numbers of the same
7678type.
7679
7680Semantics:
7681""""""""""
7682
7683This function returns the same values as the libm ``ceil`` functions
7684would, and handles error conditions in the same way.
7685
7686'``llvm.trunc.*``' Intrinsic
7687^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7688
7689Syntax:
7690"""""""
7691
7692This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7693floating point or vector of floating point type. Not all targets support
7694all types however.
7695
7696::
7697
7698 declare float @llvm.trunc.f32(float %Val)
7699 declare double @llvm.trunc.f64(double %Val)
7700 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7701 declare fp128 @llvm.trunc.f128(fp128 %Val)
7702 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7703
7704Overview:
7705"""""""""
7706
7707The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7708nearest integer not larger in magnitude than the operand.
7709
7710Arguments:
7711""""""""""
7712
7713The argument and return value are floating point numbers of the same
7714type.
7715
7716Semantics:
7717""""""""""
7718
7719This function returns the same values as the libm ``trunc`` functions
7720would, and handles error conditions in the same way.
7721
7722'``llvm.rint.*``' Intrinsic
7723^^^^^^^^^^^^^^^^^^^^^^^^^^^
7724
7725Syntax:
7726"""""""
7727
7728This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7729floating point or vector of floating point type. Not all targets support
7730all types however.
7731
7732::
7733
7734 declare float @llvm.rint.f32(float %Val)
7735 declare double @llvm.rint.f64(double %Val)
7736 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7737 declare fp128 @llvm.rint.f128(fp128 %Val)
7738 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7739
7740Overview:
7741"""""""""
7742
7743The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7744nearest integer. It may raise an inexact floating-point exception if the
7745operand isn't an integer.
7746
7747Arguments:
7748""""""""""
7749
7750The argument and return value are floating point numbers of the same
7751type.
7752
7753Semantics:
7754""""""""""
7755
7756This function returns the same values as the libm ``rint`` functions
7757would, and handles error conditions in the same way.
7758
7759'``llvm.nearbyint.*``' Intrinsic
7760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7761
7762Syntax:
7763"""""""
7764
7765This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7766floating point or vector of floating point type. Not all targets support
7767all types however.
7768
7769::
7770
7771 declare float @llvm.nearbyint.f32(float %Val)
7772 declare double @llvm.nearbyint.f64(double %Val)
7773 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7774 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7775 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7776
7777Overview:
7778"""""""""
7779
7780The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7781nearest integer.
7782
7783Arguments:
7784""""""""""
7785
7786The argument and return value are floating point numbers of the same
7787type.
7788
7789Semantics:
7790""""""""""
7791
7792This function returns the same values as the libm ``nearbyint``
7793functions would, and handles error conditions in the same way.
7794
Hal Finkel41418d12013-08-07 22:49:12 +00007795'``llvm.round.*``' Intrinsic
7796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7797
7798Syntax:
7799"""""""
7800
7801This is an overloaded intrinsic. You can use ``llvm.round`` on any
7802floating point or vector of floating point type. Not all targets support
7803all types however.
7804
7805::
7806
7807 declare float @llvm.round.f32(float %Val)
7808 declare double @llvm.round.f64(double %Val)
7809 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7810 declare fp128 @llvm.round.f128(fp128 %Val)
7811 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7812
7813Overview:
7814"""""""""
7815
7816The '``llvm.round.*``' intrinsics returns the operand rounded to the
7817nearest integer.
7818
7819Arguments:
7820""""""""""
7821
7822The argument and return value are floating point numbers of the same
7823type.
7824
7825Semantics:
7826""""""""""
7827
7828This function returns the same values as the libm ``round``
7829functions would, and handles error conditions in the same way.
7830
Sean Silvaf722b002012-12-07 10:36:55 +00007831Bit Manipulation Intrinsics
7832---------------------------
7833
7834LLVM provides intrinsics for a few important bit manipulation
7835operations. These allow efficient code generation for some algorithms.
7836
7837'``llvm.bswap.*``' Intrinsics
7838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7839
7840Syntax:
7841"""""""
7842
7843This is an overloaded intrinsic function. You can use bswap on any
7844integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7845
7846::
7847
7848 declare i16 @llvm.bswap.i16(i16 <id>)
7849 declare i32 @llvm.bswap.i32(i32 <id>)
7850 declare i64 @llvm.bswap.i64(i64 <id>)
7851
7852Overview:
7853"""""""""
7854
7855The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7856values with an even number of bytes (positive multiple of 16 bits).
7857These are useful for performing operations on data that is not in the
7858target's native byte order.
7859
7860Semantics:
7861""""""""""
7862
7863The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7864and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7865intrinsic returns an i32 value that has the four bytes of the input i32
7866swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7867returned i32 will have its bytes in 3, 2, 1, 0 order. The
7868``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7869concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7870respectively).
7871
7872'``llvm.ctpop.*``' Intrinsic
7873^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7874
7875Syntax:
7876"""""""
7877
7878This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7879bit width, or on any vector with integer elements. Not all targets
7880support all bit widths or vector types, however.
7881
7882::
7883
7884 declare i8 @llvm.ctpop.i8(i8 <src>)
7885 declare i16 @llvm.ctpop.i16(i16 <src>)
7886 declare i32 @llvm.ctpop.i32(i32 <src>)
7887 declare i64 @llvm.ctpop.i64(i64 <src>)
7888 declare i256 @llvm.ctpop.i256(i256 <src>)
7889 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7890
7891Overview:
7892"""""""""
7893
7894The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7895in a value.
7896
7897Arguments:
7898""""""""""
7899
7900The only argument is the value to be counted. The argument may be of any
7901integer type, or a vector with integer elements. The return type must
7902match the argument type.
7903
7904Semantics:
7905""""""""""
7906
7907The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7908each element of a vector.
7909
7910'``llvm.ctlz.*``' Intrinsic
7911^^^^^^^^^^^^^^^^^^^^^^^^^^^
7912
7913Syntax:
7914"""""""
7915
7916This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7917integer bit width, or any vector whose elements are integers. Not all
7918targets support all bit widths or vector types, however.
7919
7920::
7921
7922 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7923 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7924 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7925 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7926 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7927 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7928
7929Overview:
7930"""""""""
7931
7932The '``llvm.ctlz``' family of intrinsic functions counts the number of
7933leading zeros in a variable.
7934
7935Arguments:
7936""""""""""
7937
7938The first argument is the value to be counted. This argument may be of
7939any integer type, or a vectory with integer element type. The return
7940type must match the first argument type.
7941
7942The second argument must be a constant and is a flag to indicate whether
7943the intrinsic should ensure that a zero as the first argument produces a
7944defined result. Historically some architectures did not provide a
7945defined result for zero values as efficiently, and many algorithms are
7946now predicated on avoiding zero-value inputs.
7947
7948Semantics:
7949""""""""""
7950
7951The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7952zeros in a variable, or within each element of the vector. If
7953``src == 0`` then the result is the size in bits of the type of ``src``
7954if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7955``llvm.ctlz(i32 2) = 30``.
7956
7957'``llvm.cttz.*``' Intrinsic
7958^^^^^^^^^^^^^^^^^^^^^^^^^^^
7959
7960Syntax:
7961"""""""
7962
7963This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7964integer bit width, or any vector of integer elements. Not all targets
7965support all bit widths or vector types, however.
7966
7967::
7968
7969 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7970 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7971 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7972 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7973 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7974 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7975
7976Overview:
7977"""""""""
7978
7979The '``llvm.cttz``' family of intrinsic functions counts the number of
7980trailing zeros.
7981
7982Arguments:
7983""""""""""
7984
7985The first argument is the value to be counted. This argument may be of
7986any integer type, or a vectory with integer element type. The return
7987type must match the first argument type.
7988
7989The second argument must be a constant and is a flag to indicate whether
7990the intrinsic should ensure that a zero as the first argument produces a
7991defined result. Historically some architectures did not provide a
7992defined result for zero values as efficiently, and many algorithms are
7993now predicated on avoiding zero-value inputs.
7994
7995Semantics:
7996""""""""""
7997
7998The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7999zeros in a variable, or within each element of a vector. If ``src == 0``
8000then the result is the size in bits of the type of ``src`` if
8001``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8002``llvm.cttz(2) = 1``.
8003
8004Arithmetic with Overflow Intrinsics
8005-----------------------------------
8006
8007LLVM provides intrinsics for some arithmetic with overflow operations.
8008
8009'``llvm.sadd.with.overflow.*``' Intrinsics
8010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8011
8012Syntax:
8013"""""""
8014
8015This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8016on any integer bit width.
8017
8018::
8019
8020 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8021 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8022 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8023
8024Overview:
8025"""""""""
8026
8027The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8028a signed addition of the two arguments, and indicate whether an overflow
8029occurred during the signed summation.
8030
8031Arguments:
8032""""""""""
8033
8034The arguments (%a and %b) and the first element of the result structure
8035may be of integer types of any bit width, but they must have the same
8036bit width. The second element of the result structure must be of type
8037``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8038addition.
8039
8040Semantics:
8041""""""""""
8042
8043The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008044a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008045first element of which is the signed summation, and the second element
8046of which is a bit specifying if the signed summation resulted in an
8047overflow.
8048
8049Examples:
8050"""""""""
8051
8052.. code-block:: llvm
8053
8054 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8055 %sum = extractvalue {i32, i1} %res, 0
8056 %obit = extractvalue {i32, i1} %res, 1
8057 br i1 %obit, label %overflow, label %normal
8058
8059'``llvm.uadd.with.overflow.*``' Intrinsics
8060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8066on any integer bit width.
8067
8068::
8069
8070 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8071 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8072 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8073
8074Overview:
8075"""""""""
8076
8077The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8078an unsigned addition of the two arguments, and indicate whether a carry
8079occurred during the unsigned summation.
8080
8081Arguments:
8082""""""""""
8083
8084The arguments (%a and %b) and the first element of the result structure
8085may be of integer types of any bit width, but they must have the same
8086bit width. The second element of the result structure must be of type
8087``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8088addition.
8089
8090Semantics:
8091""""""""""
8092
8093The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008094an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008095first element of which is the sum, and the second element of which is a
8096bit specifying if the unsigned summation resulted in a carry.
8097
8098Examples:
8099"""""""""
8100
8101.. code-block:: llvm
8102
8103 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8104 %sum = extractvalue {i32, i1} %res, 0
8105 %obit = extractvalue {i32, i1} %res, 1
8106 br i1 %obit, label %carry, label %normal
8107
8108'``llvm.ssub.with.overflow.*``' Intrinsics
8109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8110
8111Syntax:
8112"""""""
8113
8114This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8115on any integer bit width.
8116
8117::
8118
8119 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8120 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8121 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8122
8123Overview:
8124"""""""""
8125
8126The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8127a signed subtraction of the two arguments, and indicate whether an
8128overflow occurred during the signed subtraction.
8129
8130Arguments:
8131""""""""""
8132
8133The arguments (%a and %b) and the first element of the result structure
8134may be of integer types of any bit width, but they must have the same
8135bit width. The second element of the result structure must be of type
8136``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8137subtraction.
8138
8139Semantics:
8140""""""""""
8141
8142The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008143a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008144first element of which is the subtraction, and the second element of
8145which is a bit specifying if the signed subtraction resulted in an
8146overflow.
8147
8148Examples:
8149"""""""""
8150
8151.. code-block:: llvm
8152
8153 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8154 %sum = extractvalue {i32, i1} %res, 0
8155 %obit = extractvalue {i32, i1} %res, 1
8156 br i1 %obit, label %overflow, label %normal
8157
8158'``llvm.usub.with.overflow.*``' Intrinsics
8159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8160
8161Syntax:
8162"""""""
8163
8164This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8165on any integer bit width.
8166
8167::
8168
8169 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8170 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8171 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8172
8173Overview:
8174"""""""""
8175
8176The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8177an unsigned subtraction of the two arguments, and indicate whether an
8178overflow occurred during the unsigned subtraction.
8179
8180Arguments:
8181""""""""""
8182
8183The arguments (%a and %b) and the first element of the result structure
8184may be of integer types of any bit width, but they must have the same
8185bit width. The second element of the result structure must be of type
8186``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8187subtraction.
8188
8189Semantics:
8190""""""""""
8191
8192The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008193an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008194the first element of which is the subtraction, and the second element of
8195which is a bit specifying if the unsigned subtraction resulted in an
8196overflow.
8197
8198Examples:
8199"""""""""
8200
8201.. code-block:: llvm
8202
8203 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8204 %sum = extractvalue {i32, i1} %res, 0
8205 %obit = extractvalue {i32, i1} %res, 1
8206 br i1 %obit, label %overflow, label %normal
8207
8208'``llvm.smul.with.overflow.*``' Intrinsics
8209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8210
8211Syntax:
8212"""""""
8213
8214This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8215on any integer bit width.
8216
8217::
8218
8219 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8220 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8221 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8222
8223Overview:
8224"""""""""
8225
8226The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8227a signed multiplication of the two arguments, and indicate whether an
8228overflow occurred during the signed multiplication.
8229
8230Arguments:
8231""""""""""
8232
8233The arguments (%a and %b) and the first element of the result structure
8234may be of integer types of any bit width, but they must have the same
8235bit width. The second element of the result structure must be of type
8236``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8237multiplication.
8238
8239Semantics:
8240""""""""""
8241
8242The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008243a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008244the first element of which is the multiplication, and the second element
8245of which is a bit specifying if the signed multiplication resulted in an
8246overflow.
8247
8248Examples:
8249"""""""""
8250
8251.. code-block:: llvm
8252
8253 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8254 %sum = extractvalue {i32, i1} %res, 0
8255 %obit = extractvalue {i32, i1} %res, 1
8256 br i1 %obit, label %overflow, label %normal
8257
8258'``llvm.umul.with.overflow.*``' Intrinsics
8259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8260
8261Syntax:
8262"""""""
8263
8264This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8265on any integer bit width.
8266
8267::
8268
8269 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8270 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8271 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8272
8273Overview:
8274"""""""""
8275
8276The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8277a unsigned multiplication of the two arguments, and indicate whether an
8278overflow occurred during the unsigned multiplication.
8279
8280Arguments:
8281""""""""""
8282
8283The arguments (%a and %b) and the first element of the result structure
8284may be of integer types of any bit width, but they must have the same
8285bit width. The second element of the result structure must be of type
8286``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8287multiplication.
8288
8289Semantics:
8290""""""""""
8291
8292The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008293an unsigned multiplication of the two arguments. They return a structure ---
8294the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008295element of which is a bit specifying if the unsigned multiplication
8296resulted in an overflow.
8297
8298Examples:
8299"""""""""
8300
8301.. code-block:: llvm
8302
8303 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8304 %sum = extractvalue {i32, i1} %res, 0
8305 %obit = extractvalue {i32, i1} %res, 1
8306 br i1 %obit, label %overflow, label %normal
8307
8308Specialised Arithmetic Intrinsics
8309---------------------------------
8310
8311'``llvm.fmuladd.*``' Intrinsic
8312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8313
8314Syntax:
8315"""""""
8316
8317::
8318
8319 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8320 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8321
8322Overview:
8323"""""""""
8324
8325The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008326expressions that can be fused if the code generator determines that (a) the
8327target instruction set has support for a fused operation, and (b) that the
8328fused operation is more efficient than the equivalent, separate pair of mul
8329and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008330
8331Arguments:
8332""""""""""
8333
8334The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8335multiplicands, a and b, and an addend c.
8336
8337Semantics:
8338""""""""""
8339
8340The expression:
8341
8342::
8343
8344 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8345
8346is equivalent to the expression a \* b + c, except that rounding will
8347not be performed between the multiplication and addition steps if the
8348code generator fuses the operations. Fusion is not guaranteed, even if
8349the target platform supports it. If a fused multiply-add is required the
Stephen Hines36b56882014-04-23 16:57:46 -07008350corresponding llvm.fma.\* intrinsic function should be used
8351instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvaf722b002012-12-07 10:36:55 +00008352
8353Examples:
8354"""""""""
8355
8356.. code-block:: llvm
8357
8358 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8359
8360Half Precision Floating Point Intrinsics
8361----------------------------------------
8362
8363For most target platforms, half precision floating point is a
8364storage-only format. This means that it is a dense encoding (in memory)
8365but does not support computation in the format.
8366
8367This means that code must first load the half-precision floating point
8368value as an i16, then convert it to float with
8369:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8370then be performed on the float value (including extending to double
8371etc). To store the value back to memory, it is first converted to float
8372if needed, then converted to i16 with
8373:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8374i16 value.
8375
8376.. _int_convert_to_fp16:
8377
8378'``llvm.convert.to.fp16``' Intrinsic
8379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8380
8381Syntax:
8382"""""""
8383
8384::
8385
8386 declare i16 @llvm.convert.to.fp16(f32 %a)
8387
8388Overview:
8389"""""""""
8390
8391The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8392from single precision floating point format to half precision floating
8393point format.
8394
8395Arguments:
8396""""""""""
8397
8398The intrinsic function contains single argument - the value to be
8399converted.
8400
8401Semantics:
8402""""""""""
8403
8404The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8405from single precision floating point format to half precision floating
8406point format. The return value is an ``i16`` which contains the
8407converted number.
8408
8409Examples:
8410"""""""""
8411
8412.. code-block:: llvm
8413
8414 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8415 store i16 %res, i16* @x, align 2
8416
8417.. _int_convert_from_fp16:
8418
8419'``llvm.convert.from.fp16``' Intrinsic
8420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8421
8422Syntax:
8423"""""""
8424
8425::
8426
8427 declare f32 @llvm.convert.from.fp16(i16 %a)
8428
8429Overview:
8430"""""""""
8431
8432The '``llvm.convert.from.fp16``' intrinsic function performs a
8433conversion from half precision floating point format to single precision
8434floating point format.
8435
8436Arguments:
8437""""""""""
8438
8439The intrinsic function contains single argument - the value to be
8440converted.
8441
8442Semantics:
8443""""""""""
8444
8445The '``llvm.convert.from.fp16``' intrinsic function performs a
8446conversion from half single precision floating point format to single
8447precision floating point format. The input half-float value is
8448represented by an ``i16`` value.
8449
8450Examples:
8451"""""""""
8452
8453.. code-block:: llvm
8454
8455 %a = load i16* @x, align 2
8456 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8457
8458Debugger Intrinsics
8459-------------------
8460
8461The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8462prefix), are described in the `LLVM Source Level
8463Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8464document.
8465
8466Exception Handling Intrinsics
8467-----------------------------
8468
8469The LLVM exception handling intrinsics (which all start with
8470``llvm.eh.`` prefix), are described in the `LLVM Exception
8471Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8472
8473.. _int_trampoline:
8474
8475Trampoline Intrinsics
8476---------------------
8477
8478These intrinsics make it possible to excise one parameter, marked with
8479the :ref:`nest <nest>` attribute, from a function. The result is a
8480callable function pointer lacking the nest parameter - the caller does
8481not need to provide a value for it. Instead, the value to use is stored
8482in advance in a "trampoline", a block of memory usually allocated on the
8483stack, which also contains code to splice the nest value into the
8484argument list. This is used to implement the GCC nested function address
8485extension.
8486
8487For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8488then the resulting function pointer has signature ``i32 (i32, i32)*``.
8489It can be created as follows:
8490
8491.. code-block:: llvm
8492
8493 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8494 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8495 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8496 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8497 %fp = bitcast i8* %p to i32 (i32, i32)*
8498
8499The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8500``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8501
8502.. _int_it:
8503
8504'``llvm.init.trampoline``' Intrinsic
8505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8506
8507Syntax:
8508"""""""
8509
8510::
8511
8512 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8513
8514Overview:
8515"""""""""
8516
8517This fills the memory pointed to by ``tramp`` with executable code,
8518turning it into a trampoline.
8519
8520Arguments:
8521""""""""""
8522
8523The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8524pointers. The ``tramp`` argument must point to a sufficiently large and
8525sufficiently aligned block of memory; this memory is written to by the
8526intrinsic. Note that the size and the alignment are target-specific -
8527LLVM currently provides no portable way of determining them, so a
8528front-end that generates this intrinsic needs to have some
8529target-specific knowledge. The ``func`` argument must hold a function
8530bitcast to an ``i8*``.
8531
8532Semantics:
8533""""""""""
8534
8535The block of memory pointed to by ``tramp`` is filled with target
8536dependent code, turning it into a function. Then ``tramp`` needs to be
8537passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8538be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8539function's signature is the same as that of ``func`` with any arguments
8540marked with the ``nest`` attribute removed. At most one such ``nest``
8541argument is allowed, and it must be of pointer type. Calling the new
8542function is equivalent to calling ``func`` with the same argument list,
8543but with ``nval`` used for the missing ``nest`` argument. If, after
8544calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8545modified, then the effect of any later call to the returned function
8546pointer is undefined.
8547
8548.. _int_at:
8549
8550'``llvm.adjust.trampoline``' Intrinsic
8551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8552
8553Syntax:
8554"""""""
8555
8556::
8557
8558 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8559
8560Overview:
8561"""""""""
8562
8563This performs any required machine-specific adjustment to the address of
8564a trampoline (passed as ``tramp``).
8565
8566Arguments:
8567""""""""""
8568
8569``tramp`` must point to a block of memory which already has trampoline
8570code filled in by a previous call to
8571:ref:`llvm.init.trampoline <int_it>`.
8572
8573Semantics:
8574""""""""""
8575
8576On some architectures the address of the code to be executed needs to be
8577different to the address where the trampoline is actually stored. This
8578intrinsic returns the executable address corresponding to ``tramp``
8579after performing the required machine specific adjustments. The pointer
8580returned can then be :ref:`bitcast and executed <int_trampoline>`.
8581
8582Memory Use Markers
8583------------------
8584
8585This class of intrinsics exists to information about the lifetime of
8586memory objects and ranges where variables are immutable.
8587
Stephen Hines36b56882014-04-23 16:57:46 -07008588.. _int_lifestart:
8589
Sean Silvaf722b002012-12-07 10:36:55 +00008590'``llvm.lifetime.start``' Intrinsic
8591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8592
8593Syntax:
8594"""""""
8595
8596::
8597
8598 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8599
8600Overview:
8601"""""""""
8602
8603The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8604object's lifetime.
8605
8606Arguments:
8607""""""""""
8608
8609The first argument is a constant integer representing the size of the
8610object, or -1 if it is variable sized. The second argument is a pointer
8611to the object.
8612
8613Semantics:
8614""""""""""
8615
8616This intrinsic indicates that before this point in the code, the value
8617of the memory pointed to by ``ptr`` is dead. This means that it is known
8618to never be used and has an undefined value. A load from the pointer
8619that precedes this intrinsic can be replaced with ``'undef'``.
8620
Stephen Hines36b56882014-04-23 16:57:46 -07008621.. _int_lifeend:
8622
Sean Silvaf722b002012-12-07 10:36:55 +00008623'``llvm.lifetime.end``' Intrinsic
8624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8625
8626Syntax:
8627"""""""
8628
8629::
8630
8631 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8632
8633Overview:
8634"""""""""
8635
8636The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8637object's lifetime.
8638
8639Arguments:
8640""""""""""
8641
8642The first argument is a constant integer representing the size of the
8643object, or -1 if it is variable sized. The second argument is a pointer
8644to the object.
8645
8646Semantics:
8647""""""""""
8648
8649This intrinsic indicates that after this point in the code, the value of
8650the memory pointed to by ``ptr`` is dead. This means that it is known to
8651never be used and has an undefined value. Any stores into the memory
8652object following this intrinsic may be removed as dead.
8653
8654'``llvm.invariant.start``' Intrinsic
8655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8656
8657Syntax:
8658"""""""
8659
8660::
8661
8662 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8663
8664Overview:
8665"""""""""
8666
8667The '``llvm.invariant.start``' intrinsic specifies that the contents of
8668a memory object will not change.
8669
8670Arguments:
8671""""""""""
8672
8673The first argument is a constant integer representing the size of the
8674object, or -1 if it is variable sized. The second argument is a pointer
8675to the object.
8676
8677Semantics:
8678""""""""""
8679
8680This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8681the return value, the referenced memory location is constant and
8682unchanging.
8683
8684'``llvm.invariant.end``' Intrinsic
8685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8686
8687Syntax:
8688"""""""
8689
8690::
8691
8692 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8693
8694Overview:
8695"""""""""
8696
8697The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8698memory object are mutable.
8699
8700Arguments:
8701""""""""""
8702
8703The first argument is the matching ``llvm.invariant.start`` intrinsic.
8704The second argument is a constant integer representing the size of the
8705object, or -1 if it is variable sized and the third argument is a
8706pointer to the object.
8707
8708Semantics:
8709""""""""""
8710
8711This intrinsic indicates that the memory is mutable again.
8712
8713General Intrinsics
8714------------------
8715
8716This class of intrinsics is designed to be generic and has no specific
8717purpose.
8718
8719'``llvm.var.annotation``' Intrinsic
8720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8721
8722Syntax:
8723"""""""
8724
8725::
8726
8727 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8728
8729Overview:
8730"""""""""
8731
8732The '``llvm.var.annotation``' intrinsic.
8733
8734Arguments:
8735""""""""""
8736
8737The first argument is a pointer to a value, the second is a pointer to a
8738global string, the third is a pointer to a global string which is the
8739source file name, and the last argument is the line number.
8740
8741Semantics:
8742""""""""""
8743
8744This intrinsic allows annotation of local variables with arbitrary
8745strings. This can be useful for special purpose optimizations that want
8746to look for these annotations. These have no other defined use; they are
8747ignored by code generation and optimization.
8748
Michael Gottesman872b4e52013-03-26 00:34:27 +00008749'``llvm.ptr.annotation.*``' Intrinsic
8750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8751
8752Syntax:
8753"""""""
8754
8755This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8756pointer to an integer of any width. *NOTE* you must specify an address space for
8757the pointer. The identifier for the default address space is the integer
8758'``0``'.
8759
8760::
8761
8762 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8763 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8764 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8765 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8766 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8767
8768Overview:
8769"""""""""
8770
8771The '``llvm.ptr.annotation``' intrinsic.
8772
8773Arguments:
8774""""""""""
8775
8776The first argument is a pointer to an integer value of arbitrary bitwidth
8777(result of some expression), the second is a pointer to a global string, the
8778third is a pointer to a global string which is the source file name, and the
8779last argument is the line number. It returns the value of the first argument.
8780
8781Semantics:
8782""""""""""
8783
8784This intrinsic allows annotation of a pointer to an integer with arbitrary
8785strings. This can be useful for special purpose optimizations that want to look
8786for these annotations. These have no other defined use; they are ignored by code
8787generation and optimization.
8788
Sean Silvaf722b002012-12-07 10:36:55 +00008789'``llvm.annotation.*``' Intrinsic
8790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8791
8792Syntax:
8793"""""""
8794
8795This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8796any integer bit width.
8797
8798::
8799
8800 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8801 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8802 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8803 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8804 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8805
8806Overview:
8807"""""""""
8808
8809The '``llvm.annotation``' intrinsic.
8810
8811Arguments:
8812""""""""""
8813
8814The first argument is an integer value (result of some expression), the
8815second is a pointer to a global string, the third is a pointer to a
8816global string which is the source file name, and the last argument is
8817the line number. It returns the value of the first argument.
8818
8819Semantics:
8820""""""""""
8821
8822This intrinsic allows annotations to be put on arbitrary expressions
8823with arbitrary strings. This can be useful for special purpose
8824optimizations that want to look for these annotations. These have no
8825other defined use; they are ignored by code generation and optimization.
8826
8827'``llvm.trap``' Intrinsic
8828^^^^^^^^^^^^^^^^^^^^^^^^^
8829
8830Syntax:
8831"""""""
8832
8833::
8834
8835 declare void @llvm.trap() noreturn nounwind
8836
8837Overview:
8838"""""""""
8839
8840The '``llvm.trap``' intrinsic.
8841
8842Arguments:
8843""""""""""
8844
8845None.
8846
8847Semantics:
8848""""""""""
8849
8850This intrinsic is lowered to the target dependent trap instruction. If
8851the target does not have a trap instruction, this intrinsic will be
8852lowered to a call of the ``abort()`` function.
8853
8854'``llvm.debugtrap``' Intrinsic
8855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8856
8857Syntax:
8858"""""""
8859
8860::
8861
8862 declare void @llvm.debugtrap() nounwind
8863
8864Overview:
8865"""""""""
8866
8867The '``llvm.debugtrap``' intrinsic.
8868
8869Arguments:
8870""""""""""
8871
8872None.
8873
8874Semantics:
8875""""""""""
8876
8877This intrinsic is lowered to code which is intended to cause an
8878execution trap with the intention of requesting the attention of a
8879debugger.
8880
8881'``llvm.stackprotector``' Intrinsic
8882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8883
8884Syntax:
8885"""""""
8886
8887::
8888
8889 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8890
8891Overview:
8892"""""""""
8893
8894The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8895onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8896is placed on the stack before local variables.
8897
8898Arguments:
8899""""""""""
8900
8901The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8902The first argument is the value loaded from the stack guard
8903``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8904enough space to hold the value of the guard.
8905
8906Semantics:
8907""""""""""
8908
Michael Gottesman2a64a632013-08-12 18:35:32 +00008909This intrinsic causes the prologue/epilogue inserter to force the position of
8910the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8911to ensure that if a local variable on the stack is overwritten, it will destroy
8912the value of the guard. When the function exits, the guard on the stack is
8913checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8914different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8915calling the ``__stack_chk_fail()`` function.
8916
8917'``llvm.stackprotectorcheck``' Intrinsic
Sean Silvacce63992013-09-09 19:13:28 +00008918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesman2a64a632013-08-12 18:35:32 +00008919
8920Syntax:
8921"""""""
8922
8923::
8924
8925 declare void @llvm.stackprotectorcheck(i8** <guard>)
8926
8927Overview:
8928"""""""""
8929
8930The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008931created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008932``__stack_chk_fail()`` function.
8933
Michael Gottesman2a64a632013-08-12 18:35:32 +00008934Arguments:
8935""""""""""
8936
8937The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8938the variable ``@__stack_chk_guard``.
8939
8940Semantics:
8941""""""""""
8942
8943This intrinsic is provided to perform the stack protector check by comparing
8944``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8945values do not match call the ``__stack_chk_fail()`` function.
8946
8947The reason to provide this as an IR level intrinsic instead of implementing it
8948via other IR operations is that in order to perform this operation at the IR
8949level without an intrinsic, one would need to create additional basic blocks to
8950handle the success/failure cases. This makes it difficult to stop the stack
8951protector check from disrupting sibling tail calls in Codegen. With this
8952intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramerd5976142013-10-29 17:53:27 +00008953codegen after the tail call decision has occurred.
Michael Gottesman2a64a632013-08-12 18:35:32 +00008954
Sean Silvaf722b002012-12-07 10:36:55 +00008955'``llvm.objectsize``' Intrinsic
8956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8957
8958Syntax:
8959"""""""
8960
8961::
8962
8963 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8964 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8965
8966Overview:
8967"""""""""
8968
8969The ``llvm.objectsize`` intrinsic is designed to provide information to
8970the optimizers to determine at compile time whether a) an operation
8971(like memcpy) will overflow a buffer that corresponds to an object, or
8972b) that a runtime check for overflow isn't necessary. An object in this
8973context means an allocation of a specific class, structure, array, or
8974other object.
8975
8976Arguments:
8977""""""""""
8978
8979The ``llvm.objectsize`` intrinsic takes two arguments. The first
8980argument is a pointer to or into the ``object``. The second argument is
8981a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8982or -1 (if false) when the object size is unknown. The second argument
8983only accepts constants.
8984
8985Semantics:
8986""""""""""
8987
8988The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8989the size of the object concerned. If the size cannot be determined at
8990compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8991on the ``min`` argument).
8992
8993'``llvm.expect``' Intrinsic
8994^^^^^^^^^^^^^^^^^^^^^^^^^^^
8995
8996Syntax:
8997"""""""
8998
Stephen Hines36b56882014-04-23 16:57:46 -07008999This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9000integer bit width.
9001
Sean Silvaf722b002012-12-07 10:36:55 +00009002::
9003
Stephen Hines36b56882014-04-23 16:57:46 -07009004 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvaf722b002012-12-07 10:36:55 +00009005 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9006 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9007
9008Overview:
9009"""""""""
9010
9011The ``llvm.expect`` intrinsic provides information about expected (the
9012most probable) value of ``val``, which can be used by optimizers.
9013
9014Arguments:
9015""""""""""
9016
9017The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9018a value. The second argument is an expected value, this needs to be a
9019constant value, variables are not allowed.
9020
9021Semantics:
9022""""""""""
9023
9024This intrinsic is lowered to the ``val``.
9025
9026'``llvm.donothing``' Intrinsic
9027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9028
9029Syntax:
9030"""""""
9031
9032::
9033
9034 declare void @llvm.donothing() nounwind readnone
9035
9036Overview:
9037"""""""""
9038
9039The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9040only intrinsic that can be called with an invoke instruction.
9041
9042Arguments:
9043""""""""""
9044
9045None.
9046
9047Semantics:
9048""""""""""
9049
9050This intrinsic does nothing, and it's removed by optimizers and ignored
9051by codegen.
Stephen Hines36b56882014-04-23 16:57:46 -07009052
9053Stack Map Intrinsics
9054--------------------
9055
9056LLVM provides experimental intrinsics to support runtime patching
9057mechanisms commonly desired in dynamic language JITs. These intrinsics
9058are described in :doc:`StackMaps`.