blob: 0e07579d739bae6dda752d2925634cfaeb4c3121 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000021#include "llvm/Intrinsics.h"
Chris Lattner44827152003-12-28 09:47:19 +000022#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000023#include "llvm/Pass.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000026#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000028#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000029#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000030#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000031#include "llvm/Support/InstVisitor.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner333b2fa2002-12-13 10:09:43 +000034/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000035/// instruction at as well as a basic block. This is the version for when you
36/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000037inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000038 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000039 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000040 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000041 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000043 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000044 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
45}
46
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000047/// BMI - A special BuildMI variant that takes an iterator to insert the
48/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000049inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000050 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000051 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000052 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000054 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000055 return MachineInstrBuilder(MI);
56}
57
Chris Lattner333b2fa2002-12-13 10:09:43 +000058
Chris Lattner72614082002-10-25 22:55:53 +000059namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000060 struct ISel : public FunctionPass, InstVisitor<ISel> {
61 TargetMachine &TM;
Chris Lattner44827152003-12-28 09:47:19 +000062 IntrinsicLowering &IL;
Chris Lattnereca195e2003-05-08 19:44:13 +000063 MachineFunction *F; // The function we are compiling into
64 MachineBasicBlock *BB; // The current MBB we are compiling
65 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000066
Chris Lattner72614082002-10-25 22:55:53 +000067 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
68
Chris Lattner333b2fa2002-12-13 10:09:43 +000069 // MBBMap - Mapping between LLVM BB -> Machine BB
70 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
71
Chris Lattner44827152003-12-28 09:47:19 +000072 ISel(TargetMachine &tm, IntrinsicLowering &il)
73 : TM(tm), IL(il), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000074
75 /// runOnFunction - Top level implementation of instruction selection for
76 /// the entire function.
77 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000079 // First pass over the function, lower any unknown intrinsic functions
80 // with the IntrinsicLowering class.
81 LowerUnknownIntrinsicFunctionCalls(Fn);
82
Chris Lattner36b36032002-10-29 23:40:58 +000083 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000084
Chris Lattner065faeb2002-12-28 20:24:02 +000085 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
87 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
88
Chris Lattner14aa7fe2002-12-16 22:54:46 +000089 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000090
Chris Lattnerdbd73722003-05-06 21:32:22 +000091 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000092 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000093
Chris Lattner333b2fa2002-12-13 10:09:43 +000094 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000095 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000096
97 // Select the PHI nodes
98 SelectPHINodes();
99
Chris Lattner72614082002-10-25 22:55:53 +0000100 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000101 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000102 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000103 // We always build a machine code representation for the function
104 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000105 }
106
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000107 virtual const char *getPassName() const {
108 return "X86 Simple Instruction Selection";
109 }
110
Chris Lattner72614082002-10-25 22:55:53 +0000111 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000112 /// block. This simply creates a new MachineBasicBlock to emit code into
113 /// and adds it to the current MachineFunction. Subsequent visit* for
114 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000115 ///
116 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000117 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000118 }
119
Chris Lattner44827152003-12-28 09:47:19 +0000120 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
121 /// function, lowering any calls to unknown intrinsic functions into the
122 /// equivalent LLVM code.
123 void LowerUnknownIntrinsicFunctionCalls(Function &F);
124
Chris Lattner065faeb2002-12-28 20:24:02 +0000125 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
126 /// from the stack into virtual registers.
127 ///
128 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000129
130 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
131 /// because we have to generate our sources into the source basic blocks,
132 /// not the current one.
133 ///
134 void SelectPHINodes();
135
Chris Lattner72614082002-10-25 22:55:53 +0000136 // Visitation methods for various instructions. These methods simply emit
137 // fixed X86 code for each instruction.
138 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000139
140 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000141 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000142 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000143
144 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000145 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000146 unsigned Reg;
147 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000148 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
149 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000150 };
151 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000152 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000153 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000154 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000155
156 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000157 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000158 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
159 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000160 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000161 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000162 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000163 void doMultiplyConst(MachineBasicBlock *MBB,
164 MachineBasicBlock::iterator &MBBI,
165 unsigned DestReg, const Type *DestTy,
166 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000167 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000168
Chris Lattnerf01729e2002-11-02 20:54:46 +0000169 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
170 void visitRem(BinaryOperator &B) { visitDivRem(B); }
171 void visitDivRem(BinaryOperator &B);
172
Chris Lattnere2954c82002-11-02 20:04:26 +0000173 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000174 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
175 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
176 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000177
Chris Lattner6d40c192003-01-16 16:43:00 +0000178 // Comparison operators...
179 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000180 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
181 MachineBasicBlock *MBB,
182 MachineBasicBlock::iterator &MBBI);
183
Chris Lattner6fc3c522002-11-17 21:11:55 +0000184 // Memory Instructions
185 void visitLoadInst(LoadInst &I);
186 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000187 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000188 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000189 void visitMallocInst(MallocInst &I);
190 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000191
Chris Lattnere2954c82002-11-02 20:04:26 +0000192 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000193 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000194 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000195 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000196 void visitVANextInst(VANextInst &I);
197 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000198
199 void visitInstruction(Instruction &I) {
200 std::cerr << "Cannot instruction select: " << I;
201 abort();
202 }
203
Brian Gaeke95780cc2002-12-13 07:56:18 +0000204 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000205 ///
206 void promote32(unsigned targetReg, const ValueRecord &VR);
207
Chris Lattner3e130a22003-01-13 00:32:26 +0000208 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
209 /// constant expression GEP support.
210 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000211 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000212 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000213 User::op_iterator IdxEnd, unsigned TargetReg);
214
Chris Lattner548f61d2003-04-23 17:22:12 +0000215 /// emitCastOperation - Common code shared between visitCastInst and
216 /// constant expression cast support.
217 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
218 Value *Src, const Type *DestTy, unsigned TargetReg);
219
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000220 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
221 /// and constant expression support.
222 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
223 MachineBasicBlock::iterator &IP,
224 Value *Op0, Value *Op1,
225 unsigned OperatorClass, unsigned TargetReg);
226
Chris Lattnercadff442003-10-23 17:21:43 +0000227 void emitDivRemOperation(MachineBasicBlock *BB,
228 MachineBasicBlock::iterator &IP,
229 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
230 const Type *Ty, unsigned TargetReg);
231
Chris Lattner58c41fe2003-08-24 19:19:47 +0000232 /// emitSetCCOperation - Common code shared between visitSetCondInst and
233 /// constant expression support.
234 void emitSetCCOperation(MachineBasicBlock *BB,
235 MachineBasicBlock::iterator &IP,
236 Value *Op0, Value *Op1, unsigned Opcode,
237 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000238
239 /// emitShiftOperation - Common code shared between visitShiftInst and
240 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000241 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000242 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000243 Value *Op, Value *ShiftAmount, bool isLeftShift,
244 const Type *ResultTy, unsigned DestReg);
245
Chris Lattner58c41fe2003-08-24 19:19:47 +0000246
Chris Lattnerc5291f52002-10-27 21:16:59 +0000247 /// copyConstantToRegister - Output the instructions required to put the
248 /// specified constant into the specified register.
249 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000250 void copyConstantToRegister(MachineBasicBlock *MBB,
251 MachineBasicBlock::iterator &MBBI,
252 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000253
Chris Lattner3e130a22003-01-13 00:32:26 +0000254 /// makeAnotherReg - This method returns the next register number we haven't
255 /// yet used.
256 ///
257 /// Long values are handled somewhat specially. They are always allocated
258 /// as pairs of 32 bit integer values. The register number returned is the
259 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
260 /// of the long value.
261 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000262 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000263 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
264 "Current target doesn't have X86 reg info??");
265 const X86RegisterInfo *MRI =
266 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000267 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000268 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
269 // Create the lower part
270 F->getSSARegMap()->createVirtualRegister(RC);
271 // Create the upper part.
272 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000273 }
274
Chris Lattnerc0812d82002-12-13 06:56:29 +0000275 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000276 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000277 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000278 }
279
Chris Lattner72614082002-10-25 22:55:53 +0000280 /// getReg - This method turns an LLVM value into a register number. This
281 /// is guaranteed to produce the same register number for a particular value
282 /// every time it is queried.
283 ///
284 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000285 unsigned getReg(Value *V) {
286 // Just append to the end of the current bb.
287 MachineBasicBlock::iterator It = BB->end();
288 return getReg(V, BB, It);
289 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000290 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000291 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000292 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000293 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000294 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000295 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000296 }
Chris Lattner72614082002-10-25 22:55:53 +0000297
Chris Lattner6f8fd252002-10-27 21:23:43 +0000298 // If this operand is a constant, emit the code to copy the constant into
299 // the register here...
300 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000301 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000302 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000303 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000304 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
305 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000306 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000307 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000308 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000309
Chris Lattner72614082002-10-25 22:55:53 +0000310 return Reg;
311 }
Chris Lattner72614082002-10-25 22:55:53 +0000312 };
313}
314
Chris Lattner43189d12002-11-17 20:07:45 +0000315/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
316/// Representation.
317///
318enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000319 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000320};
321
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000322/// getClass - Turn a primitive type into a "class" number which is based on the
323/// size of the type, and whether or not it is floating point.
324///
Chris Lattner43189d12002-11-17 20:07:45 +0000325static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000326 switch (Ty->getPrimitiveID()) {
327 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000328 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000329 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000330 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000331 case Type::IntTyID:
332 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000333 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000334
Chris Lattner94af4142002-12-25 05:13:53 +0000335 case Type::FloatTyID:
336 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000337
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000338 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000339 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000340 default:
341 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000342 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000343 }
344}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000345
Chris Lattner6b993cc2002-12-15 08:02:15 +0000346// getClassB - Just like getClass, but treat boolean values as bytes.
347static inline TypeClass getClassB(const Type *Ty) {
348 if (Ty == Type::BoolTy) return cByte;
349 return getClass(Ty);
350}
351
Chris Lattner06925362002-11-17 21:56:38 +0000352
Chris Lattnerc5291f52002-10-27 21:16:59 +0000353/// copyConstantToRegister - Output the instructions required to put the
354/// specified constant into the specified register.
355///
Chris Lattner8a307e82002-12-16 19:32:50 +0000356void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
357 MachineBasicBlock::iterator &IP,
358 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000359 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000360 unsigned Class = 0;
361 switch (CE->getOpcode()) {
362 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000363 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000364 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000365 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000366 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000367 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000368 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000369
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000370 case Instruction::Xor: ++Class; // FALL THROUGH
371 case Instruction::Or: ++Class; // FALL THROUGH
372 case Instruction::And: ++Class; // FALL THROUGH
373 case Instruction::Sub: ++Class; // FALL THROUGH
374 case Instruction::Add:
375 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
376 Class, R);
377 return;
378
Chris Lattnercadff442003-10-23 17:21:43 +0000379 case Instruction::Mul: {
380 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
381 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
382 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
383 return;
384 }
385 case Instruction::Div:
386 case Instruction::Rem: {
387 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
388 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
389 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
390 CE->getOpcode() == Instruction::Div,
391 CE->getType(), R);
392 return;
393 }
394
Chris Lattner58c41fe2003-08-24 19:19:47 +0000395 case Instruction::SetNE:
396 case Instruction::SetEQ:
397 case Instruction::SetLT:
398 case Instruction::SetGT:
399 case Instruction::SetLE:
400 case Instruction::SetGE:
401 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
402 CE->getOpcode(), R);
403 return;
404
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000405 case Instruction::Shl:
406 case Instruction::Shr:
407 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000408 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
409 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000410
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000411 default:
412 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000413 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000414 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000415 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000416
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000417 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000418 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000419
420 if (Class == cLong) {
421 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000422 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000423 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
424 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
425 return;
426 }
427
Chris Lattner94af4142002-12-25 05:13:53 +0000428 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000429
430 static const unsigned IntegralOpcodeTab[] = {
431 X86::MOVir8, X86::MOVir16, X86::MOVir32
432 };
433
Chris Lattner6b993cc2002-12-15 08:02:15 +0000434 if (C->getType() == Type::BoolTy) {
435 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000436 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000437 ConstantInt *CI = cast<ConstantInt>(C);
438 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000439 }
Chris Lattner94af4142002-12-25 05:13:53 +0000440 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
441 double Value = CFP->getValue();
442 if (Value == +0.0)
443 BMI(MBB, IP, X86::FLD0, 0, R);
444 else if (Value == +1.0)
445 BMI(MBB, IP, X86::FLD1, 0, R);
446 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000447 // Otherwise we need to spill the constant to memory...
448 MachineConstantPool *CP = F->getConstantPool();
449 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000450 const Type *Ty = CFP->getType();
451
452 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
453 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
454 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000455 }
456
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000457 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000458 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000459 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000460 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000461 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000462 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000463 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000464 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000465 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000466 }
467}
468
Chris Lattner065faeb2002-12-28 20:24:02 +0000469/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
470/// the stack into virtual registers.
471///
472void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
473 // Emit instructions to load the arguments... On entry to a function on the
474 // X86, the stack frame looks like this:
475 //
476 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000477 // [ESP + 4] -- first argument (leftmost lexically)
478 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000479 // ...
480 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000481 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000482 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000483
484 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
485 unsigned Reg = getReg(*I);
486
Chris Lattner065faeb2002-12-28 20:24:02 +0000487 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000488 switch (getClassB(I->getType())) {
489 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000490 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000491 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
492 break;
493 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000494 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000495 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
496 break;
497 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000498 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000499 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
500 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000501 case cLong:
502 FI = MFI->CreateFixedObject(8, ArgOffset);
503 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
504 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
505 ArgOffset += 4; // longs require 4 additional bytes
506 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000507 case cFP:
508 unsigned Opcode;
509 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000510 Opcode = X86::FLDr32;
511 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000512 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000513 Opcode = X86::FLDr64;
514 FI = MFI->CreateFixedObject(8, ArgOffset);
515 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000516 }
517 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
518 break;
519 default:
520 assert(0 && "Unhandled argument type!");
521 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000522 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000523 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000524
525 // If the function takes variable number of arguments, add a frame offset for
526 // the start of the first vararg value... this is used to expand
527 // llvm.va_start.
528 if (Fn.getFunctionType()->isVarArg())
529 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000530}
531
532
Chris Lattner333b2fa2002-12-13 10:09:43 +0000533/// SelectPHINodes - Insert machine code to generate phis. This is tricky
534/// because we have to generate our sources into the source basic blocks, not
535/// the current one.
536///
537void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000538 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000539 const Function &LF = *F->getFunction(); // The LLVM function...
540 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
541 const BasicBlock *BB = I;
542 MachineBasicBlock *MBB = MBBMap[I];
543
544 // Loop over all of the PHI nodes in the LLVM basic block...
545 unsigned NumPHIs = 0;
546 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000547 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000548
Chris Lattner333b2fa2002-12-13 10:09:43 +0000549 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000550 unsigned PHIReg = getReg(*PN);
551 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
552 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
553
554 MachineInstr *LongPhiMI = 0;
555 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000556 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
557 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000558 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000559
Chris Lattnera6e73f12003-05-12 14:22:21 +0000560 // PHIValues - Map of blocks to incoming virtual registers. We use this
561 // so that we only initialize one incoming value for a particular block,
562 // even if the block has multiple entries in the PHI node.
563 //
564 std::map<MachineBasicBlock*, unsigned> PHIValues;
565
Chris Lattner333b2fa2002-12-13 10:09:43 +0000566 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
567 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000568 unsigned ValReg;
569 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
570 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000571
Chris Lattnera6e73f12003-05-12 14:22:21 +0000572 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
573 // We already inserted an initialization of the register for this
574 // predecessor. Recycle it.
575 ValReg = EntryIt->second;
576
577 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000578 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000579 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000580 Value *Val = PN->getIncomingValue(i);
581
582 // If this is a constant or GlobalValue, we may have to insert code
583 // into the basic block to compute it into a virtual register.
584 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
585 // Because we don't want to clobber any values which might be in
586 // physical registers with the computation of this constant (which
587 // might be arbitrarily complex if it is a constant expression),
588 // just insert the computation at the top of the basic block.
589 MachineBasicBlock::iterator PI = PredMBB->begin();
590
591 // Skip over any PHI nodes though!
592 while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
593 ++PI;
594
595 ValReg = getReg(Val, PredMBB, PI);
596 } else {
597 ValReg = getReg(Val);
598 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000599
600 // Remember that we inserted a value for this PHI for this predecessor
601 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
602 }
603
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000604 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000605 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000606 if (LongPhiMI) {
607 LongPhiMI->addRegOperand(ValReg+1);
608 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
609 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000610 }
611 }
612 }
613}
614
Chris Lattner6d40c192003-01-16 16:43:00 +0000615// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
616// the conditional branch instruction which is the only user of the cc
617// instruction. This is the case if the conditional branch is the only user of
618// the setcc, and if the setcc is in the same basic block as the conditional
619// branch. We also don't handle long arguments below, so we reject them here as
620// well.
621//
622static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
623 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000624 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000625 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
626 const Type *Ty = SCI->getOperand(0)->getType();
627 if (Ty != Type::LongTy && Ty != Type::ULongTy)
628 return SCI;
629 }
630 return 0;
631}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000632
Chris Lattner6d40c192003-01-16 16:43:00 +0000633// Return a fixed numbering for setcc instructions which does not depend on the
634// order of the opcodes.
635//
636static unsigned getSetCCNumber(unsigned Opcode) {
637 switch(Opcode) {
638 default: assert(0 && "Unknown setcc instruction!");
639 case Instruction::SetEQ: return 0;
640 case Instruction::SetNE: return 1;
641 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000642 case Instruction::SetGE: return 3;
643 case Instruction::SetGT: return 4;
644 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000645 }
646}
Chris Lattner06925362002-11-17 21:56:38 +0000647
Chris Lattner6d40c192003-01-16 16:43:00 +0000648// LLVM -> X86 signed X86 unsigned
649// ----- ---------- ------------
650// seteq -> sete sete
651// setne -> setne setne
652// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000653// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000654// setgt -> setg seta
655// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000656// ----
657// sets // Used by comparison with 0 optimization
658// setns
659static const unsigned SetCCOpcodeTab[2][8] = {
660 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
661 0, 0 },
662 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
663 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000664};
665
Chris Lattnerb2acc512003-10-19 21:09:10 +0000666// EmitComparison - This function emits a comparison of the two operands,
667// returning the extended setcc code to use.
668unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
669 MachineBasicBlock *MBB,
670 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000671 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000672 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000673 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000674 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000675
676 // Special case handling of: cmp R, i
677 if (Class == cByte || Class == cShort || Class == cInt)
678 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000679 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
680
Chris Lattner333864d2003-06-05 19:30:30 +0000681 // Mask off any upper bits of the constant, if there are any...
682 Op1v &= (1ULL << (8 << Class)) - 1;
683
Chris Lattnerb2acc512003-10-19 21:09:10 +0000684 // If this is a comparison against zero, emit more efficient code. We
685 // can't handle unsigned comparisons against zero unless they are == or
686 // !=. These should have been strength reduced already anyway.
687 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
688 static const unsigned TESTTab[] = {
689 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
690 };
691 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
692
693 if (OpNum == 2) return 6; // Map jl -> js
694 if (OpNum == 3) return 7; // Map jg -> jns
695 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000696 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000697
698 static const unsigned CMPTab[] = {
699 X86::CMPri8, X86::CMPri16, X86::CMPri32
700 };
701
702 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
703 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000704 }
705
Chris Lattner58c41fe2003-08-24 19:19:47 +0000706 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000707 switch (Class) {
708 default: assert(0 && "Unknown type class!");
709 // Emit: cmp <var1>, <var2> (do the comparison). We can
710 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
711 // 32-bit.
712 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000713 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000714 break;
715 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000716 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000717 break;
718 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000719 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000720 break;
721 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000722 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
723 BMI(MBB, IP, X86::FNSTSWr8, 0);
724 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000725 break;
726
727 case cLong:
728 if (OpNum < 2) { // seteq, setne
729 unsigned LoTmp = makeAnotherReg(Type::IntTy);
730 unsigned HiTmp = makeAnotherReg(Type::IntTy);
731 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000732 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
733 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
734 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000735 break; // Allow the sete or setne to be generated from flags set by OR
736 } else {
737 // Emit a sequence of code which compares the high and low parts once
738 // each, then uses a conditional move to handle the overflow case. For
739 // example, a setlt for long would generate code like this:
740 //
741 // AL = lo(op1) < lo(op2) // Signedness depends on operands
742 // BL = hi(op1) < hi(op2) // Always unsigned comparison
743 // dest = hi(op1) == hi(op2) ? AL : BL;
744 //
745
Chris Lattner6d40c192003-01-16 16:43:00 +0000746 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000747 // classes! Until then, hardcode registers so that we can deal with their
748 // aliases (because we don't have conditional byte moves).
749 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000750 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
751 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
752 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000753 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000754 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
755 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
756 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000757 // NOTE: visitSetCondInst knows that the value is dumped into the BL
758 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000759 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000760 }
761 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000762 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000763}
Chris Lattner3e130a22003-01-13 00:32:26 +0000764
Chris Lattner6d40c192003-01-16 16:43:00 +0000765
766/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
767/// register, then move it to wherever the result should be.
768///
769void ISel::visitSetCondInst(SetCondInst &I) {
770 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
771
Chris Lattner6d40c192003-01-16 16:43:00 +0000772 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000773 MachineBasicBlock::iterator MII = BB->end();
774 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
775 DestReg);
776}
Chris Lattner6d40c192003-01-16 16:43:00 +0000777
Chris Lattner58c41fe2003-08-24 19:19:47 +0000778/// emitSetCCOperation - Common code shared between visitSetCondInst and
779/// constant expression support.
780void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
781 MachineBasicBlock::iterator &IP,
782 Value *Op0, Value *Op1, unsigned Opcode,
783 unsigned TargetReg) {
784 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000785 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000786
Chris Lattnerb2acc512003-10-19 21:09:10 +0000787 const Type *CompTy = Op0->getType();
788 unsigned CompClass = getClassB(CompTy);
789 bool isSigned = CompTy->isSigned() && CompClass != cFP;
790
791 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000792 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000793 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000794 } else {
795 // Handle long comparisons by copying the value which is already in BL into
796 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000797 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000798 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000799}
Chris Lattner51b49a92002-11-02 19:45:49 +0000800
Chris Lattner58c41fe2003-08-24 19:19:47 +0000801
802
803
Brian Gaekec2505982002-11-30 11:57:28 +0000804/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
805/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000806void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
807 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000808
809 // Make sure we have the register number for this value...
810 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
811
Chris Lattner3e130a22003-01-13 00:32:26 +0000812 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000813 case cByte:
814 // Extend value into target register (8->32)
815 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000816 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000817 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000818 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000819 break;
820 case cShort:
821 // Extend value into target register (16->32)
822 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000823 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000824 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000825 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000826 break;
827 case cInt:
828 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000829 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000830 break;
831 default:
832 assert(0 && "Unpromotable operand class in promote32");
833 }
Brian Gaekec2505982002-11-30 11:57:28 +0000834}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000835
Chris Lattner72614082002-10-25 22:55:53 +0000836/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
837/// we have the following possibilities:
838///
839/// ret void: No return value, simply emit a 'ret' instruction
840/// ret sbyte, ubyte : Extend value into EAX and return
841/// ret short, ushort: Extend value into EAX and return
842/// ret int, uint : Move value into EAX and return
843/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000844/// ret long, ulong : Move value into EAX/EDX and return
845/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000846///
Chris Lattner3e130a22003-01-13 00:32:26 +0000847void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000848 if (I.getNumOperands() == 0) {
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000849 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner94af4142002-12-25 05:13:53 +0000850 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
851 return;
852 }
853
854 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000855 unsigned RetReg = getReg(RetVal);
856 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000857 case cByte: // integral return values: extend or move into EAX and return
858 case cShort:
859 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000860 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000861 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000862 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000863 break;
864 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000865 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000866 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000867 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000868 break;
869 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000870 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
871 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000872 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000873 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
874 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000875 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000876 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000877 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000878 }
Chris Lattner43189d12002-11-17 20:07:45 +0000879 // Emit a 'ret' instruction
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000880 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner94af4142002-12-25 05:13:53 +0000881 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000882}
883
Chris Lattner55f6fab2003-01-16 18:07:23 +0000884// getBlockAfter - Return the basic block which occurs lexically after the
885// specified one.
886static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
887 Function::iterator I = BB; ++I; // Get iterator to next block
888 return I != BB->getParent()->end() ? &*I : 0;
889}
890
Chris Lattner51b49a92002-11-02 19:45:49 +0000891/// visitBranchInst - Handle conditional and unconditional branches here. Note
892/// that since code layout is frozen at this point, that if we are trying to
893/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000894/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000895///
Chris Lattner94af4142002-12-25 05:13:53 +0000896void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000897 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
898
899 if (!BI.isConditional()) { // Unconditional branch?
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000900 if (BI.getSuccessor(0) != NextBB) {
901 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000902 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000903 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000904 return;
905 }
906
907 // See if we can fold the setcc into the branch itself...
908 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
909 if (SCI == 0) {
910 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
911 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000912 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000913 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000914 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000915 if (BI.getSuccessor(1) == NextBB) {
916 if (BI.getSuccessor(0) != NextBB)
917 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
918 } else {
919 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
920
921 if (BI.getSuccessor(0) != NextBB)
922 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
923 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000924 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000925 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000926
927 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000928 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000929 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000930
931 const Type *CompTy = SCI->getOperand(0)->getType();
932 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000933
Chris Lattnerb2acc512003-10-19 21:09:10 +0000934
Chris Lattner6d40c192003-01-16 16:43:00 +0000935 // LLVM -> X86 signed X86 unsigned
936 // ----- ---------- ------------
937 // seteq -> je je
938 // setne -> jne jne
939 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000940 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000941 // setgt -> jg ja
942 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000943 // ----
944 // js // Used by comparison with 0 optimization
945 // jns
946
947 static const unsigned OpcodeTab[2][8] = {
948 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
949 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
950 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000951 };
952
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000953 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000954 if (BI.getSuccessor(0) != NextBB) {
955 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
956 if (BI.getSuccessor(1) != NextBB)
957 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
958 } else {
959 // Change to the inverse condition...
960 if (BI.getSuccessor(1) != NextBB) {
961 OpNum ^= 1;
962 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
963 }
964 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000965}
966
Chris Lattner3e130a22003-01-13 00:32:26 +0000967
968/// doCall - This emits an abstract call instruction, setting up the arguments
969/// and the return value as appropriate. For the actual function call itself,
970/// it inserts the specified CallMI instruction into the stream.
971///
972void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000973 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000974
Chris Lattner065faeb2002-12-28 20:24:02 +0000975 // Count how many bytes are to be pushed on the stack...
976 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000977
Chris Lattner3e130a22003-01-13 00:32:26 +0000978 if (!Args.empty()) {
979 for (unsigned i = 0, e = Args.size(); i != e; ++i)
980 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000981 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000982 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000983 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000984 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000985 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000986 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
987 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000988 default: assert(0 && "Unknown class!");
989 }
990
991 // Adjust the stack pointer for the new arguments...
992 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
993
994 // Arguments go on the stack in reverse order, as specified by the ABI.
995 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000996 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000997 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000998 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000999 case cByte:
1000 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001001 // Promote arg to 32 bits wide into a temporary register...
1002 unsigned R = makeAnotherReg(Type::UIntTy);
1003 promote32(R, Args[i]);
1004 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1005 X86::ESP, ArgOffset).addReg(R);
1006 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001007 }
1008 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001009 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1010 X86::ESP, ArgOffset).addReg(ArgReg);
1011 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001012 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001013 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1014 X86::ESP, ArgOffset).addReg(ArgReg);
1015 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1016 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1017 ArgOffset += 4; // 8 byte entry, not 4.
1018 break;
1019
Chris Lattner065faeb2002-12-28 20:24:02 +00001020 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001021 if (Args[i].Ty == Type::FloatTy) {
1022 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1023 X86::ESP, ArgOffset).addReg(ArgReg);
1024 } else {
1025 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1026 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1027 X86::ESP, ArgOffset).addReg(ArgReg);
1028 ArgOffset += 4; // 8 byte entry, not 4.
1029 }
1030 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001031
Chris Lattner3e130a22003-01-13 00:32:26 +00001032 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001033 }
1034 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001035 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001036 } else {
1037 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001038 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001039
Chris Lattner3e130a22003-01-13 00:32:26 +00001040 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001041
Chris Lattner065faeb2002-12-28 20:24:02 +00001042 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001043
1044 // If there is a return value, scavenge the result from the location the call
1045 // leaves it in...
1046 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001047 if (Ret.Ty != Type::VoidTy) {
1048 unsigned DestClass = getClassB(Ret.Ty);
1049 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001050 case cByte:
1051 case cShort:
1052 case cInt: {
1053 // Integral results are in %eax, or the appropriate portion
1054 // thereof.
1055 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001056 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001057 };
1058 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001059 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001060 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001061 }
Chris Lattner94af4142002-12-25 05:13:53 +00001062 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001063 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001064 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001065 case cLong: // Long values are left in EDX:EAX
1066 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1067 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1068 break;
1069 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001070 }
Chris Lattnera3243642002-12-04 23:45:28 +00001071 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001072}
Chris Lattner2df035b2002-11-02 19:27:56 +00001073
Chris Lattner3e130a22003-01-13 00:32:26 +00001074
1075/// visitCallInst - Push args on stack and do a procedure call instruction.
1076void ISel::visitCallInst(CallInst &CI) {
1077 MachineInstr *TheCall;
1078 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001079 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001080 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001081 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1082 return;
1083 }
1084
Chris Lattner3e130a22003-01-13 00:32:26 +00001085 // Emit a CALL instruction with PC-relative displacement.
1086 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1087 } else { // Emit an indirect call...
1088 unsigned Reg = getReg(CI.getCalledValue());
1089 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1090 }
1091
1092 std::vector<ValueRecord> Args;
1093 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001094 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001095
1096 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1097 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001098}
Chris Lattner3e130a22003-01-13 00:32:26 +00001099
Chris Lattneraeb54b82003-08-28 21:23:43 +00001100
Chris Lattner44827152003-12-28 09:47:19 +00001101/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1102/// function, lowering any calls to unknown intrinsic functions into the
1103/// equivalent LLVM code.
1104void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1105 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1106 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1107 if (CallInst *CI = dyn_cast<CallInst>(I++))
1108 if (Function *F = CI->getCalledFunction())
1109 switch (F->getIntrinsicID()) {
1110 case Intrinsic::va_start:
1111 case Intrinsic::va_copy:
1112 case Intrinsic::va_end:
1113 // We directly implement these intrinsics
1114 break;
1115 default:
1116 // All other intrinsic calls we must lower.
1117 Instruction *Before = CI->getPrev();
1118 IL.LowerIntrinsicCall(CI);
1119 if (Before) { // Move iterator to instruction after call
1120 I = Before; ++I;
1121 } else {
1122 I = BB->begin();
1123 }
1124 }
1125
1126}
1127
Brian Gaeked0fde302003-11-11 22:41:34 +00001128void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001129 unsigned TmpReg1, TmpReg2;
1130 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001131 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001132 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001133 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001134 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001135 return;
1136
Brian Gaeked0fde302003-11-11 22:41:34 +00001137 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001138 TmpReg1 = getReg(CI);
1139 TmpReg2 = getReg(CI.getOperand(1));
1140 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001141 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001142 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001143
Chris Lattner44827152003-12-28 09:47:19 +00001144 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001145 }
1146}
1147
1148
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001149/// visitSimpleBinary - Implement simple binary operators for integral types...
1150/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1151/// Xor.
1152void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1153 unsigned DestReg = getReg(B);
1154 MachineBasicBlock::iterator MI = BB->end();
1155 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1156 OperatorClass, DestReg);
1157}
Chris Lattner3e130a22003-01-13 00:32:26 +00001158
Chris Lattnerb2acc512003-10-19 21:09:10 +00001159/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1160/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1161/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001162///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001163/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1164/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001165///
1166void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001167 MachineBasicBlock::iterator &IP,
1168 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001169 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001170 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001171
1172 // sub 0, X -> neg X
1173 if (OperatorClass == 1 && Class != cLong)
1174 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1175 if (CI->isNullValue()) {
1176 unsigned op1Reg = getReg(Op1, MBB, IP);
1177 switch (Class) {
1178 default: assert(0 && "Unknown class for this function!");
1179 case cByte:
1180 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1181 return;
1182 case cShort:
1183 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1184 return;
1185 case cInt:
1186 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1187 return;
1188 }
1189 }
1190
Chris Lattner35333e12003-06-05 18:28:55 +00001191 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1192 static const unsigned OpcodeTab[][4] = {
1193 // Arithmetic operators
1194 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1195 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1196
1197 // Bitwise operators
1198 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1199 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1200 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001201 };
Chris Lattner35333e12003-06-05 18:28:55 +00001202
1203 bool isLong = false;
1204 if (Class == cLong) {
1205 isLong = true;
1206 Class = cInt; // Bottom 32 bits are handled just like ints
1207 }
1208
1209 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1210 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001211 unsigned Op0r = getReg(Op0, MBB, IP);
1212 unsigned Op1r = getReg(Op1, MBB, IP);
1213 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001214
1215 if (isLong) { // Handle the upper 32 bits of long values...
1216 static const unsigned TopTab[] = {
1217 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1218 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001219 BMI(MBB, IP, TopTab[OperatorClass], 2,
1220 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001221 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001222 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001223 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001224
1225 // Special case: op Reg, <const>
1226 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1227 unsigned Op0r = getReg(Op0, MBB, IP);
1228
1229 // xor X, -1 -> not X
1230 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1231 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1232 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1233 return;
1234 }
1235
1236 // add X, -1 -> dec X
1237 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1238 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1239 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1240 return;
1241 }
1242
1243 // add X, 1 -> inc X
1244 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1245 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1246 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1247 return;
1248 }
1249
1250 static const unsigned OpcodeTab[][3] = {
1251 // Arithmetic operators
1252 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1253 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1254
1255 // Bitwise operators
1256 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1257 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1258 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1259 };
1260
1261 assert(Class < 3 && "General code handles 64-bit integer types!");
1262 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1263 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1264
1265 // Mask off any upper bits of the constant, if there are any...
1266 Op1v &= (1ULL << (8 << Class)) - 1;
1267 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001268}
1269
Chris Lattner3e130a22003-01-13 00:32:26 +00001270/// doMultiply - Emit appropriate instructions to multiply together the
1271/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1272/// result should be given as DestTy.
1273///
Chris Lattner8a307e82002-12-16 19:32:50 +00001274void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001275 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001276 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001277 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001278 switch (Class) {
1279 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001280 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001281 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001282 case cInt:
1283 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001284 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001285 .addReg(op0Reg).addReg(op1Reg);
1286 return;
1287 case cByte:
1288 // Must use the MUL instruction, which forces use of AL...
1289 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1290 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1291 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1292 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001293 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001294 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001295 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001296}
1297
Chris Lattnerb2acc512003-10-19 21:09:10 +00001298// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1299// returns zero when the input is not exactly a power of two.
1300static unsigned ExactLog2(unsigned Val) {
1301 if (Val == 0) return 0;
1302 unsigned Count = 0;
1303 while (Val != 1) {
1304 if (Val & 1) return 0;
1305 Val >>= 1;
1306 ++Count;
1307 }
1308 return Count+1;
1309}
1310
1311void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1312 MachineBasicBlock::iterator &IP,
1313 unsigned DestReg, const Type *DestTy,
1314 unsigned op0Reg, unsigned ConstRHS) {
1315 unsigned Class = getClass(DestTy);
1316
1317 // If the element size is exactly a power of 2, use a shift to get it.
1318 if (unsigned Shift = ExactLog2(ConstRHS)) {
1319 switch (Class) {
1320 default: assert(0 && "Unknown class for this function!");
1321 case cByte:
1322 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1323 return;
1324 case cShort:
1325 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1326 return;
1327 case cInt:
1328 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1329 return;
1330 }
1331 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001332
1333 if (Class == cShort) {
1334 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1335 return;
1336 } else if (Class == cInt) {
1337 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1338 return;
1339 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001340
1341 // Most general case, emit a normal multiply...
1342 static const unsigned MOVirTab[] = {
1343 X86::MOVir8, X86::MOVir16, X86::MOVir32
1344 };
1345
1346 unsigned TmpReg = makeAnotherReg(DestTy);
1347 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1348
1349 // Emit a MUL to multiply the register holding the index by
1350 // elementSize, putting the result in OffsetReg.
1351 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1352}
1353
Chris Lattnerca9671d2002-11-02 20:28:58 +00001354/// visitMul - Multiplies are not simple binary operators because they must deal
1355/// with the EAX register explicitly.
1356///
1357void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001358 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001359 unsigned DestReg = getReg(I);
1360
1361 // Simple scalar multiply?
1362 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001363 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1364 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1365 MachineBasicBlock::iterator MBBI = BB->end();
1366 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1367 } else {
1368 unsigned Op1Reg = getReg(I.getOperand(1));
1369 MachineBasicBlock::iterator MBBI = BB->end();
1370 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1371 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001372 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001373 unsigned Op1Reg = getReg(I.getOperand(1));
1374
Chris Lattner3e130a22003-01-13 00:32:26 +00001375 // Long value. We have to do things the hard way...
1376 // Multiply the two low parts... capturing carry into EDX
1377 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1378 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1379
1380 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1381 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1382 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1383
1384 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001385 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001386 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001387
1388 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1389 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001390 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001391
1392 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001393 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001394 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001395
1396 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001397 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001398 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001399}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001400
Chris Lattner06925362002-11-17 21:56:38 +00001401
Chris Lattnerf01729e2002-11-02 20:54:46 +00001402/// visitDivRem - Handle division and remainder instructions... these
1403/// instruction both require the same instructions to be generated, they just
1404/// select the result from a different register. Note that both of these
1405/// instructions work differently for signed and unsigned operands.
1406///
1407void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001408 unsigned Op0Reg = getReg(I.getOperand(0));
1409 unsigned Op1Reg = getReg(I.getOperand(1));
1410 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001411
Chris Lattnercadff442003-10-23 17:21:43 +00001412 MachineBasicBlock::iterator IP = BB->end();
1413 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1414 I.getType(), ResultReg);
1415}
1416
1417void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1418 MachineBasicBlock::iterator &IP,
1419 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1420 const Type *Ty, unsigned ResultReg) {
1421 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001422 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001423 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001424 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001425 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001426 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001427 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001428 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001429 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001430 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1431 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001432 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1433 }
Chris Lattner94af4142002-12-25 05:13:53 +00001434 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001435 case cLong: {
1436 static const char *FnName[] =
1437 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1438
Chris Lattnercadff442003-10-23 17:21:43 +00001439 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001440 MachineInstr *TheCall =
1441 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1442
1443 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001444 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1445 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001446 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1447 return;
1448 }
1449 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001450 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001451 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001452 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001453
1454 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1455 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001456 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001457 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1458 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1459
1460 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001461 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1462 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001463 };
1464
Chris Lattnercadff442003-10-23 17:21:43 +00001465 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001466 unsigned Reg = Regs[Class];
1467 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001468
1469 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001470 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001471
1472 if (isSigned) {
1473 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001474 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001475 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1476 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001477 } else {
1478 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
Chris Lattner62b767b2003-11-18 17:47:05 +00001479 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001480 }
1481
Chris Lattner06925362002-11-17 21:56:38 +00001482 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001483 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001484
Chris Lattnerf01729e2002-11-02 20:54:46 +00001485 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001486 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001487
Chris Lattnerf01729e2002-11-02 20:54:46 +00001488 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001489 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001490}
Chris Lattnere2954c82002-11-02 20:04:26 +00001491
Chris Lattner06925362002-11-17 21:56:38 +00001492
Brian Gaekea1719c92002-10-31 23:03:59 +00001493/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1494/// for constant immediate shift values, and for constant immediate
1495/// shift values equal to 1. Even the general case is sort of special,
1496/// because the shift amount has to be in CL, not just any old register.
1497///
Chris Lattner3e130a22003-01-13 00:32:26 +00001498void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001499 MachineBasicBlock::iterator IP = BB->end ();
1500 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1501 I.getOpcode () == Instruction::Shl, I.getType (),
1502 getReg (I));
1503}
1504
1505/// emitShiftOperation - Common code shared between visitShiftInst and
1506/// constant expression support.
1507void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1508 MachineBasicBlock::iterator &IP,
1509 Value *Op, Value *ShiftAmount, bool isLeftShift,
1510 const Type *ResultTy, unsigned DestReg) {
1511 unsigned SrcReg = getReg (Op, MBB, IP);
1512 bool isSigned = ResultTy->isSigned ();
1513 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001514
1515 static const unsigned ConstantOperand[][4] = {
1516 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1517 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1518 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1519 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1520 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001521
Chris Lattner3e130a22003-01-13 00:32:26 +00001522 static const unsigned NonConstantOperand[][4] = {
1523 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1524 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1525 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1526 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1527 };
Chris Lattner796df732002-11-02 00:44:25 +00001528
Chris Lattner3e130a22003-01-13 00:32:26 +00001529 // Longs, as usual, are handled specially...
1530 if (Class == cLong) {
1531 // If we have a constant shift, we can generate much more efficient code
1532 // than otherwise...
1533 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001534 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001535 unsigned Amount = CUI->getValue();
1536 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001537 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1538 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001539 BMI(MBB, IP, Opc[3], 3,
1540 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1541 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001542 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001543 BMI(MBB, IP, Opc[3], 3,
1544 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1545 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001546 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001547 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001548 Amount -= 32;
1549 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001550 BMI(MBB, IP, X86::SHLir32, 2,
1551 DestReg + 1).addReg(SrcReg).addZImm(Amount);
1552 BMI(MBB, IP, X86::MOVir32, 1,
1553 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001554 } else {
1555 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001556 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1557 BMI(MBB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001558 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001559 }
1560 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001561 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1562
1563 if (!isLeftShift && isSigned) {
1564 // If this is a SHR of a Long, then we need to do funny sign extension
1565 // stuff. TmpReg gets the value to use as the high-part if we are
1566 // shifting more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001567 BMI(MBB, IP, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001568 } else {
1569 // Other shifts use a fixed zero value if the shift is more than 32
1570 // bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001571 BMI(MBB, IP, X86::MOVir32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001572 }
1573
1574 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001575 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1576 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001577
1578 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1579 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1580 if (isLeftShift) {
1581 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001582 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001583 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001584 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001585
1586 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001587 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001588
1589 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001590 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001591 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1592 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001593 BMI(MBB, IP, X86::CMOVNErr32, 2,
1594 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001595 } else {
1596 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001597 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001598 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001599 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001600 .addReg(SrcReg+1);
1601
1602 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001603 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001604
1605 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001606 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001607 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1608
1609 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001610 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001611 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1612 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001613 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001614 return;
1615 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001616
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001617 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001618 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1619 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001620
Chris Lattner3e130a22003-01-13 00:32:26 +00001621 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001622 BMI(MBB, IP, Opc[Class], 2,
1623 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001624 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001625 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1626 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001627
Chris Lattner3e130a22003-01-13 00:32:26 +00001628 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001629 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001630 }
1631}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001632
Chris Lattner3e130a22003-01-13 00:32:26 +00001633
Chris Lattner6fc3c522002-11-17 21:11:55 +00001634/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001635/// instruction. The load and store instructions are the only place where we
1636/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001637///
1638void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001639 unsigned SrcAddrReg = getReg(I.getOperand(0));
1640 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001641
Brian Gaekebfedb912003-07-17 21:30:06 +00001642 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001643
1644 if (Class == cLong) {
1645 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1646 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001647 return;
1648 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001649
Chris Lattner6ac1d712003-10-20 04:48:06 +00001650 static const unsigned Opcodes[] = {
1651 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001652 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001653 unsigned Opcode = Opcodes[Class];
1654 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1655 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001656}
1657
Chris Lattner6fc3c522002-11-17 21:11:55 +00001658/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1659/// instruction.
1660///
1661void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001662 unsigned ValReg = getReg(I.getOperand(0));
1663 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001664
1665 const Type *ValTy = I.getOperand(0)->getType();
1666 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001667
1668 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001669 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1670 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001671 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001672 }
1673
Chris Lattner6ac1d712003-10-20 04:48:06 +00001674 static const unsigned Opcodes[] = {
1675 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1676 };
1677 unsigned Opcode = Opcodes[Class];
1678 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1679 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001680}
1681
1682
Brian Gaekec11232a2002-11-26 10:43:30 +00001683/// visitCastInst - Here we have various kinds of copying with or without
1684/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001685void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001686 Value *Op = CI.getOperand(0);
1687 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1688 // of the case are GEP instructions, then the cast does not need to be
1689 // generated explicitly, it will be folded into the GEP.
1690 if (CI.getType() == Type::LongTy &&
1691 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1692 bool AllUsesAreGEPs = true;
1693 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1694 if (!isa<GetElementPtrInst>(*I)) {
1695 AllUsesAreGEPs = false;
1696 break;
1697 }
1698
1699 // No need to codegen this cast if all users are getelementptr instrs...
1700 if (AllUsesAreGEPs) return;
1701 }
1702
Chris Lattner548f61d2003-04-23 17:22:12 +00001703 unsigned DestReg = getReg(CI);
1704 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001705 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001706}
1707
1708/// emitCastOperation - Common code shared between visitCastInst and
1709/// constant expression cast support.
1710void ISel::emitCastOperation(MachineBasicBlock *BB,
1711 MachineBasicBlock::iterator &IP,
1712 Value *Src, const Type *DestTy,
1713 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001714 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001715 const Type *SrcTy = Src->getType();
1716 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001717 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001718
Chris Lattner3e130a22003-01-13 00:32:26 +00001719 // Implement casts to bool by using compare on the operand followed by set if
1720 // not zero on the result.
1721 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001722 switch (SrcClass) {
1723 case cByte:
1724 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1725 break;
1726 case cShort:
1727 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1728 break;
1729 case cInt:
1730 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1731 break;
1732 case cLong: {
1733 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1734 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1735 break;
1736 }
1737 case cFP:
1738 assert(0 && "FIXME: implement cast FP to bool");
1739 abort();
1740 }
1741
1742 // If the zero flag is not set, then the value is true, set the byte to
1743 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001744 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001745 return;
1746 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001747
1748 static const unsigned RegRegMove[] = {
1749 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1750 };
1751
1752 // Implement casts between values of the same type class (as determined by
1753 // getClass) by using a register-to-register move.
1754 if (SrcClass == DestClass) {
1755 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001756 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001757 } else if (SrcClass == cFP) {
1758 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001759 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1760 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001761 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001762 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1763 "Unknown cFP member!");
1764 // Truncate from double to float by storing to memory as short, then
1765 // reading it back.
1766 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001767 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001768 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1769 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001770 }
1771 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001772 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1773 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001774 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001775 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001776 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001777 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001778 return;
1779 }
1780
1781 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1782 // or zero extension, depending on whether the source type was signed.
1783 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1784 SrcClass < DestClass) {
1785 bool isLong = DestClass == cLong;
1786 if (isLong) DestClass = cInt;
1787
1788 static const unsigned Opc[][4] = {
1789 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1790 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1791 };
1792
1793 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001794 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1795 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001796
1797 if (isLong) { // Handle upper 32 bits as appropriate...
1798 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001799 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001800 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001801 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001802 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001803 return;
1804 }
1805
1806 // Special case long -> int ...
1807 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001808 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001809 return;
1810 }
1811
1812 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1813 // move out of AX or AL.
1814 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1815 && SrcClass > DestClass) {
1816 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001817 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1818 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001819 return;
1820 }
1821
1822 // Handle casts from integer to floating point now...
1823 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001824 // Promote the integer to a type supported by FLD. We do this because there
1825 // are no unsigned FLD instructions, so we must promote an unsigned value to
1826 // a larger signed value, then use FLD on the larger value.
1827 //
1828 const Type *PromoteType = 0;
1829 unsigned PromoteOpcode;
1830 switch (SrcTy->getPrimitiveID()) {
1831 case Type::BoolTyID:
1832 case Type::SByteTyID:
1833 // We don't have the facilities for directly loading byte sized data from
1834 // memory (even signed). Promote it to 16 bits.
1835 PromoteType = Type::ShortTy;
1836 PromoteOpcode = X86::MOVSXr16r8;
1837 break;
1838 case Type::UByteTyID:
1839 PromoteType = Type::ShortTy;
1840 PromoteOpcode = X86::MOVZXr16r8;
1841 break;
1842 case Type::UShortTyID:
1843 PromoteType = Type::IntTy;
1844 PromoteOpcode = X86::MOVZXr32r16;
1845 break;
1846 case Type::UIntTyID: {
1847 // Make a 64 bit temporary... and zero out the top of it...
1848 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1849 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1850 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1851 SrcTy = Type::LongTy;
1852 SrcClass = cLong;
1853 SrcReg = TmpReg;
1854 break;
1855 }
1856 case Type::ULongTyID:
1857 assert("FIXME: not implemented: cast ulong X to fp type!");
1858 default: // No promotion needed...
1859 break;
1860 }
1861
1862 if (PromoteType) {
1863 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001864 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1865 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001866 SrcTy = PromoteType;
1867 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001868 SrcReg = TmpReg;
1869 }
1870
1871 // Spill the integer to memory and reload it from there...
1872 int FrameIdx =
1873 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1874
1875 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001876 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1877 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001878 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001879 } else {
1880 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001881 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001882 }
1883
1884 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001885 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001886 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001887 return;
1888 }
1889
1890 // Handle casts from floating point to integer now...
1891 if (SrcClass == cFP) {
1892 // Change the floating point control register to use "round towards zero"
1893 // mode when truncating to an integer value.
1894 //
1895 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001896 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001897
1898 // Load the old value of the high byte of the control word...
1899 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001900 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001901
1902 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001903 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001904
1905 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001906 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001907
1908 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001909 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001910 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00001911
1912 // We don't have the facilities for directly storing byte sized data to
1913 // memory. Promote it to 16 bits. We also must promote unsigned values to
1914 // larger classes because we only have signed FP stores.
1915 unsigned StoreClass = DestClass;
1916 const Type *StoreTy = DestTy;
1917 if (StoreClass == cByte || DestTy->isUnsigned())
1918 switch (StoreClass) {
1919 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1920 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1921 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001922 // The following treatment of cLong may not be perfectly right,
1923 // but it survives chains of casts of the form
1924 // double->ulong->double.
1925 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001926 default: assert(0 && "Unknown store class!");
1927 }
1928
1929 // Spill the integer to memory and reload it from there...
1930 int FrameIdx =
1931 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1932
1933 static const unsigned Op1[] =
1934 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001935 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001936
1937 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001938 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1939 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001940 } else {
1941 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001942 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001943 }
1944
1945 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001946 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001947 return;
1948 }
1949
Brian Gaeked474e9c2002-12-06 10:49:33 +00001950 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001951 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001952 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001953}
Brian Gaekea1719c92002-10-31 23:03:59 +00001954
Chris Lattner73815062003-10-18 05:56:40 +00001955/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00001956///
Chris Lattner73815062003-10-18 05:56:40 +00001957void ISel::visitVANextInst(VANextInst &I) {
1958 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00001959 unsigned DestReg = getReg(I);
1960
Chris Lattnereca195e2003-05-08 19:44:13 +00001961 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00001962 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001963 default:
1964 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00001965 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001966 return;
1967 case Type::PointerTyID:
1968 case Type::UIntTyID:
1969 case Type::IntTyID:
1970 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00001971 break;
1972 case Type::ULongTyID:
1973 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00001974 case Type::DoubleTyID:
1975 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00001976 break;
1977 }
1978
1979 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00001980 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
1981}
Chris Lattnereca195e2003-05-08 19:44:13 +00001982
Chris Lattner73815062003-10-18 05:56:40 +00001983void ISel::visitVAArgInst(VAArgInst &I) {
1984 unsigned VAList = getReg(I.getOperand(0));
1985 unsigned DestReg = getReg(I);
1986
1987 switch (I.getType()->getPrimitiveID()) {
1988 default:
1989 std::cerr << I;
1990 assert(0 && "Error: bad type for va_next instruction!");
1991 return;
1992 case Type::PointerTyID:
1993 case Type::UIntTyID:
1994 case Type::IntTyID:
1995 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1996 break;
1997 case Type::ULongTyID:
1998 case Type::LongTyID:
1999 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2000 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
2001 break;
2002 case Type::DoubleTyID:
2003 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2004 break;
2005 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002006}
2007
2008
Chris Lattner3e130a22003-01-13 00:32:26 +00002009void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2010 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002011 MachineBasicBlock::iterator MI = BB->end();
2012 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002013 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002014}
2015
Brian Gaeke71794c02002-12-13 11:22:48 +00002016void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002017 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002018 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002019 User::op_iterator IdxEnd, unsigned TargetReg) {
2020 const TargetData &TD = TM.getTargetData();
2021 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00002022 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002023
Brian Gaeke20244b72002-12-12 15:33:40 +00002024 // GEPs have zero or more indices; we must perform a struct access
2025 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00002026 for (GetElementPtrInst::op_iterator oi = IdxBegin,
2027 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002028 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002029 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002030 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002031 // It's a struct access. idx is the index into the structure,
2032 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002033 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2034 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002035 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00002036 // Use the TargetData structure to pick out what the layout of
2037 // the structure is in memory. Since the structure index must
2038 // be constant, we can get its value and use it to find the
2039 // right byte offset from the StructLayout class's list of
2040 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002041 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002042 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2043 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002044 NextReg = makeAnotherReg(Type::UIntTy);
2045 // Emit an ADD to add FieldOff to the basePtr.
2046 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00002047 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002048 // The next type is the member of the structure selected by the
2049 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00002050 Ty = StTy->getElementTypes()[idxValue];
2051 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002052 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002053
Brian Gaeke20244b72002-12-12 15:33:40 +00002054 // idx is the index into the array. Unlike with structure
2055 // indices, we may not know its actual value at code-generation
2056 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002057 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2058
Chris Lattnerf5854472003-06-21 16:01:24 +00002059 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2060 // operand on X86. Handle this case directly now...
2061 if (CastInst *CI = dyn_cast<CastInst>(idx))
2062 if (CI->getOperand(0)->getType() == Type::IntTy ||
2063 CI->getOperand(0)->getType() == Type::UIntTy)
2064 idx = CI->getOperand(0);
2065
Chris Lattner3e130a22003-01-13 00:32:26 +00002066 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002067 // must find the size of the pointed-to type (Not coincidentally, the next
2068 // type is the type of the elements in the array).
2069 Ty = SqTy->getElementType();
2070 unsigned elementSize = TD.getTypeSize(Ty);
2071
2072 // If idxReg is a constant, we don't need to perform the multiply!
2073 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002074 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002075 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002076 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002077 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002078 }
2079 } else if (elementSize == 1) {
2080 // If the element size is 1, we don't have to multiply, just add
2081 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002082 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002083 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002084 } else {
2085 unsigned idxReg = getReg(idx, MBB, IP);
2086 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002087
2088 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2089
Chris Lattner8a307e82002-12-16 19:32:50 +00002090 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002091 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002092 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002093 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002094 }
2095 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002096 // one, so we don't need to worry about BaseReg itself, anymore.
2097 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002098 }
2099 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002100 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002101 // put the answer. A 32-bit move should do it, because we are in
2102 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002103 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002104}
2105
2106
Chris Lattner065faeb2002-12-28 20:24:02 +00002107/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2108/// frame manager, otherwise do it the hard way.
2109///
2110void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002111 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002112 const Type *Ty = I.getAllocatedType();
2113 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2114
2115 // If this is a fixed size alloca in the entry block for the function,
2116 // statically stack allocate the space.
2117 //
2118 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2119 if (I.getParent() == I.getParent()->getParent()->begin()) {
2120 TySize *= CUI->getValue(); // Get total allocated size...
2121 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2122
2123 // Create a new stack object using the frame manager...
2124 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2125 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2126 return;
2127 }
2128 }
2129
2130 // Create a register to hold the temporary result of multiplying the type size
2131 // constant by the variable amount.
2132 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2133 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002134
2135 // TotalSizeReg = mul <numelements>, <TypeSize>
2136 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002137 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002138
2139 // AddedSize = add <TotalSizeReg>, 15
2140 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2141 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2142
2143 // AlignedSize = and <AddedSize>, ~15
2144 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2145 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2146
Brian Gaekee48ec012002-12-13 06:46:31 +00002147 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002148 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002149
Brian Gaekee48ec012002-12-13 06:46:31 +00002150 // Put a pointer to the space into the result register, by copying
2151 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002152 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2153
Misha Brukman48196b32003-05-03 02:18:17 +00002154 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002155 // object.
2156 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002157}
Chris Lattner3e130a22003-01-13 00:32:26 +00002158
2159/// visitMallocInst - Malloc instructions are code generated into direct calls
2160/// to the library malloc.
2161///
2162void ISel::visitMallocInst(MallocInst &I) {
2163 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2164 unsigned Arg;
2165
2166 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2167 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2168 } else {
2169 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002170 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002171 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002172 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002173 }
2174
2175 std::vector<ValueRecord> Args;
2176 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2177 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002178 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002179 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2180}
2181
2182
2183/// visitFreeInst - Free instructions are code gen'd to call the free libc
2184/// function.
2185///
2186void ISel::visitFreeInst(FreeInst &I) {
2187 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002188 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002189 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002190 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002191 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2192}
2193
Chris Lattnerd281de22003-07-26 23:49:58 +00002194/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002195/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002196/// generated code sucks but the implementation is nice and simple.
2197///
Chris Lattner44827152003-12-28 09:47:19 +00002198FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM,
2199 IntrinsicLowering &IL) {
2200 return new ISel(TM, IL);
Chris Lattner72614082002-10-25 22:55:53 +00002201}