blob: 24c841d2881d5de3dd7f906d9fe810f7791a00f2 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000011#include "llvm/Instructions.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000012#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000013#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000014#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000015#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000017#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000018#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000020#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/Target/TargetMachine.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/Target/MRegisterInfo.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000023#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000024
Chris Lattner333b2fa2002-12-13 10:09:43 +000025/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000026/// instruction at as well as a basic block. This is the version for when you
27/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000028inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000029 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000030 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000031 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000032 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000033 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000034 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
36}
37
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000038/// BMI - A special BuildMI variant that takes an iterator to insert the
39/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000041 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046 return MachineInstrBuilder(MI);
47}
48
Chris Lattner333b2fa2002-12-13 10:09:43 +000049
Chris Lattner72614082002-10-25 22:55:53 +000050namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000051 struct ISel : public FunctionPass, InstVisitor<ISel> {
52 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000053 MachineFunction *F; // The function we are compiling into
54 MachineBasicBlock *BB; // The current MBB we are compiling
55 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059 // MBBMap - Mapping between LLVM BB -> Machine BB
60 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
61
Chris Lattner3e130a22003-01-13 00:32:26 +000062 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000063
64 /// runOnFunction - Top level implementation of instruction selection for
65 /// the entire function.
66 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000067 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000068 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
Chris Lattner065faeb2002-12-28 20:24:02 +000070 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000071 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
73
Chris Lattner14aa7fe2002-12-16 22:54:46 +000074 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000075
Chris Lattnerdbd73722003-05-06 21:32:22 +000076 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000077 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000078
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000080 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
82 // Select the PHI nodes
83 SelectPHINodes();
84
Chris Lattner72614082002-10-25 22:55:53 +000085 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +000088 // We always build a machine code representation for the function
89 return true;
Chris Lattner72614082002-10-25 22:55:53 +000090 }
91
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000092 virtual const char *getPassName() const {
93 return "X86 Simple Instruction Selection";
94 }
95
Chris Lattner72614082002-10-25 22:55:53 +000096 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000097 /// block. This simply creates a new MachineBasicBlock to emit code into
98 /// and adds it to the current MachineFunction. Subsequent visit* for
99 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000100 ///
101 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000102 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000103 }
104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
106 /// from the stack into virtual registers.
107 ///
108 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000109
110 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
111 /// because we have to generate our sources into the source basic blocks,
112 /// not the current one.
113 ///
114 void SelectPHINodes();
115
Chris Lattner72614082002-10-25 22:55:53 +0000116 // Visitation methods for various instructions. These methods simply emit
117 // fixed X86 code for each instruction.
118 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000119
120 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000121 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000122 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000123
124 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000125 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000126 unsigned Reg;
127 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000128 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
129 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000130 };
131 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
132 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000133 void visitCallInst(CallInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000134 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000135
136 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000137 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000138 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
139 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000140 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000141 unsigned DestReg, const Type *DestTy,
142 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000143 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000144
Chris Lattnerf01729e2002-11-02 20:54:46 +0000145 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
146 void visitRem(BinaryOperator &B) { visitDivRem(B); }
147 void visitDivRem(BinaryOperator &B);
148
Chris Lattnere2954c82002-11-02 20:04:26 +0000149 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000150 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
151 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
152 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000153
Chris Lattner6d40c192003-01-16 16:43:00 +0000154 // Comparison operators...
155 void visitSetCondInst(SetCondInst &I);
156 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000157
158 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000159 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
160 MachineBasicBlock::iterator &MBBI,
161 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000162 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000163 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000164 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000165 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000166 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000167 void visitMallocInst(MallocInst &I);
168 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000169
Chris Lattnere2954c82002-11-02 20:04:26 +0000170 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000171 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000172 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000173 void visitCastInst(CastInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000174 void visitVarArgInst(VarArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000175
176 void visitInstruction(Instruction &I) {
177 std::cerr << "Cannot instruction select: " << I;
178 abort();
179 }
180
Brian Gaeke95780cc2002-12-13 07:56:18 +0000181 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000182 ///
183 void promote32(unsigned targetReg, const ValueRecord &VR);
184
185 /// EmitByteSwap - Byteswap SrcReg into DestReg.
186 ///
187 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000188
Chris Lattner3e130a22003-01-13 00:32:26 +0000189 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
190 /// constant expression GEP support.
191 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000192 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000193 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000194 User::op_iterator IdxEnd, unsigned TargetReg);
195
Chris Lattner548f61d2003-04-23 17:22:12 +0000196 /// emitCastOperation - Common code shared between visitCastInst and
197 /// constant expression cast support.
198 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
199 Value *Src, const Type *DestTy, unsigned TargetReg);
200
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000201 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
202 /// and constant expression support.
203 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
204 MachineBasicBlock::iterator &IP,
205 Value *Op0, Value *Op1,
206 unsigned OperatorClass, unsigned TargetReg);
207
Chris Lattnerc5291f52002-10-27 21:16:59 +0000208 /// copyConstantToRegister - Output the instructions required to put the
209 /// specified constant into the specified register.
210 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000211 void copyConstantToRegister(MachineBasicBlock *MBB,
212 MachineBasicBlock::iterator &MBBI,
213 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000214
Chris Lattner3e130a22003-01-13 00:32:26 +0000215 /// makeAnotherReg - This method returns the next register number we haven't
216 /// yet used.
217 ///
218 /// Long values are handled somewhat specially. They are always allocated
219 /// as pairs of 32 bit integer values. The register number returned is the
220 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
221 /// of the long value.
222 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000223 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000224 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
225 "Current target doesn't have X86 reg info??");
226 const X86RegisterInfo *MRI =
227 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000228 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000229 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000230 // Create the lower part
231 F->getSSARegMap()->createVirtualRegister(RC);
232 // Create the upper part.
233 return F->getSSARegMap()->createVirtualRegister(RC)-1;
234 }
235
Chris Lattnerc0812d82002-12-13 06:56:29 +0000236 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000237 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000238 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000239 }
240
Chris Lattner72614082002-10-25 22:55:53 +0000241 /// getReg - This method turns an LLVM value into a register number. This
242 /// is guaranteed to produce the same register number for a particular value
243 /// every time it is queried.
244 ///
245 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000246 unsigned getReg(Value *V) {
247 // Just append to the end of the current bb.
248 MachineBasicBlock::iterator It = BB->end();
249 return getReg(V, BB, It);
250 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000251 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000252 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000253 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000254 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000255 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000256 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000257 }
Chris Lattner72614082002-10-25 22:55:53 +0000258
Chris Lattner6f8fd252002-10-27 21:23:43 +0000259 // If this operand is a constant, emit the code to copy the constant into
260 // the register here...
261 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000262 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000263 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000264 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000265 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
266 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000267 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000268 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000269 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000270
Chris Lattner72614082002-10-25 22:55:53 +0000271 return Reg;
272 }
Chris Lattner72614082002-10-25 22:55:53 +0000273 };
274}
275
Chris Lattner43189d12002-11-17 20:07:45 +0000276/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
277/// Representation.
278///
279enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000280 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000281};
282
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000283/// getClass - Turn a primitive type into a "class" number which is based on the
284/// size of the type, and whether or not it is floating point.
285///
Chris Lattner43189d12002-11-17 20:07:45 +0000286static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000287 switch (Ty->getPrimitiveID()) {
288 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000289 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000290 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000291 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000292 case Type::IntTyID:
293 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000294 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000295
Chris Lattner94af4142002-12-25 05:13:53 +0000296 case Type::FloatTyID:
297 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000298
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000299 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000300 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000301 default:
302 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000303 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000304 }
305}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000306
Chris Lattner6b993cc2002-12-15 08:02:15 +0000307// getClassB - Just like getClass, but treat boolean values as bytes.
308static inline TypeClass getClassB(const Type *Ty) {
309 if (Ty == Type::BoolTy) return cByte;
310 return getClass(Ty);
311}
312
Chris Lattner06925362002-11-17 21:56:38 +0000313
Chris Lattnerc5291f52002-10-27 21:16:59 +0000314/// copyConstantToRegister - Output the instructions required to put the
315/// specified constant into the specified register.
316///
Chris Lattner8a307e82002-12-16 19:32:50 +0000317void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
318 MachineBasicBlock::iterator &IP,
319 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000320 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000321 unsigned Class = 0;
322 switch (CE->getOpcode()) {
323 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000324 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000325 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000326 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000327 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000328 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000329 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000330
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000331 case Instruction::Xor: ++Class; // FALL THROUGH
332 case Instruction::Or: ++Class; // FALL THROUGH
333 case Instruction::And: ++Class; // FALL THROUGH
334 case Instruction::Sub: ++Class; // FALL THROUGH
335 case Instruction::Add:
336 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
337 Class, R);
338 return;
339
340 default:
341 std::cerr << "Offending expr: " << C << "\n";
342 assert(0 && "Constant expressions not yet handled!\n");
343 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000344 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000345
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000346 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000347 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000348
349 if (Class == cLong) {
350 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000351 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000352 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
353 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
354 return;
355 }
356
Chris Lattner94af4142002-12-25 05:13:53 +0000357 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000358
359 static const unsigned IntegralOpcodeTab[] = {
360 X86::MOVir8, X86::MOVir16, X86::MOVir32
361 };
362
Chris Lattner6b993cc2002-12-15 08:02:15 +0000363 if (C->getType() == Type::BoolTy) {
364 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000365 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000366 ConstantInt *CI = cast<ConstantInt>(C);
367 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000368 }
Chris Lattner94af4142002-12-25 05:13:53 +0000369 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
370 double Value = CFP->getValue();
371 if (Value == +0.0)
372 BMI(MBB, IP, X86::FLD0, 0, R);
373 else if (Value == +1.0)
374 BMI(MBB, IP, X86::FLD1, 0, R);
375 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000376 // Otherwise we need to spill the constant to memory...
377 MachineConstantPool *CP = F->getConstantPool();
378 unsigned CPI = CP->getConstantPoolIndex(CFP);
379 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000380 }
381
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000382 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000383 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000384 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000385 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000386 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000387 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000388 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000389 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000390 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000391 }
392}
393
Chris Lattner065faeb2002-12-28 20:24:02 +0000394/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
395/// the stack into virtual registers.
396///
397void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
398 // Emit instructions to load the arguments... On entry to a function on the
399 // X86, the stack frame looks like this:
400 //
401 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000402 // [ESP + 4] -- first argument (leftmost lexically)
403 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000404 // ...
405 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000406 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000407 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000408
409 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
410 unsigned Reg = getReg(*I);
411
Chris Lattner065faeb2002-12-28 20:24:02 +0000412 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000413 switch (getClassB(I->getType())) {
414 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000415 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000416 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
417 break;
418 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000419 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000420 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
421 break;
422 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000423 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000424 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
425 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000426 case cLong:
427 FI = MFI->CreateFixedObject(8, ArgOffset);
428 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
429 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
430 ArgOffset += 4; // longs require 4 additional bytes
431 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000432 case cFP:
433 unsigned Opcode;
434 if (I->getType() == Type::FloatTy) {
435 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000436 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000437 } else {
438 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000439 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000440 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000441 }
442 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
443 break;
444 default:
445 assert(0 && "Unhandled argument type!");
446 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000447 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000448 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000449
450 // If the function takes variable number of arguments, add a frame offset for
451 // the start of the first vararg value... this is used to expand
452 // llvm.va_start.
453 if (Fn.getFunctionType()->isVarArg())
454 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000455}
456
457
Chris Lattner333b2fa2002-12-13 10:09:43 +0000458/// SelectPHINodes - Insert machine code to generate phis. This is tricky
459/// because we have to generate our sources into the source basic blocks, not
460/// the current one.
461///
462void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000463 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000464 const Function &LF = *F->getFunction(); // The LLVM function...
465 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
466 const BasicBlock *BB = I;
467 MachineBasicBlock *MBB = MBBMap[I];
468
469 // Loop over all of the PHI nodes in the LLVM basic block...
470 unsigned NumPHIs = 0;
471 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000472 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000473
Chris Lattner333b2fa2002-12-13 10:09:43 +0000474 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000475 unsigned PHIReg = getReg(*PN);
476 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
477 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
478
479 MachineInstr *LongPhiMI = 0;
480 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
481 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
482 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
483 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000484
Chris Lattnera6e73f12003-05-12 14:22:21 +0000485 // PHIValues - Map of blocks to incoming virtual registers. We use this
486 // so that we only initialize one incoming value for a particular block,
487 // even if the block has multiple entries in the PHI node.
488 //
489 std::map<MachineBasicBlock*, unsigned> PHIValues;
490
Chris Lattner333b2fa2002-12-13 10:09:43 +0000491 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
492 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000493 unsigned ValReg;
494 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
495 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000496
Chris Lattnera6e73f12003-05-12 14:22:21 +0000497 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
498 // We already inserted an initialization of the register for this
499 // predecessor. Recycle it.
500 ValReg = EntryIt->second;
501
502 } else {
503 // Get the incoming value into a virtual register. If it is not
504 // already available in a virtual register, insert the computation
505 // code into PredMBB
506 //
507 MachineBasicBlock::iterator PI = PredMBB->end();
508 while (PI != PredMBB->begin() &&
509 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
510 --PI;
511 ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
512
513 // Remember that we inserted a value for this PHI for this predecessor
514 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
515 }
516
Chris Lattner3e130a22003-01-13 00:32:26 +0000517 PhiMI->addRegOperand(ValReg);
518 PhiMI->addMachineBasicBlockOperand(PredMBB);
519 if (LongPhiMI) {
520 LongPhiMI->addRegOperand(ValReg+1);
521 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
522 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000523 }
524 }
525 }
526}
527
Chris Lattner6d40c192003-01-16 16:43:00 +0000528// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
529// the conditional branch instruction which is the only user of the cc
530// instruction. This is the case if the conditional branch is the only user of
531// the setcc, and if the setcc is in the same basic block as the conditional
532// branch. We also don't handle long arguments below, so we reject them here as
533// well.
534//
535static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
536 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
537 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
538 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
539 const Type *Ty = SCI->getOperand(0)->getType();
540 if (Ty != Type::LongTy && Ty != Type::ULongTy)
541 return SCI;
542 }
543 return 0;
544}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000545
Chris Lattner6d40c192003-01-16 16:43:00 +0000546// Return a fixed numbering for setcc instructions which does not depend on the
547// order of the opcodes.
548//
549static unsigned getSetCCNumber(unsigned Opcode) {
550 switch(Opcode) {
551 default: assert(0 && "Unknown setcc instruction!");
552 case Instruction::SetEQ: return 0;
553 case Instruction::SetNE: return 1;
554 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000555 case Instruction::SetGE: return 3;
556 case Instruction::SetGT: return 4;
557 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000558 }
559}
Chris Lattner06925362002-11-17 21:56:38 +0000560
Chris Lattner6d40c192003-01-16 16:43:00 +0000561// LLVM -> X86 signed X86 unsigned
562// ----- ---------- ------------
563// seteq -> sete sete
564// setne -> setne setne
565// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000566// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000567// setgt -> setg seta
568// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000569static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000570 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
571 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000572};
573
574bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
575
Brian Gaeke1749d632002-11-07 17:59:21 +0000576 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000577 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000578 bool isSigned = CompTy->isSigned();
Chris Lattner3e130a22003-01-13 00:32:26 +0000579 unsigned Class = getClassB(CompTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000580 unsigned Op0r = getReg(Op0);
581
582 // Special case handling of: cmp R, i
583 if (Class == cByte || Class == cShort || Class == cInt)
584 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000585 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
586
Chris Lattner333864d2003-06-05 19:30:30 +0000587 // Mask off any upper bits of the constant, if there are any...
588 Op1v &= (1ULL << (8 << Class)) - 1;
589
590 switch (Class) {
591 case cByte: BuildMI(BB, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
592 case cShort: BuildMI(BB, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
593 case cInt: BuildMI(BB, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
594 default:
595 assert(0 && "Invalid class!");
596 }
597 return isSigned;
598 }
599
600 unsigned Op1r = getReg(Op1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000601 switch (Class) {
602 default: assert(0 && "Unknown type class!");
603 // Emit: cmp <var1>, <var2> (do the comparison). We can
604 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
605 // 32-bit.
606 case cByte:
Chris Lattner333864d2003-06-05 19:30:30 +0000607 BuildMI(BB, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000608 break;
609 case cShort:
Chris Lattner333864d2003-06-05 19:30:30 +0000610 BuildMI(BB, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000611 break;
612 case cInt:
Chris Lattner333864d2003-06-05 19:30:30 +0000613 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000614 break;
615 case cFP:
Chris Lattner333864d2003-06-05 19:30:30 +0000616 BuildMI(BB, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000617 BuildMI(BB, X86::FNSTSWr8, 0);
618 BuildMI(BB, X86::SAHF, 1);
619 isSigned = false; // Compare with unsigned operators
620 break;
621
622 case cLong:
623 if (OpNum < 2) { // seteq, setne
624 unsigned LoTmp = makeAnotherReg(Type::IntTy);
625 unsigned HiTmp = makeAnotherReg(Type::IntTy);
626 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000627 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
628 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000629 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
630 break; // Allow the sete or setne to be generated from flags set by OR
631 } else {
632 // Emit a sequence of code which compares the high and low parts once
633 // each, then uses a conditional move to handle the overflow case. For
634 // example, a setlt for long would generate code like this:
635 //
636 // AL = lo(op1) < lo(op2) // Signedness depends on operands
637 // BL = hi(op1) < hi(op2) // Always unsigned comparison
638 // dest = hi(op1) == hi(op2) ? AL : BL;
639 //
640
Chris Lattner6d40c192003-01-16 16:43:00 +0000641 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000642 // classes! Until then, hardcode registers so that we can deal with their
643 // aliases (because we don't have conditional byte moves).
644 //
Chris Lattner333864d2003-06-05 19:30:30 +0000645 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner6d40c192003-01-16 16:43:00 +0000646 BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Chris Lattner333864d2003-06-05 19:30:30 +0000647 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner6d40c192003-01-16 16:43:00 +0000648 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000649 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000650 // NOTE: visitSetCondInst knows that the value is dumped into the BL
651 // register at this point for long values...
652 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000653 }
654 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000655 return isSigned;
656}
Chris Lattner3e130a22003-01-13 00:32:26 +0000657
Chris Lattner6d40c192003-01-16 16:43:00 +0000658
659/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
660/// register, then move it to wherever the result should be.
661///
662void ISel::visitSetCondInst(SetCondInst &I) {
663 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
664
665 unsigned OpNum = getSetCCNumber(I.getOpcode());
666 unsigned DestReg = getReg(I);
667 bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
668 I.getOperand(1));
669
670 if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
671 // Handle normal comparisons with a setcc instruction...
672 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
673 } else {
674 // Handle long comparisons by copying the value which is already in BL into
675 // the register we want...
676 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
677 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000678}
Chris Lattner51b49a92002-11-02 19:45:49 +0000679
Brian Gaekec2505982002-11-30 11:57:28 +0000680/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
681/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000682void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
683 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000684
685 // Make sure we have the register number for this value...
686 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
687
Chris Lattner3e130a22003-01-13 00:32:26 +0000688 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000689 case cByte:
690 // Extend value into target register (8->32)
691 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000692 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000693 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000694 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000695 break;
696 case cShort:
697 // Extend value into target register (16->32)
698 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000699 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000700 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000701 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000702 break;
703 case cInt:
704 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000705 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000706 break;
707 default:
708 assert(0 && "Unpromotable operand class in promote32");
709 }
Brian Gaekec2505982002-11-30 11:57:28 +0000710}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000711
Chris Lattner72614082002-10-25 22:55:53 +0000712/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
713/// we have the following possibilities:
714///
715/// ret void: No return value, simply emit a 'ret' instruction
716/// ret sbyte, ubyte : Extend value into EAX and return
717/// ret short, ushort: Extend value into EAX and return
718/// ret int, uint : Move value into EAX and return
719/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000720/// ret long, ulong : Move value into EAX/EDX and return
721/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000722///
Chris Lattner3e130a22003-01-13 00:32:26 +0000723void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000724 if (I.getNumOperands() == 0) {
725 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
726 return;
727 }
728
729 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000730 unsigned RetReg = getReg(RetVal);
731 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000732 case cByte: // integral return values: extend or move into EAX and return
733 case cShort:
734 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000735 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000736 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000737 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000738 break;
739 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000740 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000741 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000742 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000743 break;
744 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000745 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
746 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000747 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000748 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000749 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000750 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000751 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000752 }
Chris Lattner43189d12002-11-17 20:07:45 +0000753 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000754 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000755}
756
Chris Lattner55f6fab2003-01-16 18:07:23 +0000757// getBlockAfter - Return the basic block which occurs lexically after the
758// specified one.
759static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
760 Function::iterator I = BB; ++I; // Get iterator to next block
761 return I != BB->getParent()->end() ? &*I : 0;
762}
763
Chris Lattner51b49a92002-11-02 19:45:49 +0000764/// visitBranchInst - Handle conditional and unconditional branches here. Note
765/// that since code layout is frozen at this point, that if we are trying to
766/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000767/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000768///
Chris Lattner94af4142002-12-25 05:13:53 +0000769void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000770 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
771
772 if (!BI.isConditional()) { // Unconditional branch?
773 if (BI.getSuccessor(0) != NextBB)
774 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000775 return;
776 }
777
778 // See if we can fold the setcc into the branch itself...
779 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
780 if (SCI == 0) {
781 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
782 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000783 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000784 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000785 if (BI.getSuccessor(1) == NextBB) {
786 if (BI.getSuccessor(0) != NextBB)
787 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
788 } else {
789 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
790
791 if (BI.getSuccessor(0) != NextBB)
792 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
793 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000794 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000795 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000796
797 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
798 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
799 SCI->getOperand(1));
800
801 // LLVM -> X86 signed X86 unsigned
802 // ----- ---------- ------------
803 // seteq -> je je
804 // setne -> jne jne
805 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000806 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000807 // setgt -> jg ja
808 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000809 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000810 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
811 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000812 };
813
Chris Lattner55f6fab2003-01-16 18:07:23 +0000814 if (BI.getSuccessor(0) != NextBB) {
815 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
816 if (BI.getSuccessor(1) != NextBB)
817 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
818 } else {
819 // Change to the inverse condition...
820 if (BI.getSuccessor(1) != NextBB) {
821 OpNum ^= 1;
822 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
823 }
824 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000825}
826
Chris Lattner3e130a22003-01-13 00:32:26 +0000827
828/// doCall - This emits an abstract call instruction, setting up the arguments
829/// and the return value as appropriate. For the actual function call itself,
830/// it inserts the specified CallMI instruction into the stream.
831///
832void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
833 const std::vector<ValueRecord> &Args) {
834
Chris Lattner065faeb2002-12-28 20:24:02 +0000835 // Count how many bytes are to be pushed on the stack...
836 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000837
Chris Lattner3e130a22003-01-13 00:32:26 +0000838 if (!Args.empty()) {
839 for (unsigned i = 0, e = Args.size(); i != e; ++i)
840 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000841 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000842 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000843 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000844 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000845 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000846 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000847 break;
848 default: assert(0 && "Unknown class!");
849 }
850
851 // Adjust the stack pointer for the new arguments...
852 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
853
854 // Arguments go on the stack in reverse order, as specified by the ABI.
855 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000856 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000857 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000858 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000859 case cByte:
860 case cShort: {
861 // Promote arg to 32 bits wide into a temporary register...
862 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000863 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000864 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
865 X86::ESP, ArgOffset).addReg(R);
866 break;
867 }
868 case cInt:
869 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000870 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000871 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000872 case cLong:
873 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
874 X86::ESP, ArgOffset).addReg(ArgReg);
875 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
876 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
877 ArgOffset += 4; // 8 byte entry, not 4.
878 break;
879
Chris Lattner065faeb2002-12-28 20:24:02 +0000880 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000881 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000882 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000883 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000884 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000885 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
886 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
887 X86::ESP, ArgOffset).addReg(ArgReg);
888 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000889 }
890 break;
891
Chris Lattner3e130a22003-01-13 00:32:26 +0000892 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000893 }
894 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000895 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000896 } else {
897 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000898 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000899
Chris Lattner3e130a22003-01-13 00:32:26 +0000900 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000901
Chris Lattner065faeb2002-12-28 20:24:02 +0000902 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000903
904 // If there is a return value, scavenge the result from the location the call
905 // leaves it in...
906 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000907 if (Ret.Ty != Type::VoidTy) {
908 unsigned DestClass = getClassB(Ret.Ty);
909 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000910 case cByte:
911 case cShort:
912 case cInt: {
913 // Integral results are in %eax, or the appropriate portion
914 // thereof.
915 static const unsigned regRegMove[] = {
916 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
917 };
918 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000919 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000920 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000921 }
Chris Lattner94af4142002-12-25 05:13:53 +0000922 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000923 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000924 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000925 case cLong: // Long values are left in EDX:EAX
926 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
927 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
928 break;
929 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000930 }
Chris Lattnera3243642002-12-04 23:45:28 +0000931 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000932}
Chris Lattner2df035b2002-11-02 19:27:56 +0000933
Chris Lattner3e130a22003-01-13 00:32:26 +0000934
935/// visitCallInst - Push args on stack and do a procedure call instruction.
936void ISel::visitCallInst(CallInst &CI) {
937 MachineInstr *TheCall;
938 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +0000939 // Is it an intrinsic function call?
940 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
941 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
942 return;
943 }
944
Chris Lattner3e130a22003-01-13 00:32:26 +0000945 // Emit a CALL instruction with PC-relative displacement.
946 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
947 } else { // Emit an indirect call...
948 unsigned Reg = getReg(CI.getCalledValue());
949 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
950 }
951
952 std::vector<ValueRecord> Args;
953 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000954 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +0000955
956 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
957 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
958}
959
Chris Lattnereca195e2003-05-08 19:44:13 +0000960void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
961 unsigned TmpReg1, TmpReg2;
962 switch (ID) {
963 case LLVMIntrinsic::va_start:
964 // Get the address of the first vararg value...
965 TmpReg1 = makeAnotherReg(Type::UIntTy);
966 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
967 TmpReg2 = getReg(CI.getOperand(1));
968 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
969 return;
970
971 case LLVMIntrinsic::va_end: return; // Noop on X86
972 case LLVMIntrinsic::va_copy:
973 TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
974 TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
975 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
976 return;
977
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000978 case LLVMIntrinsic::longjmp:
979 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
Brian Gaeked4615052003-07-18 20:23:43 +0000980 return;
981
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000982 case LLVMIntrinsic::setjmp:
Chris Lattnereb093fb2003-06-30 19:35:54 +0000983 // Setjmp always returns zero...
984 BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000985 return;
Chris Lattnereca195e2003-05-08 19:44:13 +0000986 default: assert(0 && "Unknown intrinsic for X86!");
987 }
988}
989
990
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000991/// visitSimpleBinary - Implement simple binary operators for integral types...
992/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
993/// Xor.
994void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
995 unsigned DestReg = getReg(B);
996 MachineBasicBlock::iterator MI = BB->end();
997 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
998 OperatorClass, DestReg);
999}
Chris Lattner3e130a22003-01-13 00:32:26 +00001000
Chris Lattner68aad932002-11-02 20:13:22 +00001001/// visitSimpleBinary - Implement simple binary operators for integral types...
1002/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
1003/// 4 for Xor.
1004///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001005/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1006/// and constant expression support.
1007void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
1008 MachineBasicBlock::iterator &IP,
1009 Value *Op0, Value *Op1,
1010 unsigned OperatorClass,unsigned TargetReg){
1011 unsigned Class = getClassB(Op0->getType());
Chris Lattner35333e12003-06-05 18:28:55 +00001012 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1013 static const unsigned OpcodeTab[][4] = {
1014 // Arithmetic operators
1015 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1016 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1017
1018 // Bitwise operators
1019 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1020 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1021 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001022 };
Chris Lattner35333e12003-06-05 18:28:55 +00001023
1024 bool isLong = false;
1025 if (Class == cLong) {
1026 isLong = true;
1027 Class = cInt; // Bottom 32 bits are handled just like ints
1028 }
1029
1030 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1031 assert(Opcode && "Floating point arguments to logical inst?");
1032 unsigned Op0r = getReg(Op0, BB, IP);
1033 unsigned Op1r = getReg(Op1, BB, IP);
1034 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
1035
1036 if (isLong) { // Handle the upper 32 bits of long values...
1037 static const unsigned TopTab[] = {
1038 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1039 };
1040 BMI(BB, IP, TopTab[OperatorClass], 2,
1041 TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
1042 }
1043 } else {
1044 // Special case: op Reg, <const>
1045 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1046
1047 static const unsigned OpcodeTab[][3] = {
1048 // Arithmetic operators
1049 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1050 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1051
1052 // Bitwise operators
1053 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1054 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1055 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1056 };
1057
1058 assert(Class < 3 && "General code handles 64-bit integer types!");
1059 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1060 unsigned Op0r = getReg(Op0, BB, IP);
Chris Lattnerc07736a2003-07-23 15:22:26 +00001061 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner35333e12003-06-05 18:28:55 +00001062
1063 // Mask off any upper bits of the constant, if there are any...
1064 Op1v &= (1ULL << (8 << Class)) - 1;
1065 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
Chris Lattner3e130a22003-01-13 00:32:26 +00001066 }
Chris Lattnere2954c82002-11-02 20:04:26 +00001067}
1068
Chris Lattner3e130a22003-01-13 00:32:26 +00001069/// doMultiply - Emit appropriate instructions to multiply together the
1070/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1071/// result should be given as DestTy.
1072///
Chris Lattner8a307e82002-12-16 19:32:50 +00001073void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001074 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001075 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001076 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001077 switch (Class) {
1078 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001079 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001080 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001081 case cInt:
1082 case cShort:
1083 BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
1084 .addReg(op0Reg).addReg(op1Reg);
1085 return;
1086 case cByte:
1087 // Must use the MUL instruction, which forces use of AL...
1088 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1089 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1090 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1091 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001092 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001093 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001094 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001095}
1096
Chris Lattnerca9671d2002-11-02 20:28:58 +00001097/// visitMul - Multiplies are not simple binary operators because they must deal
1098/// with the EAX register explicitly.
1099///
1100void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001101 unsigned Op0Reg = getReg(I.getOperand(0));
1102 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +00001103 unsigned DestReg = getReg(I);
1104
1105 // Simple scalar multiply?
1106 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
1107 MachineBasicBlock::iterator MBBI = BB->end();
1108 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1109 } else {
1110 // Long value. We have to do things the hard way...
1111 // Multiply the two low parts... capturing carry into EDX
1112 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1113 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1114
1115 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1116 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1117 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1118
1119 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001120 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1121 BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001122
1123 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1124 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1125 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1126
1127 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001128 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1129 BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001130
1131 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1132 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1133 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001134}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001135
Chris Lattner06925362002-11-17 21:56:38 +00001136
Chris Lattnerf01729e2002-11-02 20:54:46 +00001137/// visitDivRem - Handle division and remainder instructions... these
1138/// instruction both require the same instructions to be generated, they just
1139/// select the result from a different register. Note that both of these
1140/// instructions work differently for signed and unsigned operands.
1141///
1142void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001143 unsigned Class = getClass(I.getType());
1144 unsigned Op0Reg, Op1Reg, ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001145
1146 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001147 case cFP: // Floating point divide
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001148 if (I.getOpcode() == Instruction::Div) {
1149 Op0Reg = getReg(I.getOperand(0));
1150 Op1Reg = getReg(I.getOperand(1));
Chris Lattner94af4142002-12-25 05:13:53 +00001151 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001152 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001153 MachineInstr *TheCall =
1154 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1155 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001156 Args.push_back(ValueRecord(I.getOperand(0)));
1157 Args.push_back(ValueRecord(I.getOperand(1)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001158 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1159 }
Chris Lattner94af4142002-12-25 05:13:53 +00001160 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001161 case cLong: {
1162 static const char *FnName[] =
1163 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1164
1165 unsigned NameIdx = I.getType()->isUnsigned()*2;
1166 NameIdx += I.getOpcode() == Instruction::Div;
1167 MachineInstr *TheCall =
1168 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1169
1170 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001171 Args.push_back(ValueRecord(I.getOperand(0)));
1172 Args.push_back(ValueRecord(I.getOperand(1)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001173 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1174 return;
1175 }
1176 case cByte: case cShort: case cInt:
1177 break; // Small integerals, handled below...
1178 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001179 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001180
1181 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1182 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001183 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001184 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1185 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1186
1187 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001188 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1189 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001190 };
1191
1192 bool isSigned = I.getType()->isSigned();
1193 unsigned Reg = Regs[Class];
1194 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001195
1196 // Put the first operand into one of the A registers...
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001197 Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001198 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1199
1200 if (isSigned) {
1201 // Emit a sign extension instruction...
Chris Lattner7b52c032003-06-22 03:31:18 +00001202 unsigned ShiftResult = makeAnotherReg(I.getType());
1203 BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1204 BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001205 } else {
1206 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1207 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1208 }
1209
Chris Lattner06925362002-11-17 21:56:38 +00001210 // Emit the appropriate divide or remainder instruction...
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001211 Op1Reg = getReg(I.getOperand(1));
Chris Lattner92845e32002-11-21 18:54:29 +00001212 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001213
Chris Lattnerf01729e2002-11-02 20:54:46 +00001214 // Figure out which register we want to pick the result out of...
1215 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1216
Chris Lattnerf01729e2002-11-02 20:54:46 +00001217 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001218 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001219}
Chris Lattnere2954c82002-11-02 20:04:26 +00001220
Chris Lattner06925362002-11-17 21:56:38 +00001221
Brian Gaekea1719c92002-10-31 23:03:59 +00001222/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1223/// for constant immediate shift values, and for constant immediate
1224/// shift values equal to 1. Even the general case is sort of special,
1225/// because the shift amount has to be in CL, not just any old register.
1226///
Chris Lattner3e130a22003-01-13 00:32:26 +00001227void ISel::visitShiftInst(ShiftInst &I) {
1228 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001229 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001230 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001231 bool isSigned = I.getType()->isSigned();
1232 unsigned Class = getClass(I.getType());
1233
1234 static const unsigned ConstantOperand[][4] = {
1235 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1236 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1237 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1238 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1239 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001240
Chris Lattner3e130a22003-01-13 00:32:26 +00001241 static const unsigned NonConstantOperand[][4] = {
1242 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1243 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1244 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1245 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1246 };
Chris Lattner796df732002-11-02 00:44:25 +00001247
Chris Lattner3e130a22003-01-13 00:32:26 +00001248 // Longs, as usual, are handled specially...
1249 if (Class == cLong) {
1250 // If we have a constant shift, we can generate much more efficient code
1251 // than otherwise...
1252 //
1253 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1254 unsigned Amount = CUI->getValue();
1255 if (Amount < 32) {
1256 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1257 if (isLeftShift) {
1258 BuildMI(BB, Opc[3], 3,
1259 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1260 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1261 } else {
1262 BuildMI(BB, Opc[3], 3,
1263 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1264 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1265 }
1266 } else { // Shifting more than 32 bits
1267 Amount -= 32;
1268 if (isLeftShift) {
1269 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1270 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1271 } else {
1272 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1273 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1274 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1275 }
1276 }
1277 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001278 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1279
1280 if (!isLeftShift && isSigned) {
1281 // If this is a SHR of a Long, then we need to do funny sign extension
1282 // stuff. TmpReg gets the value to use as the high-part if we are
1283 // shifting more than 32 bits.
1284 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1285 } else {
1286 // Other shifts use a fixed zero value if the shift is more than 32
1287 // bits.
1288 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1289 }
1290
1291 // Initialize CL with the shift amount...
1292 unsigned ShiftAmount = getReg(I.getOperand(1));
1293 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1294
1295 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1296 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1297 if (isLeftShift) {
1298 // TmpReg2 = shld inHi, inLo
1299 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1300 // TmpReg3 = shl inLo, CL
1301 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1302
1303 // Set the flags to indicate whether the shift was by more than 32 bits.
1304 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1305
1306 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1307 BuildMI(BB, X86::CMOVNErr32, 2,
1308 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1309 // DestLo = (>32) ? TmpReg : TmpReg3;
1310 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1311 } else {
1312 // TmpReg2 = shrd inLo, inHi
1313 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1314 // TmpReg3 = s[ah]r inHi, CL
1315 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1316 .addReg(SrcReg+1);
1317
1318 // Set the flags to indicate whether the shift was by more than 32 bits.
1319 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1320
1321 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1322 BuildMI(BB, X86::CMOVNErr32, 2,
1323 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1324
1325 // DestHi = (>32) ? TmpReg : TmpReg3;
1326 BuildMI(BB, X86::CMOVNErr32, 2,
1327 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1328 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001329 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001330 return;
1331 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001332
Chris Lattner3e130a22003-01-13 00:32:26 +00001333 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1334 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1335 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001336
Chris Lattner3e130a22003-01-13 00:32:26 +00001337 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1338 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1339 } else { // The shift amount is non-constant.
1340 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001341
Chris Lattner3e130a22003-01-13 00:32:26 +00001342 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1343 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1344 }
1345}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001346
Chris Lattner3e130a22003-01-13 00:32:26 +00001347
1348/// doFPLoad - This method is used to load an FP value from memory using the
1349/// current endianness. NOTE: This method returns a partially constructed load
1350/// instruction which needs to have the memory source filled in still.
1351///
1352MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1353 MachineBasicBlock::iterator &MBBI,
1354 const Type *Ty, unsigned DestReg) {
1355 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1356 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1357
1358 if (TM.getTargetData().isLittleEndian()) // fast path...
1359 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1360
1361 // If we are big-endian, start by creating an LEA instruction to represent the
1362 // address of the memory location to load from...
1363 //
1364 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1365 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1366
1367 // Allocate a temporary stack slot to transform the value into...
1368 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1369
1370 // Perform the bswaps 32 bits at a time...
1371 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1372 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1373 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1374 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1375 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1376 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1377 FrameIdx, Offset).addReg(TmpReg2);
1378
1379 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1380 TmpReg1 = makeAnotherReg(Type::UIntTy);
1381 TmpReg2 = makeAnotherReg(Type::UIntTy);
1382
1383 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1384 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1385 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1386 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1387 }
1388
1389 // Now we can reload the final byteswapped result into the final destination.
1390 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1391 return Result;
1392}
1393
1394/// EmitByteSwap - Byteswap SrcReg into DestReg.
1395///
1396void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1397 // Emit the byte swap instruction...
1398 switch (Class) {
1399 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001400 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001401 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1402 break;
1403 case cInt:
1404 // Use the 32 bit bswap instruction to do a 32 bit swap...
1405 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1406 break;
1407
1408 case cShort:
1409 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001410 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001411 // into AX to do the xchg.
1412 //
1413 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1414 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1415 .addReg(X86::AH, MOTy::UseAndDef);
1416 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1417 break;
1418 default: assert(0 && "Cannot byteswap this class!");
1419 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001420}
1421
Chris Lattner06925362002-11-17 21:56:38 +00001422
Chris Lattner6fc3c522002-11-17 21:11:55 +00001423/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001424/// instruction. The load and store instructions are the only place where we
1425/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001426///
1427void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001428 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1429 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001430 unsigned SrcAddrReg = getReg(I.getOperand(0));
1431 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001432
Brian Gaekebfedb912003-07-17 21:30:06 +00001433 unsigned Class = getClassB(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001434 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001435 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001436 MachineBasicBlock::iterator MBBI = BB->end();
1437 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001438 return;
1439 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001440 case cLong: case cInt: case cShort: case cByte:
1441 break; // Integers of various sizes handled below
1442 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001443 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001444
Chris Lattnere8f0d922002-12-24 00:03:11 +00001445 // We need to adjust the input pointer if we are emulating a big-endian
1446 // long-pointer target. On these systems, the pointer that we are interested
1447 // in is in the upper part of the eight byte memory image of the pointer. It
1448 // also happens to be byte-swapped, but this will be handled later.
1449 //
1450 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1451 unsigned R = makeAnotherReg(Type::UIntTy);
1452 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1453 SrcAddrReg = R;
1454 }
Chris Lattner94af4142002-12-25 05:13:53 +00001455
Chris Lattnere8f0d922002-12-24 00:03:11 +00001456 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001457 if (!isLittleEndian) // If big endian we need an intermediate stage
1458 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001459
Chris Lattner3e130a22003-01-13 00:32:26 +00001460 static const unsigned Opcode[] = {
1461 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1462 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001463 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1464
Chris Lattner3e130a22003-01-13 00:32:26 +00001465 // Handle long values now...
1466 if (Class == cLong) {
1467 if (isLittleEndian) {
1468 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1469 } else {
1470 EmitByteSwap(IReg+1, DestReg, cInt);
1471 unsigned TempReg = makeAnotherReg(Type::IntTy);
1472 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1473 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001474 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001475 return;
1476 }
1477
1478 if (!isLittleEndian)
1479 EmitByteSwap(IReg, DestReg, Class);
1480}
1481
1482
1483/// doFPStore - This method is used to store an FP value to memory using the
1484/// current endianness.
1485///
1486void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1487 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1488 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1489
1490 if (TM.getTargetData().isLittleEndian()) { // fast path...
1491 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1492 return;
1493 }
1494
1495 // Allocate a temporary stack slot to transform the value into...
1496 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1497 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1498 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1499
1500 // Store the value into a temporary stack slot...
1501 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1502
1503 // Perform the bswaps 32 bits at a time...
1504 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1505 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1506 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1507 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1508 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1509 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1510 DestAddrReg, Offset).addReg(TmpReg2);
1511
1512 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1513 TmpReg1 = makeAnotherReg(Type::UIntTy);
1514 TmpReg2 = makeAnotherReg(Type::UIntTy);
1515
1516 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1517 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1518 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1519 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001520 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001521}
1522
Chris Lattner06925362002-11-17 21:56:38 +00001523
Chris Lattner6fc3c522002-11-17 21:11:55 +00001524/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1525/// instruction.
1526///
1527void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001528 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1529 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001530 unsigned ValReg = getReg(I.getOperand(0));
1531 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001532
Brian Gaekebfedb912003-07-17 21:30:06 +00001533 unsigned Class = getClassB(I.getOperand(0)->getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001534 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001535 case cLong:
1536 if (isLittleEndian) {
1537 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1538 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1539 AddressReg, 4).addReg(ValReg+1);
1540 } else {
1541 unsigned T1 = makeAnotherReg(Type::IntTy);
1542 unsigned T2 = makeAnotherReg(Type::IntTy);
1543 EmitByteSwap(T1, ValReg , cInt);
1544 EmitByteSwap(T2, ValReg+1, cInt);
1545 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1546 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1547 }
Chris Lattner94af4142002-12-25 05:13:53 +00001548 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001549 case cFP:
1550 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1551 return;
1552 case cInt: case cShort: case cByte:
1553 break; // Integers of various sizes handled below
1554 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001555 }
1556
1557 if (!isLittleEndian && hasLongPointers &&
1558 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001559 unsigned R = makeAnotherReg(Type::UIntTy);
1560 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1561 AddressReg = R;
1562 }
1563
Chris Lattner94af4142002-12-25 05:13:53 +00001564 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001565 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1566 EmitByteSwap(R, ValReg, Class);
1567 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001568 }
1569
Chris Lattner94af4142002-12-25 05:13:53 +00001570 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001571 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1572}
1573
1574
Brian Gaekec11232a2002-11-26 10:43:30 +00001575/// visitCastInst - Here we have various kinds of copying with or without
1576/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001577void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001578 Value *Op = CI.getOperand(0);
1579 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1580 // of the case are GEP instructions, then the cast does not need to be
1581 // generated explicitly, it will be folded into the GEP.
1582 if (CI.getType() == Type::LongTy &&
1583 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1584 bool AllUsesAreGEPs = true;
1585 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1586 if (!isa<GetElementPtrInst>(*I)) {
1587 AllUsesAreGEPs = false;
1588 break;
1589 }
1590
1591 // No need to codegen this cast if all users are getelementptr instrs...
1592 if (AllUsesAreGEPs) return;
1593 }
1594
Chris Lattner548f61d2003-04-23 17:22:12 +00001595 unsigned DestReg = getReg(CI);
1596 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001597 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001598}
1599
1600/// emitCastOperation - Common code shared between visitCastInst and
1601/// constant expression cast support.
1602void ISel::emitCastOperation(MachineBasicBlock *BB,
1603 MachineBasicBlock::iterator &IP,
1604 Value *Src, const Type *DestTy,
1605 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001606 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001607 const Type *SrcTy = Src->getType();
1608 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001609 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001610
Chris Lattner3e130a22003-01-13 00:32:26 +00001611 // Implement casts to bool by using compare on the operand followed by set if
1612 // not zero on the result.
1613 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001614 switch (SrcClass) {
1615 case cByte:
1616 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1617 break;
1618 case cShort:
1619 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1620 break;
1621 case cInt:
1622 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1623 break;
1624 case cLong: {
1625 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1626 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1627 break;
1628 }
1629 case cFP:
1630 assert(0 && "FIXME: implement cast FP to bool");
1631 abort();
1632 }
1633
1634 // If the zero flag is not set, then the value is true, set the byte to
1635 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001636 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001637 return;
1638 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001639
1640 static const unsigned RegRegMove[] = {
1641 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1642 };
1643
1644 // Implement casts between values of the same type class (as determined by
1645 // getClass) by using a register-to-register move.
1646 if (SrcClass == DestClass) {
1647 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001648 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001649 } else if (SrcClass == cFP) {
1650 if (SrcTy == Type::FloatTy) { // double -> float
1651 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001652 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001653 } else { // float -> double
1654 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1655 "Unknown cFP member!");
1656 // Truncate from double to float by storing to memory as short, then
1657 // reading it back.
1658 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1659 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001660 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1661 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001662 }
1663 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001664 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1665 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001666 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001667 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001668 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001669 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001670 return;
1671 }
1672
1673 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1674 // or zero extension, depending on whether the source type was signed.
1675 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1676 SrcClass < DestClass) {
1677 bool isLong = DestClass == cLong;
1678 if (isLong) DestClass = cInt;
1679
1680 static const unsigned Opc[][4] = {
1681 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1682 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1683 };
1684
1685 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001686 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1687 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001688
1689 if (isLong) { // Handle upper 32 bits as appropriate...
1690 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001691 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001692 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001693 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001694 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001695 return;
1696 }
1697
1698 // Special case long -> int ...
1699 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001700 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001701 return;
1702 }
1703
1704 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1705 // move out of AX or AL.
1706 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1707 && SrcClass > DestClass) {
1708 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001709 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1710 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001711 return;
1712 }
1713
1714 // Handle casts from integer to floating point now...
1715 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001716 // Promote the integer to a type supported by FLD. We do this because there
1717 // are no unsigned FLD instructions, so we must promote an unsigned value to
1718 // a larger signed value, then use FLD on the larger value.
1719 //
1720 const Type *PromoteType = 0;
1721 unsigned PromoteOpcode;
1722 switch (SrcTy->getPrimitiveID()) {
1723 case Type::BoolTyID:
1724 case Type::SByteTyID:
1725 // We don't have the facilities for directly loading byte sized data from
1726 // memory (even signed). Promote it to 16 bits.
1727 PromoteType = Type::ShortTy;
1728 PromoteOpcode = X86::MOVSXr16r8;
1729 break;
1730 case Type::UByteTyID:
1731 PromoteType = Type::ShortTy;
1732 PromoteOpcode = X86::MOVZXr16r8;
1733 break;
1734 case Type::UShortTyID:
1735 PromoteType = Type::IntTy;
1736 PromoteOpcode = X86::MOVZXr32r16;
1737 break;
1738 case Type::UIntTyID: {
1739 // Make a 64 bit temporary... and zero out the top of it...
1740 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1741 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1742 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1743 SrcTy = Type::LongTy;
1744 SrcClass = cLong;
1745 SrcReg = TmpReg;
1746 break;
1747 }
1748 case Type::ULongTyID:
1749 assert("FIXME: not implemented: cast ulong X to fp type!");
1750 default: // No promotion needed...
1751 break;
1752 }
1753
1754 if (PromoteType) {
1755 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001756 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1757 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001758 SrcTy = PromoteType;
1759 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001760 SrcReg = TmpReg;
1761 }
1762
1763 // Spill the integer to memory and reload it from there...
1764 int FrameIdx =
1765 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1766
1767 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001768 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1769 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001770 FrameIdx, 4).addReg(SrcReg+1);
1771 } else {
1772 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001773 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001774 }
1775
1776 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001777 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001778 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001779 return;
1780 }
1781
1782 // Handle casts from floating point to integer now...
1783 if (SrcClass == cFP) {
1784 // Change the floating point control register to use "round towards zero"
1785 // mode when truncating to an integer value.
1786 //
1787 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001788 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001789
1790 // Load the old value of the high byte of the control word...
1791 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001792 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001793
1794 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001795 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001796
1797 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001798 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001799
1800 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001801 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001802 CWFrameIdx, 1).addReg(HighPartOfCW);
1803
1804 // We don't have the facilities for directly storing byte sized data to
1805 // memory. Promote it to 16 bits. We also must promote unsigned values to
1806 // larger classes because we only have signed FP stores.
1807 unsigned StoreClass = DestClass;
1808 const Type *StoreTy = DestTy;
1809 if (StoreClass == cByte || DestTy->isUnsigned())
1810 switch (StoreClass) {
1811 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1812 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1813 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001814 // The following treatment of cLong may not be perfectly right,
1815 // but it survives chains of casts of the form
1816 // double->ulong->double.
1817 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001818 default: assert(0 && "Unknown store class!");
1819 }
1820
1821 // Spill the integer to memory and reload it from there...
1822 int FrameIdx =
1823 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1824
1825 static const unsigned Op1[] =
1826 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001827 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001828
1829 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001830 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1831 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001832 } else {
1833 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001834 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001835 }
1836
1837 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001838 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001839 return;
1840 }
1841
Brian Gaeked474e9c2002-12-06 10:49:33 +00001842 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001843 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001844 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001845}
Brian Gaekea1719c92002-10-31 23:03:59 +00001846
Chris Lattnereca195e2003-05-08 19:44:13 +00001847/// visitVarArgInst - Implement the va_arg instruction...
1848///
1849void ISel::visitVarArgInst(VarArgInst &I) {
1850 unsigned SrcReg = getReg(I.getOperand(0));
1851 unsigned DestReg = getReg(I);
1852
1853 // Load the va_list into a register...
1854 unsigned VAList = makeAnotherReg(Type::UIntTy);
1855 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
1856
1857 unsigned Size;
1858 switch (I.getType()->getPrimitiveID()) {
1859 default:
1860 std::cerr << I;
1861 assert(0 && "Error: bad type for va_arg instruction!");
1862 return;
1863 case Type::PointerTyID:
1864 case Type::UIntTyID:
1865 case Type::IntTyID:
1866 Size = 4;
1867 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1868 break;
1869 case Type::ULongTyID:
1870 case Type::LongTyID:
1871 Size = 8;
1872 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1873 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1874 break;
1875 case Type::DoubleTyID:
1876 Size = 8;
1877 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1878 break;
1879 }
1880
1881 // Increment the VAList pointer...
1882 unsigned NextVAList = makeAnotherReg(Type::UIntTy);
1883 BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
1884
1885 // Update the VAList in memory...
1886 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
1887}
1888
1889
Chris Lattner8a307e82002-12-16 19:32:50 +00001890// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1891// returns zero when the input is not exactly a power of two.
1892static unsigned ExactLog2(unsigned Val) {
1893 if (Val == 0) return 0;
1894 unsigned Count = 0;
1895 while (Val != 1) {
1896 if (Val & 1) return 0;
1897 Val >>= 1;
1898 ++Count;
1899 }
1900 return Count+1;
1901}
1902
Chris Lattner3e130a22003-01-13 00:32:26 +00001903void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1904 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001905 MachineBasicBlock::iterator MI = BB->end();
1906 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001907 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001908}
1909
Brian Gaeke71794c02002-12-13 11:22:48 +00001910void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001911 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001912 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001913 User::op_iterator IdxEnd, unsigned TargetReg) {
1914 const TargetData &TD = TM.getTargetData();
1915 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001916 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001917
Brian Gaeke20244b72002-12-12 15:33:40 +00001918 // GEPs have zero or more indices; we must perform a struct access
1919 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001920 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1921 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001922 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001923 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001924 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001925 // It's a struct access. idx is the index into the structure,
1926 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001927 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1928 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001929 && "Funny-looking structure index in GEP");
1930 // Use the TargetData structure to pick out what the layout of
1931 // the structure is in memory. Since the structure index must
1932 // be constant, we can get its value and use it to find the
1933 // right byte offset from the StructLayout class's list of
1934 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001935 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001936 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1937 if (FieldOff) {
1938 NextReg = makeAnotherReg(Type::UIntTy);
1939 // Emit an ADD to add FieldOff to the basePtr.
1940 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1941 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001942 // The next type is the member of the structure selected by the
1943 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001944 Ty = StTy->getElementTypes()[idxValue];
1945 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001946 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001947
Brian Gaeke20244b72002-12-12 15:33:40 +00001948 // idx is the index into the array. Unlike with structure
1949 // indices, we may not know its actual value at code-generation
1950 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001951 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1952
Chris Lattnerf5854472003-06-21 16:01:24 +00001953 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
1954 // operand on X86. Handle this case directly now...
1955 if (CastInst *CI = dyn_cast<CastInst>(idx))
1956 if (CI->getOperand(0)->getType() == Type::IntTy ||
1957 CI->getOperand(0)->getType() == Type::UIntTy)
1958 idx = CI->getOperand(0);
1959
Chris Lattner3e130a22003-01-13 00:32:26 +00001960 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001961 // must find the size of the pointed-to type (Not coincidentally, the next
1962 // type is the type of the elements in the array).
1963 Ty = SqTy->getElementType();
1964 unsigned elementSize = TD.getTypeSize(Ty);
1965
1966 // If idxReg is a constant, we don't need to perform the multiply!
1967 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001968 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001969 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001970 NextReg = makeAnotherReg(Type::UIntTy);
1971 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001972 }
1973 } else if (elementSize == 1) {
1974 // If the element size is 1, we don't have to multiply, just add
1975 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001976 NextReg = makeAnotherReg(Type::UIntTy);
1977 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001978 } else {
1979 unsigned idxReg = getReg(idx, MBB, IP);
1980 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1981 if (unsigned Shift = ExactLog2(elementSize)) {
1982 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001983 BMI(MBB, IP, X86::SHLir32, 2,
1984 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1985 } else {
1986 // Most general case, emit a multiply...
1987 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1988 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1989
1990 // Emit a MUL to multiply the register holding the index by
1991 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001992 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001993 }
1994 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001995 NextReg = makeAnotherReg(Type::UIntTy);
1996 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001997 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001998 }
1999 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002000 // one, so we don't need to worry about BaseReg itself, anymore.
2001 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002002 }
2003 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002004 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002005 // put the answer. A 32-bit move should do it, because we are in
2006 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002007 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002008}
2009
2010
Chris Lattner065faeb2002-12-28 20:24:02 +00002011/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2012/// frame manager, otherwise do it the hard way.
2013///
2014void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002015 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002016 const Type *Ty = I.getAllocatedType();
2017 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2018
2019 // If this is a fixed size alloca in the entry block for the function,
2020 // statically stack allocate the space.
2021 //
2022 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2023 if (I.getParent() == I.getParent()->getParent()->begin()) {
2024 TySize *= CUI->getValue(); // Get total allocated size...
2025 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2026
2027 // Create a new stack object using the frame manager...
2028 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2029 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2030 return;
2031 }
2032 }
2033
2034 // Create a register to hold the temporary result of multiplying the type size
2035 // constant by the variable amount.
2036 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2037 unsigned SrcReg1 = getReg(I.getArraySize());
2038 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
2039 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
2040
2041 // TotalSizeReg = mul <numelements>, <TypeSize>
2042 MachineBasicBlock::iterator MBBI = BB->end();
2043 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
2044
2045 // AddedSize = add <TotalSizeReg>, 15
2046 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2047 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2048
2049 // AlignedSize = and <AddedSize>, ~15
2050 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2051 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2052
Brian Gaekee48ec012002-12-13 06:46:31 +00002053 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002054 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002055
Brian Gaekee48ec012002-12-13 06:46:31 +00002056 // Put a pointer to the space into the result register, by copying
2057 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002058 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2059
Misha Brukman48196b32003-05-03 02:18:17 +00002060 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002061 // object.
2062 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002063}
Chris Lattner3e130a22003-01-13 00:32:26 +00002064
2065/// visitMallocInst - Malloc instructions are code generated into direct calls
2066/// to the library malloc.
2067///
2068void ISel::visitMallocInst(MallocInst &I) {
2069 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2070 unsigned Arg;
2071
2072 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2073 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2074 } else {
2075 Arg = makeAnotherReg(Type::UIntTy);
2076 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
2077 unsigned Op1Reg = getReg(I.getOperand(0));
2078 MachineBasicBlock::iterator MBBI = BB->end();
2079 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002080 }
2081
2082 std::vector<ValueRecord> Args;
2083 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2084 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2085 1).addExternalSymbol("malloc", true);
2086 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2087}
2088
2089
2090/// visitFreeInst - Free instructions are code gen'd to call the free libc
2091/// function.
2092///
2093void ISel::visitFreeInst(FreeInst &I) {
2094 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002095 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002096 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2097 1).addExternalSymbol("free", true);
2098 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2099}
2100
Brian Gaeke20244b72002-12-12 15:33:40 +00002101
Chris Lattnerd281de22003-07-26 23:49:58 +00002102/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002103/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002104/// generated code sucks but the implementation is nice and simple.
2105///
Chris Lattnerd281de22003-07-26 23:49:58 +00002106Pass *createX86SimpleInstructionSelector(TargetMachine &TM) {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002107 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002108}