blob: 0585b43a4640fa8c1e7b1500b459326a3c7659fa [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000030#include "llvm/ADT/STLExtras.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000034#include "llvm/CodeGen/EdgeBundles.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000035#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000039#include "llvm/IR/InlineAsm.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000040#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000045#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000046using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000047
Chris Lattner95b2c7d2006-12-19 22:59:26 +000048STATISTIC(NumFXCH, "Number of fxch instructions inserted");
49STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000050
Chris Lattner95b2c7d2006-12-19 22:59:26 +000051namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000052 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000053 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +000054 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000055 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
Jakob Stoklund Olesenb47bb132010-07-16 22:00:33 +000056 // This is really only to keep valgrind quiet.
57 // The logic in isLive() is too much for it.
58 memset(Stack, 0, sizeof(Stack));
59 memset(RegMap, 0, sizeof(RegMap));
60 }
Devang Patel794fd752007-05-01 21:15:47 +000061
Evan Chengbbeeb2a2008-09-22 20:58:04 +000062 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000063 AU.setPreservesCFG();
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000064 AU.addRequired<EdgeBundles>();
Evan Cheng8b56a902008-09-22 22:21:38 +000065 AU.addPreservedID(MachineLoopInfoID);
66 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000067 MachineFunctionPass::getAnalysisUsage(AU);
68 }
69
Chris Lattnera960d952003-01-13 01:01:59 +000070 virtual bool runOnMachineFunction(MachineFunction &MF);
71
72 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
73
Chris Lattnera960d952003-01-13 01:01:59 +000074 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000075 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000076
77 // Two CFG edges are related if they leave the same block, or enter the same
78 // block. The transitive closure of an edge under this relation is a
79 // LiveBundle. It represents a set of CFG edges where the live FP stack
80 // registers must be allocated identically in the x87 stack.
81 //
82 // A LiveBundle is usually all the edges leaving a block, or all the edges
83 // entering a block, but it can contain more edges if critical edges are
84 // present.
85 //
86 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
87 // but the exact mapping of FP registers to stack slots is fixed later.
88 struct LiveBundle {
89 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
90 unsigned Mask;
91
92 // Number of pre-assigned live registers in FixStack. This is 0 when the
93 // stack order has not yet been fixed.
94 unsigned FixCount;
95
96 // Assigned stack order for live-in registers.
97 // FixStack[i] == getStackEntry(i) for all i < FixCount.
98 unsigned char FixStack[8];
99
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000100 LiveBundle() : Mask(0), FixCount(0) {}
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000101
102 // Have the live registers been assigned a stack order yet?
103 bool isFixed() const { return !Mask || FixCount; }
104 };
105
106 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
107 // with no live FP registers.
108 SmallVector<LiveBundle, 8> LiveBundles;
109
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000110 // The edge bundle analysis provides indices into the LiveBundles vector.
111 EdgeBundles *Bundles;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000112
113 // Return a bitmask of FP registers in block's live-in list.
Jakub Staszake845ced2012-11-21 00:59:34 +0000114 static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000115 unsigned Mask = 0;
116 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
117 E = MBB->livein_end(); I != E; ++I) {
118 unsigned Reg = *I - X86::FP0;
119 if (Reg < 8)
120 Mask |= 1 << Reg;
121 }
122 return Mask;
123 }
124
125 // Partition all the CFG edges into LiveBundles.
126 void bundleCFG(MachineFunction &MF);
127
Evan Cheng32644ac2006-12-01 10:11:51 +0000128 MachineBasicBlock *MBB; // Current basic block
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000129
130 // The hardware keeps track of how many FP registers are live, so we have
131 // to model that exactly. Usually, each live register corresponds to an
132 // FP<n> register, but when dealing with calls, returns, and inline
Benjamin Kramerd9b0b022012-06-02 10:20:22 +0000133 // assembly, it is sometimes necessary to have live scratch registers.
Evan Cheng32644ac2006-12-01 10:11:51 +0000134 unsigned Stack[8]; // FP<n> Registers in each stack slot...
Evan Cheng32644ac2006-12-01 10:11:51 +0000135 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000136
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000137 enum {
138 NumFPRegs = 16 // Including scratch pseudo-registers.
139 };
140
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000141 // For each live FP<n> register, point to its Stack[] entry.
142 // The first entries correspond to FP0-FP6, the rest are scratch registers
143 // used when we need slightly different live registers than what the
144 // register allocator thinks.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000145 unsigned RegMap[NumFPRegs];
146
147 // Pending fixed registers - Inline assembly needs FP registers to appear
148 // in fixed stack slot positions. This is handled by copying FP registers
149 // to ST registers before the instruction, and copying back after the
150 // instruction.
151 //
152 // This is modeled with pending ST registers. NumPendingSTs is the number
153 // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
154 // register that holds the ST value. The ST registers are not moved into
155 // place until immediately before the instruction that needs them.
156 //
157 // It can happen that we need an ST register to be live when no FP register
158 // holds the value:
159 //
160 // %ST0 = COPY %FP4<kill>
161 //
162 // When that happens, we allocate a scratch FP register to hold the ST
163 // value. That means every register in PendingST must be live.
164
165 unsigned NumPendingSTs;
166 unsigned char PendingST[8];
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000167
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000168 // Set up our stack model to match the incoming registers to MBB.
169 void setupBlockStack();
170
171 // Shuffle live registers to match the expectations of successor blocks.
172 void finishBlockStack();
173
Manman Renb720be62012-09-11 22:23:19 +0000174#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnera960d952003-01-13 01:01:59 +0000175 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000176 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000177 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000178 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000179 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000180 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000181 for (unsigned i = 0; i != NumPendingSTs; ++i)
182 dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
David Greenef5c95a62010-01-05 01:29:34 +0000183 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000184 }
Manman Ren77e300e2012-09-06 19:06:06 +0000185#endif
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000186
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000187 /// getSlot - Return the stack slot number a particular register number is
188 /// in.
Chris Lattnera960d952003-01-13 01:01:59 +0000189 unsigned getSlot(unsigned RegNo) const {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000190 assert(RegNo < NumFPRegs && "Regno out of range!");
Chris Lattnera960d952003-01-13 01:01:59 +0000191 return RegMap[RegNo];
192 }
193
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000194 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000195 bool isLive(unsigned RegNo) const {
196 unsigned Slot = getSlot(RegNo);
197 return Slot < StackTop && Stack[Slot] == RegNo;
198 }
199
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000200 /// getScratchReg - Return an FP register that is not currently in use.
Jakub Staszak8c67c032012-11-20 23:32:32 +0000201 unsigned getScratchReg() const {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000202 for (int i = NumFPRegs - 1; i >= 8; --i)
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000203 if (!isLive(i))
204 return i;
205 llvm_unreachable("Ran out of scratch FP registers");
206 }
207
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000208 /// isScratchReg - Returns trus if RegNo is a scratch FP register.
Jakub Staszak6f05f212012-11-21 00:50:57 +0000209 static bool isScratchReg(unsigned RegNo) {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000210 return RegNo > 8 && RegNo < NumFPRegs;
211 }
212
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000213 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000214 unsigned getStackEntry(unsigned STi) const {
Evan Cheng3f490f32010-10-12 23:19:28 +0000215 if (STi >= StackTop)
216 report_fatal_error("Access past stack top!");
Chris Lattnera960d952003-01-13 01:01:59 +0000217 return Stack[StackTop-1-STi];
218 }
219
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000220 /// getSTReg - Return the X86::ST(i) register which contains the specified
221 /// FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000222 unsigned getSTReg(unsigned RegNo) const {
Craig Topperc89c7442012-03-27 07:21:54 +0000223 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000224 }
225
Chris Lattner447ff682008-03-11 03:23:40 +0000226 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000227 void pushReg(unsigned Reg) {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000228 assert(Reg < NumFPRegs && "Register number out of range!");
Evan Cheng3f490f32010-10-12 23:19:28 +0000229 if (StackTop >= 8)
230 report_fatal_error("Stack overflow!");
Chris Lattnera960d952003-01-13 01:01:59 +0000231 Stack[StackTop] = Reg;
232 RegMap[Reg] = StackTop++;
233 }
234
235 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000236 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000237 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000238 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000239
Chris Lattner447ff682008-03-11 03:23:40 +0000240 unsigned STReg = getSTReg(RegNo);
241 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000242
Chris Lattner447ff682008-03-11 03:23:40 +0000243 // Swap the slots the regs are in.
244 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000245
Chris Lattner447ff682008-03-11 03:23:40 +0000246 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +0000247 if (RegMap[RegOnTop] >= StackTop)
248 report_fatal_error("Access past stack top!");
Chris Lattner447ff682008-03-11 03:23:40 +0000249 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000250
Chris Lattner447ff682008-03-11 03:23:40 +0000251 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000252 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000253 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000254 }
255
Chris Lattner0526f012004-04-01 04:06:09 +0000256 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000257 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000258 unsigned STReg = getSTReg(RegNo);
259 pushReg(AsReg); // New register on top of stack
260
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000261 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000262 }
263
Jakob Stoklund Olesen66b0f512011-08-08 17:15:43 +0000264 /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
265 /// RegNo. If any PendingST registers still need the RegNo value, duplicate
266 /// them to new scratch registers.
267 void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
268 for (unsigned i = 0; i != NumPendingSTs; ++i) {
269 if (PendingST[i] != RegNo)
270 continue;
271 unsigned SR = getScratchReg();
272 DEBUG(dbgs() << "Duplicating pending ST" << i
273 << " in FP" << RegNo << " to FP" << SR << '\n');
274 duplicateToTop(RegNo, SR, I);
275 PendingST[i] = SR;
276 }
277 }
278
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000279 /// popStackAfter - Pop the current value off of the top of the FP stack
280 /// after the specified instruction.
Chris Lattnera960d952003-01-13 01:01:59 +0000281 void popStackAfter(MachineBasicBlock::iterator &I);
282
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000283 /// freeStackSlotAfter - Free the specified register from the register
284 /// stack, so that it is no longer in a register. If the register is
285 /// currently at the top of the stack, we just pop the current instruction,
286 /// otherwise we store the current top-of-stack into the specified slot,
287 /// then pop the top of stack.
Chris Lattner0526f012004-04-01 04:06:09 +0000288 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
289
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000290 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
291 /// instruction.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000292 MachineBasicBlock::iterator
293 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
294
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000295 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000296 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
297
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000298 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000299 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000300 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
301 MachineBasicBlock::iterator I);
302
Chris Lattnera960d952003-01-13 01:01:59 +0000303 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
304
305 void handleZeroArgFP(MachineBasicBlock::iterator &I);
306 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000307 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000308 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000309 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000310 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000311 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000312
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000313 // Check if a COPY instruction is using FP registers.
Jakub Staszak6f05f212012-11-21 00:50:57 +0000314 static bool isFPCopy(MachineInstr *MI) {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000315 unsigned DstReg = MI->getOperand(0).getReg();
316 unsigned SrcReg = MI->getOperand(1).getReg();
317
318 return X86::RFP80RegClass.contains(DstReg) ||
319 X86::RFP80RegClass.contains(SrcReg);
320 }
Chris Lattnera960d952003-01-13 01:01:59 +0000321 };
Devang Patel19974732007-05-03 01:11:54 +0000322 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000323}
324
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000325FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000326
Chris Lattner3cc83842008-01-14 06:41:29 +0000327/// getFPReg - Return the X86::FPx register number for the specified operand.
328/// For example, this returns 3 for X86::FP3.
329static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000330 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000331 unsigned Reg = MO.getReg();
332 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
333 return Reg - X86::FP0;
334}
335
Chris Lattnera960d952003-01-13 01:01:59 +0000336/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
337/// register references into FP stack references.
338///
339bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000340 // We only need to run this pass if there are any FP registers used in this
341 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000342 bool FPIsUsed = false;
343
344 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
345 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000346 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000347 FPIsUsed = true;
348 break;
349 }
350
351 // Early exit.
352 if (!FPIsUsed) return false;
353
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000354 Bundles = &getAnalysis<EdgeBundles>();
Evan Cheng32644ac2006-12-01 10:11:51 +0000355 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000356
357 // Prepare cross-MBB liveness.
358 bundleCFG(MF);
359
Chris Lattnera960d952003-01-13 01:01:59 +0000360 StackTop = 0;
361
Chris Lattner847df252004-01-30 22:25:18 +0000362 // Process the function in depth first order so that we process at least one
363 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000364 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000365 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000366
367 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000368 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000369 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
370 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000371 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000372
Chris Lattnerba3598c2009-09-08 04:55:44 +0000373 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000374 if (MF.size() != Processed.size())
375 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
376 if (Processed.insert(BB))
377 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000378
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000379 LiveBundles.clear();
380
Chris Lattnera960d952003-01-13 01:01:59 +0000381 return Changed;
382}
383
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000384/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
385/// live-out sets for the FP registers. Consistent means that the set of
386/// registers live-out from a block is identical to the live-in set of all
387/// successors. This is not enforced by the normal live-in lists since
388/// registers may be implicitly defined, or not used by all successors.
389void FPS::bundleCFG(MachineFunction &MF) {
390 assert(LiveBundles.empty() && "Stale data in LiveBundles");
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000391 LiveBundles.resize(Bundles->getNumBundles());
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000392
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000393 // Gather the actual live-in masks for all MBBs.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000394 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
395 MachineBasicBlock *MBB = I;
396 const unsigned Mask = calcLiveInMask(MBB);
397 if (!Mask)
398 continue;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000399 // Update MBB ingoing bundle mask.
400 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000401 }
402}
403
Chris Lattnera960d952003-01-13 01:01:59 +0000404/// processBasicBlock - Loop over all of the instructions in the basic block,
405/// transforming FP instructions into their stack form.
406///
407bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000408 bool Changed = false;
409 MBB = &BB;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000410 NumPendingSTs = 0;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000411
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000412 setupBlockStack();
413
Chris Lattnera960d952003-01-13 01:01:59 +0000414 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000415 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000416 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000417
Chris Lattnere12ecf22008-03-11 19:50:13 +0000418 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000419 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000420 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000421
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000422 if (MI->isCopy() && isFPCopy(MI))
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000423 FPInstClass = X86II::SpecialFP;
424
Jakob Stoklund Olesen56e32322011-08-03 16:33:19 +0000425 if (MI->isImplicitDef() &&
426 X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
427 FPInstClass = X86II::SpecialFP;
428
Chris Lattnere12ecf22008-03-11 19:50:13 +0000429 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000430 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000431
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000432 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000433 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000434 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000435
436 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000437 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000438
439 // Get dead variables list now because the MI pointer may be deleted as part
440 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000441 SmallVector<unsigned, 8> DeadRegs;
442 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
443 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000444 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000445 DeadRegs.push_back(MO.getReg());
446 }
Chris Lattnera960d952003-01-13 01:01:59 +0000447
Chris Lattnere12ecf22008-03-11 19:50:13 +0000448 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000449 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000450 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000451 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000452 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000453 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000454 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000455 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000456 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000457 }
458
459 // Check to see if any of the values defined by this instruction are dead
460 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000461 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
462 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000463 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000464 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000465 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000466 }
467 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000468
Chris Lattnera960d952003-01-13 01:01:59 +0000469 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000470 DEBUG(
471 MachineBasicBlock::iterator PrevI(PrevMI);
472 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000473 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000474 } else {
475 MachineBasicBlock::iterator Start = I;
476 // Rewind to first instruction newly inserted.
477 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000478 dbgs() << "Inserted instructions:\n\t";
479 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000480 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000481 }
482 dumpStack();
483 );
Duncan Sands1f6a3292011-08-12 14:54:45 +0000484 (void)PrevMI;
Chris Lattnera960d952003-01-13 01:01:59 +0000485
486 Changed = true;
487 }
488
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000489 finishBlockStack();
490
Chris Lattnera960d952003-01-13 01:01:59 +0000491 return Changed;
492}
493
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000494/// setupBlockStack - Use the live bundles to set up our model of the stack
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000495/// to match predecessors' live out stack.
496void FPS::setupBlockStack() {
497 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
498 << " derived from " << MBB->getName() << ".\n");
499 StackTop = 0;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000500 // Get the live-in bundle for MBB.
501 const LiveBundle &Bundle =
502 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000503
504 if (!Bundle.Mask) {
505 DEBUG(dbgs() << "Block has no FP live-ins.\n");
506 return;
507 }
508
509 // Depth-first iteration should ensure that we always have an assigned stack.
510 assert(Bundle.isFixed() && "Reached block before any predecessors");
511
512 // Push the fixed live-in registers.
513 for (unsigned i = Bundle.FixCount; i > 0; --i) {
514 MBB->addLiveIn(X86::ST0+i-1);
515 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
516 << unsigned(Bundle.FixStack[i-1]) << '\n');
517 pushReg(Bundle.FixStack[i-1]);
518 }
519
520 // Kill off unwanted live-ins. This can happen with a critical edge.
521 // FIXME: We could keep these live registers around as zombies. They may need
522 // to be revived at the end of a short block. It might save a few instrs.
523 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
524 DEBUG(MBB->dump());
525}
526
527/// finishBlockStack - Revive live-outs that are implicitly defined out of
528/// MBB. Shuffle live registers to match the expected fixed stack of any
529/// predecessors, and ensure that all predecessors are expecting the same
530/// stack.
531void FPS::finishBlockStack() {
532 // The RET handling below takes care of return blocks for us.
533 if (MBB->succ_empty())
534 return;
535
536 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
537 << " derived from " << MBB->getName() << ".\n");
538
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000539 // Get MBB's live-out bundle.
540 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000541 LiveBundle &Bundle = LiveBundles[BundleIdx];
542
543 // We may need to kill and define some registers to match successors.
544 // FIXME: This can probably be combined with the shuffle below.
545 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
546 adjustLiveRegs(Bundle.Mask, Term);
547
548 if (!Bundle.Mask) {
549 DEBUG(dbgs() << "No live-outs.\n");
550 return;
551 }
552
553 // Has the stack order been fixed yet?
554 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
555 if (Bundle.isFixed()) {
556 DEBUG(dbgs() << "Shuffling stack to match.\n");
557 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
558 } else {
559 // Not fixed yet, we get to choose.
560 DEBUG(dbgs() << "Fixing stack order now.\n");
561 Bundle.FixCount = StackTop;
562 for (unsigned i = 0; i < StackTop; ++i)
563 Bundle.FixStack[i] = getStackEntry(i);
564 }
565}
566
567
Chris Lattnera960d952003-01-13 01:01:59 +0000568//===----------------------------------------------------------------------===//
569// Efficient Lookup Table Support
570//===----------------------------------------------------------------------===//
571
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000572namespace {
573 struct TableEntry {
Craig Topper72051bf2012-03-09 07:45:21 +0000574 uint16_t from;
575 uint16_t to;
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000576 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000577 friend bool operator<(const TableEntry &TE, unsigned V) {
578 return TE.from < V;
579 }
Benjamin Kramer2e34b992012-09-17 16:46:22 +0000580 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
581 const TableEntry &TE) {
Jakob Stoklund Olesende78f052010-08-16 18:24:54 +0000582 return V < TE.from;
583 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000584 };
585}
Chris Lattnera960d952003-01-13 01:01:59 +0000586
Evan Chenga022bdf2008-07-21 20:02:45 +0000587#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000588static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
589 for (unsigned i = 0; i != NumEntries-1; ++i)
590 if (!(Table[i] < Table[i+1])) return false;
591 return true;
592}
Evan Chenga022bdf2008-07-21 20:02:45 +0000593#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000594
595static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
596 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
597 if (I != Table+N && I->from == Opcode)
598 return I->to;
599 return -1;
600}
601
Chris Lattnera960d952003-01-13 01:01:59 +0000602#ifdef NDEBUG
603#define ASSERT_SORTED(TABLE)
604#else
605#define ASSERT_SORTED(TABLE) \
606 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000607 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000608 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000609 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000610 TABLE##Checked = true; \
611 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000612 }
613#endif
614
Chris Lattner58fe4592005-12-21 07:47:04 +0000615//===----------------------------------------------------------------------===//
616// Register File -> Register Stack Mapping Methods
617//===----------------------------------------------------------------------===//
618
619// OpcodeTable - Sorted map of register instructions to their stack version.
620// The first element is an register file pseudo instruction, the second is the
621// concrete X86 instruction which uses the register stack.
622//
623static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000624 { X86::ABS_Fp32 , X86::ABS_F },
625 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000626 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000627 { X86::ADD_Fp32m , X86::ADD_F32m },
628 { X86::ADD_Fp64m , X86::ADD_F64m },
629 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000630 { X86::ADD_Fp80m32 , X86::ADD_F32m },
631 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000632 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
633 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000634 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000635 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
636 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000637 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000638 { X86::CHS_Fp32 , X86::CHS_F },
639 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000640 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000641 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
642 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000643 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000644 { X86::CMOVB_Fp32 , X86::CMOVB_F },
645 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000646 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000647 { X86::CMOVE_Fp32 , X86::CMOVE_F },
648 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000649 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000650 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
651 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000652 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000653 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
654 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000655 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000656 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
657 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000658 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000659 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
660 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000661 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000662 { X86::CMOVP_Fp32 , X86::CMOVP_F },
663 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000664 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000665 { X86::COS_Fp32 , X86::COS_F },
666 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000667 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000668 { X86::DIVR_Fp32m , X86::DIVR_F32m },
669 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000670 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000671 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
672 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000673 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
674 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000675 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000676 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
677 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000678 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000679 { X86::DIV_Fp32m , X86::DIV_F32m },
680 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000681 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000682 { X86::DIV_Fp80m32 , X86::DIV_F32m },
683 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000684 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
685 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000686 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000687 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
688 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000689 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000690 { X86::ILD_Fp16m32 , X86::ILD_F16m },
691 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000692 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000693 { X86::ILD_Fp32m32 , X86::ILD_F32m },
694 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000695 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000696 { X86::ILD_Fp64m32 , X86::ILD_F64m },
697 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000698 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000699 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
700 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000701 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000702 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
703 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000704 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000705 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
706 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000707 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000708 { X86::IST_Fp16m32 , X86::IST_F16m },
709 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000710 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000711 { X86::IST_Fp32m32 , X86::IST_F32m },
712 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000713 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000714 { X86::IST_Fp64m32 , X86::IST_FP64m },
715 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000716 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000717 { X86::LD_Fp032 , X86::LD_F0 },
718 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000719 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000720 { X86::LD_Fp132 , X86::LD_F1 },
721 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000722 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000723 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000724 { X86::LD_Fp32m64 , X86::LD_F32m },
725 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000726 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000727 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000728 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000729 { X86::MUL_Fp32m , X86::MUL_F32m },
730 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000731 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000732 { X86::MUL_Fp80m32 , X86::MUL_F32m },
733 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000734 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
735 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000736 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000737 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
738 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000739 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000740 { X86::SIN_Fp32 , X86::SIN_F },
741 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000742 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000743 { X86::SQRT_Fp32 , X86::SQRT_F },
744 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000745 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000746 { X86::ST_Fp32m , X86::ST_F32m },
747 { X86::ST_Fp64m , X86::ST_F64m },
748 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000749 { X86::ST_Fp80m32 , X86::ST_F32m },
750 { X86::ST_Fp80m64 , X86::ST_F64m },
751 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000752 { X86::SUBR_Fp32m , X86::SUBR_F32m },
753 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000754 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000755 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
756 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000757 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
758 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000759 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000760 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
761 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000762 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000763 { X86::SUB_Fp32m , X86::SUB_F32m },
764 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000765 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000766 { X86::SUB_Fp80m32 , X86::SUB_F32m },
767 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000768 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
769 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000770 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000771 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
772 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000773 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000774 { X86::TST_Fp32 , X86::TST_F },
775 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000776 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000777 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
778 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000779 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000780 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
781 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000782 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000783};
784
785static unsigned getConcreteOpcode(unsigned Opcode) {
786 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000787 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000788 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
789 return Opc;
790}
Chris Lattnera960d952003-01-13 01:01:59 +0000791
792//===----------------------------------------------------------------------===//
793// Helper Methods
794//===----------------------------------------------------------------------===//
795
796// PopTable - Sorted map of instructions to their popping version. The first
797// element is an instruction, the second is the version which pops.
798//
799static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000800 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000801
Dale Johannesene377d4d2007-07-04 21:07:47 +0000802 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
803 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000804
Dale Johannesene377d4d2007-07-04 21:07:47 +0000805 { X86::IST_F16m , X86::IST_FP16m },
806 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000807
Dale Johannesene377d4d2007-07-04 21:07:47 +0000808 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000809
Dale Johannesene377d4d2007-07-04 21:07:47 +0000810 { X86::ST_F32m , X86::ST_FP32m },
811 { X86::ST_F64m , X86::ST_FP64m },
812 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000813
Dale Johannesene377d4d2007-07-04 21:07:47 +0000814 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
815 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000816
Dale Johannesene377d4d2007-07-04 21:07:47 +0000817 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000818
Dale Johannesene377d4d2007-07-04 21:07:47 +0000819 { X86::UCOM_FPr , X86::UCOM_FPPr },
820 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000821};
822
823/// popStackAfter - Pop the current value off of the top of the FP stack after
824/// the specified instruction. This attempts to be sneaky and combine the pop
825/// into the instruction itself if possible. The iterator is left pointing to
826/// the last instruction, be it a new pop instruction inserted, or the old
827/// instruction if it was modified in place.
828///
829void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000830 MachineInstr* MI = I;
831 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000832 ASSERT_SORTED(PopTable);
Evan Cheng3f490f32010-10-12 23:19:28 +0000833 if (StackTop == 0)
834 report_fatal_error("Cannot pop empty stack!");
Chris Lattnera960d952003-01-13 01:01:59 +0000835 RegMap[Stack[--StackTop]] = ~0; // Update state
836
837 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000838 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000839 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000840 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000841 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000842 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000843 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000844 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000845 }
846}
847
Chris Lattner0526f012004-04-01 04:06:09 +0000848/// freeStackSlotAfter - Free the specified register from the register stack, so
849/// that it is no longer in a register. If the register is currently at the top
850/// of the stack, we just pop the current instruction, otherwise we store the
851/// current top-of-stack into the specified slot, then pop the top of stack.
852void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
853 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
854 popStackAfter(I);
855 return;
856 }
857
858 // Otherwise, store the top of stack into the dead slot, killing the operand
859 // without having to add in an explicit xchg then pop.
860 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000861 I = freeStackSlotBefore(++I, FPRegNo);
862}
863
864/// freeStackSlotBefore - Free the specified register without trying any
865/// folding.
866MachineBasicBlock::iterator
867FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000868 unsigned STReg = getSTReg(FPRegNo);
869 unsigned OldSlot = getSlot(FPRegNo);
870 unsigned TopReg = Stack[StackTop-1];
871 Stack[OldSlot] = TopReg;
872 RegMap[TopReg] = OldSlot;
873 RegMap[FPRegNo] = ~0;
874 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000875 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
876}
877
878/// adjustLiveRegs - Kill and revive registers such that exactly the FP
879/// registers with a bit in Mask are live.
880void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
881 unsigned Defs = Mask;
882 unsigned Kills = 0;
883 for (unsigned i = 0; i < StackTop; ++i) {
884 unsigned RegNo = Stack[i];
885 if (!(Defs & (1 << RegNo)))
886 // This register is live, but we don't want it.
887 Kills |= (1 << RegNo);
888 else
889 // We don't need to imp-def this live register.
890 Defs &= ~(1 << RegNo);
891 }
892 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
893
894 // Produce implicit-defs for free by using killed registers.
895 while (Kills && Defs) {
896 unsigned KReg = CountTrailingZeros_32(Kills);
897 unsigned DReg = CountTrailingZeros_32(Defs);
898 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
899 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
900 std::swap(RegMap[KReg], RegMap[DReg]);
901 Kills &= ~(1 << KReg);
902 Defs &= ~(1 << DReg);
903 }
904
905 // Kill registers by popping.
906 if (Kills && I != MBB->begin()) {
907 MachineBasicBlock::iterator I2 = llvm::prior(I);
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +0000908 while (StackTop) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000909 unsigned KReg = getStackEntry(0);
910 if (!(Kills & (1 << KReg)))
911 break;
912 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
913 popStackAfter(I2);
914 Kills &= ~(1 << KReg);
915 }
916 }
917
918 // Manually kill the rest.
919 while (Kills) {
920 unsigned KReg = CountTrailingZeros_32(Kills);
921 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
922 freeStackSlotBefore(I, KReg);
923 Kills &= ~(1 << KReg);
924 }
925
926 // Load zeros for all the imp-defs.
927 while(Defs) {
928 unsigned DReg = CountTrailingZeros_32(Defs);
929 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
930 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
931 pushReg(DReg);
932 Defs &= ~(1 << DReg);
933 }
934
935 // Now we should have the correct registers live.
936 DEBUG(dumpStack());
937 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
938}
939
940/// shuffleStackTop - emit fxch instructions before I to shuffle the top
941/// FixCount entries into the order given by FixStack.
942/// FIXME: Is there a better algorithm than insertion sort?
943void FPS::shuffleStackTop(const unsigned char *FixStack,
944 unsigned FixCount,
945 MachineBasicBlock::iterator I) {
946 // Move items into place, starting from the desired stack bottom.
947 while (FixCount--) {
948 // Old register at position FixCount.
949 unsigned OldReg = getStackEntry(FixCount);
950 // Desired register at position FixCount.
951 unsigned Reg = FixStack[FixCount];
952 if (Reg == OldReg)
953 continue;
954 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
955 moveToTop(Reg, I);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +0000956 if (FixCount > 0)
957 moveToTop(OldReg, I);
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000958 }
959 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000960}
961
962
Chris Lattnera960d952003-01-13 01:01:59 +0000963//===----------------------------------------------------------------------===//
964// Instruction transformation implementation
965//===----------------------------------------------------------------------===//
966
967/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000968///
Chris Lattnera960d952003-01-13 01:01:59 +0000969void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000970 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000971 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000972
Chris Lattner58fe4592005-12-21 07:47:04 +0000973 // Change from the pseudo instruction to the concrete instruction.
974 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000975 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chad Rosiera20e1e72012-08-01 18:39:17 +0000976
Chris Lattner58fe4592005-12-21 07:47:04 +0000977 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000978 pushReg(DestReg);
979}
980
Chris Lattner4a06f352004-02-02 19:23:15 +0000981/// handleOneArgFP - fst <mem>, ST(0)
982///
Chris Lattnera960d952003-01-13 01:01:59 +0000983void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000984 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000985 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000986 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000987 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000988
Chris Lattner4a06f352004-02-02 19:23:15 +0000989 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000990 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000991 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000992
Jakob Stoklund Olesen66b0f512011-08-08 17:15:43 +0000993 if (KillsSrc)
994 duplicatePendingSTBeforeKill(Reg, I);
995
Evan Cheng2b152712006-02-18 02:36:28 +0000996 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000997 // If we have one _and_ we don't want to pop the operand, duplicate the value
998 // on the stack instead of moving it. This ensure that popping the value is
999 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +00001000 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +00001001 //
Evan Cheng2b152712006-02-18 02:36:28 +00001002 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +00001003 (MI->getOpcode() == X86::IST_Fp64m32 ||
1004 MI->getOpcode() == X86::ISTT_Fp16m32 ||
1005 MI->getOpcode() == X86::ISTT_Fp32m32 ||
1006 MI->getOpcode() == X86::ISTT_Fp64m32 ||
1007 MI->getOpcode() == X86::IST_Fp64m64 ||
1008 MI->getOpcode() == X86::ISTT_Fp16m64 ||
1009 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001010 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +00001011 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +00001012 MI->getOpcode() == X86::ISTT_Fp16m80 ||
1013 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1014 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001015 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001016 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +00001017 } else {
1018 moveToTop(Reg, I); // Move to the top of the stack...
1019 }
Chad Rosiera20e1e72012-08-01 18:39:17 +00001020
Chris Lattner58fe4592005-12-21 07:47:04 +00001021 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +00001022 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +00001023 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001024
Dale Johannesene377d4d2007-07-04 21:07:47 +00001025 if (MI->getOpcode() == X86::IST_FP64m ||
1026 MI->getOpcode() == X86::ISTT_FP16m ||
1027 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +00001028 MI->getOpcode() == X86::ISTT_FP64m ||
1029 MI->getOpcode() == X86::ST_FP80m) {
Evan Cheng3f490f32010-10-12 23:19:28 +00001030 if (StackTop == 0)
1031 report_fatal_error("Stack empty??");
Chris Lattnera960d952003-01-13 01:01:59 +00001032 --StackTop;
1033 } else if (KillsSrc) { // Last use of operand?
1034 popStackAfter(I);
1035 }
1036}
1037
Chris Lattner4a06f352004-02-02 19:23:15 +00001038
Chris Lattner4cf15e72004-04-11 20:21:06 +00001039/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1040/// replace the value with a newly computed value. These instructions may have
1041/// non-fp operands after their FP operands.
1042///
1043/// Examples:
1044/// R1 = fchs R2
1045/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +00001046///
1047void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001048 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +00001049#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +00001050 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +00001051 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +00001052#endif
Chris Lattner4a06f352004-02-02 19:23:15 +00001053
1054 // Is this the last use of the source register?
1055 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +00001056 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +00001057
1058 if (KillsSrc) {
Jakob Stoklund Olesen66b0f512011-08-08 17:15:43 +00001059 duplicatePendingSTBeforeKill(Reg, I);
Chris Lattner4a06f352004-02-02 19:23:15 +00001060 // If this is the last use of the source register, just make sure it's on
1061 // the top of the stack.
1062 moveToTop(Reg, I);
Evan Cheng3f490f32010-10-12 23:19:28 +00001063 if (StackTop == 0)
1064 report_fatal_error("Stack cannot be empty!");
Chris Lattner4a06f352004-02-02 19:23:15 +00001065 --StackTop;
1066 pushReg(getFPReg(MI->getOperand(0)));
1067 } else {
1068 // If this is not the last use of the source register, _copy_ it to the top
1069 // of the stack.
1070 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1071 }
1072
Chris Lattner58fe4592005-12-21 07:47:04 +00001073 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001074 MI->RemoveOperand(1); // Drop the source operand.
1075 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001076 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001077}
1078
1079
Chris Lattnera960d952003-01-13 01:01:59 +00001080//===----------------------------------------------------------------------===//
1081// Define tables of various ways to map pseudo instructions
1082//
1083
1084// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1085static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001086 { X86::ADD_Fp32 , X86::ADD_FST0r },
1087 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001088 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001089 { X86::DIV_Fp32 , X86::DIV_FST0r },
1090 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001091 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001092 { X86::MUL_Fp32 , X86::MUL_FST0r },
1093 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001094 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001095 { X86::SUB_Fp32 , X86::SUB_FST0r },
1096 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001097 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001098};
1099
1100// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1101static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001102 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1103 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001104 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001105 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1106 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001107 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001108 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1109 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001110 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001111 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1112 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001113 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001114};
1115
1116// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1117static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001118 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1119 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001120 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001121 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1122 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001123 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001124 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1125 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001126 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001127 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1128 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001129 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001130};
1131
1132// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1133static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001134 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1135 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001136 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001137 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1138 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001139 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001140 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1141 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001142 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001143 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1144 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001145 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001146};
1147
1148
1149/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1150/// instructions which need to be simplified and possibly transformed.
1151///
1152/// Result: ST(0) = fsub ST(0), ST(i)
1153/// ST(i) = fsub ST(0), ST(i)
1154/// ST(0) = fsubr ST(0), ST(i)
1155/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001156///
Chris Lattnera960d952003-01-13 01:01:59 +00001157void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1158 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1159 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001160 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001161
Chris Lattner749c6f62008-01-07 07:27:27 +00001162 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001163 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001164 unsigned Dest = getFPReg(MI->getOperand(0));
1165 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1166 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001167 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1168 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001169 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001170
Chris Lattnera960d952003-01-13 01:01:59 +00001171 unsigned TOS = getStackEntry(0);
1172
1173 // One of our operands must be on the top of the stack. If neither is yet, we
1174 // need to move one.
1175 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1176 // We can choose to move either operand to the top of the stack. If one of
1177 // the operands is killed by this instruction, we want that one so that we
1178 // can update right on top of the old version.
1179 if (KillsOp0) {
1180 moveToTop(Op0, I); // Move dead operand to TOS.
1181 TOS = Op0;
1182 } else if (KillsOp1) {
1183 moveToTop(Op1, I);
1184 TOS = Op1;
1185 } else {
1186 // All of the operands are live after this instruction executes, so we
1187 // cannot update on top of any operand. Because of this, we must
1188 // duplicate one of the stack elements to the top. It doesn't matter
1189 // which one we pick.
1190 //
1191 duplicateToTop(Op0, Dest, I);
1192 Op0 = TOS = Dest;
1193 KillsOp0 = true;
1194 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001195 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001196 // If we DO have one of our operands at the top of the stack, but we don't
1197 // have a dead operand, we must duplicate one of the operands to a new slot
1198 // on the stack.
1199 duplicateToTop(Op0, Dest, I);
1200 Op0 = TOS = Dest;
1201 KillsOp0 = true;
1202 }
1203
1204 // Now we know that one of our operands is on the top of the stack, and at
1205 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001206 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1207 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001208
1209 // We decide which form to use based on what is on the top of the stack, and
1210 // which operand is killed by this instruction.
1211 const TableEntry *InstTable;
1212 bool isForward = TOS == Op0;
1213 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1214 if (updateST0) {
1215 if (isForward)
1216 InstTable = ForwardST0Table;
1217 else
1218 InstTable = ReverseST0Table;
1219 } else {
1220 if (isForward)
1221 InstTable = ForwardSTiTable;
1222 else
1223 InstTable = ReverseSTiTable;
1224 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001225
Owen Anderson718cb662007-09-07 04:06:50 +00001226 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1227 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001228 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1229
1230 // NotTOS - The register which is not on the top of stack...
1231 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1232
1233 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001234 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001235 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001236
1237 // If both operands are killed, pop one off of the stack in addition to
1238 // overwriting the other one.
1239 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1240 assert(!updateST0 && "Should have updated other operand!");
1241 popStackAfter(I); // Pop the top of stack
1242 }
1243
Chris Lattnera960d952003-01-13 01:01:59 +00001244 // Update stack information so that we know the destination register is now on
1245 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001246 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1247 assert(UpdatedSlot < StackTop && Dest < 7);
1248 Stack[UpdatedSlot] = Dest;
1249 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001250 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001251}
1252
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001253/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001254/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001255///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001256void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1257 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1258 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1259 MachineInstr *MI = I;
1260
Chris Lattner749c6f62008-01-07 07:27:27 +00001261 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001262 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001263 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1264 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001265 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1266 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001267
1268 // Make sure the first operand is on the top of stack, the other one can be
1269 // anywhere.
1270 moveToTop(Op0, I);
1271
Chris Lattner58fe4592005-12-21 07:47:04 +00001272 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001273 MI->getOperand(0).setReg(getSTReg(Op1));
1274 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001275 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001276
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001277 // If any of the operands are killed by this instruction, free them.
1278 if (KillsOp0) freeStackSlotAfter(I, Op0);
1279 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001280}
1281
Chris Lattnerc1bab322004-03-31 22:02:36 +00001282/// handleCondMovFP - Handle two address conditional move instructions. These
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001283/// instructions move a st(i) register to st(0) iff a condition is true. These
Chris Lattnerc1bab322004-03-31 22:02:36 +00001284/// instructions require that the first operand is at the top of the stack, but
1285/// otherwise don't modify the stack at all.
1286void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1287 MachineInstr *MI = I;
1288
1289 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001290 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001291 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001292
1293 // The first operand *must* be on the top of the stack.
1294 moveToTop(Op0, I);
1295
1296 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001297 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001298 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001299 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001300 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001301 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chad Rosiera20e1e72012-08-01 18:39:17 +00001302
Chris Lattnerc1bab322004-03-31 22:02:36 +00001303 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001304 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001305 // Get this value off of the register stack.
1306 freeStackSlotAfter(I, Op1);
1307 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001308}
1309
Chris Lattnera960d952003-01-13 01:01:59 +00001310
1311/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001312/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001313/// instructions.
1314///
1315void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001316 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001317 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001318 default: llvm_unreachable("Unknown SpecialFP instruction!");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001319 case TargetOpcode::COPY: {
1320 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
Evan Chengfb112882009-03-23 08:01:15 +00001321 const MachineOperand &MO1 = MI->getOperand(1);
Evan Chengfb112882009-03-23 08:01:15 +00001322 const MachineOperand &MO0 = MI->getOperand(0);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001323 unsigned DstST = MO0.getReg() - X86::ST0;
1324 unsigned SrcST = MO1.getReg() - X86::ST0;
1325 bool KillsSrc = MI->killsRegister(MO1.getReg());
1326
1327 // ST = COPY FP. Set up a pending ST register.
1328 if (DstST < 8) {
1329 unsigned SrcFP = getFPReg(MO1);
1330 assert(isLive(SrcFP) && "Cannot copy dead register");
1331 assert(!MO0.isDead() && "Cannot copy to dead ST register");
1332
1333 // Unallocated STs are marked as the nonexistent FP255.
1334 while (NumPendingSTs <= DstST)
1335 PendingST[NumPendingSTs++] = NumFPRegs;
1336
1337 // STi could still be live from a previous inline asm.
1338 if (isScratchReg(PendingST[DstST])) {
1339 DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1340 << '\n');
1341 freeStackSlotBefore(MI, PendingST[DstST]);
1342 }
1343
1344 // When the source is killed, allocate a scratch FP register.
1345 if (KillsSrc) {
Jakob Stoklund Olesen66b0f512011-08-08 17:15:43 +00001346 duplicatePendingSTBeforeKill(SrcFP, I);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001347 unsigned Slot = getSlot(SrcFP);
1348 unsigned SR = getScratchReg();
1349 PendingST[DstST] = SR;
1350 Stack[Slot] = SR;
1351 RegMap[SR] = Slot;
1352 } else
1353 PendingST[DstST] = SrcFP;
1354 break;
1355 }
1356
1357 // FP = COPY ST. Extract fixed stack value.
1358 // Any instruction defining ST registers must have assigned them to a
1359 // scratch register.
1360 if (SrcST < 8) {
1361 unsigned DstFP = getFPReg(MO0);
1362 assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1363 assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1364 unsigned SrcFP = PendingST[SrcST];
1365 assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1366 assert(isLive(SrcFP) && "Scratch holding ST is dead");
1367
1368 // DstFP steals the stack slot from SrcFP.
1369 unsigned Slot = getSlot(SrcFP);
1370 Stack[Slot] = DstFP;
1371 RegMap[DstFP] = Slot;
1372
1373 // Always treat the ST as killed.
1374 PendingST[SrcST] = NumFPRegs;
1375 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1376 --NumPendingSTs;
1377 break;
1378 }
1379
1380 // FP <- FP copy.
1381 unsigned DstFP = getFPReg(MO0);
1382 unsigned SrcFP = getFPReg(MO1);
1383 assert(isLive(SrcFP) && "Cannot copy dead register");
1384 if (KillsSrc) {
Chris Lattnera960d952003-01-13 01:01:59 +00001385 // If the input operand is killed, we can just change the owner of the
1386 // incoming stack slot into the result.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001387 unsigned Slot = getSlot(SrcFP);
1388 Stack[Slot] = DstFP;
1389 RegMap[DstFP] = Slot;
Chris Lattnera960d952003-01-13 01:01:59 +00001390 } else {
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001391 // For COPY we just duplicate the specified value to a new stack slot.
Chris Lattnera960d952003-01-13 01:01:59 +00001392 // This could be made better, but would require substantial changes.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001393 duplicateToTop(SrcFP, DstFP, I);
Nick Lewycky3c786972008-03-11 05:56:09 +00001394 }
Chris Lattnera960d952003-01-13 01:01:59 +00001395 break;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001396 }
1397
Jakob Stoklund Olesen56e32322011-08-03 16:33:19 +00001398 case TargetOpcode::IMPLICIT_DEF: {
1399 // All FP registers must be explicitly defined, so load a 0 instead.
1400 unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1401 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1402 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1403 pushReg(Reg);
1404 break;
1405 }
1406
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001407 case X86::FpPOP_RETVAL: {
1408 // The FpPOP_RETVAL instruction is used after calls that return a value on
1409 // the floating point stack. We cannot model this with ST defs since CALL
1410 // instructions have fixed clobber lists. This instruction is interpreted
1411 // to mean that there is one more live register on the stack than we
1412 // thought.
1413 //
1414 // This means that StackTop does not match the hardware stack between a
1415 // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
1416 // between CALL and FpPOP_RETVAL as long as they don't overflow the
1417 // hardware stack.
1418 unsigned DstFP = getFPReg(MI->getOperand(0));
1419
1420 // Move existing stack elements up to reflect reality.
1421 assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1422 if (StackTop) {
1423 std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1424 for (unsigned i = 0; i != NumFPRegs; ++i)
1425 ++RegMap[i];
1426 }
1427 ++StackTop;
1428
1429 // DstFP is the new bottom of the stack.
1430 Stack[0] = DstFP;
1431 RegMap[DstFP] = 0;
1432
1433 // DstFP will be killed by processBasicBlock if this was a dead def.
1434 break;
1435 }
1436
Chris Lattner518bb532010-02-09 19:54:29 +00001437 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001438 // The inline asm MachineInstr currently only *uses* FP registers for the
1439 // 'f' constraint. These should be turned into the current ST(x) register
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001440 // in the machine instr.
1441 //
1442 // There are special rules for x87 inline assembly. The compiler must know
1443 // exactly how many registers are popped and pushed implicitly by the asm.
1444 // Otherwise it is not possible to restore the stack state after the inline
1445 // asm.
1446 //
1447 // There are 3 kinds of input operands:
1448 //
1449 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1450 // popped input operand must be in a fixed stack slot, and it is either
1451 // tied to an output operand, or in the clobber list. The MI has ST use
1452 // and def operands for these inputs.
1453 //
1454 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1455 // preserved by the inline asm. The fixed stack slots must be STn-STm
1456 // following the popped inputs. A fixed input operand cannot be tied to
1457 // an output or appear in the clobber list. The MI has ST use operands
1458 // and no defs for these inputs.
1459 //
1460 // 3. Preserved inputs. These inputs use the "f" constraint which is
1461 // represented as an FP register. The inline asm won't change these
1462 // stack slots.
1463 //
1464 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1465 // registers do not count as output operands. The inline asm changes the
1466 // stack as if it popped all the popped inputs and then pushed all the
1467 // output operands.
1468
1469 // Scan the assembly for ST registers used, defined and clobbered. We can
1470 // only tell clobbers from defs by looking at the asm descriptor.
1471 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1472 unsigned NumOps = 0;
1473 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1474 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1475 unsigned Flags = MI->getOperand(i).getImm();
1476 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1477 if (NumOps != 1)
1478 continue;
1479 const MachineOperand &MO = MI->getOperand(i + 1);
1480 if (!MO.isReg())
1481 continue;
1482 unsigned STReg = MO.getReg() - X86::ST0;
1483 if (STReg >= 8)
1484 continue;
1485
1486 switch (InlineAsm::getKind(Flags)) {
1487 case InlineAsm::Kind_RegUse:
1488 STUses |= (1u << STReg);
1489 break;
1490 case InlineAsm::Kind_RegDef:
1491 case InlineAsm::Kind_RegDefEarlyClobber:
1492 STDefs |= (1u << STReg);
1493 if (MO.isDead())
1494 STDeadDefs |= (1u << STReg);
1495 break;
1496 case InlineAsm::Kind_Clobber:
1497 STClobbers |= (1u << STReg);
1498 break;
1499 default:
1500 break;
1501 }
1502 }
1503
1504 if (STUses && !isMask_32(STUses))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001505 MI->emitError("fixed input regs must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001506 unsigned NumSTUses = CountTrailingOnes_32(STUses);
1507
1508 // Defs must be contiguous from the stack top. ST0-STn.
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +00001509 if (STDefs && !isMask_32(STDefs)) {
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001510 MI->emitError("output regs must be last on the x87 stack");
Jakob Stoklund Olesend519de02011-07-02 03:53:34 +00001511 STDefs = NextPowerOf2(STDefs) - 1;
1512 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001513 unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1514
1515 // So must the clobbered stack slots. ST0-STm, m >= n.
1516 if (STClobbers && !isMask_32(STDefs | STClobbers))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001517 MI->emitError("clobbers must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001518
1519 // Popped inputs are the ones that are also clobbered or defined.
1520 unsigned STPopped = STUses & (STDefs | STClobbers);
1521 if (STPopped && !isMask_32(STPopped))
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001522 MI->emitError("implicitly popped regs must be last on the x87 stack");
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001523 unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1524
1525 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1526 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1527
1528 // Scan the instruction for FP uses corresponding to "f" constraints.
1529 // Collect FP registers to kill afer the instruction.
1530 // Always kill all the scratch regs.
1531 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1532 unsigned FPUsed = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001533 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1534 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001535 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001536 continue;
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001537 if (!Op.isUse())
Jakob Stoklund Olesen0d3d9562011-07-02 07:23:40 +00001538 MI->emitError("illegal \"f\" output constraint");
Chris Lattnere12ecf22008-03-11 19:50:13 +00001539 unsigned FPReg = getFPReg(Op);
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001540 FPUsed |= 1U << FPReg;
1541
Chris Lattnere12ecf22008-03-11 19:50:13 +00001542 // If we kill this operand, make sure to pop it from the stack after the
1543 // asm. We just remember it for now, and pop them all off at the end in
1544 // a batch.
1545 if (Op.isKill())
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001546 FPKills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001547 }
1548
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001549 // The popped inputs will be killed by the instruction, so duplicate them
1550 // if the FP register needs to be live after the instruction, or if it is
1551 // used in the instruction itself. We effectively treat the popped inputs
1552 // as early clobbers.
1553 for (unsigned i = 0; i < NumSTPopped; ++i) {
1554 if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1555 continue;
1556 unsigned SR = getScratchReg();
1557 duplicateToTop(PendingST[i], SR, I);
1558 DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1559 << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1560 PendingST[i] = SR;
1561 }
1562
1563 // Make sure we have a unique live register for every fixed use. Some of
1564 // them could be undef uses, and we need to emit LD_F0 instructions.
1565 for (unsigned i = 0; i < NumSTUses; ++i) {
1566 if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1567 // Check for shared assignments.
1568 for (unsigned j = 0; j < i; ++j) {
1569 if (PendingST[j] != PendingST[i])
1570 continue;
1571 // STi and STj are inn the same register, create a copy.
1572 unsigned SR = getScratchReg();
1573 duplicateToTop(PendingST[i], SR, I);
1574 DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1575 << unsigned(PendingST[i])
1576 << " to avoid collision with ST" << j << '\n');
1577 PendingST[i] = SR;
1578 }
1579 continue;
1580 }
1581 unsigned SR = getScratchReg();
1582 DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1583 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1584 pushReg(SR);
1585 PendingST[i] = SR;
1586 if (NumPendingSTs == i)
1587 ++NumPendingSTs;
1588 }
1589 assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1590
1591 // Now we can rearrange the live registers to match what was requested.
1592 shuffleStackTop(PendingST, NumPendingSTs, I);
1593 DEBUG({dbgs() << "Before asm: "; dumpStack();});
1594
1595 // With the stack layout fixed, rewrite the FP registers.
1596 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1597 MachineOperand &Op = MI->getOperand(i);
1598 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1599 continue;
1600 unsigned FPReg = getFPReg(Op);
1601 Op.setReg(getSTReg(FPReg));
1602 }
1603
1604 // Simulate the inline asm popping its inputs and pushing its outputs.
1605 StackTop -= NumSTPopped;
1606
1607 // Hold the fixed output registers in scratch FP registers. They will be
1608 // transferred to real FP registers by copies.
1609 NumPendingSTs = 0;
1610 for (unsigned i = 0; i < NumSTDefs; ++i) {
1611 unsigned SR = getScratchReg();
1612 pushReg(SR);
1613 FPKills &= ~(1u << SR);
1614 }
1615 for (unsigned i = 0; i < NumSTDefs; ++i)
1616 PendingST[NumPendingSTs++] = getStackEntry(i);
1617 DEBUG({dbgs() << "After asm: "; dumpStack();});
1618
1619 // If any of the ST defs were dead, pop them immediately. Our caller only
1620 // handles dead FP defs.
1621 MachineBasicBlock::iterator InsertPt = MI;
1622 for (unsigned i = 0; STDefs & (1u << i); ++i) {
1623 if (!(STDeadDefs & (1u << i)))
1624 continue;
1625 freeStackSlotAfter(InsertPt, PendingST[i]);
1626 PendingST[i] = NumFPRegs;
1627 }
1628 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1629 --NumPendingSTs;
1630
Chris Lattnere12ecf22008-03-11 19:50:13 +00001631 // If this asm kills any FP registers (is the last use of them) we must
1632 // explicitly emit pop instructions for them. Do this now after the asm has
1633 // executed so that the ST(x) numbers are not off (which would happen if we
1634 // did this inline with operand rewriting).
1635 //
1636 // Note: this might be a non-optimal pop sequence. We might be able to do
1637 // better by trying to pop in stack order or something.
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001638 while (FPKills) {
1639 unsigned FPReg = CountTrailingZeros_32(FPKills);
1640 if (isLive(FPReg))
1641 freeStackSlotAfter(InsertPt, FPReg);
1642 FPKills &= ~(1U << FPReg);
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001643 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001644 // Don't delete the inline asm!
1645 return;
1646 }
Jakob Stoklund Olesen9bbe4d62011-06-28 18:32:28 +00001647
Michael J. Spencer1a2d0612012-02-24 19:01:22 +00001648 case X86::WIN_FTOL_32:
1649 case X86::WIN_FTOL_64: {
Michael J. Spencer1a2d0612012-02-24 19:01:22 +00001650 // Push the operand into ST0.
1651 MachineOperand &Op = MI->getOperand(0);
1652 assert(Op.isUse() && Op.isReg() &&
1653 Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1654 unsigned FPReg = getFPReg(Op);
1655 if (Op.isKill())
1656 moveToTop(FPReg, I);
1657 else
1658 duplicateToTop(FPReg, FPReg, I);
1659
1660 // Emit the call. This will pop the operand.
1661 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
1662 .addExternalSymbol("_ftol2")
1663 .addReg(X86::ST0, RegState::ImplicitKill)
1664 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1665 .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1666 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1667 --StackTop;
1668
1669 break;
1670 }
1671
Chris Lattner447ff682008-03-11 03:23:40 +00001672 case X86::RET:
1673 case X86::RETI:
1674 // If RET has an FP register use operand, pass the first one in ST(0) and
1675 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001676
Chris Lattner447ff682008-03-11 03:23:40 +00001677 // Find the register operands.
1678 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001679 unsigned LiveMask = 0;
1680
Chris Lattner447ff682008-03-11 03:23:40 +00001681 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1682 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001683 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001684 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001685 // FP Register uses must be kills unless there are two uses of the same
1686 // register, in which case only one will be a kill.
1687 assert(Op.isUse() &&
1688 (Op.isKill() || // Marked kill.
1689 getFPReg(Op) == FirstFPRegOp || // Second instance.
1690 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1691 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001692
1693 if (FirstFPRegOp == ~0U)
1694 FirstFPRegOp = getFPReg(Op);
1695 else {
1696 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1697 SecondFPRegOp = getFPReg(Op);
1698 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001699 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001700
1701 // Remove the operand so that later passes don't see it.
1702 MI->RemoveOperand(i);
1703 --i, --e;
1704 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001705
1706 // We may have been carrying spurious live-ins, so make sure only the returned
1707 // registers are left live.
1708 adjustLiveRegs(LiveMask, MI);
1709 if (!LiveMask) return; // Quick check to see if any are possible.
1710
Chris Lattner447ff682008-03-11 03:23:40 +00001711 // There are only four possibilities here:
1712 // 1) we are returning a single FP value. In this case, it has to be in
1713 // ST(0) already, so just declare success by removing the value from the
1714 // FP Stack.
1715 if (SecondFPRegOp == ~0U) {
1716 // Assert that the top of stack contains the right FP register.
1717 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1718 "Top of stack not the right register for RET!");
Chad Rosiera20e1e72012-08-01 18:39:17 +00001719
Chris Lattner447ff682008-03-11 03:23:40 +00001720 // Ok, everything is good, mark the value as not being on the stack
1721 // anymore so that our assertion about the stack being empty at end of
1722 // block doesn't fire.
1723 StackTop = 0;
1724 return;
1725 }
Chad Rosiera20e1e72012-08-01 18:39:17 +00001726
Chris Lattner447ff682008-03-11 03:23:40 +00001727 // Otherwise, we are returning two values:
1728 // 2) If returning the same value for both, we only have one thing in the FP
1729 // stack. Consider: RET FP1, FP1
1730 if (StackTop == 1) {
1731 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1732 "Stack misconfiguration for RET!");
Chad Rosiera20e1e72012-08-01 18:39:17 +00001733
Chris Lattner447ff682008-03-11 03:23:40 +00001734 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1735 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001736 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001737 duplicateToTop(FirstFPRegOp, NewReg, MI);
1738 FirstFPRegOp = NewReg;
1739 }
Chad Rosiera20e1e72012-08-01 18:39:17 +00001740
Chris Lattner447ff682008-03-11 03:23:40 +00001741 /// Okay we know we have two different FPx operands now:
1742 assert(StackTop == 2 && "Must have two values live!");
Chad Rosiera20e1e72012-08-01 18:39:17 +00001743
Chris Lattner447ff682008-03-11 03:23:40 +00001744 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1745 /// in ST(1). In this case, emit an fxch.
1746 if (getStackEntry(0) == SecondFPRegOp) {
1747 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1748 moveToTop(FirstFPRegOp, MI);
1749 }
Chad Rosiera20e1e72012-08-01 18:39:17 +00001750
Chris Lattner447ff682008-03-11 03:23:40 +00001751 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1752 /// ST(1). Just remove both from our understanding of the stack and return.
1753 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001754 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001755 StackTop = 0;
1756 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001757 }
Chris Lattnera960d952003-01-13 01:01:59 +00001758
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001759 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001760
1761 // We want to leave I pointing to the previous instruction, but what if we
1762 // just erased the first instruction?
1763 if (I == MBB->begin()) {
1764 DEBUG(dbgs() << "Inserting dummy KILL\n");
1765 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1766 } else
1767 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001768}